-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathNYC TLC - Data Exploration.py
644 lines (511 loc) · 15.8 KB
/
NYC TLC - Data Exploration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
# Databricks notebook source
# MAGIC %md
# MAGIC # New York Taxi Trips Dataset Analysis
# MAGIC The NYC Taxi and Limousine Commission (TLC) has publicly released a dataset of taxi trips from January 2009 to date (June 22 as of September). Trip data is published monthly (with two months delay).
# MAGIC
# MAGIC The dataset forms one of the few publicly available big data datasets, includes >100GB and more than 2 billion records. There are 4 different types of trip data available including yellow, green, for-hire and high volume, we will be focusing on the data published for the yellow taxis.
# MAGIC
# MAGIC The data dictionary can be found [here](https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf)
# MAGIC
# MAGIC Dataset Download Link: [link](https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page)
# MAGIC
# MAGIC Getting started with Databricks notebook: [link](https://docs.microsoft.com/en-us/azure/databricks/notebooks/notebooks-use)
# MAGIC <br>
# MAGIC
# MAGIC We will perform following operations on the dataset.
# MAGIC 1. Extract - Load - Transform Process
# MAGIC 2. Exploratory Data Analysis (EDA)
# COMMAND ----------
# MAGIC %md
# MAGIC # Setup Environment
# COMMAND ----------
# MAGIC %md
# MAGIC ## Importing libraries
# COMMAND ----------
import pandas as pd
import math
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
import geopandas as gpd
# from branca.colormap import linear
from shapely.geometry import Point, Polygon, shape
from shapely import wkb, wkt
from pyspark.sql.functions import *
from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType,DecimalType
from pyspark.sql.functions import pandas_udf, PandasUDFType
import shapely.speedups
shapely.speedups.enable() # this makes some spatial queries run faster
# COMMAND ----------
# MAGIC %md
# MAGIC # Data Loading / Preparation
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC Download and Load Taxi Zone related data
# COMMAND ----------
df_csv = pd.read_csv("https://bus5001.blob.core.windows.net/processed/taxi_zones.csv")
spark_df = spark.createDataFrame(df_csv).cache()
spark_df.createOrReplaceTempView('taxiGeom')
# COMMAND ----------
taxi_zones_df = pd.read_csv("https://bus5001.blob.core.windows.net/processed/taxi+_zone_lookup.csv")
taxiZonesDF=spark.createDataFrame(taxi_zones_df).cache()
taxiZonesDF.createOrReplaceTempView('taxiZones')
# COMMAND ----------
# MAGIC %sql
# MAGIC
# MAGIC SELECT * FROM taxiGeom
# COMMAND ----------
display(taxiZonesDF)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Transform Data
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC In this section we will
# MAGIC - rename columns to a more consistant and meaningfull format
# MAGIC - transform datetime strings to unix timestamp type
# MAGIC - transform decimal values to Double type
# COMMAND ----------
# MAGIC %md
# MAGIC ## Data dictionary
# MAGIC ```
# MAGIC vendor_name:string --> vendor_id string
# MAGIC tpep_pickup_datetime:string --> pickup_datetime datetime
# MAGIC tpep_dropoff_datetime:string --> dropoff_datetime datetime
# MAGIC passenger_Count:string --> passenger_count integer
# MAGIC trip_distance:string --> trip_distance double
# MAGIC pickup_location_id:string --> pickup_location_id double
# MAGIC dropoff_location_id:string --> dropoff_location_id double
# MAGIC RateCodeID:string --> rate_code_id string
# MAGIC store_and_fwd_flag:string --> store_and_forward string
# MAGIC payment_type:string --> payment_type string
# MAGIC fare_amount:string --> fare_amount double
# MAGIC surcharge:string --> extra double
# MAGIC mta_tax:string --> mta_tax double
# MAGIC tip_amount:string --> tip_amount double
# MAGIC tolls_amount:string --> tolls_amount double
# MAGIC total_amount:string --> total_amount double
# MAGIC
# MAGIC ```
# COMMAND ----------
df_yellow_18_19 = spark.read.load("/data/nyc-yellow/2018")
# COMMAND ----------
from pyspark.sql.functions import spark_partition_id, asc, desc
df_yellow_18_19\
.withColumn("partitionId", spark_partition_id())\
.groupBy("partitionId")\
.count()\
.orderBy(asc("count"))\
.show()
# COMMAND ----------
# MAGIC %sql
# MAGIC DESCRIBE DETAIL delta. `dbfs:/data/nyc-yellow/2018`
# COMMAND ----------
df_yellow_18_19.describe()
# COMMAND ----------
# MAGIC %md
# MAGIC # Exploratory Data Analysis (EDA)
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC Now you can run SQL queries on top of the temporary table and delta table you created. Also you can use the Spark API to query as well.
# COMMAND ----------
# MAGIC %md
# MAGIC ## The first 10 rows using a SQL query
# COMMAND ----------
# MAGIC %md
# MAGIC ## Total trip count
# COMMAND ----------
# MAGIC %sql
# MAGIC SELECT count(*) FROM delta. `dbfs:/data/nyc-yellow/2018`;
# COMMAND ----------
# MAGIC %md
# MAGIC ## Trip count by date using Spark API
# COMMAND ----------
df_yellow_18_19.count()
# COMMAND ----------
# MAGIC %sql
# MAGIC
# MAGIC SELECT
# MAGIC COUNT(pickup_datetime) trip_count
# MAGIC ,to_date(pickup_datetime) date
# MAGIC FROM delta. `dbfs:/data/nyc-yellow/2018`
# MAGIC GROUP BY
# MAGIC to_date(pickup_datetime)
# MAGIC ORDER BY
# MAGIC to_date(date)
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC ## Payment type as a percentage over time
# COMMAND ----------
display(spark.sql(
'''
SELECT
COUNT(*) trips
,to_date(pickup_datetime) date
,CASE
WHEN payment_type = 1 THEN 'Credit card'
WHEN payment_type = 2 THEN 'Cash'
WHEN payment_type = 3 THEN 'No charge'
WHEN payment_type = 4 THEN 'Dispute'
WHEN payment_type = 5 THEN 'Unknown'
ELSE 'Voided trip'
END AS Payment_type
FROM delta. `dbfs:/data/nyc-yellow/2018`
GROUP BY
to_date(pickup_datetime)
,payment_type
ORDER BY
to_date(date)
'''
),False)
# COMMAND ----------
# MAGIC %md
# MAGIC US Holidays in 2018 and 2019
# MAGIC
# MAGIC
# MAGIC ```
# MAGIC New Year's Day Mon, 1 Jan 2018
# MAGIC Martin Luther King Jr. Day Mon, 15 Jan 2018
# MAGIC Memorial Day Mon, 28 May 2018
# MAGIC Independence Day Wed, 4 July 2018
# MAGIC Labor Day Mon, 3 Sept 2018
# MAGIC Veterans Day Mon, 12 Nov 2018
# MAGIC Thanksgiving Thu, 22 Nov 2018
# MAGIC George H. W. Bush Memorial Day Wed, 5 Dec 2018
# MAGIC Christmas Day Tue, 25 Dec 2018
# MAGIC
# MAGIC
# MAGIC New Year's Day Tue, 1 Jan 2019
# MAGIC Martin Luther King Jr. Day Mon, 21 Jan 2019
# MAGIC Memorial Day Mon, 27 May 2019
# MAGIC Independence Day Thu, 4 July 2019
# MAGIC Labor Day Mon, 2 Sept 2019
# MAGIC Veterans Day Mon, 11 Nov 2019
# MAGIC Thanksgiving Thu, 28 Nov 2019
# MAGIC Christmas Day Wed, 25 Dec 2019
# MAGIC ```
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC ## Taxi trip pickups by taxi zone
# COMMAND ----------
pickup_by_zone = spark.sql(
'''
SELECT
tg.zone as Zone
,t.pickup_location_id as pickup_location_id
,tg.the_geom as geometry
,t.trip_count
FROM
taxiGeom tg INNER JOIN (
SELECT
pickup_location_id,
COUNT(pickup_location_id) as trip_count
FROM delta. `dbfs:/data/nyc-yellow/2018`
GROUP BY pickup_location_id
) t
ON t.pickup_location_id = tg.LocationID
ORDER BY t.pickup_location_id
'''
).toPandas()
# COMMAND ----------
pickup_by_zone_gs = gpd.GeoSeries.from_wkt(pickup_by_zone['geometry'])
pickup_by_zone_gdf = gpd.GeoDataFrame(pickup_by_zone, geometry=pickup_by_zone_gs, crs="EPSG:4326")
m = pickup_by_zone_gdf.explore(
column="trip_count",
tooltip=["Zone","trip_count"],
legend=True,
legend_kwds=dict(colorbar=False),
popup=True, # show all values in popup (on click)
tiles="CartoDB positron", # use "CartoDB positron" tiles
cmap='YlOrBr',
scheme='quantiles',
)
m
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC ## Taxi trip dropoffs by taxi zone
# COMMAND ----------
dropoff_by_zone = spark.sql(
'''
SELECT
tg.zone as Zone
,t.dropoff_location_id as dropoff_location_id
,tg.the_geom as geometry
,t.trip_count
FROM
taxiGeom tg INNER JOIN (
SELECT
dropoff_location_id,
COUNT(dropoff_location_id) as trip_count
FROM delta. `dbfs:/data/nyc-yellow/2018`
GROUP BY dropoff_location_id
) t
ON t.dropoff_location_id = tg.LocationID
ORDER BY t.dropoff_location_id
'''
).toPandas()
# COMMAND ----------
dropoff_by_zone_gs = gpd.GeoSeries.from_wkt(dropoff_by_zone['geometry'])
dropoff_by_zone_gdf = gpd.GeoDataFrame(dropoff_by_zone, geometry=dropoff_by_zone_gs, crs="EPSG:4326")
m = dropoff_by_zone_gdf.explore(
column="trip_count",
tooltip=["Zone","trip_count"],
legend=True,
legend_kwds=dict(colorbar=False),
popup=True, # show all values in popup (on click)
tiles="CartoDB positron", # use "CartoDB positron" tiles
cmap='YlOrBr',
scheme='quantiles',
)
m
# COMMAND ----------
# MAGIC %md
# MAGIC ## Taxi trip pickups by taxi zone over time
# COMMAND ----------
# MAGIC %sql
# MAGIC
# MAGIC SELECT
# MAGIC tg.zone as Zone
# MAGIC ,t.pickup_location_id as pickup_location_id
# MAGIC ,st_geomFromWKT(tg.the_geom) as geometry
# MAGIC ,t.trip_count
# MAGIC ,t.trip_date
# MAGIC FROM
# MAGIC taxiGeom tg INNER JOIN (
# MAGIC SELECT
# MAGIC pickup_location_id
# MAGIC ,to_date(pickup_datetime) trip_date
# MAGIC ,COUNT(pickup_location_id) as trip_count
# MAGIC FROM delta. `dbfs:/data/nyc-yellow/2018` WHERE pickup_datetime BETWEEN "2018-01-01" AND "2018-02-01"
# MAGIC GROUP BY
# MAGIC to_date(pickup_datetime)
# MAGIC ,pickup_location_id
# MAGIC ) t
# MAGIC ON t.pickup_location_id = tg.LocationID
# MAGIC ORDER BY t.pickup_location_id
# COMMAND ----------
# MAGIC %md
# MAGIC ## Trip count by passenger count
# COMMAND ----------
display(
df_yellow_18_19\
.groupBy(col("passenger_count").alias("passenger_count"))\
.agg(count("passenger_count").alias("trip count"))\
.orderBy(col('passenger_count'))\
)
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC ## Trip count by weekday
# COMMAND ----------
display(
df_yellow_18_19\
.groupBy(date_format(to_date("pickup_datetime"),"EEEE").alias("day"),dayofweek(to_date("pickup_datetime")).alias("day_number"))\
.agg(count("pickup_datetime").alias("trip count"))\
.orderBy(col("day_number"))\
)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Taxi trip pickups by hour
# COMMAND ----------
display(
df_yellow_18_19\
.groupBy(hour("pickup_datetime").alias("hour"))\
.agg(count("pickup_datetime").alias("pickups"))\
.orderBy(col("hour"))\
)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Taxi trip dropoffs by hour
# COMMAND ----------
display(
df_yellow_18_19\
.groupBy(hour("dropoff_datetime").alias("hour"))\
.agg(count("dropoff_datetime").alias("dropoffs"))\
.orderBy(col("hour"))\
)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Taxi trip origin destination heatmap
# COMMAND ----------
pickup_dropoff_heatmap = spark.sql('''
SELECT
pu.Zone AS pickup_location
,do.Zone AS dropoff_location
,t.trip_count
FROM
(
(
SELECT
pickup_location_id AS pickup_location
,dropoff_location_id AS dropoff_location
,count(pickup_location_id) AS trip_count
FROM delta. `dbfs:/data/nyc-yellow/2018`
WHERE
pickup_location_id < 264
AND
dropoff_location_id < 264
GROUP BY
pickup_location_id
,dropoff_location_id
) t
LEFT JOIN taxiZones pu ON t.pickup_location=pu.LocationID
LEFT JOIN taxiZones do ON t.dropoff_location=do.LocationID
)
ORDER BY
t.trip_count DESC
,pu.Borough DESC
,do.Borough DESC
LIMIT 100
'''
).toPandas()
# COMMAND ----------
pickup_dropoff_heatmap_pivot = pd.pivot_table(pickup_dropoff_heatmap,columns='dropoff_location',index='pickup_location')
pickup_dropoff_heatmap_pivot[pickup_dropoff_heatmap_pivot<1000] = np.nan
# COMMAND ----------
sns.set(rc={'figure.figsize':(15,15)})
sns.heatmap(pickup_dropoff_heatmap_pivot,cmap='rocket_r')
plt.show()
# COMMAND ----------
# MAGIC %md
# MAGIC ## Trip duration by pickup hour
# COMMAND ----------
# MAGIC %sql
# MAGIC SELECT
# MAGIC hour(pickup_datetime) AS pickup_hour,
# MAGIC AVG(
# MAGIC (bigint(to_timestamp(dropoff_datetime))) - (bigint(to_timestamp(pickup_datetime)))
# MAGIC ) AS trip_duration
# MAGIC FROM
# MAGIC delta. `dbfs:/data/nyc-yellow/2018`
# MAGIC GROUP BY
# MAGIC hour(pickup_datetime)
# MAGIC ORDER BY
# MAGIC pickup_hour
# COMMAND ----------
# MAGIC %md
# MAGIC ## Trip duration by dropoff hour
# COMMAND ----------
# MAGIC %sql
# MAGIC SELECT
# MAGIC hour(dropoff_datetime) AS dropoff_hour,
# MAGIC AVG(
# MAGIC (bigint(to_timestamp(dropoff_datetime))) - (bigint(to_timestamp(pickup_datetime)))
# MAGIC ) AS trip_duration
# MAGIC FROM
# MAGIC delta. `dbfs:/data/nyc-yellow/2018`
# MAGIC GROUP BY
# MAGIC hour(dropoff_datetime)
# MAGIC ORDER BY
# MAGIC dropoff_hour
# COMMAND ----------
# MAGIC %md
# MAGIC ## Trip duration by week day
# COMMAND ----------
# MAGIC %sql
# MAGIC SELECT
# MAGIC date_format(pickup_datetime, "EEEE") AS weekday,
# MAGIC dayofweek(pickup_datetime) as day_number,
# MAGIC AVG(
# MAGIC (bigint(to_timestamp(dropoff_datetime))) - (bigint(to_timestamp(pickup_datetime)))
# MAGIC ) AS trip_duration
# MAGIC FROM
# MAGIC delta. `dbfs:/data/nyc-yellow/2018`
# MAGIC GROUP BY
# MAGIC date_format(pickup_datetime, "EEEE"),
# MAGIC dayofweek(pickup_datetime)
# MAGIC ORDER BY
# MAGIC day_number
# COMMAND ----------
# MAGIC %md
# MAGIC ## Trip duration by passenger count
# COMMAND ----------
# MAGIC %sql
# MAGIC SELECT
# MAGIC passenger_count,
# MAGIC AVG(
# MAGIC (bigint(to_timestamp(dropoff_datetime))) - (bigint(to_timestamp(pickup_datetime)))
# MAGIC ) AS trip_duration
# MAGIC FROM
# MAGIC delta. `dbfs:/data/nyc-yellow/2018`
# MAGIC GROUP BY
# MAGIC passenger_count
# MAGIC HAVING
# MAGIC passenger_count < 15
# MAGIC ORDER BY
# MAGIC passenger_count
# COMMAND ----------
# MAGIC %md
# MAGIC ## Average trip fare over time
# COMMAND ----------
display(spark.sql(
'''
SELECT
AVG(total_amount) avg_total_amount
,to_date(pickup_datetime) date
FROM delta. `dbfs:/data/nyc-yellow/2018` WHERE total_amount >= 0
GROUP BY
to_date(pickup_datetime)
ORDER BY
to_date(date)
'''
),False)
# COMMAND ----------
# MAGIC %md
# MAGIC [Price Hike](https://www.ny1.com/nyc/all-boroughs/news/2019/02/03/congestion-pricing-surcharge-in-nyc-goes-into-effect)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Average tip amount over time
# COMMAND ----------
display(spark.sql(
'''
SELECT
AVG(tip_amount) avg_tip_amount
,to_date(pickup_datetime) date
FROM delta. `dbfs:/data/nyc-yellow/2018` WHERE tip_amount >= 0
GROUP BY
to_date(pickup_datetime)
ORDER BY
to_date(date)
'''
),False)
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC ## Tip to Total Amount percentage
# COMMAND ----------
display(spark.sql(
'''
SELECT
(AVG(tip_amount) / AVG(total_amount-tip_amount))* 100 tip_percentage_of_total_amount
,to_date(pickup_datetime) date
FROM delta. `dbfs:/data/nyc-yellow/2018` WHERE tip_amount >= 0 AND total_amount >= 0
GROUP BY
to_date(pickup_datetime)
ORDER BY
to_date(date)
'''
),False)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Average trip distance over time
# COMMAND ----------
display(spark.sql(
'''
SELECT
AVG(trip_distance) avg_trip_distance
,to_date(pickup_datetime) date
FROM delta. `dbfs:/data/nyc-yellow/2018`
GROUP BY
to_date(pickup_datetime)
ORDER BY
to_date(date)
'''
),False)