-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathcomparisons.scad
960 lines (861 loc) · 39.1 KB
/
comparisons.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
//////////////////////////////////////////////////////////////////////
// LibFile: comparisons.scad
// Functions for comparisons with lists, ordering and sorting
// Includes:
// include <BOSL2/std.scad>
// FileGroup: Data Management
// FileSummary: Comparisons and sorting.
// FileFootnotes: STD=Included in std.scad
//////////////////////////////////////////////////////////////////////
// Section: List comparison operations
// Function: approx()
// Synopsis: Returns true if two values are equal to within a small epsilon value.
// Topics: Comparisons
// See Also: all_zero(), all_nonzero()
// Usage:
// test = approx(a, b, [eps])
// Description:
// Compares two numbers, vectors, or matrices. Returns true if they are closer than `eps` to each other.
// Results are undefined if `a` and `b` are of different types, or if vectors or matrices contain non-numbers.
// Arguments:
// a = First value.
// b = Second value.
// eps = The maximum allowed difference between `a` and `b` to consider as "no difference". Default: 1e-9.
// Example:
// test1 = approx(-0.3333333333,-1/3); // Returns: true
// test2 = approx(0.3333333333,1/3); // Returns: true
// test3 = approx(0.3333,1/3); // Returns: false
// test4 = approx(0.3333,1/3,eps=1e-3); // Returns: true
// test5 = approx(PI,3.1415926536); // Returns: true
// test6 = approx([0,0,sin(45)],[0,0,sqrt(2)/2]); // Returns: true
function approx(a,b,eps=EPSILON) =
a == b? is_bool(a) == is_bool(b) :
is_num(a) && is_num(b)? abs(a-b) <= eps :
is_list(a) && is_list(b) && len(a) == len(b)? (
[] == [
for (i=idx(a))
let(aa=a[i], bb=b[i])
if(
is_num(aa) && is_num(bb)? abs(aa-bb) > eps :
!approx(aa,bb,eps=eps)
) 1
]
) : false;
// Function: all_zero()
// Synopsis: Returns true if the value(s) given are approximately zero.
// Topics: Comparisons, List Handling
// See Also: approx(), all_zero(), all_nonzero()
// Usage:
// x = all_zero(x, [eps]);
// Description:
// Returns true if its argument is approximately zero, to within `eps`.
// If passed a list returns true if all its entries are approximately equal to zero.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// eps = The maximum allowed variance. Default: `EPSILON` (1e-9)
// Example:
// a = all_zero(0); // Returns: true.
// b = all_zero(1e-3); // Returns: false.
// c = all_zero([0,0,0]); // Returns: true.
// d = all_zero([0,0,1e-3]); // Returns: false.
function all_zero(x, eps=EPSILON) =
is_finite(x)? abs(x)<eps :
is_vector(x) && [for (xx=x) if(abs(xx)>eps) 1] == [];
// Function: all_nonzero()
// Synopsis: Returns true if the value(s) given are not approximately zero.
// Topics: Comparisons, List Handling
// See Also: approx(), all_zero(), all_nonzero()
// Usage:
// test = all_nonzero(x, [eps]);
// Description:
// Returns true if its argument is finite and different from zero by `eps`.
// If passed a list returns true if all the entries of the list are finite numbers that are different from zero by `eps`.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// eps = The maximum allowed variance. Default: `EPSILON` (1e-9)
// Example:
// a = all_nonzero(0); // Returns: false.
// b = all_nonzero(1e-3); // Returns: true.
// c = all_nonzero([0,0,0]); // Returns: false.
// d = all_nonzero([0,0,1e-3]); // Returns: false.
// e = all_nonzero([1e-3,1e-3,1e-3]); // Returns: true.
function all_nonzero(x, eps=EPSILON) =
is_finite(x)? abs(x)>eps :
is_vector(x) && [for (xx=x) if(abs(xx)<eps) 1] == [];
// Function: all_positive()
// Synopsis: Returns true if the value(s) given are greater than zero.
// Topics: Comparisons, List Handling
// See Also: approx(), all_zero(), all_nonzero(), all_negative(), all_nonpositive(), all_nonnegative()
// Usage:
// test = all_positive(x,[eps]);
// Description:
// Returns true if the argument is finite and greater than zero, within epsilon tolerance if desired.
// If passed a list returns true if all the entries are finite positive numbers.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// eps = Tolerance. Default: 0
// Example:
// a = all_positive(-2); // Returns: false.
// b = all_positive(0); // Returns: false.
// c = all_positive(2); // Returns: true.
// d = all_positive([0,0,0]); // Returns: false.
// e = all_positive([0,1,2]); // Returns: false.
// f = all_positive([3,1,2]); // Returns: true.
// g = all_positive([3,-1,2]); // Returns: false.
function all_positive(x,eps=0) =
is_finite(x)? x>eps :
is_vector(x) && [for (xx=x) if(xx<=0) 1] == [];
// Function: all_negative()
// Synopsis: Returns true if the value(s) given are less than zero.
// Topics: Comparisons, List Handling
// See Also: approx(), all_zero(), all_nonzero(), all_positive(), all_nonpositive(), all_nonnegative()
// Usage:
// test = all_negative(x, [eps]);
// Description:
// Returns true if the argument is finite and less than zero, within epsilon tolerance if desired.
// If passed a list, returns true if all the elements are finite negative numbers.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// eps = tolerance. Default: 0
// Example:
// a = all_negative(-2); // Returns: true.
// b = all_negative(0); // Returns: false.
// c = all_negative(2); // Returns: false.
// d = all_negative([0,0,0]); // Returns: false.
// e = all_negative([0,1,2]); // Returns: false.
// f = all_negative([3,1,2]); // Returns: false.
// g = all_negative([3,-1,2]); // Returns: false.
// h = all_negative([-3,-1,-2]); // Returns: true.
function all_negative(x, eps=0) =
is_finite(x)? x<-eps :
is_vector(x) && [for (xx=x) if(xx>=-eps) 1] == [];
// Function: all_nonpositive()
// Synopsis: Returns true if the value(s) given are less than or equal to zero.
// Topics: Comparisons, List Handling
// See Also: approx(), all_zero(), all_nonzero(), all_positive(), all_negative(), all_nonpositive(), all_nonnegative()
// Usage:
// all_nonpositive(x, [eps]);
// Description:
// Returns true if its argument is finite and less than or equal to zero.
// If passed a list, returns true if all the elements are finite non-positive numbers.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// eps = tolerance. Default: 0
// Example:
// a = all_nonpositive(-2); // Returns: true.
// b = all_nonpositive(0); // Returns: true.
// c = all_nonpositive(2); // Returns: false.
// d = all_nonpositive([0,0,0]); // Returns: true.
// e = all_nonpositive([0,1,2]); // Returns: false.
// f = all_nonpositive([3,1,2]); // Returns: false.
// g = all_nonpositive([3,-1,2]); // Returns: false.
// h = all_nonpositive([-3,-1,-2]); // Returns: true.
function all_nonpositive(x,eps=0) =
is_num(x)? x<=eps :
is_vector(x) && [for (xx=x) if(xx>eps) 1] == [];
// Function: all_nonnegative()
// Synopsis: Returns true if the value(s) given are greater than or equal to zero.
// Topics: Comparisons, List Handling
// See Also: approx(), all_zero(), all_nonzero(), all_positive(), all_negative(), all_nonpositive(), all_nonnegative()
// Usage:
// all_nonnegative(x, [eps]);
// Description:
// Returns true if the finite number passed to it is greater than or equal to zero.
// If passed a list, returns true if all the elements are finite non-negative numbers.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// eps = tolerance. Default: 0
// Example:
// a = all_nonnegative(-2); // Returns: false.
// b = all_nonnegative(0); // Returns: true.
// c = all_nonnegative(2); // Returns: true.
// d = all_nonnegative([0,0,0]); // Returns: true.
// e = all_nonnegative([0,1,2]); // Returns: true.
// f = all_nonnegative([0,-1,-2]); // Returns: false.
// g = all_nonnegative([3,1,2]); // Returns: true.
// h = all_nonnegative([3,-1,2]); // Returns: false.
// i = all_nonnegative([-3,-1,-2]); // Returns: false.
function all_nonnegative(x,eps=0) =
is_num(x)? x>=-eps :
is_vector(x) && [for (xx=x) if(xx<-eps) 1] == [];
// Function: all_equal()
// Synopsis: Returns true if all items in a list are approximately equal to each other.
// Topics: Comparisons, List Handling
// See Also: approx(), all_zero(), all_nonzero(), all_positive(), all_negative(), all_nonpositive(), all_nonnegative()
// Usage:
// b = all_equal(vec, [eps]);
// Description:
// Returns true if all of the entries in vec are equal to each other, or approximately equal to each other if eps is set.
// Arguments:
// vec = vector to check
// eps = Set to tolerance for approximate equality. Default: 0
function all_equal(vec,eps=0) =
eps==0 ? [for(v=vec) if (v!=vec[0]) v] == []
: [for(v=vec) if (!approx(v,vec[0],eps)) v] == [];
// Function: are_ends_equal()
// Synopsis: Returns true if the first and last items in a list are approximately equal.
// Topics: Comparisons, List Handling
// See Also: approx(), all_zero(), all_nonzero(), all_positive(), all_negative(), all_nonpositive(), all_nonnegative()
// Usage:
// are_ends_equal(list, [eps]);
// Description:
// Returns true if the first and last points in the given list are equal to within epsilon.
// Arguments:
// list = list to check
// eps = Tolerance for approximate equality. Default: `EPSILON` (1e-9)
function are_ends_equal(list, eps=EPSILON) =
assert(is_list(list) && len(list)>0, "Must give a nonempty list")
approx(list[0], list[len(list)-1], eps=eps);
// Function: is_increasing()
// Synopsis: Returns true if every item in a list is greater than the previous item.
// Topics: Comparisons, List Handling
// See Also: max_index(), min_index(), is_increasing(), is_decreasing()
// Usage:
// bool = is_increasing(list, [strict]);
// Description:
// Returns true if the list is (non-strictly) increasing, or strictly increasing if `strict=true`.
// The list can be a list of any items that OpenSCAD can compare, or it can be a string, which gets
// evaluated character by character.
// Arguments:
// list = list (or string) to check
// strict = set to true to test that list is strictly increasing. Default: false
// Example:
// a = is_increasing([1,2,3,4]); // Returns: true
// b = is_increasing([1,3,2,4]); // Returns: false
// c = is_increasing([1,3,3,4]); // Returns: true
// d = is_increasing([1,3,3,4],strict=true); // Returns: false
// e = is_increasing([4,3,2,1]); // Returns: false
function is_increasing(list,strict=false) =
assert(is_list(list)||is_string(list))
strict ? len([for (p=pair(list)) if(p.x>=p.y) true])==0
: len([for (p=pair(list)) if(p.x>p.y) true])==0;
// Function: is_decreasing()
// Synopsis: Returns true if exery item in a list is less than the previous item.
// Topics: Comparisons, List Handling
// See Also: max_index(), min_index(), is_increasing(), is_decreasing()
// Usage:
// bool = is_decreasing(list, [strict]);
// Description:
// Returns true if the list is (non-strictly) decreasing, or strictly decreasing if `strict=true`.
// The list can be a list of any items that OpenSCAD can compare, or it can be a string, which gets
// evaluated character by character.
// Arguments:
// list = list (or string) to check
// strict = set to true to test that list is strictly decreasing. Default: false
// Example:
// a = is_decreasing([1,2,3,4]); // Returns: false
// b = is_decreasing([4,2,3,1]); // Returns: false
// c = is_decreasing([4,3,2,1]); // Returns: true
function is_decreasing(list,strict=false) =
assert(is_list(list)||is_string(list))
strict ? len([for (p=pair(list)) if(p.x<=p.y) true])==0
: len([for (p=pair(list)) if(p.x<p.y) true])==0;
function _type_num(x) =
is_undef(x)? 0 :
is_bool(x)? 1 :
is_num(x)? 2 :
is_nan(x)? 3 :
is_string(x)? 4 :
is_list(x)? 5 : 6;
// Function: compare_vals()
// Synopsis: Compares two values, possibly of different type.
// Topics: Comparisons, List Handling
// See Also: approx(), is_increasing(), is_decreasing()
// Usage:
// test = compare_vals(a, b);
// Description:
// Compares two values. Lists are compared recursively.
// Returns a negative value if a<b. Returns a positive value if a>b. Returns 0 if a==b.
// If types are not the same, then undef < bool < nan < num < str < list < range.
// Arguments:
// a = First value to compare.
// b = Second value to compare.
function compare_vals(a, b) =
(a==b)? 0 :
let(t1=_type_num(a), t2=_type_num(b)) (t1!=t2)? (t1-t2) :
is_list(a)? compare_lists(a,b) :
is_nan(a)? 0 :
(a<b)? -1 : (a>b)? 1 : 0;
// Function: compare_lists()
// Synopsis: Compares two lists of values, possibly of different type.
// Topics: Comparisons, List Handling
// See Also: compare_vals(), approx(), is_increasing(), is_decreasing()
// Usage:
// test = compare_lists(a, b)
// Description:
// Compare contents of two lists using `compare_vals()`.
// Returns a negative number if `a`<`b`.
// Returns 0 if `a`==`b`.
// Returns a positive number if `a`>`b`.
// Arguments:
// a = First list to compare.
// b = Second list to compare.
function compare_lists(a, b) =
a==b? 0 :
let(
cmps = [
for (i = [0:1:min(len(a),len(b))-1])
let( cmp = compare_vals(a[i],b[i]) )
if (cmp!=0) cmp
]
)
cmps==[]? (len(a)-len(b)) : cmps[0];
// Section: Finding the index of the minimum or maximum of a list
// Function: min_index()
// Synopsis: Returns the index of the minimum value in the given list.
// Topics: List Handling
// See Also: max_index(), is_increasing(), is_decreasing()
// Usage:
// idx = min_index(vals);
// idxlist = min_index(vals, all=true);
// Description:
// Returns the index of the first occurrence of the minimum value in the given list.
// If `all` is true then returns a list of all indices where the minimum value occurs.
// Arguments:
// vals = vector of values
// all = set to true to return indices of all occurrences of the minimum. Default: false
// Example:
// a = min_index([5,3,9,6,2,7,8,2,1]); // Returns: 8
// b = min_index([5,3,9,6,2,7,8,2,7],all=true); // Returns: [4,7]
function min_index(vals, all=false) =
assert( is_vector(vals), "Invalid or list of numbers.")
all ? search(min(vals),vals,0) : search(min(vals), vals)[0];
// Function: max_index()
// Synopsis: Returns the index of the maximum value in the given list.
// Topics: List Handling
// See Also: min_index(), is_increasing(), is_decreasing()
// Usage:
// idx = max_index(vals);
// idxlist = max_index(vals, all=true);
// Description:
// Returns the index of the first occurrence of the maximum value in the given list.
// If `all` is true then returns a list of all indices where the maximum value occurs.
// Arguments:
// vals = vector of values
// all = set to true to return indices of all occurrences of the maximum. Default: false
// Example:
// max_index([5,3,9,6,2,7,8,9,1]); // Returns: 2
// max_index([5,3,9,6,2,7,8,9,1],all=true); // Returns: [2,7]
function max_index(vals, all=false) =
assert( is_vector(vals) && len(vals)>0 , "Invalid or empty list of numbers.")
all ? search(max(vals),vals,0) : search(max(vals), vals)[0];
// Section: Dealing with duplicate list entries
// Function: find_approx()
// Synopsis: Finds the indexes of the item(s) in the given list that are approximately the given value.
// Topics: List Handling
// See Also: in_list()
// Usage:
// idx = find_approx(val, list, [start=], [eps=]);
// indices = find_approx(val, list, all=true, [start=], [eps=]);
// Description:
// Finds the first item in `list` that matches `val` to within `eps` tolerance, returning the index. Returns `undef` if there is no match.
// If `all=true` then returns all the items that agree within `eps` and returns the empty list if no such items exist.
// Arguments:
// val = The value to search for.
// list = The list to search.
// ---
// start = The index to start searching from. Default: 0
// all = If true, returns a list of all matching item indices. Default: false
// eps = The maximum allowed floating point rounding error for numeric comparisons. Default: EPSILON (1e-9)
// Example:
// find_approx(3,[4,5,3.01,2,2.99], eps=0.1); // Returns 2
// find_approx(9,[4,5,3.01,2,2.99], eps=0.1); // Returns undef
// find_approx(3,[4,5,3.01,2,2.99], all=true, eps=0.1); // Returns [2,4]
// find_approx(9,[4,5,3.01,2,2.99], all=true, eps=0.1); // Returns []
function find_approx(val, list, start=0, all=false, eps=EPSILON) =
all ? [for (i=[start:1:len(list)-1]) if (approx(val, list[i], eps=eps)) i]
: __find_approx(val, list, eps=eps, i=start);
function __find_approx(val, list, eps, i=0) =
i >= len(list)? undef :
approx(val, list[i], eps=eps)
? i
: __find_approx(val, list, eps=eps, i=i+1);
// Function: deduplicate()
// Synopsis: Returns a list with all consecutive duplicate values removed.
// Topics: List Handling
// See Also: deduplicate_indexed()
// Usage:
// list = deduplicate(list, [closed], [eps]);
// Description:
// Removes consecutive duplicate items in a list.
// When `eps` is zero, the comparison between consecutive items is exact.
// Otherwise, when all list items and subitems are numbers, the comparison is within the tolerance `eps`.
// Unlike `unique()` only consecutive duplicates are removed and the list is *not* sorted.
// If `closed` is set to true then the first and last entries in `list` are treated as adjacent,
// so all trailing items that match `list[0]` are dropped.
// Arguments:
// list = The list to deduplicate.
// closed = If true, treats first and last list entry as adjacent. Default: false
// eps = The maximum tolerance between items. Default: EPSILON
// Example:
// a = deduplicate([8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3,8]
// b = deduplicate(closed=true, [8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3]
// c = deduplicate("Hello"); // Returns: "Helo"
// d = deduplicate([[3,4],[7,2],[7,1.99],[1,4]],eps=0.1); // Returns: [[3,4],[7,2],[1,4]]
// e = deduplicate([[7,undef],[7,undef],[1,4],[1,4+1e-12]],eps=0); // Returns: [[7,undef],[1,4],[1,4+1e-12]]
function deduplicate(list, closed=false, eps=EPSILON) =
assert(is_list(list)||is_string(list))
let(
l = len(list),
end = l-(closed?0:1)
)
is_string(list) ? str_join([for (i=[0:1:l-1]) if (i==end || list[i] != list[(i+1)%l]) list[i]]) :
eps==0 ? [for (i=[0:1:l-1]) if (i==end || list[i] != list[(i+1)%l]) list[i]] :
[for (i=[0:1:l-1]) if (i==end || !approx(list[i], list[(i+1)%l], eps)) list[i]];
// Function: deduplicate_indexed()
// Synopsis: Takes a list of indices into a list of values, and returns a list of indices whose values are not consecutively the same.
// Topics: List Handling
// See Also: deduplicate()
// Usage:
// new_idxs = deduplicate_indexed(list, indices, [closed], [eps]);
// Description:
// Given a list, and a list of indices, removes consecutive indices corresponding to list values that are equal
// or approximately equal.
// Arguments:
// list = The list that the indices index into.
// indices = The list of indices to deduplicate.
// closed = If true, drops trailing indices if their list value matches the list value corresponding to the first index.
// eps = The maximum difference to allow between numbers or vectors.
// Example:
// a = deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1]); // Returns: [1,4,3,2,0,1]
// b = deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1], closed=true); // Returns: [1,4,3,2,0]
// c = deduplicate_indexed([[7,undef],[7,undef],[1,4],[1,4],[1,4+1e-12]],eps=0); // Returns: [0,2,4]
function deduplicate_indexed(list, indices, closed=false, eps=EPSILON) =
assert(is_list(list)||is_string(list), "Improper list or string.")
indices==[]? [] :
assert(is_vector(indices), "Indices must be a list of numbers.")
let(
ll = len(list),
l = len(indices),
end = l-(closed?0:1)
) [
for (i = [0:1:l-1]) let(
idx1 = indices[i],
idx2 = indices[(i+1)%l],
a = assert(idx1>=0,"Bad index.")
assert(idx1<len(list),"Bad index in indices.")
list[idx1],
b = assert(idx2>=0,"Bad index.")
assert(idx2<len(list),"Bad index in indices.")
list[idx2],
eq = (a == b)? true :
(a*0 != b*0) || (eps==0)? false :
is_num(a) || is_vector(a) ? approx(a, b, eps=eps)
: false
)
if (i==end || !eq) indices[i]
];
// Function: list_wrap()
// Synopsis: Returns a list whose last value is the same as the first.
// Topics: List Handling, Paths
// See Also: list_unwrap(), deduplicate()
// Usage:
// list_wrap(path, [eps]);
// Description:
// Force a list to wrap around so that its last point is equal to its first point: if the first and last entries are equal, simply returns the list unchanged.
// Otherwise returns the list with the first point duplicated at the end of the list. Comparisons are done to the tolerance `eps`. Lists of length 0 or
// 1 are returned unchanged.
// Arguments:
// list = list to unwrap
// eps = epsilon for comparison. Default: EPSILON (1e-9)
function list_wrap(list, eps=EPSILON) =
assert(is_list(list))
len(list)<2 || are_ends_equal(list,eps=eps)? list : [each list, list[0]];
function cleanup_path(list,eps=EPSILON) =
echo("***** Function cleanup_path() has been replaced by list_unwrap() and will be removed in a future version *****")
list_unwrap(list,eps);
function close_path(list,eps=EPSILON) =
echo("***** Function close_path() has been replaced by list_wrap() and will be removed in a future version *****")
list_wrap(list,eps);
// Function: list_unwrap()
// Synopsis: Removes the last item of a list if its first and last values are equal.
// Topics: List Handling, Paths
// See Also: list_wrap(), deduplicate()
// Usage:
// list_unwrap(list, [eps]);
// Description:
// If a list's last point matches its first point then delete the last point. Inverse operation to {{list_wrap()}}. Note that if the first/last points
// are repeated then the output may still have the first point equal to the last point. Comparisons are done to the tolerance `eps`. If the list has
// length 0 or 1 it is returned unchanged.
// Arguments:
// list = list to unwrap
// eps = epsilon for comparison. Default: EPSILON (1e-9)
function list_unwrap(list, eps=EPSILON) =
assert(is_list(list))
len(list)>=2 && are_ends_equal(list,eps=eps)? [for (i=[0:1:len(list)-2]) list[i]] : list;
// Function: unique()
// Synopsis: Returns a sorted list with all duplicates removed.
// Topics: List Handling
// See Also: shuffle(), sort(), sortidx(), unique_count()
// Usage:
// ulist = unique(list);
// Description:
// Given a string or a list returns the sorted string or the sorted list with all repeated items removed.
// The sorting order of non homogeneous lists is the function `sort` order.
// Arguments:
// list = The list to process.
// Example:
// sorted = unique([5,2,8,3,1,3,8,7,5]); // Returns: [1,2,3,5,7,8]
// sorted = unique("axdbxxc"); // Returns: "abcdx"
// sorted = unique([true,2,"xba",[1,0],true,[0,0],3,"a",[0,0],2]); // Returns: [true,2,3,"a","xba",[0,0],[1,0]]
function unique(list) =
assert(is_list(list)||is_string(list), "Invalid input." )
is_string(list)? str_join(unique([for (x = list) x])) :
len(list)<=1? list :
is_homogeneous(list,1) && ! is_list(list[0])
? _unique_sort(list)
: let( sorted = sort(list))
[
for (i=[0:1:len(sorted)-1])
if (i==0 || (sorted[i] != sorted[i-1]))
sorted[i]
];
function _unique_sort(l) =
len(l) <= 1 ? l :
let(
pivot = l[floor(len(l)/2)],
equal = [ for(li=l) if( li==pivot) li ],
lesser = [ for(li=l) if( li<pivot ) li ],
greater = [ for(li=l) if( li>pivot) li ]
)
concat(
_unique_sort(lesser),
equal[0],
_unique_sort(greater)
);
// Function: unique_count()
// Synopsis: Returns a sorted list of unique items with counts.
// Topics: List Handling
// See Also: shuffle(), sort(), sortidx(), unique()
// Usage:
// sorted_counts = unique_count(list);
// Description:
// Returns `[sorted,counts]` where `sorted` is a sorted list of the unique items in `list` and `counts` is a list such
// that `count[i]` gives the number of times that `sorted[i]` appears in `list`.
// Arguments:
// list = The list to analyze.
// Example:
// sorted = unique([5,2,8,3,1,3,8,3,5]); // Returns: [ [1,2,3,5,8], [1,1,3,2,2] ]
function unique_count(list) =
assert(is_list(list) || is_string(list), "Invalid input." )
list == [] ? [[],[]] :
is_homogeneous(list,1) && ! is_list(list[0])
? let( sorted = _group_sort(list) )
[ [for(s=sorted) s[0] ], [for(s=sorted) len(s) ] ]
: let(
list = sort(list),
ind = [0, for(i=[1:1:len(list)-1]) if (list[i]!=list[i-1]) i]
)
[ select(list,ind), deltas( concat(ind,[len(list)]) ) ];
// Section: Sorting
// returns true for valid index specifications idx in the interval [imin, imax)
// note that idx can't have any value greater or EQUAL to imax
// this allows imax=INF as a bound to numerical lists
function _valid_idx(idx,imin,imax) =
is_undef(idx)
|| ( is_finite(idx)
&& ( is_undef(imin) || idx>=imin )
&& ( is_undef(imax) || idx< imax ) )
|| ( is_list(idx)
&& ( is_undef(imin) || min(idx)>=imin )
&& ( is_undef(imax) || max(idx)< imax ) )
|| ( is_range(idx)
&& ( is_undef(imin) || (idx[1]>0 && idx[0]>=imin ) || (idx[1]<0 && idx[0]<=imax ) )
&& ( is_undef(imax) || (idx[1]>0 && idx[2]<=imax ) || (idx[1]<0 && idx[2]>=imin ) ) );
// idx should be an index of the arrays l[i]
function _group_sort_by_index(l,idx) =
len(l) == 0 ? [] :
len(l) == 1 ? [l] :
let(
pivot = l[floor(len(l)/2)][idx],
equal = [ for(li=l) if( li[idx]==pivot) li ],
lesser = [ for(li=l) if( li[idx]< pivot) li ],
greater = [ for(li=l) if( li[idx]> pivot) li ]
)
concat(
_group_sort_by_index(lesser,idx),
[equal],
_group_sort_by_index(greater,idx)
);
function _group_sort(l) =
len(l) == 0 ? [] :
len(l) == 1 ? [l] :
let(
pivot = l[floor(len(l)/2)],
equal = [ for(li=l) if( li==pivot) li ],
lesser = [ for(li=l) if( li< pivot) li ],
greater = [ for(li=l) if( li> pivot) li ]
)
concat(
_group_sort(lesser),
[equal],
_group_sort(greater)
);
// Sort a vector of scalar values with the native comparison operator
// all elements should have the same type.
function _sort_scalars(arr) =
len(arr)<=1 ? arr :
let(
pivot = arr[floor(len(arr)/2)],
lesser = [ for (y = arr) if (y < pivot) y ],
equal = [ for (y = arr) if (y == pivot) y ],
greater = [ for (y = arr) if (y > pivot) y ]
)
concat( _sort_scalars(lesser), equal, _sort_scalars(greater) );
// lexical sort of a homogeneous list of vectors
// uses native comparison operator
function _sort_vectors(arr, _i=0) =
len(arr)<=1 || _i>=len(arr[0]) ? arr :
let(
pivot = arr[floor(len(arr)/2)][_i],
lesser = [ for (entry=arr) if (entry[_i] < pivot ) entry ],
equal = [ for (entry=arr) if (entry[_i] == pivot ) entry ],
greater = [ for (entry=arr) if (entry[_i] > pivot ) entry ]
)
concat(
_sort_vectors(lesser, _i ),
_sort_vectors(equal, _i+1 ),
_sort_vectors(greater, _i ) );
// lexical sort of a homogeneous list of vectors by the vector components with indices in idxlist
// all idxlist indices should be in the range of the vector dimensions
// idxlist must be undef or a simple list of numbers
// uses native comparison operator
function _sort_vectors(arr, idxlist, _i=0) =
len(arr)<=1 || ( is_list(idxlist) && _i>=len(idxlist) ) || _i>=len(arr[0]) ? arr :
let(
k = is_list(idxlist) ? idxlist[_i] : _i,
pivot = arr[floor(len(arr)/2)][k],
lesser = [ for (entry=arr) if (entry[k] < pivot ) entry ],
equal = [ for (entry=arr) if (entry[k] == pivot ) entry ],
greater = [ for (entry=arr) if (entry[k] > pivot ) entry ]
)
concat(
_sort_vectors(lesser, idxlist, _i ),
_sort_vectors(equal, idxlist, _i+1),
_sort_vectors(greater, idxlist, _i ) );
// sorting using compare_vals(); returns indexed list when `indexed==true`
function _sort_general(arr, idx=undef, indexed=false) =
(len(arr)<=1) ? arr :
! indexed && is_undef(idx)
? _lexical_sort(arr)
: let( labeled = is_undef(idx) ? [for(i=idx(arr)) [i,arr[i]]]
: [for(i=idx(arr)) [i, for(j=idx) arr[i][j]]],
arrind = _indexed_sort(labeled))
indexed
? arrind
: [for(i=arrind) arr[i]];
// lexical sort using compare_vals()
function _lexical_sort(arr) =
len(arr)<=1? arr :
let( pivot = arr[floor(len(arr)/2)] )
let(
lesser = [ for (entry=arr) if (compare_vals(entry, pivot) <0 ) entry ],
equal = [ for (entry=arr) if (compare_vals(entry, pivot)==0 ) entry ],
greater = [ for (entry=arr) if (compare_vals(entry, pivot) >0 ) entry ]
)
concat(_lexical_sort(lesser), equal, _lexical_sort(greater));
// given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair
// the sorting is done using compare_vals()
function _indexed_sort(arrind) =
arrind==[] ? [] : len(arrind)==1? [arrind[0][0]] :
let( pivot = arrind[floor(len(arrind)/2)][1] )
let(
lesser = [ for (entry=arrind) if (compare_vals(entry[1], pivot) <0 ) entry ],
equal = [ for (entry=arrind) if (compare_vals(entry[1], pivot)==0 ) entry[0] ],
greater = [ for (entry=arrind) if (compare_vals(entry[1], pivot) >0 ) entry ]
)
concat(_indexed_sort(lesser), equal, _indexed_sort(greater));
// Function: sort()
// Synopsis: Returns a sorted list.
// Topics: List Handling
// See Also: shuffle(), sortidx(), unique(), unique_count(), group_sort()
// Usage:
// slist = sort(list, [idx]);
// Description:
// Sorts the given list in lexicographic order. The sort is stable, meaning equivalent items do not change order.
// If the input is a homogeneous simple list or a homogeneous
// list of vectors (see function is_homogeneous), the sorting method uses the native comparison operator and is faster.
// When sorting non homogeneous list the elements are compared with `compare_vals`, with types ordered according to
// `undef < boolean < number < string < list`. Comparison of lists is recursive.
// When comparing vectors, homogeneous or not, the parameter `idx` may be used to select the components to compare.
// Note that homogeneous lists of vectors may contain mixed types provided that for any two list elements
// list[i] and list[j] satisfies type(list[i][k])==type(list[j][k]) for all k.
// Strings are allowed as any list element and are compared with the native operators although no substring
// comparison is possible.
// Arguments:
// list = The list to sort.
// idx = If given, do the comparison based just on the specified index, range or list of indices.
// Example:
// // Homogeneous lists
// l1 = [45,2,16,37,8,3,9,23,89,12,34];
// sorted1 = sort(l1); // Returns [2,3,8,9,12,16,23,34,37,45,89]
// l2 = [["oat",0], ["cat",1], ["bat",3], ["bat",2], ["fat",3]];
// sorted2 = sort(l2); // Returns: [["bat",2],["bat",3],["cat",1],["fat",3],["oat",0]]
// // Non-homegenous list
// l3 = [[4,0],[7],[3,9],20,[4],[3,1],[8]];
// sorted3 = sort(l3); // Returns: [20,[3,1],[3,9],[4],[4,0],[7],[8]]
function sort(list, idx=undef) =
assert(is_list(list)||is_string(list), "Invalid input." )
is_string(list)? str_join(sort([for (x = list) x],idx)) :
!is_list(list) || len(list)<=1 ? list :
is_homogeneous(list,1)
? let(size = list_shape(list[0]))
size==0 ? _sort_scalars(list)
: len(size)!=1 ? _sort_general(list,idx)
: is_undef(idx) ? _sort_vectors(list)
: assert( _valid_idx(idx) , "Invalid indices.")
_sort_vectors(list,[for(i=idx) i])
: _sort_general(list,idx);
// Function: sortidx()
// Synopsis: Returns a list of sorted indices into a list.
// Topics: List Handling
// See Also: shuffle(), sort(), group_sort(), unique(), unique_count()
// Usage:
// idxlist = sortidx(list, [idx]);
// Description:
// Given a list, sort it as function `sort()`, and returns
// a list of indexes into the original list in that sorted order.
// The sort is stable, so equivalent items so not change order.
// If you iterate the returned list in order, and use the list items
// to index into the original list, then you are accessing the original
// values in sorted order.
// Arguments:
// list = The list to sort.
// idx = If given, do the comparison based just on the specified index, range or list of indices.
// Example:
// lst = ["d","b","e","c"];
// idxs = sortidx(lst); // Returns: [1,3,0,2]
// ordered = select(lst, idxs); // Returns: ["b", "c", "d", "e"]
// Example:
// lst = [
// ["foo", 88, [0,0,1], false],
// ["bar", 90, [0,1,0], true],
// ["baz", 89, [1,0,0], false],
// ["qux", 23, [1,1,1], true]
// ];
// idxs1 = sortidx(lst, idx=1); // Returns: [3,0,2,1]
// idxs2 = sortidx(lst, idx=0); // Returns: [1,2,0,3]
// idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1]
function sortidx(list, idx=undef) =
assert(is_list(list)||is_string(list), "Invalid list." )
is_homogeneous(list,1)
? let(
size = list_shape(list[0]),
aug = ! (size==0 || len(size)==1) ? 0 // for general sorting
: [for(i=[0:len(list)-1]) concat(i,list[i])], // for scalar or vector sorting
lidx = size==0? [1] : // scalar sorting
len(size)==1
? is_undef(idx) ? [for(i=[0:len(list[0])-1]) i+1] // vector sorting
: [for(i=idx) i+1] // vector sorting
: 0 // just to signal
)
assert( ! ( size==0 && is_def(idx) ),
"The specification of `idx` is incompatible with scalar sorting." )
assert( _valid_idx(idx) , "Invalid indices." )
lidx!=0
? let( lsort = _sort_vectors(aug,lidx) )
[for(li=lsort) li[0] ]
: _sort_general(list,idx,indexed=true)
: _sort_general(list,idx,indexed=true);
// Function: group_sort()
// Synopsis: Returns a sorted list of groups of values.
// Topics: List Handling
// See Also: group_data(), shuffle(), sort(), sortidx(), unique(), unique_count()
// Usage:
// ulist = group_sort(list,[idx]);
// Description:
// Given a list of numbers, sorts the list into a sequence of lists, where each list contains any repeated values.
// If there are no repeated values, the output is a list of singleton lists.
// If you apply {{flatten()}} to the output, the result is a simple sorted list.
// .
// When the input is a list of lists, the sorting is done based on index `idx` of the entries in `list`.
// In this case, `list[i][idx]` must be a number for every `i`, and the entries in `list` are grouped
// together in the output if they match at index `idx`. This function can be used to group together
// items that are tagged with the same index.
// Arguments:
// list = The list to sort.
// idx = If input is a list of lists, index to sort on. Default: 0.
// Example:
// sorted = group_sort([5,2,8,3,1,3,8,7,5]); // Returns: [[1],[2],[3,3],[5,5],[7],[8,8]]
// // Next example returns: [ [[2,"b"],[2,"e"]], [[3,"d"]], [[5,"a"],[5,"c"]] ]
// sorted2 = group_sort([[5,"a"],[2,"b"], [5,"c"], [3,"d"], [2,"e"] ], idx=0);
function group_sort(list, idx) =
assert(is_list(list), "Input should be a list." )
assert(is_undef(idx) || (is_int(idx) && idx>=0) , "Invalid index." )
len(list)<=1 ? [list] :
is_vector(list)? assert(is_undef(idx),"Cannot give idx with a vector input") _group_sort(list) :
let( idx = default(idx,0) )
assert( [for(entry=list) if(!is_list(entry) || len(entry)<idx || !is_num(entry[idx]) ) 1]==[],
"Some entry of the list is a list shorter than `idx` or the indexed entry of it is not a number.")
_group_sort_by_index(list,idx);
// Function: group_data()
// Synopsis: Groups list data by integer group numbers.
// Topics: List Handling
// See Also: group_sort(), shuffle(), sort(), sortidx(), unique(), unique_count()
// Usage:
// groupings = group_data(groups, values);
// Description:
// Given a list of integer group numbers, and an equal-length list of values,
// returns a list of groups with the values sorted into the corresponding groups.
// For example: if you have a groups index list of `[2,3,2]` and values of `["A","B","C"]`, then
// the values `"A"` and `"C"` are put in group 2, and `"B"` is in group 3.
// Groups that have no values grouped into them are empty lists. Therefore, the
// above would return `[[], [], ["A","C"], ["B"]]`
// Arguments:
// groups = A list of integer group index numbers.
// values = A list of values to sort into groups.
// Example:
// groups = group_data([1,2,0], ["A","B","C"]); // Returns [["B"],["C"],["A"]]
// Example:
// groups = group_data([1,3,1], ["A","B","C"]); // Returns [[],["A","C"],[],["B"]]
function group_data(groups, values) =
assert(all_integer(groups) && all_nonnegative(groups))
assert(is_list(values))
assert(len(groups)==len(values),
"The groups and values arguments should be lists of matching length.")
let( sorted = _group_sort_by_index([for(i=idx(groups))[groups[i],values[i]]],0) )
// retrieve values and insert []
[
for (i = idx(sorted))
let(
a = i==0? 0 : sorted[i-1][0][0]+1,
g0 = sorted[i]
)
each [
for (j = [a:1:g0[0][0]-1]) [],
[for (g1 = g0) g1[1]]
]
];
// Function: list_smallest()
// Synopsis: Returns the `k` smallest values in the list, in arbitrary order.
// Topics: List Handling
// See Also: group_sort(), shuffle(), sort(), sortidx(), unique(), unique_count()
// Usage:
// small = list_smallest(list, k)
// Description:
// Returns a set of the k smallest items in list in arbitrary order. The items must be
// mutually comparable with native OpenSCAD comparison operations.
// You get "undefined operation" errors if you provide invalid input.
// Arguments:
// list = list to process
// k = number of items to return
function list_smallest(list, k) =
assert(is_list(list))
assert(is_int(k) && k>=0, "k must be nonnegative")
let(
v = list[rand_int(0,len(list)-1,1)[0]],
smaller = [for(li=list) if(li<v) li ],
equal = [for(li=list) if(li==v) li ]
)
len(smaller) == k ? smaller :
len(smaller)<k && len(smaller)+len(equal) >= k ? [ each smaller, for(i=[1:k-len(smaller)]) v ] :
len(smaller) > k ? list_smallest(smaller, k) :
let( bigger = [for(li=list) if(li>v) li ] )
concat(smaller, equal, list_smallest(bigger, k-len(smaller) -len(equal)));
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap