forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments.py
72 lines (59 loc) · 2.48 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright 2021 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The environment definitions used for our experiments."""
from fusion_tcv import environment
from fusion_tcv import references
from fusion_tcv import rewards_used
# Used in TCV#70915
def fundamental_capability() -> environment.Environment:
return environment.Environment(
shot_condition=environment.ShotCondition(70166, 0.0872),
reward=rewards_used.FUNDAMENTAL_CAPABILITY,
reference_generator=references.fundamental_capability(),
max_episode_length=10000)
# Used in TCV#70920
def elongation() -> environment.Environment:
return environment.Environment(
shot_condition=environment.ShotCondition(70166, 0.45),
reward=rewards_used.ELONGATION,
reference_generator=references.elongation(),
max_episode_length=5000)
# Used in TCV#70600
def iter() -> environment.Environment: # pylint: disable=redefined-builtin
return environment.Environment(
shot_condition=environment.ShotCondition(70392, 0.0872),
reward=rewards_used.ITER,
reference_generator=references.iter(),
max_episode_length=1000)
# Used in TCV#70457
def negative_triangularity() -> environment.Environment:
return environment.Environment(
shot_condition=environment.ShotCondition(70166, 0.45),
reward=rewards_used.NEGATIVE_TRIANGULARITY,
reference_generator=references.negative_triangularity(),
max_episode_length=5000)
# Used in TCV#70755
def snowflake() -> environment.Environment:
return environment.Environment(
shot_condition=environment.ShotCondition(70166, 0.0872),
reward=rewards_used.SNOWFLAKE,
reference_generator=references.snowflake(),
max_episode_length=10000)
# Used in TCV#69545
def droplet() -> environment.Environment:
return environment.Environment(
shot_condition=environment.ShotCondition(69198, 0.418),
reward=rewards_used.DROPLETS,
reference_generator=references.droplet(),
max_episode_length=2000)