-
Notifications
You must be signed in to change notification settings - Fork 0
/
repro_estimates.R
163 lines (135 loc) · 5.41 KB
/
repro_estimates.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# H acuminata flowering & n plants (by sht number) in CF ------------------
# NOTE: all CF plots combined
# load the libraries ------------------------------------------------------
library(tidyverse)
library(gridExtra)
# load the survey data archived in Dryad ---------------------------------
ha_plants<-read_csv("./data/survey_archive/HDP_survey.csv")
# check for zombie plants ------------------------------------------------
hacf<-ha_plants %>%
filter(str_detect(plot_id,"CF")==TRUE) %>%
filter(recorded_sdlg==FALSE) %>%
filter(shts>0) %>%
filter(is.na(shts)==FALSE)
size<-hacf %>%
group_by(year,shts) %>%
summarize(n=n_distinct((plant_id)))
repro<-hacf %>%
group_by(year,shts) %>%
filter(is.na(infl)==FALSE) %>%
summarize(n_rep=n_distinct((plant_id)))
max_shts<-max(size$shts,na.rm = TRUE)
cf_rep<-full_join(size,repro) %>%
mutate(n_rep = replace_na(n_rep, 0)) %>%
mutate(shts_bin = cut(shts, breaks=c(0,1,2, 3, 4, 5,6,7,max_shts),
labels = c("1", "2", "3", "4","5","6","7","8")),
.after=shts) %>%
group_by(year,shts_bin) %>%
mutate(n_bin=sum(n),.after=shts_bin) %>%
group_by(year,shts_bin) %>%
mutate(n_rep_bin=sum(n_rep),.after=n_bin) %>%
relocate(n,.after=shts) %>%
relocate(n_rep,.after=n) %>%
mutate(perc_n=n_rep/n*100) %>%
mutate(perc_bin=n_rep_bin/n_bin*100) %>%
arrange(year,shts_bin)
# cf_rep
cf_rep_summary<-cf_rep %>%
group_by(shts_bin) %>%
summarize(perc_bin=mean(perc_bin),sd=sd(perc_bin)) %>%
mutate(year="mean\n(1998-2012)")
cf_rep<- cf_rep %>%
mutate(year=as.character(year))
plot_data<- full_join(cf_rep,cf_rep_summary,
by=c("perc_bin","shts_bin","year")) %>%
mutate(year=as.factor(year)) %>%
mutate(shts_bin=as.factor(shts_bin)) %>%
mutate(highlight=ifelse(year=="mean\n(1998-2012)","mean\n(1998-2012)","other")) %>%
mutate(year=as.character(year))
# library(hrbrthemes)
perc_plot<-plot_data %>%
ggplot(aes(x=shts_bin,
y=perc_bin,
group=year, size=highlight,color=highlight)) +
scale_y_continuous(breaks=c(0,10,20,30,40,50,60))+
labs(x="shoots",y="% Flowering")+
geom_line() +
expand_limits(x= c(-0, 9))+
geom_text(data=plot_data %>% filter(shts_bin=="8") %>% filter(year=="mean\n(1998-2012)"),
aes(label = year,
x = shts_bin,
y = perc_bin,
color = highlight),
size=2,
hjust = 0.6,
nudge_x=0.5,
# position = position_dodge(0.0)
)+
scale_x_discrete(labels = c(seq(1,7),expression("">=8)))+
# geom_text(aes(label = year))+
scale_color_manual(values = c("darkgreen","lightgrey")) +
scale_size_manual(values=c(1.0,0.5)) +
theme(legend.position="none") +
# ggtitle("title") +
theme_classic() +
theme(
legend.position="none",
plot.title = element_text(size=14)
)
# perc_plot
ggsave("./docs/data_summaries/figs/perc_plot.pdf", width = 5, height = 4, units = "in", bg = "white")
ggsave("./docs/data_summaries/figs/perc_plot.png", width = 5, height = 4, units = "in", bg = "white")
ggsave("./docs/data_summaries/figs/perc_plot.tiff", width = 5, height = 4, units = "in", bg = "white")
# n plot ------------------------------------------------------------------
cf_n_summary<-cf_rep %>%
group_by(shts_bin) %>%
summarize(n_bin=mean(n_bin)) %>%
mutate(year="mean\n(1998-2012)")
cf_rep<- cf_rep %>%
mutate(year=as.character(year))
plot_n_data<- full_join(cf_rep,cf_n_summary,
by=c("n_bin","shts_bin","year")) %>%
mutate(year=as.factor(year)) %>%
mutate(shts_bin=as.factor(shts_bin)) %>%
mutate(highlight=ifelse(year=="mean\n(1998-2012)","mean\n(1998-2012)","other")) %>%
mutate(year=as.character(year))
n_plot<-plot_n_data %>%
ggplot(aes(x=shts_bin,
y=n_bin,
group=year, size=highlight,color=highlight)) +
# scale_y_continuous(breaks=c(0,10,20,30,40,50,60))+
labs(x="shoots",y="Total no. of plants")+
geom_line() +
expand_limits(x= c(-0, 9))+
geom_text(data=plot_n_data %>% filter(shts_bin=="8") %>% filter(year=="mean\n(1998-2012)"),
aes(label = year,
x = shts_bin,
y = n_bin,
color = highlight),
size=2,
hjust = 0.6,
nudge_x=0.5,
# position = position_dodge(0.0)
)+
scale_x_discrete(labels = c(seq(1,7),expression("">=8)))+
# geom_text(aes(label = year))+
scale_color_manual(values = c("darkgreen","lightgrey")) +
scale_size_manual(values=c(1.0,0.5)) +
theme(legend.position="none") +
# ggtitle("title") +
theme_classic() +
theme(
legend.position="none",
plot.title = element_text(size=14)
)
# n_plot
# Save the figures in multiple formats
ggsave("./docs/data_summaries/figs/n_plot.pdf", width = 5, height = 4, units = "in", bg = "white")
ggsave("./docs/data_summaries/figs/n_plot.png", width = 5, height = 4, units = "in", bg = "white")
ggsave("./docs/data_summaries/figs/n_plot.tiff", width = 5, height = 4, units = "in", bg = "white")
fig_n_flrperc<-grid.arrange(n_plot, perc_plot, ncol = 1)
ggsave("./docs/data_summaries/figs/fig_n_flrperc.jpg", width = 6, height = 8, units = "in", bg = "white")
ggdraw() +
draw_image("./docs/data_summaries/figs/n_plot.png", x = 0.00, y = 0.21, scale = .8) +
draw_image("./docs/data_summaries/figs/perc_plot.png", x = 0.0, y = -0.21, scale = .8)
ggsave("./docs/data_summaries/figs/fig_n_flrperc.jpg", width = 4, height = 6, units = "in", bg = "white")