forked from roahmlab/DEFORM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DEFORM_sim.py
463 lines (409 loc) · 29.5 KB
/
DEFORM_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import torch
import torch.nn as nn
import torch.nn.functional as F
from DEFORM_func import DEFORM_func
from util import rotation_matrix
from util import computeW, computeLengths, computeEdges, computeLength_only
import theseus as th
from torch_geometric.nn import GCNConv
from torch_geometric.data import Data
class DEFORM_sim(nn.Module):
def __init__(self, n_vert, n_edge, pbd_iter, device):
super().__init__()
"""
Parameters:
n_vert: number of vertices
n_edge: number of edges
pbd_iter: iteration of enforcing inextensibility with momentum conservation
device: cpu/cuda
"""
self.n_vert = n_vert
self.n_edge = n_edge
self.device = device
self.DEFORM_func = DEFORM_func(n_vert, n_edge, device=device)
self.integration_ratio = nn.Parameter(torch.tensor(1., device=device))
self.velocity_ratio = nn.Parameter(torch.tensor(0., device=device))
self.force_scale = torch.tensor((5.)).to(device)
"""
Residual Learning with GCN
To do: consider using other smaller size neural network, e.g., lstm
"""
hidden_size = 32
self.vert_conv1 = GCNConv(3, hidden_size).to(device)
self.vert_conv2 = GCNConv(hidden_size, hidden_size).to(device)
self.delta_vert_conv1 = GCNConv(3, hidden_size).to(device)
self.delta_vert_conv2 = GCNConv(hidden_size, hidden_size).to(device)
self.fc = nn.Sequential(nn.Linear(self.n_vert * (hidden_size * 2) + 4 * 3, hidden_size * 3),
nn.ReLU(),
nn.Linear((hidden_size * 3), (self.n_vert-4) * 3)).to(device) # Final output size per time step
"""undeformed configuration"""
rest_vert = (torch.tensor(((0.893471, -0.133465, 0.018059),
(0.880771, -0.119666, 0.017733),
(0.791946, -0.084258, 0.009944),
(0.680462, -0.102366, 0.018528),
(0.590795, -0.144219, 0.021808),
(0.494905, -0.156384, 0.017816),
(0.396916, -0.143114, 0.021549),
(0.299291, -0.148755, 0.014955),
(0.200583, -0.146497, 0.01727),
(0.09586, -0.142385, 0.016456),
(-0.000782, -0.147084, 0.016081),
(-0.071514, -0.17382, 0.015446),
(-0.094659, -0.186181, 0.012403)))).unsqueeze(dim=0).repeat(1, 1, 1).to(device)
rest_vert = torch.cat((rest_vert[:, :, 0].unsqueeze(dim=-1), rest_vert[:, :, 2].unsqueeze(dim=-1), -rest_vert[:, :, 1].unsqueeze(dim=-1)), dim=-1)
self.m_restEdgeL, self.m_restRegionL = computeLengths(computeEdges(rest_vert.clone()))
self.rest_vert = nn.Parameter(rest_vert)
self.m_pmass = torch.ones(1, self.n_vert).to(self.device) * 0.02
self.mocap_mass = nn.Parameter(torch.ones(1, self.n_vert).to(self.device) * 1e-7)
self.gravity = torch.tensor((0, 0, -9.81), device=device)
self.dt = 1e-2
self.pbd_iter = pbd_iter
"""vectorized force accumulation"""
self.w_masks = torch.zeros(1, n_vert, n_edge, 1).to(device)
self.m_masks = torch.zeros(1, n_vert, n_edge, 1, 1).to(device)
self.plusGKB_masks = torch.zeros(1, n_vert, n_edge, 1, 1).to(device)
self.eqGKB_masks = torch.zeros(1, n_vert, n_edge, 1, 1).to(device)
self.minusGKB_masks = torch.zeros(1, n_vert, n_edge, 1, 1).to(device)
self.plusGH_masks_1 = torch.zeros(1, n_vert, n_edge, 1).to(device)
self.eqGH_masks_1 = torch.zeros(1, n_vert, n_edge, 1).to(device)
self.minusGH_masks_1 = torch.zeros(1, n_vert, n_edge, 1).to(device)
self.plusGH_masks_2 = torch.zeros(1, n_vert, n_edge, 1).to(device)
self.eqGH_masks_2 = torch.zeros(1, n_vert, n_edge, 1).to(device)
self.minusGH_masks_2 = torch.zeros(1, n_vert, n_edge, 1).to(device)
self.plusGH_masks_n = torch.zeros(1, n_vert, n_edge, 1).to(device)
self.eqGH_masks_n = torch.zeros(1, n_vert, n_edge, 1).to(device)
self.minusGH_masks_n = torch.zeros(1, n_vert, n_edge, 1).to(device)
n = n_edge - 1
for i in range(n_vert):
if i == 0 or i == n_vert - 1:
continue
for k in range(max(i - 1, 1), n_edge):
j_1 = k - 1
j_2 = k
self.w_masks[:, i, k, :] = 1
if k < i + 2:
self.m_masks[:, i, k] = 1
if k == i - 1:
self.plusGKB_masks[:, i, k] = 1
elif k == i:
self.eqGKB_masks[:, i, k] = 1
elif k == i + 1:
self.minusGKB_masks[:, i, k] = 1
if j_1 >= (i - 1) and i > 1 and (i - 1) < n_edge:
self.plusGH_masks_1[:, i, k] = 1
if j_1 >= i and i < n_edge:
self.eqGH_masks_1[:, i, k] = 1
if j_1 >= (i + 1) and (i + 1) < n_edge:
self.minusGH_masks_1[:, i, k] = 1
if j_2 >= (i - 1) and i > 1 and (i - 1) < n_edge:
self.plusGH_masks_2[:, i, k] = 1
if j_2 >= i and i < n_edge:
self.eqGH_masks_2[:, i, k] = 1
if j_2 >= (i + 1) and (i + 1) < n_edge:
self.minusGH_masks_2[:, i, k] = 1
if n >= (i - 1) and i > 1 and (i - 1) < n_edge:
self.plusGH_masks_n[:, i, n] = 1
if n >= i and i < n_edge:
self.eqGH_masks_n[:, i, n] = 1
if n >= (i + 1) and (i + 1) < n_edge:
self.minusGH_masks_n[:, i, n] = 1
"""for inference: """
self.m_restWprev = 0
self.m_restWnext = 0
self.learned_pmass = 0
def Rod_Init(self, batch, init_direction, m_restEdgeL, clamped_index):
"""Just in case if training and evaluation's batches are different"""
"""prepare edges, length of edges and length of Voronoi region"""
"""if not clone, then refer: https://medium.com/@mrityu.jha/understanding-the-grad-of-autograd-fc8d266fd6cf"""
rest_vert = self.applyInternalConstraintsIteration((self.rest_vert.clone()).repeat(batch, 1, 1), m_restEdgeL, self.m_pmass, clamped_index)
m_edges = computeEdges(rest_vert)
RegionL = torch.cat(((m_restEdgeL[:, 0]/2.).unsqueeze(dim=-1), (m_restEdgeL[:, 1:] + m_restEdgeL[:, :-1])/2., (m_restEdgeL[:, -1]/2.).unsqueeze(dim=-1)), dim=1)
"""Initialize bishop frame at the first edge and compute bishop frame for the rest of edges"""
m_u0 = self.DEFORM_func.compute_u0(m_edges[:, 0], init_direction[:, 0])
m_m1, m_m2, m_kb = self.DEFORM_func.computeBishopFrame(m_u0, m_edges, m_restEdgeL)
"""Initialize material curvature with theta=0 (bishop frame) as reference)"""
m_restWprev, m_restWnext = self.DEFORM_func.computeMaterialCurvature(m_kb, m_m1, m_m2)
"""Initialize mass for each vertices"""
return m_restWprev, m_restWnext, self.m_pmass.repeat(m_edges.size()[0], 1) * RegionL + torch.clamp(self.mocap_mass, min=1e-10)
def Internal_Force(self, m_edges, clamped_index, m_restEdgeL, m_restRegionL, m_kb, m_restWprev, m_restWnext, theta_full, m_m1, m_m2):
"""accumulate internal forces, original version"""
batch = m_kb.size()[0]
o_forces = torch.zeros(batch, self.n_vert, 3).to(self.device)
m_theta = theta_full
"""Calculate gradient of the curvature binormal"""
minusGKB, plusGKB, eqGKB = self.DEFORM_func.computeGradientKB(m_kb, m_edges, m_restEdgeL)
"""Calculate gradient of the holonomy"""
minusGH, plusGH, eqGH = self.DEFORM_func.computeGradientHolonomyTerms(m_kb, m_restEdgeL)
"""ignore this for now? add after clamping"""
J = rotation_matrix(torch.pi/2. * torch.ones(batch)).to(self.device)
n = self.n_edge - 1
dEdtheta = self.DEFORM_func.computedEdtheta(n, m_kb, m_m1[:, n], m_m2[:, n], m_theta, J * torch.clamp(self.DEFORM_func.bend_stiffness[:, n].unsqueeze(-1), self.DEFORM_func.stiff_threshold), m_restWprev, m_restWnext, m_restRegionL)
for i in range(self.n_vert):
if clamped_index[i]:
continue
for k in range(max(i - 1, 1), self.n_edge):
"""prepare material frame curvature and its gradient for j = k - 1"""
b_wkj = computeW(m_kb[:, k].unsqueeze(dim=1), m_m1[:, k - 1].unsqueeze(dim=1), m_m2[:, k - 1].unsqueeze(dim=1))
# computedEdtheta """b_w checked"""
GW, GH = self.DEFORM_func.computeGradientCurvature(i, k, k-1, m_m1, m_m2, minusGKB, plusGKB, eqGKB, minusGH, plusGH, eqGH, b_wkj, J)
"""gw checked"""
"""force for j = k - 1"""
term = torch.bmm(torch.transpose(GW, 2, 1), torch.clamp(self.DEFORM_func.bend_stiffness[:, k-1].unsqueeze(-1), self.DEFORM_func.stiff_threshold) * (b_wkj.view(-1, 2) - m_restWprev[:, k]).unsqueeze(dim=2))
"""prepare material frame curvature for j = k"""
b_wkj = computeW(m_kb[:, k].unsqueeze(dim=1), m_m1[:, k].unsqueeze(dim=1), m_m2[:, k].unsqueeze(dim=1))
GW, _ = self.DEFORM_func.computeGradientCurvature(i, k, k, m_m1, m_m2, minusGKB, plusGKB, eqGKB, minusGH, plusGH, eqGH, b_wkj, J)
# test_temsor[:, i, k] = GW.clone()
"""force for j = k"""
term += torch.bmm(torch.transpose(GW, 2, 1), torch.clamp(self.DEFORM_func.bend_stiffness[:, k].unsqueeze(-1), self.DEFORM_func.stiff_threshold) * (b_wkj.view(-1, 2) - m_restWnext[:, k]).unsqueeze(dim=2))
"""normalize Voronoi region length"""
o_forces[:, i] -= term.view(batch, 3) / m_restRegionL[:, k].unsqueeze(dim=1)
GH = self.DEFORM_func.computeGradientHolonomy(i, n, minusGH, plusGH, eqGH)
o_forces[:, i] += dEdtheta.unsqueeze(dim=1) * GH
o_forces = torch.where(torch.norm(o_forces, dim=2).unsqueeze(dim=-1) >= self.force_scale.repeat(1, self.n_vert).unsqueeze(dim=-1), F.normalize(o_forces, dim=2) * self.force_scale.unsqueeze(dim=-1), o_forces)
return o_forces
def Internal_Force_Vectorize(self, m_edges, clamped_index, m_restEdgeL, m_restRegionL, m_kb, m_restWprev, m_restWnext, theta_full, m_m1, m_m2):
"""accumulate internal forces"""
batch = m_kb.size()[0]
m_theta = theta_full
"""Calculate gradient of the curvature binormal"""
minusGKB, plusGKB, eqGKB = self.DEFORM_func.computeGradientKB(m_kb, m_edges, m_restEdgeL)
"""Calculate gradient of the holonomy"""
minusGH, plusGH, eqGH = self.DEFORM_func.computeGradientHolonomyTerms(m_kb, m_restEdgeL)
"""ignore this for now? add after clamping"""
J = rotation_matrix(torch.pi/2. * torch.ones(batch)).to(self.device)
n = self.n_edge - 1
dEdtheta = self.DEFORM_func.computedEdtheta(n, m_kb, m_m1[:, n], m_m2[:, n], m_theta, J * torch.clamp(self.DEFORM_func.bend_stiffness[:, n].unsqueeze(-1), self.DEFORM_func.stiff_threshold), m_restWprev, m_restWnext, m_restRegionL)
"""vectorize w, i-1, i, done"""
b_w1 = self.w_masks * computeW(m_kb, torch.cat((torch.zeros(batch, 1, 3).to(self.device), m_m1[:, :-1]), dim=1), torch.cat((torch.zeros(batch, 1, 3).to(self.device), m_m2[:, :-1]), dim=1)).unsqueeze(dim=1).repeat(1, self.n_vert, 1, 1)
b_w2 = self.w_masks * computeW(m_kb, torch.cat((torch.zeros(batch, 1, 3).to(self.device), m_m1[:, 1:]), dim=1), torch.cat((torch.zeros(batch, 1, 3).to(self.device), m_m2[:, 1:]), dim=1)).unsqueeze(dim=1).repeat(1, self.n_vert, 1, 1)
"""computeGradientHolonomy Vectorize"""
"""first edge, GW: first"""
b_m1 = torch.cat((torch.zeros(batch, self.n_vert, 1, 2, 3).to(self.device), torch.cat((m_m2.unsqueeze(dim=1).unsqueeze(dim=-2).repeat(1, self.n_vert, 1, 1, 1), -m_m1.unsqueeze(dim=1).unsqueeze(dim=-2).repeat(1, self.n_vert, 1, 1, 1)), -2)[:, :, :-1]), dim=2) * self.m_masks
O_GWplus1 = torch.bmm(b_m1.view(-1, 2, 3), (plusGKB.unsqueeze(dim=1).repeat(1, self.n_vert, 1, 1, 1)).view(-1, 3, 3)).view(batch, self.n_vert, self.n_edge, 2, 3) * self.plusGKB_masks
O_GWeq1 = torch.bmm(b_m1.view(-1, 2, 3), (eqGKB.unsqueeze(dim=1).repeat(1, self.n_vert, 1, 1, 1)).view(-1, 3, 3)).view(batch, self.n_vert, self.n_edge, 2, 3) * self.eqGKB_masks
O_GWminus1 = torch.bmm(b_m1.view(-1, 2, 3), (minusGKB.unsqueeze(dim=1).repeat(1, self.n_vert, 1, 1, 1)).view(-1, 3, 3)).view(batch, self.n_vert, self.n_edge, 2, 3) * self.minusGKB_masks
O_GW1 = O_GWplus1 + O_GWeq1 + O_GWminus1
"""second edge, GW: first"""
b_m2 = torch.cat((m_m2.unsqueeze(dim=1).unsqueeze(dim=-2).repeat(1, self.n_vert, 1, 1, 1), -m_m1.unsqueeze(dim=1).unsqueeze(dim=-2).repeat(1, self.n_vert, 1, 1, 1)), -2) * self.m_masks
O_GWplus2 = torch.bmm(b_m2.view(-1, 2, 3), (plusGKB.unsqueeze(dim=1).repeat(1, self.n_vert, 1, 1, 1)).view(-1, 3, 3)).view(batch, self.n_vert, self.n_edge, 2, 3) * self.plusGKB_masks
O_GWeq2 = torch.bmm(b_m2.view(-1, 2, 3), (eqGKB.unsqueeze(dim=1).repeat(1, self.n_vert, 1, 1, 1)).view(-1, 3, 3)).view(batch, self.n_vert, self.n_edge, 2, 3) * self.eqGKB_masks
O_GWminus2= torch.bmm(b_m2.view(-1, 2, 3), (minusGKB.unsqueeze(dim=1).repeat(1, self.n_vert, 1, 1, 1)).view(-1, 3, 3)).view(batch, self.n_vert, self.n_edge, 2, 3) * self.minusGKB_masks
O_GW2 = O_GWplus2 + O_GWeq2 + O_GWminus2
b_plusGH = torch.cat((torch.zeros(batch, 1, 3).to(self.device), plusGH), dim=1).unsqueeze(-2).repeat(1, 1,self.n_edge,1)
b_eqGH = torch.cat((eqGH, torch.zeros(batch, 1, 3).to(self.device)), dim=1).unsqueeze(-2).repeat(1, 1,self.n_edge,1)
b_minusGH = torch.cat((minusGH[:, 1:], torch.zeros(batch, 2, 3).to(self.device)), dim=1).unsqueeze(-2).repeat(1, 1,self.n_edge,1)
b_GH1 = b_plusGH * self.plusGH_masks_1 + b_eqGH * self.eqGH_masks_1 + b_minusGH * self.minusGH_masks_1
b_GH2 = b_plusGH * self.plusGH_masks_2 + b_eqGH * self.eqGH_masks_2 + b_minusGH * self.minusGH_masks_2
b_GHn = (b_plusGH * self.plusGH_masks_n + b_eqGH * self.eqGH_masks_n + b_minusGH * self.minusGH_masks_n)
"""first edge, GW: second"""
O_GW1 = O_GW1 - torch.bmm((J.unsqueeze(dim=1).unsqueeze(dim=1).repeat(1, self.n_vert, self.n_edge, 1, 1)).view(-1, 2, 2), torch.einsum('bijc,bijd->bijcd', b_w1, b_GH1).view(-1, 2, 3)).view(batch, self.n_vert, self.n_edge, 2, 3)
"""second edge, GW: second"""
O_GW2 = O_GW2 - torch.bmm((J.unsqueeze(dim=1).unsqueeze(dim=1).repeat(1, self.n_vert, self.n_edge, 1, 1)).view(-1, 2, 2), torch.einsum('bijc,bijd->bijcd', b_w2, b_GH2).view(-1, 2, 3)).view(batch, self.n_vert, self.n_edge, 2, 3)
"""final force accumulation"""
b_m_restRegionL = m_restRegionL.unsqueeze(dim=1).unsqueeze(dim=-1).repeat(1, self.n_vert, 1, 3) * self.w_masks
b_bend_stiffness1 = torch.cat((torch.zeros(1, 1).to(self.device), self.DEFORM_func.bend_stiffness[:, :-1]), dim=1).unsqueeze(dim=1).unsqueeze(dim=-1).repeat(1, self.n_vert, 1, 1)
b_m_restWprev = m_restWprev.unsqueeze(dim=1).repeat(1, self.n_vert, 1, 1) * self.w_masks
term1 = torch.bmm(torch.transpose(O_GW1.view(-1, 2, 3), 2, 1), (torch.clamp(b_bend_stiffness1, self.DEFORM_func.stiff_threshold) * (b_w1 - b_m_restWprev)).view(-1, 2, 1)).view(batch, self.n_vert, self.n_edge, 3)
b_bend_stiffness2 = torch.cat((torch.zeros(1, 1).to(self.device), self.DEFORM_func.bend_stiffness[:, 1:]),dim=1).unsqueeze(dim=1).unsqueeze(dim=-1).repeat(1, self.n_vert, 1, 1)
b_m_restWnext = m_restWnext.unsqueeze(dim=1).repeat(1, self.n_vert, 1, 1) * self.w_masks
term2 = torch.bmm(torch.transpose(O_GW2.view(-1, 2, 3), 2, 1), (torch.clamp(b_bend_stiffness2, self.DEFORM_func.stiff_threshold) * (b_w2 - b_m_restWnext)).view(-1, 2, 1)).view(batch, self.n_vert, self.n_edge, 3)
o_forces = torch.div(-(term1 + term2), b_m_restRegionL.where(b_m_restRegionL != 0, torch.tensor(1.).to(self.device)))
o_forces[b_m_restRegionL == 0] = 0.
o_forces = torch.sum(o_forces, -2)
o_forces += b_GHn[:, :, -1] * dEdtheta.unsqueeze(dim=1).unsqueeze(dim=1)
o_forces = torch.where(torch.norm(o_forces, dim=2).unsqueeze(dim=-1) >= self.force_scale.repeat(1, self.n_vert).unsqueeze(dim=-1), F.normalize(o_forces, dim=2) * self.force_scale.unsqueeze(dim=-1), o_forces)
"""set force = 0 for clamped part, introduce prescription later"""
o_forces = o_forces * (1 - clamped_index.to(self.device)).unsqueeze(dim=0).unsqueeze(dim=-1)
return o_forces
def External_Force(self, m_pmass, m_pvel, o_forces, clamped_index):
"""accumulate external forces: gravity/velocity compensation"""
batch = m_pmass.size()[0]
"""gravity"""
o_forces = o_forces + self.gravity.view(1, 1, 3).repeat(batch, self.n_vert, 1) * m_pmass.unsqueeze(dim=2) * (1 - (clamped_index.unsqueeze(dim=0).unsqueeze(dim=-1)).to(self.device))
"""velocity compensation"""
o_forces = o_forces + (self.velocity_ratio * torch.linalg.norm(m_pvel, dim=2).unsqueeze(dim=2)) * m_pvel * (1 - (clamped_index.unsqueeze(dim=0).unsqueeze(dim=-1)).to(self.device))
return o_forces
def Integrate_Centerline(self, vertices, v_vertices, forces, m_pmass):
"""semi-implicit Euler"""
v_vertices = v_vertices + forces/m_pmass.unsqueeze(dim=2) * self.dt
vertices = vertices + v_vertices * self.dt * self.integration_ratio
return vertices, v_vertices * self.dt * self.integration_ratio
"""Inextensibility Enforcement"""
def applyInternalConstraintsIteration(self, updated_vertices, m_restEdgeL, m_pmass, clamped_index, iterative_times=10, mode="pytorch"):
"""
:param updated_vertices:
:param m_restEdgeL:
:param m_pmass:
:param clamped_index:
:param iterative_times:
:param mode:
:return:
"""
if mode == "pytorch":
for _ in range(iterative_times):
for i in range(self.n_vert - 1):
# i = self.n_vert - 1 - i
updated_edges = updated_vertices[:, i + 1] - updated_vertices[:, i]
l = 1 - 2 * m_restEdgeL[:, i] * m_restEdgeL[:, i] / (m_restEdgeL[:, i] * m_restEdgeL[:, i] + (updated_edges * updated_edges).sum(dim=1))
if clamped_index[i]:
l1 = torch.zeros(1).to(self.device)
l2 = -l
elif clamped_index[i + 1]:
l1 = l
l2 = torch.zeros(1).to(self.device)
else:
l1 = l * m_pmass[:, i + 1] / (m_pmass[:, i] + m_pmass[:, i + 1])
l2 = -l * m_pmass[:, i] / (m_pmass[:, i] + m_pmass[:, i + 1])
updated_vertices[:, i] = updated_vertices[:, i] + l1.unsqueeze(dim=1) * updated_edges
updated_vertices[:, i + 1] = updated_vertices[:, i + 1] + l2.unsqueeze(dim=1) * updated_edges
return updated_vertices
if mode == "numpy":
batch = updated_vertices.size()[0]
updated_vertices = updated_vertices[0].cpu().numpy()
m_restEdgeL = m_restEdgeL[0].cpu().numpy()
m_pmass = m_pmass[0].cpu().numpy()
clamped_index = clamped_index.cpu().numpy()
m_restEdgeL_square = m_restEdgeL * m_restEdgeL
for _ in range(iterative_times):
for i in range(self.n_vert - 1):
updated_edges = updated_vertices[i + 1] - updated_vertices[i]
l = 1 - 2 * m_restEdgeL_square[i] / (m_restEdgeL_square[i] + (updated_edges * updated_edges).sum())
if clamped_index[i]:
updated_vertices[i + 1] = updated_vertices[i + 1] - l * updated_edges
elif clamped_index[i + 1]:
updated_vertices[i] = updated_vertices[i] + l * updated_edges
else:
updated_vertices[i] = updated_vertices[i] + l * m_pmass[i + 1] / (m_pmass[i] + m_pmass[i + 1]) * updated_edges
updated_vertices[i + 1] = updated_vertices[i + 1] - l * m_pmass[i] / (m_pmass[i] + m_pmass[i + 1]) * updated_edges
updated_vertices = torch.from_numpy(updated_vertices).unsqueeze(0).repeat(batch, 1, 1).to(self.device)
# test_m_restEdgeL, test_m_restRegionL = computeLengths(computeEdges(updated_vertices.clone()))
return updated_vertices
def forward(self, current_vert, current_v, init_direction, clamped_index, m_u0, input, clamped_selection, theta_full, mode="train"):
learning_weight = 1.
if mode == "train":
previous_vert = current_vert.clone()
current_x = current_vert.clone()
batch = current_vert.size()[0]
m_restEdgeL, m_restRegionL = self.m_restEdgeL.repeat(batch, 1), self.m_restRegionL.repeat(batch, 1)
self.m_restWprev, self.m_restWnext, m_pmass = self.Rod_Init(batch, init_direction, m_restEdgeL, clamped_index)
control_theta = torch.zeros(batch, 2, 1).to(self.device)
current_edges = computeEdges(current_vert)
theta_full, material_m1, material_m2, m_kb = self.DEFORM_func.updateCurrentState(current_vert, m_u0, m_restEdgeL, self.m_restWprev, self.m_restWnext, m_restRegionL, control_theta, theta_full)
Internal_force = self.Internal_Force_Vectorize(current_edges, clamped_index, m_restEdgeL, m_restRegionL, m_kb, self.m_restWprev, self.m_restWnext, theta_full, material_m1, material_m2)
Total_force = self.External_Force(m_pmass, current_v.clone(), Internal_force, clamped_index)
"""update"""
current_vert, delta_vert = self.Integrate_Centerline(current_vert, current_v, Total_force, m_pmass)
current_vert[:, clamped_selection] = input
"""learning"""
edge_index = torch.combinations(torch.arange(self.n_vert), r=2).t().contiguous().to(self.device)
# edges = []
#
# for i in range(self.n_vert):
# # Connect to the next three nodes if possible
# for j in range(1, 4):
# if i + j < self.n_vert: # Check if the target node index is within bounds
# edges.append([i, i + j])
# edges.append([i + j, i])
# edge_index = torch.transpose(torch.tensor(edges, dtype=torch.long), dim0=0, dim1=1).to(self.device)
graph_data = Data(x=current_x, edge_index=edge_index)
graph_delta_data = Data(x=delta_vert, edge_index=edge_index)
x, edge_index = graph_data.x, graph_data.edge_index
delta_x, edge_index = graph_delta_data.x, graph_delta_data.edge_index
x = self.vert_conv1(x, edge_index)
delta_x = self.delta_vert_conv1(delta_x, edge_index)
encoded_x = self.vert_conv2(x, edge_index)
# print(encoded_x.size())
delta_x = self.delta_vert_conv2(delta_x, edge_index)
input = (input - current_x[:, (0, 1, -2, -1)])
encoded_x_input = torch.cat((encoded_x.view(current_x.size()[0], -1), delta_x.view(current_x.size()[0], -1), input.view(current_x.size()[0], -1)), dim=-1)
x_dot = self.fc(encoded_x_input).view(current_x.size()[0], self.n_vert-4, 3)
""""""
"""residual"""
current_vert[:, 2:-2] = current_vert[:, 2:-2] + x_dot * self.dt * learning_weight
current_vert = self.applyInternalConstraintsIteration(current_vert, m_restEdgeL, m_pmass, clamped_index)
current_v = (current_vert - previous_vert) / self.dt
return current_vert, current_v, theta_full
if mode == "evaluation":
previous_vert = current_vert.clone()
current_x = current_vert.clone()
current_edges = computeEdges(current_vert)
batch = current_vert.size()[0]
m_restEdgeL, m_restRegionL = self.m_restEdgeL.repeat(batch, 1), self.m_restRegionL.repeat(batch, 1)
control_theta = torch.zeros(batch, 2, 1).to(self.device)
theta_full, material_m1, material_m2, m_kb = self.DEFORM_func.updateCurrentState(current_vert, m_u0, m_restEdgeL, self.m_restWprev, self.m_restWnext, m_restRegionL, control_theta, theta_full)
Internal_force = self.Internal_Force_Vectorize(current_edges, clamped_index, m_restEdgeL, m_restRegionL, m_kb, self.m_restWprev, self.m_restWnext, theta_full, material_m1, material_m2)
Total_force = self.External_Force(self.learned_pmass, current_v.clone(), Internal_force, clamped_index)
"""update"""
current_vert, delta_vert = self.Integrate_Centerline(current_vert, current_v, Total_force, self.learned_pmass)
current_vert[:, clamped_selection] = input
"""learning"""
edge_index = torch.combinations(torch.arange(self.n_vert), r=2).t().contiguous().to(self.device)
# edges = []
#
# for i in range(self.n_vert):
# # Connect to the next three nodes if possible
# for j in range(1, 4):
# if i + j < self.n_vert: # Check if the target node index is within bounds
# edges.append([i, i + j])
# edges.append([i + j, i])
#
# edge_index = torch.transpose(torch.tensor(edges, dtype=torch.long), dim0=0, dim1=1)
graph_data = Data(x=current_x, edge_index=edge_index)
graph_delta_data = Data(x=delta_vert, edge_index=edge_index)
x, edge_index = graph_data.x, graph_data.edge_index
delta_x, edge_index = graph_delta_data.x, graph_delta_data.edge_index
x = self.vert_conv1(x, edge_index)
delta_x = self.delta_vert_conv1(delta_x, edge_index)
encoded_x = self.vert_conv2(x, edge_index)
delta_x = self.delta_vert_conv2(delta_x, edge_index)
input = (input - current_x[:, (0, 1, -2, -1)])
encoded_x_input = torch.cat((encoded_x.view(current_x.size()[0], -1), delta_x.view(current_x.size()[0], -1), input.view(current_x.size()[0], -1)), dim=-1)
x_dot = self.fc(encoded_x_input).view(current_x.size()[0], self.n_vert - 4, 3)
""""""
"""residual"""
current_vert[:, 2:-2] = current_vert[:, 2:-2] + x_dot * self.dt * learning_weight
current_vert = self.applyInternalConstraintsIteration(current_vert, m_restEdgeL, self.learned_pmass, clamped_index)
current_v = (current_vert - previous_vert) / self.dt
return current_vert, current_v, theta_full
if mode == "evaluation_numpy":
previous_vert = current_vert.clone()
current_x = current_vert.clone()
current_edges = computeEdges(current_vert)
batch = current_vert.size()[0]
m_restEdgeL, m_restRegionL = self.m_restEdgeL.repeat(batch, 1), self.m_restRegionL.repeat(batch, 1)
control_theta = torch.zeros(batch, 2, 1).to(self.device)
theta_full, material_m1, material_m2, m_kb = self.DEFORM_func.updateCurrentState_numpy(current_vert, m_u0, m_restEdgeL, self.m_restWprev, self.m_restWnext, m_restRegionL, control_theta, theta_full)
Internal_force = self.Internal_Force_Vectorize(current_edges, clamped_index, m_restEdgeL, m_restRegionL, m_kb, self.m_restWprev, self.m_restWnext, theta_full, material_m1, material_m2)
Total_force = self.External_Force(self.learned_pmass, current_v.clone(), Internal_force, clamped_index)
"""update"""
current_vert, delta_vert = self.Integrate_Centerline(current_vert, current_v, Total_force, self.learned_pmass)
current_vert[:, clamped_selection] = input
"""learning"""
edge_index = torch.combinations(torch.arange(self.n_vert), r=2).t().contiguous().to(self.device)
# edges = []
#
# for i in range(self.n_vert):
# # Connect to the next three nodes if possible
# for j in range(1, 4):
# if i + j < self.n_vert: # Check if the target node index is within bounds
# edges.append([i, i + j])
# edges.append([i + j, i])
#
# edge_index = torch.transpose(torch.tensor(edges, dtype=torch.long), dim0=0, dim1=1)
graph_data = Data(x=current_x, edge_index=edge_index)
graph_delta_data = Data(x=delta_vert, edge_index=edge_index)
x, edge_index = graph_data.x, graph_data.edge_index
delta_x, edge_index = graph_delta_data.x, graph_delta_data.edge_index
x = self.vert_conv1(x, edge_index)
delta_x = self.delta_vert_conv1(delta_x, edge_index)
encoded_x = self.vert_conv2(x, edge_index)
delta_x = self.delta_vert_conv2(delta_x, edge_index)
input = (input - current_x[:, (0, 1, -2, -1)])
encoded_x_input = torch.cat((encoded_x.view(current_x.size()[0], -1), delta_x.view(current_x.size()[0], -1), input.view(current_x.size()[0], -1)), dim=-1)
x_dot = self.fc(encoded_x_input).view(current_x.size()[0], self.n_vert - 4, 3)
""""""
"""residual"""
current_vert[:, 2:-2] = current_vert[:, 2:-2] + x_dot * self.dt * learning_weight
current_vert = self.applyInternalConstraintsIteration(current_vert, m_restEdgeL, self.learned_pmass, clamped_index, mode="numpy")
current_v = (current_vert - previous_vert) / self.dt
return current_vert, current_v, theta_full