-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
136 lines (125 loc) · 7.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import os
import argparse
import torch.nn as nn
from data import SpeechCommandsDataset, collate_fn
from model import SpeechClassifierModel, ConformerModel
from torch.utils.data import DataLoader
from sklearn.metrics import classification_report
from tabulate import tabulate
from tqdm import tqdm
import numpy as np
import math
def save_checkpoint(model, optimizer, scheduler,model_params, filename):
state = {
'model_params':model_params,
'model_state_dict': model.state_dict(),
'optimizer_sdict': optimizer.state_dict(),
'scheduler_sdict': scheduler.state_dict(),
}
torch.save(state, filename)
def data_loader(args, data, **kwargs):
train_loader = DataLoader(data, batch_size=args.batch_size, shuffle = 1,
collate_fn=collate_fn, **kwargs)
return train_loader
def train(args, model, device, train_loader, optimizer, loss_fn, epoch):
loss_list = []
pred_list = []
label_list = []
model.train() # Set the model to training mode
for idx, (data, target, pholders, text, text_ori) in enumerate(tqdm(train_loader, desc="Training")):
data, target, text = data.to(device), target.to(device), text.to(device)
output = model(data, text)
target = target.float()
loss = loss_fn(torch.flatten(output), target)
loss.backward()
#loss_rec += loss.detach()
optimizer.step()
optimizer.zero_grad()
loss_list.append(loss.detach().item())
#pred = torch.sigmoid(output)
#pred_list.extend(torch.flatten(torch.round(pred)).cpu().numpy())
label_list.extend(target.cpu().numpy())
return epoch, loss_list
''' log = f'| epoch = {epoch} | loss_asr = {np.mean(loss_list)} | lr = {self.scheduler.get_last_lr()} |'
return 1, log, loss_list
print("epoch: {}, Iter: {}/{}, loss: {}".format(epoch, idx, len(train_loader), loss.item()), end="\r")
mean_loss = sum(loss_list) / len(loss_list)
#round_pred = torch.round(torch.tensor(pred_list))
#correct = round_pred.eq(torch.tensor(label_list).view_as(round_pred)).sum().item()
#accuracy = correct / len(torch.tensor(label_list))
#print('Average train loss:', mean_loss, "Average train Accuracy", accuracy)
report = classification_report(torch.Tensor(label_list).numpy(), torch.Tensor(pred_list).numpy())
print(report)
return 1, report, loss_list'''
def main(args):
local_rank = args.device
torch.cuda.set_device(local_rank)
device = torch.device('cuda:{:d}'.format(local_rank))
train_dataset = SpeechCommandsDataset(args.data_path, args.model_type, device=device)
kwargs = {'num_workers': args.num_workers, 'pin_memory': True} if local_rank else {}
train_loader = data_loader(args, train_dataset, **kwargs)
model_params = {'num_classes': 1, 'feature_size': 40, 'hidden_size': args.hidden_size,
'num_layers': 3, 'dropout': 0.2, 'bidirectional':True, 'device': device}
#model = SpeechClassifierModel(**model_params)
model = ConformerModel(**model_params)
#model = SpeechClassifierBasicModel(**model_params)
if (args.load_pretrain_model):
checkpoint = torch.load(args.load_pretrain_model)
model.load_state_dict(checkpoint['model_state_dict'])
model=model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
loss_fn = nn.BCELoss()
#loss_fn = nn.BCEWithLogitsLoss()
#scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.5)
#scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=args.lr, epochs=args.epochs, steps_per_epoch=math.ceil(1. * len(train_loader) / 1), anneal_strategy='linear', pct_start=0.3)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'max', patience=5, factor=0.5, verbose=True)
path = os.path.join('saved/beulah/', (str(args.model_type)+'_'+str(args.model_name))+".txt")
f = open(path,'a')
for epoch in range(1, args.epochs + 1):
print("\nstarting training with learning rate", optimizer.param_groups[0]['lr'])
epoch, loss_list = train(args, model, device, train_loader, optimizer, loss_fn, epoch)
log = f"| epoch = {epoch} | loss_vad = {np.mean(loss_list)} | lr = {optimizer.param_groups[0]['lr']} |"
scheduler.step(np.mean(loss_list))
if epoch % 4 == 0:
checkpoint_path = os.path.join(args.save_checkpoint_path, (str(args.model_type)+'_'+str(args.model_name)+'_'+str(epoch))+".pt")
'''if np.mean(loss_list) < 0.9 * best_loss:
save_checkpoint(model, optimizer, scheduler, model_params, checkpoint_path)
best_loss = np.mean(loss_list)'''
save_checkpoint(model, optimizer, scheduler, model_params, checkpoint_path)
print("Model saved at", checkpoint_path)
'''table = tabulate([['Best train accuracy', best_train_accuracy],
['Best train report', best_train_report],
['Best epoch', best_epoch],
['Current epoch', epoch],
['Current train accuracy', train_accuracy],
['Current train report', train_report],
['Current train loss', sum(loss_list)/len(loss_list)],
['Current learning rate', optimizer.param_groups[0]['lr']]
],
headers=['Metric', 'Value'])
print(table + "\n")'''
print(log)
f.write(log + "\n")
print("Finished training")
f.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Speech Commands Training for Wake Word Detection')
parser.add_argument('--sample_rate', default=16000, type=int, help='Sample rate')
parser.add_argument('--batch_size', default=32, type=int, help='Batch size')
parser.add_argument('--epochs', default=100, type=int, help='Number of epochs')
parser.add_argument('--lr', default=1e-4, type=float, help='Learning rate')
parser.add_argument('--model_name',default="KeyWD", type=str,required=False, help='Name of the saved model')
parser.add_argument('--data_path', default=None, type=str, help='Path to data')
parser.add_argument('--num_classes', default=1, type=int, help='Number of classes')
parser.add_argument('--save_checkpoint_path', type=str, default=None, help='Path to save the best checkpoint')
parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--num_workers', type=int, default=1, help='number of data loading workers')
parser.add_argument('--hidden_size', type=int, default=128, help='lstm hidden size')
parser.add_argument('--load_pretrain_model', type=str, default=None, required=False, help='path to load a pretrain model to continue training')
parser.add_argument('--model_type', type=str, default=None, help='Type of data sent to the model')
parser.add_argument('--device', type=int, default=0, help='GPU device')
args = parser.parse_args()
torch.cuda.empty_cache()
#torch.cuda.set_per_process_memory_fraction(1.0, device=args.device)
main(args)