-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
121 lines (109 loc) · 5.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
import collections
import torch
import numpy as np
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
# For num_experts with same settings, we don't want this to set to True.
# This is strongly discouraged because it's misleading: setting it to true does not make it reproducible acorss machine/pytorch version. In addition, it also makes training slower. Use with caution.
deterministic = False
if deterministic:
# fix random seeds for reproducibility
SEED = 123
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main(config):
logger = config.get_logger('train')
# setup data_loader instances
data_loader = config.init_obj('data_loader', module_data)
# valid_data_loader = data_loader.split_validation()
valid_data_loader = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size=128,
shuffle=False,
training=False,
num_workers=2
)
# build model architecture, then print to console
model = config.init_obj('arch', module_arch)
logger.info(model)
# get function handles of loss and metrics
loss_class = getattr(module_loss, config["loss"]["type"])
if hasattr(loss_class, "require_num_experts") and loss_class.require_num_experts:
criterion = config.init_obj('loss', module_loss, cls_num_list=data_loader.cls_num_list, num_experts=config["arch"]["args"]["num_experts"])
else:
criterion = config.init_obj('loss', module_loss, cls_num_list=data_loader.cls_num_list)
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
optimizer = config.init_obj('optimizer', torch.optim, model.parameters())
if "type" in config._config["lr_scheduler"]:
if config["lr_scheduler"]["type"] == "CustomLR":
lr_scheduler_args = config["lr_scheduler"]["args"]
gamma = lr_scheduler_args["gamma"] if "gamma" in lr_scheduler_args else 0.1
print("Scheduler step1, step2, warmup_epoch, gamma:", (lr_scheduler_args["step1"], lr_scheduler_args["step2"], lr_scheduler_args["warmup_epoch"], gamma))
def lr_lambda(epoch):
if epoch >= lr_scheduler_args["step2"]:
lr = gamma * gamma
elif epoch >= lr_scheduler_args["step1"]:
lr = gamma
else:
lr = 1
"""Warmup"""
warmup_epoch = lr_scheduler_args["warmup_epoch"]
if epoch < warmup_epoch:
lr = lr * float(1 + epoch) / warmup_epoch
return lr
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
else:
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
else:
lr_scheduler = None
# print(data_loader.prior)
# print(valid_data_loader.prior)
trainer = Trainer(model, criterion, metrics, optimizer,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler)
if 'eval_ensemble' in config._config and config._config['eval_ensemble']:
trainer.check_ensemble()
else:
trainer.train()
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'),
CustomArgs(['--bs', '--batch_size'], type=int, target='data_loader;args;batch_size'),
CustomArgs(['--name'], type=str, target='name'),
CustomArgs(['--epochs'], type=int, target='trainer;epochs'),
CustomArgs(['--step1'], type=int, target='lr_scheduler;args;step1'),
CustomArgs(['--step2'], type=int, target='lr_scheduler;args;step2'),
CustomArgs(['--warmup'], type=int, target='lr_scheduler;args;warmup_epoch'),
CustomArgs(['--gamma'], type=float, target='lr_scheduler;args;gamma'),
CustomArgs(['--save_period'], type=int, target='trainer;save_period'),
CustomArgs(['--reduce_dimension'], type=int, target='arch;args;reduce_dimension'),
CustomArgs(['--layer2_dimension'], type=int, target='arch;args;layer2_output_dim'),
CustomArgs(['--layer3_dimension'], type=int, target='arch;args;layer3_output_dim'),
CustomArgs(['--layer4_dimension'], type=int, target='arch;args;layer4_output_dim'),
CustomArgs(['--num_experts'], type=int, target='arch;args;num_experts'),
CustomArgs(['--distribution_aware_diversity_factor'], type=float, target='loss;args;additional_diversity_factor'),
CustomArgs(['--pos_weight'], type=float, target='arch;args;pos_weight'),
CustomArgs(['--collaborative_loss'], type=int, target='loss;args;collaborative_loss'),
CustomArgs(['--distill_checkpoint'], type=str, target='distill_checkpoint')
]
config = ConfigParser.from_args(args, options)
main(config)