-
Notifications
You must be signed in to change notification settings - Fork 2
/
seq2seq.py
325 lines (256 loc) · 15 KB
/
seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import torch
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import numpy as np
import torch.nn.functional as F
from attention import AdditiveAttention
class Encoder(nn.Module):
"""Encoder bi-GRU"""
def __init__(self, input_dim, char_embed_dim,
encoder_hidd_dim,
decoder_hidd_dim,
num_layers,
morph_embeddings=None,
fasttext_embeddings=None,
char_padding_idx=0,
word_padding_idx=0,
dropout=0):
super(Encoder, self).__init__()
morph_embeddings_dim = 0
self.morph_embedding_layer = None
fasttext_embeddings_dim = 0
self.fasttext_embedding_layer = None
self.char_embedding_layer = nn.Embedding(input_dim,
char_embed_dim,
padding_idx=char_padding_idx)
if morph_embeddings is not None:
self.morph_embedding_layer = nn.Embedding.from_pretrained(morph_embeddings,
padding_idx=word_padding_idx)
morph_embeddings_dim = morph_embeddings.shape[1]
if fasttext_embeddings is not None:
self.fasttext_embedding_layer = nn.Embedding.from_pretrained(fasttext_embeddings)
fasttext_embeddings_dim = fasttext_embeddings.shape[1]
self.rnn = nn.GRU(input_size=char_embed_dim + morph_embeddings_dim + fasttext_embeddings_dim,
hidden_size=encoder_hidd_dim,
num_layers=num_layers,
batch_first=True,
bidirectional=True,
dropout=dropout if num_layers > 1 else 0.0)
self.linear_map = nn.Linear(encoder_hidd_dim * 2, decoder_hidd_dim)
def forward(self, char_src_seqs, word_src_seqs, src_seqs_lengths):
embedded_seqs = self.char_embedding_layer(char_src_seqs)
# embedded_seqs shape: [batch_size, max_src_seq_len, char_embed_dim]
# Add morph embeddings to the char embeddings if needed
if self.morph_embedding_layer is not None:
embedded_word_seqs_morph = self.morph_embedding_layer(word_src_seqs)
# embedded_word_seqs_morph shape: [batch_size, max_src_seq_len, morph_embeddings_dim]
embedded_seqs = torch.cat((embedded_seqs, embedded_word_seqs_morph), dim=2)
# embedded_seqs shape: [batch_size, max_src_seq_len, char_embed_dim + morph_embeddings_dim]
# Add fasttext embeddings to the char embeddings if needed
if self.fasttext_embedding_layer is not None:
embedded_word_seqs_ft = self.fasttext_embedding_layer(word_src_seqs)
# embedded_word_seqs_ft shape: [batch_size, max_src_seq_len, fasttext_embeddings_dim]
embedded_seqs = torch.cat((embedded_seqs, embedded_word_seqs_ft), dim=2)
# embedded_seqs shape: [batch_size, max_src_seq_len, char_embed_dim + fasttext_embeddings_dim]
# packing the embedded_seqs
packed_embedded_seqs = pack_padded_sequence(embedded_seqs, src_seqs_lengths, batch_first=True)
output, hidd = self.rnn(packed_embedded_seqs)
# hidd shape: [num_layers * num_dirs, batch_size, encoder_hidd_dim]
# concatenating the forward and backward vectors for each layer
hidd = torch.cat([hidd[0:hidd.size(0):2], hidd[1:hidd.size(0):2]], dim=2)
# hidd shape: [num layers, batch_size, num_directions * encoder_hidd_dim]
# mapping the encode hidd state to the decoder hidd dim space
hidd = torch.tanh(self.linear_map(hidd))
# unpacking the output
output, lengths = pad_packed_sequence(output, batch_first=True)
# output shape: [batch_size, src_seqs_length, num_dirs * encoder_hidd_dim]
return output, hidd
class Decoder(nn.Module):
"""Decoder GRU
Things to note:
- The input to the decoder rnn at each time step is the
concatenation of the embedded token and the context vector
- The context vector will have a size of batch_size, encoder_hidd_dim * 2
- The prediction layer input is the concatenation of
the context vector and the h_t of the decoder
"""
def __init__(self, input_dim, char_embed_dim,
decoder_hidd_dim, num_layers,
output_dim,
encoder_hidd_dim,
padding_idx=0,
embed_trg_gender=False,
gender_embeddings=None,
gender_input_dim=0,
gender_embed_dim=0,
dropout=0):
super(Decoder, self).__init__()
self.attention = AdditiveAttention(encoder_hidd_dim=encoder_hidd_dim,
decoder_hidd_dim=decoder_hidd_dim)
self.gender_embedding_layer = None
if embed_trg_gender:
if gender_embeddings is None:
self.gender_embedding_layer = nn.Embedding(gender_input_dim, gender_embed_dim)
else:
self.gender_embedding_layer = nn.Embedding.from_pretrained(gender_embeddings)
self.char_embedding_layer = nn.Embedding(input_dim,
char_embed_dim,
padding_idx=padding_idx)
# the input to the rnn is the context_vector + embedded token --> embed_dim + hidd_dim
self.rnn = nn.GRU(input_size=char_embed_dim + encoder_hidd_dim * 2,
hidden_size=decoder_hidd_dim,
num_layers=num_layers,
batch_first=True,
dropout=dropout if num_layers > 1 else 0.0)
# the input to the classifier is h_t + context_vector + gender_embed_dim? --> hidd_dim * 2
self.classification_layer = nn.Linear(encoder_hidd_dim * 2
+ decoder_hidd_dim * num_layers
+ gender_embed_dim + char_embed_dim, output_dim)
self.dropout_layer = nn.Dropout(dropout)
def forward(self, trg_seqs, encoder_outputs, decoder_h_t, context_vectors,
attention_mask, trg_gender=None):
# trg_seqs shape: [batch_size]
batch_size = trg_seqs.shape[0]
trg_seqs = trg_seqs.unsqueeze(1)
# trg_seqs shape: [batch_size, 1]
# Step 1: embedding the target seqs
embedded_seqs = self.char_embedding_layer(trg_seqs)
# embedded_seqs shape: [batch_size, 1, embed_dim]
# context_vectors shape: [batch_size, encoder_hidd_dim * 2]
# changing shape to: [batch_size, 1, encoder_hidd_dim * 2]
context_vectors = context_vectors.unsqueeze(1)
# concatenating the embedded trg sequence with the context_vectors
rnn_input = torch.cat((embedded_seqs, context_vectors), dim=2)
# rnn_input shape: [batch_size, 1, embed_dim + encoder_hidd_dim * 2]
# Step 2: feeding the input to the rnn and updating the decoder_h_t
decoder_output, decoder_h_t = self.rnn(rnn_input, decoder_h_t)
# decoder output shape: [batch_size, 1, num_dirs * hidd_dim]
# decoder_h_t shape: [num_layers * num_dirs, batch_size, hidd_dim]
# Step 3: updating the context vectors through attention
context_vectors, atten_scores = self.attention(keys=encoder_outputs,
query=decoder_h_t,
mask=attention_mask)
# Step 4: get the prediction vector
# embed trg gender info if needed
if self.gender_embedding_layer is not None:
embedded_trg_gender = self.gender_embedding_layer(trg_gender)
# embedded_trg_gender shape: [batch_size, gender_embed_dim]
# concatenating decoder_h_t, context_vectors, and the
# embedded_trg_gender to create a prediction vector
if self.rnn.num_layers == 1:
assert decoder_output.squeeze(1).eq(decoder_h_t.view(decoder_h_t.shape[1], -1)).all().item()
predictions_vector = torch.cat((decoder_h_t.view(decoder_h_t.shape[1], -1),
context_vectors, embedded_trg_gender,
embedded_seqs.squeeze(1)), dim=1)
# predictions_vector: [batch_size, hidd_dim + encoder_hidd_dim * 2 + gender_embed_dim]
else:
# concatenating decoder_h_t with context_vectors to
# create a prediction vector
predictions_vector = torch.cat((decoder_h_t.view(decoder_h_t.shape[1], -1),
context_vectors, embedded_seqs.squeeze(1)), dim=1)
# predictions_vector: [batch_size, hidd_dim + encoder_hidd_dim * 2]
# Step 5: feeding the prediction vector to the fc layer
# to a make a prediction
# apply dropout if needed
predictions_vector = self.dropout_layer(predictions_vector)
prediction = self.classification_layer(predictions_vector)
# prediction shape: [batch_size, output_dim]
return prediction, decoder_h_t, atten_scores, context_vectors
class Seq2Seq(nn.Module):
"""Seq2Seq model"""
def __init__(self, encoder_input_dim, encoder_embed_dim,
encoder_hidd_dim, encoder_num_layers,
decoder_input_dim, decoder_embed_dim,
decoder_hidd_dim, decoder_num_layers,
decoder_output_dim,
morph_embeddings=None, fasttext_embeddings=None,
gender_embeddings=None,
embed_trg_gender=False, gender_input_dim=0,
gender_embed_dim=0, char_src_padding_idx=0,
word_src_padding_idx=0, trg_padding_idx=0,
dropout=0, trg_sos_idx=2):
super(Seq2Seq, self).__init__()
self.encoder = Encoder(input_dim=encoder_input_dim,
char_embed_dim=encoder_embed_dim,
encoder_hidd_dim=encoder_hidd_dim,
decoder_hidd_dim=decoder_hidd_dim,
num_layers=encoder_num_layers,
morph_embeddings=morph_embeddings,
fasttext_embeddings=fasttext_embeddings,
char_padding_idx=char_src_padding_idx,
word_padding_idx=word_src_padding_idx,
dropout=dropout)
self.decoder = Decoder(input_dim=decoder_input_dim,
char_embed_dim=decoder_embed_dim,
decoder_hidd_dim=decoder_hidd_dim,
num_layers=decoder_num_layers,
encoder_hidd_dim=encoder_hidd_dim,
output_dim=decoder_input_dim,
padding_idx=trg_padding_idx,
embed_trg_gender=embed_trg_gender,
gender_input_dim=gender_input_dim,
gender_embed_dim=gender_embed_dim,
gender_embeddings=gender_embeddings,
dropout=dropout)
self.char_src_padding_idx = char_src_padding_idx
self.trg_sos_idx = trg_sos_idx
self.sampling_temperature = 3
def create_mask(self, src_seqs, src_padding_idx):
mask = (src_seqs != src_padding_idx)
return mask
def forward(self, char_src_seqs, word_src_seqs, src_seqs_lengths, trg_seqs,
trg_gender=None, teacher_forcing_prob=0.3):
# trg_seqs shape: [batch_size, trg_seqs_length]
# reshaping to: [trg_seqs_length, batch_size]
trg_seqs = trg_seqs.permute(1, 0)
trg_seqs_length, batch_size = trg_seqs.shape
# passing the src to the encoder
encoder_outputs, encoder_hidd = self.encoder(char_src_seqs, word_src_seqs, src_seqs_lengths)
# creating attention masks
attention_mask = self.create_mask(char_src_seqs, self.char_src_padding_idx)
predictions = []
decoder_attention_scores = []
# initializing the trg_seqs to <s> token
y_t = torch.ones(batch_size, dtype=torch.long) * self.trg_sos_idx
# intializing the context_vectors to zero
context_vectors = torch.zeros(batch_size, self.encoder.rnn.hidden_size * 2)
# context_vectors shape: [batch_size, encoder_hidd_dim * 2]
# initializing the hidden state of the decoder to the encoder hidden state
decoder_h_t = encoder_hidd
# decoder_h_t shape: [batch_size, decoder_hidd_dim]
# moving y_t and context_vectors to the right device
y_t = y_t.to(encoder_hidd.device)
context_vectors = context_vectors.to(encoder_hidd.device)
for i in range(0, trg_seqs_length):
teacher_forcing = np.random.random() < teacher_forcing_prob
# if teacher_forcing, use ground truth target tokens
# as an input to the decoder
if teacher_forcing:
y_t = trg_seqs[i]
# do a single decoder step
prediction, decoder_h_t, atten_scores, context_vectors = self.decoder(trg_seqs=y_t,
trg_gender=trg_gender,
encoder_outputs=encoder_outputs,
decoder_h_t=decoder_h_t,
context_vectors=context_vectors,
attention_mask=attention_mask)
# If not teacher force, use the maximum
# prediction as an input to the decoder in
# the next time step
if not teacher_forcing:
# we multiply the predictions with a sampling_temperature
# to make the probablities peakier, so we can be confident about the
# maximum prediction
pred_output_probs = F.softmax(prediction * self.sampling_temperature, dim=1)
y_t = torch.argmax(pred_output_probs, dim=1)
predictions.append(prediction)
decoder_attention_scores.append(atten_scores)
predictions = torch.stack(predictions)
# predictions shape: [trg_seq_len, batch_size, output_dim]
predictions = predictions.permute(1, 0, 2)
# predictions shape: [batch_size, trg_seq_len, output_dim]
decoder_attention_scores = torch.stack(decoder_attention_scores)
# attention_scores_total shape: [trg_seq_len, batch_size, src_seq_len]
decoder_attention_scores = decoder_attention_scores.permute(1, 0, 2)
# attention_scores_total shape: [batch_size, trg_seq_len, src_seq_len]
return predictions, decoder_attention_scores