forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredicates.py
426 lines (348 loc) · 14.2 KB
/
predicates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Copyright 2018 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines some `predicates` for the predicate_task."""
import abc
import colorsys
import numpy as np
HSV_SATURATION = 0.5
HSV_ACTIVATED_SATURATION = 0.75
HSV_VALUE = 1.0
WALKER_GOAL_RGBA = [0, 0, 0]
WALKER_GOAL_PRESSED_RGBA = [128, 128, 128]
INACTIVE_OBSERVATION_VALUE = [-1] * 5
# Define globals for the special encoding.
MOVABLE_TYPES = {'walker': 0, 'box': 1}
TARGET_TYPES = {'box': 0, 'target': 1}
PREDICATE_TYPES = {'on': 0, 'close_to': 1, 'far_from': 2}
class BasePredicate(object, metaclass=abc.ABCMeta):
"""Base class for all predicates."""
def __init__(self, walker):
self._walker = walker
@abc.abstractmethod
def reinitialize(self, random_state):
"""Reinitializes a new, potentially random, predicate state.
The reinitialize method should reset to a new predicate state which could
update the `objects_in_use` by the `Predicate`. This method could be called
multiple times before a finally binding predicate set has been found.
Therefore no changes to the model that are not reversible should be made
here (setting colors etc). Any changes affecting the Mujoco model should
instead be made in the `activate_predicate` method call.
Args:
random_state: An instance of `np.RandomState` which may be seeded to
ensure a deterministic environment.
"""
pass
@abc.abstractmethod
def activate_predicate(self):
"""Activates the current predicate configuration.
Any changes that are non-reversible like setting object properties or
affinities *must* only be done in this method. At this point, the
`predicate_task` logic has confirmed that a valid predicate configuration
has been found.
"""
pass
@property
def objects_in_use(self):
"""Returns the `set` of objects used for this episode."""
return set()
@abc.abstractproperty
def observation_value(self):
"""Returns a `dict` to be used as the predicate observable."""
pass
@abc.abstractmethod
def is_active(self, physics):
"""Boolean method indicating whether the predicate has been activated.
If `True`, it implies the condition for the predicate has been satisfied
and the walker can be rewarded.
Args:
physics: An instance of `control.Physics`.
"""
pass
@property
def inactive_observation_value(self):
"""observation_value indicating a `Predicate` is inactive.
The `PredicateTask` randomly samples the number of active predicates to be
used on each episode. For a consistent `observation_spec`, the predicates
that are not active need a special observation_value that cannot be used
anywhere else.
Returns:
A special value indicating that the predicate is inactive and is not used
by any other predicate in the task.
"""
return INACTIVE_OBSERVATION_VALUE
class MoveWalkerToTarget(BasePredicate):
"""Predicate to move a walker to a specific target."""
def __init__(self, walker, target, target_index=0):
"""Predicate to move a walker or box to a target.
Args:
walker: An locomotion `Walker` instance to use for this predicate.
target: `locomotion.prop` instance containing an `activated` property.
target_index: An 'int' argument to add to the observable to indicate the
index of the target.
"""
super(MoveWalkerToTarget, self).__init__(walker)
self._target = target
self._target_id = target_index
def reinitialize(self, random_state):
self._target.deregister_entities()
def activate_predicate(self):
self._target.register_entities(self._walker)
self._target.set_colors(WALKER_GOAL_RGBA, WALKER_GOAL_PRESSED_RGBA)
@property
def objects_in_use(self):
return set([self._walker, self._target])
@property
def observation_value(self):
return np.array([
MOVABLE_TYPES['walker'], 0, TARGET_TYPES['target'], self._target_id,
PREDICATE_TYPES['close_to']
])
def is_active(self, physics):
return self._target.activated
class MoveWalkerToRandomTarget(BasePredicate):
"""Predicate to move a walker to a random target."""
def __init__(self, walker, targets=None):
"""Predicate to move a walker or box to a target.
Args:
walker: An locomotion `Walker` instance to use for this predicate.
targets: An optional list of `locomotion.prop` instances each of which
contains an `activated` property.
"""
super(MoveWalkerToRandomTarget, self).__init__(walker)
self._targets = targets
self._target_to_move_to = None
def reinitialize(self, random_state):
if self._target_to_move_to is not None:
self._target_to_move_to.deregister_entities()
self._target_to_move_to = random_state.choice(self._targets)
self._target_idx = self._targets.index(self._target_to_move_to)
def activate_predicate(self):
self._target_to_move_to.register_entities(self._walker)
self._target_to_move_to.set_colors(WALKER_GOAL_RGBA,
WALKER_GOAL_PRESSED_RGBA)
@property
def objects_in_use(self):
return set([self._walker, self._target_to_move_to])
@property
def observation_value(self):
return np.array([
MOVABLE_TYPES['walker'], 0, TARGET_TYPES['target'], self._target_idx,
PREDICATE_TYPES['close_to']
])
def is_active(self, physics):
return self._target_to_move_to.activated
class MoveWalkerToBox(BasePredicate):
"""Predicate to move a walker to a specific box."""
def __init__(self, walker, box, box_index=0, detection_region=None):
"""Predicate to move a walker to a specific box.
Args:
walker: An locomotion `Walker` instance to use for this predicate.
box: A `manipulation.prop` instance to move.
box_index: An integer index to use for the observable to identify the
`box`.
detection_region: A 2-tuple indicating the tolerances in x and y for the
walker to be deemed `close_to` the box. If `None`, contact based
detection is used.
"""
super(MoveWalkerToBox, self).__init__(walker)
self._box = box
self._detection_region = detection_region
self._box_index = box_index
self._walker_geoms = None
def reinitialize(self, random_state):
if self._walker_geoms is None:
# pylint: disable=protected-access
self._walker_geoms = set(self._walker._mjcf_root.find_all('geom'))
def activate_predicate(self):
self._box.geom.rgba[:3] = WALKER_GOAL_RGBA
@property
def objects_in_use(self):
return set([self._walker, self._box])
@property
def observation_value(self):
return np.array([
MOVABLE_TYPES['walker'], 0, TARGET_TYPES['box'], self._box_index,
PREDICATE_TYPES['close_to']
])
def is_active(self, physics):
if self._detection_region is None:
return self._is_walker_contacting_box(physics)
else:
return np.all(
np.abs(
physics.bind(self._walker.root_body).xpos -
physics.bind(self._box.geom).xpos)[:2] < self._detection_region)
def _is_walker_contacting_box(self, physics):
walker_geom_ids = [
physics.bind(geom).element_id for geom in self._walker_geoms
]
for contact in physics.data.contact:
contact_geoms = set([contact.geom1, contact.geom2])
if (physics.bind(self._box.geom).element_id in contact_geoms and
contact_geoms.intersection(walker_geom_ids)):
return True
return False
class MoveBoxToBox(BasePredicate):
"""Predicate to move a walker to a specific box."""
def __init__(self,
walker,
first_box,
second_box,
first_box_index=0,
second_box_index=1,
detection_region=None):
"""Predicate to move a walker to a specific box.
Args:
walker: An locomotion `Walker` instance to use for this predicate.
first_box: A `manipulation.prop` instance to move.
second_box: A `manipulation.prop` instance to move.
first_box_index: An integer index to use for the observable to identify
the `box`.
second_box_index: An integer index to use for the observable to identify
the `box`.
detection_region: A 2-tuple indicating the tolerances in x and y for the
walker to be deemed `close_to` the box. If `None`, contact based
detection is used.
"""
super(MoveBoxToBox, self).__init__(walker)
self._first_box = first_box
self._second_box = second_box
self._detection_region = detection_region
self._first_box_index = first_box_index
self._second_box_index = second_box_index
self._walker_geoms = None
def reinitialize(self, random_state):
if self._walker_geoms is None:
# pylint: disable=protected-access
self._walker_geoms = set(self._walker._mjcf_root.find_all('geom'))
def activate_predicate(self):
self._first_box.geom.rgba[:3] = WALKER_GOAL_RGBA
@property
def objects_in_use(self):
return set([self._first_box, self._second_box])
@property
def observation_value(self):
return np.array([
MOVABLE_TYPES['box'], self._first_box_index, TARGET_TYPES['box'],
self._second_box_index, PREDICATE_TYPES['close_to']
])
def is_active(self, physics):
if self._detection_region is None:
return self._are_boxes_in_contact(physics)
else:
return np.all(
np.abs(
physics.bind(self._first_box.geom).xpos -
physics.bind(self._second_box.geom).xpos)[:2] <
self._detection_region)
def _are_boxes_in_contact(self, physics):
for contact in physics.data.contact:
contact_geoms = set([contact.geom1, contact.geom2])
if (physics.bind(self._first_box.geom).element_id in contact_geoms and
physics.bind(self._second_box.geom).element_id in contact_geoms):
return True
return False
class MoveBoxToTarget(BasePredicate):
"""Predicate to move a walker to a specific target."""
def __init__(self, walker, box, target, box_index=0, target_index=0):
"""Predicate to move a walker or box to a target.
Args:
walker: An locomotion `Walker` instance to use for this predicate.
box: A `manipulation.prop` to move to the target.
target: `locomotion.prop` instance containing an `activated` property.
box_index: An 'int' argument to add to the observable to indicate the
index of the box.
target_index: An 'int' argument to add to the observable to indicate the
index of the target.
"""
super(MoveBoxToTarget, self).__init__(walker)
self._box = box
self._target = target
self._box_id = box_index
self._target_id = target_index
self._original_box_size = np.copy(box.geom.size)
self._rgb = None
self._activated_rgb = None
def reinitialize(self, random_state):
self._target.deregister_entities()
self._get_box_properties(random_state)
def _get_box_properties(self, random_state):
hue0 = random_state.uniform()
hue = (hue0 + self._target_id) % 1.0
self._rgb = colorsys.hsv_to_rgb(hue, HSV_SATURATION, HSV_VALUE)
self._activated_rgb = colorsys.hsv_to_rgb(hue, HSV_ACTIVATED_SATURATION,
HSV_VALUE)
def activate_predicate(self):
self._target.set_colors(self._rgb, self._activated_rgb)
self._box.geom.rgba[:3] = self._rgb
self._target.register_entities(self._box)
@property
def objects_in_use(self):
return set([self._box, self._target])
@property
def observation_value(self):
return np.array([
MOVABLE_TYPES['box'], self._box_id, TARGET_TYPES['target'],
self._target_id, PREDICATE_TYPES['close_to']
])
def is_active(self, physics):
return self._target.activated
class MoveBoxToRandomTarget(BasePredicate):
"""Predicate to move a walker to a random target."""
def __init__(self, walker, box, box_index=0, targets=None):
"""Predicate to move a walker or box to a target.
Args:
walker: An locomotion `Walker` instance to use for this predicate.
box: A `manipulation.prop` to move to the target.
box_index: An optional 'int' argument to add to the observable to indicate
the index of the box.
targets: An optional list of `locomotion.prop` instances each of which
contains an `activated` property.
"""
super(MoveBoxToRandomTarget, self).__init__(walker)
self._targets = targets
self._box_to_move = box
self._box_index = box_index
self._target_to_move_to = None
self._original_box_size = np.copy(box.geom.size)
self._rgb = None
self._activated_rgb = None
def reinitialize(self, random_state):
if self._target_to_move_to is not None:
self._target_to_move_to.deregister_entities()
self._target_to_move_to = random_state.choice(self._targets)
self._target_idx = self._targets.index(self._target_to_move_to)
self._get_box_properties(random_state)
def _get_box_properties(self, random_state):
hue0 = random_state.uniform()
hue = (hue0 + (self._target_idx / len(self._targets))) % 1.0
self._rgb = colorsys.hsv_to_rgb(hue, HSV_SATURATION, HSV_VALUE)
self._activated_rgb = colorsys.hsv_to_rgb(hue, HSV_ACTIVATED_SATURATION,
HSV_VALUE)
def activate_predicate(self):
self._target_to_move_to.set_colors(self._rgb, self._activated_rgb)
self._box_to_move.geom.rgba[:3] = self._rgb
self._target_to_move_to.register_entities(self._box_to_move)
@property
def objects_in_use(self):
return set([self._box_to_move, self._target_to_move_to])
@property
def observation_value(self):
return np.array([
MOVABLE_TYPES['box'], self._box_index,
TARGET_TYPES['target'], self._target_idx,
PREDICATE_TYPES['close_to']
])
def is_active(self, physics):
return self._target_to_move_to.activated