-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
688 lines (571 loc) · 42.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
import torch
import scipy.io as spio
import numpy as np
import pandas as pd
import torch.utils.data as data_utils
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from torch.utils.data import TensorDataset, DataLoader
import warnings
def init_comparison_df(experiment_name=""):
df_file_path = 'comparison_graphs/last_results_df_{}.csv'.format(experiment_name)
df = pd.DataFrame(columns=['dataset', 'arch', 'AD_name', 'loss_name', 'supervision', 'norm_classes', 'outl_classes', 'SAD_classes',
'SAD_ratio', 'auc_train', 'auc_valid', 'auc_test', 'nbr_modes', 'AUCepoch', 'nbr_epochs', 'lr_init',
'lr_milestones', 'batchsize', 'seed'])
df.to_csv(df_file_path, index=False)
def store_comparison_results(results_dicts_list, auc_train, auc_valid, auc_test, dataset, AD_name, arch, supervision, loss, normal_cls,
outlier_cls, SAD_cls, SAD_ratio, nbr_modes, best_AUC_epoch, nbr_epochs, lr_init, lr_milestones, batchsize, seed):
results_dicts_list.append({'dataset': dataset, 'arch': arch, 'AD_name': AD_name, 'loss_name': loss, 'supervision': supervision,
'norm_classes': normal_cls, 'outl_classes': outlier_cls, 'SAD_classes': SAD_cls, 'SAD_ratio': SAD_ratio,
'auc_train': auc_train, 'auc_valid': auc_valid, 'auc_test': auc_test,
'nbr_modes': nbr_modes, 'AUCepoch': best_AUC_epoch, 'nbr_epochs': nbr_epochs,
'lr_init': lr_init, 'lr_milestones': lr_milestones, 'batchsize': batchsize,
'seed': seed})
return results_dicts_list
def get_train_set(train_sets, ytrain, normal_cls, SAD_cls=[], SAD=False, SAD_ratio=0.01):
"""
SAD samples are always there, but not necessarily used in the training loop (cf. training.py and loss computation).
Since the SAD samples are taken from otherwise discarded training set anomalous samples, this is not an issue
for unsupervised AD/OOD experiments.
"""
if SAD:
selected_cls = []
yselected_cls = []
selected_cls_SAD = []
yselected_cls_SAD = []
size_normal = 0
for norm_cls in normal_cls:
size_normal += train_sets[norm_cls - 1].size()[0]
selected_cls.append(train_sets[norm_cls - 1])
yselected_cls.append(ytrain[norm_cls - 1])
for anom_cls in SAD_cls:
shuffled_train_idx = np.array(range(train_sets[anom_cls - 1].size()[0]))
np.random.shuffle(shuffled_train_idx)
selected_idx_SAD = shuffled_train_idx[:int((SAD_ratio*size_normal)//len(SAD_cls))] # SAD_ratio in total, so divide # of anomalous training samples between all SAD classes
selected_cls_SAD.append(train_sets[anom_cls - 1][selected_idx_SAD])
yselected_cls_SAD.append(ytrain[anom_cls - 1][selected_idx_SAD])
return torch.cat(selected_cls), torch.cat(yselected_cls), torch.cat(selected_cls_SAD), torch.cat(yselected_cls_SAD)
else: # need to keep that for the definition of train_spds and train_spdsv2, would be cleaner to include the latter in the above scheme though
selected_cls = []
yselected_cls = []
for norm_cls in normal_cls:
selected_cls.append(train_sets[norm_cls - 1])
yselected_cls.append(ytrain[norm_cls - 1])
return torch.cat(selected_cls), torch.cat(yselected_cls)
def convert_labels(labels, normal_cls):
# 1 for anomalies, and 0 for normal samples as in https://github.com/lukasruff/Deep-SVDD/blob/master/src/isoForest.py
scores_labels = [0 if y in normal_cls else 1 for y in labels]
return scores_labels
def get_train_test_valid(simdata,train_ratio,cls_idx):
nbr_train = int(train_ratio*simdata.shape[0])
nbr_val = int((simdata.shape[0]-nbr_train)/2) # take half of the residual samples
train = simdata[:nbr_train]
val = simdata[nbr_train:nbr_train+nbr_val]
test = simdata[nbr_train+nbr_val:]
ytrain = torch.ones(train.shape[0])*cls_idx
yval = torch.ones(val.shape[0])*cls_idx
ytest = torch.ones(test.shape[0])*cls_idx
return train,ytrain,val,yval,test,ytest
def init_center_c(device, train_loader, net, eps=0.1):
"""
Initialize hypersphere center c as the mean from an initial forward pass on the data.
Source: https://github.com/lukasruff/Deep-SVDD-PyTorch/blob/master/src/optim/deepSVDD_trainer.py
"""
n_samples = 0
c = torch.zeros(net.rep_dim, device=device)
net.eval()
with torch.no_grad():
for data in train_loader:
# get the inputs of the batch
inputs, _ = data
inputs = inputs.to(device)
outputs = net(inputs)
n_samples += outputs.shape[0]
c += torch.sum(outputs, dim=0)
c /= n_samples
# If c_i is too close to 0, set to +-eps. Reason: a zero unit can be trivially matched with zero weights.
c[(abs(c) < eps) & (c < 0)] = -eps
c[(abs(c) < eps) & (c > 0)] = eps
return c
def init_ssl_sad_centers_c(device, train_loader, net, eps=0.1, sad_ssl_heuristic=False):
"""
Initialize hypersphere center c as the mean from an initial forward pass on the data, one centroid per training data
is computed to provide all the latent reference points experimented on. Experiment can be conducted without using
all the centroids computed here.
Source of inspiration: https://github.com/lukasruff/Deep-SVDD-PyTorch/blob/master/src/optim/deepSVDD_trainer.py
"""
n_samples = 0
n_samples_SSL = 0
n_samples_SAD = 0
c = torch.zeros((net.rep_dim, 3), device=device)
net.eval()
with torch.no_grad():
for data in train_loader:
# get the inputs of the batch
inputs, labels = data
inputs = inputs.to(device)
outputs = net(inputs)
c[:, 0] += torch.sum(outputs[labels[:,1] == 0], dim=0) # normal training samples with label 0
n_samples += outputs[labels[:, 1] == 0].size()[0]
c[:, 1] += torch.sum(outputs[labels[:,1] == 1], dim=0) # rotated normal/SSL training samples with label 1
n_samples_SSL += outputs[labels[:, 1] == 1].size()[0]
c[:, 2] += torch.sum(outputs[labels[:,1] == 2], dim=0) # labeled anomalies/SAD training samples with label 2
n_samples_SAD += outputs[labels[:, 1] == 2].size()[0]
c[:,0] /= n_samples
if n_samples_SAD != 0: # check if training data includes SAD samples, cf. "supervision" hyperparameter
if sad_ssl_heuristic:
c[:, 2] = 2 * c[:, 0]
else:
c[:, 2] /= n_samples_SAD
if n_samples_SSL != 0: # check if training data includes SSL samples, cf. "supervision" hyperparameter
if sad_ssl_heuristic:
c[:, 1] = 3 * c[:,0]
else:
c[:, 1] /= n_samples_SSL
# If c_i is too close to 0, set to +-eps. Reason: a zero unit can be trivially matched with zero weights.
c[(abs(c) < eps) & (c < 0)] = -eps
c[(abs(c) < eps) & (c > 0)] = eps
if torch.equal(c[:,0], c[:,1]):
c[:, 1] = c[:, 1] * 2 # push away in every dimension, Deep SVDD heuristic for normality centroid unchanged
# raise ValueError("Equal latent centroids for SSL and normal samples.")
print(("Equal latent centroids for SSL and normal samples."))
if torch.equal(c[:,0], c[:,2]):
c[:, 2] = c[:, 2] * 3 # push away in every dimension, Deep SVDD heuristic for normality centroid unchanged
# raise ValueError("Equal latent centroids for SAD and normal samples.")
print("Equal latent centroids for SAD and normal samples.")
return c
def init_centers_c_kmeans_MSVDD(device, train_loader, x_train, net, nbr_centroids=3, batch_size=128, seed=1):
"""
DeepMSVDD paper implementation.
"""
net.eval()
with torch.no_grad():
for data, targets in train_loader:
inputs, labels = data.to(device), targets.to(device)
outputs = net(inputs)
try:
complete_outputs = torch.cat((complete_outputs, outputs), dim=0)
except UnboundLocalError:
complete_outputs = outputs
complete_outputs = complete_outputs.detach().cpu().numpy()
kmeans = KMeans(n_clusters=nbr_centroids, random_state=seed).fit(complete_outputs)
# recreate train dataloader in which labels are the indexes of the associated centers
train_set = TensorDataset(x_train, torch.from_numpy(kmeans.labels_))
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
return torch.from_numpy(kmeans.cluster_centers_).to(device), train_loader
def filter_centers_DMSVDD(hyperspheres_center, radius):
return hyperspheres_center[radius > 0.0]
def update_radius_DMSVDD(hyperspheres_center, nu, train_loader, net, device):
"""
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976236.13
https://github.com/zghafoori/Deep-Multi-Sphere-SVDD/blob/670ba3c7604347d249758b49f1865c51616c6a3c/src/opt/sgd/train.py
"""
net.eval()
with torch.no_grad():
for data, targets in train_loader:
inputs, labels = data.to(device), targets.to(device)
outputs = net(inputs)
try:
complete_outputs = torch.cat((complete_outputs, outputs), dim=0)
except UnboundLocalError:
complete_outputs = outputs
# now that populated-enough centers are updated, update the associated radius
dist_to_centers = torch.cdist(complete_outputs, hyperspheres_center)
dist_to_best_center, best_center_idx = torch.min(dist_to_centers, dim=1)
centers, centers_occurrence = torch.unique(best_center_idx, return_counts=True)
# handle centers with zero population that disappeared due to the torch.unique()
new_centers_occurrence = torch.zeros((hyperspheres_center.size()[0],)).long().to(device)
new_centers_occurrence[centers] = centers_occurrence
centers_occurrence = new_centers_occurrence
good_centers = centers_occurrence > nu * torch.max(centers_occurrence)
radius = torch.zeros((hyperspheres_center.size()[0],)).to(device)
for center_idx in range(hyperspheres_center.size()[0]):
try:
radius[center_idx] = torch.quantile(dist_to_centers[best_center_idx == center_idx, center_idx],q=1-nu)
except RuntimeError: # handle centroids without samples, which can't yield any quantile
radius[center_idx] = 0.0
radius[~good_centers] = 0.0 # centroids with samples but not enough
net.train()
return radius
# def get_train_test_valid(simdata,train_ratio,cls_idx):
# nbr_train = int(train_ratio*simdata.shape[0])
# nbr_val = int((simdata.shape[0]-nbr_train)/2) # take half of the residual samples
# train = simdata[:nbr_train]
# val = simdata[nbr_train:nbr_train+nbr_val]
# test = simdata[nbr_train+nbr_val:]
# ytrain = torch.ones(train.shape[0])*cls_idx
# yval = torch.ones(val.shape[0])*cls_idx
# ytest = torch.ones(test.shape[0])*cls_idx
# return train,ytrain,val,yval,test,ytest
def min_max_normalize(input_tensor, tensor_min, tensor_max):
tensor_min_max_normalized = (input_tensor - tensor_min) / (tensor_max - tensor_min)
return tensor_min_max_normalized
class simulated_radar_dataset():
def __init__(self, train_ratio, normal_cls, SAD_cls, SAD_ratio, batchsize, nbr_targets, nbr_pulse_per_scan):
self.train_ratio = train_ratio
self.normal_cls = normal_cls
self.SAD_cls = SAD_cls
self.SAD_ratio = SAD_ratio
self.batchsize = batchsize
self.nbr_targets = nbr_targets
self.nbr_pulse_per_scan = nbr_pulse_per_scan
def get_dataloaders(self, generator=None, cov_regularization=1):
tgt_type1 = spio.loadmat('./data/helicopters_{}_1_{}.mat'.format(self.nbr_targets, self.nbr_pulse_per_scan), simplify_cells=True)['tgts']
tgt_type2 = spio.loadmat('./data/helicopters_{}_2_{}.mat'.format(self.nbr_targets, self.nbr_pulse_per_scan), simplify_cells=True)['tgts']
tgt_type3 = spio.loadmat('./data/helicopters_{}_4_{}.mat'.format(self.nbr_targets, self.nbr_pulse_per_scan), simplify_cells=True)['tgts']
tgt_type4 = spio.loadmat('./data/helicopters_{}_6_{}.mat'.format(self.nbr_targets, self.nbr_pulse_per_scan), simplify_cells=True)['tgts']
nbr_targets = len(tgt_type1) # equal for all targets types
nbr_scans = tgt_type1[0]['signature'].shape[0]
nbr_pulsesperscan = tgt_type1[0]['signature'].shape[1] # defines the number of features / frequency bins for the SPD representation
sp1 = torch.zeros((nbr_targets, nbr_scans, nbr_pulsesperscan))
sp2 = torch.zeros((nbr_targets, nbr_scans, nbr_pulsesperscan))
sp3 = torch.zeros((nbr_targets, nbr_scans, nbr_pulsesperscan))
sp4 = torch.zeros((nbr_targets, nbr_scans, nbr_pulsesperscan))
spd1 = torch.zeros((nbr_targets, nbr_pulsesperscan, nbr_pulsesperscan))
spd2 = torch.zeros((nbr_targets, nbr_pulsesperscan, nbr_pulsesperscan))
spd3 = torch.zeros((nbr_targets, nbr_pulsesperscan, nbr_pulsesperscan))
spd4 = torch.zeros((nbr_targets, nbr_pulsesperscan, nbr_pulsesperscan))
for tgt_idx in range(nbr_targets):
sp1[tgt_idx] = torch.from_numpy(tgt_type1[tgt_idx]['signature'][:,:,0])
sp2[tgt_idx] = torch.from_numpy(tgt_type2[tgt_idx]['signature'][:,:,0])
sp3[tgt_idx] = torch.from_numpy(tgt_type3[tgt_idx]['signature'][:,:,0])
sp4[tgt_idx] = torch.from_numpy(tgt_type4[tgt_idx]['signature'][:,:,0])
spd1[tgt_idx] = torch.from_numpy(tgt_type1[tgt_idx]['sigcov'])
spd2[tgt_idx] = torch.from_numpy(tgt_type2[tgt_idx]['sigcov'])
spd3[tgt_idx] = torch.from_numpy(tgt_type3[tgt_idx]['sigcov'])
spd4[tgt_idx] = torch.from_numpy(tgt_type4[tgt_idx]['sigcov'])
max_sp = torch.max(torch.cat((10*torch.log(sp1), 10*torch.log(sp2), 10*torch.log(sp3), 10*torch.log(sp4))))
min_sp = torch.min(torch.cat((10*torch.log(sp1), 10*torch.log(sp2), 10*torch.log(sp3), 10*torch.log(sp4))))
max_spd = torch.max(torch.cat((spd1, spd2, spd3, spd4)))
min_spd = torch.min(torch.cat((spd1, spd2, spd3, spd4)))
sp1 = min_max_normalize(10*torch.log(sp1), min_sp, max_sp)
sp2 = min_max_normalize(10*torch.log(sp2), min_sp, max_sp)
sp3 = min_max_normalize(10*torch.log(sp3), min_sp, max_sp)
sp4 = min_max_normalize(10*torch.log(sp4), min_sp, max_sp)
# use quantile per sample, not global quantile
quantile_coef = 0.85
quantile_sp1 = torch.quantile(sp1.view(sp1.size()[0],-1), q=quantile_coef, dim=1)
quantile_sp2 = torch.quantile(sp2.view(sp2.size()[0],-1), q=quantile_coef, dim=1)
quantile_sp3 = torch.quantile(sp3.view(sp3.size()[0],-1), q=quantile_coef, dim=1)
quantile_sp4 = torch.quantile(sp4.view(sp4.size()[0],-1), q=quantile_coef, dim=1)
quantile_sp1 = torch.repeat_interleave(quantile_sp1.unsqueeze(1), sp1.size(1), dim=1)
quantile_sp2 = torch.repeat_interleave(quantile_sp2.unsqueeze(1), sp2.size(1), dim=1)
quantile_sp3 = torch.repeat_interleave(quantile_sp3.unsqueeze(1), sp3.size(1), dim=1)
quantile_sp4 = torch.repeat_interleave(quantile_sp4.unsqueeze(1), sp4.size(1), dim=1)
quantile_sp1 = torch.repeat_interleave(quantile_sp1.unsqueeze(2), sp1.size(2), dim=2)
quantile_sp2 = torch.repeat_interleave(quantile_sp2.unsqueeze(2), sp2.size(2), dim=2)
quantile_sp3 = torch.repeat_interleave(quantile_sp3.unsqueeze(2), sp3.size(2), dim=2)
quantile_sp4 = torch.repeat_interleave(quantile_sp4.unsqueeze(2), sp4.size(2), dim=2)
sp1_activespeeds = torch.where(sp1 > quantile_sp1, torch.ones_like(sp1), torch.zeros_like(sp1))
sp2_activespeeds = torch.where(sp2 > quantile_sp2, torch.ones_like(sp2), torch.zeros_like(sp2))
sp3_activespeeds = torch.where(sp3 > quantile_sp3, torch.ones_like(sp3), torch.zeros_like(sp3))
sp4_activespeeds = torch.where(sp4 > quantile_sp4, torch.ones_like(sp4), torch.zeros_like(sp4))
sp1_activespeeds = torch.repeat_interleave((torch.sum(sp1_activespeeds, dim=1) > 0).unsqueeze(dim=1), sp1_activespeeds.size()[1], dim=1)
sp2_activespeeds = torch.repeat_interleave((torch.sum(sp2_activespeeds, dim=1) > 0).unsqueeze(dim=1), sp2_activespeeds.size()[1], dim=1)
sp3_activespeeds = torch.repeat_interleave((torch.sum(sp3_activespeeds, dim=1) > 0).unsqueeze(dim=1), sp3_activespeeds.size()[1], dim=1)
sp4_activespeeds = torch.repeat_interleave((torch.sum(sp4_activespeeds, dim=1) > 0).unsqueeze(dim=1), sp4_activespeeds.size()[1], dim=1)
sp1 = torch.where(sp1_activespeeds.type(torch.bool), sp1, torch.zeros_like(sp1))
sp2 = torch.where(sp2_activespeeds.type(torch.bool), sp2, torch.zeros_like(sp2))
sp3 = torch.where(sp3_activespeeds.type(torch.bool), sp3, torch.zeros_like(sp3))
sp4 = torch.where(sp4_activespeeds.type(torch.bool), sp4, torch.zeros_like(sp4))
train_sp1,ytrain1,val_sp1,yval1,test_sp1,ytest1 = get_train_test_valid(sp1,self.train_ratio,1)
train_spd1,_,val_spd1,_,test_spd1,_ = get_train_test_valid(spd1,self.train_ratio,1)
train_sp2,ytrain2,val_sp2,yval2,test_sp2,ytest2 = get_train_test_valid(sp2,self.train_ratio,2)
train_spd2,_,val_spd2,_,test_spd2,_ = get_train_test_valid(spd2,self.train_ratio,2)
train_sp3,ytrain3,val_sp3,yval3,test_sp3,ytest3 = get_train_test_valid(sp3,self.train_ratio,3)
train_spd3,_,val_spd3,_,test_spd3,_ = get_train_test_valid(spd3,self.train_ratio,3)
train_sp4,ytrain4,val_sp4,yval4,test_sp4,ytest4 = get_train_test_valid(sp4,self.train_ratio,4)
train_spd4,_,val_spd4,_,test_spd4,_ = get_train_test_valid(spd4,self.train_ratio,4)
complete_train_sps = torch.cat((train_sp1,train_sp2,train_sp3,train_sp4))
complete_train_spds = torch.cat((train_spd1,train_spd2,train_spd3,train_spd4))
self.complete_ytrain = torch.cat((ytrain1,ytrain2,ytrain3,ytrain4))
val_sps = torch.cat((val_sp1,val_sp2,val_sp3,val_sp4))
val_spds = torch.cat((val_spd1,val_spd2,val_spd3,val_spd4))
self.yval = torch.cat((yval1,yval2,yval3,yval4))
test_sps = torch.cat((test_sp1,test_sp2,test_sp3,test_sp4))
test_spds = torch.cat((test_spd1,test_spd2,test_spd3,test_spd4))
self.ytest = torch.cat((ytest1,ytest2,ytest3,ytest4))
self.complete_ytrain_AD = convert_labels(self.complete_ytrain, self.normal_cls)
self.yval_AD = convert_labels(self.yval, self.normal_cls)
self.ytest_AD = convert_labels(self.ytest, self.normal_cls)
#############
### TRAIN ###
#############
############# SPDs datasets: no SAD or SSL samples, training is only made of normal training samples
train_spds, self.ytrain_spds = get_train_set((train_spd1, train_spd2, train_spd3, train_spd4), (ytrain1, ytrain2, ytrain3, ytrain4), self.normal_cls)
shuffled_train_spds_idx = np.array(range(train_spds.size()[0]))
np.random.shuffle(shuffled_train_spds_idx)
train_spds = train_spds[shuffled_train_spds_idx]
self.ytrain_spds = self.ytrain_spds[shuffled_train_spds_idx]
############# SPs datasets: SAD and SSL samples included, with double-column labels to also provide nothing/SSL/SAD labels
train_sps_norm, ytrain_sps_norm, train_sps_anom, ytrain_sps_anom = get_train_set((train_sp1, train_sp2, train_sp3, train_sp4), (ytrain1, ytrain2, ytrain3, ytrain4),
self.normal_cls, self.SAD_cls, SAD=True, SAD_ratio=self.SAD_ratio)
train_sps_norm_t = torch.transpose(train_sps_norm, 1, 2)
train_sps_norm_2D_sad_ssl = torch.cat((train_sps_norm, train_sps_norm_t, train_sps_anom))
ytrain_sad_ssl1 = torch.cat((ytrain_sps_norm, ytrain_sps_norm, ytrain_sps_anom)) # original labels don't change and are deduplicated
ytrain_sad_ssl2 = torch.cat((torch.zeros_like(ytrain_sps_norm), torch.ones_like(ytrain_sps_norm), 2*torch.ones_like(ytrain_sps_anom))) # 0 for not rotated, 1 for rotated/SSL sample, 2 for SAD/labelled anomaly sample
self.ytrain_sps_norm_2D_sad_ssl = torch.cat((ytrain_sad_ssl1.unsqueeze(dim=1), ytrain_sad_ssl2.unsqueeze(dim=1)), dim=1) # 2D labels: first column is class label, second column is nothing, SSL or SAD label
# shuffle train samples before dataloader creation, since shallow methods don't use the dataloader version of the dataset, not sure this is actually required but just in case
shuffled_train_sps_idx = np.array(range(train_sps_norm_2D_sad_ssl.size()[0]))
np.random.shuffle(shuffled_train_sps_idx)
train_sps_norm_2D_sad_ssl = train_sps_norm_2D_sad_ssl[shuffled_train_sps_idx]
self.ytrain_sps_norm_2D_sad_ssl = self.ytrain_sps_norm_2D_sad_ssl[shuffled_train_sps_idx]
# mask to use only relevant samples to create dataloaders with batches excluding any sample useless for training. No mask for the full setup SSL+SAD which is already available.
train_sps_mask = self.ytrain_sps_norm_2D_sad_ssl[:, 1] == 0 # no SAD, no SSL
train_sps_ssl_mask = torch.logical_or(self.ytrain_sps_norm_2D_sad_ssl[:, 1] == 0,self.ytrain_sps_norm_2D_sad_ssl[:, 1] == 1) # no SAD samples for training
train_sps_sad_mask = torch.logical_or(self.ytrain_sps_norm_2D_sad_ssl[:, 1] == 0,self.ytrain_sps_norm_2D_sad_ssl[:, 1] == 2) # no SSL samples for training
self.train_sps_norm_2D = train_sps_norm_2D_sad_ssl[train_sps_mask].float()
self.train_dataset_sps_norm_2D = data_utils.TensorDataset(self.train_sps_norm_2D, self.ytrain_sps_norm_2D_sad_ssl[train_sps_mask])
self.train_loader_sps_norm_2D = data_utils.DataLoader(self.train_dataset_sps_norm_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
self.train_sps_norm_ssl_2D = train_sps_norm_2D_sad_ssl[train_sps_ssl_mask].float()
self.train_dataset_sps_norm_ssl_2D = data_utils.TensorDataset(self.train_sps_norm_ssl_2D, self.ytrain_sps_norm_2D_sad_ssl[train_sps_ssl_mask])
self.train_loader_sps_norm_ssl_2D = data_utils.DataLoader(self.train_dataset_sps_norm_ssl_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
self.train_sps_norm_sad_2D = train_sps_norm_2D_sad_ssl[train_sps_sad_mask].float()
self.train_dataset_sps_norm_sad_2D = data_utils.TensorDataset(self.train_sps_norm_sad_2D, self.ytrain_sps_norm_2D_sad_ssl[train_sps_sad_mask])
self.train_loader_sps_norm_sad_2D = data_utils.DataLoader(self.train_dataset_sps_norm_sad_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
self.train_sps_norm_ssl_sad_2D = train_sps_norm_2D_sad_ssl.float()
self.train_dataset_sps_norm_ssl_sad_2D = data_utils.TensorDataset(self.train_sps_norm_ssl_sad_2D, self.ytrain_sps_norm_2D_sad_ssl)
self.train_loader_sps_norm_ssl_sad_2D = data_utils.DataLoader(self.train_dataset_sps_norm_ssl_sad_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
# upper triangular 1D features of covariance SPD representation
self.train_spds_norm_1Dut = min_max_normalize(train_spds[:,torch.triu_indices(nbr_pulsesperscan,nbr_pulsesperscan)[0],torch.triu_indices(nbr_pulsesperscan,nbr_pulsesperscan)[1]], min_spd, max_spd).float()
self.train_dataset_spds_norm_1Dut = data_utils.TensorDataset(self.train_spds_norm_1Dut, self.ytrain_spds)
self.train_loader_spds_norm_1Dut = data_utils.DataLoader(self.train_dataset_spds_norm_1Dut, batch_size=self.batchsize, shuffle=True, generator=generator)
self.train_spds_norm_2D = min_max_normalize(train_spds, min_spd, max_spd).float()
self.train_dataset_spds_norm_2D = data_utils.TensorDataset(self.train_spds_norm_2D, self.ytrain_spds)
self.train_loader_spds_norm_2D = data_utils.DataLoader(self.train_dataset_spds_norm_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
# not normalized 2D covariance SPD representation available to train SPD neural network
reg_train = torch.from_numpy(np.repeat(np.expand_dims(np.eye(train_spds[0].size()[1]), axis=0), repeats=train_spds.size()[0], axis=0))*cov_regularization
self.train_spds_2D = (train_spds+reg_train).float()
self.train_dataset_spds_2D = data_utils.TensorDataset(self.train_spds_2D, self.ytrain_spds)
self.train_loader_spds_2D = data_utils.DataLoader(self.train_dataset_spds_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
######################
### COMPLETE TRAIN ###
######################
self.complete_train_sps_norm_2D = complete_train_sps.float()
self.complete_train_dataset_sps_norm_2D = data_utils.TensorDataset(self.complete_train_sps_norm_2D, self.complete_ytrain)
self.complete_train_loader_sps_norm_2D = data_utils.DataLoader(self.complete_train_dataset_sps_norm_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
self.complete_train_sps_norm_1D = complete_train_sps.view(complete_train_sps.size()[0],-1).float()
self.complete_train_dataset_sps_norm_1D = data_utils.TensorDataset(self.complete_train_sps_norm_1D, self.complete_ytrain)
self.complete_train_loader_sps_1D = data_utils.DataLoader(self.complete_train_dataset_sps_norm_1D, batch_size=self.batchsize, shuffle=True, generator=generator)
self.complete_train_spds_norm_1Dut = min_max_normalize(complete_train_spds[:,torch.triu_indices(nbr_pulsesperscan,nbr_pulsesperscan)[0],torch.triu_indices(nbr_pulsesperscan,nbr_pulsesperscan)[1]], min_spd, max_spd).float()
self.complete_train_dataset_spds_norm_1Dut = data_utils.TensorDataset(self.complete_train_spds_norm_1Dut, self.complete_ytrain)
self.complete_train_loader_spds_norm_1Dut = data_utils.DataLoader(self.complete_train_dataset_spds_norm_1Dut, batch_size=self.batchsize, shuffle=True, generator=generator)
self.complete_train_spds_norm_2D = min_max_normalize(complete_train_spds, min_spd, max_spd).float()
self.complete_train_dataset_spds_norm_2D = data_utils.TensorDataset(self.complete_train_spds_norm_2D, self.complete_ytrain)
self.complete_train_loader_spds_norm_2D = data_utils.DataLoader(self.complete_train_dataset_spds_norm_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
# not normalized 2D covariance SPD representation available to train SPD neural network
reg_complete_train = torch.from_numpy(np.repeat(np.expand_dims(np.eye(complete_train_spds[0].size()[1]), axis=0), repeats=complete_train_spds.size()[0], axis=0))*cov_regularization
self.complete_train_spds_2D = (complete_train_spds+reg_complete_train).float()
self.complete_train_dataset_spds_2D = data_utils.TensorDataset(self.complete_train_spds_2D, self.complete_ytrain)
self.complete_train_loader_spds_2D = data_utils.DataLoader(self.complete_train_dataset_spds_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
#############
### VALID ###
#############
self.val_sps_norm_2D = val_sps.float()
self.val_dataset_sps_norm_2D = data_utils.TensorDataset(self.val_sps_norm_2D, self.yval)
self.val_loader_sps_norm_2D = data_utils.DataLoader(self.val_dataset_sps_norm_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
self.val_sps_norm_1D = val_sps.view(val_sps.size()[0],-1).float()
self.val_dataset_sps_norm_1D = data_utils.TensorDataset(self.val_sps_norm_1D, self.yval)
self.val_loader_norm_1D = data_utils.DataLoader(self.val_dataset_sps_norm_1D, batch_size=self.batchsize, shuffle=True, generator=generator)
self.val_spds_norm_1Dut = min_max_normalize(val_spds[:,torch.triu_indices(nbr_pulsesperscan,nbr_pulsesperscan)[0],torch.triu_indices(nbr_pulsesperscan,nbr_pulsesperscan)[1]], min_spd, max_spd).float()
self.val_dataset_spds_norm_1Dut = data_utils.TensorDataset(self.val_spds_norm_1Dut, self.yval)
self.val_loader_spds_norm_1Dut = data_utils.DataLoader(self.val_dataset_spds_norm_1Dut, batch_size=self.batchsize, shuffle=True, generator=generator)
self.val_spds_norm_2D = min_max_normalize(val_spds, min_spd, max_spd).float()
self.val_dataset_spds_norm_2D = data_utils.TensorDataset(self.val_spds_norm_2D, self.yval)
self.val_loader_spds_norm_2D = data_utils.DataLoader(self.val_dataset_spds_norm_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
# not normalized 2D covariance SPD representation available to train SPD neural network
reg_val = torch.from_numpy(np.repeat(np.expand_dims(np.eye(val_spds[0].size()[1]), axis=0), repeats=val_spds.size()[0], axis=0))*cov_regularization
self.val_spds_2D = (val_spds+reg_val).float()
self.val_dataset_spds_2D = data_utils.TensorDataset(self.val_spds_2D, self.yval)
self.val_loader_spds_2D = data_utils.DataLoader(self.val_dataset_spds_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
############
### TEST ###
############
self.test_sps_norm_2D = test_sps.float()
self.test_dataset_sps_norm_2D = data_utils.TensorDataset(self.test_sps_norm_2D, self.ytest)
self.test_loader_sps_norm_2D = data_utils.DataLoader(self.test_dataset_sps_norm_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
self.test_sps_norm_1D = test_sps.view(test_sps.size()[0],-1).float()
self.test_dataset_sps_norm_1D = data_utils.TensorDataset(self.test_sps_norm_1D, self.ytest)
self.test_loader_sps_norm_1D = data_utils.DataLoader(self.test_dataset_sps_norm_1D, batch_size=self.batchsize, shuffle=True, generator=generator)
self.test_spds_norm_1Dut = min_max_normalize(test_spds[:,torch.triu_indices(nbr_pulsesperscan,nbr_pulsesperscan)[0],torch.triu_indices(nbr_pulsesperscan,nbr_pulsesperscan)[1]], min_spd, max_spd).float()
self.test_dataset_spds_norm_1Dut = data_utils.TensorDataset(self.test_spds_norm_1Dut, self.ytest)
self.test_loader_spds_norm_1Dut = data_utils.DataLoader(self.test_dataset_spds_norm_1Dut, batch_size=self.batchsize, shuffle=True, generator=generator)
self.test_spds_norm_2D = min_max_normalize(test_spds, min_spd, max_spd).float()
self.test_dataset_spds_norm_2D = data_utils.TensorDataset(self.test_spds_norm_2D, self.ytest)
self.test_loader_spds_norm_2D = data_utils.DataLoader(self.test_dataset_spds_norm_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
# not normalized 2D covariance SPD representation available to train SPD neural network
reg_test = torch.from_numpy(np.repeat(np.expand_dims(np.eye(test_spds[0].size()[1]), axis=0), repeats=test_spds.size()[0], axis=0))*cov_regularization
self.test_spds_2D = (test_spds+reg_test).float()
self.test_dataset_spds_2D = data_utils.TensorDataset(self.test_spds_2D, self.ytest)
self.test_loader_spds_2D = data_utils.DataLoader(self.test_dataset_spds_2D, batch_size=self.batchsize, shuffle=True, generator=generator)
def get_2D_latent_representations_trainloader(dataloader, net, device, title, figure_path, figure_name, plot_centroids=False, centroids=[], supervision="AD"):
"""
- Projects dataloader samples with neural network in 2D representations.
- Returns matplotlib figure object.
- trainloader dedicated function since only the trainloader has 2D labels tensors in order to handle the double labeling (class labels in first column, training sample/SSL sample/SAD sample in second column).
TODO: delete SSL (rotated normal samples) samples from the classes plot, at the moment they are plotted with their original dataset class color (but their latent distribution is revealed by the supervision classes plot).
"""
# ignore FutureWarning of sklearn
with warnings.catch_warnings():
warnings.simplefilter("ignore")
net.eval()
complete_outputs_init = False
with torch.no_grad():
for data, targets in dataloader:
inputs, labels = data.to(device), targets.to(device)
outputs = net(inputs)
if not complete_outputs_init:
complete_outputs = outputs
complete_class_labels = labels[:, 0] # labels[:,0] are class labels, labels[:,1] are supervision ie. vanilla/SSL/SAD samples labels
complete_supervision_labels = labels[:, 1]
complete_outputs_init = True
else:
complete_outputs = torch.cat((complete_outputs, outputs), dim=0)
complete_class_labels = torch.cat((complete_class_labels, labels[:, 0]), dim=0)
complete_supervision_labels = torch.cat((complete_supervision_labels, labels[:, 1]), dim=0)
if plot_centroids:
if supervision=="AD":
valid_centroids_idx = torch.LongTensor([0]).to(device)
centroids = torch.index_select(centroids, 1, valid_centroids_idx)
elif supervision=="SSL":
valid_centroids_idx = torch.LongTensor([0, 1]).to(device)
centroids = torch.index_select(centroids, 1, valid_centroids_idx)
elif supervision=="SAD":
valid_centroids_idx = torch.LongTensor([0, 2]).to(device)
centroids = torch.index_select(centroids, 1, valid_centroids_idx)
elif supervision=="SAD+SSL":
valid_centroids_idx = torch.LongTensor([0, 1, 2]).to(device)
centroids = torch.index_select(centroids, 1, valid_centroids_idx)
else:
raise ValueError("Supervision {} not implemented !".format(supervision))
centroids = torch.transpose(centroids, 0, 1).to(device)
complete_outputs = torch.cat((complete_outputs, centroids), dim=0)
complete_class_labels = torch.cat((complete_class_labels, torch.ones((centroids.size()[0],)).to(device)*5), dim=0) # 5 is the label for centroids in this function
complete_supervision_labels = torch.cat((complete_supervision_labels,torch.ones((centroids.size()[0],)).to(device)*5), dim=0)
complete_outputs = complete_outputs.cpu().detach().numpy()
complete_class_labels = complete_class_labels.cpu().detach().numpy()
complete_supervision_labels = complete_supervision_labels.cpu().detach().numpy()
# fit projections methods using complete data, all classes mixed together
latent_2D_TSNE = TSNE(n_components=2).fit_transform(complete_outputs)
latent_2D_PCA = PCA(n_components=2).fit_transform(complete_outputs)
x_cls1_TSNE = latent_2D_TSNE[complete_class_labels == 1]
x_cls2_TSNE = latent_2D_TSNE[complete_class_labels == 2]
x_cls3_TSNE = latent_2D_TSNE[complete_class_labels == 3]
x_cls4_TSNE = latent_2D_TSNE[complete_class_labels == 4]
if plot_centroids:
x_cls5_TSNE = latent_2D_TSNE[complete_class_labels == 5]
x_cls1_PCA = latent_2D_PCA[complete_class_labels == 1]
x_cls2_PCA = latent_2D_PCA[complete_class_labels == 2]
x_cls3_PCA = latent_2D_PCA[complete_class_labels == 3]
x_cls4_PCA = latent_2D_PCA[complete_class_labels == 4]
if plot_centroids:
x_cls5_PCA = latent_2D_PCA[complete_class_labels == 5]
x_supervisioncls0_TSNE = latent_2D_TSNE[complete_supervision_labels == 0]
x_supervisioncls1_TSNE = latent_2D_TSNE[complete_supervision_labels == 1]
x_supervisioncls2_TSNE = latent_2D_TSNE[complete_supervision_labels == 2]
x_supervisioncls0_PCA = latent_2D_PCA[complete_supervision_labels == 0]
x_supervisioncls1_PCA = latent_2D_PCA[complete_supervision_labels == 1]
x_supervisioncls2_PCA = latent_2D_PCA[complete_supervision_labels == 2]
fig, axs = plt.subplots(2, 2, figsize=(20, 10))
fig.suptitle(title)
axs[0, 0].scatter(x=x_cls1_TSNE[:, 0], y=x_cls1_TSNE[:, 1],c='r', alpha=0.2, label="Class 1")
axs[0, 0].scatter(x=x_cls2_TSNE[:, 0], y=x_cls2_TSNE[:, 1],c='b', alpha=0.2, label="Class 2")
axs[0, 0].scatter(x=x_cls3_TSNE[:, 0], y=x_cls3_TSNE[:, 1],c='g', alpha=0.2, label="Class 3")
axs[0, 0].scatter(x=x_cls4_TSNE[:, 0], y=x_cls4_TSNE[:, 1],c='y', alpha=0.2, label="Class 4")
if plot_centroids:
axs[0, 0].scatter(x=x_cls5_TSNE[:, 0], y=x_cls5_TSNE[:, 1], c='k', alpha=0.99, marker="*", label="Centroid", s=100)
axs[0, 0].title.set_text("TSNE (data classes)")
axs[0, 0].legend()
axs[0, 1].scatter(x=x_supervisioncls0_TSNE[:, 0], y=x_supervisioncls0_TSNE[:, 1], c='c', alpha=0.2, label="Normal training samples")
axs[0, 1].scatter(x=x_supervisioncls1_TSNE[:, 0], y=x_supervisioncls1_TSNE[:, 1], c='m', alpha=0.2, label="SSL training samples")
axs[0, 1].scatter(x=x_supervisioncls2_TSNE[:, 0], y=x_supervisioncls2_TSNE[:, 1], c='k', alpha=0.99, label="SAD training samples")
if plot_centroids:
axs[0, 1].scatter(x=x_cls5_TSNE[:, 0], y=x_cls5_TSNE[:, 1], c='k', alpha=0.99, marker="*", label="Centroid", s=100)
axs[0, 1].title.set_text("TSNE (supervision classes)")
axs[0, 1].legend()
axs[1, 0].scatter(x=x_cls1_PCA[:, 0], y=x_cls1_PCA[:, 1], c='r', alpha=0.2, label="Class 1")
axs[1, 0].scatter(x=x_cls2_PCA[:, 0], y=x_cls2_PCA[:, 1], c='b', alpha=0.2, label="Class 2")
axs[1, 0].scatter(x=x_cls3_PCA[:, 0], y=x_cls3_PCA[:, 1], c='g', alpha=0.2, label="Class 3")
axs[1, 0].scatter(x=x_cls4_PCA[:, 0], y=x_cls4_PCA[:, 1], c='y', alpha=0.2, label="Class 4")
if plot_centroids:
axs[1, 0].scatter(x=x_cls5_PCA[:, 0], y=x_cls5_PCA[:, 1], c='k', alpha=0.99, marker="*", label="Centroid", s=100)
axs[1, 0].title.set_text("PCA (data classes)")
axs[1, 0].legend()
axs[1, 1].scatter(x=x_supervisioncls0_PCA[:, 0], y=x_supervisioncls0_PCA[:, 1], c='c', alpha=0.2, label="Normal training samples")
axs[1, 1].scatter(x=x_supervisioncls1_PCA[:, 0], y=x_supervisioncls1_PCA[:, 1], c='m', alpha=0.2, label="SSL training samples")
axs[1, 1].scatter(x=x_supervisioncls2_PCA[:, 0], y=x_supervisioncls2_PCA[:, 1], c='k', alpha=0.99, label="SAD training samples")
if plot_centroids:
axs[1, 1].scatter(x=x_cls5_PCA[:, 0], y=x_cls5_PCA[:, 1], c='k', alpha=0.99, marker="*", label="Centroid", s=100)
axs[1, 1].title.set_text("PCA (supervision classes)")
axs[1, 1].legend()
plt.savefig(figure_path + figure_name)
def get_2D_latent_representations_testloader(dataloader, net, device, title, figure_path, figure_name, plot_centroids=False, centroids=[], supervision="AD"):
"""
- Projects dataloader samples with neural network in 2D representations.
- Returns matplotlib figure object.
- testloader dedicated function since only the trainloader has 2D labels tensors in order to handle the double labeling (class labels in first column, training sample/SSL sample/SAD sample in second column).
"""
# ignore FutureWarning of sklearn
with warnings.catch_warnings():
warnings.simplefilter("ignore")
net.eval()
complete_outputs_init = False
with torch.no_grad():
for data, targets in dataloader:
inputs, labels = data.to(device), targets.to(device)
outputs = net(inputs)
if not complete_outputs_init:
complete_outputs = outputs
complete_class_labels = labels
complete_outputs_init = True
else:
complete_outputs = torch.cat((complete_outputs, outputs), dim=0)
complete_class_labels = torch.cat((complete_class_labels, labels), dim=0)
if plot_centroids:
if supervision=="AD":
valid_centroids_idx = torch.LongTensor([0]).to(device)
centroids = torch.index_select(centroids, 1, valid_centroids_idx)
elif supervision=="SSL":
valid_centroids_idx = torch.LongTensor([0, 1]).to(device)
centroids = torch.index_select(centroids, 1, valid_centroids_idx)
elif supervision=="SAD":
valid_centroids_idx = torch.LongTensor([0, 2]).to(device)
centroids = torch.index_select(centroids, 1, valid_centroids_idx)
elif supervision=="SAD+SSL":
valid_centroids_idx = torch.LongTensor([0, 1, 2]).to(device)
centroids = torch.index_select(centroids, 1, valid_centroids_idx)
else:
raise ValueError("Supervision {} not implemented !".format(supervision))
centroids = torch.transpose(centroids, 0, 1).to(device)
complete_outputs = torch.cat((complete_outputs, centroids), dim=0)
complete_class_labels = torch.cat((complete_class_labels, torch.ones((centroids.size()[0],)).to(device)*5), dim=0) # 5 is the label for centroids in this function
complete_outputs = complete_outputs.cpu().detach().numpy()
complete_class_labels = complete_class_labels.cpu().detach().numpy()
# fit projections methods using complete data, all classes mixed together
latent_2D_TSNE = TSNE(n_components=2).fit_transform(complete_outputs)
latent_2D_PCA = PCA(n_components=2).fit_transform(complete_outputs)
x_cls1_TSNE = latent_2D_TSNE[complete_class_labels == 1]
x_cls2_TSNE = latent_2D_TSNE[complete_class_labels == 2]
x_cls3_TSNE = latent_2D_TSNE[complete_class_labels == 3]
x_cls4_TSNE = latent_2D_TSNE[complete_class_labels == 4]
x_cls1_PCA = latent_2D_PCA[complete_class_labels == 1]
x_cls2_PCA = latent_2D_PCA[complete_class_labels == 2]
x_cls3_PCA = latent_2D_PCA[complete_class_labels == 3]
x_cls4_PCA = latent_2D_PCA[complete_class_labels == 4]
fig, axs = plt.subplots(1, 2, figsize=(20, 10))
fig.suptitle(title)
axs[0].scatter(x=x_cls1_TSNE[:, 0], y=x_cls1_TSNE[:, 1], c='r', alpha=0.2, label="Class 1")
axs[0].scatter(x=x_cls2_TSNE[:, 0], y=x_cls2_TSNE[:, 1], c='b', alpha=0.2, label="Class 2")
axs[0].scatter(x=x_cls3_TSNE[:, 0], y=x_cls3_TSNE[:, 1], c='g', alpha=0.2, label="Class 3")
axs[0].scatter(x=x_cls4_TSNE[:, 0], y=x_cls4_TSNE[:, 1], c='y', alpha=0.2, label="Class 4")
axs[0].title.set_text("TSNE (data classes)")
axs[0].legend()
axs[1].scatter(x=x_cls1_PCA[:, 0], y=x_cls1_PCA[:, 1], c='r', alpha=0.2, label="Class 1")
axs[1].scatter(x=x_cls2_PCA[:, 0], y=x_cls2_PCA[:, 1], c='b', alpha=0.2, label="Class 2")
axs[1].scatter(x=x_cls3_PCA[:, 0], y=x_cls3_PCA[:, 1], c='g', alpha=0.2, label="Class 3")
axs[1].scatter(x=x_cls4_PCA[:, 0], y=x_cls4_PCA[:, 1], c='y', alpha=0.2, label="Class 4")
axs[1].title.set_text("PCA (data classes)")
axs[1].legend()
plt.savefig(figure_path + figure_name)