-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
264 lines (264 loc) · 12.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1.0" name="viewport"/>
<meta content="Research Results" name="description"/>
<title>
Deep Combiner for Independent and Correlated Pixel Estimates
</title>
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,600" rel="stylesheet" type="text/css"/>
<link href="utils/report.css" rel="stylesheet"/>
</head>
<body>
<div class="content" id="content">
<h1 class="title">
Deep Combiner for Independent and Correlated Pixel Estimates (Supplementary Material)
</h1>
<p class="authors">
Jonghee Back<sup>1</sup>, Binh-Son Hua<sup>2, 3</sup>, Toshiya Hachisuka<sup>4</sup>, and Bochang Moon<sup>1</sup>
</p>
<p class="authors">
<sup>1</sup> GIST, South Korea,
<sup>2</sup> VinAi Research, Vietnam,
<sup>3</sup> VinUniversity, Vietnam,
<sup>4</sup> The University of Tokyo, Japan
</p>
<h2>
Overview
</h2>
<p>
This supplemental material provides full resolution rendering of our method and previous methods. Please click on each scene to launch the interactive viewer that shows both visual and quantitative comparisons.
</p>
<p>
We use the following methods to generate correlated pixel estimates: NFOR [2] and KPCN denoisers [1], L1 reconstruction and L2 reconstruction in gradient-domain path tracing [5], common random number for each pixel (CRN). Additionally, we test two correlated pixel estimates, BCD [3] and PPM [4], which are not trained with our network.
</p>
<p>
We provide two equal-time comparisons with short-term (inserted figures in paper) and long-term. We also offer tables including samples per pixel (spp), running time and relMSE [6] of the results with epsilon 1e-2, which has been widely used for evaluating the quality of the rendered image. The unit of running time in the tables is second. The relMSE of each method is evaluated from the average of ten images rendered with different seeds.
</p>
<h2>
Equal-Time Comparisons with Image Denoising (NFOR and KPCN)
</h2>
<div class="element-container">
<div class="report-preview">
<a href="scenes_denoisers/bathroom/index.html">
<img class="report-thumb" src="scenes_denoisers/bathroom/thumb.png"/>
</a>
<br/>
Bathroom
</div>
<div class="report-preview">
<a href="scenes_denoisers/bookshelf/index.html">
<img class="report-thumb" src="scenes_denoisers/bookshelf/thumb.png"/>
</a>
<br/>
Bookshelf
</div>
<div class="report-preview">
<a href="scenes_denoisers/kitchen/index.html">
<img class="report-thumb" src="scenes_denoisers/kitchen/thumb.png"/>
</a>
<br/>
Kitchen
</div>
<div class="report-preview">
<a href="scenes_denoisers/conference/index.html">
<img class="report-thumb" src="scenes_denoisers/conference/thumb.png"/>
</a>
<br/>
Conference
</div>
<div class="report-preview">
<a href="scenes_denoisers/living-room/index.html">
<img class="report-thumb" src="scenes_denoisers/living-room/thumb.png"/>
</a>
<br/>
Living-room
</div>
<div class="report-preview">
<a href="scenes_denoisers/veach-lamp/index.html">
<img class="report-thumb" src="scenes_denoisers/veach-lamp/thumb.png"/>
</a>
<br/>
Veach-lamp
</div>
</div>
<h2>
Equal-Time Comparisons with Gradient-Domain Rendering (GPT-L1 and GPT-L2)
</h2>
<div class="element-container">
<div class="report-preview">
<a href="scenes_gdr/bathroom/index.html">
<img class="report-thumb" src="scenes_gdr/bathroom/thumb.png"/>
</a>
<br/>
Bathroom
</div>
<div class="report-preview">
<a href="scenes_gdr/bookshelf/index.html">
<img class="report-thumb" src="scenes_gdr/bookshelf/thumb.png"/>
</a>
<br/>
Bookshelf
</div>
<div class="report-preview">
<a href="scenes_gdr/kitchen/index.html">
<img class="report-thumb" src="scenes_gdr/kitchen/thumb.png"/>
</a>
<br/>
Kitchen
</div>
<div class="report-preview">
<a href="scenes_gdr/conference/index.html">
<img class="report-thumb" src="scenes_gdr/conference/thumb.png"/>
</a>
<br/>
Conference
</div>
<div class="report-preview">
<a href="scenes_gdr/living-room/index.html">
<img class="report-thumb" src="scenes_gdr/living-room/thumb.png"/>
</a>
<br/>
Living-room
</div>
<div class="report-preview">
<a href="scenes_gdr/veach-lamp/index.html">
<img class="report-thumb" src="scenes_gdr/veach-lamp/thumb.png"/>
</a>
<br/>
Veach-lamp
</div>
</div>
<h2>
Equal-Time Comparisons with Correlated Sampling (CRN)
</h2>
<div class="element-container">
<div class="report-preview">
<a href="scenes_corr_sampling/bathroom/index.html">
<img class="report-thumb" src="scenes_corr_sampling/bathroom/thumb.png"/>
</a>
<br/>
Bathroom
</div>
<div class="report-preview">
<a href="scenes_corr_sampling/bookshelf/index.html">
<img class="report-thumb" src="scenes_corr_sampling/bookshelf/thumb.png"/>
</a>
<br/>
Bookshelf
</div>
<div class="report-preview">
<a href="scenes_corr_sampling/kitchen/index.html">
<img class="report-thumb" src="scenes_corr_sampling/kitchen/thumb.png"/>
</a>
<br/>
Kitchen
</div>
<div class="report-preview">
<a href="scenes_corr_sampling/conference/index.html">
<img class="report-thumb" src="scenes_corr_sampling/conference/thumb.png"/>
</a>
<br/>
Conference
</div>
<div class="report-preview">
<a href="scenes_corr_sampling/living-room/index.html">
<img class="report-thumb" src="scenes_corr_sampling/living-room/thumb.png"/>
</a>
<br/>
Living-room
</div>
<div class="report-preview">
<a href="scenes_corr_sampling/veach-lamp/index.html">
<img class="report-thumb" src="scenes_corr_sampling/veach-lamp/thumb.png"/>
</a>
<br/>
Veach-lamp
</div>
</div>
<h2>
Equal-Time Comparisons with Untrained Correlated Pixel Estimates (BCD)
</h2>
<div class="element-container">
<div class="report-preview">
<a href="scenes_untrained_bcd/bathroom/index.html">
<img class="report-thumb" src="scenes_untrained_bcd/bathroom/thumb.png"/>
</a>
<br/>
Bathroom
</div>
<div class="report-preview">
<a href="scenes_untrained_bcd/bookshelf/index.html">
<img class="report-thumb" src="scenes_untrained_bcd/bookshelf/thumb.png"/>
</a>
<br/>
Bookshelf
</div>
<div class="report-preview">
<a href="scenes_untrained_bcd/kitchen/index.html">
<img class="report-thumb" src="scenes_untrained_bcd/kitchen/thumb.png"/>
</a>
<br/>
Kitchen
</div>
<div class="report-preview">
<a href="scenes_untrained_bcd/conference/index.html">
<img class="report-thumb" src="scenes_untrained_bcd/conference/thumb.png"/>
</a>
<br/>
Conference
</div>
</div>
<h2>
Equal-Time Comparisons with Untrained Correlated Pixel Estimates (PPM)
</h2>
<div class="element-container">
<div class="report-preview">
<a href="scenes_untrained_ppm/bathroom/index.html">
<img class="report-thumb" src="scenes_untrained_ppm/bathroom/thumb.png"/>
</a>
<br/>
Bathroom
</div>
<div class="report-preview">
<a href="scenes_untrained_ppm/bookshelf/index.html">
<img class="report-thumb" src="scenes_untrained_ppm/bookshelf/thumb.png"/>
</a>
<br/>
Bookshelf
</div>
</div>
<h2>
References
</h2>
<p>
[1] Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan Novák, Alex Harvill, Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings. ACM Trans. Graph. 36, 4, Article 97 (2017), 14 pages
</p>
<p>
[2] Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitián, David Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings. Computer Graphics Forum 35, 4 (2016), 107–117
</p>
<p>
[3] Malik Boughida and Tamy Boubekeur. 2017. Bayesian Collaborative Denoising for Monte Carlo Rendering. Computer Graphics Forum 36, 4 (2017), 137–153
</p>
<p>
[4] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. Progressive Photon Mapping. ACM Trans. Graph. 27, 5, Article 130 (2008), 8 pages
</p>
<p>
[5] Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-domain Path Tracing. ACM Trans. Graph. 34, 4, Article 123 (2015), 13 pages
</p>
<p>
[6] Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2011. Adaptive Sampling and Reconstruction Using Greedy Error Minimization. ACM Trans. Graph. 30, 6, Article 159 (2011), 12 pages
</p>
<h2>
Acknowledgements
</h2>
<p>
We thank the following authors and artists for the tested scenes: nacimus (Bathroom), Tiziano Portenier (Bookshelf), Anton Kaplanyan (Kitchen), Anat Grynberg and Greg Ward (Conference), Jay-Artist (Living-room) and Benedikt Bitterli (Veach-lamp).
</p>
<p>
We also thank Joey Litalien, Jan Novák and Benedikt Bitterli for the interactive viewer.
</p>
</div>
</body>
</html>