diff --git a/app.jl b/app.jl
index f4f0168..a2bccf1 100644
--- a/app.jl
+++ b/app.jl
@@ -1,18 +1,18 @@
+module App
using GenieFramework, PlotlyBase, JLD2, Statistics, DataFrames
using Interpolations
using Random
-#= include("NodeUtils.jl") =#
-using .NodeUtils
-using .Delhi
-#= include("delhi.jl") =#
-#= include("utils.jl") =#
+# these modules are automatically loaded when running Genie.loadapp()
+using ..NodeUtils
+using ..Delhi
+using ..Utils
@genietools
-prod_mode = (haskey(ENV, "GENIE_ENV") && ENV["GENIE_ENV"] == "prod") ? "true" : "false"
-button_color = prod_mode == "true" ? "grey" : "primary"
-button_tooltip = prod_mode == "true" ? "Run the app locally to enable this button" : ""
+const prod_mode = (haskey(ENV, "GENIE_ENV") && ENV["GENIE_ENV"] == "prod") ? "true" : "false"
+const button_color = prod_mode == "true" ? "grey" : "primary"
+const button_tooltip = prod_mode == "true" ? "Run the app locally to enable this button" : ""
-rng = MersenneTwister(123)
+const rng = MersenneTwister(123)
if isfile("data.jld2")
@load "data.jld2" train_df test_df scaling
else
@@ -24,14 +24,14 @@ end
if isfile("params.jld")
@load "params.jld" θ
end
-features = [:meantemp, :humidity, :wind_speed, :meanpressure]
-units = ["Celsius", "g/m³ of water", "km/h", "hPa"]
-feature_names = ["Mean temperature", "Humidity", "Wind speed", "Mean pressure"]
+const features = [:meantemp, :humidity, :wind_speed, :meanpressure]
+const units = ["Celsius", "g/m³ of water", "km/h", "hPa"]
+const feature_names = ["Mean temperature", "Humidity", "Wind speed", "Mean pressure"]
-data = vcat(train_df, test_df)
+const data = vcat(train_df, test_df)
# Functions to interpolate when calculating the MSE
-interpolators = [LinearInterpolation(data.t, data[!, col]) for col in names(data)]
+const interpolators = [LinearInterpolation(data.t, data[!, col]) for col in names(data)]
# NODE parameters
@@ -48,7 +48,7 @@ t_grid = range(minimum(data.t), maximum(data.t), length=N_steps) |> collect
@in start=false
@in animate=false
@out prod_mode = prod_mode
- @out θ=θ_new
+ @out θ=θ
@out losses = Float32[]
@out temp_pdata = [PlotlyBase.scatter(x=[1,2,3])]
@out hum_pdata = [PlotlyBase.scatter(x=[1,2,3])]
@@ -101,13 +101,5 @@ t_grid = range(minimum(data.t), maximum(data.t), length=N_steps) |> collect
end
end
-ui() =[
- h1("train and predict"),btn("Train", @click(:start), loading=:start),
- range(1:100,:r),
- cell(class="row"),
- GenieFramework.plot(:temp_pdata, layout=:temp_layout),
- GenieFramework.plot(:hum_pdata, layout=:hum_layout),
- GenieFramework.plot(:wind_pdata, layout=:wind_layout),
- GenieFramework.plot(:press_pdata, layout=:press_layout)
- ]
@page("/","app.jl.html")
+end
diff --git a/app.jl.html b/app.jl.html
index 3222ce1..8a1d55f 100644
--- a/app.jl.html
+++ b/app.jl.html
@@ -1,66 +1,69 @@
-
-
-
- Prediction horizon (samples)
-
-
-
- Prediction step size (samples)
-
-
-
-
-
-
-
-
-
-
- $button_tooltip
-
-
-
-
-
-
- This app uses a neural ordinary differential equation (NODE) to forecast weather data from Delhi. The forecast is implemented with the DiffeqFlux, DifferentialEquations, Optimization and Lux packages, and the code is based on the blog post by Sebastian Callh.
-
-
-
-
-
+
Mean-squared error
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+ Prediction horizon (samples)
+
+
+
+ Prediction step size (samples)
+
+
+
+
+
+
+
+
+ $button_tooltip
+
+
+
+
+
+
+ This app uses a neural ordinary differential equation (NODE) to forecast weather data from Delhi. The forecast is implemented with the DiffeqFlux, DifferentialEquations, Optimization and Lux packages, and the code is based on the blog post by Sebastian Callh.
+
+
+
+
-
diff --git a/data.jld2 b/data.jld2
index fdcc747..11dd0b6 100644
Binary files a/data.jld2 and b/data.jld2 differ
diff --git a/lib/utils.jl b/lib/utils.jl
index e19a6aa..6d05604 100644
--- a/lib/utils.jl
+++ b/lib/utils.jl
@@ -1,3 +1,6 @@
+module Utils
+using PlotlyBase, DataFrames, Statistics, Interpolations
+export rescale_t, rescale_y, calc_mse, plot_pred, get_layout, get_traces
rescale_t(x) = t_scale .* x .+ t_mean
rescale_y(x,i) = y_scale[i] .* x .+ y_mean[i]
@@ -16,24 +19,19 @@ function plot_pred(t, y, t̂, ŷ; kwargs...)
return traces
end
-predict(y0, t, θ, state) = begin
- node, _, _ = neural_ode(t, length(y0))
- ŷ = Array(node(y0, θ, state)[1])
-end
-
get_layout(title, xlabel, ylabel) = PlotlyBase.Layout(
#= title=title, =#
xaxis=attr( title=xlabel, showgrid=false),
yaxis=attr( title=ylabel, showgrid=true),
- margin=attr(l=5, r=5, t=5, b=5),
+ #= margin=attr(l=5, r=5, t=15, b=5), =#
legend=attr( x=1, y=1.02, yanchor="bottom", xanchor="right", orientation="h"),
)
function get_traces(t_train, t_predict, y_train, ŷ, y_test, quantity_idx)
[
- PlotlyBase.scatter(x=rescale_t(t_predict), y=rescale_y(ŷ,quantity_idx), mode="line", name="ŷ"),
+ PlotlyBase.scatter(x=rescale_t(t_predict), y=rescale_y(ŷ,quantity_idx), mode="line", name="ŷ",line=attr(color="black")),
PlotlyBase.scatter(x=rescale_t(t_train), y=rescale_y(y_train,quantity_idx), mode="markers", marker=attr(size=10, line=attr(width=2, color="DarkSlateGrey")), name = "y_train"),
- PlotlyBase.scatter(x=rescale_t(t_test), y=rescale_y(y_test,quantity_idx), mode="markers", name = "y_test")
+ PlotlyBase.scatter(x=rescale_t(t_test), y=rescale_y(y_test,quantity_idx), mode="markers", name = "y_test", marker=attr(size=6, color="orange"))
]
end
@@ -51,9 +49,9 @@ function get_traces(train_df, test_df, predict_df, norm)
for (i, col_name) in zip(1:4, names(train_df)[2:end])
# Generate traces for each feature
feature_traces = [
- PlotlyBase.scatter(x=rescale_t(predict_df.t), y=rescale_y(predict_df[!, col_name], i), mode="line", name="Predict"),
- PlotlyBase.scatter(x=rescale_t(train_df.t), y=rescale_y(train_df[!, col_name], i), mode="markers", marker=attr(size=10, line=attr(width=2, color="DarkSlateGrey")), name = "Train"),
- PlotlyBase.scatter(x=rescale_t(test_df.t), y=rescale_y(test_df[!, col_name], i), mode="markers", name = "Test")
+ PlotlyBase.scatter(x=rescale_t(predict_df.t), y=rescale_y(predict_df[!, col_name], i), mode="line", line=attr(color="black"), name="Predict"),
+ PlotlyBase.scatter(x=rescale_t(train_df.t), y=rescale_y(train_df[!, col_name], i), mode="markers", marker=attr(size=10, color="darkcyan", line=attr(width=0, color="DarkSlateGrey")), name = "Train"),
+ PlotlyBase.scatter(x=rescale_t(test_df.t), y=rescale_y(test_df[!, col_name], i), mode="markers", marker=attr(size=6, color="orange"), name = "Test")
]
# Add the set of traces to the list
@@ -62,3 +60,4 @@ function get_traces(train_df, test_df, predict_df, norm)
return all_traces
end
+end