forked from sail-sg/Adan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
273 lines (218 loc) · 9.64 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os, sys
import glob
from collections import Counter, OrderedDict
import numpy as np
import torch
from utils.vocabulary import Vocab
class LMOrderedIterator(object):
def __init__(self, data, bsz, bptt, device='cpu', ext_len=None):
"""
data -- LongTensor -- the LongTensor is strictly ordered
"""
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
# Work out how cleanly we can divide the dataset into bsz parts.
self.n_step = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, self.n_step * bsz)
# Evenly divide the data across the bsz batches.
self.data = data.view(bsz, -1).t().contiguous().to(device)
# Number of mini-batches
self.n_batch = (self.n_step + self.bptt - 1) // self.bptt
def get_batch(self, i, bptt=None):
if bptt is None: bptt = self.bptt
seq_len = min(bptt, self.data.size(0) - 1 - i)
end_idx = i + seq_len
beg_idx = max(0, i - self.ext_len)
data = self.data[beg_idx:end_idx]
target = self.data[i+1:i+1+seq_len]
return data, target, seq_len
def get_fixlen_iter(self, start=0):
for i in range(start, self.data.size(0) - 1, self.bptt):
yield self.get_batch(i)
def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3):
max_len = self.bptt + max_deviation * std
i = start
while True:
bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.
bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std))))
data, target, seq_len = self.get_batch(i, bptt)
i += seq_len
yield data, target, seq_len
if i >= self.data.size(0) - 2:
break
def __iter__(self):
return self.get_fixlen_iter()
class LMShuffledIterator(object):
def __init__(self, data, bsz, bptt, device='cpu', ext_len=None, shuffle=False):
"""
data -- list[LongTensor] -- there is no order among the LongTensors
"""
self.data = data
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
self.shuffle = shuffle
def get_sent_stream(self):
# index iterator
epoch_indices = np.random.permutation(len(self.data)) if self.shuffle \
else np.array(range(len(self.data)))
# sentence iterator
for idx in epoch_indices:
yield self.data[idx]
def stream_iterator(self, sent_stream):
# streams for each data in the batch
streams = [None] * self.bsz
data = torch.LongTensor(self.bptt, self.bsz)
target = torch.LongTensor(self.bptt, self.bsz)
n_retain = 0
while True:
# data : [n_retain+bptt x bsz]
# target : [bptt x bsz]
data[n_retain:].fill_(-1)
target.fill_(-1)
valid_batch = True
for i in range(self.bsz):
n_filled = 0
try:
while n_filled < self.bptt:
if streams[i] is None or len(streams[i]) <= 1:
streams[i] = next(sent_stream)
# number of new tokens to fill in
n_new = min(len(streams[i]) - 1, self.bptt - n_filled)
# first n_retain tokens are retained from last batch
data[n_retain+n_filled:n_retain+n_filled+n_new, i] = \
streams[i][:n_new]
target[n_filled:n_filled+n_new, i] = \
streams[i][1:n_new+1]
streams[i] = streams[i][n_new:]
n_filled += n_new
except StopIteration:
valid_batch = False
break
if not valid_batch:
return
data = data.to(self.device)
target = target.to(self.device)
yield data, target, self.bptt
n_retain = min(data.size(0), self.ext_len)
if n_retain > 0:
data[:n_retain] = data[-n_retain:]
data.resize_(n_retain + self.bptt, data.size(1))
def __iter__(self):
# sent_stream is an iterator
sent_stream = self.get_sent_stream()
for batch in self.stream_iterator(sent_stream):
yield batch
class LMMultiFileIterator(LMShuffledIterator):
def __init__(self, paths, vocab, bsz, bptt, device='cpu', ext_len=None,
shuffle=False):
self.paths = paths
self.vocab = vocab
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
self.shuffle = shuffle
def get_sent_stream(self, path):
sents = self.vocab.encode_file(path, add_double_eos=True)
if self.shuffle:
np.random.shuffle(sents)
sent_stream = iter(sents)
return sent_stream
def __iter__(self):
if self.shuffle:
np.random.shuffle(self.paths)
for path in self.paths:
# sent_stream is an iterator
sent_stream = self.get_sent_stream(path)
for batch in self.stream_iterator(sent_stream):
yield batch
class Corpus(object):
def __init__(self, path, dataset, *args, **kwargs):
self.dataset = dataset
self.vocab = Vocab(*args, **kwargs)
if self.dataset in ['ptb', 'wt2', 'enwik8', 'text8']:
self.vocab.count_file(os.path.join(path, 'train.txt'))
self.vocab.count_file(os.path.join(path, 'valid.txt'))
self.vocab.count_file(os.path.join(path, 'test.txt'))
elif self.dataset == 'wt103':
self.vocab.count_file(os.path.join(path, 'train.txt'))
elif self.dataset == 'lm1b':
train_path_pattern = os.path.join(
path, '1-billion-word-language-modeling-benchmark-r13output',
'training-monolingual.tokenized.shuffled', 'news.en-*')
train_paths = glob.glob(train_path_pattern)
# the vocab will load from file when build_vocab() is called
self.vocab.build_vocab()
if self.dataset in ['ptb', 'wt2', 'wt103']:
self.train = self.vocab.encode_file(
os.path.join(path, 'train.txt'), ordered=True)
self.valid = self.vocab.encode_file(
os.path.join(path, 'valid.txt'), ordered=True)
self.test = self.vocab.encode_file(
os.path.join(path, 'test.txt'), ordered=True)
elif self.dataset in ['enwik8', 'text8']:
self.train = self.vocab.encode_file(
os.path.join(path, 'train.txt'), ordered=True, add_eos=False)
self.valid = self.vocab.encode_file(
os.path.join(path, 'valid.txt'), ordered=True, add_eos=False)
self.test = self.vocab.encode_file(
os.path.join(path, 'test.txt'), ordered=True, add_eos=False)
elif self.dataset == 'lm1b':
self.train = train_paths
self.valid = self.vocab.encode_file(
os.path.join(path, 'valid.txt'), ordered=False, add_double_eos=True)
self.test = self.vocab.encode_file(
os.path.join(path, 'test.txt'), ordered=False, add_double_eos=True)
def get_iterator(self, split, *args, **kwargs):
if split == 'train':
if self.dataset in ['ptb', 'wt2', 'wt103', 'enwik8', 'text8']:
data_iter = LMOrderedIterator(self.train, *args, **kwargs)
elif self.dataset == 'lm1b':
kwargs['shuffle'] = True
data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs)
elif split in ['valid', 'test']:
data = self.valid if split == 'valid' else self.test
if self.dataset in ['ptb', 'wt2', 'wt103', 'enwik8', 'text8']:
data_iter = LMOrderedIterator(data, *args, **kwargs)
elif self.dataset == 'lm1b':
data_iter = LMShuffledIterator(data, *args, **kwargs)
return data_iter
def get_lm_corpus(datadir, dataset):
fn = os.path.join(datadir, 'cache.pt')
if os.path.exists(fn):
print('Loading cached dataset...')
corpus = torch.load(fn)
else:
print('Producing dataset {}...'.format(dataset))
kwargs = {}
if dataset in ['wt103', 'wt2']:
kwargs['special'] = ['<eos>']
kwargs['lower_case'] = False
elif dataset == 'ptb':
kwargs['special'] = ['<eos>']
kwargs['lower_case'] = True
elif dataset == 'lm1b':
kwargs['special'] = []
kwargs['lower_case'] = False
kwargs['vocab_file'] = os.path.join(datadir, '1b_word_vocab.txt')
elif dataset in ['enwik8', 'text8']:
pass
corpus = Corpus(datadir, dataset, **kwargs)
torch.save(corpus, fn)
return corpus
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='unit test')
parser.add_argument('--datadir', type=str, default='../data/text8',
help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='text8',
choices=['ptb', 'wt2', 'wt103', 'lm1b', 'enwik8', 'text8'],
help='dataset name')
args = parser.parse_args()
corpus = get_lm_corpus(args.datadir, args.dataset)
print('Vocab size : {}'.format(len(corpus.vocab.idx2sym)))