forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombiners.py
220 lines (171 loc) · 7.21 KB
/
combiners.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright 2021 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Reward combiners."""
import abc
import math
from typing import List, Optional, Tuple
import dataclasses
import numpy as np
from scipy import special
from fusion_tcv import targets
class AbstractCombiner(targets.AbstractTarget):
"""Combines a set of rewards, possibly weighted."""
@abc.abstractmethod
def __call__(self, values: List[float],
weights: Optional[List[float]] = None) -> List[float]:
"""Combines a set of rewards, possibly weighted."""
@property
def outputs(self) -> int:
"""All combiners return exactly one value, even if it's NaN."""
return 1
@staticmethod
def _clean_values_weights(
values: List[float],
weights: Optional[List[float]] = None) -> Tuple[List[float], List[float]]:
"""Validate the values and weights, and if no weights, return equal."""
if weights is None:
weights = [1] * len(values)
else:
if len(values) != len(weights):
raise ValueError("Number of weights don't match values. "
f"values: {len(values)}, weights: {len(weights)}")
for w in weights:
if w < 0:
raise ValueError(f"Weights must be >=0: {w}")
new_values_weights = [(v, w) for v, w in zip(values, weights)
if not np.isnan(v) and w > 0]
return tuple(zip(*new_values_weights)) if new_values_weights else ([], [])
class Mean(AbstractCombiner):
"""Take the weighted mean of the values.
Ignores NaNs and values with weight 0.
"""
def __call__(self, values: List[float],
weights: Optional[List[float]] = None) -> List[float]:
values, weights = self._clean_values_weights(values, weights)
if not values:
return [float("nan")]
return [sum(r * w for r, w in zip(values, weights)) / sum(weights)]
def _multiply(values, weights, mean):
"""Multiplies the values taking care to validate the weights.
Defines 0^0 = 1 so a reward with no weight is "off" even if the value is 0.
Args:
values: The reward values.
weights: The reward weights.
mean: If true, divides by the sum of the weights (computes the geometric
mean).
Returns:
Product of v^w across the components.
"""
# If weight and value are both zero, set the value to 1 so that 0^0 = 1.
values = [1 if (v == 0 and w == 0) else v for (v, w) in zip(values, weights)]
if any(v == 0 for v in values):
return [0]
den = sum(weights) if mean else 1
return [math.exp(sum(np.log(values) * weights) / den)]
class Multiply(AbstractCombiner):
"""Combine by multiplying the (weighted) values together.
This is the same as Geometric mean, but without the n^th root taken at the
end. This means doing poorly on several rewards compounds, rather than
averages. As such it likely only makes sense after the non-linearities, ie
where the values are in the 0-1 range, otherwise it'll cause them to increase.
This is even harsher than Min or SmoothMax(-inf).
Ignores NaNs and values with weight 0.
"""
def __call__(self, values: List[float],
weights: Optional[List[float]] = None) -> List[float]:
values, weights = self._clean_values_weights(values, weights)
if not values:
return [float("nan")]
return _multiply(values, weights, mean=False)
class GeometricMean(AbstractCombiner):
"""Take the weighted geometric mean of the values.
Pushes values towards 0, so likely only makes sense after the non-linear
transforms.
Ignores NaNs and values with weight 0.
"""
def __call__(self, values: List[float],
weights: Optional[List[float]] = None) -> List[float]:
values, weights = self._clean_values_weights(values, weights)
if not values:
return [float("nan")]
return _multiply(values, weights, mean=True)
class Min(AbstractCombiner):
"""Take the min of the values. Ignores NaNs and values with weight 0."""
def __call__(self, values: List[float],
weights: Optional[List[float]] = None) -> List[float]:
values, _ = self._clean_values_weights(values, weights)
if not values:
return [float("nan")]
return [min(values)]
class Max(AbstractCombiner):
"""Take the max of the values. Ignores NaNs and values with weight 0."""
def __call__(self, values: List[float],
weights: Optional[List[float]] = None) -> List[float]:
values, _ = self._clean_values_weights(values, weights)
if not values:
return [float("nan")]
return [max(values)]
@dataclasses.dataclass(frozen=True)
class LNorm(AbstractCombiner):
"""Take the l-norm of the values.
Reasonable norm values (assuming normalized):
- 1: avg of the values
- 2: euclidean distance metric
- inf: max value
Values in between go between the average and max. As the l-norm goes up, the
result gets closer to the max.
Normalized means dividing by the max possible distance, such that the units
still make sense.
This likely only makes sense before the non-linear transforms. SmoothMax is
similar but more flexible and understandable.
Ignores NaNs and values with weight 0.
"""
norm: float
normalized: bool = True
def __call__(self, values: List[float],
weights: Optional[List[float]] = None) -> List[float]:
values, _ = self._clean_values_weights(values, weights)
if not values:
return [float("nan")]
lnorm = np.linalg.norm(values, ord=self.norm)
if self.normalized:
lnorm /= np.linalg.norm(np.ones(len(values)), ord=self.norm)
return [float(lnorm)]
@dataclasses.dataclass(frozen=True)
class SmoothMax(AbstractCombiner):
"""Combines component rewards using a smooth maximum.
https://en.wikipedia.org/wiki/Smooth_maximum
alpha is the exponent for the smooth max.
- alpha -> inf: returns the maximum
- alpha == 0: returns the weighted average
- alpha -> -inf: returns the minimum
alpha in between returns values in between.
Since this varies between min, mean and max, it keeps the existing scale.
Alpha >= 0 make sense before converting to 0-1, alpha <= 0 make sense after.
Ignores NaNs and values with weight 0.
"""
alpha: float
def __call__(self, values: List[float],
weights: Optional[List[float]] = None) -> List[float]:
values, weights = self._clean_values_weights(values, weights)
if not values:
return [float("nan")]
if math.isinf(self.alpha):
return [max(values) if self.alpha > 0 else min(values)]
# Compute weights in a numerically-friendly way.
log_soft_weights = [np.log(w) + c * self.alpha
for w, c in zip(weights, values)]
log_soft_weights -= special.logsumexp(log_soft_weights)
soft_weights = np.exp(log_soft_weights)
return Mean()(values, soft_weights) # weighted mean