-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
844 lines (712 loc) · 38.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
import os
import torch
from torch import nn
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn import DataParallel as DP
import numpy as np
from torch.nn import functional as Func
from torch.cuda.amp import autocast as autocast
from torch.cuda.amp import GradScaler as GradScaler
from torch.utils.data import DataLoader
from tqdm import tqdm
from datasets.dataset import Dataset
from config import opt
import scipy.io as scio
from models.img_model import IMG
from models.txt_model import TXT
from models.label_model import LABEL
from models.basic_module import Wasserstein
import timm
from triplet_loss import *
from util.utils import calc_map_k, pr_curve, p_topK, Visualizer, multilabelsimilarityloss_KL, quantizationLoss
from datasets.data_handler import load_data
import time
import pickle
from torch.optim import lr_scheduler, Adam, SGD, AdamW, RAdam, NAdam
from models.gat import GAT_MODEL
import argparse
is_distributedDataParallel = True
is_dp = False
parser = argparse.ArgumentParser()
parser.add_argument("--accumulation_steps", type=int, default=1)
parser.add_argument("--ddp", type=bool, default=True)
parser.add_argument("--dp", type=bool, default=False)
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--local-rank", type=int, default=-1)
parser.add_argument("--flag", type=str, default='mir')
parser.add_argument("--bit", type=int, default=64)
parser.add_argument("--ngpus", type=int, default=2)
parser.add_argument("--resume", type=bool, default=False)
parser.add_argument("--dual_card", type=bool, default=False)
parser.add_argument("--gpu_id", type=str, default="2,3")
# parser.add_argument("--batch", type=int, default=80 * parser.parse_args().ngpus)
parser.add_argument("--batch", type=int, default=80)
args = parser.parse_args()
#参数
opt.flag = args.flag
opt.bit = args.bit
opt.batch_size = args.batch
opt.accumulation_steps = args.accumulation_steps
if args.flag == 'coco':
opt.accumulation_steps = 1
opt.is_dp = args.dp
opt.is_distributedDataParallel = args.ddp
amp = False
is_pt = True
if args.dual_card:
opt.is_dual_card = True
if args.ddp and args.ngpus != 1 and args.ngpus in (2, 3, 4):
is_distributedDataParallel = True
else:
current_rank = 0
world_size = 1
opt.rank = 0
if opt.is_dp:
is_dp = True
is_distributedDataParallel = False
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
if opt.is_dp or opt.is_distributedDataParallel:
# before using torch
assert torch.cuda.is_available(), "CUDA is not available"
args.ngpus = len(args.gpu_id.split(','))
# gpu_id_x = ["cuda:0", "cuda:1"]
if opt.is_distributedDataParallel:
is_dp = False
rank = int(os.environ["RANK"])
local_rank = int(os.environ["LOCAL_RANK"])
rank = int(os.environ["LOCAL_RANK"])
world_size = int(args.ngpus)
dist.init_process_group(backend="nccl", init_method="env://", rank=local_rank, world_size=world_size)
torch.cuda.set_device(local_rank)
torch.cuda.empty_cache()
current_rank = dist.get_rank()
opt.rank = current_rank
seed=42
def seed_torch(seed=seed):
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if opt.is_distributedDataParallel:
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
seed_torch(seed)
if opt.is_distributedDataParallel:
batch = opt.batch_size
resume = False
if args.resume:
resume = True
def save_mat(query_img, query_txt, retrieval_img, retrieval_txt, query_labels, retrieval_labels, save__dir, output_dim=64, map=0.0, flag='mir', mode_name="i2t"):
save_dir = os.path.join(save__dir, "PR_cruve")
os.makedirs(save_dir, exist_ok=True)
query_img = query_img.cpu().detach().numpy()
query_txt = query_txt.cpu().detach().numpy()
retrieval_img = retrieval_img.cpu().detach().numpy()
retrieval_txt = retrieval_txt.cpu().detach().numpy()
query_labels = query_labels.cpu().detach().numpy()
retrieval_labels = retrieval_labels.cpu().detach().numpy()
result_dict = {
'q_img': query_img,
'q_txt': query_txt,
'r_img': retrieval_img,
'r_txt': retrieval_txt,
'q_l': query_labels,
'r_l': retrieval_labels,
'map': map
}
scio.savemat(os.path.join(save_dir, str(output_dim) + "-ours-" + flag + "-" + mode_name + ".mat"), result_dict)
print(f">>>>>> save best {mode_name} data!")
def adjust_learning_rate(org_lr, lr_update, optimizer, epoch):
"""Sets the learning rate to the initial LR
decayed by 10 every 30 epochs"""
lr = org_lr * (0.1 ** (epoch // lr_update))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def my_loss(y_true, y_pred):
loss2 = opt.alpha * (y_pred.abs() - 1).pow(3).abs().mean()
bceloss = nn.BCEWithLogitsLoss()
loss3 = bceloss(y_true, torch.sigmoid(y_pred))
return loss2 + loss3
def cosine_similarity(vector1, vector2):
dot_product = np.dot(vector1, vector2)
norm_vector1 = np.linalg.norm(vector1)
norm_vector2 = np.linalg.norm(vector2)
similarity = dot_product / (norm_vector1 * norm_vector2)
return similarity
def train(**kwargs):
opt.parse(kwargs)
opt.vis_env = '{}_{}_full_{}'.format(opt.flag, opt.bit, 'mymodel')
if opt.vis_env:
if current_rank == 0:
vis = Visualizer(opt.vis_env, port=opt.vis_port, server="http://10.109.118.58")
images, tags, labels, _, inp_file = load_data(opt.data_path, opt.adj, opt.inp, type=opt.dataset)
if opt.is_dual_card:
inp_file = torch.from_numpy(inp_file).to("cuda:0", non_blocking=True)
else:
inp_file = torch.from_numpy(inp_file).cuda(non_blocking=True)
train_data = Dataset(opt, images, tags, labels, is_pt=is_pt)
if opt.is_distributedDataParallel:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_data, num_replicas=world_size, rank=local_rank)
train_dataloader = DataLoader(train_data, batch_size=batch, sampler=train_sampler, drop_last=False, pin_memory=True, shuffle=False, num_workers=16, prefetch_factor=2)
else:
train_dataloader = DataLoader(train_data, batch_size=opt.batch_size, drop_last=False,
pin_memory=True, shuffle=True, num_workers=16, prefetch_factor=2)
L = train_data.get_labels()
temp_adj = (L.t() @ L).numpy()
adj = cosine_similarity(temp_adj, temp_adj)
num = (torch.sum(L, dim=0)).numpy()
adj_file = {'adj': adj, 'num': num}
if opt.is_dual_card:
L = L.to("cuda:0", non_blocking=True)
else:
L = L.cuda(non_blocking=True)
# test
i_query_data = Dataset(opt, images, tags, labels, test='image.query', is_pt=is_pt)
i_db_data = Dataset(opt, images, tags, labels, test='image.db', is_pt=is_pt)
t_query_data = Dataset(opt, images, tags, labels, test='text.query', is_pt=is_pt)
t_db_data = Dataset(opt, images, tags, labels, test='text.db', is_pt=is_pt)
i_query_dataloader = DataLoader(i_query_data, opt.batch_size, drop_last=False, pin_memory=True,
shuffle=False, num_workers=16, prefetch_factor=2)
i_db_dataloader = DataLoader(i_db_data, opt.batch_size, drop_last=False, pin_memory=True, shuffle=False, num_workers=16, prefetch_factor=2)
t_query_dataloader = DataLoader(t_query_data, opt.batch_size, drop_last=False, pin_memory=True,
shuffle=False, num_workers=16, prefetch_factor=2)
t_db_dataloader = DataLoader(t_db_data, opt.batch_size, drop_last=False, pin_memory=True, shuffle=False, num_workers=16, prefetch_factor=2)
query_labels, db_labels = i_query_data.get_labels()
if opt.is_dual_card:
image_model = IMG(opt.hidden_dim, opt.bit, opt.dropout, opt.num_label, adj_file).to("cuda:0", non_blocking=True)
image_model.features = timm.create_model('swin_small_patch4_window7_224.ms_in22k', pretrained=True, num_classes=opt.hidden_dim).to("cuda:1", non_blocking=True)
text_model = TXT(opt.text_dim, opt.hidden_dim, opt.bit, opt.dropout, opt.num_label, adj_file).to("cuda:0", non_blocking=True)
label_model = LABEL(opt.num_label, opt.hidden_dim, opt.bit).to("cuda:0", non_blocking=True)
gat_model = GAT_MODEL(inp=inp_file, flag=opt.flag, num_class=opt.num_label, adj_file=adj_file, hidden_dim=opt.hidden_dim * 2, hash_dim=opt.bit).to("cuda:0", non_blocking=True)
else:
image_model = IMG(opt.hidden_dim, opt.bit, opt.dropout, opt.num_label, adj_file).cuda()
text_model = TXT(opt.text_dim, opt.hidden_dim, opt.bit, opt.dropout, opt.num_label, adj_file).cuda()
label_model = LABEL(opt.num_label, opt.hidden_dim, opt.bit).cuda()
gat_model = GAT_MODEL(inp=inp_file, flag=opt.flag, num_class=opt.num_label, adj_file=adj_file, hidden_dim=opt.hidden_dim * 2, hash_dim=opt.bit).cuda()
if opt.is_dp:
image_model = DP(image_model).cuda()
text_model = DP(text_model).cuda()
gat_model = DP(gat_model).cuda()
label_model = DP(label_model).cuda()
if opt.is_distributedDataParallel:
image_model = DDP(image_model, device_ids=[local_rank], output_device=local_rank)
text_model = DDP(text_model, device_ids=[local_rank], output_device=local_rank)
gat_model = DDP(gat_model, device_ids=[local_rank], output_device=local_rank) # find_unused_parameters=True
label_model = DDP(label_model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
if opt.is_distributedDataParallel:
if opt.optim == 'Adam':
optimizer_img_adam = Adam(image_model.parameters(), lr=opt.img_lr * opt.accumulation_steps, weight_decay=opt.img_weight_decay * opt.accumulation_steps)
optimizer_txt_adam = Adam(text_model.parameters(), lr=opt.txt_lr * opt.accumulation_steps, weight_decay=opt.txt_weight_decay * opt.accumulation_steps)
optimizer_gat_adam = Adam(gat_model.parameters(), lr=opt.gat_lr * opt.accumulation_steps, weight_decay=opt.gat_weight_decay * opt.accumulation_steps)
optimizer_label_adam = Adam(label_model.parameters(), lr=opt.label_lr * opt.accumulation_steps, weight_decay=opt.label_weight_decay * opt.accumulation_steps)
elif opt.optim == 'AdamW':
optimizer_img_adam = AdamW(image_model.parameters(), lr=opt.img_lr * opt.accumulation_steps, weight_decay=opt.img_weight_decay * opt.accumulation_steps)
optimizer_txt_adam = Adam(text_model.parameters(), lr=opt.txt_lr * opt.accumulation_steps, weight_decay=opt.txt_weight_decay * opt.accumulation_steps)
optimizer_gat_adam = AdamW(gat_model.parameters(), lr=opt.gat_lr * opt.accumulation_steps, weight_decay=opt.gat_weight_decay * opt.accumulation_steps)
optimizer_label_adam = AdamW(label_model.parameters(), lr=opt.label_lr * opt.accumulation_steps, weight_decay=opt.label_weight_decay * opt.accumulation_steps)
else:
optimizer_img_adam = NAdam(image_model.parameters(), lr=opt.img_lr * opt.accumulation_steps, weight_decay=opt.img_weight_decay * opt.accumulation_steps)
optimizer_txt_adam = NAdam(text_model.parameters(), lr=opt.txt_lr * opt.accumulation_steps, weight_decay=opt.txt_weight_decay * opt.accumulation_steps)
optimizer_gat_adam = NAdam(gat_model.parameters(), lr=opt.gat_lr * opt.accumulation_steps, weight_decay=opt.gat_weight_decay * opt.accumulation_steps)
optimizer_label_adam = Adam(label_model.parameters(), lr=opt.label_lr * opt.accumulation_steps, weight_decay=opt.label_weight_decay * opt.accumulation_steps)
else:
if opt.optim == 'Adam':
optimizer_img_adam = Adam(image_model.parameters(), lr=opt.img_lr * opt.accumulation_steps, weight_decay=opt.img_weight_decay * opt.accumulation_steps)
optimizer_txt_adam = Adam(text_model.parameters(), lr=opt.txt_lr * opt.accumulation_steps, weight_decay=opt.txt_weight_decay * opt.accumulation_steps)
optimizer_gat_adam = Adam(gat_model.parameters(), lr=opt.gat_lr * opt.accumulation_steps, weight_decay=opt.gat_weight_decay * opt.accumulation_steps)
optimizer_label_adam = Adam(label_model.parameters(), lr=opt.label_lr * opt.accumulation_steps, weight_decay=opt.label_weight_decay * opt.accumulation_steps)
elif opt.optim == 'AdamW':
optimizer_img_adam = AdamW(image_model.parameters(), lr=opt.img_lr * opt.accumulation_steps, weight_decay=opt.img_weight_decay * opt.accumulation_steps)
optimizer_txt_adam = Adam(text_model.parameters(), lr=opt.txt_lr * opt.accumulation_steps, weight_decay=opt.txt_weight_decay * opt.accumulation_steps)
optimizer_gat_adam = AdamW(gat_model.parameters(), lr=opt.gat_lr * opt.accumulation_steps, weight_decay=opt.gat_weight_decay * opt.accumulation_steps)
optimizer_label_adam = AdamW(label_model.parameters(), lr=opt.label_lr * opt.accumulation_steps, weight_decay=opt.label_weight_decay * opt.accumulation_steps)
else:
optimizer_img_adam = NAdam(image_model.parameters(), lr=opt.img_lr * opt.accumulation_steps, weight_decay=opt.img_weight_decay * opt.accumulation_steps)
optimizer_txt_adam = NAdam(text_model.parameters(), lr=opt.txt_lr * opt.accumulation_steps, weight_decay=opt.txt_weight_decay * opt.accumulation_steps)
optimizer_gat_adam = NAdam(gat_model.parameters(), lr=opt.gat_lr * opt.accumulation_steps, weight_decay=opt.gat_weight_decay * opt.accumulation_steps)
optimizer_label_adam = Adam(label_model.parameters(), lr=opt.label_lr * opt.accumulation_steps, weight_decay=opt.label_weight_decay * opt.accumulation_steps)
optimizer_img = optimizer_img_adam
optimizer_txt = optimizer_txt_adam
optimizer_gat = optimizer_gat_adam
optimizer_label = optimizer_label_adam
if opt.is_dual_card:
tri_loss = TripletLoss(reduction='sum').to("cuda:0", non_blocking=True)
criterion = nn.BCEWithLogitsLoss().to("cuda:0", non_blocking=True)
w_loss_func = Wasserstein().to("cuda:0", non_blocking=True)
else:
tri_loss = TripletLoss(reduction='sum')
criterion = nn.BCEWithLogitsLoss()
w_loss_func = Wasserstein()
loss = []
loss_quan = []
loss_triplet = []
loss_clas = []
loss_contra = []
rec_loss = []
loss1_list = []
loss2_list = []
loss3_list = []
loss4_list = []
loss5_list = []
loss6_list = []
loss7_list = []
loss31_list = []
loss32_list = []
loss8_list = []
loss9_list = []
loss10_list = []
loss11_list = []
loss12_list = []
loss_triplet2 = []
loss_triplet3 = []
loss_triplet4 = []
loss_triplet5 = []
s_loss = []
max_mapi2t = 0.
max_mapt2i = 0.
max_average = 0.
mapt2i_list = []
mapi2t_list = []
train_times = []
K = 1.5
ETA = 0.1
ALPHA = 0.9
if amp:
with autocast(dtype=torch.float16):
if opt.is_dual_card:
F_buffer = torch.randn(opt.training_size, opt.bit, dtype=torch.float16).to("cuda:0", non_blocking=True)
G_buffer = torch.randn(opt.training_size, opt.bit, dtype=torch.float16).to("cuda:0", non_blocking=True)
L_buffer = torch.randn(opt.training_size, opt.bit, dtype=torch.float16).to("cuda:0", non_blocking=True)
else:
F_buffer = torch.randn(opt.training_size, opt.bit, dtype=torch.float16).cuda(non_blocking=True)
G_buffer = torch.randn(opt.training_size, opt.bit, dtype=torch.float16).cuda(non_blocking=True)
L_buffer = torch.randn(opt.training_size, opt.bit, dtype=torch.float16).cuda(non_blocking=True)
else:
if opt.is_dual_card:
F_buffer = torch.randn(opt.training_size, opt.bit).to("cuda:0", non_blocking=True)
G_buffer = torch.randn(opt.training_size, opt.bit).to("cuda:0", non_blocking=True)
L_buffer = torch.randn(opt.training_size, opt.bit).to("cuda:0", non_blocking=True)
else:
F_buffer = torch.randn(opt.training_size, opt.bit).cuda(non_blocking=True)
G_buffer = torch.randn(opt.training_size, opt.bit).cuda(non_blocking=True)
L_buffer = torch.randn(opt.training_size, opt.bit).cuda(non_blocking=True)
B = torch.sign(F_buffer + G_buffer + L_buffer)
scaler = GradScaler()
start_epoch = 0
if resume:
checkpoint_path = 'checkpoints/' + opt.dataset + '_' + str(opt.bit)
best_model_path = os.path.join(checkpoint_path, 'best_checkpoint.pth.tar')
assert os.path.isfile(best_model_path)
checkpoint_model = torch.load(best_model_path)
checkpoint = {
'mapi2t': checkpoint_model['mapi2t'],
'mapt2i': checkpoint_model['mapt2i'],
'epoch': checkpoint_model['epoch'] + 1,
'img_model': checkpoint_model["img_model"],
'img_optimizer': checkpoint_model["img_optimizer"],
'txt_model': checkpoint_model["txt_model"],
'txt_optimizer': checkpoint_model["txt_optimizer"],
'gat_model': checkpoint_model["gat_model"],
'gat_optimizer': checkpoint_model["gat_optimizer"],
'label_model': checkpoint_model["label_model"],
'label_optimizer': checkpoint_model["label_optimizer"]
}
best_mapi2t = checkpoint['mapi2t']
best_mapt2i = checkpoint['mapt2i']
start_epoch = checkpoint['epoch']
image_model.load_state_dict(checkpoint['img_model'])
optimizer_img.load_state_dict(checkpoint['img_optimizer'])
text_model.load_state_dict(checkpoint['txt_model'])
optimizer_txt.load_state_dict(checkpoint['txt_optimizer'])
gat_model.load_state_dict(checkpoint['gat_model'])
optimizer_gat.load_state_dict(checkpoint['gat_optimizer'])
label_model.load_state_dict(checkpoint['label_model'])
optimizer_label.load_state_dict(checkpoint['label_optimizer'])
print('Load checkpoint at epoch {}.'.format(start_epoch))
print('Best accuracy so far mapi2t:{} mapt2i:{}.'.format(best_mapi2t, best_mapt2i))
for epoch in range(start_epoch, opt.max_epoch):
if current_rank == 0 and opt.is_distributedDataParallel:
print("\n")
print(optimizer_img)
t1 = time.time()
loss_qi = 0
loss_ti = 0
loss_ql = 0
loss_ti2 = 0
loss_ti3 = 0
loss_ti4 = 0
loss_ti5 = 0
loss_qt = 0
loss_tt = 0
loss_tt2 = 0
loss_tt3 = 0
loss_tt4 = 0
loss_tt5 = 0
loss_c = 0
total = 0
if opt.is_distributedDataParallel:
train_sampler.set_epoch(epoch)
for i, (ind, img, txt, label) in tqdm(enumerate(train_dataloader)):
if opt.is_dual_card:
img = img.to("cuda:0", non_blocking=True)
txt = txt.cuda(non_blocking=True)
label = label.cuda(non_blocking=True)
else:
img = img.cuda(non_blocking=True)
txt = txt.cuda(non_blocking=True)
label = label.cuda(non_blocking=True)
if amp:
with autocast(dtype=torch.float16):
f_l, hid_l, h_l = label_model(label)
f_t, hid_t, h_t = text_model(txt)
if opt.is_dual_card:
f_i, hid_i, h_i = image_model(img.to("cuda:1", non_blocking=True))
f_i = f_i.to("cuda:0", non_blocking=True)
f_t = f_t.to("cuda:0", non_blocking=True)
h_i = h_i.to("cuda:0", non_blocking=True)
else:
f_i, hid_i, h_i = image_model(img)
L_buffer[ind, :] = h_l.data
pred = gat_model(f_i, f_t)
F = torch.as_tensor(F_buffer)
G = torch.as_tensor(G_buffer)
L = torch.as_tensor(L_buffer)
KLloss_ll = 1.9 * multilabelsimilarityloss_KL(h_l, L, h_l, L)
KLloss_lx = multilabelsimilarityloss_KL(h_l, L, h_l, F)
KLloss_ly = 0.3 * multilabelsimilarityloss_KL(h_l, L, h_l, G)
# print(h_i.shape)
F_buffer[ind, :] = h_i.data
F = torch.as_tensor(F_buffer)
L = torch.as_tensor(L_buffer)
KLloss_xx = 1.9 * multilabelsimilarityloss_KL(h_l, L, h_i, F)
KLloss_xl = multilabelsimilarityloss_KL(h_l, L, h_i, L)
G_buffer[ind, :] = h_t.data
L = torch.as_tensor(L_buffer)
G = torch.as_tensor(G_buffer)
KLloss_yy = 1.9 * multilabelsimilarityloss_KL(h_l, L, h_t, G)
KLloss_yl = multilabelsimilarityloss_KL(h_l, L, h_t, L)
loss2 = KLloss_ll + KLloss_lx + KLloss_ly + KLloss_xx + KLloss_xl + KLloss_yy + KLloss_yl
i_tri = tri_loss(opt, h_i, label, target=h_t, margin=opt.margin) + \
tri_loss(opt, h_i, label, target=h_i, margin=opt.margin)
t_tri = tri_loss(opt, h_t, label, target=h_i, margin=opt.margin) + \
tri_loss(opt, h_t, label, target=h_t, margin=opt.margin)
i_ql = torch.sum((1. - Func.cosine_similarity(h_i, h_i.detach().sign(), dim=1))) + torch.sum(torch.pow(h_i - h_i.detach().sign(), 2)) + quantizationLoss(h_i, B[ind, :])
t_ql = torch.sum((1. - Func.cosine_similarity(h_t, h_t.detach().sign(), dim=1))) + torch.sum(torch.pow(h_t - h_t.detach().sign(), 2)) + quantizationLoss(h_t, B[ind, :])
l_ql = torch.sum((1. - Func.cosine_similarity(h_l, h_l.detach().sign(), dim=1))) + torch.sum(torch.pow(h_l - h_l.detach().sign(), 2)) + quantizationLoss(h_l, B[ind, :])
loss_quant = i_ql + t_ql + l_ql
loss_class = criterion(pred, label)
loss1, _, _ = w_loss, _, _ = w_loss_func(h_i, h_t)
err = opt.alpha * (i_tri + t_tri) + loss_class + loss_quant + w_loss + loss2
else:
f_l, hid_l, h_l = label_model(label)
f_t, hid_t, h_t = text_model(txt)
if opt.is_dual_card:
f_i, hid_i, h_i = image_model(img.to("cuda:1", non_blocking=True))
f_i = f_i.to("cuda:0", non_blocking=True)
f_t = f_t.to("cuda:0", non_blocking=True)
h_i = h_i.to("cuda:0", non_blocking=True)
else:
f_i, hid_i, h_i = image_model(img)
L_buffer[ind, :] = h_l.data
pred = gat_model(f_i, f_t)
F = torch.as_tensor(F_buffer)
G = torch.as_tensor(G_buffer)
L = torch.as_tensor(L_buffer)
KLloss_ll = 1.9 * multilabelsimilarityloss_KL(h_l, L, h_l, L)
KLloss_lx = multilabelsimilarityloss_KL(h_l, L, h_l, F)
KLloss_ly = 0.3 * multilabelsimilarityloss_KL(h_l, L, h_l, G)
# print(h_i.shape)
F_buffer[ind, :] = h_i.data
F = torch.as_tensor(F_buffer)
L = torch.as_tensor(L_buffer)
KLloss_xx = 1.9 * multilabelsimilarityloss_KL(h_l, L, h_i, F)
KLloss_xl = multilabelsimilarityloss_KL(h_l, L, h_i, L)
G_buffer[ind, :] = h_t.data
L = torch.as_tensor(L_buffer)
G = torch.as_tensor(G_buffer)
KLloss_yy = 1.9 * multilabelsimilarityloss_KL(h_l, L, h_t, G)
KLloss_yl = multilabelsimilarityloss_KL(h_l, L, h_t, L)
loss2 = KLloss_ll + KLloss_lx + KLloss_ly + KLloss_xx + KLloss_xl + KLloss_yy + KLloss_yl
i_tri = tri_loss(opt, h_i, label, target=h_t, margin=opt.margin) + \
tri_loss(opt, h_i, label, target=h_i, margin=opt.margin)
t_tri = tri_loss(opt, h_t, label, target=h_i, margin=opt.margin) + \
tri_loss(opt, h_t, label, target=h_t, margin=opt.margin)
i_ql = torch.sum((1. - Func.cosine_similarity(h_i, h_i.detach().sign(), dim=1))) + torch.sum(torch.pow(h_i - h_i.detach().sign(), 2)) + quantizationLoss(h_i, B[ind, :])
t_ql = torch.sum((1. - Func.cosine_similarity(h_t, h_t.detach().sign(), dim=1))) + torch.sum(torch.pow(h_t - h_t.detach().sign(), 2)) + quantizationLoss(h_t, B[ind, :])
l_ql = torch.sum((1. - Func.cosine_similarity(h_l, h_l.detach().sign(), dim=1))) + torch.sum(torch.pow(h_l - h_l.detach().sign(), 2)) + quantizationLoss(h_l, B[ind, :])
loss_quant = i_ql + t_ql + l_ql
loss_class = criterion(pred, label)
loss1, _, _ = w_loss, _, _ = w_loss_func(h_i, h_t)
err = opt.alpha * (i_tri + t_tri) + loss_class + loss_quant + w_loss + loss2
if opt.accumulation_steps != 1:
if amp:
scaler.scale(err).backward()
else:
err.backward()
err = err / opt.accumulation_steps
if (i + 1) % opt.accumulation_steps == 0:
if amp:
scaler.step(optimizer_txt)
scaler.step(optimizer_img)
scaler.step(optimizer_gat)
scaler.step(optimizer_label)
scaler.update()
else:
optimizer_txt.step()
optimizer_img.step()
optimizer_gat.step()
optimizer_label.step()
optimizer_txt.zero_grad(set_to_none=True)
optimizer_img.zero_grad(set_to_none=True)
optimizer_gat.zero_grad(set_to_none=True)
optimizer_label.zero_grad(set_to_none=True)
else:
if amp:
scaler.scale(err).backward()
scaler.step(optimizer_txt)
scaler.step(optimizer_img)
scaler.step(optimizer_gat)
scaler.step(optimizer_label)
scaler.update()
else:
optimizer_txt.zero_grad(set_to_none=True)
optimizer_img.zero_grad(set_to_none=True)
optimizer_gat.zero_grad(set_to_none=True)
optimizer_label.zero_grad(set_to_none=True)
err.backward()
optimizer_txt.step()
optimizer_img.step()
optimizer_gat.step()
optimizer_label.step()
loss_c = loss_class + loss_c
loss_qi = i_ql + loss_qi
loss_ti = i_tri + loss_ti
loss_ql = l_ql + loss_ql
total = err + total
loss_qt = t_ql + loss_qt
loss_tt = t_tri + loss_tt
for param in optimizer_img.param_groups:
param['lr'] = opt.img_lr * 0.5 * (1 + np.cos((i + 1) / (epoch + 1) * np.pi))
for param in optimizer_txt.param_groups:
param['lr'] = opt.txt_lr * 0.5 * (1 + np.cos((i + 1) / (epoch + 1) * np.pi))
for param in optimizer_gat.param_groups:
param['lr'] = opt.gat_lr * 0.5 * (1 + np.cos((i + 1) / (epoch + 1) * np.pi))
for param in optimizer_label.param_groups:
param['lr'] = opt.label_lr * 0.5 * (1 + np.cos((i + 1) / (epoch + 1) * np.pi))
B = torch.sign(F_buffer + G_buffer + L_buffer)
if current_rank == 0:
loss_quan.append([loss_qi.item(), loss_qt.item(), loss_ql.item()])
loss_triplet.append([loss_ti.item(), loss_tt.item()])
loss_clas.append(loss_c.item())
loss1_list.append(loss1.item())
loss2_list.append(loss2.item())
loss.append(total.item())
print('...epoch: %3d, img_net_loss: %3.3f' % (epoch + 1, loss_quan[-1][0] + loss_triplet[-1][0]))
print('...epoch: %3d, txt_net_loss: %3.3f' % (epoch + 1, loss_quan[-1][1] + loss_triplet[-1][1]))
print('...epoch: %3d, label_net_loss: %3.3f' % (epoch + 1, loss_quan[-1][2]))
print('...epoch: %3d, total_loss: %3.3f' % (epoch + 1, loss[-1] + loss_quan[-1][0] + loss_quan[-1][1]))
delta_t = time.time() - t1
if opt.vis_env:
if current_rank == 0:
vis.plot('img_loss_quan', loss_quan[-1][0])
vis.plot('img_loss_triplet', loss_triplet[-1][0])
vis.plot('txt_loss_quan', loss_quan[-1][1])
vis.plot('label_loss_quan', loss_quan[-1][2])
vis.plot('txt_loss_triplet', loss_triplet[-1][1])
vis.plot('loss_class', loss_clas[-1])
vis.plot('loss1', loss1_list[-1])
vis.plot('loss2', loss2_list[-1])
vis.plot('total_loss', loss[-1])
# validate
if opt.valid and (epoch + 1) % opt.valid_freq == 0:
with torch.no_grad():
mapi2t, mapt2i, qBX, qBY, rBX, rBY = valid(image_model, text_model, inp_file, i_query_dataloader, i_db_dataloader,
t_query_dataloader, t_db_dataloader,
query_labels, db_labels)
if current_rank == 0:
print('...epoch: %3d, valid MAP: MAP(i->t): %3.4f, MAP(t->i): %3.4f' % (epoch + 1, mapi2t, mapt2i))
mapi2t_list.append(mapi2t)
mapt2i_list.append(mapt2i)
train_times.append(delta_t)
if opt.vis_env:
d = {
'mapi2t': mapi2t,
'mapt2i': mapt2i
}
if current_rank == 0:
vis.plot_many(d)
if current_rank == 0:
if 0.5 * (mapi2t + mapt2i) > max_average:
max_mapi2t = mapi2t
max_mapt2i = mapt2i
current_acc = 0.5 * (mapi2t + mapt2i)
max_average = max(current_acc, max_average)
checkpoint = {
'mapi2t': mapi2t,
'mapt2i': mapt2i,
'epoch': epoch + 1,
'img_model': image_model.state_dict(),
'img_optimizer': optimizer_img.state_dict(),
'txt_model': text_model.state_dict(),
'txt_optimizer': optimizer_txt.state_dict(),
'gat_model': gat_model.state_dict(),
'gat_optimizer': optimizer_gat.state_dict(),
'label_model': label_model.state_dict(),
'label_optimizer': optimizer_label.state_dict()
}
checkpoint_path = 'checkpoints/' + opt.dataset + '_' + str(opt.bit)
save_mat(query_img=qBX, query_txt=qBY, retrieval_img=rBX, retrieval_txt=rBY,
query_labels=query_labels, retrieval_labels=db_labels, save__dir=checkpoint_path,
output_dim=opt.bit, map=max_mapi2t, flag=opt.flag, mode_name="i2t")
save_mat(query_img=qBX, query_txt=qBY, retrieval_img=rBX, retrieval_txt=rBY,
query_labels=query_labels, retrieval_labels=db_labels, save__dir=checkpoint_path,
output_dim=opt.bit, map=max_mapt2i, flag=opt.flag, mode_name="t2i")
best_model_path = os.path.join(checkpoint_path, 'best_checkpoint.pth.tar')
torch.save(checkpoint, best_model_path)
print('...training procedure finish')
if opt.valid:
if current_rank == 0:
print(' max MAP: MAP(i->t): %3.4f, MAP(t->i): %3.4f' % (max_mapi2t, max_mapt2i))
else:
mapi2t, mapt2i, qBX, qBY, rBX, rBY = valid(image_model, text_model, inp_file, i_query_dataloader, i_db_dataloader, t_query_dataloader, t_db_dataloader, query_labels, db_labels)
if current_rank == 0:
print(' max MAP: MAP(i->t): %3.4f, MAP(t->i): %3.4f' % (mapi2t, mapt2i))
if current_rank == 0:
path = 'checkpoints/' + opt.dataset + '_' + str(opt.bit)
with open(os.path.join(path, 'result.pkl'), 'wb') as f:
pickle.dump([train_times, mapi2t_list, mapt2i_list], f)
return max_average, err.item()
def valid(image_model, text_model, inp, x_query_dataloader, x_db_dataloader, y_query_dataloader, y_db_dataloader, query_labels, db_labels):
image_model.eval()
text_model.eval()
qBX = generate_img_code(image_model, inp, x_query_dataloader, opt.query_size, opt.bit)
qBY = generate_txt_code(text_model, inp, y_query_dataloader, opt.query_size, opt.bit)
rBX = generate_img_code(image_model, inp, x_db_dataloader, opt.db_size, opt.bit)
rBY = generate_txt_code(text_model, inp, y_db_dataloader, opt.db_size, opt.bit)
mapi2t = calc_map_k(qBX, rBY, query_labels, db_labels)
mapt2i = calc_map_k(qBY, rBX, query_labels, db_labels)
image_model.train()
text_model.train()
return mapi2t.item(), mapt2i.item(), qBX, qBY, rBX, rBY
def test(**kwargs):
opt.parse(kwargs)
images, tags, labels, adj_file, inp_file = load_data(opt.data_path, opt.adj, opt.inp, type=opt.dataset)
if opt.is_dual_card:
inp_file = torch.from_numpy(inp_file).to("cuda:0", non_blocking=True)
else:
inp_file = torch.from_numpy(inp_file).cuda(non_blocking=True)
bits = [opt.bit]
with torch.no_grad():
for bit in bits:
image_model = IMG(opt.hidden_dim, bit, opt.dropout, opt.num_label, adj_file).cuda()
text_model = TXT(opt.text_dim, opt.hidden_dim, bit, opt.dropout, opt.num_label, adj_file).cuda()
path = 'checkpoints/' + opt.dataset + '_' + str(bit)
load_model(image_model, path)
load_model(text_model, path)
image_model.eval()
text_model.eval()
i_query_data = Dataset(opt, images, tags, labels, test='image.query')
i_db_data = Dataset(opt, images, tags, labels, test='image.db')
t_query_data = Dataset(opt, images, tags, labels, test='text.query')
t_db_data = Dataset(opt, images, tags, labels, test='text.db')
i_query_dataloader = DataLoader(i_query_data, opt.batch_size, shuffle=False, num_workers=16, pin_memory=True)
i_db_dataloader = DataLoader(i_db_data, opt.batch_size, shuffle=False, num_workers=16, pin_memory=True)
t_query_dataloader = DataLoader(t_query_data, opt.batch_size, shuffle=False, num_workers=16, pin_memory=True)
t_db_dataloader = DataLoader(t_db_data, opt.batch_size, shuffle=False, num_workers=16, pin_memory=True)
query_labels, db_labels = i_query_data.get_labels()
if opt.is_dual_card:
query_labels = query_labels.to("cuda:0", non_blocking=True)
db_labels = db_labels.to("cuda:0", non_blocking=True)
else:
query_labels = query_labels.cuda(non_blocking=True)
db_labels = db_labels.cuda(non_blocking=True)
qBX = generate_img_code(image_model, inp_file, i_query_dataloader, opt.query_size, bit)
qBY = generate_txt_code(text_model, inp_file, t_query_dataloader, opt.query_size, bit)
rBX = generate_img_code(image_model, inp_file, i_db_dataloader, opt.db_size, bit)
rBY = generate_txt_code(text_model, inp_file, t_db_dataloader, opt.db_size, bit)
mapi2t = calc_map_k(qBX, rBY, query_labels, db_labels)
mapt2i = calc_map_k(qBY, rBX, query_labels, db_labels)
if current_rank == 0:
print('...test MAP: MAP(i->t): %3.4f, MAP(t->i): %3.4f' % (mapi2t, mapt2i))
scio.savemat('./checkpoints/{}-{}-hash.mat'.format(opt.dataset, bit), {
'Qi': qBX.cpu().numpy(), 'Qt': qBY.cpu().numpy(), 'Di': rBX.cpu().numpy(), 'Dt': rBY.cpu().numpy(),
'retrieval_L': db_labels.cpu().numpy(), 'query_L': query_labels.cpu().numpy()
})
def generate_img_code(model, inp, test_dataloader, num, bit):
if opt.is_dual_card:
B = torch.zeros(num, bit).to("cuda:0", non_blocking=True)
else:
B = torch.zeros(num, bit).cuda(non_blocking=True)
for i, (input_data) in tqdm(enumerate(test_dataloader)):
if opt.is_dual_card:
input_data = input_data.to("cuda:1", non_blocking=True)
else:
input_data = input_data.cuda(non_blocking=True)
if opt.is_distributedDataParallel or is_dp:
b = model.module.generate_img_code(input_data)
else:
b = model.generate_img_code(input_data)
idx_end = min(num, (i + 1) * opt.batch_size)
B[i * opt.batch_size: idx_end, :] = b.data
B = torch.sign(B)
return B
def generate_txt_code(model, inp, test_dataloader, num, bit):
if opt.is_dual_card:
B = torch.zeros(num, bit).to("cuda:0", non_blocking=True)
else:
B = torch.zeros(num, bit).cuda(non_blocking=True)
for i, (input_data) in tqdm(enumerate(test_dataloader)):
if opt.is_dual_card:
input_data = input_data.to("cuda:0", non_blocking=True)
else:
input_data = input_data.cuda(non_blocking=True)
if opt.is_distributedDataParallel or is_dp:
b = model.module.generate_txt_code(input_data)
else:
b = model.generate_txt_code(input_data)
idx_end = min(num, (i + 1) * opt.batch_size)
B[i * opt.batch_size: idx_end, :] = b.data
B = torch.sign(B)
return B
def calculate_distance(x, y):
d = torch.sqrt(torch.sum((x - y) ** 2))
return d
def calculate_distance_matrix(x, y):
d = torch.cdist(x, y)
return d
def cal_B(D):
(n1, n2) = D.shape
DD = torch.square(D)
Di = torch.sum(DD, dim=1) / n1
Dj = torch.sum(DD, dim=0) / n1
Dij = torch.sum(DD) / (n1 ** 2)
B = torch.zeros((n1, n1))
for i in range(n1):
for j in range(n2):
B[i, j] = (Dij + DD[i, j] - Di[i] - Dj[j]) / (-2) # 计算b(ij)
return B
def calc_loss(loss):
l = 0.
for v in loss.values():
l += v[-1]
return l
def avoid_inf(x):
return torch.log(1.0 + torch.exp(-torch.abs(x))) + torch.max(torch.zeros_like(x), x)
def load_model(model, path):
if path is not None:
if opt.is_distributedDataParallel:
model.module.load(os.path.join(path, model.module.module_name + '.pth'))
else:
model.load(os.path.join(path, model.module_name + '.pth'))
def save_model(model):
path = 'checkpoints/' + opt.dataset + '_' + str(opt.bit)
if current_rank == 0:
if opt.is_distributedDataParallel:
model.module.save(model.module.module_name + '.pth', path)
else:
model.save(model.module_name + '.pth', path)
if __name__ == '__main__':
train(flag = args.flag, bit = args.bit, batch_size = args.batch, max_epoch=300)