-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathMicromake effector with 1KG weight cell v4.scad
216 lines (189 loc) · 6.03 KB
/
Micromake effector with 1KG weight cell v4.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
separation = 42; // Distance between ball joint mounting faces.
delta_radius = 34; // Distance between center and the line on which ball joints are located.
e3d_radius = 26 / 2; // Radius of E3D v5 cooling part
echo("<b>Delta radius value for EEPROM is: </b>", str(sqrt(pow(separation / 2, 2) + pow(delta_radius, 2))));
height = 10; // Height of the plate
m3_radius = 1.75;
m3_nut_radius = 3.75;
// #cube([0.05, 0.05, height * 6], center = false); // debug, for measurements on generated STL file
bottom_bracket_height = 25;
bottom_bracket_width = 13 + (2 * 3);
bottom_bracket_depth = bottom_bracket_width;
weight_cell_width = 14;
weight_cell_depth = 14;
weight_cell_height = 25;
difference() {
union() {
effector();
weight_cell_mounting_holes();
}
weight_cell_cutout();
}
// Mounting holes for weight cell:
module weight_cell_mounting_holes() {
translate([-1 * (bottom_bracket_width / 2),
delta_radius - (bottom_bracket_depth + 1), -height / 2
]) {
difference() {
cube([bottom_bracket_width, bottom_bracket_depth, bottom_bracket_height]);
// spherical cut-out #1
translate([
bottom_bracket_width / 2 + 7,
bottom_bracket_depth / 2 + 12,
weight_cell_height - bottom_bracket_height + 5 // no bottom
]) {
sphere(r = 5, $fn = 40, center = true);
}
// spherical cut-out #2
translate([
bottom_bracket_width / 2 - 7,
bottom_bracket_depth / 2 + 12,
weight_cell_height - bottom_bracket_height + 5 // no bottom
]) {
sphere(r = 5, $fn = 40, center = true);
}
// upper pair of mounting holes:
translate([bottom_bracket_width / 2, 10, 20]) {
rotate([90, 0, 0]) {
cylinder(r = 2.5, h = 40, center = true, $fn = 48);
}
}
// lower mounting hole:
translate([bottom_bracket_width / 2, 25, 5]) {
rotate([90, 0, 0]) {
cylinder(r = 2.5, h = 40, center = true, $fn = 48);
}
}
}
}
}
// Rectangular cut-out for weight cell:
module weight_cell_cutout() {
translate(
[-1 * (bottom_bracket_width / 2),
delta_radius - (bottom_bracket_depth + 1), -1 * height / 2
]) {
translate([
(bottom_bracket_width - weight_cell_width) / 2,
(bottom_bracket_depth - weight_cell_depth) / 2,
weight_cell_height - bottom_bracket_height -1 // no bottom
]) {
cube([weight_cell_width, weight_cell_depth, weight_cell_height+2]);
}
}
}
// Combines 3 equal sectors of the effector plate into one part:
module effector() {
union() {
// difference() {
difference() {
for (a = [0, 120, 240]) {
rotate([0, 0, a]) {
one_third_of_effector();
}
}
// Central hole for e3d v5 effector (cone-shaped to improve cooling):
cylinder(r1 = e3d_radius, r2 = e3d_radius + 5, h = height + 2, center = true, $fn = 128);
hole_for_cables(); // Hole to pass thermistor cable and heating element cable down
}
}
// weight_cell_bottom_bracket();
// }
}
// Effector plate is made out of 3 identical sectors:
module one_third_of_effector() {
// Longer beam
rotate([0, 0, 30]) {
intersection() {
translate([18, 0, 0]) {
rotate([0, 90, 90]) {
// Cylinder makes the edges rounded
cylinder(r = 10, h = separation, center = true, $fn = 96);
}
}
translate([delta_radius - 14, 0, 0]) {
difference() {
cube([delta_radius / 2, delta_radius * 1.1, height], center = true);
leds();
}
}
}
}
// Shorter beam
rotate([0, 0, 90]) {
intersection() {
translate([20, 0, 0]) {
rotate([0, 90, 90]) {
// Cylinder makes the edges rounded
cylinder(r = 10, h = separation, center = true, $fn = 96);
}
}
translate([20, 0, 0]) {
cube([20, delta_radius * 0.5, height], center = true);
}
}
}
// Ball joint mounts
cone_r1 = 3.0;
cone_r2 = 14;
for (s = [-1, 1]) {
scale([s, 1, 1]) {
translate([0, delta_radius, 0]) {
difference() {
intersection() {
// Rectangle that bounds the mount:
cube([separation, 40, height], center = true);
translate([0, -4, 0]) {
rotate([0, 90, 0]) {
// Cylinder makes the edges rounded
cylinder(r = 10, h = separation, center = true, $fn = 96);
}
}
translate([separation / 2 - 7, 0, 0]) {
rotate([0, 90, 0]) {
// Cone-shaped noses of the mounts
cylinder(r1 = cone_r2, r2 = cone_r1, h = 14, center = true,
$fn = 48);
}
}
}
// Cut-out for M3 bolts
rotate([0, 90, 0]) {
cylinder(r = m3_radius, h = separation + 1, center = true,
$fn = 48);
}
// Cut-out for M3 washers
rotate([90, 0, 90]) {
cylinder(r = m3_nut_radius, h = separation - 24, center = true,
$fn = 6);
}
}
}
}
}
}
// 2 holes for LED lights on each long beam:
module leds() {
LED_diameter = 5; // Typical LED is 5mm
for (l = [-1.3 * LED_diameter, 1.3 * LED_diameter]) {
translate([0, l, 0]) {
rotate([0, 25, 0]) { // 25-degree angle towards nozzle
translate([0, 0, -3]) {
translate([0, 0, 0]) {
cylinder(r = (LED_diameter / 2) * 1.4, h = height + 3,
center = false, $fn = 42);
}
cylinder(r = LED_diameter / 2, h = height * 2, center = true,
$fn = 42);
}
}
}
}
}
module hole_for_cables() {
rotate([0, 0, -50]) {
translate([delta_radius - 11, 0, 0]) {
cylinder(r = 4, h = height + 1, center = true, $fn = 48);
}
}
}