forked from parushgera/lsda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwtwt_svm_cross_0.9.py
332 lines (194 loc) · 7.98 KB
/
wtwt_svm_cross_0.9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import re
import string
import numpy as np
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
import json
from nltk.tokenize import TweetTokenizer
#nltk.download('stopwords')
#nltk.download('punkt')
from nltk.util import ngrams
#from google.colab import drive
from scipy.sparse import hstack
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from scipy import sparse
import os
from stance_utils import *
import warnings
warnings.filterwarnings('ignore')
import datetime
now = datetime.datetime.now()
from scipy.sparse import csr_matrix
# In[ ]:
# In[2]:
df_hlt_train = pd.read_csv("/data/parush/wtwt/healthcare_train.txt", sep='\t')
df_hlt_test = pd.read_csv("/data/parush/wtwt/healthcare_test.txt", sep='\t')
df_ent_train = pd.read_csv("/data/parush/wtwt/entertainment_train.txt", sep='\t')
df_ent_test = pd.read_csv("/data/parush/wtwt/entertainment_test.txt", sep='\t')
print("Length of Health_train", len(df_hlt_train))
print("Length of Health_test", len(df_hlt_test))
print("Length of ent_train", len(df_ent_train))
print("Length of ent_test", len(df_ent_test))
# In[3]:
aug = True
classes = {'support':0, 'refute': 1, 'comment': 2, 'unrelated': 3}
file = 'rich_data/ent_pol_hlt/ent_pol_hlt0.9.json'
# In[ ]:
# In[4]:
def process_tweet(tweet):
'''
Input:
tweet: a string containing a tweet
Output:
tweets_clean: a list of words containing the processed tweet
'''
# remove stock market tickers like $GE
tweet = re.sub(r'\$\w*', '', tweet)
# remove old style retweet text "RT"
tweet = re.sub(r'^RT[\s]+', '', tweet)
# remove hyperlinks
tweet = re.sub(r'https?:\/\/.*[\r\n]*', '', tweet)
# remove hashtags
# only removing the hash # sign from the word
tweet = re.sub(r'#', '', tweet)
# tokenize tweets
tokenizer = TweetTokenizer(preserve_case=False, strip_handles=True, reduce_len=True)
tweet_tokens = tokenizer.tokenize(tweet)
### START CODE HERE ###
tweets_clean = []
for word in tweet_tokens:
if (word not in stopwords_english and # remove stopwords
word not in string.punctuation): # remove punctuation
#tweets_clean.append(word)
stem_word = stemmer.stem(word) # stemming word
tweets_clean.append(stem_word)
### END CODE HERE ###
tweets_clean = " ".join(tweets_clean)
return tweets_clean
# In[ ]:
# In[5]:
vectorizer = 'tfidf' # set 'count' or 'tfidf'
analyzer = 'both' # set 'word' or 'both' ( word and char)
# In[6]:
if vectorizer == 'count':
if analyzer == 'word':
vectorizer = CountVectorizer(analyzer='word',ngram_range=(1,1))
else:
vectorizer = CountVectorizer(analyzer='word',ngram_range=(1,3))
char_vectorizer = CountVectorizer(analyzer='char',ngram_range=(2,5))
else:
if analyzer == 'word':
vectorizer = TfidfVectorizer(analyzer='word',ngram_range=(1,1))
else:
vectorizer = TfidfVectorizer(analyzer='word',ngram_range=(1,3))
char_vectorizer = TfidfVectorizer(analyzer='char',ngram_range=(2,5))
# In[7]:
def cross_splitter(df_train, df_test, classes, file):
print("Started splitting 0.9 threshold pre-processing")
train_corpus = [process_tweet(i) for i in df_train['tweet'].tolist()]
train_labels = [classes[i] for i in df_train['stance'].tolist()]
test_corpus = [process_tweet(i) for i in df_test['tweet'].tolist()]
test_labels = [classes[i] for i in df_test['stance'].tolist()]
c_len = len(train_corpus)
print("Before augmenting length ", c_len)
if aug:
with open(file,'r') as new_file:
data = json.load(new_file)
for line in data:
tweet = line['tweet'].strip()
stance = line['stance'].strip()
train_corpus.append(process_tweet(tweet))
train_labels.append(classes[stance])
print("Added {} more examples".format(len(train_corpus)-c_len))
print("Total tweet {} and labels {}".format(len(train_corpus), len(train_labels)))
if analyzer == 'word':
ngram_vectorized_data = vectorizer.fit_transform(train_corpus)
test_ngram_vectorized_data = vectorizer.transform(test_corpus)
#ngram_vectorized_data = sparse.csr_matrix(ngram_vectorized_data)
#test_ngram_vectorized_data = sparse.csr_matrix(test_ngram_vectorized_data)
return ngram_vectorized_data, train_labels, test_ngram_vectorized_data, test_labels
else:
ngram_vectorized_data = vectorizer.fit_transform(train_corpus)
char_vectorized_data = char_vectorizer.fit_transform(train_corpus)
l = np.hstack((ngram_vectorized_data.toarray(), char_vectorized_data.toarray()))
train_vectorized_data = sparse.csr_matrix(l)
test_ngram_vectorized_data = vectorizer.transform(test_corpus)
test_char_vectorized_data = char_vectorizer.transform(test_corpus)
l2 = np.hstack((test_ngram_vectorized_data.toarray(), test_char_vectorized_data.toarray()))
test_vectorized_data = sparse.csr_matrix(l2)
return train_vectorized_data, train_labels, test_vectorized_data,test_labels
# In[8]:
#X_train, y_train, X_test, y_test = cross_splitter(df_hlt_train, df_ent_test,classes, file)
X_train, y_train, X_test, y_test = cross_splitter(df_ent_train, df_hlt_test,classes, file)
# In[9]:
unique,count = np.unique(y_train,return_counts=True)
print(dict(zip(unique, count)))
# In[ ]:
# In[ ]:
# In[10]:
unique,count = np.unique(y_test,return_counts=True)
print(dict(zip(unique, count)))
# In[11]:
from sklearn.model_selection import StratifiedKFold
# In[ ]:
# Set the parameters by cross-validation
print("Started at ", now)
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
scores = ['precision', 'recall']
for score in scores:
print("# Tuning hyper-parameters for %s" % score)
print()
cv = StratifiedKFold(n_splits=2, shuffle=True, random_state = 2 )
clf = GridSearchCV(
SVC(), tuned_parameters, scoring='%s_macro' % score, cv = cv
)
clf.fit(X_train, y_train)
print("Best parameters set found on development set:")
print()
print(clf.best_params_)
print()
print("Grid scores on development set:")
print()
means = clf.cv_results_['mean_test_score']
stds = clf.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, clf.cv_results_['params']):
print("%0.3f (+/-%0.03f) for %r"
% (mean, std * 2, params))
print()
print("Detailed classification report:")
print()
print()
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred, digits = 4,))
print()
print("Finishes at ", now)
# In[ ]:
now = datetime.datetime.now()
print("Finishes at ", now)
#print(classification_report(y_true, y_pred, digits = 4,))
# # Test on other Target
# False
# In[9]:
# X_test_, y_test_ = get_test_data_and_labels(test_data_file_m,TARGETS_m[2])
# In[10]:
# y_true_, y_pred_ = y_test_, clf.predict(X_test_)
# print(classification_report(y_true_, y_pred_, digits = 4, labels = [0,1]))
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]: