-
Notifications
You must be signed in to change notification settings - Fork 125
/
coords.scad
538 lines (498 loc) · 24.2 KB
/
coords.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
//////////////////////////////////////////////////////////////////////
// LibFile: coords.scad
// Coordinate transformations and coordinate system conversions.
// Includes:
// include <BOSL2/std.scad>
// FileGroup: Math
// FileSummary: Conversions between coordinate systems.
// FileFootnotes: STD=Included in std.scad
//////////////////////////////////////////////////////////////////////
// Section: Coordinate Manipulation
// Function: point2d()
// Synopsis: Convert a vector to 2D.
// Topics: Coordinates, Points
// See Also: path2d(), point3d(), path3d()
// Usage:
// pt = point2d(p, [fill]);
// Description:
// Returns a 2D vector/point from a 2D or 3D vector. If given a 3D point, removes the Z coordinate.
// Arguments:
// p = The coordinates to force into a 2D vector/point.
// fill = Value to fill missing values in vector with. Default: 0
function point2d(p, fill=0) = assert(is_list(p)) [for (i=[0:1]) (p[i]==undef)? fill : p[i]];
// Function: path2d()
// Synopsis: Convert a path to 2D.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: point2d(), point3d(), path3d()
// Usage:
// pts = path2d(points);
// Description:
// Returns a list of 2D vectors/points from a list of 2D, 3D or higher dimensional vectors/points.
// Removes the extra coordinates from higher dimensional points. The input must be a path, where
// every vector has the same length.
// Arguments:
// points = A list of 2D or 3D points/vectors.
function path2d(points) =
assert(is_path(points,dim=undef,fast=true),"Input to path2d is not a path")
let (result = points * concat(ident(2), repeat([0,0], len(points[0])-2)))
assert(is_def(result), "Invalid input to path2d")
result;
// Function: point3d()
// Synopsis: Convert a vector to 3D.
// Topics: Coordinates, Points
// See Also: path2d(), point2d(), path3d()
// Usage:
// pt = point3d(p, [fill]);
// Description:
// Returns a 3D vector/point from a 2D or 3D vector.
// Arguments:
// p = The coordinates to force into a 3D vector/point.
// fill = Value to fill missing values in vector with. Default: 0
function point3d(p, fill=0) =
assert(is_list(p))
[for (i=[0:2]) (p[i]==undef)? fill : p[i]];
// Function: path3d()
// Synopsis: Convert a path to 3D.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: point2d(), path2d(), point3d()
// Usage:
// pts = path3d(points, [fill]);
// Description:
// Returns a list of 3D vectors/points from a list of 2D or higher dimensional vectors/points
// by removing extra coordinates or adding the z coordinate.
// Arguments:
// points = A list of 2D, 3D or higher dimensional points/vectors.
// fill = Value to fill missing values in vectors with (in the 2D case). Default: 0
function path3d(points, fill=0) =
assert(is_num(fill))
assert(is_path(points, dim=undef, fast=true), "Input to path3d is not a path")
let (
change = len(points[0])-3,
M = change < 0? [[1,0,0],[0,1,0]] :
concat(ident(3), repeat([0,0,0],change)),
result = points*M
)
assert(is_def(result), "Input to path3d is invalid")
fill == 0 || change>=0 ? result : result + repeat([0,0,fill], len(result));
// Function: point4d()
// Synopsis: Convert a vector to 4d.
// Topics: Coordinates, Points
// See Also: point2d(), path2d(), point3d(), path3d(), path4d()
// Usage:
// pt = point4d(p, [fill]);
// Description:
// Returns a 4D vector/point from a 2D or 3D vector.
// Arguments:
// p = The coordinates to force into a 4D vector/point.
// fill = Value to fill missing values in vector with. Default: 0
function point4d(p, fill=0) = assert(is_list(p))
[for (i=[0:3]) (p[i]==undef)? fill : p[i]];
// Function: path4d()
// Synopsis: Convert a path to 4d.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: point2d(), path2d(), point3d(), path3d(), point4d()
// Usage:
// pt = path4d(points, [fill]);
// Description:
// Returns a list of 4D vectors/points from a list of 2D or 3D vectors/points.
// Arguments:
// points = A list of 2D or 3D points/vectors.
// fill = Value to fill missing values in vectors with. Default: 0
function path4d(points, fill=0) =
assert(is_num(fill) || is_vector(fill))
assert(is_path(points, dim=undef, fast=true), "Input to path4d is not a path")
let (
change = len(points[0])-4,
M = change < 0 ? select(ident(4), 0, len(points[0])-1) :
concat(ident(4), repeat([0,0,0,0],change)),
result = points*M
)
assert(is_def(result), "Input to path4d is invalid")
fill == 0 || change >= 0 ? result :
let(
addition = is_list(fill) ? concat(0*points[0],fill) :
concat(0*points[0],repeat(fill,-change))
)
assert(len(addition) == 4, "Fill is the wrong length")
result + repeat(addition, len(result));
// Section: Coordinate Systems
// Function: polar_to_xy()
// Synopsis: Convert 2D polar coordinates to cartesian coordinates.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: xy_to_polar(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz()
// Usage:
// pt = polar_to_xy(r, theta);
// pt = polar_to_xy([R, THETA]);
// pts = polar_to_xy([[R,THETA], [R,THETA], ...]);
// Description:
// Called with two arguments, converts the `r` and `theta` 2D polar coordinate into an `[X,Y]` cartesian coordinate.
// Called with one `[R,THETA]` vector argument, converts the 2D polar coordinate into an `[X,Y]` cartesian coordinate.
// Called with a list of `[R,THETA]` vector arguments, converts each 2D polar coordinate into `[X,Y]` cartesian coordinates.
// Theta is the angle counter-clockwise of X+ on the XY plane.
// Arguments:
// r = distance from the origin.
// theta = angle in degrees, counter-clockwise of X+.
// Example:
// xy = polar_to_xy(20,45); // Returns: ~[14.1421365, 14.1421365]
// xy = polar_to_xy(40,30); // Returns: ~[34.6410162, 15]
// xy = polar_to_xy([40,30]); // Returns: ~[34.6410162, 15]
// xy = polar_to_xy([[40,30],[20,120]]); // Returns: ~[[34.6410162, 15], [-10, 17.3205]]
// Example(2D):
// r=40; ang=30; $fn=36;
// pt = polar_to_xy(r,ang);
// stroke(circle(r=r), closed=true, width=0.5);
// color("black") stroke([[r,0], [0,0], pt], width=0.5);
// color("black") stroke(arc(r=15, angle=ang), width=0.5);
// color("red") move(pt) circle(d=3);
function polar_to_xy(r,theta) =
theta != undef
? assert(is_num(r) && is_num(theta), "Bad Arguments.")
[r*cos(theta), r*sin(theta)]
: assert(is_list(r), "Bad Arguments")
is_num(r.x)
? polar_to_xy(r.x, r.y)
: [for(p = r) polar_to_xy(p.x, p.y)];
// Function: xy_to_polar()
// Synopsis: Convert 2D cartesian coordinates to polar coordinates (radius and angle)
// Topics: Coordinates, Points, Paths
// See Also: polar_to_xy(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz()
// Usage:
// r_theta = xy_to_polar(x,y);
// r_theta = xy_to_polar([X,Y]);
// r_thetas = xy_to_polar([[X,Y], [X,Y], ...]);
// Description:
// Called with two arguments, converts the `x` and `y` 2D cartesian coordinate into a `[RADIUS,THETA]` polar coordinate.
// Called with one `[X,Y]` vector argument, converts the 2D cartesian coordinate into a `[RADIUS,THETA]` polar coordinate.
// Called with a list of `[X,Y]` vector arguments, converts each 2D cartesian coordinate into `[RADIUS,THETA]` polar coordinates.
// Theta is the angle counter-clockwise of X+ on the XY plane.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// Example:
// plr = xy_to_polar(20,30);
// plr = xy_to_polar([40,60]);
// plrs = xy_to_polar([[40,60],[-10,20]]);
// Example(2D):
// pt = [-20,30]; $fn = 36;
// rt = xy_to_polar(pt);
// r = rt[0]; ang = rt[1];
// stroke(circle(r=r), closed=true, width=0.5);
// zrot(ang) stroke([[0,0],[r,0]],width=0.5);
// color("red") move(pt) circle(d=3);
function xy_to_polar(x, y) =
y != undef
? assert(is_num(x) && is_num(y), "Bad Arguments.")
[norm([x, y]), atan2(y, x)]
: assert(is_list(x), "Bad Arguments")
is_num(x.x)
? xy_to_polar(x.x, x.y)
: [for(p = x) xy_to_polar(p.x, p.y)];
// Function: project_plane()
// Synopsis: Project a set of points onto a specified plane, returning 2D points.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: lift_plane()
// Usage:
// xy = project_plane(plane, p);
// Usage: To get a transform matrix
// M = project_plane(plane)
// Description:
// Maps the provided 3D point(s) from 3D coordinates to a 2D coordinate system defined by `plane`. Points that are not
// on the specified plane will be projected orthogonally onto the plane. This coordinate system is useful if you need
// to perform 2D operations on a coplanar set of data. After those operations are done you can return the data
// to 3D with `lift_plane()`. You could also use this to force approximately coplanar data to be exactly coplanar.
// The parameter p can be a point, path, region, bezier patch or VNF.
// The plane can be specified as
// - A list of three points. The planar coordinate system will have [0,0] at plane[0], and plane[1] will lie on the Y+ axis.
// - A list of coplanar points that define a plane (not-collinear)
// - A plane definition `[A,B,C,D]` where `Ax+By+CZ=D`. The closest point on that plane to the origin will map to the origin in the new coordinate system.
// .
// If you omit the point specification then `project_plane()` returns a rotation matrix that maps the specified plane to the XY plane.
// Note that if you apply this transformation to data lying on the plane it will produce 3D points with the Z coordinate of zero.
// Arguments:
// plane = plane specification or point list defining the plane
// p = 3D point, path, region, VNF or bezier patch to project
// Example:
// pt = [5,-5,5];
// a=[0,0,0]; b=[10,-10,0]; c=[10,0,10];
// xy = project_plane([a,b,c],pt);
// Example(3D): The yellow points in 3D project onto the red points in 2D
// M = [[-1, 2, -1, -2], [-1, -3, 2, -1], [2, 3, 4, 53], [0, 0, 0, 1]];
// data = apply(M,path3d(circle(r=10, $fn=20)));
// move_copies(data) sphere(r=1);
// color("red") move_copies(project_plane(data, data)) sphere(r=1);
// Example:
// xyzpath = move([10,20,30], p=yrot(25, p=path3d(circle(d=100))));
// mat = project_plane(xyzpath);
// xypath = path2d(apply(mat, xyzpath));
// #stroke(xyzpath,closed=true);
// stroke(xypath,closed=true);
function project_plane(plane,p) =
is_matrix(plane,3,3) && is_undef(p) ? // no data, 3 points given
assert(!is_collinear(plane),"Points defining the plane must not be collinear")
let(
v = plane[2]-plane[0],
y = unit(plane[1]-plane[0]), // y axis goes to point b
x = unit(v-(v*y)*y) // x axis
)
frame_map(x,y) * move(-plane[0])
: is_vector(plane,4) && is_undef(p) ? // no data, plane given in "plane"
assert(_valid_plane(plane), "Plane is not valid")
let(
n = point3d(plane),
cp = n * plane[3] / (n*n)
)
rot(from=n, to=UP) * move(-cp)
: is_path(plane,3) && is_undef(p) ? // no data, generic point list plane
assert(len(plane)>=3, "Need three points to define a plane")
let(plane = plane_from_points(plane))
assert(is_def(plane), "Point list is not coplanar")
project_plane(plane)
: assert(is_def(p), str("Invalid plane specification: ",plane))
is_vnf(p) ? [project_plane(plane,p[0]), p[1]]
: is_list(p) && is_list(p[0]) && is_vector(p[0][0],3) ? // bezier patch or region
[for(plist=p) project_plane(plane,plist)]
: assert(is_vector(p,3) || is_path(p,3),str("Data must be a 3D point, path, region, vnf or bezier patch",p))
is_matrix(plane,3,3) ?
assert(!is_collinear(plane),"Points defining the plane must not be collinear")
let(
v = plane[2]-plane[0],
y = unit(plane[1]-plane[0]), // y axis goes to point b
x = unit(v-(v*y)*y) // x axis
) move(-plane[0],p) * transpose([x,y])
: is_vector(p) ? point2d(apply(project_plane(plane),p))
: path2d(apply(project_plane(plane),p));
// Function: lift_plane()
// Synopsis: Map a list of 2D points onto a plane in 3D.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: project_plane()
// Usage:
// xyz = lift_plane(plane, p);
// Usage: to get transform matrix
// M = lift_plane(plane);
// Description:
// Converts the given 2D point on the plane to 3D coordinates of the specified plane.
// The parameter p can be a point, path, region, bezier patch or VNF.
// The plane can be specified as
// - A list of three points. The planar coordinate system will have [0,0] at plane[0], and plane[1] will lie on the Y+ axis.
// - A list of coplanar points that define a plane (not-collinear)
// - A plane definition `[A,B,C,D]` where `Ax+By+CZ=D`. The closest point on that plane to the origin will map to the origin in the new coordinate system.
// .
// If you do not supply `p` then you get a transformation matrix which operates in 3D, assuming that the Z coordinate of the points is zero.
// This matrix is a rotation, the inverse of the one produced by project_plane.
// Arguments:
// plane = Plane specification or list of points to define a plane
// p = points, path, region, VNF, or bezier patch to transform.
function lift_plane(plane, p) =
is_matrix(plane,3,3) && is_undef(p) ? // no data, 3 p given
let(
v = plane[2]-plane[0],
y = unit(plane[1]-plane[0]), // y axis goes to point b
x = unit(v-(v*y)*y) // x axis
)
move(plane[0]) * frame_map(x,y,reverse=true)
: is_vector(plane,4) && is_undef(p) ? // no data, plane given in "plane"
assert(_valid_plane(plane), "Plane is not valid")
let(
n = point3d(plane),
cp = n * plane[3] / (n*n)
)
move(cp) * rot(from=UP, to=n)
: is_path(plane,3) && is_undef(p) ? // no data, generic point list plane
assert(len(plane)>=3, "Need three p to define a plane")
let(plane = plane_from_points(plane))
assert(is_def(plane), "Point list is not coplanar")
lift_plane(plane)
: is_vnf(p) ? [lift_plane(plane,p[0]), p[1]]
: is_list(p) && is_list(p[0]) && is_vector(p[0][0],3) ? // bezier patch or region
[for(plist=p) lift_plane(plane,plist)]
: assert(is_vector(p,2) || is_path(p,2),"Data must be a 2D point, path, region, vnf or bezier patch")
is_matrix(plane,3,3) ?
let(
v = plane[2]-plane[0],
y = unit(plane[1]-plane[0]), // y axis goes to point b
x = unit(v-(v*y)*y) // x axis
) move(plane[0],p * [x,y])
: apply(lift_plane(plane),is_vector(p) ? point3d(p) : path3d(p));
// Function: cylindrical_to_xyz()
// Synopsis: Convert cylindrical coordinates to cartesian coordinates.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: xyz_to_cylindrical(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz()
// Usage:
// pt = cylindrical_to_xyz(r, theta, z);
// pt = cylindrical_to_xyz([RADIUS,THETA,Z]);
// pts = cylindrical_to_xyz([[RADIUS,THETA,Z], [RADIUS,THETA,Z], ...]);
// Description:
// Called with three arguments, converts the `r`, `theta`, and 'z' 3D cylindrical coordinate into an `[X,Y,Z]` cartesian coordinate.
// Called with one `[RADIUS,THETA,Z]` vector argument, converts the 3D cylindrical coordinate into an `[X,Y,Z]` cartesian coordinate.
// Called with a list of `[RADIUS,THETA,Z]` vector arguments, converts each 3D cylindrical coordinate into `[X,Y,Z]` cartesian coordinates.
// Theta is the angle counter-clockwise of X+ on the XY plane. Z is height above the XY plane.
// Arguments:
// r = distance from the Z axis.
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
// z = Height above XY plane.
// Example:
// xyz = cylindrical_to_xyz(20,30,40);
// xyz = cylindrical_to_xyz([40,60,50]);
function cylindrical_to_xyz(r,theta,z) =
theta != undef
? assert(is_num(r) && is_num(theta) && is_num(z), "Bad Arguments.")
[r*cos(theta), r*sin(theta), z]
: assert(is_list(r), "Bad Arguments")
is_num(r.x)
? cylindrical_to_xyz(r.x, r.y, r.z)
: [for(p = r) cylindrical_to_xyz(p.x, p.y, p.z)];
// Function: xyz_to_cylindrical()
// Synopsis: Convert 3D cartesian coordinates to cylindrical coordinates.
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz()
// Usage:
// rtz = xyz_to_cylindrical(x,y,z);
// rtz = xyz_to_cylindrical([X,Y,Z]);
// rtzs = xyz_to_cylindrical([[X,Y,Z], [X,Y,Z], ...]);
// Description:
// Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into a `[RADIUS,THETA,Z]` cylindrical coordinate.
// Called with one `[X,Y,Z]` vector argument, converts the 3D cartesian coordinate into a `[RADIUS,THETA,Z]` cylindrical coordinate.
// Called with a list of `[X,Y,Z]` vector arguments, converts each 3D cartesian coordinate into `[RADIUS,THETA,Z]` cylindrical coordinates.
// Theta is the angle counter-clockwise of X+ on the XY plane. Z is height above the XY plane.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Example:
// cyl = xyz_to_cylindrical(20,30,40);
// cyl = xyz_to_cylindrical([40,50,70]);
// cyls = xyz_to_cylindrical([[40,50,70], [-10,15,-30]]);
function xyz_to_cylindrical(x,y,z) =
y != undef
? assert(is_num(x) && is_num(y) && is_num(z), "Bad Arguments.")
[norm([x,y]), atan2(y,x), z]
: assert(is_list(x), "Bad Arguments")
is_num(x.x)
? xyz_to_cylindrical(x.x, x.y, x.z)
: [for(p = x) xyz_to_cylindrical(p.x, p.y, p.z)];
// Function: spherical_to_xyz()
// Synopsis: Convert spherical coordinates to 3D cartesian coordinates.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), xyz_to_cylindrical(), altaz_to_xyz(), xyz_to_altaz()
// Usage:
// pt = spherical_to_xyz(r, theta, phi);
// pt = spherical_to_xyz([RADIUS,THETA,PHI]);
// pts = spherical_to_xyz([[RADIUS,THETA,PHI], [RADIUS,THETA,PHI], ...]);
// Description:
// Called with three arguments, converts the `r`, `theta`, and 'phi' 3D spherical coordinate into an `[X,Y,Z]` cartesian coordinate.
// Called with one `[RADIUS,THETA,PHI]` vector argument, converts the 3D spherical coordinate into an `[X,Y,Z]` cartesian coordinate.
// Called with a list of `[RADIUS,THETA,PHI]` vector arguments, converts each 3D spherical coordinate into `[X,Y,Z]` cartesian coordinates.
// Theta is the angle counter-clockwise of X+ on the XY plane. Phi is the angle down from the Z+ pole.
// Arguments:
// r = distance from origin.
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
// phi = angle in degrees from the vertical Z+ axis.
// Example:
// xyz = spherical_to_xyz(20,30,40);
// xyz = spherical_to_xyz([40,60,50]);
// xyzs = spherical_to_xyz([[40,60,50], [50,120,100]]);
function spherical_to_xyz(r,theta,phi) =
theta != undef
? assert(is_num(r) && is_num(theta) && is_num(phi), "Bad Arguments.")
r*[cos(theta)*sin(phi), sin(theta)*sin(phi), cos(phi)]
: assert(is_list(r), "Bad Arguments")
is_num(r.x)
? spherical_to_xyz(r.x, r.y, r.z)
: [for(p = r) spherical_to_xyz(p.x, p.y, p.z)];
// Function: xyz_to_spherical()
// Usage:
// r_theta_phi = xyz_to_spherical(x,y,z)
// r_theta_phi = xyz_to_spherical([X,Y,Z])
// r_theta_phis = xyz_to_spherical([[X,Y,Z], [X,Y,Z], ...])
// Topics: Coordinates, Points, Paths
// Synopsis: Convert 3D cartesian coordinates to spherical coordinates.
// See Also: cylindrical_to_xyz(), spherical_to_xyz(), xyz_to_cylindrical(), altaz_to_xyz(), xyz_to_altaz()
// Description:
// Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into a `[RADIUS,THETA,PHI]` spherical coordinate.
// Called with one `[X,Y,Z]` vector argument, converts the 3D cartesian coordinate into a `[RADIUS,THETA,PHI]` spherical coordinate.
// Called with a list of `[X,Y,Z]` vector arguments, converts each 3D cartesian coordinate into `[RADIUS,THETA,PHI]` spherical coordinates.
// Theta is the angle counter-clockwise of X+ on the XY plane. Phi is the angle down from the Z+ pole.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Example:
// sph = xyz_to_spherical(20,30,40);
// sph = xyz_to_spherical([40,50,70]);
// sphs = xyz_to_spherical([[40,50,70], [25,-14,27]]);
function xyz_to_spherical(x,y,z) =
y != undef
? assert(is_num(x) && is_num(y) && is_num(z), "Bad Arguments.")
[norm([x,y,z]), atan2(y,x), atan2(norm([x,y]),z)]
: assert(is_list(x), "Bad Arguments")
is_num(x.x)
? xyz_to_spherical(x.x, x.y, x.z)
: [for(p = x) xyz_to_spherical(p.x, p.y, p.z)];
// Function: altaz_to_xyz()
// Synopsis: Convert altitude/azimuth/range to 3D cartesian coordinates.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), xyz_to_altaz()
// Usage:
// pt = altaz_to_xyz(alt, az, r);
// pt = altaz_to_xyz([ALT,AZ,R]);
// pts = altaz_to_xyz([[ALT,AZ,R], [ALT,AZ,R], ...]);
// Description:
// Convert altitude/azimuth/range coordinates to 3D cartesian coordinates.
// Called with three arguments, converts the `alt`, `az`, and 'r' 3D altitude-azimuth coordinate into an `[X,Y,Z]` cartesian coordinate.
// Called with one `[ALTITUDE,AZIMUTH,RANGE]` vector argument, converts the 3D alt-az coordinate into an `[X,Y,Z]` cartesian coordinate.
// Called with a list of `[ALTITUDE,AZIMUTH,RANGE]` vector arguments, converts each 3D alt-az coordinate into `[X,Y,Z]` cartesian coordinates.
// Altitude is the angle above the XY plane, Azimuth is degrees clockwise of Y+ on the XY plane, and Range is the distance from the origin.
// Arguments:
// alt = altitude angle in degrees above the XY plane.
// az = azimuth angle in degrees clockwise of Y+ on the XY plane.
// r = distance from origin.
// Example:
// xyz = altaz_to_xyz(20,30,40);
// xyz = altaz_to_xyz([40,60,50]);
function altaz_to_xyz(alt,az,r) =
az != undef
? assert(is_num(alt) && is_num(az) && is_num(r), "Bad Arguments.")
r*[cos(90-az)*cos(alt), sin(90-az)*cos(alt), sin(alt)]
: assert(is_list(alt), "Bad Arguments")
is_num(alt.x)
? altaz_to_xyz(alt.x, alt.y, alt.z)
: [for(p = alt) altaz_to_xyz(p.x, p.y, p.z)];
// Function: xyz_to_altaz()
// Synopsis: Convert 3D cartesian coordinates to [altitude,azimuth,range].
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), altaz_to_xyz()
// Usage:
// alt_az_r = xyz_to_altaz(x,y,z);
// alt_az_r = xyz_to_altaz([X,Y,Z]);
// alt_az_rs = xyz_to_altaz([[X,Y,Z], [X,Y,Z], ...]);
// Description:
// Converts 3D cartesian coordinates to altitude/azimuth/range coordinates.
// Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into an `[ALTITUDE,AZIMUTH,RANGE]` coordinate.
// Called with one `[X,Y,Z]` vector argument, converts the 3D cartesian coordinate into a `[ALTITUDE,AZIMUTH,RANGE]` coordinate.
// Called with a list of `[X,Y,Z]` vector arguments, converts each 3D cartesian coordinate into `[ALTITUDE,AZIMUTH,RANGE]` coordinates.
// Altitude is the angle above the XY plane, Azimuth is degrees clockwise of Y+ on the XY plane, and Range is the distance from the origin.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Example:
// aa = xyz_to_altaz(20,30,40);
// aa = xyz_to_altaz([40,50,70]);
function xyz_to_altaz(x,y,z) =
y != undef
? assert(is_num(x) && is_num(y) && is_num(z), "Bad Arguments.")
[atan2(z,norm([x,y])), atan2(x,y), norm([x,y,z])]
: assert(is_list(x), "Bad Arguments")
is_num(x.x)
? xyz_to_altaz(x.x, x.y, x.z)
: [for(p = x) xyz_to_altaz(p.x, p.y, p.z)];
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap