-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_model.py
405 lines (331 loc) · 13.9 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#!/usr/bin/env python
# Do *not* edit this script. Changes will be discarded so that we can process the models consistently.
# This file contains functions for evaluating models for the Challenge. You can run it as follows:
#
# python evaluate_model.py labels outputs scores.csv
#
# where 'labels' is a folder containing files with the labels, 'outputs' is a folder containing files with the outputs from your
# model, and 'scores.csv' (optional) is a collection of scores for the model outputs.
#
# Each label or output file must have the format described on the Challenge webpage. The scores for the algorithm outputs are also
# described on the Challenge webpage.
import os, os.path, sys, numpy as np
from helper_code import *
from sklearn import metrics
import matplotlib.pyplot as plt
import matplotlib
font = {'size' : 14}
matplotlib.rc('font', **font)
# Evaluate the models.
def evaluate_model(label_folder, output_folder):
# Load the labels.
patient_ids = find_data_folders(output_folder)
num_patients = len(patient_ids)
hospitals = list()
label_outcomes = list()
label_cpcs = list()
for i in range(num_patients):
patient_data_file = os.path.join(label_folder, patient_ids[i], patient_ids[i] + '.txt')
patient_data = load_text_file(patient_data_file)
hospital = get_hospital(patient_data)
label_outcome = get_outcome(patient_data)
label_cpc = get_cpc(patient_data)
hospitals.append(hospital)
label_outcomes.append(label_outcome)
label_cpcs.append(label_cpc)
# Load the model outputs.
output_outcomes = list()
output_outcome_probabilities = list()
output_cpcs = list()
for i in range(num_patients):
output_file = os.path.join(output_folder, patient_ids[i], patient_ids[i] + '.txt')
output_data = load_text_file(output_file)
output_outcome = get_outcome(output_data)
output_outcome_probability = get_outcome_probability(output_data)
output_cpc = get_cpc(output_data)
output_outcomes.append(output_outcome)
output_outcome_probabilities.append(output_outcome_probability)
output_cpcs.append(output_cpc)
# Evaluate the models.
challenge_score = compute_challenge_score(label_outcomes, output_outcome_probabilities, hospitals)
auroc_outcomes, auprc_outcomes = compute_auc(label_outcomes, output_outcome_probabilities)
plot_roc_curve(label_outcomes, output_outcome_probabilities)
accuracy_outcomes, _, _ = compute_accuracy(label_outcomes, output_outcomes)
f_measure_outcomes, _, _ = compute_f_measure(label_outcomes, output_outcomes)
mse_cpcs = compute_mse(label_cpcs, output_cpcs)
mae_cpcs = compute_mae(label_cpcs, output_cpcs)
# Return the results.
return challenge_score, auroc_outcomes, auprc_outcomes, accuracy_outcomes, f_measure_outcomes, mse_cpcs, mae_cpcs
# Compute the Challenge score.
def compute_challenge_score(labels, outputs, hospitals):
# Check the data.
assert len(labels) == len(outputs)
# Convert the data to NumPy arrays for easier indexing.
labels = np.asarray(labels, dtype=np.float64)
outputs = np.asarray(outputs, dtype=np.float64)
# Identify the unique hospitals.
unique_hospitals = sorted(set(hospitals))
num_hospitals = len(unique_hospitals)
# Initialize a confusion matrix for each hospital.
tps = np.zeros(num_hospitals)
fps = np.zeros(num_hospitals)
fns = np.zeros(num_hospitals)
tns = np.zeros(num_hospitals)
# Compute the confusion matrix at each output threshold separately for each hospital.
for i, hospital in enumerate(unique_hospitals):
idx = [j for j, x in enumerate(hospitals) if x == hospital]
current_labels = labels[idx]
current_outputs = outputs[idx]
num_instances = len(current_labels)
# Collect the unique output values as the thresholds for the positive and negative classes.
thresholds = np.unique(current_outputs)
thresholds = np.append(thresholds, thresholds[-1]+1)
thresholds = thresholds[::-1]
num_thresholds = len(thresholds)
idx = np.argsort(current_outputs)[::-1]
# Initialize the TPs, FPs, FNs, and TNs with no positive outputs.
tp = np.zeros(num_thresholds)
fp = np.zeros(num_thresholds)
fn = np.zeros(num_thresholds)
tn = np.zeros(num_thresholds)
tp[0] = 0
fp[0] = 0
fn[0] = np.sum(current_labels == 1)
tn[0] = np.sum(current_labels == 0)
# Update the TPs, FPs, FNs, and TNs using the values at the previous threshold.
k = 0
for l in range(1, num_thresholds):
tp[l] = tp[l-1]
fp[l] = fp[l-1]
fn[l] = fn[l-1]
tn[l] = tn[l-1]
while k < num_instances and current_outputs[idx[k]] >= thresholds[l]:
if current_labels[idx[k]] == 1:
tp[l] += 1
fn[l] -= 1
else:
fp[l] += 1
tn[l] -= 1
k += 1
# Compute the FPRs.
fpr = np.zeros(num_thresholds)
for l in range(num_thresholds):
if tp[l] + fn[l] > 0:
fpr[l] = float(fp[l]) / float(tp[l] + fn[l])
else:
fpr[l] = float('nan')
# Find the threshold such that FPR <= 0.05.
max_fpr = 0.05
if np.any(fpr <= max_fpr):
l = max(l for l, x in enumerate(fpr) if x <= max_fpr)
tps[i] = tp[l]
fps[i] = fp[l]
fns[i] = fn[l]
tns[i] = tn[l]
else:
tps[i] = tp[0]
fps[i] = fp[0]
fns[i] = fn[0]
tns[i] = tn[0]
# Compute the TPR at FPR <= 0.05 for each hospital.
tp = np.sum(tps)
fp = np.sum(fps)
fn = np.sum(fns)
tn = np.sum(tns)
if tp + fn > 0:
max_tpr = tp / (tp + fn)
else:
max_tpr = float('nan')
return max_tpr
# Compute area under the receiver operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC).
def compute_auc(labels, outputs):
assert len(labels) == len(outputs)
num_instances = len(labels)
# Convert the data to NumPy arrays for easier indexing.
labels = np.asarray(labels, dtype=np.float64)
outputs = np.asarray(outputs, dtype=np.float64)
# Collect the unique output values as the thresholds for the positive and negative classes.
thresholds = np.unique(outputs)
thresholds = np.append(thresholds, thresholds[-1]+1)
thresholds = thresholds[::-1]
num_thresholds = len(thresholds)
idx = np.argsort(outputs)[::-1]
# Initialize the TPs, FPs, FNs, and TNs with no positive outputs.
tp = np.zeros(num_thresholds)
fp = np.zeros(num_thresholds)
fn = np.zeros(num_thresholds)
tn = np.zeros(num_thresholds)
tp[0] = 0
fp[0] = 0
fn[0] = np.sum(labels == 1)
tn[0] = np.sum(labels == 0)
# Update the TPs, FPs, FNs, and TNs using the values at the previous threshold.
i = 0
for j in range(1, num_thresholds):
tp[j] = tp[j-1]
fp[j] = fp[j-1]
fn[j] = fn[j-1]
tn[j] = tn[j-1]
while i < num_instances and outputs[idx[i]] >= thresholds[j]:
if labels[idx[i]] == 1:
tp[j] += 1
fn[j] -= 1
else:
fp[j] += 1
tn[j] -= 1
i += 1
# Compute the TPRs, TNRs, and PPVs at each threshold.
tpr = np.zeros(num_thresholds)
tnr = np.zeros(num_thresholds)
ppv = np.zeros(num_thresholds)
for j in range(num_thresholds):
if tp[j] + fn[j] > 0:
tpr[j] = tp[j] / (tp[j] + fn[j])
else:
tpr[j] = float('nan')
if fp[j] + tn[j] > 0:
tnr[j] = tn[j] / (fp[j] + tn[j])
else:
tnr[j] = float('nan')
if tp[j] + fp[j] > 0:
ppv[j] = tp[j] / (tp[j] + fp[j])
else:
ppv[j] = float('nan')
# Compute AUROC as the area under a piecewise linear function with TPR/sensitivity (x-axis) and TNR/specificity (y-axis) and
# AUPRC as the area under a piecewise constant with TPR/recall (x-axis) and PPV/precision (y-axis).
auroc = 0.0
auprc = 0.0
for j in range(num_thresholds-1):
auroc += 0.5 * (tpr[j+1] - tpr[j]) * (tnr[j+1] + tnr[j])
auprc += (tpr[j+1] - tpr[j]) * ppv[j+1]
return auroc, auprc
# Construct the one-hot encoding of data for the given classes.
def compute_one_hot_encoding(data, classes):
num_instances = len(data)
num_classes = len(classes)
one_hot_encoding = np.zeros((num_instances, num_classes), dtype=np.bool_)
unencoded_data = list()
for i, x in enumerate(data):
for j, y in enumerate(classes):
if (x == y) or (is_nan(x) and is_nan(y)):
one_hot_encoding[i, j] = 1
return one_hot_encoding
# Compute the binary confusion matrix, where the columns are the expert labels and the rows are the classifier labels for the given
# classes.
def compute_confusion_matrix(labels, outputs, classes):
assert np.shape(labels) == np.shape(outputs)
num_instances = len(labels)
num_classes = len(classes)
A = np.zeros((num_classes, num_classes))
for k in range(num_instances):
for i in range(num_classes):
for j in range(num_classes):
if outputs[k, i] == 1 and labels[k, j] == 1:
A[i, j] += 1
return A
# Construct the binary one-vs-rest confusion matrices, where the columns are the expert labels and the rows are the classifier
# for the given classes.
def compute_one_vs_rest_confusion_matrix(labels, outputs, classes):
assert np.shape(labels) == np.shape(outputs)
num_instances = len(labels)
num_classes = len(classes)
A = np.zeros((num_classes, 2, 2))
for i in range(num_instances):
for j in range(num_classes):
if labels[i, j] == 1 and outputs[i, j] == 1: # TP
A[j, 0, 0] += 1
elif labels[i, j] == 0 and outputs[i, j] == 1: # FP
A[j, 0, 1] += 1
elif labels[i, j] == 1 and outputs[i, j] == 0: # FN
A[j, 1, 0] += 1
elif labels[i, j] == 0 and outputs[i, j] == 0: # TN
A[j, 1, 1] += 1
return A
# Compute accuracy.
def compute_accuracy(labels, outputs):
# Compute the confusion matrix.
classes = np.unique(np.concatenate((labels, outputs)))
labels = compute_one_hot_encoding(labels, classes)
outputs = compute_one_hot_encoding(outputs, classes)
A = compute_confusion_matrix(labels, outputs, classes)
# Compute accuracy.
if np.sum(A) > 0:
accuracy = np.trace(A) / np.sum(A)
else:
accuracy = float('nan')
# Compute per-class accuracy.
num_classes = len(classes)
per_class_accuracy = np.zeros(num_classes)
for i in range(num_classes):
if np.sum(labels[:, i]) > 0:
per_class_accuracy[i] = A[i, i] / np.sum(A[:, i])
else:
per_class_accuracy[i] = float('nan')
return accuracy, per_class_accuracy, classes
# Compute macro F-measure.
def compute_f_measure(labels, outputs):
# Compute confusion matrix.
classes = np.unique(np.concatenate((labels, outputs)))
labels = compute_one_hot_encoding(labels, classes)
outputs = compute_one_hot_encoding(outputs, classes)
A = compute_one_vs_rest_confusion_matrix(labels, outputs, classes)
num_classes = len(classes)
per_class_f_measure = np.zeros(num_classes)
for k in range(num_classes):
tp, fp, fn, tn = A[k, 0, 0], A[k, 0, 1], A[k, 1, 0], A[k, 1, 1]
if 2 * tp + fp + fn > 0:
per_class_f_measure[k] = float(2 * tp) / float(2 * tp + fp + fn)
else:
per_class_f_measure[k] = float('nan')
if np.any(np.isfinite(per_class_f_measure)):
macro_f_measure = np.nanmean(per_class_f_measure)
else:
macro_f_measure = float('nan')
return macro_f_measure, per_class_f_measure, classes
# Compute mean-squared error.
def compute_mse(labels, outputs):
assert len(labels) == len(outputs)
labels = np.asarray(labels, dtype=np.float64)
outputs = np.asarray(outputs, dtype=np.float64)
mse = np.mean((labels - outputs)**2)
return mse
# Compute mean-absolute error.
def compute_mae(labels, outputs):
assert len(labels) == len(outputs)
labels = np.asarray(labels, dtype=np.float64)
outputs = np.asarray(outputs, dtype=np.float64)
mae = np.mean(np.abs(labels - outputs))
return mae
def plot_roc_curve(labels, outputs):
fpr, tpr, _ = metrics.roc_curve(labels, outputs)
plt.plot(fpr,tpr)
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
#idx = np.argwhere(fpr==0.05)[0][0]
plt.title("ROC from validation on the training set")
plt.hlines(0.05, xmin = 0, xmax = 0.05, color="red",linestyle='--')
plt.vlines(0.05, ymin = 0, ymax = 0.05, color="red",linestyle='--')
plt.xlim(0,1)
plt.ylim(0,1)
plt.savefig("./roc_plt.png",dpi=300, bbox_inches='tight')
#plt.show()
if __name__ == '__main__':
# Compute the scores for the model outputs.
scores = evaluate_model(sys.argv[1], sys.argv[2])
# Unpack the scores.
challenge_score, auroc_outcomes, auprc_outcomes, accuracy_outcomes, f_measure_outcomes, mse_cpcs, mae_cpcs = scores
# Construct a string with scores.
output_string = \
'Challenge Score: {:.3f}\n'.format(challenge_score) + \
'Outcome AUROC: {:.3f}\n'.format(auroc_outcomes) + \
'Outcome AUPRC: {:.3f}\n'.format(auprc_outcomes) + \
'Outcome Accuracy: {:.3f}\n'.format(accuracy_outcomes) + \
'Outcome F-measure: {:.3f}\n'.format(f_measure_outcomes) + \
'CPC MSE: {:.3f}\n'.format(mse_cpcs) + \
'CPC MAE: {:.3f}\n'.format(mae_cpcs)
# Output the scores to screen and/or a file.
if len(sys.argv) == 3:
print(output_string)
elif len(sys.argv) == 4:
with open(sys.argv[3], 'w') as f:
f.write(output_string)