-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreplay_buffer_explore.py
405 lines (334 loc) · 17.8 KB
/
replay_buffer_explore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import numpy as np
import torch
import utils
class ReplayBuffer(object):
"""Buffer to store environment transitions."""
def __init__(self, obs_shape, action_shape, capacity, device, window=1):
self.capacity = capacity
self.device = device
# the proprioceptive obs is stored as float32, pixels obs as uint8
obs_dtype = np.float32 if len(obs_shape) == 1 else np.uint8
self.obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
self.next_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
self.actions = np.empty((capacity, *action_shape), dtype=np.float32)
self.extrinsic_rewards = np.empty((capacity, 1), dtype=np.float32)
self.intrinsic_rewards = np.empty((capacity, 1), dtype=np.float32)
self.not_dones = np.empty((capacity, 1), dtype=np.float32)
self.not_dones_no_max = np.empty((capacity, 1), dtype=np.float32)
self.window = window
self.idx = 0
self.last_save = 0
self.full = False
def __len__(self):
return self.capacity if self.full else self.idx
def add(self, obs, action, ext_reward, int_reward, next_obs, done, done_no_max):
np.copyto(self.obses[self.idx], obs)
np.copyto(self.actions[self.idx], action)
np.copyto(self.extrinsic_rewards[self.idx], ext_reward)
np.copyto(self.intrinsic_rewards[self.idx], int_reward)
np.copyto(self.next_obses[self.idx], next_obs)
np.copyto(self.not_dones[self.idx], not done)
np.copyto(self.not_dones_no_max[self.idx], not done_no_max)
self.idx = (self.idx + 1) % self.capacity
self.full = self.full or self.idx == 0
def add_batch(self, obs, action, ext_reward, int_reward, next_obs, done, done_no_max):
next_index = self.idx + self.window
if next_index >= self.capacity:
self.full = True
maximum_index = self.capacity - self.idx
np.copyto(self.obses[self.idx:self.capacity], obs[:maximum_index])
np.copyto(self.actions[self.idx:self.capacity], action[:maximum_index])
np.copyto(self.extrinsic_rewards[self.idx:self.capacity], ext_reward[:maximum_index])
np.copyto(self.intrinsic_rewards[self.idx:self.capacity], int_reward[:maximum_index])
np.copyto(self.next_obses[self.idx:self.capacity], next_obs[:maximum_index])
np.copyto(self.not_dones[self.idx:self.capacity], done[:maximum_index] <= 0)
np.copyto(self.not_dones_no_max[self.idx:self.capacity], done_no_max[:maximum_index] <= 0)
remain = self.window - (maximum_index)
if remain > 0:
np.copyto(self.obses[0:remain], obs[maximum_index:])
np.copyto(self.actions[0:remain], action[maximum_index:])
np.copyto(self.extrinsic_rewards[0:remain], ext_reward[maximum_index:])
np.copyto(self.intrinsic_rewards[0:remain], int_reward[maximum_index:])
np.copyto(self.next_obses[0:remain], next_obs[maximum_index:])
np.copyto(self.not_dones[0:remain], done[maximum_index:] <= 0)
np.copyto(self.not_dones_no_max[0:remain], done_no_max[maximum_index:] <= 0)
self.idx = remain
else:
np.copyto(self.obses[self.idx:next_index], obs)
np.copyto(self.actions[self.idx:next_index], action)
np.copyto(self.extrinsic_rewards[self.idx:next_index], ext_reward)
np.copyto(self.intrinsic_rewards[self.idx:next_index], int_reward)
np.copyto(self.next_obses[self.idx:next_index], next_obs)
np.copyto(self.not_dones[self.idx:next_index], done <= 0)
np.copyto(self.not_dones_no_max[self.idx:next_index], done_no_max <= 0)
self.idx = next_index
def relabel_with_predictor(self, predictor):
batch_size = 200
total_iter = int(self.idx/batch_size)
if self.idx > batch_size*total_iter:
total_iter += 1
for index in range(total_iter):
last_index = (index+1)*batch_size
if (index+1)*batch_size > self.idx:
last_index = self.idx
obses = self.obses[index*batch_size:last_index]
actions = self.actions[index*batch_size:last_index]
inputs = np.concatenate([obses, actions], axis=-1)
pred_reward = predictor.r_hat_batch(inputs)
pred_reward, explore_bonus = predictor.r_hat_std_batch(inputs)
self.extrinsic_rewards[index*batch_size:last_index] = pred_reward
self.intrinsic_rewards[index*batch_size:last_index] = explore_bonus
def relabel_with_bayes_predictor(self, predictor):
batch_size = 200
total_iter = int(self.idx/batch_size)
if self.idx > batch_size*total_iter:
total_iter += 1
for index in range(total_iter):
last_index = (index+1)*batch_size
if (index+1)*batch_size > self.idx:
last_index = self.idx
obses = self.obses[index*batch_size:last_index]
actions = self.actions[index*batch_size:last_index]
inputs = np.concatenate([obses, actions], axis=-1)
pred_reward = predictor.r_hat(inputs)
self.rewards[index*batch_size:last_index] = pred_reward
def sample(self, batch_size):
idxs = np.random.randint(0,
self.capacity if self.full else self.idx,
size=batch_size)
obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
actions = torch.as_tensor(self.actions[idxs], device=self.device)
ext_rewards = torch.as_tensor(self.extrinsic_rewards[idxs], device=self.device)
int_rewards = torch.as_tensor(self.intrinsic_rewards[idxs], device=self.device)
next_obses = torch.as_tensor(self.next_obses[idxs],
device=self.device).float()
not_dones = torch.as_tensor(self.not_dones[idxs], device=self.device)
not_dones_no_max = torch.as_tensor(self.not_dones_no_max[idxs],
device=self.device)
return obses, actions, ext_rewards, int_rewards, next_obses, not_dones, not_dones_no_max
def sample_combine(self, batch_size):
idxs = np.random.randint(0,
self.capacity if self.full else self.idx,
size=batch_size)
obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
actions = torch.as_tensor(self.actions[idxs], device=self.device)
ext_rewards = torch.as_tensor(self.extrinsic_rewards[idxs], device=self.device)
int_rewards = torch.as_tensor(self.intrinsic_rewards[idxs], device=self.device)
next_obses = torch.as_tensor(self.next_obses[idxs],
device=self.device).float()
not_dones = torch.as_tensor(self.not_dones[idxs], device=self.device)
not_dones_no_max = torch.as_tensor(self.not_dones_no_max[idxs],
device=self.device)
if self.full:
full_obs = self.obses
else:
full_obs = self.obses[: self.idx]
full_idxs = np.random.choice(full_obs.shape[0], size=512, replace=False)
full_obs = torch.as_tensor(full_obs[full_idxs], device=self.device)
return obses, full_obs, actions, ext_rewards, int_rewards, next_obses, not_dones, not_dones_no_max
def sample_state_ent(self, batch_size):
idxs = np.random.randint(0,
self.capacity if self.full else self.idx,
size=batch_size)
obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
actions = torch.as_tensor(self.actions[idxs], device=self.device)
ext_rewards = torch.as_tensor(self.extrinsic_rewards[idxs], device=self.device)
int_rewards = torch.as_tensor(self.intrinsic_rewards[idxs], device=self.device)
next_obses = torch.as_tensor(self.next_obses[idxs],
device=self.device).float()
not_dones = torch.as_tensor(self.not_dones[idxs], device=self.device)
not_dones_no_max = torch.as_tensor(self.not_dones_no_max[idxs],
device=self.device)
if self.full:
full_obs = self.obses
else:
full_obs = self.obses[: self.idx]
full_obs = torch.as_tensor(full_obs, device=self.device)
return obses, full_obs, actions, ext_rewards, int_rewards, next_obses, not_dones, not_dones_no_max
def sample_full_obs(self):
if self.full:
full_obs = self.obses
else:
full_obs = self.obses[: self.idx]
full_idxs = np.random.choice(full_obs.shape[0], size=512, replace=False)
full_obs = torch.as_tensor(full_obs[full_idxs], device=self.device)
return full_obs
# extract future k timesteps of index from replay buffer, not including current index
# return length of future timesteps actually
def get_future_intrinsic_reward(self, index, k):
# episode length of metaworld enviornment is 500
# episode length of dm control enviornment is 1000
remain = index % 500
if 500 - remain - 1 >= k:
idxs = range(index + 1, index + k + 1)
assert len(idxs) == k
else:
idxs = range(index + 1, 500)
# obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
# actions = torch.as_tensor(self.actions[idxs], device=self.device)
# ext_rewards = torch.as_tensor(self.extrinsic_rewards[idxs], device=self.device)
int_rewards = torch.as_tensor(self.intrinsic_rewards[idxs], device=self.device)
# next_obses = torch.as_tensor(self.next_obses[idxs],
# device=self.device).float()
# not_dones = torch.as_tensor(self.not_dones[idxs], device=self.device)
# not_dones_no_max = torch.as_tensor(self.not_dones_no_max[idxs],
# device=self.device)
# return obses, actions, ext_rewards, int_rewards, next_obses, not_dones, not_dones_no_max, len(idxs)
return int_rewards, len(idxs)
class COACHReplayBuffer(object):
"""Buffer to store environment transitions."""
def __init__(self, obs_shape, action_shape, capacity, window, device):
self.capacity = capacity
self.device = device
# the proprioceptive obs is stored as float32, pixels obs as uint8
obs_dtype = np.float32 if len(obs_shape) == 1 else np.uint8
self.obses = np.empty((capacity, window, *obs_shape), dtype=obs_dtype)
self.actions = np.empty((capacity, window, *action_shape), dtype=np.float32)
self.rewards = np.empty((capacity, window, 1), dtype=np.float32)
self.probs = np.empty((capacity, window, *action_shape), dtype=np.float32)
self.window = window
self.idx = 0
self.last_save = 0
self.full = False
def __len__(self):
return self.capacity if self.full else self.idx
def add(self, obs, action, reward, prob):
np.copyto(self.obses[self.idx], obs)
np.copyto(self.actions[self.idx], action)
np.copyto(self.rewards[self.idx], reward)
np.copyto(self.probs[self.idx], prob)
self.idx = (self.idx + 1) % self.capacity
self.full = self.full or self.idx == 0
def sample(self, batch_size):
idxs = np.random.randint(
0,
self.capacity if self.full else self.idx,
size=batch_size)
obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
actions = torch.as_tensor(self.actions[idxs], device=self.device)
rewards = torch.as_tensor(self.rewards[idxs], device=self.device)
probs = torch.as_tensor(self.probs[idxs], device=self.device)
return obses, actions, rewards, probs
class PixelReplayBuffer(object):
"""Buffer to store environment transitions."""
def __init__(
self,
obs_shape,
action_shape,
capacity,
image_size,
aug_type,
device,
):
self.capacity = capacity
self.aug_type = aug_type
self.image_size = image_size
self.device = device
self.candidates = dict()
self.obses = np.empty((capacity, *obs_shape), dtype=np.uint8)
self.next_obses = np.empty((capacity, *obs_shape), dtype=np.uint8)
self.actions = np.empty((capacity, *action_shape), dtype=np.float32)
self.rewards = np.empty((capacity, 1), dtype=np.float32)
self.not_dones = np.empty((capacity, 1), dtype=np.float32)
self.not_dones_no_max = np.empty((capacity, 1), dtype=np.float32)
self.idx = 0
self.full = False
def __len__(self):
return self.capacity if self.full else self.idx
def add(self, obs, action, reward, next_obs, done, done_no_max):
np.copyto(self.obses[self.idx], obs)
np.copyto(self.actions[self.idx], action)
np.copyto(self.rewards[self.idx], reward)
np.copyto(self.next_obses[self.idx], next_obs)
np.copyto(self.not_dones[self.idx], not done)
np.copyto(self.not_dones_no_max[self.idx], not done_no_max)
self.idx = (self.idx + 1) % self.capacity
self.full = self.full or self.idx == 0
def sample(self, batch_size, magnitude=None):
idxs = np.random.randint(
0, self.capacity if self.full else self.idx, size=batch_size
)
raw_obses = self.obses[idxs]
raw_next_obses = self.next_obses[idxs]
if self.aug_type == "crop":
raw_obses = utils.fast_random_crop(raw_obses, self.image_size)
raw_next_obses = utils.fast_random_crop(raw_next_obses, self.image_size)
else:
obses = raw_obses
next_obses = raw_next_obses
obses = torch.as_tensor(raw_obses, device=self.device).float()
next_obses = torch.as_tensor(raw_next_obses, device=self.device).float()
actions = torch.as_tensor(self.actions[idxs], device=self.device)
rewards = torch.as_tensor(self.rewards[idxs], device=self.device)
not_dones_no_max = torch.as_tensor(
self.not_dones_no_max[idxs], device=self.device
)
return (
obses,
actions,
rewards,
next_obses,
not_dones_no_max,
)
def relabel_with_predictor(self, predictor):
batch_size = 100
total_iter = int(self.idx/batch_size)
if self.idx > batch_size*total_iter:
total_iter += 1
for index in range(total_iter):
last_index = (index+1)*batch_size
if (index+1)*batch_size > self.idx:
last_index = self.idx
obses = self.obses[index*batch_size:last_index]
actions = self.actions[index*batch_size:last_index]
print(obses.shape)
print(actions.shape)
pred_reward = predictor.r_hat_batch(obses, actions)
print(pred_reward)
print(pred_reward.shape)
self.rewards[index*batch_size:last_index] = pred_reward
class RelabelReplayBuffer(object):
"""Buffer to store environment transitions."""
def __init__(self, obs_shape, action_shape, capacity, mode, device, window=1):
self.capacity = capacity
self.device = device
# the proprioceptive obs is stored as float32, pixels obs as uint8
obs_dtype = np.float32 if len(obs_shape) == 1 else np.uint8
self.obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
self.next_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
self.actions = np.empty((capacity, *action_shape), dtype=np.float32)
self.true_rewards = np.empty((capacity, mode), dtype=np.float32)
self.not_dones = np.empty((capacity, 1), dtype=np.float32)
self.not_dones_no_max = np.empty((capacity, 1), dtype=np.float32)
self.window = window
self.idx = 0
self.last_save = 0
self.current_mode = 0
self.full = False
def __len__(self):
return self.capacity if self.full else self.idx
def set_mode(self, mode):
self.current_mode = mode
def add(self, obs, action, true_reward, next_obs, done, done_no_max):
np.copyto(self.obses[self.idx], obs)
np.copyto(self.actions[self.idx], action)
np.copyto(self.true_rewards[self.idx], true_reward)
np.copyto(self.next_obses[self.idx], next_obs)
np.copyto(self.not_dones[self.idx], not done)
np.copyto(self.not_dones_no_max[self.idx], not done_no_max)
self.idx = (self.idx + 1) % self.capacity
self.full = self.full or self.idx == 0
def sample(self, batch_size):
idxs = np.random.randint(0,
self.capacity if self.full else self.idx,
size=batch_size)
obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
actions = torch.as_tensor(self.actions[idxs], device=self.device)
rewards = torch.as_tensor(self.true_rewards[idxs], device=self.device)
rewards = rewards[:, self.current_mode].reshape(-1,1)
next_obses = torch.as_tensor(self.next_obses[idxs],
device=self.device).float()
not_dones = torch.as_tensor(self.not_dones[idxs], device=self.device)
not_dones_no_max = torch.as_tensor(self.not_dones_no_max[idxs],
device=self.device)
return obses, actions, rewards, next_obses, not_dones, not_dones_no_max