|
2920 | 2920 | "URL": "https://doi.org/ghfwxq",
|
2921 | 2921 | "note": "This CSL JSON Item was automatically generated by Manubot v0.4.1 using citation-by-identifier.\nstandard_id: doi:10.1038/s42256-020-0218-x"
|
2922 | 2922 | },
|
| 2923 | + { |
| 2924 | + "type": "article-journal", |
| 2925 | + "id": "qCKLXDUQ", |
| 2926 | + "author": [ |
| 2927 | + { |
| 2928 | + "family": "Belkin", |
| 2929 | + "given": "Mikhail" |
| 2930 | + }, |
| 2931 | + { |
| 2932 | + "family": "Hsu", |
| 2933 | + "given": "Daniel" |
| 2934 | + }, |
| 2935 | + { |
| 2936 | + "family": "Ma", |
| 2937 | + "given": "Siyuan" |
| 2938 | + }, |
| 2939 | + { |
| 2940 | + "family": "Mandal", |
| 2941 | + "given": "Soumik" |
| 2942 | + } |
| 2943 | + ], |
| 2944 | + "issued": { |
| 2945 | + "date-parts": [ |
| 2946 | + [ |
| 2947 | + 2019, |
| 2948 | + 8, |
| 2949 | + 6 |
| 2950 | + ] |
| 2951 | + ] |
| 2952 | + }, |
| 2953 | + "abstract": "Breakthroughs in machine learning are rapidly changing science and society, yet our fundamental understanding of this technology has lagged far behind. Indeed, one of the central tenets of the field, the bias–variance trade-off, appears to be at odds with the observed behavior of methods used in modern machine-learning practice. The bias–variance trade-off implies that a model should balance underfitting and overfitting: Rich enough to express underlying structure in data and simple enough to avoid fitting spurious patterns. However, in modern practice, very rich models such as neural networks are trained to exactly fit (i.e., interpolate) the data. Classically, such models would be considered overfitted, and yet they often obtain high accuracy on test data. This apparent contradiction has raised questions about the mathematical foundations of machine learning and their relevance to practitioners. In this paper, we reconcile the classical understanding and the modern practice within a unified performance curve. This “double-descent” curve subsumes the textbook U-shaped bias–variance trade-off curve by showing how increasing model capacity beyond the point of interpolation results in improved performance. We provide evidence for the existence and ubiquity of double descent for a wide spectrum of models and datasets, and we posit a mechanism for its emergence. This connection between the performance and the structure of machine-learning models delineates the limits of classical analyses and has implications for both the theory and the practice of machine learning.", |
| 2954 | + "container-title": "Proceedings of the National Academy of Sciences", |
| 2955 | + "DOI": "10.1073/pnas.1903070116", |
| 2956 | + "volume": "116", |
| 2957 | + "issue": "32", |
| 2958 | + "page": "15849-15854", |
| 2959 | + "publisher": "Proceedings of the National Academy of Sciences", |
| 2960 | + "title": "Reconciling modern machine-learning practice and the classical bias–variance trade-off", |
| 2961 | + "URL": "https://doi.org/gf5dmw", |
| 2962 | + "PMCID": "PMC6689936", |
| 2963 | + "PMID": "31341078", |
| 2964 | + "note": "This CSL JSON Item was automatically generated by Manubot v0.4.1 using citation-by-identifier.\nstandard_id: doi:10.1073/pnas.1903070116" |
| 2965 | + }, |
2923 | 2966 | {
|
2924 | 2967 | "type": "article-journal",
|
2925 | 2968 | "id": "1AyQuG5x7",
|
|
2962 | 3005 | "note": "This CSL JSON Item was automatically generated by Manubot v0.4.1 using citation-by-identifier.\nstandard_id: doi:10.1089/omi.2018.0097"
|
2963 | 3006 | },
|
2964 | 3007 | {
|
2965 |
| - "type": "article-journal", |
2966 | 3008 | "id": "QobI7Hyv",
|
| 3009 | + "type": "article-journal", |
| 3010 | + "title": "Correct machine learning on protein sequences: a peer-reviewing perspective", |
| 3011 | + "container-title": "Briefings in Bioinformatics", |
| 3012 | + "page": "831-840", |
| 3013 | + "volume": "17", |
| 3014 | + "issue": "5", |
| 3015 | + "source": "DOI.org (Crossref)", |
| 3016 | + "URL": "https://doi.org/f89ms7", |
| 3017 | + "DOI": "10.1093/bib/bbv082", |
| 3018 | + "ISSN": "1467-5463, 1477-4054", |
| 3019 | + "shortTitle": "Correct machine learning on protein sequences", |
| 3020 | + "journalAbbreviation": "Brief Bioinform", |
| 3021 | + "language": "en", |
2967 | 3022 | "author": [
|
2968 | 3023 | {
|
2969 | 3024 | "family": "Walsh",
|
|
2981 | 3036 | "issued": {
|
2982 | 3037 | "date-parts": [
|
2983 | 3038 | [
|
2984 |
| - 2016, |
| 3039 | + "2016", |
2985 | 3040 | 9
|
2986 | 3041 | ]
|
2987 | 3042 | ]
|
2988 | 3043 | },
|
2989 |
| - "container-title": "Briefings in Bioinformatics", |
2990 |
| - "DOI": "10.1093/bib/bbv082", |
2991 |
| - "volume": "17", |
2992 |
| - "issue": "5", |
2993 |
| - "page": "831-840", |
2994 |
| - "publisher": "Oxford University Press (OUP)", |
2995 |
| - "title": "Correct machine learning on protein sequences: a peer-reviewing perspective", |
2996 |
| - "URL": "https://doi.org/f89ms7", |
| 3044 | + "accessed": { |
| 3045 | + "date-parts": [ |
| 3046 | + [ |
| 3047 | + "2021", |
| 3048 | + 1, |
| 3049 | + 23 |
| 3050 | + ] |
| 3051 | + ] |
| 3052 | + }, |
2997 | 3053 | "PMID": "26411473",
|
2998 | 3054 | "note": "This CSL JSON Item was automatically generated by Manubot v0.4.1 using citation-by-identifier.\nstandard_id: doi:10.1093/bib/bbv082"
|
2999 | 3055 | },
|
3000 | 3056 | {
|
3001 |
| - "type": "article-journal", |
3002 | 3057 | "id": "1GGrbeMvT",
|
| 3058 | + "type": "article-journal", |
| 3059 | + "title": "Correcting for experiment-specific variability in expression compendia can remove underlying signals", |
| 3060 | + "container-title": "GigaScience", |
| 3061 | + "page": "giaa117", |
| 3062 | + "volume": "9", |
| 3063 | + "issue": "11", |
| 3064 | + "source": "DOI.org (Crossref)", |
| 3065 | + "abstract": "Abstract\r\n \r\n Motivation\r\n In the past two decades, scientists in different laboratories have assayed gene expression from millions of samples. These experiments can be combined into compendia and analyzed collectively to extract novel biological patterns. Technical variability, or \"batch effects,\" may result from combining samples collected and processed at different times and in different settings. Such variability may distort our ability to extract true underlying biological patterns. As more integrative analysis methods arise and data collections get bigger, we must determine how technical variability affects our ability to detect desired patterns when many experiments are combined.\r\n \r\n \r\n Objective\r\n We sought to determine the extent to which an underlying signal was masked by technical variability by simulating compendia comprising data aggregated across multiple experiments.\r\n \r\n \r\n Method\r\n We developed a generative multi-layer neural network to simulate compendia of gene expression experiments from large-scale microbial and human datasets. We compared simulated compendia before and after introducing varying numbers of sources of undesired variability.\r\n \r\n \r\n Results\r\n The signal from a baseline compendium was obscured when the number of added sources of variability was small. Applying statistical correction methods rescued the underlying signal in these cases. However, as the number of sources of variability increased, it became easier to detect the original signal even without correction. In fact, statistical correction reduced our power to detect the underlying signal.\r\n \r\n \r\n Conclusion\r\n When combining a modest number of experiments, it is best to correct for experiment-specific noise. However, when many experiments are combined, statistical correction reduces our ability to extract underlying patterns.", |
| 3066 | + "URL": "https://doi.org/ghhtpf", |
| 3067 | + "DOI": "10.1093/gigascience/giaa117", |
| 3068 | + "ISSN": "2047-217X", |
| 3069 | + "language": "en", |
3003 | 3070 | "author": [
|
3004 | 3071 | {
|
3005 | 3072 | "family": "Lee",
|
|
3025 | 3092 | "issued": {
|
3026 | 3093 | "date-parts": [
|
3027 | 3094 | [
|
3028 |
| - 2020, |
| 3095 | + "2020", |
3029 | 3096 | 11,
|
3030 | 3097 | 3
|
3031 | 3098 | ]
|
3032 | 3099 | ]
|
3033 | 3100 | },
|
3034 |
| - "container-title": "GigaScience", |
3035 |
| - "DOI": "10.1093/gigascience/giaa117", |
3036 |
| - "volume": "9", |
3037 |
| - "issue": "11", |
3038 |
| - "page": "giaa117", |
3039 |
| - "publisher": "Oxford University Press (OUP)", |
3040 |
| - "title": "Correcting for experiment-specific variability in expression compendia can remove underlying signals", |
3041 |
| - "URL": "https://doi.org/ghhtpf", |
| 3101 | + "accessed": { |
| 3102 | + "date-parts": [ |
| 3103 | + [ |
| 3104 | + "2021", |
| 3105 | + 1, |
| 3106 | + 23 |
| 3107 | + ] |
| 3108 | + ] |
| 3109 | + }, |
3042 | 3110 | "PMCID": "PMC7607552",
|
3043 | 3111 | "PMID": "33140829",
|
3044 | 3112 | "note": "This CSL JSON Item was automatically generated by Manubot v0.4.1 using citation-by-identifier.\nstandard_id: doi:10.1093/gigascience/giaa117"
|
|
5066 | 5134 | [
|
5067 | 5135 | "2021",
|
5068 | 5136 | 1,
|
5069 |
| - 19 |
| 5137 | + 22 |
5070 | 5138 | ]
|
5071 | 5139 | ]
|
5072 | 5140 | },
|
|
5119 | 5187 | [
|
5120 | 5188 | "2021",
|
5121 | 5189 | 1,
|
5122 |
| - 20 |
| 5190 | + 23 |
5123 | 5191 | ]
|
5124 | 5192 | ]
|
5125 | 5193 | },
|
|
5136 | 5204 | [
|
5137 | 5205 | "2021",
|
5138 | 5206 | 1,
|
5139 |
| - 20 |
| 5207 | + 23 |
5140 | 5208 | ]
|
5141 | 5209 | ]
|
5142 | 5210 | },
|
|
5160 | 5228 | [
|
5161 | 5229 | "2021",
|
5162 | 5230 | 1,
|
5163 |
| - 20 |
| 5231 | + 23 |
5164 | 5232 | ]
|
5165 | 5233 | ]
|
5166 | 5234 | },
|
|
5203 | 5271 | [
|
5204 | 5272 | "2021",
|
5205 | 5273 | 1,
|
5206 |
| - 19 |
| 5274 | + 22 |
5207 | 5275 | ]
|
5208 | 5276 | ]
|
5209 | 5277 | },
|
|
5254 | 5322 | [
|
5255 | 5323 | "2021",
|
5256 | 5324 | 1,
|
5257 |
| - 19 |
| 5325 | + 22 |
5258 | 5326 | ]
|
5259 | 5327 | ]
|
5260 | 5328 | },
|
|
5318 | 5386 | [
|
5319 | 5387 | "2021",
|
5320 | 5388 | 1,
|
5321 |
| - 20 |
| 5389 | + 23 |
5322 | 5390 | ]
|
5323 | 5391 | ]
|
5324 | 5392 | },
|
|
5327 | 5395 | [
|
5328 | 5396 | "2021",
|
5329 | 5397 | 1,
|
5330 |
| - 20 |
| 5398 | + 23 |
5331 | 5399 | ]
|
5332 | 5400 | ]
|
5333 | 5401 | }
|
|
5343 | 5411 | [
|
5344 | 5412 | "2021",
|
5345 | 5413 | 1,
|
5346 |
| - 20 |
| 5414 | + 23 |
5347 | 5415 | ]
|
5348 | 5416 | ]
|
5349 | 5417 | },
|
|
5403 | 5471 | [
|
5404 | 5472 | "2021",
|
5405 | 5473 | 1,
|
5406 |
| - 20 |
| 5474 | + 23 |
5407 | 5475 | ]
|
5408 | 5476 | ]
|
5409 | 5477 | },
|
|
5428 | 5496 | [
|
5429 | 5497 | "2021",
|
5430 | 5498 | 1,
|
5431 |
| - 20 |
| 5499 | + 23 |
5432 | 5500 | ]
|
5433 | 5501 | ]
|
5434 | 5502 | },
|
|
5445 | 5513 | [
|
5446 | 5514 | "2021",
|
5447 | 5515 | 1,
|
5448 |
| - 20 |
| 5516 | + 23 |
5449 | 5517 | ]
|
5450 | 5518 | ]
|
5451 | 5519 | },
|
|
5541 | 5609 | [
|
5542 | 5610 | "2021",
|
5543 | 5611 | 1,
|
5544 |
| - 20 |
| 5612 | + 23 |
5545 | 5613 | ]
|
5546 | 5614 | ]
|
5547 | 5615 | },
|
|
0 commit comments