forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
571 lines (513 loc) · 23.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Open Source Version of the Hierarchical Probabilistic U-Net."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import geco_utils
import sonnet as snt
import tensorflow as tf
from tensorflow_probability import distributions as tfd
import unet_utils
class _HierarchicalCore(snt.AbstractModule):
"""A U-Net encoder-decoder with a full encoder and a truncated decoder.
The truncated decoder is interleaved with the hierarchical latent space and
has as many levels as there are levels in the hierarchy plus one additional
level.
"""
def __init__(self, latent_dims, channels_per_block,
down_channels_per_block=None, activation_fn=tf.nn.relu,
initializers=None, regularizers=None, convs_per_block=3,
blocks_per_level=3, name='HierarchicalDecoderDist'):
"""Initializes a HierarchicalCore.
Args:
latent_dims: List of integers specifying the dimensions of the latents at
each scale. The length of the list indicates the number of U-Net decoder
scales that have latents.
channels_per_block: A list of integers specifying the number of output
channels for each encoder block.
down_channels_per_block: A list of integers specifying the number of
intermediate channels for each encoder block or None. If None, the
intermediate channels are chosen equal to channels_per_block.
activation_fn: A callable activation function.
initializers: Optional dict containing ops to initialize the filters (with
key 'w') or biases (with key 'b'). The default initializer for the
weights is a truncated normal initializer, which is commonly used when
the inputs are zero centered (see
https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for the
bias is a zero initializer.
regularizers: Optional dict containing regularizers for the filters
(with key 'w') and the biases (with key 'b'). As a default, no
regularizers are used. A regularizer should be a function that takes a
single `Tensor` as an input and returns a scalar `Tensor` output, e.g.
the L1 and L2 regularizers in `tf.contrib.layers`.
convs_per_block: An integer specifying the number of convolutional layers.
blocks_per_level: An integer specifying the number of residual blocks per
level.
name: A string specifying the name of the module.
"""
super(_HierarchicalCore, self).__init__(name=name)
self._latent_dims = latent_dims
self._channels_per_block = channels_per_block
self._activation_fn = activation_fn
self._initializers = initializers
self._regularizers = regularizers
self._convs_per_block = convs_per_block
self._blocks_per_level = blocks_per_level
if down_channels_per_block is None:
self._down_channels_per_block = channels_per_block
else:
self._down_channels_per_block = down_channels_per_block
self._name = name
def _build(self, inputs, mean=False, z_q=None):
"""A build-method allowing to sample from the module as specified.
Args:
inputs: A tensor of shape (b,h,w,c). When using the module as a prior the
`inputs` tensor should be a batch of images. When using it as a posterior
the tensor should be a (batched) concatentation of images and
segmentations.
mean: A boolean or a list of booleans. If a boolean, it specifies whether
or not to use the distributions' means in ALL latent scales. If a list,
each bool therein specifies whether or not to use the scale's mean. If
False, the latents of the scale are sampled.
z_q: None or a list of tensors. If not None, z_q provides external latents
to be used instead of sampling them. This is used to employ posterior
latents in the prior during training. Therefore, if z_q is not None, the
value of `mean` is ignored. If z_q is None, either the distributions
mean is used (in case `mean` for the respective scale is True) or else
a sample from the distribution is drawn.
Returns:
A Dictionary holding the output feature map of the truncated U-Net
decoder under key 'decoder_features', a list of the U-Net encoder features
produced at the end of each encoder scale under key 'encoder_outputs', a
list of the predicted distributions at each scale under key
'distributions', a list of the used latents at each scale under the key
'used_latents'.
"""
encoder_features = inputs
encoder_outputs = []
num_levels = len(self._channels_per_block)
num_latent_levels = len(self._latent_dims)
if isinstance(mean, bool):
mean = [mean] * num_latent_levels
distributions = []
used_latents = []
# Iterate the descending levels in the U-Net encoder.
for level in range(num_levels):
# Iterate the residual blocks in each level.
for _ in range(self._blocks_per_level):
encoder_features = unet_utils.res_block(
input_features=encoder_features,
n_channels=self._channels_per_block[level],
n_down_channels=self._down_channels_per_block[level],
activation_fn=self._activation_fn,
initializers=self._initializers,
regularizers=self._regularizers,
convs_per_block=self._convs_per_block)
encoder_outputs.append(encoder_features)
if level != num_levels - 1:
encoder_features = unet_utils.resize_down(encoder_features, scale=2)
# Iterate the ascending levels in the (truncated) U-Net decoder.
decoder_features = encoder_outputs[-1]
for level in range(num_latent_levels):
# Predict a Gaussian distribution for each pixel in the feature map.
latent_dim = self._latent_dims[level]
mu_logsigma = snt.Conv2D(
2 * latent_dim,
(1, 1),
padding='SAME',
initializers=self._initializers,
regularizers=self._regularizers,
)(decoder_features)
mu = mu_logsigma[..., :latent_dim]
logsigma = mu_logsigma[..., latent_dim:]
dist = tfd.MultivariateNormalDiag(loc=mu, scale_diag=tf.exp(logsigma))
distributions.append(dist)
# Get the latents to condition on.
if z_q is not None:
z = z_q[level]
elif mean[level]:
z = dist.loc
else:
z = dist.sample()
used_latents.append(z)
# Concat and upsample the latents with the previous features.
decoder_output_lo = tf.concat([z, decoder_features], axis=-1)
decoder_output_hi = unet_utils.resize_up(decoder_output_lo, scale=2)
decoder_features = tf.concat(
[decoder_output_hi, encoder_outputs[::-1][level + 1]], axis=-1)
# Iterate the residual blocks in each level.
for _ in range(self._blocks_per_level):
decoder_features = unet_utils.res_block(
input_features=decoder_features,
n_channels=self._channels_per_block[::-1][level + 1],
n_down_channels=self._down_channels_per_block[::-1][level + 1],
activation_fn=self._activation_fn,
initializers=self._initializers,
regularizers=self._regularizers,
convs_per_block=self._convs_per_block)
return {'decoder_features': decoder_features,
'encoder_features': encoder_outputs,
'distributions': distributions,
'used_latents': used_latents}
class _StitchingDecoder(snt.AbstractModule):
"""A module that completes the truncated U-Net decoder.
Using the output of the HierarchicalCore this module fills in the missing
decoder levels such that together the two form a symmetric U-Net.
"""
def __init__(self, latent_dims, channels_per_block, num_classes,
down_channels_per_block=None, activation_fn=tf.nn.relu,
initializers=None, regularizers=None, convs_per_block=3,
blocks_per_level=3, name='StitchingDecoder'):
"""Initializes a StichtingDecoder.
Args:
latent_dims: List of integers specifying the dimensions of the latents at
each scale. The length of the list indicates the number of U-Net
decoder scales that have latents.
channels_per_block: A list of integers specifying the number of output
channels for each encoder block.
num_classes: An integer specifying the number of segmentation classes.
down_channels_per_block: A list of integers specifying the number of
intermediate channels for each encoder block. If None, the
intermediate channels are chosen equal to channels_per_block.
activation_fn: A callable activation function.
initializers: Optional dict containing ops to initialize the filters (with
key 'w') or biases (with key 'b'). The default initializer for the
weights is a truncated normal initializer, which is commonly used when
the inputs are zero centered (see
https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for the
bias is a zero initializer.
regularizers: Optional dict containing regularizers for the filters
(with key 'w') and the biases (with key 'b'). As a default, no
regularizers are used. A regularizer should be a function that takes a
single `Tensor` as an input and returns a scalar `Tensor` output, e.g.
the L1 and L2 regularizers in `tf.contrib.layers`.
convs_per_block: An integer specifying the number of convolutional layers.
blocks_per_level: An integer specifying the number of residual blocks per
level.
name: A string specifying the name of the module.
"""
super(_StitchingDecoder, self).__init__(name=name)
self._latent_dims = latent_dims
self._channels_per_block = channels_per_block
self._num_classes = num_classes
self._activation_fn = activation_fn
self._initializers = initializers
self._regularizers = regularizers
self._convs_per_block = convs_per_block
self._blocks_per_level = blocks_per_level
if down_channels_per_block is None:
down_channels_per_block = channels_per_block
self._down_channels_per_block = down_channels_per_block
def _build(self, encoder_features, decoder_features):
"""Build-method that returns the segmentation logits.
Args:
encoder_features: A list of tensors of shape (b,h_i,w_i,c_i).
decoder_features: A tensor of shape (b,h,w,c).
Returns:
Logits, i.e. a tensor of shape (b,h,w,num_classes).
"""
num_latents = len(self._latent_dims)
start_level = num_latents + 1
num_levels = len(self._channels_per_block)
for level in range(start_level, num_levels, 1):
decoder_features = unet_utils.resize_up(decoder_features, scale=2)
decoder_features = tf.concat([decoder_features,
encoder_features[::-1][level]], axis=-1)
for _ in range(self._blocks_per_level):
decoder_features = unet_utils.res_block(
input_features=decoder_features,
n_channels=self._channels_per_block[::-1][level],
n_down_channels=self._down_channels_per_block[::-1][level],
activation_fn=self._activation_fn,
initializers=self._initializers,
regularizers=self._regularizers,
convs_per_block=self._convs_per_block)
return snt.Conv2D(output_channels=self._num_classes,
kernel_shape=(1, 1),
padding='SAME',
initializers=self._initializers,
regularizers=self._regularizers,
name='logits')(decoder_features)
class HierarchicalProbUNet(snt.AbstractModule):
"""A Hierarchical Probabilistic U-Net."""
def __init__(self,
latent_dims=(1, 1, 1, 1),
channels_per_block=None,
num_classes=2,
down_channels_per_block=None,
activation_fn=tf.nn.relu,
initializers=None,
regularizers=None,
convs_per_block=3,
blocks_per_level=3,
loss_kwargs=None,
name='HPUNet'):
"""Initializes a HierarchicalProbUNet.
The default values are set as for the LIDC-IDRI experiments in
`A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities',
see https://arxiv.org/abs/1905.13077.
Args:
latent_dims: List of integers specifying the dimensions of the latents at
each scales. The length of the list indicates the number of U-Net
decoder scales that have latents.
channels_per_block: A list of integers specifying the number of output
channels for each encoder block.
num_classes: An integer specifying the number of segmentation classes.
down_channels_per_block: A list of integers specifying the number of
intermediate channels for each encoder block. If None, the
intermediate channels are chosen equal to channels_per_block.
activation_fn: A callable activation function.
initializers: Optional dict containing ops to initialize the filters (with
key 'w') or biases (with key 'b').
regularizers: Optional dict containing regularizers for the filters
(with key 'w') and the biases (with key 'b').
convs_per_block: An integer specifying the number of convolutional layers.
blocks_per_level: An integer specifying the number of residual blocks per
level.
loss_kwargs: None or dictionary specifying the loss setup.
name: A string specifying the name of the module.
"""
super(HierarchicalProbUNet, self).__init__(name=name)
base_channels = 24
default_channels_per_block = (
base_channels, 2 * base_channels, 4 * base_channels, 8 * base_channels,
8 * base_channels, 8 * base_channels, 8 * base_channels,
8 * base_channels
)
if channels_per_block is None:
channels_per_block = default_channels_per_block
if down_channels_per_block is None:
down_channels_per_block =\
tuple([i / 2 for i in default_channels_per_block])
if initializers is None:
initializers = {
'w': tf.orthogonal_initializer(gain=1.0, seed=None),
'b': tf.truncated_normal_initializer(stddev=0.001)
}
if regularizers is None:
regularizers = {
'w': tf.keras.regularizers.l2(1e-5),
'b': tf.keras.regularizers.l2(1e-5)
}
if loss_kwargs is None:
self._loss_kwargs = {
'type': 'geco',
'top_k_percentage': 0.02,
'deterministic_top_k': False,
'kappa': 0.05,
'decay': 0.99,
'rate': 1e-2,
'beta': None
}
else:
self._loss_kwargs = loss_kwargs
if down_channels_per_block is None:
down_channels_per_block = channels_per_block
with self._enter_variable_scope():
self._prior = _HierarchicalCore(
latent_dims=latent_dims,
channels_per_block=channels_per_block,
down_channels_per_block=down_channels_per_block,
activation_fn=activation_fn,
initializers=initializers,
regularizers=regularizers,
convs_per_block=convs_per_block,
blocks_per_level=blocks_per_level,
name='prior')
self._posterior = _HierarchicalCore(
latent_dims=latent_dims,
channels_per_block=channels_per_block,
down_channels_per_block=down_channels_per_block,
activation_fn=activation_fn,
initializers=initializers,
regularizers=regularizers,
convs_per_block=convs_per_block,
blocks_per_level=blocks_per_level,
name='posterior')
self._f_comb = _StitchingDecoder(
latent_dims=latent_dims,
channels_per_block=channels_per_block,
num_classes=num_classes,
down_channels_per_block=down_channels_per_block,
activation_fn=activation_fn,
initializers=initializers,
regularizers=regularizers,
convs_per_block=convs_per_block,
blocks_per_level=blocks_per_level,
name='f_comb')
if self._loss_kwargs['type'] == 'geco':
self._moving_average = geco_utils.MovingAverage(
decay=self._loss_kwargs['decay'], differentiable=True,
name='ma_test')
self._lagmul = geco_utils.LagrangeMultiplier(
rate=self._loss_kwargs['rate'])
self._cache = ()
def _build(self, seg, img):
"""Inserts all ops used during training into the graph exactly once.
The first time this method is called given the input pair (seg, img) all
ops relevant for training are inserted into the graph. Calling this method
more than once does not re-insert the modules into the graph (memoization),
thus preventing multiple forward passes of submodules for the same inputs.
The method is private and called when setting up the loss.
Args:
seg: A tensor of shape (b, h, w, num_classes).
img: A tensor of shape (b, h, w, c)
Returns: None
"""
inputs = (seg, img)
if self._cache == inputs:
return
else:
self._q_sample = self._posterior(
tf.concat([seg, img], axis=-1), mean=False)
self._q_sample_mean = self._posterior(
tf.concat([seg, img], axis=-1), mean=True)
self._p_sample = self._prior(
img, mean=False, z_q=None)
self._p_sample_z_q = self._prior(
img, z_q=self._q_sample['used_latents'])
self._p_sample_z_q_mean = self._prior(
img, z_q=self._q_sample_mean['used_latents'])
self._cache = inputs
return
def sample(self, img, mean=False, z_q=None):
"""Sample a segmentation from the prior, given an input image.
Args:
img: A tensor of shape (b, h, w, c).
mean: A boolean or a list of booleans. If a boolean, it specifies whether
or not to use the distributions' means in ALL latent scales. If a list,
each bool therein specifies whether or not to use the scale's mean. If
False, the latents of the scale are sampled.
z_q: None or a list of tensors. If not None, z_q provides external latents
to be used instead of sampling them. This is used to employ posterior
latents in the prior during training. Therefore, if z_q is not None, the
value of `mean` is ignored. If z_q is None, either the distributions
mean is used (in case `mean` for the respective scale is True) or else
a sample from the distribution is drawn
Returns:
A segmentation tensor of shape (b, h, w, num_classes).
"""
prior_out = self._prior(img, mean, z_q)
encoder_features = prior_out['encoder_features']
decoder_features = prior_out['decoder_features']
return self._f_comb(encoder_features=encoder_features,
decoder_features=decoder_features)
def reconstruct(self, seg, img, mean=False):
"""Reconstruct a segmentation using the posterior.
Args:
seg: A tensor of shape (b, h, w, num_classes).
img: A tensor of shape (b, h, w, c).
mean: A boolean, specifying whether to sample from the full hierarchy of
the posterior or use the posterior means at each scale of the hierarchy.
Returns:
A segmentation tensor of shape (b,h,w,num_classes).
"""
self._build(seg, img)
if mean:
prior_out = self._p_sample_z_q_mean
else:
prior_out = self._p_sample_z_q
encoder_features = prior_out['encoder_features']
decoder_features = prior_out['decoder_features']
return self._f_comb(encoder_features=encoder_features,
decoder_features=decoder_features)
def rec_loss(self, seg, img, mask=None, top_k_percentage=None,
deterministic=True):
"""Cross-entropy reconstruction loss employed in the ELBO-/ GECO-objective.
Args:
seg: A tensor of shape (b, h, w, num_classes).
img: A tensor of shape (b, h, w, c).
mask: A mask of shape (b, h, w) or None. If None no pixels are masked in
the loss.
top_k_percentage: None or a float in (0.,1.]. If None, a standard
cross-entropy loss is calculated.
deterministic: A Boolean indicating whether or not to produce the
prospective top-k mask deterministically.
Returns:
A dictionary holding the mean and the pixelwise sum of the loss for the
batch as well as the employed loss mask.
"""
reconstruction = self.reconstruct(seg, img, mean=False)
return geco_utils.ce_loss(
reconstruction, seg, mask, top_k_percentage, deterministic)
def kl(self, seg, img):
"""Kullback-Leibler divergence between the posterior and the prior.
Args:
seg: A tensor of shape (b, h, w, num_classes).
img: A tensor of shape (b, h, w, c).
Returns:
A dictionary with keys indexing the hierarchy's levels and corresponding
values holding the KL-term for each level (per batch).
"""
self._build(seg, img)
posterior_out = self._q_sample
prior_out = self._p_sample_z_q
q_dists = posterior_out['distributions']
p_dists = prior_out['distributions']
kl = {}
for level, (q, p) in enumerate(zip(q_dists, p_dists)):
# Shape (b, h, w).
kl_per_pixel = tfd.kl_divergence(q, p)
# Shape (b,).
kl_per_instance = tf.reduce_sum(kl_per_pixel, axis=[1, 2])
# Shape (1,).
kl[level] = tf.reduce_mean(kl_per_instance)
return kl
def loss(self, seg, img, mask):
"""The full training objective, either ELBO or GECO.
Args:
seg: A tensor of shape (b, h, w, num_classes).
img: A tensor of shape (b, h, w, c).
mask: A mask of shape (b, h, w) or None. If None no pixels are masked in
the loss.
Returns:
A dictionary holding the loss (with key 'loss') and the tensorboard
summaries (with key 'summaries').
"""
summaries = {}
top_k_percentage = self._loss_kwargs['top_k_percentage']
deterministic = self._loss_kwargs['deterministic_top_k']
rec_loss = self.rec_loss(seg, img, mask, top_k_percentage, deterministic)
kl_dict = self.kl(seg, img)
kl_sum = tf.reduce_sum(
tf.stack([kl for _, kl in kl_dict.iteritems()], axis=-1))
summaries['rec_loss_mean'] = rec_loss['mean']
summaries['rec_loss_sum'] = rec_loss['sum']
summaries['kl_sum'] = kl_sum
for level, kl in kl_dict.iteritems():
summaries['kl_{}'.format(level)] = kl
# Set up a regular ELBO objective.
if self._loss_kwargs['type'] == 'elbo':
loss = rec_loss['sum'] + self._loss_kwargs['beta'] * kl_sum
summaries['elbo_loss'] = loss
# Set up a GECO objective (ELBO with a reconstruction constraint).
elif self._loss_kwargs['type'] == 'geco':
ma_rec_loss = self._moving_average(rec_loss['sum'])
mask_sum_per_instance = tf.reduce_sum(rec_loss['mask'], axis=-1)
num_valid_pixels = tf.reduce_mean(mask_sum_per_instance)
reconstruction_threshold = self._loss_kwargs['kappa'] * num_valid_pixels
rec_constraint = ma_rec_loss - reconstruction_threshold
lagmul = self._lagmul(rec_constraint)
loss = lagmul * rec_constraint + kl_sum
summaries['geco_loss'] = loss
summaries['ma_rec_loss_mean'] = ma_rec_loss / num_valid_pixels
summaries['num_valid_pixels'] = num_valid_pixels
summaries['lagmul'] = lagmul
else:
raise NotImplementedError('Loss type {} not implemeted!'.format(
self._loss_kwargs['type']))
return dict(supervised_loss=loss, summaries=summaries)
if __name__ == '__main__':
hpu_net = HierarchicalProbUNet()