forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptim.py
525 lines (445 loc) · 20.7 KB
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Optimizers and Schedulers, inspired by the PyTorch API."""
from collections import ChainMap # pylint:disable=g-importing-member
from typing import Callable, Mapping
import haiku as hk
import jax
import jax.numpy as jnp
import tree
from nfnets import utils
class Optimizer(object):
"""Optimizer base class."""
def __init__(self, params, defaults):
# Flag indicating if parameters have been broadcasted
self._broadcasted = False
# Optimizer hyperparameters; this is a dict to support using param_groups
self._hyperparameters = {}
# Mapping from model parameters to optimizer hyperparameters
self._params2hyperparams = {}
# Assign defaults
self._hyperparameters = dict(**defaults)
# Prepare parameter groups and mappings
self.create_param_groups(params, defaults)
# Join params at top-level if params is a list of groups
if isinstance(params, list):
if any(_is_non_empty_two_level_mapping(g['params']) for g in params):
params = hk.data_structures.merge(*[g['params'] for g in params])
else:
params = dict(ChainMap(*[g['params'] for g in params]))
# Prepare states
create_buffers = lambda k, v: self.create_buffers('/'.join(k), v)
self._states = tree.map_structure_with_path(create_buffers, params)
def add_hyperparam_group(self, group, suffix, defaults):
"""Adds new hyperparameters to the hyperparams dict."""
# Use default hyperparams unless overridden by group hyperparams
group_dict = {key: key for key in defaults if key not in group}
for key in group:
if key != 'params': # Reserved keyword 'params'
group_dict[key] = '%s_%s' % (key, suffix)
self._hyperparameters[group_dict[key]] = group[key]
# Set up params2hyperparams
def set_p2h(k, _):
self._params2hyperparams['/'.join(k)] = group_dict
tree.map_structure_with_path(set_p2h, group['params'])
def create_param_groups(self, params, defaults):
"""Creates param-hyperparam mappings."""
if isinstance(params, list):
for group_index, group in enumerate(params):
# Add group to hyperparams and get this group's full hyperparameters
self.add_hyperparam_group(group, group_index, defaults)
else:
mapping = {key: key for key in self._hyperparameters}
def set_p2h(k, _):
self._params2hyperparams['/'.join(k)] = mapping
tree.map_structure_with_path(set_p2h, params)
def create_buffers(self, name, params):
"""Method to be overridden by child classes."""
pass
def get_opt_params(self, param_name, itr):
"""Returns hyperparams corresponding to param_name."""
mapping = self._params2hyperparams[param_name]
output = {}
for key in mapping:
hyper = self._hyperparameters[mapping[key]]
# Handle the case where a hyper is a class, for hybrids
if isinstance(hyper, Callable) and not isinstance(hyper, type):
output[key] = hyper(itr)
else:
output[key] = hyper
return output
def get_hyper(self, param_name, hyper_name):
"""Get an individual hyperparam for a given param."""
mapping = self._params2hyperparams[param_name]
return self._hyperparameters[mapping[hyper_name]]
def plugin(self, states):
self._states = states
def states(self):
return self._states
def broadcast(self):
"""Brodcasts all buffers and parameters."""
self._broadcasted = True
for name, state in self._states.items():
self._states[name] = {key: utils.broadcast(state[key]) for key in state}
def gather(self):
"""Gathers state (if broadcasted) for saving."""
states = {}
for name in self._states:
state = self._states[name]
states[name] = {key: state[key] if state[key] is None else state[key][0]
for key in state}
return states
def __setattr__(self, name, value):
"""Overrides the object's set-attribute function to register states, etc."""
if '_hyperparameters' in self.__dict__ and name in self._hyperparameters:
self._hyperparameters[name] = value
elif '_states' in self.__dict__ and name in self._states:
self._states[name] = value
else:
object.__setattr__(self, name, value)
def __getattr__(self, name):
"""Override the object's get-attribute function to return states, etc."""
if '_hyperparameters' in self.__dict__ and name in self._hyperparameters:
return self._hyperparameters[name]
elif '_states' in self.__dict__ and name in self._states:
return self._states[name]
else:
object.__getattribute__(self, name)
def step(self, params, grads, states, itr=None):
"""Takes a single optimizer step.
Args:
params: a dict containing the parameters to be updated.
grads: a dict containing the gradients for each parameter in params.
states: a dict containing any optimizer buffers (momentum, etc) for
each parameter in params.
itr: an optional integer indicating the current step, for scheduling.
Returns:
The updated params and optimizer buffers.
"""
get_hyper = lambda k, v: self.get_opt_params('/'.join(k), itr)
hypers = tree.map_structure_with_path(get_hyper, params)
outs = tree.map_structure_up_to(params, self.update_param,
params, grads, states, hypers)
return utils.split_tree(outs, params, 2)
def _is_non_empty_two_level_mapping(obj):
instof = lambda t: lambda v: isinstance(v, t)
# Basically: isinstance(obj, Mapping[str, Mapping[str, Any]]) ...
return (isinstance(obj, Mapping) and all(map(instof(str), obj.keys())) and
all(map(instof(Mapping), obj.values())) and
all(map(lambda v: all(map(instof(str), v.keys())), obj.values())) and
# ... and has at least one leaf.
bool(obj) and any(map(bool, obj.values())))
class Schedule(object):
"""Hyperparameter scheduling objects."""
class CosineDecay(Schedule):
"""Cosine decay."""
def __init__(self, min_val, max_val, num_steps):
self.min_val = min_val
self.max_val = max_val
self.num_steps = num_steps
def __call__(self, itr):
cos = (1 + jnp.cos(jnp.pi * itr / self.num_steps))
return 0.5 * (self.max_val - self.min_val) * cos + self.min_val
class WarmupCosineDecay(Schedule):
"""Cosine decay with linear warmup."""
def __init__(self, start_val, min_val, max_val, num_steps, warmup_steps):
self.start_val = start_val
self.min_val = min_val
self.max_val = max_val
self.num_steps = num_steps
self.warmup_steps = warmup_steps
def __call__(self, itr):
warmup_val = ((self.max_val - self.start_val) * (itr / self.warmup_steps)
+ self.start_val)
cos_itr = (itr - self.warmup_steps) / (self.num_steps - self.warmup_steps)
cos = 1 + jnp.cos(jnp.pi * cos_itr)
cos_val = 0.5 * (self.max_val - self.min_val) * cos + self.min_val
# Select warmup_val if itr < warmup, else cosine val
values = jnp.array([warmup_val, cos_val])
index = jnp.sum(jnp.array(self.warmup_steps) < itr)
return jnp.take(values, index)
class WarmupExpDecay(Schedule):
"""Exponential step decay with linear warmup."""
def __init__(self, start_val, max_val, warmup_steps,
decay_factor, decay_interval):
self.start_val = start_val
self.max_val = max_val
self.warmup_steps = warmup_steps
self.decay_factor = decay_factor
self.decay_interval = decay_interval
def __call__(self, itr):
warmup_val = ((self.max_val - self.start_val) * (itr / self.warmup_steps)
+ self.start_val)
# How many decay steps have we taken?
num_decays = jnp.floor((itr - self.warmup_steps) / self.decay_interval)
exp_val = self.max_val * (self.decay_factor ** num_decays)
# Select warmup_val if itr < warmup, else exp_val
values = jnp.array([warmup_val, exp_val])
index = jnp.sum(jnp.array(self.warmup_steps) < itr)
return jnp.take(values, index)
class SGD(Optimizer):
"""Standard SGD with (nesterov) momentum and weight decay.
Attributes:
params: Either a dict mapping param names to JAX tensors, or a list where
each member of the list is a dict containing parameters
and hyperparameters, allowing one to specify param-specific hyperparams.
lr: Learning rate.
weight_decay: Weight decay parameter. Note that this is decay, not L2 reg.
momentum: Momentum parameter
dampening: Dampening parameter
nesterov: Bool indicating this optimizer will use the NAG formulation.
"""
defaults = {'weight_decay': None, 'momentum': None, 'dampening': 0,
'nesterov': None}
def __init__(self, params, lr, weight_decay=None,
momentum=None, dampening=0, nesterov=None):
super().__init__(
params, defaults={'lr': lr, 'weight_decay': weight_decay,
'momentum': momentum, 'dampening': dampening,
'nesterov': nesterov})
def create_buffers(self, name, param):
"""Prepares all momentum buffers for each parameter."""
state = {'step': jnp.zeros(jax.local_device_count())}
if self.get_hyper(name, 'momentum') is not None:
state['momentum'] = jnp.zeros_like(param)
return state
def update_param(self, param, grad, state, opt_params):
"""The actual update step for this optimizer."""
if param is None:
return param, state
# Apply weight decay
if opt_params.get('weight_decay') is not None:
grad = grad + param * opt_params['weight_decay']
# Update momentum buffers if needed
if 'momentum' in state:
state['momentum'] = (opt_params['momentum'] * state['momentum']
+ (1 - opt_params['dampening']) * grad)
if opt_params['nesterov'] is not None:
grad = grad + opt_params['momentum'] * state['momentum']
else:
grad = state['momentum']
state['step'] += 1
return param - opt_params['lr'] * grad, state
class Adam(Optimizer):
"""Adam optimizer, Kingma & Ba, arxiv.org/abs/1412.6980.
Args:
params (iterable): nested list of params to optimize
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (default: 0)
use_adamw (bool, optional): If not None, use decoupled weight decay
as in arxiv.org/abs/1711.05101. The paper version adds an additional
"schedule" hyperparameter eta, which we instead just replace with the
learning rate following the PyTorch implementation.
Note that this implementation will not instantiate a buffer if the
beta term for that buffer is passed in as None, thus conserving memory.
"""
defaults = {'beta1': 0.9, 'beta2': 0.999, 'weight_decay': None, 'eps': 1e-8,
'use_adamw': None}
def __init__(self, params, lr, beta1=0.9, beta2=0.999,
eps=1e-8, weight_decay=None, use_adamw=None):
super().__init__(params=params,
defaults={'lr': lr, 'beta1': beta1,
'beta2': beta2, 'eps': eps,
'weight_decay': weight_decay,
'use_adamw': use_adamw})
def create_buffers(self, name, param):
"""Prepare exp_avg and exp_avg_sq buffers."""
state = {'step': jnp.zeros(jax.local_device_count())}
if self.get_hyper(name, 'beta1') is not None:
state['exp_avg'] = jnp.zeros_like(param)
if self.get_hyper(name, 'beta2') is not None:
state['exp_avg_sq'] = jnp.zeros_like(param)
return state
def update_param(self, param, grad, state, opt_params):
"""The actual update step for this optimizer."""
if param is None:
return param, state
state['step'] = state['step'] + 1
# Apply weight decay
if opt_params.get('weight_decay') is not None:
if opt_params.get('use_adamw') is not None:
param = param * (1 - opt_params['lr'] * opt_params['weight_decay'])
else:
grad = grad + param * opt_params['weight_decay']
# First moment
if 'exp_avg' in state:
bias_correction1 = 1 - opt_params['beta1'] ** state['step']
state['exp_avg'] = (state['exp_avg'] * opt_params['beta1']
+ (1 - opt_params['beta1']) * grad)
step_size = opt_params['lr'] * state['exp_avg'] / bias_correction1
else:
step_size = opt_params['lr'] * grad
# Second moment
if 'exp_avg_sq' in state:
bias_correction2 = 1 - opt_params['beta2'] ** state['step']
state['exp_avg_sq'] = (state['exp_avg_sq'] * opt_params['beta2']
+ (1 - opt_params['beta2']) * grad * grad)
denom = jnp.sqrt(state['exp_avg_sq']) * jax.lax.rsqrt(bias_correction2)
denom = denom + opt_params['eps']
else:
denom = jnp.abs(grad) + opt_params['eps'] # Add eps to avoid divide-by-0
return param - step_size / denom, state
class RMSProp(Optimizer):
"""RMSProp optimizer, Tieleman and Hinton, ref: powerpoint slides.
Implements RMSProp as
rms = decay * rms{t-1} + (1-decay) * gradient ** 2
mom = momentum * mom{t-1} + learning_rate * g_t / sqrt(rms + epsilon)
param -= mom
Note that the rms buffer is initialized with ones as in TF, as opposed to
zeros as in all other implementations.
Args:
params (iterable): nested list of params to optimize
lr (float): learning rate (default: 1e-3)
decay (float): EMA decay rate for running estimate of squared gradient.
momentum (float or None): Use heavy ball momentum instead of instant grad.
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (NOT ADAMW (default: 0))
"""
defaults = {'weight_decay': None, 'eps': 1e-8}
def __init__(self, params, lr, decay, momentum, weight_decay=None, eps=1e-8):
super().__init__(params=params,
defaults={'lr': lr, 'decay': decay,
'momentum': momentum, 'eps': eps,
'weight_decay': weight_decay})
def create_buffers(self, name, param):
"""Prepare exp_avg and exp_avg_sq buffers."""
state = {'step': jnp.zeros(jax.local_device_count())}
state['rms'] = jnp.ones_like(param)
if self.get_hyper(name, 'momentum') is not None:
state['momentum'] = jnp.zeros_like(param)
return state
def update_param(self, param, grad, state, opt_params):
"""The actual update step for this optimizer."""
if param is None:
return param, state
state['step'] = state['step'] + 1
# Apply weight decay
if opt_params.get('weight_decay') is not None:
grad = grad + param * opt_params['weight_decay']
# EMA of the squared gradient
state['rms'] = (state['rms'] * opt_params['decay']
+ (1 - opt_params['decay']) * (grad ** 2))
scaled_grad = (opt_params['lr'] * grad
/ (state['rms'] + opt_params['eps']) ** 0.5)
if state['momentum'] is not None:
state['momentum'] = (state['momentum'] * opt_params['momentum']
+ scaled_grad)
step_size = state['momentum']
else:
step_size = scaled_grad
return param - step_size, state
class Fromage(Optimizer):
"""Fromage optimizer, Bernstein et al. arXiv.org/abs/2002.03432.
This version optionally includes weight decay.
Attributes:
params (iterable): nested list of params to optimize
lr (float): learning rate.
eps (float, optional): Minimum allowable norm. This term is required for
in case parameters are zero-initialized (default: 1e-5).
weight_decay (float, optional): weight decay (default: 0).
"""
defaults = {'weight_decay': None, 'eps': 1e-5}
def __init__(self, params, lr, weight_decay=None, eps=1e-5):
super().__init__(
params, defaults={'lr': lr, 'weight_decay': weight_decay, 'eps': eps})
def create_buffers(self, name, param): # pylint: disable=unused-argument
"""Prepares all momentum buffers for each parameter."""
return {'step': jnp.zeros(1)}
def update_param(self, param, grad, state, opt_params):
"""The actual update step for this optimizer."""
if param is None:
return param, state
if opt_params['weight_decay'] is not None:
grad = grad + param * opt_params['weight_decay']
grad_norm = jnp.maximum(jnp.linalg.norm(grad), opt_params['eps'])
param_norm = jnp.maximum(jnp.linalg.norm(param), opt_params['eps'])
mult = jax.lax.rsqrt(1 + opt_params['lr'] ** 2)
out = (param - opt_params['lr'] * grad * (param_norm / grad_norm)) * mult
return out, state
def compute_norm(x, axis, keepdims):
"""Returns norm over arbitrary axis."""
norm = jnp.sum(x ** 2, axis=axis, keepdims=keepdims) ** 0.5
return norm
def unitwise_norm(x):
"""Computes norms of each output unit separately, assuming (HW)IO weights."""
if len(jnp.squeeze(x).shape) <= 1: # Scalars and vectors
axis = None
keepdims = False
elif len(x.shape) in [2, 3]: # Linear layers of shape IO
axis = 0
keepdims = True
elif len(x.shape) == 4: # Conv kernels of shape HWIO
axis = [0, 1, 2,]
keepdims = True
else:
raise ValueError(f'Got a parameter with shape not in [1, 2, 3, 4]! {x}')
return compute_norm(x, axis, keepdims)
class SGD_AGC(Optimizer): # pylint:disable=invalid-name
"""SGD with Unit-Adaptive Gradient-Clipping.
References:
[Brock, Smith, De, Simonyan 2021] High-Performance Large-Scale Image
Recognition Without Normalization.
"""
defaults = {'weight_decay': None, 'momentum': None, 'dampening': 0,
'nesterov': None, 'clipping': 0.01, 'eps': 1e-3}
def __init__(self, params, lr, weight_decay=None,
momentum=None, dampening=0, nesterov=None,
clipping=0.01, eps=1e-3):
super().__init__(
params, defaults={'lr': lr, 'weight_decay': weight_decay,
'momentum': momentum, 'dampening': dampening,
'clipping': clipping, 'nesterov': nesterov,
'eps': eps})
def create_buffers(self, name, param):
return SGD.create_buffers(self, name, param)
def update_param(self, param, grad, state, opt_params):
"""Clips grads if necessary, then applies the optimizer update."""
if param is None:
return param, state
if opt_params['clipping'] is not None:
param_norm = jnp.maximum(unitwise_norm(param), opt_params['eps'])
grad_norm = unitwise_norm(grad)
max_norm = param_norm * opt_params['clipping']
# If grad norm > clipping * param_norm, rescale
trigger = grad_norm > max_norm
# Note the max(||G||, 1e-6) is technically unnecessary here, as
# the clipping shouldn't trigger if the grad norm is zero,
# but we include it in practice as a "just-in-case".
clipped_grad = grad * (max_norm / jnp.maximum(grad_norm, 1e-6))
grad = jnp.where(trigger, clipped_grad, grad)
return SGD.update_param(self, param, grad, state, opt_params)
class Hybrid(Optimizer):
"""Optimizer which permits passing param groups with different base opts.
The API for this class follows the case for any other optimizer where one
specifies a list of dicts with separate hyperparams, but in this case it
requires the user to also specify an 'opt' key for each group, such as e.g.
[{'params': params0, 'opt': optim.Adam, 'lr': 0.1}].
The user must also provide values for any arg in the selected optimizers which
does not have a default value associated
"""
def __init__(self, param_groups):
if any(['opt' not in group for group in param_groups]):
raise ValueError('All parameter groups must have an opt key!')
self.defaults = ChainMap(*[group['opt'].defaults for group in param_groups])
super().__init__(param_groups, defaults=dict(self.defaults))
def create_buffers(self, name, param):
return self.get_hyper(name, 'opt').create_buffers(self, name, param)
def update_param(self, param, grad, state, opt_params):
return opt_params['opt'].update_param(self, param, grad, state, opt_params)