-
Notifications
You must be signed in to change notification settings - Fork 13
/
run_all.sh
85 lines (81 loc) · 2.73 KB
/
run_all.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/bash
#
# Copyright (c) 2019-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# running for 4 datasets weather, traffic, electricity, exchange_rate
PRED_LENS=(96 192 336 720)
LOSS=(adaptive)
MODELS=(AutoformerMS InformerMS ReformerMS FEDformerMS PerformerMS NHitsMS FiLMMS)
DATASETS=(weather.csv traffic.csv electricity.csv exchange_rate.csv synthetic)
for loss in ${LOSS[@]};do
for pred_len in ${PRED_LENS[@]} ; do
for model in ${MODELS[@]} ; do
for inp_data in ${DATASETS[@]}; do
export model
export inp_data
export pred_len
export seed
export loss
sbatch -o slurm/${inp_data}_${model}_${pred_len}_${seed}_${loss}.out run_single.sh
done
done
done
done
PRED_LENS=(96 192 336 720)
LOSS=(mse)
MODELS=(Autoformer Informer Reformer FEDformer Performer NHits FiLM)
DATASETS=(weather.csv traffic.csv electricity.csv exchange_rate.csv synthetic)
for loss in ${LOSS[@]};do
for pred_len in ${PRED_LENS[@]} ; do
for model in ${MODELS[@]} ; do
for inp_data in ${DATASETS[@]}; do
export model
export inp_data
export pred_len
export seed
export loss
sbatch -o slurm/${inp_data}_${model}_${pred_len}_${seed}_${loss}.out run_single.sh
done
done
done
done
## running for ILI dataset with new pred lens
PRED_LENS=(24 32 48 64)
LOSS=(adaptive)
MODELS=(AutoformerMS InformerMS ReformerMS FEDformerMS PerformerMS NHitsMS FiLMMS)
DATASETS=(national_illness.csv)
for loss in ${LOSS[@]};do
for pred_len in ${PRED_LENS[@]} ; do
for model in ${MODELS[@]} ; do
for inp_data in ${DATASETS[@]}; do
export model
export inp_data
export pred_len
export seed
export loss
sbatch -o slurm/${inp_data}_${model}_${pred_len}_${seed}_${loss}.out run_single.sh
done
done
done
done
PRED_LENS=(24 32 48 64)
LOSS=(mse)
MODELS=(Autoformer Informer Reformer FEDformer Performer NHits FiLM)
DATASETS=(national_illness.csv)
for loss in ${LOSS[@]};do
for pred_len in ${PRED_LENS[@]} ; do
for model in ${MODELS[@]} ; do
for inp_data in ${DATASETS[@]}; do
export model
export inp_data
export pred_len
export seed
export loss
sbatch -o slurm/${inp_data}_${model}_${pred_len}_${seed}_${loss}.out run_single.sh
done
done
done
done