forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironment.py
160 lines (144 loc) · 6.51 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2021 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Environment API for FGE simulator."""
from typing import Dict, List, Optional
import dm_env
from dm_env import auto_reset_environment
from dm_env import specs
import numpy as np
from fusion_tcv import fge_octave
from fusion_tcv import fge_state
from fusion_tcv import named_array
from fusion_tcv import noise
from fusion_tcv import param_variation
from fusion_tcv import ref_gen
from fusion_tcv import rewards
from fusion_tcv import tcv_common
from fusion_tcv import terminations
# Re-export as fge_octave should be an implementation detail.
ShotCondition = fge_octave.ShotCondition
class Environment(auto_reset_environment.AutoResetEnvironment):
"""An environment using the FGE Solver.
The simulator will return a flux map, which is the environment's hidden state,
and some flux measurements, which will be used as observations. The actions
represent current levels that are passed to the simulator for the next
flux calculation.
"""
def __init__(
self,
shot_condition: ShotCondition,
reward: rewards.AbstractReward,
reference_generator: ref_gen.AbstractReferenceGenerator,
max_episode_length: int = 10000,
termination: Optional[terminations.Abstract] = None,
obs_act_noise: Optional[noise.Noise] = None,
power_supply_delays: Optional[Dict[str, List[float]]] = None,
param_generator: Optional[param_variation.ParamGenerator] = None):
"""Initializes an Environment instance.
Args:
shot_condition: A ShotCondition, specifying shot number and time. This
specifies the machine geometry (eg with or without the baffles), and the
initial measurements, voltages, current and plasma state.
reward: Function to generate a reward term.
reference_generator: Generator for the signal to send to references.
max_episode_length: Maximum number of steps before episode is truncated
and restarted.
termination: Decide if the state should be considered a termination.
obs_act_noise: Type for setting the observation and action noise. If noise
is set to None then the default noise level is used.
power_supply_delays: A dict with power supply delays (in seconds), keys
are coil type labels ('E', 'F', 'G', 'OH'). `None` means default delays.
param_generator: Generator for Liuqe parameter settings. If None then
the default settings are used.
"""
super().__init__()
if power_supply_delays is None:
power_supply_delays = tcv_common.TCV_ACTION_DELAYS
self._simulator = fge_octave.FGESimulatorOctave(
shot_condition=shot_condition,
power_supply_delays=power_supply_delays)
self._reward = reward
self._reference_generator = reference_generator
self._max_episode_length = max_episode_length
self._termination = (termination if termination is not None else
terminations.CURRENT_OH_IP)
self._noise = (obs_act_noise if obs_act_noise is not None else
noise.Noise.use_default_noise())
self._param_generator = (param_generator if param_generator is not None else
param_variation.ParamGenerator())
self._params = None
self._step_counter = 0
self._last_observation = None
def observation_spec(self):
"""Defines the observations provided by the environment."""
return tcv_common.observation_spec()
def action_spec(self) -> specs.BoundedArray:
"""Defines the actions that should be provided to `step`."""
return tcv_common.action_spec()
def _reset(self) -> dm_env.TimeStep:
"""Starts a new episode."""
self._step_counter = 0
self._params = self._param_generator.generate()
state = self._simulator.reset(self._params)
references = self._reference_generator.reset()
zero_act = np.zeros(self.action_spec().shape,
dtype=self.action_spec().dtype)
self._last_observation = self._extract_observation(
state, references, zero_act)
return dm_env.restart(self._last_observation)
def _simulator_voltages_from_voltages(self, voltages):
voltage_simulator = np.copy(voltages)
if self._params.psu_voltage_offset is not None:
for coil, offset in self._params.psu_voltage_offset.items():
voltage_simulator[tcv_common.TCV_ACTION_INDICES[coil]] += offset
voltage_simulator = np.clip(
voltage_simulator,
self.action_spec().minimum,
self.action_spec().maximum)
g_coil = tcv_common.TCV_ACTION_RANGES.index("G")
if abs(voltage_simulator[g_coil]) < tcv_common.ENV_G_COIL_DEADBAND:
voltage_simulator[g_coil] = 0
return voltage_simulator
def _step(self, action: np.ndarray) -> dm_env.TimeStep:
"""Does one step within TCV."""
voltages = self._noise.add_action_noise(action)
voltage_simulator = self._simulator_voltages_from_voltages(voltages)
try:
state = self._simulator.step(voltage_simulator)
except (fge_state.InvalidSolutionError,
fge_state.StopSignalException):
return dm_env.termination(
self._reward.terminal_reward(), self._last_observation)
references = self._reference_generator.step()
self._last_observation = self._extract_observation(
state, references, action)
term = self._termination.terminate(state)
if term:
return dm_env.termination(
self._reward.terminal_reward(), self._last_observation)
reward, _ = self._reward.reward(voltages, state, references)
self._step_counter += 1
if self._step_counter >= self._max_episode_length:
return dm_env.truncation(reward, self._last_observation)
return dm_env.transition(reward, self._last_observation)
def _extract_observation(
self, state: fge_state.FGEState,
references: named_array.NamedArray,
action: np.ndarray) -> Dict[str, np.ndarray]:
return {
"references": references.array,
"measurements": self._noise.add_measurement_noise(
state.get_observation_vector()),
"last_action": action,
}