-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathreg.py
149 lines (120 loc) · 4.68 KB
/
reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# -*- coding: utf-8 -*-
import random
class Regression():
def __init__(self,d,n,X=None,Y=None):
self.d=d
self.n=n
self.X=X
self.Y=Y
def equation(self):
random.seed(5)
W=[random.randint(-10,10) for i in range(self.d)]
s='y='
for i,w in enumerate(W):
if i== len(W)-1:
s+=str(w)+'*x_'+str(i)
else:
s+=str(w)+'*x_'+str(i)+'+'
print('the equation is :{}'.format(s))
random.seed(5)
X=[[random.uniform(-20,20) for j in range(self.d)] for i in range(self.n)]
random.seed(6)
noise=[((-1)**int(random.random()*10))*random.random() for i in range(self.n)]
Y=[[sum([X[i][j]*W[j] for j in range(self.d)],noise[i])] for i in range(self.n)]
return X,Y
def transposition(self,X):
print('X shape is {}*{}'.format(str(self.n),str(self.d)))
X_t=[[0 for j in range(self.n)] for i in range(self.d)]
for i in range(self.n):
for j in range(self.d):
X_t[j][i]=X[i][j]
return X_t
def arrary_add(self,M,N,operator):
if not len(M)==len(N) and len(M[0])==len(N[0]):
print('传入矩阵的维度不同')
return
else:
O=[[0 for j in range(len(N))] for i in range(len(M))]
for i in range(len(M)):
for j in range(len(M[0])):
s=str(M[i][j])+operator+str(N[i][j])
O[i][j]=eval(s)
return O
def array_mul(self,X,X_t):
rows=len(X)
M=len(X[0])
columns=len(X_t[0])
N=len(X_t)
print('shape of X1 rows columns X2 rows columns is:',rows,M,N,columns)
X_mul=[[0 for j in range(columns)] for i in range(rows)]
if M==N:
for i in range(rows):
for j in range(columns):
result=0
for k in range(M):
result+=X[i][k]*X_t[k][j]
X_mul[i][j]=result
return X_mul
else:
print('X is not a 2 dim list')
return -1
def inversion(self,X):
if not len(X)==len(X[0]):
print('X is not square list')
return
d=len(X)
unit_arr=[[1 if i==j else 0 for j in range(d)] for i in range(d)]
# print(unit_arr)
step1_arr=[row+row_unit for row,row_unit in zip(X,unit_arr)]
#add the unit matrix to the X
# print(step1_arr)
for i,row in enumerate(step1_arr):
diagonal=1
#wait
new_j=0
for j,ele in enumerate(row):
if i==j:
diagonal=ele
new_j=j
# print(diagonal)
break
for k,ele in enumerate(row):
step1_arr[i][k]/=diagonal
for l in range(i+1,d):
mul=step1_arr[l][new_j]
for m in range(2*d):
step1_arr[l][m]-=step1_arr[i][m]*mul
#make the lower triangular matrix
for i in range(d-1,-1,-1):
for j in range(i-1,-1,-1):
#j is row
mul=step1_arr[j][i]
# print(mul)
for k in range(2*d):
step1_arr[j][k]-=step1_arr[i][k]*mul
step2_arr=[[step1_arr[i][j] for j in range(d,2*d)] for i in range(d)]
return step2_arr
def run(self):
#W = inv((X_t*X))−X_t*y
if not self.X:
print('no data give so use random')
self.X,self.Y=self.equation()
X_t=self.transposition(self.X)
print('shape of X_t rows columns Y rows columns is:',len(X_t),len(X_t[0]),len(self.Y),len(self.Y[0]))
X_mul=self.array_mul(X_t,self.X)
inv=self.inversion(X_mul)
print('inv shape {}*{}'.format(len(inv),len(inv[0])))
W_1=self.array_mul(inv,X_t)
W=self.array_mul(W_1,self.Y)
s='y='
for i,w in enumerate(W):
for num in w:
if i== len(W)-1:
s+=str(num)+'*x_'+str(i)
else:
s+=str(num)+'*x_'+str(i)+'+'
print('the current equation is :\n{}'.format(s))
return W
if __name__=='__main__':
reg=Regression(5,40)
W=reg.run()