-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
45 lines (36 loc) · 1.37 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import streamlit as st
import pickle
import pandas as pd
movies_list = pickle.load(open('assets/movie_dict.pkl', 'rb'))
movies_df = pd.DataFrame(movies_list)
movies_list = movies_df['title'].values
similarity = pickle.load(open('assets/similarity.pkl', 'rb'))
movpre = pickle.load(open('assets/movpre.pkl', 'rb'))
# Function to recommend movie
def recommend(movie: str):
if movies_df[movies_df['title'] == movie].empty:
print(f"{movie} not present in the database")
else:
movie_index = movies_df[movies_df['title'] == movie].index[0]
distances = similarity[movie_index]
movies_list = sorted(list(enumerate(distances)),
reverse=True, key=lambda x: x[1])[1:6]
recommended_movies = []
movie_id = []
for i in movies_list:
movie_id = i[0]
recommended_movies.append(movpre.iloc[i[0]].title)
print(movie_id)
return recommended_movies
st.title('Movie Recommender System')
selected_movie_name = st.selectbox(
'Select a movie that you like or finished watching', movies_list)
button = st.button("Recommend")
if button:
st.text("TOP PICKS FOR YOU:")
recommendations = recommend(selected_movie_name)
for recommendation in recommendations:
st.write(recommendation)
else:
st.write("")
recommend("Avatar")