diff --git a/R/filtering.R b/R/filtering.R index 19bee52..291891a 100644 --- a/R/filtering.R +++ b/R/filtering.R @@ -253,8 +253,8 @@ filter_praznik <- function(target, kmers, method, thresh) { #' This function uses bigstep package. #' #' @examples -#' n_seq <- 200 -#' sequence_length <- 200 +#' n_seq <- 10 +#' sequence_length <- 10 #' alph <- letters[1:20] #' motifs <- generate_motifs(alph, 4, 4, 4, 6) #' kmers <- generate_kmer_data(n_seq, sequence_length, alph, diff --git a/man/filter_ic.Rd b/man/filter_ic.Rd index 9462e90..1d099c3 100644 --- a/man/filter_ic.Rd +++ b/man/filter_ic.Rd @@ -4,7 +4,14 @@ \alias{filter_ic} \title{Stepwise information criteria based filtering} \usage{ -filter_ic(target, kmers, ic = "mbic2", reduce = 0.1, threshold = 0.9) +filter_ic( + target, + kmers, + ic = "mbic2", + reduce = 0.15, + attach_correlated = TRUE, + threshold = 0.9 +) } \arguments{ \item{target}{a numeric response variable} @@ -18,6 +25,13 @@ filter_ic(target, kmers, ic = "mbic2", reduce = 0.1, threshold = 0.9) \item{reduce}{a numeric value from (0, 1) interval. Denotes significance level for preliminary reduction before execution of stepwise procedure. Default to 0.2.} + +\item{attach_correlated}{a logical value indicating whether the highly +correlated k-mers should be chosen.} + +\item{threshold}{a numeric threshold from 0 to 1 denoting a threshold for +correlation coefficient when \code{attach_correlated} is TRUE. Ignored when +\code{attach_correlated} is FALSE.} } \value{ a character vector of names of selected kmers