forked from chenebuah/perovskite-ML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Python Code
210 lines (193 loc) · 10.6 KB
/
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# COMPARATIVE ANALYSIS OF ML APPROACHES ON THE PREDICTION OF THE ELECTRONIC PROPERTIES OF PEROVSKITE: A CASE STUDY OF THE ABX3 AND A2BB'X6 STRUCTURES
# AUTHOR - (1) * Ericsson Chenebuah, (1) Michel Nganbe and (2) Alain Tchagang
# 1: Department of Mechanical Engineering, University of Ottawa, 75 Laurier Ave. East, Ottawa, ON, K1N 6N5 Canada
# 2: Digital Technologies Research Centre, National Research Council of Canada, 1200 Montréal Road, Ottawa, ON, K1A 0R6 Canada
# * email: echen013@uottawa.ca
# (15-Nov-2020)
import pandas as pd
import pylab as pl
import numpy as np
import scipy.optimize as opt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
%matplotlib inline
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from sklearn import ensemble
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
# Best Hyperparameters identified using GridSearchCV with only ideal arguments implemented in all models
df = pd.read_csv('combine.csv') #Combined ABX3 and A2BB'X6 Perovskite Structures.
X=df.drop("Eg",1)
df['Eg'] = df['Eg'].astype('float64')
y = np.asarray(df['Eg']) # Code simulated for predicting the energy bandgap.
# Model 1 - Gradient boosting regression (GBR)
from sklearn.ensemble import GradientBoostingRegressor
X_train1, X_test1, y_train1, y_test1 = train_test_split( X, y, test_size=0.1, random_state=9)
gbr = GridSearchCV (GradientBoostingRegressor (),{
'n_estimators': [2000], 'max_depth': [2], 'min_samples_split': [2], 'learning_rate': [0.1],
'loss': ['ls'], 'random_state':[72]}, cv=5)
gbr.fit(X_train1, y_train1)
y_predicted1 = gbr.predict(X_test1)
gbr_score = gbr.score(X_train1,y_train1)
gbr_score1 = gbr.score(X_test1,y_test1)
# Model 2 - Kernel Ridge Regression (KRR)
from sklearn.kernel_ridge import KernelRidge
X_train2, X_test2, y_train2, y_test2 = train_test_split( X, y, test_size=0.1, random_state=9)
krr = GridSearchCV (KernelRidge (),{ 'alpha':[0.001],'kernel':['linear']}, cv=5)
krr.fit(X_train2, y_train2)
y_predicted2 = krr.predict(X_test2)
krr_score = krr.score(X_train2,y_train2)
krr_score1 = krr.score(X_test2,y_test2)
# Model 3 - Support Vector Regression (SVR)
from sklearn.svm import SVR
from sklearn.pipeline import Pipeline
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
X_train3, X_test3, y_train3, y_test3 = train_test_split( X, y, test_size=0.1, random_state=10)
steps = [('scaler', StandardScaler()), ('SVM', SVR())]
pipeline = Pipeline(steps)
grid = GridSearchCV(pipeline, param_grid= {'SVM__C':[100], 'SVM__gamma':['auto'], 'SVM__kernel': ['rbf'],
'SVM__epsilon':[0.001]}, cv=5)
grid.fit(X_train3, y_train3)
svr_score = grid.score(X_train3,y_train3)
svr_score1 = grid.score(X_test3,y_test3)
y_predicted3 = grid.predict(X_test3)
# Model 4 - Decision Tree Regression (DTR)
from sklearn.tree import DecisionTreeRegressor
X_train4, X_test4, y_train4, y_test4 = train_test_split( X, y, test_size=0.1, random_state=9)
dtr = GridSearchCV (DecisionTreeRegressor(),{
'criterion':['friedman_mse'], 'random_state':[72], 'splitter':['best'], 'max_depth':[None]}, cv=5)
dtr.fit(X_train4, y_train4)
dtr_score = dtr.score(X_train4,y_train4)
dtr_score1 = dtr.score(X_test4,y_test4)
y_predicted4 = dtr.predict(X_test4)
# Model 5 - AdaBoost Regression (ABR)
from sklearn.ensemble import AdaBoostRegressor
X_train5, X_test5, y_train5, y_test5 = train_test_split( X, y, test_size=0.1, random_state=9)
abr = GridSearchCV (AdaBoostRegressor (),{
'random_state':[0], 'n_estimators':[1000], 'learning_rate':[0.001], 'loss': ['exponential']}, cv=5)
abr.fit(X_train5, y_train5)
abr_score = abr.score(X_train5,y_train5)
abr_score1 = abr.score(X_test5,y_test5)
y_predicted5 = abr.predict(X_test5)
# Model 6 - Bayesian Ridge (BR)
from sklearn import linear_model
X_train6, X_test6, y_train6, y_test6 = train_test_split( X, y, test_size=0.1, random_state=9)
br = GridSearchCV (linear_model.BayesianRidge(),{'tol':[1e-3]}, cv=5)
br.fit(X_train6, y_train6)
br_score = br.score(X_train6,y_train6)
br_score1 = br.score(X_test6,y_test6)
y_predicted6 = br.predict(X_test6)
# Model 7 - Multilayer Perceptron (MLP)
from sklearn.neural_network import MLPRegressor
X_train7, X_test7, y_train7, y_test7 = train_test_split( X, y, test_size=0.1, random_state=9)
mlp = GridSearchCV (MLPRegressor (),{
'random_state':[0], 'max_iter':[10000], 'alpha':[0.001],}, cv=5)
mlp.fit(X_train7, y_train7)
mlp_score = mlp.score(X_train7,y_train7)
mlp_score1 = mlp.score(X_test7,y_test7)
y_predicted7 = mlp.predict(X_test7)
# Model 8 - Random Forest Regression (RFR)
from sklearn.ensemble import RandomForestRegressor
X_train8, X_test8, y_train8, y_test8 = train_test_split( X, y, test_size=0.1, random_state=9)
rfr = GridSearchCV (RandomForestRegressor(),{'max_depth':[None], 'random_state':[0], 'criterion':['mse']
}, cv=5)
rfr.fit(X_train8, y_train8)
rfr_score = rfr.score(X_train8,y_train8)
rfr_score1 = rfr.score(X_test8,y_test8)
y_predicted8 = rfr.predict(X_test8)
# Model 9 - K-Nearest Neighbor (KNR)
from sklearn.neighbors import KNeighborsRegressor
X_train9, X_test9, y_train9, y_test9 = train_test_split( X, y, test_size=0.1, random_state=9)
knr = GridSearchCV (KNeighborsRegressor(),{'n_neighbors':[4]}, cv=5)
knr.fit(X_train9, y_train9)
knr_score = knr.score(X_train9,y_train9)
knr_score1 = knr.score(X_test9,y_test9)
y_predicted9 = knr.predict(X_test9)
# Model 10 - Passive Aggressive Regression (PAR)
from sklearn.linear_model import PassiveAggressiveRegressor
X_train10, X_test10, y_train10, y_test10 = train_test_split( X, y, test_size=0.1, random_state=9)
par = GridSearchCV (PassiveAggressiveRegressor(),{'max_iter':[1000], 'random_state':[10], 'tol':[1e-10]},
cv=5)
par.fit(X_train10, y_train10)
par_score = par.score(X_train10,y_train10)
par_score1 = par.score(X_test10,y_test10)
y_predicted10 = par.predict(X_test10)
# Model 11 - Gaussian Process Regression (GPR)
from sklearn.gaussian_process import GaussianProcessRegressor
X_train11, X_test11, y_train11, y_test11 = train_test_split( X, y, test_size=0.1, random_state=7)
gpr = GridSearchCV (GaussianProcessRegressor(), {}, cv=5)
gpr.fit(X_train11, y_train11)
gpr_score = gpr.score(X_train11,y_train11)
gpr_score1 = gpr.score(X_test11,y_test11)
y_predicted11 = gpr.predict(X_test11)
# Model 12 - Stochastic Gradient Descent (SGD)
from sklearn.linear_model import SGDRegressor
X_train12, X_test12, y_train12, y_test12 = train_test_split( X, y, test_size=0.1, random_state=9)
sgd = (make_pipeline(StandardScaler(),SGDRegressor(max_iter=1000,tol=1e-1500,alpha=0.0001,epsilon=0.0001)))
sgd.fit(X_train12, y_train12)
sgd_score = sgd.score(X_train12,y_train12)
sgd_score1 = sgd.score(X_test12,y_test12)
y_predicted12 = sgd.predict(X_test12)
# Standard Accuracy Results
print('GBR Model| R2 sq on train set: %.4f'% gbr_score)
print('GBR Model| R2 sq on test set: %.4f'% gbr_score1)
print("GBR Model| MSE on test set: %.4f"% mean_squared_error(y_test1, y_predicted1))
print("GBR Model| MAE on test set: %.4f"% mean_absolute_error(y_test1, y_predicted1))
print ("---------------------------------")
print('KRR Model| R2 sq on train set: %.4f'% krr_score)
print('KRR Model| R2 sq on test set: %.4f'% krr_score1)
print('KRR Model| MSE on test set: %.4f'% mean_squared_error(y_test2, y_predicted2))
print('KRR Model| MAE on test set: %.4f'% mean_absolute_error(y_test2, y_predicted2))
print ("---------------------------------")
print('SVR Model| R2 sq on train set: %.4f'% svr_score)
print('SVR Model| R2 sq on test set: %.4f'% svr_score1)
print('SVR Model| MSE on test set: %.4f'% mean_squared_error(y_test3, y_predicted3))
print('SVR Model| MAE on test set: %.4f'% mean_absolute_error(y_test3, y_predicted3))
print ("---------------------------------")
print('DTR Model| R2 sq on train set: %.4f'% dtr_score)
print('DTR Model| R2 sq on test set: %.4f'% dtr_score1)
print('DTR Model| MSE on test set: %.4f'% mean_squared_error(y_test4, y_predicted4))
print('DTR Model| MAE on test set: %.4f'% mean_absolute_error(y_test4, y_predicted4))
print ("---------------------------------")
print('ABR Model| R2 sq on train set: %.4f'% abr_score)
print('ABR Model| R2 sq on test set: %.4f'% abr_score1)
print('ABR Model| MSE on test set: %.4f'% mean_squared_error(y_test5, y_predicted5))
print('ABR Model| MAE on test set: %.4f'% mean_absolute_error(y_test5, y_predicted5))
print ("---------------------------------")
print('BR Model| R2 sq on train set: %.4f'% br_score)
print('BR Model| R2 sq on test set: %.4f'% br_score1)
print('BR Model| MSE on test set: %.4f'% mean_squared_error(y_test6, y_predicted6))
print('BR Model| MAE on test set: %.4f'% mean_absolute_error(y_test6, y_predicted6))
print ("---------------------------------")
print('MLP Model| R2 sq on train set: %.4f'% mlp_score)
print('MLP Model| R2 sq on test set: %.4f'% mlp_score1)
print('MLP Model| MSE on test set: %.4f'% mean_squared_error(y_test7, y_predicted7))
print('MLP Model| MAE on test set: %.4f'% mean_absolute_error(y_test7, y_predicted7))
print ("---------------------------------")
print('RFR Model| R2 sq on train set: %.4f'% rfr_score)
print('RFR Model| R2 sq on test set: %.4f'% rfr_score1)
print('RFR Model| MSE on test set: %.4f'% mean_squared_error(y_test8, y_predicted8))
print('RFR Model| MAE on test set: %.4f'% mean_absolute_error(y_test8, y_predicted8))
print ("---------------------------------")
print('KNR Model| R2 sq on train set: %.4f'% knr_score)
print('KNR Model| R2 sq on test set: %.4f'% knr_score1)
print('KNR Model| MSE on test set: %.4f'% mean_squared_error(y_test9, y_predicted9))
print('KNR Model| MAE on test set: %.4f'% mean_absolute_error(y_test9, y_predicted9))
print ("---------------------------------")
print('PAR Model| R2 sq on train set: %.4f'% par_score)
print('PAR Model| R2 sq on test set: %.4f'% par_score1)
print('PAR Model| MSE on test set: %.4f'% mean_squared_error(y_test10, y_predicted10))
print('PAR Model| MAE on test set: %.4f'% mean_absolute_error(y_test10, y_predicted10))
print ("---------------------------------")
print('GPR Model| R2 sq on train set: %.4f'% gpr_score)
print('GPR Model| R2 sq on test set: %.4f'% gpr_score1)
print('GPR Model| MSE on test set: %.4f'% mean_squared_error(y_test11, y_predicted11))
print('GPR Model| MAE on test set: %.4f'% mean_absolute_error(y_test11, y_predicted11))
print ("---------------------------------")
print('SGD Model| R2 sq on train set: %.4f'% sgd_score)
print('SGD Model| R2 sq on test set: %.4f'% sgd_score1)
print('SGD Model| MSE on test set: %.4f'% mean_squared_error(y_test12, y_predicted12))
print('SGD Model| MAE on test set: %.4f'% mean_absolute_error(y_test12, y_predicted12))