-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoobnet_exec.py
148 lines (110 loc) · 5.2 KB
/
oobnet_exec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/env python3
"""
(c) Research Group CAMMA, University of Strasbourg, IHU Strasbourg, France
Website: http://camma.u-strasbg.fr
"""
import argparse
import cv2
import numpy as np
import os, sys
from time import time
import pandas as pd
from model import build_model, preprocess
class Inference:
def __init__(self, ckpt_path, in_video_path, out_video_path, out_text_path, transform_type, kernel_size=20):
self.in_video_path = in_video_path
self.out_video_path = out_video_path
self.out_text_path = out_text_path
self.ckpt_path = ckpt_path
self.kernel_size = kernel_size
self.transform_type = transform_type
self.status = {'eta':None, 'percents':None}
self.stop = False
def run(self):
if self.out_video_path is None and self.out_text_path is None:
return
if not isinstance(self.transform_type, str) or self.transform_type.lower() not in ['solid', 'blur']:
raise ValueError("transform_type value should be in either 'solid' or 'blur' but found {}".format(self.transform_type))
self.transform_type = self.transform_type.lower()
model = build_model()
model.load_weights(self.ckpt_path)
try:
video_in = cv2.VideoCapture(self.in_video_path)
assert(video_in.isOpened())
except OSError:
print("Could not open/read file:", self.in_video_path)
sys.exit()
width = int(video_in.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video_in.get(cv2.CAP_PROP_FRAME_HEIGHT))
video_nframes = int(video_in.get(cv2.CAP_PROP_FRAME_COUNT))
k = int(self.kernel_size / 100 * width )
blur_kernel = (k, k)
size = (width, height)
fps = video_in.get(cv2.CAP_PROP_FPS)
video_out_name = os.path.basename(self.in_video_path).split('.')
video_out_name = video_out_name[0]+'_oob.'+video_out_name[1]
if self.out_video_path:
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
video_out = cv2.VideoWriter(self.out_video_path, fourcc, fps, size)
i = 0
ok = True
pred_history = []
time_0 = time()
ok, frame = video_in.read()
while ok and not self.stop:
# Execute model
prediction = model(preprocess(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
pred_history.append(prediction.numpy()[0,0,0])
oob = np.round(pred_history[-1]) # binarize prediction
if self.out_video_path:
if oob:
if self.transform_type == 'blur':
frame = cv2.blur(frame, blur_kernel)
else:# self.transform_type == 'solid':
mean_rgb = frame.mean(axis=0).mean(axis=0).astype(int)
for c in range(3):
frame[:,:,c]=mean_rgb[c]
video_out.write(frame)
eta = (time()-time_0) / (i+1) * (video_nframes - i - 1) #ms
eta = eta / 60 #minutes
p_complete = int((i+1)/video_nframes*100)
self.status = {'eta':eta, 'percents':p_complete}
# print progress
if i > 0 and i % 1000 == 0:
print("{}% -- ETA {} minutes".format(p_complete, int(eta)))
# read next frame
ok, frame = video_in.read()
i += 1
video_in.release()
if self.out_video_path:
video_out.release()
if self.out_text_path:
pred_df = pd.DataFrame({'FRAME_ID':range(len(pred_history)), 'OOB':pred_history})
pred_df.to_csv(self.out_text_path, index=False)
if __name__ == '__main__':
def file_path(string):
if os.path.isfile(string):
return string
else:
raise FileNotFoundError(string)
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", help="Path to the pretrained weights (h5 file)", type=file_path, default='./ckpt/oobnet_weights.h5')
parser.add_argument("--video_in", help="Path to the input video", type=file_path)
parser.add_argument("--video_out", help="Path to the output video", type=str, default=None)
parser.add_argument("--text_out", help="Path to the output text file", type=str, default=None)
parser.add_argument("--transform_type", help="Transformation to apply to out-of-body frames. Must be 'solid' or 'blur'", type=str, default="solid")
parser.add_argument("--kernel_size", help="Blurring kernel size as percent of the width of the video", type=int, default=20)
args = parser.parse_args()
video_in = args.video_in
video_out = args.video_out
text_out = args.text_out
ckpt = args.ckpt_path
transform_type = args.transform_type
kernel_size = args.kernel_size
model_exec = Inference(ckpt_path=ckpt,
in_video_path=video_in,
out_video_path=video_out,
out_text_path=text_out,
transform_type=transform_type,
kernel_size=kernel_size)
model_exec.run()