-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplay.py
158 lines (125 loc) · 4.23 KB
/
play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import time
import signal
import argparse
from tqdm import tqdm
import numpy as np
from board import Board
from players import AI_Player,RandomPlayer,Human_Player,Q_Player,Neural_Player
# Uncomment to use CPU for prediction
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
args = None
dataset = "datasets/dataset_move_ai.npz"
stopPlay = False
# CTRL + C Handler
def signalHandler(signal,frame):
global stopPlay
stopPlay = True
GOD = [(6,0),(4,22),(1,32)]
GOOD_AI_PLAYER = [(4,0),(3,22),(2,28),(1,35)]
BAD_AI_PLAYER = [(2,0),(1,28)]
DEPTH_1_PLAYER = [(1,0)]
DEPTH_2_PLAYER = [(2,0),(1,32)]
DEPTH_3_PLAYER = [(3,0),(1,32)]
DEPTH_4_PLAYER = [(4,0),(1,32)]
def play(player1,player2):
global stopPlay
startTime = time.time()
signal.signal(signal.SIGINT,signalHandler)
xWins = 0
oWins = 0
X = []
Y = []
# if(args.save == 1):
# try:
# data = np.load(dataset)
# X = list(data['arr_0'])
# Y = list(data['arr_1'])
# print(f"Loaded {len(X)} elements")
# except:
# pass
for _ in tqdm(range(0,args.iteration)):
if(stopPlay):
break
gameState = Board()
label_index = len(Y)
winnerScore = 0
num_turns = 0
while True:
if(stopPlay):
break
player1.playTurn(gameState)
winner = gameState.isGameEnd()
X.append(gameState.serialize())
Y.append(winnerScore)
#move = (move[0][0],move[0][1],move[1])
#Y.append(np.array(move))
if(winner == Board.X):
xWins += 1
#X.append(gameState.serialize())
#Y.append(1)
winnerScore = 1
break
elif(winner == Board.O):
oWins += 1
#X.append(gameState.serialize())
#Y.append(0)
break
#gameState.printBoard()
player2.playTurn(gameState)
winner = gameState.isGameEnd()
X.append(gameState.serialize())
Y.append(winnerScore)
# Y.append(winner)
if(winner == Board.X):
xWins += 1
#X.append(gameState.serialize())
#Y.append(1)
winnerScore = 1
break
elif(winner == Board.O):
oWins += 1
#X.append(gameState.serialize())
#Y.append(0)
break
#gameState.printBoard()
# print()
if(winnerScore == 1):
Y[label_index:len(Y)] = [winnerScore] * (len(Y) - label_index)
#gameState.printBoard()
if(args.save == 1):
data = np.load(dataset)
_X = list(data['arr_0'])
_Y = list(data['arr_1'])
X = X + _X
Y = Y + _Y
X = np.array(X)
Y = np.array(Y)
print(f"Saving dataset with {len(X)} elements")
np.savez(dataset, X, Y)
print(f"Elapsed: {time.time() - startTime}")
print(f"X Wins: {xWins}, O Wins: {oWins}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Quixo Game")
parser.add_argument('-i','--iteration',required=False,type=int, nargs="?",const=100, help='Number of simulation iterations')
parser.add_argument('-s','--save', required=False,type=int, nargs="?",const=0, help='Save game simulation')
parser.add_argument('-p1','--player1', required=True, type=str, help='Player 1')
parser.add_argument('-p2','--player2', required=True, type=str, help='Player 2')
args = parser.parse_args()
if(args.player1 == "alpha"):
player1 = AI_Player(BAD_AI_PLAYER)
elif(args.player1 == "neural"):
player1 = Neural_Player()
elif(args.player1 == "random"):
player1 = RandomPlayer()
elif(args.player1 == "human"):
player1 = Human_Player()
if(args.player2 == "alpha"):
player2 = AI_Player(BAD_AI_PLAYER)
elif(args.player2 == "neural"):
player2 = Neural_Player()
elif(args.player2 == "random"):
player2 = RandomPlayer()
elif(args.player2 == "human"):
player2 = Human_Player()
play(player1,player2)