-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathvectors.scad
677 lines (614 loc) · 28.4 KB
/
vectors.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
//////////////////////////////////////////////////////////////////////
// LibFile: vectors.scad
// This file provides some mathematical operations that apply to each
// entry in a vector. It provides normalization and angle computation, and
// it provides functions for searching lists of vectors for matches to
// a given vector.
// Includes:
// include <BOSL2/std.scad>
// FileGroup: Math
// FileSummary: Vector arithmetic, angle, and searching.
// FileFootnotes: STD=Included in std.scad
//////////////////////////////////////////////////////////////////////
// Section: Vector Testing
// Function: is_vector()
// Synopsis: Returns true if the given value is a vector.
// Topics: Vectors, Math
// See Also: is_matrix(), is_path(), is_region()
// Usage:
// bool = is_vector(v, [length], [zero=], [all_nonzero=], [eps=]);
// Description:
// Returns true if v is a list of finite numbers.
// Arguments:
// v = The value to test to see if it is a vector.
// length = If given, make sure the vector is `length` items long.
// ---
// zero = If false, require that the `norm()` of the vector is not approximately zero. If true, require the `norm()` of the vector to be approximately zero. Default: `undef` (don't check vector `norm()`.)
// all_nonzero = If true, requires all elements of the vector to be more than `eps` different from zero. Default: `false`
// eps = The minimum vector length that is considered non-zero. Default: `EPSILON` (`1e-9`)
// Example:
// is_vector(4); // Returns false
// is_vector([4,true,false]); // Returns false
// is_vector([3,4,INF,5]); // Returns false
// is_vector([3,4,5,6]); // Returns true
// is_vector([3,4,undef,5]); // Returns false
// is_vector([3,4,5],3); // Returns true
// is_vector([3,4,5],4); // Returns true
// is_vector([]); // Returns false
// is_vector([0,4,0],3,zero=false); // Returns true
// is_vector([0,0,0],zero=false); // Returns false
// is_vector([0,0,1e-12],zero=false); // Returns false
// is_vector([0,1,0],all_nonzero=false); // Returns false
// is_vector([1,1,1],all_nonzero=false); // Returns true
// is_vector([],zero=false); // Returns false
function is_vector(v, length, zero, all_nonzero=false, eps=EPSILON) =
is_list(v) && len(v)>0 && []==[for(vi=v) if(!is_finite(vi)) 0]
&& (is_undef(length) || (assert(is_num(length))len(v)==length))
&& (is_undef(zero) || ((norm(v) >= eps) == !zero))
&& (!all_nonzero || all_nonzero(v)) ;
// Section: Scalar operations on vectors
// Function: add_scalar()
// Synopsis: Adds a scalar value to every item in a vector.
// Topics: Vectors, Math
// See Also: add_scalar(), v_mul(), v_div()
// Usage:
// v_new = add_scalar(v, s);
// Description:
// Given a vector and a scalar, returns the vector with the scalar added to each item in it.
// Arguments:
// v = The initial array.
// s = A scalar value to add to every item in the array.
// Example:
// a = add_scalar([1,2,3],3); // Returns: [4,5,6]
function add_scalar(v,s) =
assert(is_vector(v), "Input v must be a vector")
assert(is_finite(s), "Input s must be a finite scalar")
[for(entry=v) entry+s];
// Function: v_mul()
// Synopsis: Returns the element-wise multiplication of two equal-length vectors.
// Topics: Vectors, Math
// See Also: add_scalar(), v_mul(), v_div()
// Usage:
// v3 = v_mul(v1, v2);
// Description:
// Element-wise multiplication. Multiplies each element of `v1` by the corresponding element of `v2`.
// Both `v1` and `v2` must be the same length. Returns a vector of the products. Note that
// the items in `v1` and `v2` can be anything that OpenSCAD will multiply.
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
// v_mul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
function v_mul(v1, v2) =
assert( is_list(v1) && is_list(v2) && len(v1)==len(v2), "Incompatible input")
[for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
// Function: v_div()
// Synopsis: Returns the element-wise division of two equal-length vectors.
// Topics: Vectors, Math
// See Also: add_scalar(), v_mul(), v_div()
// Usage:
// v3 = v_div(v1, v2);
// Description:
// Element-wise vector division. Divides each element of vector `v1` by
// the corresponding element of vector `v2`. Returns a vector of the quotients.
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
// v_div([24,28,30], [8,7,6]); // Returns [3, 4, 5]
function v_div(v1, v2) =
assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors")
[for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
// Function: v_abs()
// Synopsis: Returns the absolute values of the given vector.
// Topics: Vectors, Math
// See Also: v_abs(), v_floor(), v_ceil()
// Usage:
// v2 = v_abs(v);
// Description: Returns a vector of the absolute value of each element of vector `v`.
// Arguments:
// v = The vector to get the absolute values of.
// Example:
// v_abs([-1,3,-9]); // Returns: [1,3,9]
function v_abs(v) =
assert( is_vector(v), "Invalid vector" )
[for (x=v) abs(x)];
// Function: v_floor()
// Synopsis: Returns the values of the given vector, rounded down.
// Topics: Vectors, Math
// See Also: v_abs(), v_floor(), v_ceil()
// Usage:
// v2 = v_floor(v);
// Description:
// Returns the given vector after performing a `floor()` on all items.
function v_floor(v) =
assert( is_vector(v), "Invalid vector" )
[for (x=v) floor(x)];
// Function: v_ceil()
// Synopsis: Returns the values of the given vector, rounded up.
// Topics: Vectors, Math
// See Also: v_abs(), v_floor(), v_ceil()
// Usage:
// v2 = v_ceil(v);
// Description:
// Returns the given vector after performing a `ceil()` on all items.
function v_ceil(v) =
assert( is_vector(v), "Invalid vector" )
[for (x=v) ceil(x)];
// Function: v_lookup()
// Synopsis: Like `lookup()`, but it can interpolate between vector results.
// Topics: Vectors, Math
// See Also: v_abs(), v_floor(), v_ceil()
// Usage:
// v2 = v_lookup(x, v);
// Description:
// Works just like the built-in function [`lookup()`](https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Mathematical_Functions#lookup), except that it can also interpolate between vector result values of the same length.
// Arguments:
// x = The scalar value to look up.
// v = A list of [KEY,VAL] pairs. KEYs are scalars. VALs should either all be scalar, or all be vectors of the same length.
// Example:
// x = v_lookup(4.5, [[4, [3,4,5]], [5, [5,6,7]]]); // Returns: [4,5,6]
function v_lookup(x, v) =
is_num(v[0][1])? lookup(x,v) :
let(
i = lookup(x, [for (i=idx(v)) [v[i].x,i]]),
vlo = v[floor(i)],
vhi = v[ceil(i)],
lo = vlo[1],
hi = vhi[1]
)
assert(is_vector(lo) && is_vector(hi),
"Result values must all be numbers, or all be vectors.")
assert(len(lo) == len(hi), "Vector result values must be the same length")
vlo.x == vhi.x? vlo[1] :
let( u = (x - vlo.x) / (vhi.x - vlo.x) )
lerp(lo,hi,u);
// Section: Vector Properties
// Function: unit()
// Synopsis: Returns the unit length of a given vector.
// Topics: Vectors, Math
// See Also: v_abs(), v_floor(), v_ceil()
// Usage:
// v = unit(v, [error]);
// Description:
// Returns the unit length normalized version of vector v. If passed a zero-length vector,
// asserts an error unless `error` is given, in which case the value of `error` is returned.
// Arguments:
// v = The vector to normalize.
// error = If given, and input is a zero-length vector, this value is returned. Default: Assert error on zero-length vector.
// Example:
// v1 = unit([10,0,0]); // Returns: [1,0,0]
// v2 = unit([0,10,0]); // Returns: [0,1,0]
// v3 = unit([0,0,10]); // Returns: [0,0,1]
// v4 = unit([0,-10,0]); // Returns: [0,-1,0]
// v5 = unit([0,0,0],[1,2,3]); // Returns: [1,2,3]
// v6 = unit([0,0,0]); // Asserts an error.
function unit(v, error=[[["ASSERT"]]]) =
assert(is_vector(v), "Invalid vector")
norm(v)<EPSILON? (error==[[["ASSERT"]]]? assert(norm(v)>=EPSILON,"Cannot normalize a zero vector") : error) :
v/norm(v);
// Function: v_theta()
// Synopsis: Returns the angle counter-clockwise from X+ on the XY plane.
// Topics: Vectors, Math
// See Also: unit()
// Usage:
// theta = v_theta([X,Y]);
// Description:
// Given a vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
function v_theta(v) =
assert( is_vector(v,2) || is_vector(v,3) , "Invalid vector")
atan2(v.y,v.x);
// Function: vector_angle()
// Synopsis: Returns the minor angle between two vectors.
// Topics: Vectors, Math
// See Also: unit(), v_theta()
// Usage:
// ang = vector_angle(v1,v2);
// ang = vector_angle([v1,v2]);
// ang = vector_angle(PT1,PT2,PT3);
// ang = vector_angle([PT1,PT2,PT3]);
// Description:
// If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
// If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
// If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
// If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
// Arguments:
// v1 = First vector or point.
// v2 = Second vector or point.
// v3 = Third point in three point mode.
// Example:
// ang1 = vector_angle(UP,LEFT); // Returns: 90
// ang2 = vector_angle(RIGHT,LEFT); // Returns: 180
// ang3 = vector_angle(UP+RIGHT,RIGHT); // Returns: 45
// ang4 = vector_angle([10,10], [0,0], [10,-10]); // Returns: 90
// ang5 = vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
// ang6 = vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
function vector_angle(v1,v2,v3) =
assert( ( is_undef(v3) && ( is_undef(v2) || same_shape(v1,v2) ) )
|| is_consistent([v1,v2,v3]) ,
"Bad arguments.")
assert( is_vector(v1) || is_consistent(v1), "Bad arguments.")
let( vecs = ! is_undef(v3) ? [v1-v2,v3-v2] :
! is_undef(v2) ? [v1,v2] :
len(v1) == 3 ? [v1[0]-v1[1], v1[2]-v1[1]]
: v1
)
assert(is_vector(vecs[0],2) || is_vector(vecs[0],3), "Bad arguments.")
let(
norm0 = norm(vecs[0]),
norm1 = norm(vecs[1])
)
assert(norm0>0 && norm1>0, "Zero length vector.")
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
acos(constrain((vecs[0]*vecs[1])/(norm0*norm1), -1, 1));
// Function: vector_axis()
// Synopsis: Returns the perpendicular axis between two vectors.
// Topics: Vectors, Math
// See Also: unit(), v_theta(), vector_angle()
// Usage:
// axis = vector_axis(v1,v2);
// axis = vector_axis([v1,v2]);
// axis = vector_axis(PT1,PT2,PT3);
// axis = vector_axis([PT1,PT2,PT3]);
// Description:
// If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C.
// If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2.
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C.
// Arguments:
// v1 = First vector or point.
// v2 = Second vector or point.
// v3 = Third point in three point mode.
// Example:
// axis1 = vector_axis(UP,LEFT); // Returns: [0,-1,0] (FWD)
// axis2 = vector_axis(RIGHT,LEFT); // Returns: [0,-1,0] (FWD)
// axis3 = vector_axis(UP+RIGHT,RIGHT); // Returns: [0,1,0] (BACK)
// axis4 = vector_axis([10,10], [0,0], [10,-10]); // Returns: [0,0,-1] (DOWN)
// axis5 = vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735]
// axis6 = vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735]
function vector_axis(v1,v2=undef,v3=undef) =
is_vector(v3)
? assert(is_consistent([v3,v2,v1]), "Bad arguments.")
vector_axis(v1-v2, v3-v2)
: assert( is_undef(v3), "Bad arguments.")
is_undef(v2)
? assert( is_list(v1), "Bad arguments.")
len(v1) == 2
? vector_axis(v1[0],v1[1])
: vector_axis(v1[0],v1[1],v1[2])
: assert( is_vector(v1,zero=false) && is_vector(v2,zero=false) && is_consistent([v1,v2])
, "Bad arguments.")
let(
eps = 1e-6,
w1 = point3d(v1/norm(v1)),
w2 = point3d(v2/norm(v2)),
w3 = (norm(w1-w2) > eps && norm(w1+w2) > eps) ? w2
: (norm(v_abs(w2)-UP) > eps)? UP
: RIGHT
) unit(cross(w1,w3));
// Function: vector_bisect()
// Synopsis: Returns the vector that bisects two vectors.
// Topics: Vectors, Math
// See Also: unit(), v_theta(), vector_angle(), vector_axis()
// Usage:
// newv = vector_bisect(v1,v2);
// Description:
// Returns a unit vector that exactly bisects the minor angle between two given vectors.
// If given two vectors that are directly opposed, returns `undef`.
function vector_bisect(v1,v2) =
assert(is_vector(v1))
assert(is_vector(v2))
assert(!approx(norm(v1),0), "Zero length vector.")
assert(!approx(norm(v2),0), "Zero length vector.")
assert(len(v1)==len(v2), "Vectors are of different sizes.")
let( v1 = unit(v1), v2 = unit(v2) )
approx(v1,-v2)? undef :
let(
axis = vector_axis(v1,v2),
ang = vector_angle(v1,v2),
v3 = unit(rot(ang/2, v=axis, p=v1))
) v3;
// Function: vector_perp()
// Synopsis: Returns component of a vector perpendicular to a second vector
// Topics: Vectors, Math
// Usage:
// perp = vector_perp(v,w);
// Description:
// Returns the component of vector w that is perpendicular to vector v. Vectors must have the same length.
// Arguments:
// v = reference vector
// w = vector whose perpendicular component is returned
// Example(2D): We extract the component of the red vector that is perpendicular to the yellow vector. That component appears in blue.
// v = [12,6];
// w = [13,22];
// stroke([[0,0],v],endcap2="arrow2");
// stroke([[0,0],w],endcap2="arrow2",color="red");
// stroke([[0,0],vector_perp(v,w)], endcap2="arrow2", color="blue");
function vector_perp(v,w) =
assert(is_vector(v) && is_vector(w) && len(v)==len(w), "Invalid or mismatched inputs")
w - w*v*v/(v*v);
// Section: Vector Searching
// Function: pointlist_bounds()
// Synopsis: Returns the min and max bounding coordinates for the given list of points.
// Topics: Geometry, Bounding Boxes, Bounds
// See Also: closest_point()
// Usage:
// pt_pair = pointlist_bounds(pts);
// Description:
// Finds the bounds containing all the points in `pts` which can be a list of points in any dimension.
// Returns a list of two items: a list of the minimums and a list of the maximums. For example, with
// 3d points `[[MINX, MINY, MINZ], [MAXX, MAXY, MAXZ]]`
// Arguments:
// pts = List of points.
function pointlist_bounds(pts) =
assert(is_path(pts,dim=undef,fast=true) , "Invalid pointlist." )
let(
select = ident(len(pts[0])),
spread = [
for(i=[0:len(pts[0])-1])
let( spreadi = pts*select[i] )
[ min(spreadi), max(spreadi) ]
]
) transpose(spread);
// Function: closest_point()
// Synopsis: Finds the closest point in a list of points.
// Topics: Geometry, Points, Distance
// See Also: pointlist_bounds(), furthest_point(), closest_point()
// Usage:
// index = closest_point(pt, points);
// Description:
// Given a list of `points`, finds the index of the closest point to `pt`.
// Arguments:
// pt = The point to find the closest point to.
// points = The list of points to search.
function closest_point(pt, points) =
assert( is_vector(pt), "Invalid point." )
assert(is_path(points,dim=len(pt)), "Invalid pointlist or incompatible dimensions." )
min_index([for (p=points) norm(p-pt)]);
// Function: furthest_point()
// Synopsis: Finds the furthest point in a list of points.
// Topics: Geometry, Points, Distance
// See Also: pointlist_bounds(), furthest_point(), closest_point()
// Usage:
// index = furthest_point(pt, points);
// Description:
// Given a list of `points`, finds the index of the furthest point from `pt`.
// Arguments:
// pt = The point to find the farthest point from.
// points = The list of points to search.
function furthest_point(pt, points) =
assert( is_vector(pt), "Invalid point." )
assert(is_path(points,dim=len(pt)), "Invalid pointlist or incompatible dimensions." )
max_index([for (p=points) norm(p-pt)]);
// Function: vector_search()
// Synopsis: Finds points in a list that are close to a given point.
// Topics: Search, Points, Closest
// See Also: vector_search_tree(), vector_nearest()
// Usage:
// indices = vector_search(query, r, target);
// Description:
// Given a list of query points `query` and a `target` to search,
// finds the points in `target` that match each query point. A match holds when the
// distance between a point in `target` and a query point is less than or equal to `r`.
// The returned list will have a list for each query point containing, in arbitrary
// order, the indices of all points that match that query point.
// The `target` may be a simple list of points or a search tree.
// When `target` is a large list of points, a search tree is constructed to
// speed up the search with an order around O(log n) per query point.
// For small point lists, a direct search is done dispensing a tree construction.
// Alternatively, `target` may be a search tree built with `vector_search_tree()`.
// In that case, that tree is parsed looking for matches.
// An empty list of query points will return a empty output list.
// An empty list of target points will return a output list with an empty list for each query point.
// Arguments:
// query = list of points to find matches for.
// r = the search radius.
// target = list of the points to search for matches or a search tree.
// Example: A set of four queries to find points within 1 unit of the query. The circles show the search region and all have radius 1.
// $fn=32;
// k = 2000;
// points = list_to_matrix(rands(0,10,k*2,seed=13333),2);
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
// search_ind = vector_search(queries, points, 1);
// move_copies(points) circle(r=.08);
// for(i=idx(queries)){
// color("blue")stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
// color("red") move_copies(select(points, search_ind[i])) circle(r=.08);
// }
// Example: when a series of searches with different radius are needed, its is faster to pre-compute the tree
// $fn=32;
// k = 2000;
// points = list_to_matrix(rands(0,10,k*2),2,seed=13333);
// queries1 = [for(i=[3,7]) [i,i]];
// queries2 = [for(i=[3,7]) [10-i,i]];
// r1 = 1;
// r2 = .7;
// search_tree = vector_search_tree(points);
// search_1 = vector_search(queries1, r1, search_tree);
// search_2 = vector_search(queries2, r2, search_tree);
// move_copies(points) circle(r=.08);
// for(i=idx(queries1)){
// color("blue")stroke(move(queries1[i],circle(r=r1)), closed=true, width=.08);
// color("red") move_copies(select(points, search_1[i])) circle(r=.08);
// }
// for(i=idx(queries2)){
// color("green")stroke(move(queries2[i],circle(r=r2)), closed=true, width=.08);
// color("red") move_copies(select(points, search_2[i])) circle(r=.08);
// }
function vector_search(query, r, target) =
query==[] ? [] :
is_list(query) && target==[] ? is_vector(query) ? [] : [for(q=query) [] ] :
assert( is_finite(r) && r>=0,
"The query radius should be a positive number." )
let(
tgpts = is_matrix(target), // target is a point list
tgtree = is_list(target) // target is a tree
&& (len(target)==2)
&& is_matrix(target[0])
&& is_list(target[1])
&& (len(target[1])==4 || (len(target[1])==1 && is_list(target[1][0])) )
)
assert( tgpts || tgtree,
"The target should be a list of points or a search tree compatible with the query." )
let(
dim = tgpts ? len(target[0]) : len(target[0][0]),
simple = is_vector(query, dim)
)
assert( simple || is_matrix(query,undef,dim),
"The query points should be a list of points compatible with the target point list.")
tgpts
? len(target)<=400
? simple ? [for(i=idx(target)) if(norm(target[i]-query)<=r) i ] :
[for(q=query) [for(i=idx(target)) if(norm(target[i]-q)<=r) i ] ]
: let( tree = _bt_tree(target, count(len(target)), leafsize=25) )
simple ? _bt_search(query, r, target, tree) :
[for(q=query) _bt_search(q, r, target, tree)]
: simple ? _bt_search(query, r, target[0], target[1]) :
[for(q=query) _bt_search(q, r, target[0], target[1])];
//Ball tree search
function _bt_search(query, r, points, tree) =
assert( is_list(tree)
&& ( ( len(tree)==1 && is_list(tree[0]) )
|| ( len(tree)==4 && is_num(tree[0]) && is_num(tree[1]) ) ),
"The tree is invalid.")
len(tree)==1
? assert( tree[0]==[] || is_vector(tree[0]), "The tree is invalid." )
[for(i=tree[0]) if(norm(points[i]-query)<=r) i ]
: norm(query-points[tree[0]]) > r+tree[1] ? [] :
concat(
[ if(norm(query-points[tree[0]])<=r) tree[0] ],
_bt_search(query, r, points, tree[2]),
_bt_search(query, r, points, tree[3]) ) ;
// Function: vector_search_tree()
// Synopsis: Makes a distance search tree for a list of points.
// Topics: Search, Points, Closest
// See Also: vector_nearest(), vector_search()
// Usage:
// tree = vector_search_tree(points,leafsize);
// Description:
// Construct a search tree for the given list of points to be used as input
// to the function `vector_search()`. The use of a tree speeds up the
// search process. The tree construction stops branching when
// a tree node represents a number of points less or equal to `leafsize`.
// Search trees are ball trees. Constructing the
// tree should be O(n log n) and searches should be O(log n), though real life
// performance depends on how the data is distributed, and it will deteriorate
// for high data dimensions. This data structure is useful when you will be
// performing many searches of the same data, so that the cost of constructing
// the tree is justified. (See https://en.wikipedia.org/wiki/Ball_tree)
// For a small lists of points, the search with a tree may be more expensive
// than direct comparisons. The argument `treemin` sets the minimum length of
// point set for which a tree search will be done by `vector_search`.
// For an empty list of points it returns an empty list.
// Arguments:
// points = list of points to store in the search tree.
// leafsize = the size of the tree leaves. Default: 25
// treemin = the minimum size of the point list for which a tree search is done. Default: 400
// Example: A set of four queries to find points within 1 unit of the query. The circles show the search region and all have radius 1.
// $fn=32;
// k = 2000;
// points = random_points(k, scale=10, dim=2,seed=13333);
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
// search_tree = vector_search_tree(points);
// search_ind = vector_search(queries,1,search_tree);
// move_copies(points) circle(r=.08);
// for(i=idx(queries)){
// color("blue") stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
// color("red") move_copies(select(points, search_ind[i])) circle(r=.08);
// }
function vector_search_tree(points, leafsize=25, treemin=400) =
points==[] ? [] :
assert( is_matrix(points), "The input list entries should be points." )
assert( is_int(leafsize) && leafsize>=1,
"The tree leaf size should be an integer greater than zero.")
len(points)<treemin ? points :
[ points, _bt_tree(points, count(len(points)), leafsize) ];
//Ball tree construction
function _bt_tree(points, ind, leafsize=25) =
len(ind)<=leafsize ? [ind] :
let(
bounds = pointlist_bounds(select(points,ind)),
coord = max_index(bounds[1]-bounds[0]),
projc = [for(i=ind) points[i][coord] ],
meanpr = mean(projc),
pivot = min_index([for(p=projc) abs(p-meanpr)]),
radius = max([for(i=ind) norm(points[ind[pivot]]-points[i]) ]),
Lind = [for(i=idx(ind)) if(projc[i]<=meanpr && i!=pivot) ind[i] ],
Rind = [for(i=idx(ind)) if(projc[i] >meanpr && i!=pivot) ind[i] ]
)
[ ind[pivot], radius, _bt_tree(points, Lind, leafsize), _bt_tree(points, Rind, leafsize) ];
// Function: vector_nearest()
// Synopsis: Finds the `k` nearest points in a list to a given point.
// Topics: Search, Points, Closest
// See Also: vector_search(), vector_search_tree()
// Usage:
// indices = vector_nearest(query, k, target);
// Description:
// Search `target` for the `k` points closest to point `query`.
// The input `target` is either a list of points to search or a search tree
// pre-computed by `vector_search_tree(). A list is returned containing the indices
// of the points found in sorted order, closest point first.
// Arguments:
// query = point to search for
// k = number of neighbors to return
// target = a list of points or a search tree to search in
// Example: Four queries to find the 15 nearest points. The circles show the radius defined by the most distant query result. Note they are different for each query.
// $fn=32;
// k = 1000;
// points = list_to_matrix(rands(0,10,k*2,seed=13333),2);
// tree = vector_search_tree(points);
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
// search_ind = [for(q=queries) vector_nearest(q, 15, tree)];
// move_copies(points) circle(r=.08);
// for(i=idx(queries)){
// circle = circle(r=norm(points[last(search_ind[i])]-queries[i]));
// color("red") move_copies(select(points, search_ind[i])) circle(r=.08);
// color("blue") stroke(move(queries[i], circle), closed=true, width=.08);
// }
function vector_nearest(query, k, target) =
assert(is_int(k) && k>0)
assert(is_vector(query), "Query must be a vector.")
let(
tgpts = is_matrix(target,undef,len(query)), // target is a point list
tgtree = is_list(target) // target is a tree
&& (len(target)==2)
&& is_matrix(target[0],undef,len(query))
&& (len(target[1])==4 || (len(target[1])==1 && is_list(target[1][0])) )
)
assert( tgpts || tgtree,
"The target should be a list of points or a search tree compatible with the query." )
assert((tgpts && (k<=len(target))) || (tgtree && (k<=len(target[0]))),
"More results are requested than the number of points.")
tgpts
? let( tree = _bt_tree(target, count(len(target))) )
column(_bt_nearest( query, k, target, tree),0)
: column(_bt_nearest( query, k, target[0], target[1]),0);
//Ball tree nearest
function _bt_nearest(p, k, points, tree, answers=[]) =
assert( is_list(tree)
&& ( ( len(tree)==1 && is_list(tree[0]) )
|| ( len(tree)==4 && is_num(tree[0]) && is_num(tree[1]) ) ),
"The tree is invalid.")
len(tree)==1
? _insert_many(answers, k, [for(entry=tree[0]) [entry, norm(points[entry]-p)]])
: let( d = norm(p-points[tree[0]]) )
len(answers)==k && ( d > last(answers)[1]+tree[1] ) ? answers :
let(
answers1 = _insert_sorted(answers, k, [tree[0],d]),
answers2 = _bt_nearest(p, k, points, tree[2], answers1),
answers3 = _bt_nearest(p, k, points, tree[3], answers2)
)
answers3;
function _insert_sorted(list, k, new) =
(len(list)==k && new[1]>= last(list)[1]) ? list
: [
for(entry=list) if (entry[1]<=new[1]) entry,
new,
for(i=[0:1:min(k-1,len(list))-1]) if (list[i][1]>new[1]) list[i]
];
function _insert_many(list, k, newlist,i=0) =
i==len(newlist)
? list
: assert(is_vector(newlist[i],2), "The tree is invalid.")
_insert_many(_insert_sorted(list,k,newlist[i]),k,newlist,i+1);
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap