-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy patheval_bounding_boxes.py
208 lines (168 loc) · 6.76 KB
/
eval_bounding_boxes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#! /usr/bin/env python
import numpy as np
import torch
import pprint
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor
import xml.etree.ElementTree as ET
from tqdm import tqdm
from attribution_bottleneck.evaluate.script_utils import get_model_and_attribution_method, \
get_default_config
import sys
import glob
import time
import os
from PIL import Image
from datetime import datetime
from attribution_bottleneck.utils.transforms import HeatmapTransform
sys.setrecursionlimit(10000)
start_time = time.time()
try:
testing = (sys.argv[3] == 'test')
except IndexError:
testing = False
if testing:
print("testing run. reducing samples to 50!")
n_samples = 500
else:
n_samples = 50000
model_name = sys.argv[1]
assert model_name in ['resnet50', 'vgg16']
attribution_name = sys.argv[2]
config = get_default_config()
config.update({
'model_name': model_name,
'attribution_name': attribution_name,
'n_samples': n_samples,
'testing': testing,
'result_dir': 'results/bbox',
'min_bbox_ratio': 0.33,
})
print()
print("config:")
pp = pprint.PrettyPrinter()
pp.pprint(config)
print()
print()
# Setup net
dev = torch.device(config['device'])
print("Loading setup ", model_name)
print()
model, attribution, test_set = get_model_and_attribution_method(config)
def get_synset(filename):
return filename.split('_')[0]
def get_image_full_filename(filename, train=True):
synset = get_synset(filename)
full_filename = os.path.join(config['imagenet_train'], synset, filename)
return full_filename
def get_image(filename):
return Image.open(get_image_full_filename(filename))
def scale_bbox(bbox, width, height):
bbox_x_min = int(width * bbox[0])
bbox_y_min = int(height * bbox[1])
bbox_x_max = int(width * bbox[2])
bbox_y_max = int(height * bbox[3])
return bbox_x_min, bbox_y_min, bbox_x_max, bbox_y_max
def get_bbox_mask(image, bboxs):
width, height = image.size
mask = np.zeros((height, width), dtype=np.bool)
for bbox in bboxs:
xi, yi, xa, ya = scale_bbox(bbox, width, height)
mask[yi:ya, xi:xa] = 1
return mask
def parse_bbox_xml(filename):
tree = ET.parse(filename)
root = tree.getroot()
root
bboxs = []
width = int(root.find('.size/.width').text)
height = int(root.find('.size/.height').text)
image_filename = root.find('.filename').text
for obj in root.findall('.object'):
xml_bbox = obj.find('.bndbox')
xmin = int(xml_bbox.find('.xmin').text)
xmax = int(xml_bbox.find('.xmax').text)
ymin = int(xml_bbox.find('.ymin').text)
ymax = int(xml_bbox.find('.ymax').text)
bboxs.append([xmin / width, ymin / height, xmax / width, ymax / height])
return image_filename, bboxs
def get_ration_top_in_bbox(mask, heatmap):
heatmap_idxs = HeatmapTransform.to_index_map(heatmap).astype(np.int64)
mask_np = mask > 0.5
heatmap_bbox_idxs = heatmap_idxs.copy()
heatmap_bbox_idxs[mask_np == 0] = heatmap_idxs.min()
n_pixel_in_mask = mask_np.sum()
return (heatmap_bbox_idxs > (-n_pixel_in_mask)).sum() / n_pixel_in_mask.sum()
def stream_imagenet_val_set_with_masks(image_dir, bbox_dir, if_obj_smaller=1, n_samples=50000):
imagenet_transform = Compose([
Resize(256),
CenterCrop((224, 224)),
ToTensor()
])
image_filenames = sorted(glob.glob(os.path.join(image_dir, "*")))
synnet_to_target = {name.split('/')[-1]: i for i, name in enumerate(image_filenames)}
val_bbox_filenames = glob.glob(os.path.join(bbox_dir, "*.xml"))
full_image_filename = glob.glob(os.path.join(image_dir, "**", "*.JPEG"), recursive=True)
name_to_full_image_filename = {}
for filename in full_image_filename:
name = os.path.splitext(os.path.basename(filename))[0]
name_to_full_image_filename[name] = filename
for bbox_filename in sorted(val_bbox_filenames)[:n_samples]:
image_name, bboxs = parse_bbox_xml(bbox_filename)
synnet = name_to_full_image_filename[image_name].split('/')[-2]
image = Image.open(name_to_full_image_filename[image_name]).convert('RGB')
mask = get_bbox_mask(image, bboxs)
mask_img = Image.fromarray(np.uint8(mask * 255))
image_torch = imagenet_transform(image)
mask_torch = imagenet_transform(mask_img)
mask_ratio = (mask_torch.sum() / torch.ones_like(mask_torch).sum()).item()
if mask_ratio <= if_obj_smaller and (mask_torch >= 0.5).sum() > 0:
target = torch.LongTensor([synnet_to_target[synnet]])
yield image_torch, mask_torch, target
mask_stream = stream_imagenet_val_set_with_masks(
config['imagenet_test'], config['imagenet_test_bbox'],
if_obj_smaller=config['min_bbox_ratio'], n_samples=n_samples)
ratio_attribution_in_mask = []
ratio_mask_to_image = []
ratio_top_in_bbox = []
progbar = tqdm(mask_stream, ascii=True)
for image, mask, target in progbar:
heatmap = attribution.heatmap(image[None].to(dev), torch.LongTensor([target]).to(dev))
ratio_attribution_in_mask.append(((heatmap * mask.numpy()).sum() / heatmap.sum()).item())
ratio_mask_to_image.append((mask.sum() / torch.ones_like(mask).sum()).item())
ratio_top_in_bbox.append(get_ration_top_in_bbox(mask[0].numpy(), heatmap))
progbar.set_postfix(
method=config['attribution_name'],
ratio_attribution_in_mask=np.mean(ratio_attribution_in_mask),
ratio_mask_to_image=np.mean(ratio_mask_to_image),
ratio_top_in_bbox=np.mean(ratio_top_in_bbox),
)
ratio_attribution_in_mask = np.array(ratio_attribution_in_mask)
ratio_mask_to_image = np.array(ratio_mask_to_image)
ratio_top_in_bbox = np.array(ratio_top_in_bbox)
result_dir = config['result_dir']
os.makedirs(result_dir, exist_ok=True)
slurm_job_id = int(os.getenv("SLURM_JOB_ID", 0))
result_filename = "bbox_{}_{}_{}_{}.torch".format(
config['model_name'],
config['attribution_name'].replace(" ", "_").replace(".", "_"),
slurm_job_id,
datetime.utcnow().isoformat()
)
output_filename = os.path.abspath(os.path.join(result_dir, result_filename))
torch.save({
'config': config,
'start_time': start_time,
'end_time': time.time(),
'slurm_job_id': slurm_job_id,
'ratio_attribution_in_mask': ratio_attribution_in_mask,
'ratio_mask_to_image': ratio_mask_to_image,
'ratio_top_in_bbox': ratio_top_in_bbox,
}, output_filename)
print("{}@{} with min bbox {}, {} images".format(
config['attribution_name'], config['model_name'],
config['min_bbox_ratio'], len(ratio_attribution_in_mask),
ratio_attribution_in_mask.mean()))
print("ratio heatmap in bbox: {}".format(ratio_attribution_in_mask.mean()))
print("ratio top heatmap indicies in bbox: {}".format(ratio_top_in_bbox.mean()))
print("bbox covered: {}".format(ratio_mask_to_image.mean()))
print("results saved at: {}".format(output_filename))