-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_model.py
89 lines (68 loc) · 3.34 KB
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/env python
# Do *not* edit this script. Changes will be discarded so that we can run the trained models consistently.
# This file contains functions for running models for the Challenge. You can run it as follows:
#
# python run_model.py models data outputs
#
# where 'models' is a folder containing the your trained models, 'data' is a folder containing the Challenge data, and 'outputs' is a
# folder for saving your models' outputs.
import numpy as np, scipy as sp, os, sys
from helper_code import *
from team_code import load_challenge_models, run_challenge_models
# Run model.
def run_model(model_folder, data_folder, output_folder, allow_failures, verbose):
# Load model(s).
if verbose >= 1:
print('Loading the Challenge models...')
# You can use this function to perform tasks, such as loading your models, that you only need to perform once.
models = load_challenge_models(model_folder, verbose) ### Teams: Implement this function!!!
# Find the Challenge data.
if verbose >= 1:
print('Finding the Challenge data...')
patient_ids = find_data_folders(data_folder)
num_patients = len(patient_ids)
if num_patients==0:
raise Exception('No data was provided.')
# Create a folder for the Challenge outputs if it does not already exist.
os.makedirs(output_folder, exist_ok=True)
# Run the team's model on the Challenge data.
if verbose >= 1:
print('Running the Challenge models on the Challenge data...')
# Iterate over the patients.
for i in range(num_patients):
if verbose >= 2:
print(' {}/{}...'.format(i+1, num_patients))
patient_id = patient_ids[i]
# Allow or disallow the models to fail on parts of the data; this can be helpful for debugging.
try:
outcome_binary, outcome_probability, cpc = run_challenge_models(models, data_folder, patient_id, verbose) ### Teams: Implement this function!!!
except:
if allow_failures:
if verbose >= 2:
print('... failed.')
outcome_binary, outcome_probability, cpc = float('nan'), float('nan'), float('nan')
else:
raise
# Save Challenge outputs.
# Create a folder for the Challenge outputs if it does not already exist.
os.makedirs(os.path.join(output_folder, patient_id), exist_ok=True)
output_file = os.path.join(output_folder, patient_id, patient_id + '.txt')
save_challenge_outputs(output_file, patient_id, outcome_binary, outcome_probability, cpc)
if verbose >= 1:
print('Done.')
if __name__ == '__main__':
# Parse the arguments.
if not (len(sys.argv) == 4 or len(sys.argv) == 5):
raise Exception('Include the model, data, and output folders as arguments, e.g., python run_model.py model data outputs.')
# Define the model, data, and output folders.
model_folder = sys.argv[1]
data_folder = sys.argv[2]
output_folder = sys.argv[3]
# Allow or disallow the model to fail on parts of the data; helpful for debugging.
allow_failures = False
# Change the level of verbosity; helpful for debugging.
if len(sys.argv)==5 and is_integer(sys.argv[4]):
verbose = int(sys.argv[4])
else:
verbose = 1
run_model(model_folder, data_folder, output_folder, allow_failures, verbose)