forked from triplej0079/DeepIM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenim.py
241 lines (184 loc) · 8.24 KB
/
genim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import copy
import time
import networkx as nx
import random
import pickle
from scipy.special import softmax
from scipy.sparse import csr_matrix
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics as ep
import pandas as pd
import argparse
import scipy.sparse as sp
import matplotlib.pyplot as plt
from main.utils import load_dataset, InverseProblemDataset, adj_process, diffusion_evaluation
from main.model.gat import GAT, SpGAT
from main.model.model import GNNModel, VAEModel, DiffusionPropagate, Encoder, Decoder
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torch.optim import Adam, SGD
from torch.utils.data.dataset import Dataset
from torch.autograd import Variable
print('Is GPU available? {}\n'.format(torch.cuda.is_available()))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
CUDA_LAUNCH_BLOCKING=1
parser = argparse.ArgumentParser(description="GenIM")
datasets = ['jazz', 'cora_ml', 'power_grid', 'netscience', 'random5']
parser.add_argument("-d", "--dataset", default="cora_ml", type=str,
help="one of: {}".format(", ".join(sorted(datasets))))
diffusion = ['IC', 'LT', 'SIS']
parser.add_argument("-dm", "--diffusion_model", default="LT", type=str,
help="one of: {}".format(", ".join(sorted(diffusion))))
seed_rate = [1, 5, 10, 20]
parser.add_argument("-sp", "--seed_rate", default=1, type=int,
help="one of: {}".format(", ".join(str(sorted(seed_rate)))))
mode = ['Normal', 'Budget Constraint']
parser.add_argument("-m", "--mode", default="normal", type=str,
help="one of: {}".format(", ".join(sorted(mode))))
args = parser.parse_args(args=[])
def normalize_adj(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv_sqrt = np.power(rowsum, -0.5).flatten()
r_inv_sqrt[np.isinf(r_inv_sqrt)] = 0.
r_mat_inv_sqrt = sp.diags(r_inv_sqrt)
return mx.dot(r_mat_inv_sqrt).transpose().dot(r_mat_inv_sqrt)
def sampling(inverse_pairs):
diffusion_count = []
for i, pair in enumerate(inverse_pairs):
diffusion_count.append(pair[:, 1].sum())
diffusion_count = torch.Tensor(diffusion_count)
top_k = diffusion_count.topk(int(0.1*inverse_pairs.shape[0])).indices
return top_k
with open('data/' + args.dataset + '_mean_' + args.diffusion_model + str(10*args.seed_rate) + '.SG', 'rb') as f:
graph = pickle.load(f)
adj, inverse_pairs = graph['adj'], graph['inverse_pairs']
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
adj = normalize_adj(adj + sp.eye(adj.shape[0]))
adj = torch.Tensor(adj.toarray()).to_sparse()
if args.dataset == 'random5':
batch_size = 2
hidden_dim = 4096
latent_dim = 1024
else:
batch_size = 16
hidden_dim = 1024
latent_dim = 512
train_set, test_set = torch.utils.data.random_split(inverse_pairs,
[len(inverse_pairs)-batch_size,
batch_size])
train_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True, drop_last=False)
test_loader = DataLoader(dataset=test_set, batch_size=1, shuffle=False)
encoder = Encoder(input_dim= inverse_pairs.shape[1],
hidden_dim=hidden_dim,
latent_dim=latent_dim)
decoder = Decoder(input_dim=latent_dim,
latent_dim=latent_dim,
hidden_dim=hidden_dim,
output_dim=inverse_pairs.shape[1])
vae_model = VAEModel(Encoder=encoder, Decoder=decoder).to(device)
forward_model = SpGAT(nfeat=1,
nhid=64,
nclass=1,
dropout=0.2,
nheads=4,
alpha=0.2)
optimizer = Adam([{'params': vae_model.parameters()}, {'params': forward_model.parameters()}],
lr=1e-4)
adj = adj.to(device)
forward_model = forward_model.to(device)
forward_model.train()
def loss_all(x, x_hat, y, y_hat):
reproduction_loss = F.binary_cross_entropy(x_hat, x, reduction='sum')
forward_loss = F.mse_loss(y_hat, y, reduction='sum')
# forward_loss = F.binary_cross_entropy(y_hat, y, reduction='sum')
return reproduction_loss+forward_loss, reproduction_loss, forward_loss
for epoch in range(600):
begin = time.time()
total_overall = 0
forward_loss = 0
reproduction_loss = 0
precision_for = 0
recall_for = 0
precision_re = 0
recall_re = 0
for batch_idx, data_pair in enumerate(train_loader):
# input_pair = torch.cat((data_pair[:, :, 0], data_pair[:, :, 1]), 1).to(device)
x = data_pair[:, :, 0].float().to(device)
y = data_pair[:, :, 1].float().to(device)
optimizer.zero_grad()
y_true = y.cpu().detach().numpy()
x_true = x.cpu().detach().numpy()
loss = 0
for i, x_i in enumerate(x):
y_i = y[i]
x_hat = vae_model(x_i.unsqueeze(0))
y_hat = forward_model(x_hat.squeeze(0).unsqueeze(-1), adj)
total, re, forw = loss_all(x_i.unsqueeze(0), x_hat, y_i, y_hat.squeeze(-1))
loss += total
x_pred = x_hat.cpu().detach().numpy()
x_pred[x_pred>0.01] = 1
x_pred[x_pred!=1] = 0
precision_re += precision_score(x_true[i], x_pred[0], zero_division=0)
recall_re += recall_score(x_true[i], x_pred[0], zero_division=0)
total_overall += loss.item()
loss = loss/x.size(0)
loss.backward()
optimizer.step()
for p in forward_model.parameters():
p.data.clamp_(min=0)
end = time.time()
print("Epoch: {}".format(epoch+1),
"\tTotal: {:.4f}".format(total_overall / len(train_set)),
"\tReconstruction Precision: {:.4f}".format(precision_re / len(train_set)),
"\tReconstruction Recall: {:.4f}".format(recall_re / len(train_set)),
"\tTime: {:.4f}".format(end - begin)
)
for param in vae_model.parameters():
param.requires_grad = False
for param in forward_model.parameters():
param.requires_grad = False
encoder = vae_model.Encoder
decoder = vae_model.Decoder
def loss_inverse(y_true, y_hat, x_hat):
forward_loss = F.mse_loss(y_hat, y_true)
L0_loss = torch.sum(torch.abs(x_hat))/x_hat.shape[1]
return forward_loss+L0_loss, L0_loss
with open('data/' + args.dataset + '_mean_' + args.diffusion_model + str(10*args.seed_rate) + '.SG', 'rb') as f:
graph = pickle.load(f)
adj, inverse_pairs = graph['adj'], graph['inverse_pairs']
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
adj = normalize_adj(adj + sp.eye(adj.shape[0]))
adj = torch.Tensor(adj.toarray()).to_sparse().to(device)
topk_seed = sampling(inverse_pairs)
z_hat = 0
for i in topk_seed:
z_hat += encoder(inverse_pairs[i, :, 0].unsqueeze(0).to(device))
z_hat = z_hat/len(topk_seed)
seed_num = int(x_hat.sum().item())
y_true = torch.ones(x_hat.shape).to(device)
z_hat = z_hat.detach()
z_hat.requires_grad = True
z_optimizer = Adam([z_hat], lr=1e-4)
for i in range(300):
x_hat = decoder(z_hat)
y_hat = forward_model(x_hat.squeeze(0).unsqueeze(-1), adj)
y = torch.where(y_hat > 0.05, 1, 0)
loss, L0 = loss_inverse(y_true, y_hat, x_hat)
loss.backward()
z_optimizer.step()
print('Iteration: {}'.format(i+1),
'\t Total Loss:{:.5f}'.format(loss.item())
)
top_k = x_hat.topk(seed_num)
seed = top_k.indices[0].cpu().detach().numpy()
with open('data/' + args.dataset + '_mean_' + args.diffusion_model + str(10*args.seed_rate) + '.SG', 'rb') as f:
graph = pickle.load(f)
adj, inverse_pairs = graph['adj'], graph['inverse_pairs']
influence = diffusion_evaluation(adj, seed, diffusion = args.diffusion_model)
print('Diffusion count: {}'.format(influence))