forked from EricElmoznino/PyTorch_Tutorial
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
85 lines (68 loc) · 3.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import os
import shutil
from tensorboardX import SummaryWriter
from evaluate import evaluate_dataset, classification_accuracy
from models import Model, PretrainedModel
from MNISTDataset import MNISTDataset
import utils
# Training configuration
use_custom_model = True
n_epochs = 2
batch_size = 16
lr = 1e-3
# Create the model
if use_custom_model:
model = Model(in_channels=3, n_classes=10)
model_name = 'custom_model'
else:
model = PretrainedModel(n_classes=10)
model_name = 'pretrained_model'
# One of the few downsides of PyTorch is it doesn't automatically detect if a gpu is available
if torch.cuda.is_available():
model.cuda()
# Create the optimizer
optimizer = optim.Adam(model.parameters(), lr=lr)
# Instantiate the dataloaders
train_set = MNISTDataset('data/train', resolution=[32, 32],training=True)
train_loader = DataLoader(train_set, batch_size=batch_size, num_workers=2, shuffle=True)
test_set = MNISTDataset('data/test', resolution=[32, 32])
test_loader = DataLoader(test_set, num_workers=2)
# Prepare save directories and configure tensorboard logging
shutil.rmtree(os.path.join('saved_runs', model_name), ignore_errors=True)
os.mkdir(os.path.join('saved_runs', model_name))
writer = SummaryWriter(os.path.join('saved_runs', model_name, 'logs'))
print_freq = 50
running_losses = None
for epoch in range(1, n_epochs + 1):
print('Starting epoch %d\n' % epoch)
for batch, data in enumerate(train_loader):
step_num = utils.step_num(epoch, batch, train_loader) # Global step
# Obtain the inputs/targets
images, labels = data
labels = labels.view(-1) # Labels must be 1 dimensional with class indices, but DataLoader creates batch dimension
images, labels = utils.device([images, labels]) # Send to gpu if possible
# Compute the losses
predictions = model(images)
loss = F.cross_entropy(predictions, labels)
# Backprop and optimize
optimizer.zero_grad() # Zero out the .grad properties on all model parameters
loss.backward() # Backpropagate the error and populate the .grad properties
optimizer.step() # Optimizer uses the .grad values to modify the parameters
# Compute error metrics and update running losses
accuracy = classification_accuracy(predictions, labels)
losses = {'loss': loss.item(), 'accuracy': accuracy} # .item() obtains the raw value of a 0D Tensor
running_losses = utils.update_losses(running_losses, losses, print_freq)
if (step_num + 1) % print_freq == 0:
utils.log_to_tensorboard(writer, running_losses, step_num)
utils.print_losses(running_losses, step_num, n_epochs * len(train_loader))
running_losses = {l: 0 for l in running_losses}
print('Finished epoch %d\n' % epoch)
print('Evaluation')
eval_losses = evaluate_dataset(model, test_loader)
utils.log_to_tensorboard(writer, eval_losses, step_num, training=False)
utils.print_losses(eval_losses, step_num, n_epochs * len(train_loader))
utils.save_model(model, os.path.join('saved_runs', model_name))