forked from modern-fortran/neural-fortran
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.f90
32 lines (24 loc) · 788 Bytes
/
cnn.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
program cnn
use nf, only: conv2d, dense, flatten, input, maxpool2d, network
implicit none
type(network) :: net
real, allocatable :: x(:,:,:)
integer :: n
print '("Creating a CNN and doing a forward pass")'
print '("(backward pass not implemented yet)")'
print '(60("="))'
net = network([ &
input([3, 32, 32]), &
conv2d(filters=16, kernel_size=3, activation='relu'), & ! (16, 30, 30)
maxpool2d(pool_size=2), & ! (16, 15, 15)
conv2d(filters=32, kernel_size=3, activation='relu'), & ! (32, 13, 13)
maxpool2d(pool_size=2), & ! (32, 6, 6)
flatten(), &
dense(10) &
])
! Print a network summary to the screen
call net % print_info()
allocate(x(3,32,32))
call random_number(x)
print *, 'Output:', net % predict(x)
end program cnn