From 228ca3b4b0fbbb0739953c8204252c2dd789cfd2 Mon Sep 17 00:00:00 2001 From: Ioannis Magkanaris Date: Fri, 1 Feb 2019 10:09:09 +0100 Subject: [PATCH] Added Oregonator Model benchmarking notebook - Implements the Oregonator model from Appendix A. 5 of https://link.springer.com/978-3-319-63113-4 - Benchmarks Rk4, Direct and RSSA sovlers of the model - Imported converter between stochastic (c) and mass-action (k) reaction rates by @lkeegan --- notebooks/well_mixed_Oregonator.ipynb | 501 ++++++++++++++++++++++++++ 1 file changed, 501 insertions(+) create mode 100644 notebooks/well_mixed_Oregonator.ipynb diff --git a/notebooks/well_mixed_Oregonator.ipynb b/notebooks/well_mixed_Oregonator.ipynb new file mode 100644 index 0000000..6e9932d --- /dev/null +++ b/notebooks/well_mixed_Oregonator.ipynb @@ -0,0 +1,501 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Implementation of Oregonator Model using Deterministic and Well-Mixed Stochastic Solvers\n", + "\n", + "## Model\n", + "\n", + "The Oregonator model is the simplest realistic model of the nonlinear oscillatory Belousov-Zhabotinsky reaction. It exhibists oscillating phenomena even if the system is far from the thermodynamic equilibrium. \n", + "For this notebook a simplified version of the oscillator is considered, involving 3 species and five reactions. \n", + "More precisely:\n", + "\n", + "\\begin{equation}\n", + " R_{1}: X+Y{\\overset{c_{1}}{\\rightarrow}}\\emptyset\n", + "\\end{equation} \n", + "\\begin{equation}\n", + " R_{2}: Y{\\overset{c_{2}}{\\rightarrow}}X\n", + "\\end{equation}\n", + "\\begin{equation}\n", + " R_{3}: THF{\\overset{c_{3}}{\\rightarrow}}2X+Z\n", + "\\end{equation}\n", + "\\begin{equation}\n", + " R_{4}: 2X{\\overset{c_{4}}{\\rightarrow}}\\emptyset\n", + "\\end{equation}\n", + "\\begin{equation}\n", + " R_{5}: Z{\\overset{c_{5}}{\\rightarrow}}Y\n", + "\\end{equation} \n", + "\n", + "The mass-action stochastic kinetics are: \n", + "\\begin{equation}\n", + " c_{1} = 0.1\n", + "\\end{equation} \n", + "\\begin{equation}\n", + " c_{2} = 2\n", + "\\end{equation}\n", + "\\begin{equation}\n", + " c_{3} = 104\n", + "\\end{equation}\n", + "\\begin{equation}\n", + " c_{4} = 0.016\n", + "\\end{equation}\n", + "\\begin{equation}\n", + " c_{5} = 26\n", + "\\end{equation} \n", + "The underlying mechanism of the Oregonator is regulated by an autocatalytic reaction (reaction $R_{3}$ ) and a negative feedback loop (via reactions $R_{3}$, $R_{5}$ and $R_{1}$). The products of reaction $R_{3}$ are the activator $X$ and the inhibitor $Z$. The activator $X$ catalyzes back the production of its reaction (hence, the name autocalytic reaction). The inhibitor $Z$ inhibits the autocatalytic production of $X$ through the reaction sequence $R_{3}$ $\\rightarrow$ $R_{5}$ $\\rightarrow$ $R_{1}$ . The presence of both the activator and inhibitor processes causes a nonlinear behavior leading to the spontaneous generation of oscillations. \n", + "The model description is defined in Appendix A.5 of the textbook [Simulation Algorithms for Computational Systems Biology](https://link.springer.com/content/pdf/10.1007/978-3-319-63113-4.pdf).\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Convert between STEPS kcst ($M^{1-n}s^{-1}$) and population stochastic reaction rate in a given volume ($s^{-1}$)\n", + "Imported from *steps_unit_conv.ipynb*" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "def get_rate_conversion_factor(lhs_molecule_list, volume):\n", + " import numpy as np\n", + "\n", + " # Avogadro number: molecules in 1 mol\n", + " A = 6.02214076e23\n", + " litres = 1e3 * volume\n", + " # get order of reaction\n", + " order = len(lhs_molecule_list)\n", + " # get factorial factor\n", + " counts = dict()\n", + " factorial_factor = 1\n", + " for lhs in lhs_molecule_list:\n", + " counts[lhs] = counts.get(lhs, 0) + 1\n", + " factorial_factor *= counts[lhs]\n", + " return factorial_factor * np.power(A * litres, 1 - order)\n", + "\n", + "\n", + "# convert stochastic reaction rate in specified volume to STEPS kcst\n", + "def get_kcst(stoch_rate_c, lhs_molecule_list, volume):\n", + " factor = get_rate_conversion_factor(lhs_molecule_list, volume)\n", + " return stoch_rate_c / factor\n", + "\n", + "\n", + "# convert STEPS kcst to stochastic reaction rate in specified volume\n", + "def get_stoch_rate(stoch_rate_kcst, order, volume):\n", + " factor = get_rate_conversion_factor(lhs_molecule_list, volume)\n", + " return stoch_rate_kcst * factor" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulation for a single iteration using the Direct Method solver" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation Time (sec)\n", + "0.027871131896972656\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAGtCAYAAADK/ciuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xd8nWX9//HXdTKbvZo0zWjSprsWWgplg6wiIEsQBAFRQQEn6lfAgV/9OVBQvgqCKCgCIlPZsiktUKAUKIXumaRZbfZe1++P+6QUaZuT5NznPuP9fDzySM/Jfe7rUwe8e/Vzfy5jrUVERERERNzj87oAEREREZFop9AtIiIiIuIyhW4REREREZcpdIuIiIiIuEyhW0RERETEZQrdIiIiIiIuU+gWEREREXGZQreIiIiIiMsUukVEREREXBbvdQFuyMvLs2VlZV6XISIiIiJR7q233tphrR0/3HVRGbrLyspYvny512WIiIiISJQzxmwN5Dq1l4iIiIiIuEyhW0RERETEZQrdIiIiIiIui8qebhERERGJDH19fVRVVdHd3e11KfuUnJxMcXExCQkJo/q8QreIiIiIeKaqqor09HTKysowxnhdzh5Za9m5cydVVVWUl5eP6h5qLxERERERz3R3d5Obmxu2gRvAGENubu6YduMVukVERETEU+EcuIeMtUaFbhERERERlyl0i4iIiEjMqqyspLy8nMbGRgCampooLy9ny5YtQV1HoVtEREREYlZJSQmXXXYZV111FQBXXXUVl156KWVlZUFdR9NLRERERCSmffvb3+aAAw7gxhtvZOnSpdx0001BX0OhW0RERETCwv8+9j4fbG8N6j1nTczg2k/P3uc1CQkJ/OY3v+HEE0/kmWeeGfUs7n1Re4mIiIiIxLynnnqKwsJCVq1a5cr9tdMtIiIiImFhuB1pt7zzzjs8++yzLFu2jMMPP5xzzz2XwsLCoK6hnW4RkShT31lP30Cf12WIiEQEay2XXXYZN954I6WlpXzve9/ju9/9btDXUegWEYkiS6qWcNwDx3HiQydyw/Ib+MJ/vsDqnau9LktEJGz9+c9/prS0lOOPPx6Ayy+/nNWrV7N48eKgrmOstUG9YThYsGCBXb58uddliIiEVP9gPyc9fBLNPc30D/bTN+jsdhsMvz/m9xxdcrS3BYqI7MHq1auZOXOm12UEZE+1GmPestYuGO6z6ukWEYkSi6sWU9NRw42fvJGitCIAClMLOfORM7l79d0K3SIiHlJ7iYhIlLhvzX0UpBRwVPFRzMiZwYycGWQmZXLW9LN4o+YNVu1w54l8EREZnkK3iEgUeLnqZV6reY2zp51NvO+jf4n5+ZmfZ3zKeK5achUtPS0eVSgiEtsUukVEItygHeTHr/yY6dnTOW/meR/7eXpiOr858jdUt1Vzy7u3eFChiIgodIuIRLgVdSvY2b2TC2ZdQHpi+h6vmV8wn5Mnn8xD6x7SbreIiAcUukVEIti6pnVc/PTFABwy8ZB9XnvujHPpHujmpcqXQlCZiIjsTqFbRCSCDQXoL3/iy+Sn5O/z2tm5sylMLeTZrc+GoDIRkchgreXwww/nqaee2vXeAw88wIknnhjUdRS6RUQi2GvbX2Nmzky+Of+bw15rjOG4Scfx6vZXae9tD0F1IiLhzxjDrbfeypVXXkl3dzft7e1cc8013HzzzUFdR6FbRCRCNXY38nb92xxWdFjAnzlh0gn0DfZpt1tEZDdz5szh05/+NNdddx0//elPufDCC5kyZUpQ19DhOCIiEeq5rc8xYAc4sSzwvwKdO34us3JnccNbN3DspGPJSMxwsUIRkRF66iqofS+495zwCfjUr4a97Nprr2X+/PkkJibixsnm2ukWEYlQS6uXUpRWxLTsaQF/xmd8XLPwGlp6Wnhx24suViciEllSU1M555xzuOCCC0hKSgr6/bXTLSISgQbtIG/VvcVxk47DGDOiz87Nm7vrgcrTKk5zqUIRkVEIYEfaTT6fD5/PnT1p7XSLiESgtY1rae1tZUHBghF/1hjD8ZOO1wOVIiIhpNAtIhKBXqp8CYMZdjb33hw/6Xj6BvtYXLU4yJWJiMieqL1ERCQCvVD5Avvn70/euLxRfX7u+Lnkj8vn2a3PcvLkk4NcnYhIZPrJT37i2r210y0iEmEauxtZ07iGI4qOGPU9fMbHcZOOY2n1Ujr7OoNYnYiI7IlCt4hIhHm77m0AFkwYeT/37haVLaJnoIfntz0fjLJERGQfFLpFRCLMivoVJMUlMSd3zpjuMy9/HkVpRTy28bEgVSYiInuj0C0iEmFWN65mes50EuISxnQfYwxHFB3Byh0rsdYGqToREdkThW4RkQhirWVN4xqmZ08Pyv2mZE2ho6+Dus66oNxPRET2TKFbRCSC1HbU0tbbFrTQPTlzMgCbWjYF5X4iIrJnCt0iIhFk5Y6VAMzInRGU+03OckL3xuaNQbmfiEgk+te//sX+++//kS+fz8dTTz0VtDU0p1tEJIK8uv1V0hPSmZ07Oyj3y03OJX9cPisbVgblfiIikeiMM87gjDPO2PX6tttu45577mHRokVBW8PVnW5jzLeNMe8bY1YZY+41xiQbY8qNMa8bYzYYY+4zxiT6r03yv97g/3nZbve52v/+WmNM8H73IiIR5rXtr7GwcCHxvuDsmRhjOHjiwbxW8xoDgwNBuaeISCRbt24dP/3pT7nrrrvw+YIXlV3b6TbGFAHfAGZZa7uMMfcD5wInAb+z1v7TGHMr8CXgFv/3JmtthTHmXOA64BxjzCz/52YDE4HnjDHTrLX6t4OIxJSm7iZqOmo4f+b5Qb3vYRMP49GNj/JOwzscUHBAUO8tIjIS171xHWsa1wT1njNyZvD9g74f0LV9fX2cd9553HDDDZSWlga1Drd7uuOBccaYeCAFqAGOAR70//xO4HT/r0/zv8b/82ONMcb//j+ttT3W2s3ABuAgl+sWEQk765vWAzA1a2pQ73t0ydGkJaRx/9r7g3pfEZFI86Mf/YjZs2dzzjnnBP3eru10W2urjTHXA9uALuAZ4C2g2Vrb77+sCijy/7oIqPR/tt8Y0wLk+t9fttutd/+MiEjMWN/sD93ZwQ3dKQkpHD/peJ7b9hzWWpz9DhGR0At0R9oNL730Eg899BArVqxw5f6u7XQbY7JxdqnLcdpCUoETXVzvUmPMcmPM8oaGBreWERHxzJrGNWQlZZE3Li/o956ZO5O23jbqO+uDfm8RkXDX1NTExRdfzN///nfS09NdWcPN9pLjgM3W2gZrbR/wMHAYkOVvNwEoBqr9v64GSgD8P88Edu7+/h4+s4u19jZr7QJr7YLx48e78fsREfGMtZbXtr/GgoIFruxEV2RVABodKCKx6dZbb6W+vp7LLrvsI2MD77vvvqCt4ebIwG3AwcaYFJz2kmOB5cCLwFnAP4GLgEf81z/qf/2a/+cvWGutMeZR4B/GmN/i7JhPBd5wsW4RkbCzsXkjdZ11XFZ0mSv3Hwrd65vXc2jRoa6sISISrq6++mquvvpqV9dws6f7dWPMg8AKoB94G7gNeAL4pzHm//nfu93/kduBu4wxG4BGnIklWGvf908++cB/nys0uUREYs2KeqfH8KAJ7jxHnp2cTW5yLhuaN7hyfxGRWOfq4TjW2muBa//r7U3sYfqItbYbOHsv9/k58POgFygiEiE+2PkBGYkZFKcXu7ZGRXYFG5oUukVE3KBj4EVEIsDqxtXMzJ3p6mSRqVlT2diykUE76NoaIiJ7Yq31uoRhjbVGhW4RkTA3MDjA+qb1zMyZ6eo6FVkVdPV3Ud3+sWfVRURck5yczM6dO8M6eFtr2blzJ8nJyaO+h6vtJSIiMnb1nfX0DfYxKWOSq+sMzf9e37SekvSSYa4WEQmO4uJiqqqqCPeRz8nJyRQXj77FT6FbRCTMVbVXAbjazw1O6PYZH2sb13JM6TGuriUiMiQhIYHy8nKvy3Cd2ktERMJcVZs/dKe5G7rHxY9jUsYkVjeudnUdEZFYpNAtIhLmKtsqiTNxTEid4PpaM7JnsLZxrevriIjEGoVuEZEwV9lWSWFqIfE+9zsCp+dMZ3vHdlp6WlxfS0Qklih0i4iEuQ3NG3adGOm2GTkzAFjXtC4k64mIxAqFbhGRMNY70MuWli27Jou4bXrOdADWNK4JyXoiIrFCoVtEJIxtbtlMv+1nWva0kKyXNy6P3ORc9XWLiASZQreISBjb2LwRgClZU0K25pSsKWxu2Ryy9UREYoFCt4hIGNvWtg2DoTSjNGRrlmeWs6llU1ifDiciEmkUukVEwlhlWyX5KfkkxSWFbM3JmZNp72unvrM+ZGuKiEQ7hW4RkTC2rXVbSHe54cNWlk0tm0K6rohINFPoFhEJY9vatlGaHtrQPTlzMqDQLSISTArdIiJhqqu/i8buRorSikK6bt64PNIT0tnUrNAtIhIsCt0iImGqrqMOICTHv+/OGEN5Vrl2ukVEgkihW0QkTNV1ehO6AaZkTmFD8wZNMBERCRKFbhGRMDUUugtSCkK+9rz8eTT3NOs4eBGRIFHoFhEJU0PtJfkp+SFf+7CiwwB4ZfsrIV9bRCQaKXSLiISp2o5aspKySI5PDvna+Sn5lGWU8W79uyFfW0QkGil0i4iEqbrOOk9aS4ZMzZ7KhuYNnq0vIhJNFLpFRMJUXWedJw9RDpmaNZXKtkq6+rs8q0FEJFoodIuIhKm6Dm93uiuyK7BYzesWEQkChW4RkTDUM9BDU08TBanehe6hkym3tG7xrAYRkWih0C0iEoaGJpd4udM9dBLmtrZtntUgIhItFLpFRMLQrhndHu50J8cnU5BSQFVblWc1iIhEC4VuEZEwtL19OwATUrx7kBKgJL2Eba3a6RYRGSuFbhGRMLS+aT1JcUkUpxd7WkdpRqnaS0REgkChW0QkDK1rWseUrCnE++I9raM8o5zG7kaau5s9rUNEJNIpdIuIhKG1TWuZlj3N6zJ21bC+eb3HlYiIRDaFbhGRMNPc3UxjdyMVWRVel8K0HCd0r21c63ElIiKRTaFbRCTMVLU700JK00s9rgTyxuWRk5yjnW4RkTFS6BYRCTNDI/q8fohySEl6CdVt1V6XISIS0RS6RUTCzNBO99DhNF6bmDqRmo4ar8sQEYloCt0iImGmsq2S3ORcUhJSvC4FgAlpE6jpqGHQDnpdiohIxFLoFhEJM1tbt1KSXuJ1GbsUphbSN9hHY3ej16WIiEQshW4RkTCzuWUzk7Mme13GLhNTJwIfnpIpIiIjp9AtIhJGmrqbaOxuZHJm+ITuwrRCAKrb9TCliMhoKXSLiISRTS2bAMIqdJeml2IwbGnZ4nUpIiIRS6FbRCSMDAXb8sxybwvZTXJ8MhPTJrK5ZbPXpYiIRCyFbhGRMFLXWYfBUJBa4HUpHzE5czKbWxW6RURGS6FbRCSM1HfWk5OcQ4IvwetSPqI8s5wtLVs0NlBEZJQUukVEwkhtZ23Y7XKDcypl90A3O7p2eF2KiEhEUugWEQkj9Z315Kfke13GxwydjqkJJiIio6PQLSISRuo76ylICb+d7uL0YgCq2qo8rkREJDIpdIuIhInu/m5aelrCcqd7YppzQE5Vu0K3iMhoKHSLiISJ+s56gLDc6U6KSyI/JV873SIio6TQLSISJuo66wDCcqcboDyjXLO6RURGSaFbRCRMhPNON0BFdgUbmjdobKCIyCgodIuIhImh0B2uO91Ts6bS1d+lCSYiIqOg0C0iEibqOutITUglLTHN61L2qCK7AoD1Tes9rkREJPIodIuIhIlwndE9pCyjDIBtrdu8LUREJAIpdIuIhIm6zrqwDt2ZSZlkJmVS2VbpdSkiIhFHoVtEJEyE68E4uytNL2Vbm3a6RURGSqFbRCQMDAwO0NDZEPahuyS9RDvdIiKjoNAtIhIGGrsbGbADYd1eAk7orumooXeg1+tSREQiikK3iEgYCPdxgUNKM0oZtIMaGygiMkIK3SIiYWDoNMqC1PBuLylNLwVQi4mIyAgpdIuIhIFdoTsCerpBoVtEZKQUukVEwkB9Zz3xJp6c5ByvS9mnnOQcUhNSNatbRGSEFLpFRMJAfWc9eSl5+Ex4/2PZGENJeonGBoqIjFB4/9NdRCRG1HXWhX1ryRCNDRQRGTmFbhGRMFDXEd6nUe6uNL2U6vZq+gf7vS5FRCRiKHSLiISBSDiNckhpRin9g/3UdtR6XYqISMRQ6BYR8Vh7bzud/Z0Rs9M9NMFEfd0iIoFT6BYR8djQwTiRstO9a2xgq/q6RUQCpdAtIuKxoRndkbLTnZ+ST4IvQadSioiMgEK3iIjHIuVgnCE+46MorYiq9iqvSxERiRgK3SIiHhtqLxmfMt7jSgJXlFZEVZtCt4hIoBS6RUQ8Vt9ZT1ZSFsnxyV6XErDi9GK1l4iIjICrodsYk2WMedAYs8YYs9oYc4gxJscY86wxZr3/e7b/WmOM+b0xZoMxZqUxZv5u97nIf/16Y8xFbtYsIhJqdZ2RM6N7SFFaEa29rbT2tnpdiohIRHB7p/v/gP9Ya2cA+wGrgauA5621U4Hn/a8BPgVM9X9dCtwCYIzJAa4FFgIHAdcOBXURkWgQSQfjDClOLwaguk273SIigXAtdBtjMoEjgdsBrLW91tpm4DTgTv9ldwKn+399GvB361gGZBljCoFFwLPW2kZrbRPwLHCiW3WLiIRaJB2MM6QorQhALSYiIgFyc6e7HGgA/mqMedsY8xdjTCpQYK2t8V9TCwz9m6YI2H3oa5X/vb29/xHGmEuNMcuNMcsbGhqC/FsREXFH32Afjd2NERu69TCliEhg3Azd8cB84BZr7Tyggw9bSQCw1lrABmMxa+1t1toF1toF48dHzgQAEYltOzp3YLER116SmZRJemK6xgaKiATIzdBdBVRZa1/3v34QJ4TX+dtG8H+v9/+8GijZ7fPF/vf29r6ISMSLtINxdlecpgkmIiKBci10W2trgUpjzHT/W8cCHwCPAkMTSC4CHvH/+lHgQv8Uk4OBFn8bytPACcaYbP8DlCf43xMRiXi7DsZJjaz2EnAeplR7iYhIYOJdvv/XgXuMMYnAJuBinKB/vzHmS8BW4LP+a58ETgI2AJ3+a7HWNhpjfga86b/up9baRpfrFhEJiaGDcSKtpxucvu7FlYsZtIP4TIQf+9DfC02bYfz04a8VERkFV0O3tfYdYMEefnTsHq61wBV7uc8dwB3BrU5ExHs1HTWMix9HRmKG16WMWHFaMb2DvTR0NkTOTr21sP5Z2P42dDVBdwu0VEL9aujcAQu+BMZA7lRYcDHEJ3ldsYhECbd3ukVEZB9q2msoTC3EGON1KSNWlP7h2MCICd0vXw8v/r8PX/sSIH8mlB4MG56H5bdDUgb0tMJLv4T0Qjjkcph/oXc1i0hUUOgWEfFQTYcTuiPRrrGB7VXML5g/zNUeaKmCp74P/T2QWQQ71sPWV2D2mXD6H2GwH5LSP7zeWhjodXa31z8H79wNOzfCo1+Hxb+GyUfBUVdBVsne1xQR2QuFbhERD9V01DAzd6bXZYzKxLSJGEx4nkrZ2wl3nQHN22BcNlS+AeOnweHfhiO+AwnjPv4ZYz5sJ5l6nPM10AfLboEtS2DlA/DBo3De/TDpkND+fkQk4il0i4h4pLu/m8buxojd6U6KS2J8yvjwm9Xd3wsPXwI71sGFj0D5Uc77o2nhiUuAw77hfDVtgbvPcsL8MT+Agy5Vz7eIBCzCHzcXEYlctR21ABEbusF5mDJsxgZ2t8Dbd8OfjoA1j8OJv4LJRzthOxg989llcPFTUH4EPPNDuHkhbFk69vuKSExQ6BYR8cj2ju1AhIfu9DA5IKetDv6wAB65Alpr4JgfwcGXBX+dtPFw/gPw+YecIP/30+CDR4b/nIjEPLWXiIh4ZNdOd1oEh+60Yh7rfIzegV4S4xK9KaKl2gm/3S3wmdudByV9Lu8pVRwHly6Ge86CB78IC78K8clQshBKDnT6yEVEdqPQLSLikZqOGnzGF5FHwA8pSi/CYtnevp2yzDJvinjhZ84Dk+ff77SThEpyhrPj/dAl8NpNH76fmg8X/hsKZoeuFhEJewrdIiIe2d6+nfHjxpPgS/C6lFHbfWygJ6F79WPw7r1w2DdDG7iHJKXDef+Evi5nBOHGF+HJ78E/zoFPnA1JaZCSC1OO1ahBkRin0C0i4pHajtqI7ucGp70E8GZs4NbXnNaOogPg6GtCv/7uhkYQzjoV0ifAk9+FV24EO+i8n5gGn/07VHzsQGYRiREK3SIiHqnpqGFO3hyvyxiT8SnjSfQlhv5hyt4OeOhLkFkM5z8ICcmhXX9fSg6Cr7zsjC7s63AO2HnsW87u94m/hAO/HJxpKiISUTS9RETEA4N2MCp2un3Gx8S0iaGf1b3kt9BaDaffAik5oV07UPGJzgOVxQvg4iec9pcnvwvL7/C6MhHxgEK3iIgHdnbtpG+wL+JDNzgPU4Z0VvfGF2HJ9bDf56D04NCtOxbJmc5JluVHwRNXwtM/cI6dF5GYodAtIuKBoRndE9MmelzJ2BWnFYdup3twwAms2WVwyu9Cs2aw+HxO8F7wJWfaiYK3SExRT7eIiAdqOmoAmJA6weNKxq44rZi23jZaelrITMp0d7G374b69+Gsv3748GIkSUiGk29wjpdfdjNseA4+8xconOt1ZSLiMu10i4h4oLY98o+AH1KU7owNdP1hyg3Pw+PfhtJDYPYZ7q7lJmOcI+pPut450OdvJ8Pa/3hdlYi4TKFbRMQD2zu2k56QTnpiuteljNmusYFuhu6BPnjq+5BT7hzDHunTP4yBgy6BLz/n/J7uPQfevN3rqkTERQrdIiIeqOmoYUJa5LeWwG473W7O6n7zdti5Hk74uXMgTbTIKoEvPg1TFzkPWP7nGhjo97oqEXGBQreIiAeiYVzgkIzEDDISM9x7mLKrGRb/yhm5N22RO2t4KWEcnHsPLPyq0+d995nO71lEoopCt4iIB7a3b4+a0A3OcfCuhe6lv3VC6PE/i/y2kr2JS4BPXQen/RG2vgr3nA29nV5XJSJBpNAtIhJiHX0dtPa2RlXoLk4vdqe9pLMRlt0K+50bGxM+5p0PZ90OVW/CnZ+Gvm6vKxKRIFHoFhEJsZp2Z1xgVIXutGKq26sZtIPBvfGaJ2Cgx2m9iBWzToOz/wrVy+Gp72mWt0iU0JxuEZEQG5rRHQ0H4wwpTi+mb7CP+s764M4e/+ARyJoEhfsF756RYPYZULvKOXkzIQUW/dI5XEdEIpZCt4hIiEXTwThDhsYGVrVVBe/31dUMm16Cg78avb3c+3LMD6Gvy3m4sr0OTv4tpOR4XZWIjJL+2CwiEmI1HTXEm3jGjxvvdSlBU5zuD93BfJjy/X/BYB/MOj1494wkxsCinzsPkL7/b/j9PNixweuqRGSUFLpFREKspqOGgtQC4nxxXpcSNIWphfiMj6q2IIXu7lZ48edQtACKDgjOPSORMXDYN+CSF8AXB/edDz3tXlclIqOg0C0iEmI17TVR1VoCkBCXQGFqIZVtlcG54Zt/gY4G+NSvY7O15L8VzYez7oAd6+DRr+nhSpEIpNAtIhJidZ11FKQUeF1G0BWnFQenvWRw0DmBcvLRUBzDu9z/bfLRcOy1TtvNazd5XY2IjJBCt4hICFlraehsiM7QnV4cnPaSqjehtQr2+9zY7xVtDvsmzDwVnv0xrHnS62pEZAQUukVEQqi1t5XewV7Gp0TPQ5RDitOLaexupKOvY2w3ev9hiEuC6ScFp7BoYgyc/kdnhOI/z4OXrvO6IhEJkEK3iEgINXQ2AETV5JIhuyaYjGW3e3DAmdQx9XhIzghSZVEmKR2+8AR84mx46RfOLHMRCXsK3SIiIVTfVQ8QlTvdJWklwBjHBm57DdprYc6ZQaoqSiWmOjveE+fB41dCx06vKxKRYSh0i4iE0NBOd/64fI8rCb6hne7K1jFMMFn1sHMC47QTg1RVFItLgNNuhu4W+M9VXlcjIsMIKHQbYw4zxqT6f/15Y8xvjTGT3C1NRCT6NHQ5oTsvJc/jSoIvMymT7KRstrRuGd0N+nucyRzTTnR2cmV4BbPhiO/Ae/fDew96XY2I7EOgO923AJ3GmP2A7wAbgb+7VpWISJSqbq8mOymbcfHjvC7FFeWZ5Wxu2Ty6D699EroaYd75wS0q2h3xHSg5GB6+BDY853U1IrIXgYbufmutBU4DbrLW3gyku1eWiEh0qmyrpCS9xOsyXFOeWT76ne6V90N6IUz+ZFBrinrxifD5hyB/FjzwRR0VLxKmAg3dbcaYq4ELgCeMMT4gwb2yRESiU2VrJSUZ0R26G7sbae5uHtkHu5pg/bMw+0znuHMZmaQ0OPcfEBcP954LXSP8z19EXBdo6D4H6AG+aK2tBYqB37hWlYhIFOob6KO2szbqd7qBke92r3kCBvvgE58JflGxInsSfPYuaNoM//qKjooXCTMBhW5/0H4ISPK/tQP4l1tFiYhEo+r2agbtYHSH7gwndI+4r/u9ByG7DCbOD35RsaTsMDj+Z7DuP7BCj16JhJNAp5dcAjwI/Mn/VhHwb7eKEhGJRpVtzii9aA7dE9MmkuBLGFnobm+AzYthzmecExdlbBZ+BcqPgse/Beue8boaEfELtL3kCuAwoBXAWrseiL4hsyIiLtrWtg2I7tAd54tjUsYkNreOIHR/8G+wgzDnLPcKiyW+OPjcvVAwx5lo0lbndUUiQuChu8da2zv0whgTD6hZTERkBKraqhgXP47c5FyvS3FVWUYZW1q2BP6BtU9BbgUUzHKtppiTmApn3QF9XXD/hdDb4XVFIjEv0NC92BhzDTDOGHM88ADwmHtliYhEn6FxgSbKWyiK04vZ3r6dQTs4/MU97bBliU6gdEPeVDjzNqh6w5lo0tfldUUiMS3Q0H0V0AC8B3wFeBL4oVtFiYhEo21t26K6tWRIcVoxvYO9u46836dNL8FAL0xb5HpdMWn26XD6rbB5Cdx+PFS95XVFIjEr0Oklg9baP1trz7bWnuX/tdpLREQCNGgHqW6rpjS91OtSXFeUXgQ5Aeu7AAAgAElEQVQ401qGtf5pSMqA0kNcriqG7XcOnHsPdOxwgvdrf9Q4QREPxO/rh8aY99hH77a1dm7QKxIRiUL1nfX0DvZSnF7sdSmuK05zfo9V7VXMLxhmBOCG52HKJyFO5625asbJUHY4/PtyePpq2P42nHGrDiISCaF9hm7glJBUISIS5WJhXOCQiWkTMRiq24bZ6W6pgtZqmPSt0BQW65Iz4Zy7YfGv4aVfQFwinPQbSEzxujKRmLDP0G2t3RqqQkREotm2VmdcYGlG9LeXJMYlkp+ST1V71b4vrHzd+V5ykPtFicMYOPr7Th/9kuuh6k04+69QMNvrykSiXqCH47QZY1r9X93GmAFjTKvbxYmIRIuq9iriTTwTUiZ4XUpIFKUVUdU2TOjetgwSUp150hJax/4ILvg3dDfDvZ/TZBOREAj0Qcp0a22GtTYDGAd8Bvijq5WJiESR2o5a8lPyiYuRHtri9OLhd7q3vOLscscN1+korpjySfjMX6B5KzzxXT1cKeKyQEcG7mId/wY030lEJED1nfUUpBZ4XUbIFKcVU99ZT89Az54v6GyE+veh7LDQFiYfVX4kHPk9eMff663gLeKagLYXjDFn7vbSBywAul2pSEQkCtV11jEzZ6bXZYTM0JSW6vZqJmdO/vgFW191vk86PIRVyR4dfQ00bXEerqxbBafd5Dx0KSJBFehO96d3+1oEtAGnuVWUiEg0sdZS11FHQUrs7HRPypgEsPfj4Le+AvHjoGiYkYLiPp8PzvwznPD/YM0TcNvRULPS66pEok5AO93W2ovdLkREJFq19rbSPdAdU+0lZZllAGxp3bLnC7YsgZIDIT4pZDXJPhgDh34dihbAgxfD7SfARY9qsoxIEAU6veROY0zWbq+zjTF3uFeWiEj0qO2oBSA/Jd/jSkInIzGDvHF5bG7Z/PEfdjVB7Sq1loSjSYfApYshfQLcey7sWO91RSJRI9D2krnW2uahF9baJmCeOyWJiESXus46gJhqLwEozyzfc+jetgyweogyXKUXwOcfAgzcsQhaa7yuSCQqBBq6fcaY7KEXxpgcAmxNERGJdUOhe0JqbMzoHlKWUcbmls3Y/56IsWUpxCU5rQwSnnKnwBeegJ42ePK7MDjgdUUiES/Q0H0D8Jox5mfGmJ8BrwK/dq8sEZHoUd9Zj8/4yB2X63UpIVWeWU5rbytNPU0f/cHWV6B4ASQke1OYBCZ/BhzzI1jzODzyNejv9boikYgW6OE4fwfOBOr8X2daa+9yszARkWhR11FHXnIeCb4Er0sJqfLMcoCPtph0t0LNuzBJrSUR4bBvOCMF3/0H/O1k6NO0YJHRGsnhODlAh7X2JqDBGFPuUk0iIlGlrrMupiaXDNlj6K56A+wgTDrUo6pkxI7+Ppz5F+e/u6e+53U1IhEr0Okl1wLfB672v5UA3O1WUSIi0aSuoy6mJpcMKUwtJCku6b9C91uAgaIDPKtLRmHu2XD4lbDi77Bcw8tERiPQne4zgFOBDgBr7XYg3a2iRESiSW1nbcxNLgHwGd+uhyl3qX4Lxk+H5AzvCpPROeaHMOVYePzb8OIvdGS8yAgFGrp7rfP4uQUwxqS6V5KISPRo622jo68j5iaXDCnLLPvwgBxrndCtqSWRyRcHn7sX9v88LL4OXviZgrfICAQauu83xvwJyDLGXAI8B/zZvbJERKLD0ME4sRq6yzPLqW6vpmegB5q3QucOHf0eyeKT4NQ/wAFfgCU3wBNXwuCg11WJRIRAj4G/3hhzPNAKTAd+bK191tXKRESiQMyH7oxyBu0gW1u3Mq36PefNYu10RzSfD065EZKz4JUbIbcCDrnC66pEwl7AB9z4Q7aCtojICNR2OqG7MLXQ40q8MSVrCgCbWjYxreotiE+G/FkeVyVjZgwc9xNoWAPP/a/TMlS60OuqRMLaPttLjDFtxpjWPXy1GWNaQ1WkiEikqu2oxWd85I3L87oUT5RlluEzPjY2b4SqN2HiPIiLrXnlUcsYOP0WyCyCf37OOWlURPZqn6HbWpturc3Yw1e6tVaPnouIDKO2o5bx48YT7wv4LxajSlJcEiXpJWxsWg8176i1JNqk5MB5D0BSOvz9NNj4otcViYStgA/HMcbsZ4z5mv9rrptFiYhEi7qOupjt5x4yOXMyG3eshoFeKD7I63Ik2PIq4CsvQ950+Mc58MGjXlckEpYCPRznm8A9QL7/6x5jzNfdLExEJBrUdtbGfOiuyKpgW2ctfQDFB3pdjrghORO+8DgUzoUHLoI3b/e6IpGwE+hO95eAhdbaH1trfwwcDFwSyAeNMXHGmLeNMY/7X5cbY143xmwwxtxnjEn0v5/kf73B//Oy3e5xtf/9tcaYRSP5DYqIeMVaS21HLRNSYjt0T86aTD+DbM0pgYzYfKA0JqTkwIWPQsXxzijBl36lOd4iuwk0dBtgYLfXA/73AvFNYPVur68DfmetrQCacAI9/u9N/vd/578OY8ws4FxgNnAi8EdjTFyAa4uIeKapp4megR7tdGdVALBx/BSPKxHXJabAuffAfufBS7+Ep38AA31eVyUSFgIN3X8FXjfG/MQY8xNgGTDs3x0ZY4qBk4G/+F8b4BjgQf8ldwKn+399mv81/p8f67/+NOCf1toea+1mYAOgpkARCXuxPqN7SFlcGj5r2ZCW5XUpEgpxCXDazXDgl2HZzfD8T72uSCQsBHo4zm+NMS8Bh/vfutha+3YAH70R+B8g3f86F2i21vb7X1cBRf5fFwGV/vX6jTEt/uuLcEI+e/iMiEjYUuh2JDesYVJfP2tN//AXS3Tw+eDkG5yHZ1/9vTOf/ZgfeF2ViKdGMsNqM9Dv/4wxxsy31q7Y28XGmFOAemvtW8aYo8dW5vCMMZcClwKUlpa6vZyIyLAUuv1qVjKzt5cVXbVeVyKhdtL1zjHxL/8afHFw5P84gVwkBgUUuo0xPwO+AGwEhp6KsDitIntzGHCqMeYkIBnIAP4PyDLGxPt3u4uBav/11UAJUGWMiQcygZ27vT9k98/sYq29DbgNYMGCBXpyQ0Q8V9tZS7wvnpzkHK9L8VbNu8yKS+PJznoauxv1n0csiU+CT98Ig31Oj3f1CjjzTzAu2+vKREIu0D9ufhaYYq092lr7Sf/XvgI31tqrrbXF1toynAchX7DWng+8CJzlv+wi4BH/rx/1v8b/8xestdb//rn+6SblwFTgjQDrFhHxTG1HLQUpBfhMjO/s1bzLzEznIco1jWs8LkZCLi4BzviTs+u98QW46UBYcoMmm0jMCfTfBKuAYD0B833gSmPMBpye7aEHMm8Hcv3vXwlcBWCtfR+4H/gA+A9whbV24GN3FREJMzoYB+hqhqbNVBQ6J1FuaNrgcUHiCWPgoEvg4qcgt8J5uPLfl0Fvh9eViYRMoD3dvwTeNsasAnqG3rTWnhrIh621LwEv+X+9iT1MH7HWdgNn7+XzPwd+HmCtIiJhobajlnkF87wuw1u17wGQU7SQ3Lpn2dCs0B3TSg6ELzwJL/4clv4W1j8Dx/wQFnzR68pEXBdo6L4TZ272e8Cge+WIiESHgcEB6jvrKUyN8cNgalc63wvnUpFdodAtzoOUx/4Iyo+ExdfB49+GLUth4VedE0tNoMeAiESWQEN3p7X2965WIiISRXZ276Tf9sf8aZTUrIS0CZCWz9SsqTy0/iEG7aD63AUmHwVlh8OLv4Blt8Cqh6D0UDjnLkjN87o6kaAL9J96S4wxvzTGHGKMmT/05WplIiIRTOMC/WrehcK5gHMyZVd/F9XtHxtAJbHKF+fsen93rfOg5fYVcPvx0LjJ68pEgi7Qne6hpsSDd3tvuJGBIiIxS6Eb6OuCHetg5ikAVGQ7x8FvaNpASXrJvj4psSYp3XnQsnA/+Mc5cPsJcM49ULrQ68pEgibQne4XhkYFAp8KZGSgiEgsU+gG6j4AOwATnJ3uKf6xgerrlr0qOQi+9CzEj4M7FsHSGzVaUKLGPkO3Meb7xphDgM/s9var7pYkIhL5ajtrGRc/jozEDK9L8U7tu853f3tJWmIaE1Mnsr55vYdFSdjLq4DLX4XZp8Nz18ITV8JAv9dViYzZcO0la3DG+E02xizxv841xky31q51vToRkQg1dDCOieVJDDUrITkTsibteksTTCQgSenwmTuc/+28ciPsWA+n/A7ypnpdmcioDdde0gxcA2wAjsY5xh3gKmOMdrxFRPZCB+PgjAucMPcjI+AqsirY3LKZvsE+DwuTiODzwfH/C6f+wXkg964zoK3O66pERm240L0IeAKYAvwWWAh0WGsvttYe6nZxIiKRqqajJrZD90A/1L2/q597SEVWBf2D/Wxt2epRYRJx5l8IFz4CnTudPu/ORq8rEhmVfYZua+011tpjgS3AXUAcMN4Ys9QY81gI6hMRiTh9A33s6NoR26F753ro797Vzz1kes50ANY0rfGiKolURfPhgn9DSxXcdwH0dnpdkciIBTq95Glr7XJr7W1AlbX2cOBiF+sSEYlY9V31WGxsH4xTu8r5PuETH3l7cuZkkuKSWL1ztQdFSUQrXQin3wJbX4F/fg76ur2uSGREAgrd1tr/2e3lF/zv7XCjIBGRSKdxgcCOtWB8kFvxkbfjffFMz57OBzs/8KgwiWhzz4bT/wibFsN950N/j9cViQRsxOfwWmvfdaMQEZFoUdVWBUBRWpHHlXioYS1kl0N80sd+NDN3Jmsa1zBoBz0oTCLe/ufBp/8PNjwH918EA3ooVyLDiEO3iIjsW2VbJT7ji+3QvWMdjJ++xx/Nyp1Fe187lW2VIS5KosYBF8HJN8C6p+CRK2BQf4CT8KfQLSISZJVtlRSmFpIQl+B1Kd4Y6IedGyFv2h5/PCt3FoD6umVsDvwyHPNDWHkfPPldnVwpYU+hW0QkyCrbKilOL/a6DO80bYHBvr2G7imZU0jwJaivW8buiO/CIV+D5bfDuv94XY3IPil0i4gEWWVbJSXpJV6X4Z0d/gOL99JekhCXwLTsaXzQqNAtY2QMHPcT5w94918I797ndUUie6XQLSISRJ19nTT3NMd2P3eDP3Tv48jumbkzWb1zNVYtATJWcQlw0WNQshD+/VVY9bDXFYnskUK3iEgQ1XZqXCA71kN6ISRn7vWSWbmzaO1tpbq9OoSFSdRKnwDn3QclB8O/vgLvPeh1RSIfo9AtIhJEu2Z0x/LBOHXvQf7MfV4yK8d5mFJ93RI0ialw7j3OgUwPfQlW6+BsCS8K3SIiQRTzB+P090D9aijcf5+XTc2eSryJV+iW4ErJgYv/AxPmOj3er/7B64pEdlHoFhEJotqOWgyGgpQCr0vxRt37MNgPhfvt87LEuEQqsitY3aixgRJk8Ylw4SMw4xR45ofw0nUaJyhhQaFbRCSIajpqyBuXF7szumv8hxYPE7rB6ev+YOcHephSgi8lB87+G+x3Hrz0C1j6O68rElHoFhEJptqOWgpTC70uwzs17zoPUGaXDXvprJxZNPc072rJEQkqXxycdjPM+Qw8/1NY/5zXFUmMU+gWEQmi2o5aClJjtLUEoOYdZ5fbmGEvnZnrPGypvm5xjc8Hp94EBbPhvs/Dxhe9rkhimEK3iEiQWGtje6d7oM/p6Q6gtQRgWvY04kycDskRdyWmwAX/gqwSeOyb0NfldUUSoxS6RUSCpLmnme6B7tidXNK4CQZ6oWBOQJcnxyczOWuydrrFfWn5cNL10LwN7j4Ldm70uiKJQQrdIiJBMtSbHLM73fX+SSTjZwT8kVk5ephSQmTyUfDp/3NaoO45C1q3e12RxBiFbhGRINne7vxLPGZDd8MawEDetIA/MjN3Jo3djdR31rtXl8iQAy6C8x+A1hq45TCoWel1RRJDFLpFRIJkc+tmACZlTPK4Eo80rIHsSU4PbYBm584G9DClhNCkQ+GrSyAhBe46A1berzneEhIK3SIiQbK5ZTP54/JJS0zzuhRv1K+B8fs+/v2/Tcuehs/4dEiOhFbeVOfI+PgkePgSeOH/eV2RxACFbhGRINncspnyrHKvy/DGQB/s3AD5gfdzA6QkpFCeUa6dbgm9ifvDt1bB/AthyfWw5LdeVyRRTqFbRCQIrLVsatlEeUbwQvcfnl/PFf9YwcBgBPzVd+MmGOwb0UOUQ2bmzlToFm/4fHDKjTDnLHj+f2HpjWo1EdcodIuIBEFDVwMdfR1MzpoclPsNDFpueHYdT6ys4Y6lm4NyT1eNYnLJkDl5c2joatDJlOINXxyccSvMOh2euxae/oGCt7hCoVtEJAg2tWwCYHLm6EJ3fVs3L66pZ2DQsqG+jWfe/zCA/uGF9TS09QSlTtc0rGWkk0uGzM2bC8C7De8GuSiRAMUlwNl/g4WXwbKb4fFvQW+H11VJlIn3ugARkWiwucXZjS7PHHl7SUdPP8fdsJjW7n5yUxPZ2dELwLSCNH5z1n6cc9trfP3eFdx7ycGYAI5X90TD6hFPLhkyI2cGSXFJvNvwLovKFrlQnEgAjIETfwnxifDK/zlHxp/6B2e+t0gQaKdbRCQINjVvIi0hjfHjxo/4s+vr22nt7gegq2+AeaVZXPWpGTx42aHsV5LFD06aybJNjcy59ml2tIfpjnfD2hFPLhmSEJfArNxZ2ukW7xkDx/8ULn7KaTv5+6nw8Fdg8xK1nMiYaadbRCQINrdspjyzfFQ70Zt3tAPw3JVHMmV82sfucc6Bpfzm6bW0dvezfEsjJ84Js8N3Bvpgx3qYesKob7Hf+P24Z/U99A70khiXGMTiREZh0qHw1VfgxZ/Dm3+Blf90/lB56Ndh3vleVycRSjvdIiJBsLFlI1Oypozqs5t3dOIzUJKTssfQnhjvY9k1xwKwrq59THW6omalM7mkcL9R32K/8fvRN9ined0SPhJTYNHP4ftb4NSbIC4eHrkc/ngIvP8vGOj3ukKJMArdIiJj1NLTwo6uHUzJHHnottby2sYdFGWPIyk+bq/XpSTGU5IzjhXbmugfGBxLucG3ebHzveyIUd9i//z9AVhRtyIYFYkET8I4mH8BXPIiHPtj6O+BB74Ad5wAqx9X24kETKFbRGSMdk0uGcW4wLuWbeXNLU18oihz2Gsrxqfx0toGfv/8+hGv46otSyF/FqSNvJ99SN64PMoyylhetzyIhYkEUVwCHPEduOINOP0WaK2B+86HR66Ajp1eVycRQKFbRGSMNjZvBEY3LvDeNyqpyE/jd+fsP+y1XzumAoAX1taPeB1X1b0PhcPXP5wDCg5gRd0KBgYHglCUiEvi4mH/8+Bb78GR34N37oHfzYJHvga1q7yuTsKYQreIyBhtatlEclwyE9MmBvyZrt4Bbnt5I6trWrng4En7bC0ZcsCkHL5x7FRWVbdS2dg5lpKDp6sJ2mtHfPz7niyYsID2vnbWNq0NQmEiLouLh2N+CJe/7oTwVQ/BrYfB306BOp2wKh+n0C0iMkabmjdRnlmOzwT2j9TGjl5OuHExv3hyDdML0jnnwJKA1zpmRj7GwLm3LQuP3u76Nc73UY4L3N2CggUALK9Vi4lEkPwZcMrv4MoP4PifQcMauO1oeO1mGAyD/49K2FDoFhEZo5FOLrn3jW1UNnbx67Pm8vDlh5KcMPwu95D9S7L42WlzqG7uYumGHaMpN7ga/NNGgrDTPSF1AiXpJerrlsg0LhsO+wZc9hpMOQaevgb+/ElYfgf0dXtdnYQBhW4RkTHo6u+itqN2RCdR/uvtag6ZnMtnF5SQmjTy4xLOXlBMbmoi1z+zlu4+j/uf69dAYhpkBr5bvy8LChawon4Fg1Y7hBKh0sbD5+6F02+Fvi54/Ntw4yfgmR86ryVmKXSLiIxBdVs1ACXpgYXOtu4+NtS3c+iU3FGvmRQfx68+M5dV1a3cunjjqO8TFA2rYfwM5yS/IFgwYQEtPS2sbwqzCS0iI2EM7P85uOJ1OP8hKD4QXr0J/vFZTTqJYQrdIiJjUNVeBUBRWlFA16+qbgXgE8XDjwjcl+NnFXDy3EL+tHgTnb0eHtJRvyYorSVDdvV1q8VEooExMPU4+Nw/4IxbYetr8LvZ8NCXYe1ToEk9MUWhW0RkDKranNBdnF4c0PVPvLcdIKC53MM5/6BSuvoGuPnFDVgvDujo2AEd9UF5iHLIxLSJTEydqIcpJfrsdy58dQnMPRs2PA/3ngu/qYC37tQDlzFCoVtEZAyq2qtIiU8hOyl72GuXbdrJ3cu2cd7CUnLTksa89kHlOaQmxnHzixtZst6Dhyqr/MG4aH5Qb7tgwgLeqntLfd0SffJnwql/gO+uc3q+x8+Ax74Bd57iHLYjUU2hW0RkDLa1bqM4vRgzTE/zW1sbOe/Py8hIjufHp8wKytrxcT4evvwwAFZtbwnKPUek8nXwxcPEeUG97cLChTT1NLGmcU1Q7ysSNuISnJ7vLzzhhPDt78DNB8ET34HeDq+rE5codIuIjMHG5uHHBQ4OWq55eBWDFr5y1JQRjQgczvQJ6RRljWNdbVvQ7hmwqjdhwlxIGBfU2x420fmDxMtVLwf1viJhx+eD+RfCpS/B1BPgzdvh7s9AV7PXlYkLFLpFREapvbed7R3bmZo1dZ/XvV3ZxNq6Nq4/ez+u+GRF0OuYVpDGmlCHbmuhZiVMHPvx7/8td1wuc3LnsKR6SdDvLRKWxk+Ds26Hs//q/GH2pgXOCZcSVRS6RURGaWOLM66vImvfQXplldP6ccTUPFfqmFGYwcaG9tBOMWmphJ4WKJjjyu2PLD6S9xreo7G70ZX7i4Sl2WfAl5+DrEnw4Bfhyf+BTv1/IFoodIuIjNK6pnUAVGTvO3S/v72VvLQk8tPH/vDknhw6JZe+AcuyTSGc/1u7yvk+4ROu3P7I4iOxWF6pfsWV+4uErYnz4OIn4cAvw5t/ht/Pgzf+DAMejgaVoFDoFhEZpTU715CekE5x2r7HBa6qbmFOUcawD1uO1oFlOSQn+Hhudb0r99+jmnfB+JxpDC6YmTuT3ORcllSpxURiUHwSnHwDfHWp8wfbJ78Ltx0NW/SH0Eim0C0iMkqrG1czI3fGPsN0d98A6+vbmTNx7HO59yY5IY5Pz53Ig29Vsb05RMdMV74O+bMhKd2V2/uMj8OLDmfp9qX0D2qHT2JUwWy46DE4+07oboa/neS0nbRUe12ZjIJCt4jIKPQP9rOuaR0zcvZ9GuPa2jYGBi1zijJcrefyT1bQ2z/IM+/XuroO4JyiV7UcSg5ydZkji4+krbeNdxvedXUdkbBmDMw+Ha54A476Pqx+3HnQ8uXroa/b6+pkBBS6RURGYUvLFnoGepiZs+/2ive3O8e+z3ZxpxugPC+Vwsxklm9tcnUdAOo/gN42KD3Y1WUOmXgI8SZeowNFABJT4JPXwNfegCnHwAs/gz8udMYMenEirYyYQreIyCisblwNsM+d7v6BQR54q5K8tCSKs4M7y3pPFpTl8OaWRvePhN+2zPlestDVZdIT05lXME8PU4rsLrsMzr0HLvgXjMuGJ66ER76mXe8IoNAtIjIKqxtXkxSXRHlm+V6veWXjTt7e1szVn9p333ewHDNjPHWtPSxe1+DuQpWvQ9oEyCp1dx3g4MKDWdu0VqMDRf7blGPgkhfhqKvgnbvhD/Ph9T9Bf4/XlcleKHSLiIzCmsY1TMueRrwvfq/XvLWlEZ+BE+dMCElNJ39iIhMykrnjlS3uLlT5OpQudHpNXbaw0NlNf73mddfXEok4xsAnr4aLHofMYnjqf+Avxzl932o5CTsK3SIiI2StZc3ONcM+RPnWtiZmFmaQmrT3YB5MifE+zjqgmKXrG6hrdemvmltroHmb660lQ2bnziY7KZsXtr0QkvVEIlL5EfClZ+Dsv0F3C9x3vvOw5Vt3Qut2r6sTP4VuEZERqmqvoq2vjZm5e3+IsrW7j+VbmjiwLCeElcGZ84sYtPDUezXuLFA51M/t7kOUQ+J98Rw36TgWVy2mqz9E4xBFItXsM+DrK+CMP4EvAR77Bvx2Jtz5aWfikHhKoVtEZIRW73QeotzX5JJH39lOT/8gZ8wrClVZAEwen8bk8am8sNalvu7KNyB+HBTOdef+e7CobBFd/V06KEckEHHxsN+5cPlrcNmrcOyPoWYl/OVY54HLmpVeVxizFLpFREZoRf0KkuOSmZY9ba/XPP1+LZPHpzK32N1RgXtyzPR8lm3cSXffQPBvvm0ZFM2HuITg33svDig4gJzkHJ7e8nTI1hSJeMY4h+sc8R349vuw8DJYeT/86Qi4fRHUrvK6wpij0C0iMkKv17zOvPx5JMYl7vHn3X0DvLG5kaOmjQ/J1JL/tnByLr0Dg7xX3RLcG/d2Qu3KkPVzD4n3xXP8pON5ueplOvs6Q7q2SFRISoNP/Qq+swZO/BU0bYY7FsGrf4DBQa+rixkK3SIiI9Dc3cyG5g0cVLj30xiXb2mip3+QI6bmhbCyD80rzQJgRbAPytm+Agb7XT8UZ08WlS2ie6Cbl6t1UI7IqKXkwMGXwaUvwaTD4Jkfwj8+C01bPC4sNih0i4iMwNChOLNzZ+/1miXrG0iIMywszw1VWR+Rl5ZEWW4Kr2zcGdwbDx2KU3xgcO8bgPn588lNzuWZLc+EfG2RqJMxEc67D066HrYsgT8sgMevhLX/cf5GS1yh0B1EL257kZaeIP91roiElaHQva+HKJes38EBk7JDNipwT07dv4gl6xvYsqMjeDetfAPypju7ZSEW54tTi4lIMBkDB10C33gb5p0PK+6Ee8+BPx0JW5Z6XV1UUuj+/+zdd3xUZfb48c+dlmnpvZJG7xC6dGkCIqKuHSuKfe2/L+6uuriKqGuDFctaULEjoAgi0nvvJQTSSO+ZTKbf3x8Xoq6EmmQyyfN+vfJKmNzcOYFwc+a55zmngZTUlvDk2ie5++e7KbIWeTscQRAayaHSQzZ6qYYAACAASURBVESbognSB53x8zanm0MFVfT10ir3aTf3U6ZFLtx1smFO6PEoQ3Hi6y+raWxjEsdgd9tZk7vGazEIQosTEAMT34CnsuD6z8FlU1oMbnxLjJZvYI2WdEuSFC9J0ipJkg5KknRAkqSHTz0eIknSCkmS0k+9Dz71uCRJ0puSJB2TJGmvJEm9fneuqaeOT5ckaWpjxXwpwgxhvDbsNTKrMpn0/SSm/jSV65Zcx4z1M1iYvpAlGUv44vAXLExfiM0lfogFwRd5ZA9bC7bSI7xHvcccK7Igy9A+0r8JI/uziAA9aW2CWXGwsGFOWHIUbBVeqec+rWdET8IN4aLERBAag58ZOoyH+zZDykil3ntOHyjY5+3IWozGvPfpAh6TZXmnJEn+wA5JklYAtwErZVl+SZKkp4GngaeAcUDbU2/9gP8A/SRJCgH+AaQB8qnzLJZluYF3CF26wXGDmT9uPvevvJ/s6mx0Kh2rclaxOGPxH46bs3sOfaP6EmGMYFDsIHpF9EKtUnspakEQztf+kv2U2coYGj+03mPSi6oBaBdpbqqw6nV5x0he/OkwBZU2ogL1l3aynFNj2JtoKM6ZnC4x+Tb9W2qcNZi0Jq/FIggtlp8Zbv4Gjq+G76Yp5Sbdb4QB90NkJ29H59MaLemWZTkfyD/1cbUkSYeAWGASMOzUYR8Dq1GS7knAJ7Isy8BmSZKCJEmKPnXsClmWywBOJe5jgQWNFfulaB/SnhXXrABAkiQ8soeDpQfRqrQE+QWxKX8TCw4vYMnxJQB8sP8DBscO5u8D/k6UKcqboQuCcA5bC7YCMChmUL3HHCmwoFVLJIZ5PyG8rG0Y/ASbjpcwuWfcpZ0sawMYwyA0pWGCu0hjEsfw+eHPWZ2zmvHJ470aiyC0aMnDlFXvNbOUcfJ7FkCfu6DfPV6/DviqJqnpliQpEegJbAEiTyXkAAVA5KmPY4Gc331Z7qnH6nv8f59jmiRJ2yVJ2l5c3EiT2M6TJEl1vXlVkoouYV1oH9KeSFMkV6VexZcTvmTzjZtZ+5e1PNr7Ubbkb+Gun+8SZSeC0MwdKDlAm4A29dZzAxzIqyQ1wh+t2vtbZjpGBRBk1LLx2CV2MZFlOLEOkoYom6+8qEdEDyIMEazIWuHVOAShVTCGwLhZ8OhB6HkzbHsf3u4DSx6GknRvR+dzGv23giRJZuBb4BFZlqt+/7lTq9pyQzyPLMvvyrKcJstyWnh4eEOcslGZtCaC9cHc3uV23h75NllVWdy49Ebe2/seFofF2+EJgnAGB0oP0Cmk/turHo/M7pyKuj7Z3qZSSQxIDmVjRinK5fYilWZAdR4kDW644C6SSlIxImEEG05uEF1MBKGpGEPgyjeV5LvPnbDrM3g7DT67FkqOeTs6n9GoSbckSVqUhPszWZa/O/Vw4amyEU69P93q4yQQ/7svjzv1WH2PtxgDYgYwe+hs1JKaN3e9yf0r76faUe3tsARB+J3S2lLya/LpHFZ/f+7jJRaqbS56xjePpBtgYEooJytqySmrvfiTnDjVLSSp/lr2pjSqzShsbhsb8jZ4OxRBaF38o+CK2UqbwZF/h6xNMLe/sumyIufcX9/KNWb3Egn4ADgky/Jrv/vUYuB0B5KpwKLfPX7rqS4m/YHKU2Uoy4HRkiQFn+p0MvrUYy3K2MSxfD3xa2YPmc3e4r2M+24c03+ZTpmtzNuhCYIAHCw9CECn0PpXun/cWwDgtaE4ZzIgRYllY0bJxZ8kcx0ExEJIcgNFdWl6RfYi2C9YlJgIgrcExcPgx+DBHdDtOtj4NrzeVVn5PrnT29E1W4250j0IuAUYIUnS7lNvVwAvAaMkSUoHLj/1Z4ClwHHgGPAecB/AqQ2U/wS2nXp7/vSmypZobNJYPhr3EWmRaaw/uZ7H1zxORkWGt8MShFbvYOlBJKR6h+LIssznW7MY2i6chFBjE0dXv5RwM+H+fmy82OmUHo9Sz5042Ov13KdpVBpGthnJ6pzV1DgbcPiPIAgXxj8SrpoLD++BIU/AyR3w3nD45g4oOqRcP4Q6jdm9ZD1Q3xV65BmOl4H76znXf4H/Nlx0zVv38O68Pvx1vj36LS9ve5mrF1/NhOQJ7CvZR7WjmpmDZjIotv7uCYIgNLz9pftJDEzErDtzK8C8ShuFVXYeGBF5xs97iyRJDEwJZcMxpa5butDEufgQWEuUTZTNyFWpV/HN0W9Ynrmcq9te7e1wBKF1C24DI2bAwAdhwxuweS7s/xbUOug/HUb+A0RrZDGRsjmb0m4Ky6YsY0ybMfyc+TN6tR6tSssDKx9g3LfjmPbzNF7c8uKlbZASBOGcZFlmb/FeuoZ1rfeYw/nKPvFO0d4dinMmg1LCKLHYOZR/EXtFTqxT3jeDTZS/1y2sG8mByXx/7HtvhyIIwmn6ABj5N3hkP4z6pzJsZ8Mb8M5lsOdLsLfu/WqNORxHaADB+mBeHvpy3Z/LbGX8d99/yanO4decX9mUv4lIUyTXt78eo7b53NIWhJYkpzqHMlsZPSLqn0R5uOD0UJzml3QPa690dFp1pIhOMQEX9sUn1kJwIgQlNHxgl0CSJCanTubVHa9yvPI4yYHNo95cEATAFAqDHlI+7nglrHkZFk4DSaUk4v3vV6bbNpOStaYiVrp9TIg+hMf7PM4bI95gz617GBQ7iH/v+DfDvhrGyuyV3g5PEFqkXUW7AOgZ3rP+Y7IrSAgx4q/XNlVY5y0iQE+3uEBWHrrAkfAeN2Sub3alJadNTJmIVqXlqyNfeTsUQRDq0+VqmL4Rbv4OBjygXFM+HAvvj4Qjy5TrTCshkm4fppJUvDH8DZ4b+ByJAYk8suoRnt34LKW1lzgIQxCEP9hVtAt/nT/JQWdeTa2sdbL2aDEjO0Y0cWTnb0SHCHblVFBqsZ//F+XtBnslJDbPpDvUEMroxNEsOrZI9OwWhOZMpYLUkTD6n/DXgzD+NagpgQV/gde7Qfov3o6wSYik28f5qf24uu3VvD3ybYbEDWFRxiKu+O4KBi4YyKOrHyXPkuftEAXB5+0u2k338O6opDNfMlcdLsLh9jCxe0wTR3b+RnaIRJZh9ZELmNh7aDGoNMovy2bq+vbXY3Fa+PHEj94ORRCE86EzKgN2HtwB134Efmb4bAp8fTs4W/ZkbpF0txARxgjmjJzD1xO+JsIYQbWjmnW567hq0VU8s/4Zvj76NbuLdns7TEHwOZX2SjIqM+gZUX9pyfpjJQQatHSPaz5Dcf5X55gAogP1LD9QcH5f4HIo3QeShijT6Jqp7uHdSQ1KZUnGEm+HIgjChVBrofNkmLYGhj4FB76Dz65Rxsu7Xd6OrlGIjZQtTGpwKl9M+IKTlpOYtWZe3vYyv+b8yqIMZQbRLZ1u4bHej6Fuja17io+CtRRM4VB6TBlrHZIMtRVQlQftxkBoirejFJqZLflbAOgT1afeYzZllDIwJRS1qvluClKpJMZ0jmLB1mysDhdG3Tku/zs/hsocmPDvpgnwIkmSxPjk8byx8w1yqnKID4g/9xcJgtB8aPUw/P+UDdtLn1DGy0sqSB4GY2dBeDsvB9hwRNLdApm0JtoFKz+krw9/HafHSXZVNgsOL2D+wflsL9jOiIQR3NDhBgL9Ar0cbQOrKQFLEehMUJ4Juz+HY6dqxaznmMi3/P8gJAnaXwEpI5THAmIgrJ3oL9qKbczbiFlrrrddYKnFzsmKWm4flNi0gV2EMZ2j+GhjJmuOFDOua/TZD973DUR1hdTLmya4SzAheQJzds3hs8Of8XTfp70djiAIF6PHjZA0FA4tURbFds6Hj8bDXSuUhLwFEEl3K6BVaUkJSmFGvxl0D+/O/IPzmbt7Lt+mf8vVba+mbVBbuod3J9wY7u1QL54sw9Z3Ydn/A/l3O6HVfsrtK60ewjtCaCpYCpVkOiRZScwNwUqSvv9bZZrWlndg09u/nSOsHUR1A48Tul0PHa5o8m9P8A67286v2b8yMGYgGtWZL5cZxcpExNSIMw/NaU76JAYTYtKxdH/B2ZPumhLI3apMmPOBll5RpiiuSL6C79K/495u9xKkb75lPoIgnEVgLPS/V/m4x03w/ih4bwSMeRFShoO5+W5WPx8i6W5FJEliYspEJqZMZH/Jfp5c+yRzd8+t+3z/6P68OuxVAnQX2MfX26ry4YdH4OgyZVWu+w1QWw4BsRDdXflPXJ/gNr99PPRJ5X11IZRlABIUHVRWy3O2gqMaDi6CtDuV1XBTGMTU37dZ8H0/Z/5Mub2ca9tfW+8xGcUWQBm33txp1Comdovm863ZnKzoQGyQ4cwH/vgYIEGnq5o0vktxW+fbWJyxmC+PfMk93e/xdjiCIFyq8PZw96/w5U1Kj2+AuL7Q82ZoOxrMkUpXFB8itcRphmlpafL27du9HYZPcLqdrDu5jqPlR5m3dx6jEkb9YRhPs+V2QfFh2PER7JqvPDby79Dv3sYrBXE7YeVzsPGt3x7rMkW5JRbeEWwVYIoAsw/fMRD+4J4V95Bdlc3Sq5fWOz595g8Hmb85i0PPj0XVjGu6TztZUcuw2av4S594Zl51hpKZimx4vauyyj3imaYP8BLc98t9HCg9wPIpy9Fr9N4ORxCEhuB2Ku1Lj69WNlsWHVQeD06C3lOVFXEvr4BLkrRDluW0cx0nVrpbOa1ay4iEEYxIGIHL42Le3nkMih3EpNRJ3g6tfhU58PVUpRQESXnVe9lfG38TpFoLo2dCp8lQclTZjLnpbaUs5TRJDWFtoTxLSb7D2oF/FMT0UkpYqgug6JAy3c8/UqkdD07yiVv4rU1pbSlb8rdwR5c76k24AXZkl9M+yt8nEm6A2CAD1/SO56ttudw/PJXowP9Z7d57atBMj5uaPrhLdHuX27lj+R0szljMde2v83Y4giA0BLUW4vsob0MeV4br5O+GIz/BL8/Cry9A21HK79NOk7yegJ+NSLqFOnd1vYtdRbt4ZsMzfJf+HY+lPUa38G7eDus3jhrYMg/WzALZA6NfgE5XNv146rjeyhvAwAcgaxOUpitx5GxTkvHk4VCVq7xAyNsNuz797eu1JnDW/PZnc5RyIUm7Q2zYbEZWZK3ALbsZlzSu3mOyS63syq7gqbEdmjCyS3ffsBS+3p7DvDXHefbKzr99ojQD1r6ilGmFJHkvwIuUFplG17CufLj/QyanTkarbn7TQQVBuASSBEmDlbeBDypdyXZ+rMwUOLJU2X/VjJNuUV4i/IHT7eTzw58z/+B8ymxlvDbsNYbFD/NeQNYypZ1f7lZY9S+oKVbqqcfNavpk+2LJsnLL3uNSatD8zErNeW05pK9QdmpnrlN2Z/e5W1m5N4iNYN429aepVDmqWDhpYb3HfLThBM8uOci6J4cTH2Jswugu3VPf7GXh7pOsf3I4EQGnSjG+m6b8PD64EwLO0d2kmVqXu477Vt7H42mPM7XzVG+HIwhCUyk7AYFxysp4Ezvf8hKRdAtnVGmvZPov0zlYepDrO1zP9O7Tm669YGWuUjpyYq1yq9tepTze5jIY+TdI6N80cTQVjwcOfq90X8neBCqt8j0GxEBsb6Vu3BTm7ShblYKaAkZ9M4oHez7ItG7T6j3u/s93sju7gg1Pj2jC6BpGdqmV4a+u5u7ByTw9roPSr352CvSdBmNf9HZ4l+S2ZbdRZC3ix8k/nrU0SBAEoSGcb9LtW9s+hSYT6BfIu6Pe5arUq/j80OcM+2oYXx/9Go/sabwnddYqGyPf6AFf3Qq7PlOa41/zX7jxa7jth5aXcIOy+7rL1XDHMrhnLfSfrpTSZG6An55UEqH/DIIf/qrUsLXAF8rNzbITywAYmzi23mNkWWZ7Zhm92wQ3VVgNKiHUyIgOEXyzIweHy6OscHtcPtWxpD5T2k4hpzqHrQVbvR2KIAhCHbHSLZzTwdKDzNo6i51FO0kJTOHFwS/SMbRjwz2Byw47P1FqSS0FSk3W2JeUdkGtfYW3YB+k/wwZqyB/L9grIbqHslkkvi/E9/PKrbSW7i8//AUVKhZMWFDvMWuPFnPrf7cy+5puXJvmm1MQ1xwtZup/t/LOUBdjt9yqlD89esjn9xbYXDbGfTeOlKAU3h/9vrfDEQShhRPdS4QG0ym0E++Nfo/lmct5Y+cb3Ln8ThZPXkyY4SITYlmG46sgbxfk74HsLUqynTAQrnxTmUilFe2+AGUiYFRXGPyY0iZx7xew5mWldSEoSVLHiRDTE7peCxo/78bbAhwqPcTB0oM8nvb4WY97+9djRAfqmdTjLH3gm7khbcPomxiC37ZnkTV6pFsX+3zCDaDX6Lml0y38e8e/OVJ2hPYh7b0dkiAIgigvEc6PTq1jYspE3h39LrWuWmZvm80F3yWxVcKeL+CD0TB/Mqx8HnJ3KCu2N38Hty+FdmNEwl0ftUbZZPnwHnjyBFz3iZJs7/gIFt0Pr7SF+VfD5nfAYfV2tD5r9vbZhOhDuCq1/jKLrSfK2JpZxr1DU9BpfPcyKkkSt/WJ4DL3NvJTb4QI3+rCcjZT2k7BoDHw+eHPvR2KIAgCIFa6hQuUHJjMPd3vYc7uOcT7xzOt2zR0at3Zv8jjVpLtX56FmiKlL/X4V5XJkTpTk8TdokgSGEOUEpNOk367c7DnS8jbCcuegrWzlXaGaXeC3scmjHpRZmUm2wq28dfefz3rxuEvt+Xg76fhOh8tK/m9kcEFaCU3iyqTmO7tYBpQoF8gE5InsDhjMY/0eoRgvW/W3guC0HL47hKN4DXTuk1jdJvRzNs7j7/88BcKagrqP7imBD6+Ehbdp7T4u20pPLgD+twlEu6GIknKUICr58ED2+D2nyC6u/Ii5z+DlC4wjppznkaAJceXoJJUTEieUO8xtQ43y/bnM65rFAad75di+BXuBuC/maHklLWsOyQ3dbwJu9vOp4c+PffBgiAIjUwk3cIFU0kqZg2ZxUuDX6KgpoCblt7EZ4c+o6S25LeDSjPg+/tgTj84uR0mzYG7foHEQS2iZrRZazMQbvkObl+mbLz8eCK80h6Wz1DaMQpn5JE9/JDxAwOiBxBhrH+4wi+HCqlxuLmqp+/Wcv/B0eU4/eMoloNYm17s7WgaVEpQCqPajGL+wfkcLjvs7XAEQWjlRNItXBQNKsZHD+TDsR/ikT28tPUlpiy8kpJF02FmFMzpCwcXK1Oj7lim1CKLfrlNq80AeGg33PAltB8Lm/8Db3SHN3sqbRk3vq1MyxQA2FG4g7yaPCamTDzrcYt25xEVoKd/UmgTRdaIMlbBiTVoBtxLZIAfGzNKvR1Rg3uqz1ME6AJ4au1TOD1Ob4cjCEIrJpJu4cJlbYKProCXU+jw7X38mJnJnKJyKhxV/CNvBZWBscpI8/s2wbUfKZv9BO8whigJ95T3lQ2YAx6A8A7KxMufZ8C7Q+Gza+HA90rrxlZsScYSjBojIxLqH3Rjc7pZf6yYMZ0jUal8/EWkxwMr/g6BCUh9pzEgOZQtx0svfIN0MxdpiuSZ/s9wvPI4/9n9H2+HIwhCKyY2Ugr1s1sgdxvozEpXA0sR7P0S1swCfRAkD4XaCoztxjHEGMI0dzHzijZxa2Acj3S5guFBvr/JrEUJiodRp1oNyjIUH1EmYe74CL6eqvybdr0GetykvFBqRXcmLA4LyzOXM6rNKAwaQ73HbTlRhs3pYViH+stPfMaB76BgL0x+FzR+DEgJ5fvdeaQXWWgX6e/t6BrUsPhhTE6dzPv73mdI3BB6RPTwdkiCILRCIuluiTxuZXS64dRufWuZUmMd2Ulp2+cfrSRdNcVgjvgtuSrPgk1vK+9NYXB0GVjPcLtZ5w/3rlM2Rv7O/UC33HU8u/FZHlr1EP8c9M+ztl0TvEiSlBdSEU/DkCeU7ie7P4ddn8K295Xe4L2mKr2/DUHejrbRLcpYhNVl5foO15/1uNVHivDTqBiQ7OOlJbIM61+HiE7KvzEwIFnpu78po7TFJd0AT/V9io15G3lu03N8NfErtCoxVEoQhKYlku6W5uQOWPwwlGXA8BmQsxkOLwXZ/dsxpnBQaaA6HxIHQ3AbqMiBE2tApYWAGCh0K4lXv3vBXq1MRYzuDu2vUEoWDGduvzU4bjDLpizj3l/u5cUtL9I3qi8x5pgm+uaFi6JSQ+rlylttBez/BnZ8DEsfh5+fgfbj4LJHIbqbtyNtFB7ZwxeHv6BbWDe6hHU567GrjxQzICUUvdbHNwPnboPCfTDh36BSqgzjQwzEBOrZeqKMqQMTvRtfIzBpTczoN4OHVj3EwvSFXNf+Om+HJAhCKyOS7pakPBM+ngR+/spK9c8zlNKQgQ8o5QIF+0AfCEWHlBXstqPg0BJlFdxZAwGxyoCa4MQ/n7vb+f+C0qq1PD/oea5edDVPrH2CN4e/SajBx1cGWwtDkNLOsc9dyibLnZ8oZQiHf1TqwVMvh4QBdYlaS7A5fzOZVZn867J/nfW4EyU1nCip4TZfT0hlWXkxZQyDLtfUPSxJEn2SQtiUodR1Sy2wvGhY/DA6hXbis0OfcXXbq9GoxK9AQRCajrji+Jrio3BoEfSbDn5mqC6A7R8qyfSW/4CkgjuXK+PBrWXKqvTp0eCdJ//5fFe+pbx3OcDjAp2xQcKMNccy87KZPLX2Ka78/kreHvk2PSPEhkqfEtNDeRs+A5Y8BOv/DetfA2Oo8rPUaZJyp8THk7MFhxYQog9hTOKYsx638lAhACN8vZ47Z4vyNv61Pw1OSksMYdHuPHLKakkIbZhrQXMiSRJ3drmTx9Y8xus7XufxPo97OyRBEFoRkXT7guOrlXZvWZuUvssABxcppSCFB8B9qutEcBLcuvC3WuuA6PN/Do0OOMdkyQs0qs0okicm8/Cqh7lz+Z08P+j5sw4dEZopUyhc/xnUlsOxlcqq9/YPldrv2N5K7XdALER1UcqOTr/I8wEHSg6wOnc193a/95yTVX85VEj7SH/iQ3w8Gd36rnIHrNtf/vSpPolK2di2zLIWmXQDjE4czQ2FN/DxwY9pG9yWSamTvB2SIAithEi6m7M1L8P+b6H4MPjHQNvLwRylTHLc8LryPr4vXPYISGpIGtLsBs+kBKXwybhPeGz1Yzyz/hmOlh/lkV6PoJJaTnlCq2EIVrqbdL1GmXC59ytl5XvJQ78dExALfe6EqG4Ql1Zv7X9z8dGBjwj0C2Rqp6lnPa7S6mRbZjn3DEluosgayeGlyjVl8OPKnbL/0S7CnwC9hu1ZZUzpHeeFAJvGE32e4HjFcZ7d9Cxdw7qSHOTj/66CIPgEkXQ3N7ZKZZPT4aWw/QPlsYEPKbf4tfrfjhv2dLNLsOsTog/h7ZFv89LWl/hw/4dU2iv5x4B/iMTbl+lMkHY79LwFKrKg6KBSA569CVY+rxyj0kDSUOhwhdIlI6qrst+gmbC5bKzJXcP45PGYdX9OQH9v9dEi3B6ZkR0jmyi6Bna6jnvT28q/w9CnzniYSiWRlhjC1hNlTRxg09KqtMwaMouJ30/khS0v8P7o91tkDbsgCM2LSLobWnUBLHtaWZEeMeP8kgy3C1bNhMwNkL9HKRdRaaH37TBu1plv1/tIwn2aSWvi+YHPE2mMZN7eeQAi8W4J1BoITVHeOp6a5FiepSTix35RppL++JjyuEqj1IBHdFJG1XcY79V68BVZK6h11TKqzahzHrvyUBGhJh094n20feKOD5WEu91YGPvSqXKyM0tLDObXw0WUWuyEmn2nVOhChRpCebjnw8zcMpOfTvzEFclXeDskQRBaOJF0NxSHFVb/CzbN/a09X9Z6GP0ClByFQ4uVmlhzlNKqT2dSWvfF94WqfGUTZFQ3ZfWw3ViI7Kz00G5BJEni/h73AzBv7zxqnDU8N/A5TFqTlyMTGlRwG+UtaQhc/hyUHVfeMtcr3XJytsDmOcoehNSRENdX6aRjDGmyEC0OC+/ufZeUwBT6R/c/67FOt4fVR4oY3TkKtS9OoXRYYd2/lb/nG7445wudPonKv8OOrHJGd45qigi95pp217Dw2EJmb5/N4LjB+Ouaz50YQRBaHpF0NxTZDQcWQY8bldZqFVmw6AH45Erl86FtlWOOrVBWsWN7KcnH4R+Uz0f3gGmrfb4TxLmcTryNWiNv7HyDjIoM3hv9HmGGMG+HJjQGSfptJbztKGUiptsFez5XNmTu+FjZkAmQPBzi+0G70coGzUb0yvZXyK3OZc7IOee827JsfwFVNhfjuvhgAupxw3d3Q2UOTHrrvK4vXWMD0alVbG8FSbdapeZv/f/GjUtv5M2dbzKj/wxvhyQIQgsmybLs7RgaXFpamrx9+/amf2Jb1R9bcNVWwJGlENNLmf7ntClJdvtxykq3xw1Hlyu12lHdlS4RrcimvE08vOphYs2xIvFurezVUHQY0pfDvq+V0hRkiE2D5KEw5Mk/7mVoAFanleFfDWds0lieG/jcWY+VZZkJb62n1uHml0eHovKllW5bFfz4qPL3OvYl6D/9vL90/JvrCDHpmH9nv0YMsPl4ccuLLDi8gM+u+Iyu4V29HY4gCD5GkqQdsiynnes4UVDbkP6n5y2GIGXlO6KD8metXun8oDtVTqFSK5vMUka0uoQbYEDMAN4c8Sa51bnc+OONHCk74u2QhKbm5w/xfWDEM/DwHng6GwY/puxrWPcqLJwGFdkN+pSfHvoUq8vKpJRzt4pbc7SYA3lV3Ds0xbcS7rLj8M5lsO8bGPG3C0q4ATpEBXC4oLqRgmt+Huz5IOGGcJ7b9BxWp9Xb4QiC0EKJpFvwqv7R/fl43Me4PW5u/elWVues9nZIgjfpA2Dk3+He9UqyeOgHeKM7fHGT0q/+Eu/MpZen8589/2FM4hh6RfY65/FzVh0jJlDPVT1jL+l5m1R1ISy4QbmLcMdyGHLhA2A6RPlTXG2nrMbRCAE2P2admWf6Ky1Np/8yHZfH5e2QBEFogUTSLXhdp9BOFPw6KAAAIABJREFULJiwgKTAJB769SG+OPyFt0MSmoMhjyur3wMfgqyN8Mkk+OlJKNh30cn3rK2z8Nf683/9/u+cxy4/UMC2zHKmDUlGp/GBS6XHDTs/gbn9lTKdaz+ChIsrD+kQrWwoPJhX1YABNm/DE4bzwmUvsLNoJ+/tfc/b4QiC0AL5wG8SoTWIMEbw4dgPGRI3hBe3vsir219lW8E2b4cleFtQvLL58tFD0OcuZZriO5fBxxOVFpsXYFfRLrYUbOGurncRoj97pxS7y81ziw/QMTqAm/q3uZTvoGm4HMqgosUPQm0Z/OVTpSb+InWPD0IlwdbMlt2v+39NTJnIhOQJvLP3HbYXeGFfkCAILZpIuoVmw6AxMGvILHpH9uajAx9xx/I7xIqToNDqYfyr8MB2GPkPKD6iJN4L74XKk+d1inl75xHsF8w17a4557Ffb88lr9LG/13RAa26mV8mPW5YcD38OlP58zX/VabXXoIAvZYusYFsPl7aAAH6lhn9ZpDgn8DDqx5mR+EOb4cjCEIL0sx/mwitjUlr4oPRH7Dy2pWMTx7Pm7ve5JVtr4jNTYIirC0MfhQe3A5pd8CB7+HDsVCacdaSk20F29hwcgNTO0/FqDWe9SksdhdzVx2jd5tgLkv1gY46x36BjJXKhuy7V0GXKQ1y2iFtw9meWcaxIkuDnM9XmHVm3hn1DiH6EKb9PI308nRvhyQIQgshkm6h2ZEkiQhjBDMHzWRy6mQ+PvgxN/90MyW1Jd4OTWgu9IEw/hW47UewlsFbvWBWIrw3EtbMBltl3aHltnKe2/Qc0aZobup401lPK8syt3+4lcJqO4+Pbu8bo8EP/wB+AXDDl0r//wZy+6BEDFo176zJaLBz+opYcywfjf0IP40fr2x/hZbYWlcQhKYnkm6h2dKoNDw/6HnmXT6P3Opc7lx+J8XWYm+HJTQncb3hgW0w5kVlhVethVUzYXZb+HQKR9a+yNWLJnPScpKXBr+EXnP2nt+bj5exLbOcf0zsxIAUH2jj6bAqHV7ajjrraPeLEWr2Y3y3aJbtL8DmdDfouX1BqCGU+3vcz8a8jXyw/wOReAuCcMlE0i00ewNjBzJ35Fzya/K54ccbROIt/FFADAy4Dya8Bncsgzt+hi5XYy05yiNHP0ZVU8wXxm70yt551tN4PDKzlh0mzOzHdWnxTRT8Jag8CW/1VjZO9p3WKE8xsXsMFruLdemt8y7TDR1uYFSbUbyx8w2e2fAMNpfN2yEJguDDRNIt+IS0qDQ+GvsRlfZKntnwDB7Z4+2QhGaqMDSRf0bFcnmkP7laLS/4pdB+3/fw42Pw6RTY+PYZ67/nrj7G7pwKZozvgF6r9kLkF2j9a1CdB/2mQ0L/RnmKvkkhGLRq1qW3zhe6KknFK0Nf4b4e97E4YzFTl00l35Lv7bAEQfBRIukWfEan0E480ecJNuZtZMb6Gdjddm+HJDQjLo+Ljw98zDVLrmFRxiKGxA3hwzEf0v+mxfC3Uuh/HxQehJ9nwH/HwIGF4FaGoOSUWXljZToTukVzVY9mPggnaxPMToVt70P3G2DcS432VH4aNf2SQ1h7tLjVlleoJBXTu0/nrRFvkV2VzXU/XMfKrJXeDksQBB8kkm7Bp1zb7lqmdZvGD8d/4Lol1/Hl4S/FqrdAZmUmY78dyyvbX6FjSEe+GP8FLw1+ibSoNOUAtQbGvgiPHoTxr0F1AXx9Gyx5GIA3VqYjSRLPjO/UvDdPul3w/XRwO2HsLOV7aWQTu8WQWWplyd7WvcI7LH4YC8YvIMYcwyOrH+HtXW+32hcigiBcHJF0Cz5FkiQe7PkgMwfNRKvSMnPLTP6+4e843K1jXLXwZ9sKtnHXz3fhcDt4a8RbzBs1j9Tg1DMfLEnQ5054aBcMeAB2f8qOld/w3c5cbu3fhqjAs2+09KqKbJjTF8pPwFVzof+9oDt7+8OGcFXPWNqEGvl2R26jP1dzlxiYyKfjPmVy6mTm7Z3HY2seo8JW4e2wBEHwERpvByAIF2NS6iSuTLmSd/a8w9w9cym0FvLmiDcxaAzeDk1oIk63k39u/icLjy0k1hzLnJFzaB/S/vy+WKWGEX/DdXgZvdfdyezAKYwc/p/GDfhCyTIsfRwOLwWVBiqzlceju0O7cU0Whlol0ScxhFWHi5BluXnfCWgCWrWW5wY+R0JAAnN3z+VI2REeS3uMYfHDUEliHUsQhPqJK4TgsyRJYnqP6cwcNJMt+Vt4cOWDWByta5BHa3Wi8gTTV05n4bGF3NnlThZOWnj+CfdpWj3z4l7iV3cPpti+JejtDsomy+ZizwKlbts/Ekxh0OMmuH0ZTFsDqqa9dHeLC6S0xkFepejeAcq1566ud/HBmA9wy24eXvUwj6x6hBpnjbdDEwShGRNJt+DzJqVO4oXLXmBH4Q6eWPuEqPFuwWwuG/MPzmfK4insKtzF8wOf55Hej1zUHY6fDxTw7x1Olnd9DSbNgehuyibLTybB3q/qNll6hb0aNrwJEZ2VKZPTViklJW0GKCUyTax7XBAAa4+2zi4m9ekZ0ZMlk5fwRNoTrM1dy60/3UpOVY63wxIEoZkSSbfQIkxMmciTfZ9k/cn13PjjjWzN3yq6m7Qw+4r3Mf678by87WUGxAxg+TXLmdx28kWd6/11x5k2fwfto/x5anxX6Hkz3Pg1DJ8BZSfgu7vh8+vg5E6oylOmXja2re/BGz2U2u0vboKSIzDsKa8k2f+rW1wgXWMDmbPqGG6P2Dz4e1qVlls738qckXPIs+QxefFk3tv7Hk6309uhCYLQzEgtcfd1WlqavH379iZ9TlmWuffTHbSP9KdXm2ACDFoSQoyEmf2aNI7WTJZllp5YymvbX6OotogAXQAvXPYCw+KHeTs04RJYHBa+P/Y9/97xb8KN4czoN4PLYi+76Npiq8PFgBd/pXt8EO/fmoZO8z9rDx4PbH0XVj4Pp8sF/GNgyGPQ+WooPabUWyf0u8Tv7BRLEZRmwIdjlT+r/cBth3GzoV/jDL25GIv35PHQgl18Oa0//ZJ9YFqnFxTWFDJr2yxWZK0gJTCFZwc+S4+IHt4OSxCERiZJ0g5ZltPOeZxIuhtGtc3J7R9uY2d2OacXgsx+Gj6+oy894oNYtPskB/Kq6JMYTGSAniCjjtggw59/4QuXzOq0sjJ7JfMPzudI+RH+2uuvTEiZQJghzNuhCRfAI3v44vAXfLD/A4qsRaRFpvHqsFcJ0Ydc9Dkzii3MWLiPzcfL+Hb6QHq3Ca7/YFsV7PkCcjbD0eXgsIApHGpOlVio/aDv3TDmhYsLxlkLuz6Fn54C2a0k9mNfhB0fKpslR/xdaXXYTNTYXfT65wrGd4vmtetEInk2a3LW8MKWFyi2FvNY2mPc1PGmVr8BVRBaMpF0N3HSfVp5jYNjxRaKq+3MWnaYrFIrGpWEyyMjSX8chKeSlHZcs6Z0Q6sWyXdDq3XV8uTaJ1mdsxqAXhG9GJEwgsFxg0kOTPZucMJZybLMc5ue49v0b+kW3o1Hej1C78jel9Qdwu5yc/lra8gpq+WhkW15dFS78/9ijxsy1yllH8nDIDAOSo5Cxq/QaRKMnglFhyA4SRlL72eu/1zVhcpgnq3vQlmG8tjAh6DXVAirp9VhM/GvpYd4d+1xPrytD8M7RHg7nGat2lHNjPUzWJWziqtSr+LZAc+iVvnApFNBEC6YSLq9lHT/XkGljXfWZFBhdTAwNYyJ3WJYdiAffz8tFbVO9uRUMH9zFm0jzPRMCCJAr8Ws13B5x0i6xAb+6Xw5ZVYO5FXSPzmUIKPOC9+R75Flme2F29lTvIf5B+dTZlNqc0e1GcUtnW6hfXB7jNrG73UsnL/S2lLm7p7LV0e/4q6ud/FQz4caZJXwvbXHeWHpIT65oy9D2oVf3EncTlBrf/v4h0dg9wJlpfo0UwSEJCttCce/ChEdlVfb2ZuVVfKfZyh124EJcNkjkDJcOd4HON0ehr68isQwE5/f3Tij51sSj+xh7u65zNs7j0hjJMPih3Fv93vFXTdBaGFE0t0Mku7z8fOBAv62aD9VtS48sozd5UGjkrhrcDI1dhejOkXSPsqfL7bmMGfVMRxuDxH+fnx5zwCSwkzeDt+nONwOCq2F/JDxA+/tew+nx4lRY+S2zrdxe5fb0Wua8WCUFs7hdrC3eC/LM5fzXfp3ODwObu10K4+nPd4gCfeu7HJu+WArvdsE8/EdfRsg4t/J3gJHlkJNCdgrofiIMvHSZQOdCRIGKi3+Di1RjvcLhCnvKSvmGt/b8zFn1TFmLz/Cir8OoW2kv7fD8QnLTixjWeYy1uSswU/jx11d7+KWTrfgp/a9f39BEP5MJN0+knQDuD0yHllGAipqndz9yXZ2Zf95ytnE7jFc2T2GJ7/ZQ7nViU6tIiXCTL+kEMZ1iSImyMCziw9wpLCaxFATYzpHMiAljJ3Z5TjdHmKDDAxpG45KJWoLy23l7C7azZLjS1iRtYIAXQABugB0ah0qSUWwPpg+kX1oF9KOdkHtiPOPEzWZF2H9yfWsy12HSlKRa8ml2lFNqD4Uq8tKrDkWrUrL8crjbMnfglt2o5E0XJl6JVM7T22QEiC7y81X23KYvfwIwSYdn9/dn9igRh6g5HGD2wHlmbDiH5C+XHm845XQ9VqI6uIzK9tnUlbjoP+LK7m2dxwvTO7q7XB8SlZVFq9uf5VVOauINcdyf4/7GZs0Fq1K6+3QBEG4BCLp9qGk+3+5PTInSixEBRrYcKyE4mo7yeEmBqYotyT3n6zk2525aNUq1h4tJr3IUtfGS69VMbx9BMeLazhSWP2nc/dNCmHezb0JNonylNO2FWzjk4OfoFfrcctuXB4XWVVZnKg8gYzy95ocmExiQCKgTKQbGjeUMYlj0Kl1rXpK3/9+78crjvPJwU/wyB6Ka4tZf3I9oLRV06g0JAcmU+WowqgxklOt9DNWSSquSr2KvlF96RTaiUhTZIPFdut/t7IuvYTYIAMf39GH1AgvrMyWZkDhfiXpbiE/J098vYcf9uaz+f+NJNAoEsYLtSV/Cy9ve5mj5UfpFdGLJ/s8SYeQDqLmWxB8lEi6fTjpvlDlNQ7WHythy4lSbh2QSLtIf2RZZtPxUgoqbbSN8CfYpGV9egl/X3wAt0cm0t+PtMQQ7rgsiehAPUadGofLQ6BBi0Zs6gSUQSwHSw9ypPwIK7NXUm4rB6DSXkmhtRAAg8aA0+1kQMwAbu50M32i+rTIVauc6hx2FO7gROWJujKd/SX7KbYWEx8Qj06lo7i2mHJbOTq1Dp1KR6ghlFFtRnFP93vQqXR4ZM8Zk4qGfNFSYXWw9UQZ64+VsC2znEP5VfxjYiduH5TUIOcXFAfyKhn/5npmXNGRu4f47qq9N3lkD4szFvOvLf+i1lWLWWumT1QfJiRPoGdET8KNF7nvQBCEJieS7laUdF+IPTkV/HKokJwyK8sPFFLrdP/h80PbhfP0uA60j/QXZSj1kGWZdSfXcaD0ANWO6rr+4GW2MgL9AhkeP5zJqZPpGtYVrdo3E3BZllmVs4qlJ5ZSZC1iV9EuADQqDWpJTZghjG5h3YgyRZFdnY3dbSfSGEmkMZLr2l9HqKFp+zhX1jp5bvEBfj5YiMXuwqhT0yk6gEk9YripXxvxs9wIrpu3ibyKWtY8MRy1+Pu9aOW2cjbkbWBn4U5W56ymuLYYtaRmQvIEbuhwAxHGCMIMYa32bpog+AKRdIuk+5yKqmysPFxErcNNhVVZLd95qpY82KhlQEooA1PCmNQjBn+9byaPTcXmsrEhbwO/ZP3C6pzVWJwWNCoNQX5BhBvCSQxIZFDsIAbFDmoWnQusTit5ljxyqnOocdVg1ppRS2rSK9JJL09nb/FesquziTBEEG2OZlDMIMYkjSHBPwGNyru9oz0emewyKy6PzOI9eQCsSy9mV3YFg9uGccegJAakhKLXilv1jWnZ/nzu/XQn79zcm7FdorwdTovg8rjYU7yHX7J+4Zuj32Bz2wCINccyMGYgPSN6EqIPIdIYSWJgotf/LwqCoBBJt0i6L0peRS0bM0rZlFHK5uOlnKyoJcio5e7ByaSEm1FJMLxDhOgrfhYWh4X1ees5UnaEImsRpbZS0svSKaotQkKiY2hHEvwTSAxMJFAXyNiksYQZwrA4LNjcNgwaA0aN8YJXtpxuJ+X2cjIrM7G5bWwv2M6a3DXUumqJNcdicVqotFdidVmpddbi8DjOeJ4oUxQdgjswImEEE1MmNotf7FU2J9tOlLH1RBmLdudRUGX7w+f9NCpmX9udK7vHeCnC1sfl9jB09mqMOjUL7x+E2c/7PyctSUltCdsLt1NiLWFT/iZ2Fu7E4rTUfT7MEMaA6AGkRaVh1BqJNEbSMaSj6MIkCF4gkm6RdF8yWZbZm1vJ678cZdWR4rrHTTo1ozpFcnmnSC5LDRM9w8+DLMvsLdnL+pPr2VO0h6yqLPJq8uo+b9AYsLvteGQPoPxC1av1ONwOqp3VBOgCCDOEcaLyBDa3DQkJSZJQoVLeSyo8sge72153To1KQ9+ovgToAii0FhKoCyTAL6Cu5rxfdD+iTdEE+gVidVpxepxEm6IbbCNjQziUX8WbK9P5aX9B3WPD24dzeadIKmudjOsSTZhZh0qSMImkr8mtTy/h5g+28Pjodjwwoq23w2nR3B43xyqOUe2oJr8mn1U5q9iSv4UqR1XdMRpJQ/uQ9sT7x5MUmMTQuKEkBSaJWQSC0MhE0i2S7gZ1vNhCicXB4YIqvt+ljLS3uzyYdGomdo8hJdxMh2h/BrcVm3/Ol0f2kFGRwbqT6yirLUOv0RNqCMXqtHKs4hgAOrUOg8ZAhb2Ccls50aZoQg2hyLKMjIxH9iDLMi7ZhcvjIs4cR1JgEv46f1KCUvDX+WYf5dVHipj54yGOFVnQqiVuHZBIWptgIgL0Zx/dLjS5a9/ZSIXVyfJHhoja+SbmcDsoshZR66olpzqHvcV72Veyj4KaAnItuXUv4kP0IQyKUcrbekf2JsokyoEE3+DyuMi35GPWmQnWN99rv0i6RdLdqGxON9syy5ixcD/ZZda6xy9LDcNPo2J8t2gmdItBpxFlKML523+ykvmbsvh6Rw7h/n5c1SOWe4emiBaXzdhX23J48tu9XJcWx8vXdPd2OMIppbWlbC3YyknLSY5XHGdN7pq6VfEQfQh+aj+GxQ+ja1hXsquzcbqdqCQVCQEJRJmi0Kv17CvZR7G1mGB9MMPih5Hgn8C+kn2ctJzEqDFi1BqRkSmrLSPGHEOIPgSj1ojL4yJYH4xOpWuWG0BrXbVYHBYsTgsBugBCDaF4ZA8e2dMsyulam9LaUirsFewr2ceBkgNo1dq6fUe7inZhc9vQSBoSAhJwepxYnVbCjeHE+8dTbC0m15KLv86f1KBUpnefTtvgpr/rJpJukXQ3mX25ldQ4XKw4WMgvhwqxOd0UVtnplxTCOzf3JqvMyt7cCmxONzFBBsZ3jW6WF2KhYbk9Msv2F5BTbsXsp0ElSZj1GnRqCZdHptbhJqvUyp7cCiqsTgqrbBRV2zFo1VzdK5anx3UQG3h9gCzLvLTsMPPWHOfzu/oxMNX7G4WFP3N5XKSXp7OzaCeHyw5jcVj4NedXPLIHCQmNSoNbdtetjp/mp/arK1vTqDS4PK7zej4JCa1KS2JgIilBKaQGpRJuCMekNRHkF0ScfxwGjQF/nf8lJbpOt5NKRyVVjiqq7FVUOaqotFfikT3EmmNxuB2U28spqCmgyFrEhrwNZFVl/eEcIfoQquxVaFQaukd0p8ZRQ7A+GLPWjFatJdwQTrvgdph1Zvx1/lgcFoqsRfjr/AnRhxBqCCXSGNlkZTyyLFNqK0VCIkQf8qffp7Isk1WVRYW9gghjBC6Pi4SAhHrP5/Q4KbAU4JJdGDTK8DCNSkOts1Z5UWUrI8wQhsPjoNZZi1FrJMwQhr/OH7fHjd1tJ6c6B6fHSaBfIGW2MoqtxdjcNvRqPVWOKsIN4UQYI7A4LaglNbWuWo5VHOP7Y99ztPxoXSwmrQmP7MGkNRGqDyUtKo22QW3Jqc4hqyqr7u7vsYpj1DhrCPQLJME/gSpHFYdKDzH38rmkBKU0zl/8WYikWyTdXiPLMt/uPMn/+24vTveff74Gtw1jQrdoZBkGtwtv/AmBQqOwu9xISHV3M4qr7aw5WsxHG0+QX2HD5nRT43Cf4yyQHG4izORHbLCBLrGBXNM7jkCDSLZ9ic3pZujsVbSPCuCTO/p6OxzhPJXZyii3lZPgn4BWrcXpdpJjySHPouw3SQpMItYcS0FNAb9m/0p+TT6dQzvTLqQdNpcNq9OKS3YRpg8j15JLua0cq8uKVqUlz5KH0+PkeOVxjlcc/8Melt/z1/rTIbQDSQFJtAloQ6QpknJbOXa3HafHidPtxOFxYNAYCDeEk1Odw8a8jZTUllDlqKLWVXve369BY6B7ePe6vS4mnYnCmkKyqrIINYRS7ahmW8E2IowRlNnKsLvtONwOimuLz+vFRpw5DrVKTUltCSpJRZw5DrPOTJBfEJ1DO2N326l2VFPrqiXSGEmbgDa0CWhDpb2S9Ip0TFoTwX7BVDmqOFB6gENlh3C4HaglNX5qPwxaAwWWAk5aTtZ1tlFJKsIN4WhUGjQqDcXWYuxuO275j9des9ZMnH8cHtlDjbMGCQkZGY1Kw8nqk7jk83sx9Xux5lhqnDVU2P88Qft8pQalMiF5AlGmKJIDk+kQ0uGSFuW8NaxOJN0i6fa6ndnl/LQvn47RAfSIDyLU7Mfi3Sd5efkRqm3Kf3CNSuLatHjGd42mY7Q/IabmeTuyJZFlmcMF1Zwsr6Wo2o6fRoXD7WFkhwhOXw3yKmrZllnGL4eK0Kgk9Fo1+09WopIk4kMMlFgcZJbWoFWpSEsMpqzGwdHCajwytIs00ycxBK1aRb+kEHq1Caba5sTqcON0e9CoVKhVEha7i14JwaIEqYV4a2U6r644ynu3pjGqU/PZjCs0DzXOGkprS6l2VFNhr6irRT/dpvR45XGqHX+eogx/XGFXSSp6RfQizj+OAF0AgX6BBOgC/vixX0BdsmzUGAnQBRBlirrolWir00pBTQHVzmosDgsSEomBiVQ7qimzlVFqKyW3Opf08nScHiex5licHie5llxqHDUUWAsoqFE2g5u0JvRqPWW2srqJx2di0proGNIRs86M2+PG6rJidVqJNkUT5x9HrDmWCntF3SqzSlKuo8F+wZh1ZmLNsUQYIyioKair+c+z5KFRaTBpTbg9bmRk3LKbxIBEEgIS0Kl01LpqcctunB4nAboAAAJ0AZTaStGqtPip/bC5bRRbi9lfsh+j1khSYBLRpmgMGgOV9kpCDaFEGCPq7pL46/zJs+RRZivDrDXjlt34qf1I8E8g0hRZF7sva3FJtyRJY4E3ADXwvizLL9V3rEi6mzel/MSG0+3hk01ZLNiaXbcibvbTIMsyapWEn1aN0+0hNsjA5J6xjOkcRVywoVGTcpvTjcXuYntmGdszy8kstRJg0KBVqViXXkxaYggR/n5c1jaM9lH+BBt1Z+0HbbG7OFFcQ9tIc91xOWVWcsqt5FfY6B4fSFKYuW64SIXVwYmSGow6DSUWOzllVkosdvz1WlQSFFXbCTRoiQrUU251EmTQUlxtR69VE2zUsie3kryKWk5W1JJXUYtWrSLQoMUjy4T7+xFu9mPziVJyys5vdSgpzESoSYfV4SYywI9gk47cslpCTDraRfmTW27lwMkq4kMMdIoOoHNsIMPbR4hEuhWyOlxc/+5mDuRV8cSY9tzUL0GUBwnnTZblumQ8WB+MUWNEq9aikTSoVWqqHUrCe7rEw5fIsozFacGoMdZN5bW77eRU5XCi6gQGjaFuJbzMpmyqTwxIbBHJ6PmwOd24PTJGndpnF91aVNItSZIaOAqMAnKBbcANsiwfPNPxIun2LdU2JzuzKzhRbOFwQTWSJKFTS9hdHjRqib25lezNrQSgQ5Q/g9uG4XTLeGSZYKOO5HAT5TUO3DKEmnR4ZBl/vRa9VkW3uCCMOjUqSaLW6cZqd1FlcxIXbGTLiTKOFVmw2FyEmLTszqnkp/35WE+VRGjVEklhJmrsbsqtDiID9NTYXZTWOHB7lP83OrWKMLOOjtHKikBhtQ0/jZryGgeSBHkVNmqdbnRqFYFGLRVWx59KbnRqFXHBBtyyTFaplbORJDjbf1mtWiI60EBMkJ6YQAMWuwunW6nRLKyyU1Rtp2O0PxO6RdMm1ESwUYdGLeFyy6w+UlR30QswaIkLNtA5JgA/jRgyI5yfapuTR7/aw4qDhUT4+3HfsBQGpIQRFaDH5nITatLhdMusOlJEu0gzqRG/JU+2U9NxzzXUyOORcctyvbMCauwuLHYXkQHn7lftcntQq6QG/0WfV1FLVID+grq5yLKMR+as0z0rrA7yK22YdBrigg2oTt0xOpxfRY/4IDSn/k4qrA6sDmUPTX3PlV9pI8zsh1ol/ek53R4ZlQSHC6rRaVTEBxvrXki7PXLd3bIKqxOzXkOoSUdhlQ2zXkN0gIFAo7buWAnlugXU/T27PfJ5TTEtrrZTY3eRGGYCoNRiZ+n+Ao4WVNM5JgC7y0Nexf9v795j5DrLO45/n7lfdnbXsxff117bcS41CSHBuYkmAQqIqqC2aQsCWloKom1oKQWpVVuJ3gSoLVX/qBARpa1QaQu0olETFCogoQQSHIjjxE58j697353ZnZ37zNM/ZrJeG18G49nxen8faeU5M++888z4mXOeec97zikw3J/k3usHWNsTZ3y2SKlaJxoKMNgdo1ipsfd0licOTPLYC6OUqo3PJRkN8ZqhVexY382h8Rz7R+cYnS1y3/YBtgx0cdfWvit6PYp8ucrBsRyVWp1bNvYu9F2q1th9PMNkrsxItrH3ccOqOJlqMZcFAAAPiUlEQVR8hen5MttXp7h+TeMvFgrw4sgcp7MFxmaLBANGKhYmGgpQrTnbV3cxk6+QioVYlYhgBqlYiKePTjOYihILB/nu4SnK1Tr9XREK5RrpZIShvgSb0klOZQocHJujXKuzKhEhHAxwYibPbKECwPreON78/xubLbK+N044GKBSq5MtVDg0nuPgeOM9DvcnyeQrPH8qSyho/NzN69g62EVfMtLIIeDQeI5H9pxeuChfMGDsWNfNvdcPMleskMlXODo5z9hskZ3Daao1Z3q+TK5UbeZlnBvXdpOMhihV69y9tW9hW7zUrrWi+y7g4+7+5ubyHwG4+yfO115F97Xn4Ngc3zk0yVd3n+bFkVmioQABM2aLlYsWodAoRA2jXKtftN2qRJg7hvu4c0uaTf1J7tpy/qsaZvMVnjuZ4fBEjuPTecZmixwaz1GtN4r9SNDo74pSqdVZ2xPn1Rt72Xt6lslciYFUlPW9cYbSCYb6Evzg2AwvT81zfCpP3Z1bNvayfTBFrlRlMBVlYzrBYHeUTL5CrlRlS3+So5PzzcdjnJjJs643znSuzFypsjCtQ6RT3J3HD0zw0S89x9T82RdgCgZs4QcrsLAX5o7hPr57eJJa3bl5Qw/reuMMpqJM5crEI0Hi4SDz5RoTcyW+fXCCcrVOTzzMazenOZUpEAoYm/uTZPJldr08TbFSJ52MUKzUSERCJKNBBlNRanXnxrXd5Ms1Ht8/zky+wvreOGt6YoxkCtyysZfXbk5TrNZ4aWSO6fkyc6UqA11R1vXGeHkqz+HxHLFwgA2rEhwazxEJBeiOh7lv+wClap19I7N8+8AEd2/t44HbNuDeuLjT0cl5vvHiOKlYiMlcmeH+BGt64pSrNQ6O5RidLVKrOzesSXFypkC2UGGoL8GNa7t53bZ+vvbCKE8cmDjr87xusIvxuRLZQoXBVJShdIL+riiPHxinWKnT3xVl60CSbYNdC1P6ggHj8ESOPSezBAwC1vjsKrU6fckI3fEw3z08RbVW55X/qng4SDjYKM4zhYuvc4MBY3UqSjBojM2WCAeMQMCIh4PsHE5zOlPgh8cz9CUjjWJ5+wAz+QrZQqNYLJRr/N/BCYrVRiFXqzvremJkChUqtTqVmp81+BAKNA7MBkgnI2Ty5YW4B1PRhUGSgMGrNvSyOhVlfK7ESLbA2GzprLgHuqILF96KhALcvmkVoWCAaq1OKhbi8MQ83bEQM/kKI9kCg6kY8XCQm9Z1YwYjmSKZQoVsvkwkFGB1d4xStc7JmTyTubO/C5FQgGQkSLFSp1CpnXV/udrYVsXCAYqVM9utcNDOe5zUxZz7nWunWDjAtsEugoEAR8ZzRMNB7hhOM5kr8fTR6fM+Z9tgFz/7qrXEI0Ey+QqP7x/npdE5uqIhehNh1nTHSMVCHBhrfO9WJSLEI0GyhQqj2cbB94v903tfy/03DC7F2z3LtVZ0PwC8xd1/s7n8HuAOd3/wfO1VdK8c+XKVUzMFViUjBM0YnS0SCQWYnm9M05gtVBifK2FG48saDpKKhTg2lWf76hQ7h9OEg8Zcsdr2qSsiK0m5WufETJ4XTmWZmCsRCQU4OVMgEgxw07puRrNFvnNoklDA2H0is3ChrT0nM4zNFRmbLdEdC1GrO6VqnUQkSDIa4p5tjZHzwxM5XjiVZV1vnKlcmXy5SioW5tUbe1nbG+OZl2foioaIhQNk8pWFovOHx2dIRILcf8MgG1clFmIY7I7x5KFJpps/FNLJCKu7Y/TGwwsF2paBJFsHupjJlzk+nWfHuh4c5+hknhdHZgkFGnvHIqEAJ6bzzBbPHJwWDQW4a2sflVqddDLKwbE5JnNluuMhtvQn2ZhO4A77R+dY2xOjKxZi/+gc+07PMleq0h0L8ev3DHP9mhQnpvOMZIscmZxnVSLMzRt6+d7hSTL5CiPZIncMpxnqSzCaLbL7RIZTMwV6EmGCAaNSrWNmPHDbBuaKVYIBODIxTzwSZDRb5MRMntffsJp0MsxQOkE4GOCpI1OEggECBulEhErd2ZROLJzKc6I57a1Wdw6N5zg2naded9b1xqjUnEy+TKFSY+/pWfqSEW7blKZQqfLs8Qwvjc4tFFPzpcbntXM4TV8yykAqCsDRqXnWdMcIBoxfeM16tvR3cXw6T3csxEAqyoGxHE8emuSl0VnWdMfojocpVescmZhnbU+Mn1rXzd1b+xdG4AEqtTqj2SI/ODbD1oEudqxvjJDuPT3LyZkCTx2Z4tnjM2BG0GBqvsy2gS7y5RqhoLFtsIupXGPUdfeJxkjtlv4kvYkwPfEIuVKFmfkKoaAxlE6wMZ1gS3+SUrXOiek88+Ua+XKVYMC4e2s/Q+kEg6kovYkwRyfn6YmHWZWIcCpT4KXROfaPNvJgx7oehvuTC4MxdXcm5krUHcZni/QmIpSrdTKFMoVyjdFskbu39TE+2/gO7ljfw2Cq8eMiGQkxki0yki1wYjrP2p44m/uT9MTDzOQbz9/cl1z4cXwqUyDQ3Eau7o4yki0ujDr3J6MLe1+g8eMbzuzdyBYaZ6iani8TChh1h019jfe8eLvr3vi+X2qP1yttZ4tV5ktVQgHjf/aM8K47hzqyd3bFFd1m9gHgAwBDQ0O3HTt27Lx9iYjI1a9dZyG4WL+VWp25YpV4OEgsHPiRYuBCz3N35kpVuiKhhaKjXnf2jcwSChrpRISeRPiyioFa3Tk+nae/K3JNzpGfK1ZIREItTTe5WnXqjBly9Wi16F4uZ4E/BWxctLyhed8Cd38IeAgaI91LF5qIiFxp7SpiLtZvOBggfYELMV3seWZG9zkFcSBg7Fjfc3lBLhJsjp5fq66FHxIquKVVy2Xy5y7gOjMbNrMI8A7g4Q7HJCIiIiLSkmUx0u3uVTN7EHiMxikDP+/uezscloiIiIhIS5ZF0Q3g7o8Cj3Y6DhERERGRH9dymV4iIiIiIrJsqegWEREREWkzFd0iIiIiIm2moltEREREpM1UdIuIiIiItJmKbhERERGRNlPRLSIiIiLSZiq6RURERETaTEW3iIiIiEibqegWEREREWkzFd0iIiIiIm2moltEREREpM3M3TsdwxVnZhPAsQ69fD8w2aHXlqubckMuRLkhF6P8kAtRblwdNrn7wKUaXZNFdyeZ2TPufnun45Crj3JDLkS5IRej/JALUW4sL5peIiIiIiLSZiq6RURERETaTEX3lfdQpwOQq5ZyQy5EuSEXo/yQC1FuLCOa0y0iIiIi0mYa6RYRERERaTMV3ZfJzN5iZvvN7JCZ/eF5Ho+a2X80H3/azDYvfZTSCS3kxkfMbJ+Z7TGzb5jZpk7EKUvvUrmxqN0vmpmbmc5KsEK0khtm9svNdcdeM/viUscondPCdmXIzL5lZs82ty1v7USccnGaXnIZzCwIHAB+BjgJ7ALe6e77FrX5beBmd/+gmb0D+Hl3/5WOBCxLpsXcuB942t3zZvZbwH3KjWtfK7nRbJcCHgEiwIPu/sxSxypLq8X1xnXAl4DXu/uMmQ26+3hHApYl1WJ+PAQ86+6fMbObgEfdfXMn4pUL00j35dkJHHL3I+5eBv4dePs5bd4O/Evz9leAN5iZLWGM0hmXzA13/5a755uLTwEbljhG6YxW1hsAfwF8CiguZXDSUa3kxvuBf3D3GQAV3CtKK/nhQHfzdg9wegnjkxap6L4864ETi5ZPNu87bxt3rwJZoG9JopNOaiU3Fnsf8LW2RiRXi0vmhpm9Btjo7o8sZWDSca2sN7YD283sSTN7yszesmTRSae1kh8fB95tZieBR4EPLU1o8uMIdToAkZXKzN4N3A7c2+lYpPPMLAB8Gnhvh0ORq1MIuA64j8besW+b2avcPdPRqORq8U7gn939b83sLuALZrbD3eudDkzO0Ej35TkFbFy0vKF533nbmFmIxu6eqSWJTjqpldzAzN4I/DHwNncvLVFs0lmXyo0UsAN43MxeBu4EHtbBlCtCK+uNk8DD7l5x96M05vhet0TxSWe1kh/vozHnH3f/HhAD+pckOmmZiu7Lswu4zsyGzSwCvAN4+Jw2DwO/1rz9APBN11GrK8Elc8PMbgU+S6Pg1rzMleOiueHuWXfvd/fNzQOgnqKRIzqQ8trXyjblqzRGuTGzfhrTTY4sZZDSMa3kx3HgDQBmdiONontiSaOUS1LRfRmac7QfBB4DXgS+5O57zezPzextzWb/CPSZ2SHgI8AFTw8m144Wc+OvgS7gy2a228zOXXnKNajF3JAVqMXceAyYMrN9wLeAj7m79p6uAC3mxx8A7zez54B/A96rgb6rj04ZKCIiIiLSZhrpFhERERFpMxXdIiIiIiJtpqJbRERERKTNVHSLiIiIiLSZim4RERERkTZT0S0iIiIi0ma6DLyIyFXOzPqAbzQX1wA1zlz4Iu/ud7fhNW8FHnT3912h/h6kEevnr0R/IiLLjc7TLSKyjJjZx4Gcu/9Nm1/ny8BfuvtzV6i/BPCku996JfoTEVluNL1ERGQZM7Nc89/7zOwJM/tvMztiZp80s3eZ2ffN7Hkz29psN2Bm/2lmu5p/95ynzxRw8ysFt5nd27x66m4ze7b5OGb2sWYfe8zszxY9/1eb9z1nZl8AcPc88LKZ7Wz/pyIicvXR9BIRkWvHLcCNwDRwBPicu+80s98DPgR8GPh74O/c/TtmNkTj0tI3ntPP7cALi5Y/CvyOuz9pZl1A0czeBFwH7AQMeNjMfhqYAv4EuNvdJ80svaifZ4DXAd+/ou9aRGQZUNEtInLt2OXuIwBmdhj4evP+54H7m7ffCNxkZq88p9vMutw9t6iftZyZMw7wJPBpM/tX4L/c/WSz6H4T8GyzTReNIvwW4MvuPgng7tOL+hkHbvjJ36aIyPKjoltE5NpRWnS7vmi5zpn1fQC4092LF+mnAMReWXD3T5rZI8BbgSfN7M00Rrc/4e6fXfxEM/vQRfqNNfsWEVlxNKdbRGRl+TqNqSYAmNmrz9PmRWDbojZb3f15d/8UsIvGaPVjwG80p5tgZuvNbBD4JvBLzTOucM70ku2cPW1FRGTFUNEtIrKy/C5we/NAx33AB89t4O4vAT2vHDAJfNjMXjCzPUAF+Jq7fx34IvA9M3se+AqQcve9wF8BT5jZc8CnF3V9D/C/bXtnIiJXMZ0yUEREfoSZ/T4w5+6fu0L93Qp8xN3fcyX6ExFZbjTSLSIi5/MZzp4j/pPqB/70CvYnIrKsaKRbRERERKTNNNItIiIiItJmKrpFRERERNpMRbeIiIiISJup6BYRERERaTMV3SIiIiIibfb/h42mrih67GoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Importing of time package to measure the simulation time\n", + "import time\n", + "\n", + "# Importing numpy \n", + "import numpy\n", + "\n", + "import matplotlib.pyplot as plt\n", + "# Importing geometry module\n", + "import steps.geom as swm\n", + "# Import model container\n", + "import steps.model as smodel\n", + "# Creation of random number generator needed by Wmdirect Solver\n", + "import steps.rng as srng\n", + "# Importing solvers package\n", + "import steps.solver as ssolver\n", + "\n", + "# Creating the model constructor\n", + "mdl = smodel.Model()\n", + "\n", + "# Enumeration of chemical species that can occur in the model.\n", + "molX = smodel.Spec('X', mdl)\n", + "molY = smodel.Spec('Y', mdl)\n", + "molZ = smodel.Spec('Z', mdl)\n", + "\n", + "# Creation of volume system\n", + "volsys = smodel.Volsys('vsys', mdl)\n", + "vol = 1.6667e-26\n", + "\n", + "# Creation of reaction rules\n", + "kreac_1 = smodel.Reac('kreac_1', volsys, lhs=[molX, molY], rhs=[])\n", + "kreac_2 = smodel.Reac('kreac_2', volsys, lhs=[molY], rhs=[molX])\n", + "kreac_3 = smodel.Reac('kreac_3', volsys, lhs=[molX], rhs=[molX, molX, molZ])\n", + "kreac_4 = smodel.Reac('kreac_4', volsys, lhs=[molX, molX], rhs=[])\n", + "kreac_5 = smodel.Reac('kreac_5', volsys, lhs=[molZ], rhs=[molY])\n", + "\n", + "\n", + "# Defining actual compartment\n", + "wmgeom = swm.Geom()\n", + "comp = swm.Comp('comp', wmgeom)\n", + "comp.addVolsys('vsys')\n", + "comp.setVol(vol)\n", + "\n", + "# Calculation and Initialization of Reaction Constants\n", + "kreac_1.kcst = get_kcst(0.1, ['X','Y'], vol)\n", + "kreac_2.kcst = get_kcst(2, ['Y'], vol)\n", + "kreac_3.kcst = get_kcst(104, ['X'], vol)\n", + "kreac_4.kcst = get_kcst(0.016, ['X','X'], vol)\n", + "kreac_5.kcst = get_kcst(26, ['Z'], vol)\n", + "\n", + "\n", + "# Initialization of random number generator\n", + "r = srng.create('mt19937', 256)\n", + "r.initialize(23412)\n", + "\n", + "\n", + "# Creation of Wmdirect solver\n", + "sim = ssolver.Wmdirect(mdl, wmgeom, r)\n", + "\n", + "# Calling reset function of the solver\n", + "sim.reset()\n", + "\n", + "# Setting concentrations (amount of molecules in this occasion) of the simulation\n", + "sim.setCompCount('comp', 'X', 500)\n", + "sim.setCompCount('comp', 'Y', 1000)\n", + "sim.setCompCount('comp', 'Z', 2100)\n", + "\n", + "# Creating empty arrays to save the simulation results\n", + "tpnt = numpy.arange(0.0, 0.901, 0.001)\n", + "res = numpy.zeros([901, 3])\n", + "\n", + "\n", + "start = time.time()\n", + "\n", + "# Actual simulation iterator\n", + "for t in range(0,901):\n", + " # Running the Wmdirect Solver for one step\n", + " sim.run(tpnt[t])\n", + " # Saving the results\n", + " res[t,0] = sim.getCompCount('comp', 'X')\n", + " res[t,1] = sim.getCompCount('comp', 'Y')\n", + " res[t,2] = sim.getCompCount('comp', 'Z')\n", + " \n", + "# End of simulation and printing of simulation time \n", + "end = time.time()\n", + "print(\"Simulation Time (sec)\")\n", + "print(end - start) \n", + "\n", + "# Plotting simulation results (Number of molecules)\n", + "%matplotlib inline\n", + "plt.figure(figsize=(12,7))\n", + "# Plot number of molecules of 'X' over the time range:\n", + "plt.plot(tpnt, res[:,0], label = 'X')\n", + "# Plot number of molecules of 'Y' over the time range:\n", + "plt.plot(tpnt, res[:,1], label = 'Y')\n", + "# Plot number of molecules of 'Z' over the time range:\n", + "plt.plot(tpnt, res[:,2], label = 'Z')\n", + "plt.xlabel('Time (sec)')\n", + "plt.ylabel('#molecules')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulation with the Wmdirect solver for NITER iterations to calculate the average populations" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation Time (sec)\n", + "5.738232135772705\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAGtCAYAAADK/ciuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3XmUXFd16P/vqa6pu6tnzZMlWbIleZQ84WAwxhgMNtg4JjbYzITEkPdCQvICWckjjyQv4eWXhPAIEKYECAE/MHOwwQx28GzZFpZl2ZJsSdbc6qnGrvn8/jh1S92tHmq4t27dqv1ZS6vV1dX3HqOiat9999lbaa0RQgghhBBCOMfn9gKEEEIIIYRodRJ0CyGEEEII4TAJuoUQQgghhHCYBN1CCCGEEEI4TIJuIYQQQgghHCZBtxBCCCGEEA6ToFsIIYQQQgiHSdAthBBCCCGEwyToFkIIIYQQwmF+txfghEWLFum1a9e6vQwhhBBCCNHinnjiiRGt9eKFnteSQffatWvZvn2728sQQgghhBAtTil1sJLnSXmJEEIIIYQQDpOgWwghhBBCCIdJ0C2EEEIIIYTDWrKmWwghhBBCeEMul+Pw4cOk02m3lzKvcDjMqlWrCAQCNf2+BN1CCCGEEMI1hw8fpqenh7Vr16KUcns5s9JaMzo6yuHDh1m3bl1Nx5DyEiGEEEII4Zp0Os3Q0FDTBtwASimGhobqysZL0C2EEEIIIVzVzAG3pd41StAthBBCCCGEwyToFkIIIYQQbevQoUOsW7eOsbExAMbHx1m3bh0HDhyw9TwSdAshhBBCiLa1evVq7rjjDj7ykY8A8JGPfIT3v//9rF271tbzSPcSIYQQQgjR1v7gD/6Aiy66iE9+8pM88MADfPrTn7b9HBJ0CyGEEEKIpvC/friLZ4/GbD3mlhW9fOyN58z7nEAgwN/93d9x7bXX8tOf/rTmXtzzkfISIYQQQgjR9u6++26WL1/OM88848jxJdMthBBCCCGawkIZaafs2LGDe++9l0ceeYQrrriCW2+9leXLl9t6Dsl0i5YQzUTdXoIQQgghPEhrzR133MEnP/lJ1qxZwx//8R/zR3/0R7afR4Ju4Xnf2/c9rvjmFdy15y63lyKEEEIIj/nCF77AmjVruOaaawD4wAc+wO7du7n//vttPY/SWtt6wGZw8cUX6+3bt7u9DNEAuWKOa751DaPpUXqCPdx/y/0EfPZvfhBCCCGEM3bv3s3mzZvdXkZFZlurUuoJrfXFC/2uZLqFp+08uZPR9CjXrb+OeDbOjuEdbi9JCCGEEOI0EnQLT3v42MP4lI8PbfsQfp+f+w/ZeytICCGEEMIOEnQLT3v65NOcNXAWy7qXcf6i89lxUjLdQgghhGg+EnQLT9s3sY+N/RsBOHvwbPZN7KOoiy6vSgghhBBiOgm6hWfFsjGGU8NsGNgAwFkDZ5HMJTmaOOryyoQQQgghppOgW3jWixMvArCh/1TQDbBnfI9raxJCCCGEmI0E3cKzDsUPAbCqZxVwKvjeO77XtTUJIYQQwlu01lxxxRXcfffd5ce+9a1vce2119p6HhkDLzzrWPIYAMu7zZjWrkAXSzqXcDhx2M1lCSGEEMJDlFJ87nOf4y1veQtXXXUV+XyeP/3TP+Wee+6x9TwSdAvPOpo4ymB4kE5/Z/mxFZEVHEkccXFVQgghhPCac889lze+8Y184hOfIJlM8o53vIMzzzzT1nNI0C0861jyWDnLbVnZs5KnTjzl0oqEEEIIUZe7PwLHd9p7zGXnwev/dsGnfexjH2Pbtm0Eg0GcmGwuQbfwrKOJo2wc2DjtsZWRldy9/25yxZyMgxdCCCFExbq7u7nllluIRCKEQiHbjy9Bt/AkrTXHk8e5ctWV0x5fGVlJURc5kTxR3mAphBBCCI+oICPtJJ/Ph8/nTJ8R6V4iPGkiM0G6kGZ5ZHp5ybKuZQCcSJ1wY1lCCCGEELOSoFt40sjkCABDnUPTHl/WXQq6kxJ0i/klsgl2DO9wexlCCCHahJSXCE8qB93h6UH30u6lgGS6xfyGU8O85YdvYSw9xqeu+hRXrbnK7SUJIYRoAn/xF3/h2LEl0y08aTQ9Cpye6e4OdBMJRCToFvO6a89djKXHALjz+TtdXo0QQoh2IEG38KTRSRN0L+pcdNrPlnYt5XjyeKOXJDzk5y/9nK1LtvK+897HI8ceKQfgQgghhFMk6BaeNJoeJeAL0BPoOe1nizoXlYNyIWY6kjjC8+PPc/Waq7l27bUUdIGfHfyZ28sSQgjR4iToFp40OjnKUOcQSqnTfjYQHmA8M+7CqoQXPHniSQAuX3E5Zw2cxZKuJTw5/KTLqxJCCNHqJOgWnjQ6OXraJkrLQHhAygXEnHaN7qLT38n6vvUopdg8uJnnx553e1lCCCFanATdwpNG06OnbaK0DIQHiGfj5Iq5Bq9KeMGukV1sHtyM32eaN509eDb7o/tJ59Mur0wIIUQrk6BbeNK8me7QAADRTLSRSxIeoLXmhegLbBzYWH5s0+AmCrrACxMvuLgyIYQQbvrud7/LhRdeOO2Pz+fj7rvvtu0cEnQLzynqImPpsVk7l4DJdANSYiJOM54ZJ56Ns7Z3bfmxDf0bANg7sdelVQkhhHDbm9/8Znbs2FH+84EPfIBXvOIVvO51r7PtHDIcR3hONBOloAtzlpcMhgcBGE/LZkox3cHYQQDW9K4pP7amZw1BX1Ay3UIIIQDYs2cPH//4x3nooYfw+ezLT0vQLTzHage4UHmJBN1iJivonprp7vB1sCKygiOJIy6tSgghhOUTj32C58aes/WYmwY38SeX/klFz83lcrztbW/j7//+71mzZs3Cv1AFKS8RnjOSLo2An2cjJUh5iTjdwdhB/MrPisiKaY+vjKyUoFsIIQR//ud/zjnnnMMtt9xi+7El0y08ZyIzAZzKaM/UF+pDocrPE8JyKH6IlT0ry51LLCsjK9k1usulVQkhhLBUmpF2wn333cddd93Fk086M7tBMt3Cc2KZGAC9od5Zf+73+ekN9UqmW5zmRPIES7uWnvb4isgKJjITJHNJF1YlhBDCbePj47z73e/mq1/9Kj09p0+7toME3cJzYtlS0B2cPegGkwWXmm4x03BqmCVdS057fGVkJQBHE0cbvSThMflini/t/BJf2fUVtNZuL0cIYZPPfe5zDA8Pc8cdd0xrG3jnnXfadg5Hy0uUUgeAOFAA8lrri5VSg8CdwFrgAPBbWutxZeZ5/xPwBiAFvEtr/WTpOO8E/qx02L/SWn/FyXWL5hbNRAl3hAn7w3M+ZzA8KKPgxTRFXWR4cv6g+0jiyLQe3kLM9MMXfsgnn/wkAEu7lnLtumtdXpEQwg4f/ehH+ehHP+roORqR6b5Ka32h1vri0vcfAX6utd4I/Lz0PcDrgY2lP+8HPgtQCtI/BlwGXAp8TCk1ezGvaAvRTHTO0hLLQFgy3WK68fQ4+WJ+1qB7WfcywJSfCDEXrTX/8vS/sGVoC4s6F3HvwXvdXpIQwkPcKC+5AbAy1V8Bbpzy+Fe18QjQr5RaDrwOuFdrPaa1HgfuBSS10MaimSh9ob55nzMQHpCabjHNcGoYYNagezA8SIfq4ERKgm4xt70TezmSOMKtZ9/Kq1a/igePPki2kHV7WUIIj3A66NbAT5VSTyil3l96bKnW+ljp78cBa1fTSuDQlN89XHpsrsdFm4pmo/PWc4Op6Y5mohR1sUGrEs1uvqC7w9fBUOdQ+TlCzOaRo48AcPmKy7lq9VUkc0keP/64y6sSojV4YY9EvWt0Oui+Qmu9DVM68kGl1Cun/lCb1dvyv7JS6v1Kqe1Kqe0nT56045CiScWyMfqCC2e6C7pAPBtv0KpEs7Oy2LN1L7EePzkp7x1ibk8NP8WqyCqWdS/j0mWXEu4I86sjv3J7WUJ4XjgcZnR0tKkDb601o6OjhMNz7ydbiKMbKbXWR0pfh5VS38XUZJ9QSi3XWh8rlY9YqaUjwOopv76q9NgR4FUzHr9vlnN9Hvg8wMUXX9y8/2qibtFMlHOHzp33OVMH5CxUiiLaw8jk/EOVFncu5qX4S41ckvCYnSM72bZ0GwBhf5gtQ1vYNSL93YWo16pVqzh8+DDNnjQNh8OsWrWq5t93LOhWSnUDPq11vPT31wIfB34AvBP429LX75d+5QfA7ymlvonZNBktBeY/Af73lM2TrwWc3V4qmlosE1swkB4MDQJm89y6vnWNWJZocqOTo/SF+gj4ArP+fEnXEraf2N7gVQmvOJk6yYnUCc5bdF75sc1Dm/nO3u9QKBbo8HW4uDrhFaOTo/QGewl0zP4+1K4CgQDr1rX+Z7WT5SVLgQeUUr8GHgP+U2t9DybYvkYptRd4Tel7gB8DLwL7gC8AHwDQWo8Bfwk8Xvrz8dJjog2l82nShXRFGykB6WAiysbSYwyFZ89ygwm6Y9kY6Xy6gasSXrF3Yi8AmwY3lR/bPLiZyfwkB+MH3VqW8JAHjjzA1d+6muu/ez37o/vdXo5wgWOZbq31i8AFszw+Clw9y+Ma+OAcx/oy8GW71yi8p5LBODClvCQj12fCGE2PzllaArC4azFgNlyu6V3TqGUJjzgQPQDA2t615cc29G8AYP/Eftb3rXdhVcIrtNZ8Zsdn6FAdjKXH+OLOL/LXV/y128sSDSYTKYWnLDQC3mIF3RPpCcfXJLxhdHJ03kz3os5FANJqUszqYOwgXf6u8usE4IzeMwDYH5OspZjf3om97BzZyYcv/jA3bLiBe/bfQyqXcntZosEk6BaeEs1GARbsXhLqCNHl75IASpQtlOkeDA+WnyfETAdjB1nbtxYzPNmIBCMs7lxczoILMZeHjz4MwKvXvJorV11Jtpjl6ZGnXV6VaDQJuoWnRDOloLuCjiS9od5yOYpob+l8mmQuOW+m2wq65UJNzOZA7EA5sz3V2r61HIgdaPyChKc8dPQh1vetZ1n3MrYu2YpP+dh+XDZutxsJuoWnVBV0ByXoFoYVSFuB9WzKQfekBN1iukwhw9HE0Wn13Ja1vWtlU5yYV6FY4Knhp7hs+WWAuUOyoX8Du0al3WS7kaBbeEqlGynBBOZWDbhob6OTpmRkvvKSYEeQSCDCeEY63ojpDsUOodGzZrpX96wmlo3JIC4xp4Pxg0zmJ9kytKX82FkDZ7FnfI+LqxJukKBbeEo0E8WnfHQHuhd8rmS6hcWq056vvARMtlsy3WKmY8ljAKyMrDztZ8sjywE4mjja0DUJ79gzZoLrqe0mNw5sZDg1XL57K9qDBN3CUxK5BJFABJ9a+KXbG+yVTLcAKst0QynolppuMcNwygxOXtK15LSfreheAcDx5PGGrkl4x/Pjz+NX/mltJc8aOAuAveN73VqWcIEE3cJTEtkEPcGeip4rmW5hsQLpSoJu6V4iZhqeNEH34s7Fp/1seXcp052UTLeY3f7oflb3ribYESw/trF/I4CUmLQZCbqFp8RzcSKBSEXP7Qv1kS6kyRayDq9KNLvR9CiRQIRQR2je5w2EB2SKqTjNcGqYwfDgrKO7hzqHCPgC5RIUIWY6ED29882SriV0+bs4GJNppu1Egm7hKfFsnEiwsqDb2mwp2W4xNjk2b+cSy2B4kPHMOEVdbMCqhFcMp4ZnLS0B8Ckfy7qXcSwhQbc4XaFY4KX4S6zrXTftcaUUZ/SewcG4BN3tRIJu4SmJbIKeQIXlJaWplbJRRUxkJugP9y/4vKHOIYq6KK8ZMc18QTeYum7JdIvZHE0cJVfMsbZv7Wk/O6P3DA5GJehuJxJ0C09J5BKS6RZVi2ajFbWZlAE5YjYLBd3LI8sl0y1mZQ1Omq3H+5reNRxNHiVXyDV2UcI1EnQLT4lnq6vpBqSDiSCWiUnQLWqSK+QYS4/NH3R3L+fk5EkJnsRpDsUPAaaf+0xre9dS1EUOJQ41elnCJRJ0C8/QWpPMJavqXgKS6RbmNVBJ0D0QHgAk6BannJw8CcDSrqVzPmd593I0muMpaRsopjuWPEbQF5y1c9Ka3jUAvBR7qdHLEi6RoFt4xmR+koIuVF1eIvW57a2oi8Sz8fKdj/lIplvMZPXonq1doGVptwnIpVe3mOlI4ggrIitmnS1xRo/paCIdTNqHBN3CM6wxy5WWl1gZccl0t7d4No5GV5Tp7g/1o1ASdIuyE6kTwOyDcSxWQC493sVMxxLHyr3cZ+oL9dHp75SLtTYiQbfwjEQuAVBxeUmHr4OeQI8E3W3O+ve3utnMx+/z0x/ql1HwoszKdM9XXmIF3SOpkYasSXjH0eRRVkRWzPozpRTLupeVL+xE65OgW3hGtZluMAG69XuiPVlBd19w4fISkFHwYrrh1DBBX3De8qTeUC9+n5+RSQm6xSmT+UnG0mNzBt0Ay7qWSaa7jUjQLTyj2ky39VzJdLc3q6a/kkw3wGCnBN3iFKtdoFJqzuf4lI+h8JAE3WIaq43kvEF3twTd7USCbuEZiawJuiXTLapRLi+poKYbYCA0IEG3KFuoR7dlcediRtISdItTjiaPAmZ40lyWdS9jZHJE2k22CQm6hWfEc6Xykgq7l4AE3eJUn/ZKupeAlJeI6SoNuhd1LpKabjGNlcGeayMlmKBboxmeHG7UsoSLJOgWnmFluqstL5Ggu71Vm+keDA8Sy8bIF/NOLkt4gNa64qB7qFPKS8R01uthth7dFmuDrpSYtAcJuoVnxLNxfMpHl7+r4t/pDfZK0N3mYpkYQV+QsD9c0fOtjLj0dxfJXJJ0IT1vj27Los5FjGfGKRQLDViZ8ILRyVF6g70EO4JzPmdZ9zJAgu52IUG38Ix4Nk53oHveDU0z9QR7SOQS8kHYxmLZWMWbKMH06gYJugWMp8eBU5NK57O4czFFXZTSJFE2mh6dN8sNEnS3Gwm6hWckcomKSwQsVimK1flEtJ9YNlZxu0A4FXRPZCbqP7nWsP9XcN8nYOe3IZuq/5iiYcYzlQfdizoXAUiJiSgbnRwtvy7m0h3opifQI0F3m/C7vQAhKpXIJqrqXAKngu5Kx4CL1hPLVJfp7gub10ndQXexCD/6fXjyq6ceiyyDmz4P66+s79iiIcqZ7tDCQbeV0ZSgW1hGJkfYMrRlwect7V4qA3LahGS6hWckcgm6A91V/c7UoNsWWttzHNEw0Wy0qjsktpWX/OxjJuC+7A74H/vhHd+Hzn74+s2w72f1HVs0RDWZ7sVdpamUdgbdw7vhqX+Hlx6VuyQeNJpeONMN5i7J6ORoA1Yk3CZBt/CMZC5ZddBtBVt1Bd1awyOfhX+6AP7XAPzNanjo/5pMpmh6sUysqrsctpSXHHgQHvoUXPRuuPZvoGsQ1r8K3nMPLD4b7nwHHHu69uOLhqimpnsobHOm+5m74HNXwPc/CF9+LXzqQnjux/YcWzhuMj9JMpdcsKYbSj3e5Q5JW5CgW3hGKp9qfKZba7j3f8I9H4HelfCKP4RVF8NP/ww+ezmceLa244qGiWVjVWW6u/xd+H3++oLu+/4GIktNwD1142/nALztWybj/c3bICWb7prZeGacoC9YUceksD9MT6DHnuDpme/AXe+DVZfCu++B3/oqRJbAN98KD/9z/ccXjrMy19bF2HwWdS5iZHIELXdSW54E3cIzasl0W0F3zaPgd37LZCwveR+86z/h6v8Jt38H3vJvMDkOX7sRRl+o7djCcflivuoNuEop+kP9tZeXHHkSDvwKXv4hCHSe/vPe5XDL1yBxHL7z21Ky1MTG0+P0h/sr7pg01DnEaLrOMoHoEfj+75mA+7ZvwRmXw5Yb4H0/h81vgp/8qbnTJppaJT26LYs6F5EtZmv/nJppbD98463wD+fAP18GO/4DpINXU5CgW3hGMpekK1B5j26oM9NdyMHP/gJWbIPX/92pjKVScM6bTfCdT8NXb4S4bIJpRta/ezUbKcGUmNSc6X7iXyHQBVtvm/s5Ky+C1/1vU9v92BdqO49w3ER6gsHwYMXPHwwPlktSavaLvwJdgJv+BUJTNo77Q3Dzv5r3np/+mZSaNDnr4qvSmm7Anrru+HH4t+tMidsZl4PPD9+7Az7/Krkz2wQk6BaeUNRFJvOTVWe6I4EIClUeIV+V534EsSNw5Z+Ab5b/qyw7F97+PUiNwDdukY1OTajaaZSW3mBvbUF3OmpaA553M4QXqCO/5H2w8bVw75/D8HPVn0s4biwzVq7xr8RAeKC+Pt2xY+bu2kXvgoG1p/+8ww83fg6WXwDf/V0Ye7H2cwlHVVteAjbsBygWTdna5AS860fwm1+E333AXKzFj5k7s0d31HcOURcJuoUnTOYnAaqaRgngUz4igUhtme7Hvgj9a2DjNXM/Z+U2+M0vmTeyH/w3KRVoMrGMCbqrbRdZc3nJ7h9BLgXb3rXwc5WCN30agt3wnfdBPlv9+YSjJtITFW2itNQddD/+BSjm4bLfmfs5gbCp8VbKbMiV101TsoLuwc6F75Qs6jJB98nJk/WddM89cGQ7vOHvYPn55jGl4Nyb4B0/gI6gCbxP7qnvPKJmEnQLT0jmkgBVZ7rBlJhUHXRHD8PBB2DbO8DXMf9zN70Brv5zeObbpr2XaBrRrAmcq81094drDLr3/gR6lpuLsUr0LDWB9/Gd8Mu/qv58wlHj6fGKenRbBkIDRDNRirqGzka5NGz/Mmy6DgbXL3CitXDjZ+HETnj409WfSzhuZHKE/lA/AV9gwefakunWGh74B5MoOv+W03++dIvJfisf3Hk7ZGRgnBsk6BaeYAXd1dZ0gwm6q96gsvuH5uuWN1f2/Jf/Aax9BdzzUZh4qbpzCcdYme5qa7r7Qn1MZCaq6yZQyMELvzR3RirceAeYi7aL3gUPfspMrxRNIVfMEc/Fq8p0D4YHKehC+XVXlT33mM3ZF7+nsudvegNsuh7u/z8wsq/68wlHVdqjG6An0EOoI1RfTffBh+Dw4/Ab/92UIc1mYC3c/GUY3Qs//qPazyVqJkG38IRUztRLd/sblOl+7j9hyTmwaENlz/f54IZ/BjR87wNQyFe9TmG/Wmu6+0P95Iq5cllTRV56GDIx2Pi6qs4FmE2Vg+tNT+Z8pvrfF7abSJua/qoy3aUAfSxTQ4nJru+YiaXrX1X577z+E2aD5X/+oZS2NZmRyZGK6rnBdExa1LmovvKShz4FXYtg6+3zP2/9q+AVH4Zff0OGdLlAgm7hCQ0tL8ml4dBjcOZV1Z1o4Ax4/f8x7eIe+qfqflc4wgq6+4LV13RDlQNy9v0cfIHqgiZLsNvUYU4chMe/WP3vC9tZ0yj7w5VvpLQ6nYxNVhl0Fwvw4n3mLslC5WxT9a2Cq/4U9t9vMuWiaUxkJqp67Qx1DtVeXhI/Dnt/Che9c/Y2pTO94o9gaCP86A8gm6ztnKImEnQLT2ho0H1kOxQysPaKqs/F1tvMLd//+nvTiUC4Kp6NE+4IE+hYuK5yKmvjZVVB96HHTFeJqW3eqrHhajjz1aZcYLLOtnOiblbrv2pbBsKpgL1iR58ynW+qvdAHU44ytAHu/ZjcYWsiE5mJqjrf1DWVcue3QRfh/Fsre34gDG/6lCmFvP8TtZ1T1ESCbuEJyXztNd29wd7qgu4DDwIK1lxe9bkAeO1fQjEHP/tYbb8vbBPPxokEqw+Cq850F3ImcFp9adXnmuaaj5vg61f/UN9xRN3Kme4qWwYC1ffqfuEXgIJ1r6ru9wA6AvCav4CR5+Gpr1X/+8J2haKp66+ma9JQeKj2mu7nfwxLz4PFZ1X+O2f8BlzwVnj0X0ymXDSEBN3CE8o13TVmuhO5BIVKJ3IdfBCWnWdGdddicL3ZzPL0naUAXrglkUsQCdQedFfcweT4TshPwqpLqj7XNMvOO/VBKBtyXWUFzlW1DCzVf1fdNvCFX5q7JN2V1QCfZtP1sPpl8Mv/LV0pmkA8G0ejq7pgG+wcZCIzUfnnlCUdg0OPmjtl1XrlH5uEwYOfqv53RU0k6BaeUG95CZgAbEHFohnjXW/G8hUfhp4V8POPywYnF9UadFddXnLoMfO13tcNwKv/zHy9T277usm64KomWxnoCNAT6Kku052Jw+HHTGlRrZSC1/4VJIdlRHwTsN43qrpLEhpAo6sfynXgV6a3+4bXVPd7AENnmvaC278MieHqf19UTYJu4QlW0N3pr2CTyAxVjYIf3QvZuBnTXY9gF7zyw3DokdKtY+GGRDZRU3mJtfGy4tZvR580nSf6VlV9rtNPvhIuea/pLjD6Qv3HEzWJZWN0+bsq6rM81UB4oLqg+8ADJmiqpZ57qtWXwJYbTN/udA095oVtagm6rSE6VZcm7f8v8HfC6suq+z3LK//I7GF6UDb/N4IE3cITkrkkXf4ufKr6l2xVQffh7eZrvUE3wNa3Q99qc8tXst2uSGQT5X//agQ6AnT5u8rDdRZ0dAesuLDq88zp5R8y0+Pu+1v7jimqEs1Eq+7vDjVMpXzhFxDoqj1omurlH4JsAp78av3HEjWz7pJUE3Rb7QWrLk068KC54PIHq/u98onPhPN+y2S7U3VMUxUVkaBbeEIqn6qptARO9WiuKOg+8gQEe0w7pXr5QyaLcGS7aeckGi6ei9f8uukL9VVW051JwMgeWG5j0N2z1IwC3/ktGN5t33FFxWLZWNX93aEUdFfTp/uFX5pOSf5Q1ec6zcptsO5KeOAfTdmKcEWt5SVQZdA9OQ4nnjGD2erx8v8OuRQ88a/1HUcsSIJu4QnJXLLm4KmqTPeRJ2DlVjPsxg4X3gb9Z8B9fyPZbhcksrXVdIMJuisqLznxDKDtzXQDvPz3Tf/uX/29vccVFYllagu6h8JDlZcIxI6Zkrb1r6r6PHN6zccgNQqPfNa+Y4qqWEF3X7jy/QBWeUlVQffBhwENZ7y8muWdbuk5Zk/Bo5+HfLa+Y4l5SdAtPCGZS9bULhBOBd0LjoLPZ+HELlixtabzzKojAFf8gWknd+AB+44rFlQoFkjlUzWVl4Cp666ovOToDvPVzkw3QNeg6cH8zF1S2+2CejLdE+kJdCUX2UefMl/r7Xoz1cqLTDeTBz8FiTomHIqaRTNROlQHPYHK33v6gn0oVHVB96FHzEAuO8qyA0dmAAAgAElEQVQhL/8gJI6b9xvhGAm6hSekcrWXl1Sc6R57wfTXXnpuTeeZ0wW3QmSpDCFoMKu3e62Z7t5Qb2XlJcd2mH/f3uU1nWdel/+e+VB98JP2H1vMK5atrs+yZSA0QF7nF77IBxN0K5/97zlXf8y0sPzlX9t7XFGRicwEfaE+lFIV/06Hr6P6TbiHt8Py882wm3qdeTUs3gwP/7PclXWQBN3CE5K5JN3+2oLuSCCCQhHPLRB0W7WzizfVdJ45BTrNBqcDvzLtCEVDJLKmRWTNme5Ka7qP7rA/y23pWQrb3gE7vgHRw86cQ8wqno3XnOmGCttNHtthAp1gbXfx5rT4LNj2Tnjq3+V14wIr6K7WQKiKTbiFvPk8sesuiVIm231ip3TccpAE3cIT6ikv8SkfkUBk4Uz38G6TdVpUxVSvSm29HQLd8PiX7D+2mJX1713zRspSecm8ZQL5rNlEuey8ms5RkZf/PqBlgEUDZQtZJvOTNXUvqXiaqdYm0233XgDLy3/fjAZ/6NPOHF/MKZqJVrWJ0jLYOVh50D28y9zNWHlx1eeZ0/m/ZeZLyERcx0jQLTwhlU/VHHSDyXYuGHSf3G2mSdpxq26mcK95Q3vm29KWqUGsYUi19OkGU16SL+aZzE/O/aTx/aALzlyoWfpXw/m3wpNfkQEWDWKVhtSV6U4vEHTHjkLypHN3SQbOMINPnvg3SI44cw4xq1oz3YPhKoLuY0+bryu3VX2eOflD8Bu/BwcfgJcete+4okyCbuEJqVyq5vISqDDoHn7O/tKSqS55H+TTsOM/nDuHKCuXl1SxmWmq8oCc+WpzR/aar4s21HSOil3xIchnTL2lcJzVtaaWoNvKcI5nFqjNtcrZlp5T9TkqdsWHzHvOI59x7hziNBOZiZoy3VWVlxx/GoIRGFhX9Xnmte2d0DkID0i22wkSdIumly/mSRfSNZcJQAVBdy5tNlIu2VLzORa07FxzK/DJr8pGlQaoN9NtZarmrese2WO+2tHXfT6LNsI5N5rypMkqJ9aJqpUz3fWUlyyU6R5+1nxdsrnqc1Rs8dlmSuUjn4P4CefOI6app7wklo2RK+YWfvLxnWYDrl3tbS2hCLzsDthzjzmHsJUE3aLppfIpAGfLS0b3mfrHJQ5musFsiht5Hg4/7ux5hC0bKWGBoHt0nxn/Hq4+OKvaKz4M2Tg8/kXnz9XmrKDbuttRje5AN36fv7JMd2SpaQ3ppKv/p6n9lWx3Q0zmJ8kUMrWVl4TMa2HBC7ZiEY4/49xekkt/22TRpbbbdhJ0i6aXypmg29FM99iL5uuQw2UC595kNlTKmGbHWd1q6p1kOm+v7pG9JgvdCMvOM229ZICF46wLrVoy3UopBkIDC2+kPLnb2Sy3ZehM2GLdJamgo4qoSy0j4C0VD8iZOGAuwJ0KujsH4NL3w67vmtkVwjaOB91KqQ6l1FNKqR+Vvl+nlHpUKbVPKXWnUipYejxU+n5f6edrpxzjo6XHn1dKvc7pNYvmksyZfsv1BN29wd7Kgm676+NmCvXAOW82b2aZhLPnanOJbAK/8hPuqG1j7IKZbq1NeYnTF2pTXfa7kByG537UuHO2oXo2UgL0h/vnz1YWi2YPiZPlbFNd8SETpMmYb8fVMgLeUvEoeGsT5fLzqz5HxX7jv5nPq1/8lXPnaEONyHT/PrB7yvefAP5Ra70BGAfeW3r8vcB46fF/LD0PpdQW4FbgHOBa4DNKqY4GrFs0CTuC7p5gD4lcgqIuzv6EsReha1FjygS2vR2yCRN4C8ckcgkiwUhVAyqmWjDoTo1CesLZziUzbbga+tfA9i837pxtyNpIWWtp0oKZ7okDpuSjEZlugOUXwPqrzGh4uUviqPII+FrKSyrNdB/fCarD9Hh3StegaTv5/I9L4+aFHRwNupVSq4DrgC+WvlfAq4Fvl57yFeDG0t9vKH1P6edXl55/A/BNrXVGa70f2Adc6uS6RXOxgu4uf3013Rpd3lx3mrEXTbvARlh9mQnUpMTEUYlcouZplADhjjBBX3Du8pJy55IGlZcA+DrgonebQUsn9zTuvG0mlo2Va7Nr0R/qn7+m2+pc0qhMN5jNcYkTZoOccEw9me6h8BDAwlMpj+80nbacaG871cs+YPas/OxjsvnfJk5nuj8J/A/ASi8OARNa63zp+8PAytLfVwKHAEo/j5aeX358lt8pU0q9Xym1XSm1/eTJk3b/dwgX2VXTDfOMgh8/0LigWynY+nY4/BicfL4x52xDiWyi5kwlmNrc3lBvOet5mnLnkgaWl4B57fj88JRctDkllo3VXFoCplf3vOUlVueSxWfXfI6qbXgN9K40/d6FY6Lp2mu6e4I9dKiOhTPdJ3Y522rSEuyCK/8HHHpUplTaxLGgWyl1PTCstX7CqXNMpbX+vNb6Yq31xYsXL27EKUWDJPP2lJfAHEF3Lm1GJQ86XM891QVvNYGTZLsdE8/G63rNgOleMWef7tG90BEy5R6NFFkMZ10Lv/6mGQUtbBfLxGoqD7D0hcw000KxMPsTRl8wk/9CtV8UVs3XYSbj7vs5TLzUuPO2mXoy3T7lYyC8QK/ubBJih2Fxg8ratt5uLtb+6/9rzPlanJOZ7pcDb1JKHQC+iSkr+SegXyll3bNbBRwp/f0IsBqg9PM+YHTq47P8jmgD5fKSOloGWlmrWYPuiYOAblymG0zgdPYbzKCcXLpx520jVk13PfpCfXPXdI/sM50hfC5sMbngVjPNcP/9jT93G4hmo/VlukMDFHVx7jtrjSxnm2rr7ebrU19v/LnbxERmgi5/F4GOQE2/v2DQPfqC+dqoO2z+kKntfukh2P+rxpyzhTkWdGutP6q1XqW1XovZCPkLrfVtwC+Bm0tPeyfw/dLff1D6ntLPf6G11qXHby11N1kHbAQec2rdovnYtZES5pguaHUuafSH4MXvgckxePb7Cz9XVC2RTdQ8jdLSG+qdJ+hucOeSqTZcA6Fe2PnthZ8rqhbL1Fde0h9eYCrl6Asw5ELQ3b8Gznw1PPXvMFcWXtRlIjPBQHig5t9fcBT8aGkvidMDuaba9g5T233/Jxp3zhblRp/uPwH+UCm1D1Oz/aXS418ChkqP/yHwEQCt9S7g/wHPAvcAH9Ray7tFG0nlUviUr+bWb7BAecnYfvPV6XaBM627EgbWSo2lQ2zJdAf7Zt9IWcibfQBuBd2BMGx+o2kdKHdKbBfLxmrq0W2xWr/NesGWjkJqxJ1MN5gAKnZYanQdMpGZqKs0aTA0OP9GypF9gDJ32Rol0AmXf9Bs4D7SkIrhltWQoFtrfZ/W+vrS31/UWl+qtd6gtX6L1jpTejxd+n5D6ecvTvn9v9Zan6m1PltrfXcj1iyaRzKXpNvfXXPrN1go6H4RQn3OT4abyeczH4AHHzzVCUPYQmtNMpesq3sJzFNekjgOutD4eu6pzv1NyMRg70/dW0OLqncjZTnTPVvwVL6z1sCgaaqz32Daoz7xb+6cv8XVOgLeMti5UKZ7H/StNoFwI130LvM5+eCnGnveFiMTKUXTS+aSddVzA0QCERRq7qB7cJ3pKtJoF95m+q1KtttWk/lJCrpgS033ZH6SbGFGb+OJUkOlvtWn/1KjrLsSuhfDM1JiYqdMIUOmkKm7phuYvVe3W+VsFn8QLnybaR0YP+HOGlpY3Znu8CCJXOL09xzL6N7GZrkt4V645D2w+wen6spF1SToFk0vlU/V3YXCp3xEApG5N1IOnFHX8WvWswzOfn2pE0XOnTW0IOvfue5Md9B8eJ62FyB62HztdzHo7vCb6aZ7fgLpOTqsiKpZLSLrCZysTOesNd2jLgfdYDZUFvPw7PfcW0OLmshM1JXpturBZ812a23KSxo5G2Cqy37XdN165DPunL8FSNAtml4qV3/QDabE5LTgSWsTQLmZsdx6u+lEIWUCtrGGINXTpxvmmUoZLbVc61tV1/Hrdu7NkE+bqXHCFta/dT2Z7k5/J0FfcPZe3WMvmnaBwfru3tVl8dlmmqFs4rZVoVggno3XV14SnmcqZeIEZOON3UQ5Vc8yU9b26ztN60JRNQm6RdNL5pJ1TaO09AR7Ts90p0ZN0OJm0L3hGogslTZeNrIr020FXrNmujsHIVj/xWBdVl9q6sp3fsvddbQQ69+6nqBbKUV/eI6plGMvuJvltpxzIxx8COLH3V5Jy7Ded+otL4E5gu7RfearG+Ullm3vNIH/LrlLUgsJukXTS+brr+mGOYLuqFWb62LGssMP599iaiwTw+6to4VYbSbtqOmG2TLdh93PcoPZh7DlRnjxftMVQ9StHHTX0b0ETF33nDXdjRzENZctNwIadv/Q7ZW0DKvTUT0XbFbQPesmXGvDvVvlJQBrXmYy7bIPqSYSdIumZ2d5yelBd6k21+0AauvtphvG03e6u44WEc/ZlOkuBV6nBd0Th9y9OzLVpuuhmIO997q9kpZgR6YbTAeT08pLsklTSjawtq5j22LJJli8CXZ91+2VtAw79gPMW9M9ug/8Yeh18fNKKdN169CjcPJ599bhURJ0i6aXzCUbEHS7HEAtPhtWXWKGVmjt7lpaQCLrYE231uYOiZubKKdadYkpT5KMpS2swKneoHvWTHd5A66LrSan2iIlJnay44KtJ9CD3+efPege2WtaTfpcDt0uuNVsqHzqa+6uw4Mk6BZNz46WgWDeCGcNuv2dje/RPZutt8PJ5+DIk26vxPOsoLveTHckEMGnfNMH5KSjkE24f3fE4vOZ3sv7fiaDcmxgBU71XrD1h2ap6Z4obcBtlqD7nFKJybM/cHslLcGOTbhKqbkH5Izug0UuDeSaKrIEzrrWbKiUyaZVkaBbNLVcIUeumKPbb0+mO5FLUNTFUw9GD5ngyY0e3TOdc5O5AJDsQd3iuTgKVffFmk/56A3OGAUfbYIe3TNtut5cCOy/3+2VeF40E6Un0EOHr6Ou4wyEB4hlYuSL+VMPWkF3s7x2lmw2XUykxMQWtu0HCA+cnukuFszrp9GTk+dy3s2QHDZ3SkTFJOgWTc3aEGdXeYlGl9vJAc2zIQ7M8IEtN8Azd0E25fZqPM0qSfKp+t/i+kJ95ZIDoHlKkqZa90oI9UqJiQ3qHQFv6Q/1o9HTO99MvAS+gGm91izOeTO89DDEjrq9Es+zLs6t/v61GgzPkumOHzd7N5rlLsnG15okkfR6r4oE3aKpJfP2Bt0wYxR8MwXdAFtvM6O9n/uR2yvxtHg2XnfnEktfsG96eclEE3S8mckfhI3XwPN3y+3eOtU7At5i9Wqetpkyegj6VkKdWXRbnXsTpsREenbXK5aN0envJNARqOs4s2a6y6VJLg1ymynYbd5znv2BvOdUQYJu0dSsTLddLQNhStCdz5hhA82UsTzjCvOm+tS/u70ST0tkE3XXc1t6Qj0zMt2HoCNkRrA3k03XQ2rEdBUQNYtlbAq6w6Wge+pmyolDzZOptCzaCEvPg2e+4/ZKPM+uC7bB8OA8QXcTvX7OudGUmLz0sNsr8QwJukVTS+VMmYUdmW7rzbAcdMeOmK/NlLH0+eDC20xt7vhBt1fjWclc0raguy/YNz1wih4uZSub7O1z4zXQEYTn/tPtlXiaXeUlAyHT+m3aZsqJl6CviYImy5Yb4PBj0sWkTtFM1JbXzmB4kFQ+RTo/ZWN0OehuoiTRxteZFoYyKKdiTfapIcR0dtd0w5TpgtFS0N27ou5j2+rCtwIKdvyH2yvxrEQuYVt5SX+of3p5SbOVJFlCPbD+VaauW9pO1syubKXVb7lcXpLPlu6sNeFrZ9N15uvzd7u7Do+LZWN113PDHANyJg6a1qCBzrqPb5tQxFzs75YSk0pJ0C2aWrm8xKYx8DAl0504Yb42W9DdvwbWX2mC7mJx4eeL09ia6Q71Ec/GKVgfKvFj0LvSlmPbbtP15sP5xDNur8STtNa2ZSutHu/lTHf8GKDNXZJms2SzGdjz/I/dXomn2X3BNpaZUmIy8VJzlZZYttxoPktfesTtlXiCBN2iqTmR6S4H3fFj5mtkad3Htt3Wt0P0JTjwX26vxJMSuYQtrxk4FTzFs3GTQY4fb87XDMDZrweUlJjUKF1IkyvmbAmcOv2ddPo7T2W6rXK2ZrxgUwrOvg5evA8y8QWfLmZnZ3kJzMx0N2nQfVapxEQ24lZEgm7R1FJ5+2q6I4EICjUl6D5u3izC9d8OtN2m6yDUB0993e2VeJKdmW4rAItmo5AaM227epbbcmzbRZbAmpfBbul+Uwu7plFapg3IiTZx0A3mPaeQhX0/d3slnhXPxm0tLylvpiwWTFlbMwbdoR7Y8JpSiYncmV2IBN2iqdmZ6fYpH5FAZHp5Sc+y5hiMM1Og0wwf2P0DmJxY+PmiLF/MM5mfpDtob6Y7momeujvS06SZbjDB04mdMH7A7ZV4jl3DTSz9of5Tm3DLG7ebNOhefRl0DspdkhplC1km85P2bMItlZeUM93N1qN7pi03mvdG6Zy0IAm6RVNL5pL4fX6CHUFbjtcT7Dm1kTJ+HCJNNKRipq23Qz4Nu6SVVzWsCzW7Mt3lfsuZiVPdHZo10w2mrhskeKpBOei2MdM9LegO9ZrMYDPq8JvR3nt/AoWc26vxHDtfO5FAhIAvwGh61DzQjO0Cpzr7WtM5SYZzLUiCbtHUUrmUbbW5YDJY5Z7L8ePNnbFcsRWWbJGe3VWyO+ielulOWEF3E1+sDa6DpedKiUkNrPcG69+8Xv3h/ik13Uebt7TEsuk6SEdltHcNrDuo1t6heiilGAgPnMp0T5TaxzbLYJyZrM5Jz0nnpIVI0C2aWiqfsqVziWXadMH48ebOWCplst1HnoDh3W6vxjMSuQRgT0kSnBrpHMvGpmy+beKgG0zwdOgRSJx0eyWeYr032JXpHggNTKnpPty8pSWWM68y+1zkLknV7Ay6AYbCQ6dquq1MdzO2m7Rsut6s8/hOt1fS1CToFk0tmUs6k+nOJiEbb94uFJbzbwGfX7LdVbA70219iJqa7hMQ7odA2JZjO2bT9aCLsEf6LlfD9o2U4X7i2Ti5Ys6UlzRbe9KZgt2w/irTOlAyllWxgm7bLthmZrqbrUf3TGe/AZQPnpM7bPORoFs0tWQuacsIeEtvsNdks+IeKBMA6F5k6iyfvlPqLCuUyJYy3TZtpOzwddAT7Dm1kbLZXzMAy84zkw8lY1mVWDaGQtmWrbSmUkaTJyF5EnqbOFNp2XQdRA9JxrJKdu8HGAgPTMl0H4K+JppEOZvIYlhzuZS1LUCCbtHUUrkU3X77M906ZnWh8EAAtfV284G996dur8QT7M50w5QNcfHj3njNKAWbr4cXfil9l6sQy8aIBCP4lD0fjf3h0ibcsb3mgWYvLwFzkS+93qtmd3nJYHjwVNAdO+qN186m62F4F4y+4PZKmpYE3aKp2V1e0hfsI1vMko4fMg80e20uwIZrzK1FKTGpiN013TBlL0DihDdeM1Dqu5yBfT9zeyWeYddEQUu58834fvNAs5eXQClj+TJ4XoLualiZbjuD7sn8JJO5lDc24QJsfqP5KoNy5iRBt2hqybzN5SWlHqqxiVLQ7YWsZYff1Hbv+YmpKRbzciLT3RfqI5aJeifTDeZWb9eQZCyrEMvEbOtcAqfKSyZipe4TXigvAVOfe3wnjB90eyWeEc/GCfgChDpCthyvPJUy+hLkkt64YOtfDSsvMvMlxKwk6BZNzYlMN0A0ftj0Fe0csO3Yjtp6O+iCqe0W87KCbrsv1qLp8eaeRjmTr8OMhd/zU8hn3V6NJ0SzUUcy3eOJo+YBLwROYO6SADwvG3ErFc/G6Q32omwatmZdsI1bpUleee1sfhMcfepUxxUxjQTdomlprR3p0w0QSw6bMoFmnEY5m8Vnw6pLYMfXpavAAhK5BN2BbtvqcqFUXpIptZps5t7uM226HjJROPArt1fiCbGMzeUlVk138iSE+iBk390XRw2dCYs3SYlJFeLZuG2lJQCDnaVR8BMHzANeKC8B2PIm81UG5cxKgm7RtDKFDAVdcCbTnR4znUG8ZOvtcPI507dbzMnuuyNggqdYLkkBvJPpBjOwItAtbbwqFMvGbBsBDxDqCNHl72I8M+GdsiTL2W+AAw9CasztlXiC3fsBBkOloDtWyhh7JdM9uB6WngfPSonJbCToFk2rXCZg43CccqY7G/Ve0H3OTeDvlA2VC0hkE7bWc4O5WNNoEj5f8/d2nyrQCRuuhud+DMWi26tpalpr2wMnMK3fJnIJiCyx9biO23SdKWnbe6/bK/EEuzPdA+FSeUnyBKC8s4EbTOekQ49CcsTtlTQdCbpF00rlUoC9XSisD9RYNmE2mXlJuBe23ADP3AXZlNuraVrJXNL+oNsaBe/zeS9juflNZnz9oUfdXklTm8xPki/mbQ+6+0P9jBfS3rpYA1ixzQR6cpekInYH3d2BboK+IGOTI+aCzR+07diOO+taQEub21lI0C2aVjJvMt12Bt2RQIQO1UE0P+m9oBtg622QickH4Tysmm47lYPuzt7mngo3m7OvNaO9n7nL7ZU0Navlm53dS8AE3VGd816m2+czG3H3/RxyabdX0/TsvkuilDIDcrJR75SWWJZfAD0rzGRTMY0E3aJpOdGFQilFTyBCTBW9V14CcMYV0H8GPPU1t1fStJK5JJGgvZlu68M02u3BC7VQD5z1Onj2e1DIu72apmVtlLU90x2IMK6094JuMCUmuSTs/y+3V9LUtNa2Z7qhNCAnl/TOJkqLUuZif98v5IJtBgm6RdOygm7bs5aBbmI+nzcz3T4fXHib+RCUHrqzcjLTPdFpb0DWMOfebKaaHpDgaS7lMd42bqQEGPAFmejo8F55CcC6V0IwInfWFpAupMkVc44E3ePFjPcy3WA24uaSsP9+t1fSVCToFk2rXNNt4xh4gN6OsKnN7fJgphvgwrcCCnb8h9sraUrJrP013Va/5ahXWr7NtPEaCPZIick8ykG33ZlufCR8PnJdg7YetyH8IdjwGthzj2zEnYfdI+Atg8EexhXe6phkWfdK0yZTuphMI0G3aFqpvAm67SwvAej1BYl1eDTTDdC/BtZfaYJu+SCcRmvtSKa7pxTEx4JhW4/bMIFOUyqw+4eQz7i9mqYUyzgTdA8UTV/9iZC972MNs+l6SJyAw4+5vZKmZQXdtr92VICxDp/3ykvAXLCd/Xpzl6SQc3s1TUOCbtG0nCov6aXDZLq9WNNt2fp2iL4k5QIzTOYn0WjbM93+TJyeQpFoh9/W4zbUeTdDOmo2xonTOLaRMm8CjnEvdZ+YSjbiLsipTPeAhkmfj5QX95IAnHMjpCfgRSkxsUjQLZqWExspAfo03q3ptmy6zty6k57d0yRyCQC6g/ZeqJE8SW+xSNTnkQmms1n/KugclOBpDrFsDJ/y2X6RP5A1G8miXn3pWBtxd31XNuLOwanSpKF8AYBxr94lOfPVEO6DZ77t9kqahgTdommlcimCviABX8DW4/YWC8R8Poohe7MSDRXoNJnL3T+EyQm3V9M0ykG3zfsASJ6kr1hgQns46OgImD7vz/8YMgm3V9N0opkoPcEefMrej8W+0v/W46XAzJOsjbiyKW5WVtBte6Y7NwnAeCBk63Ebxh+CzW+E3T+C0n9Lu5OgWzQtJ8Z5A/Tlc2ilSJT6gHvW1tshn5YswhTJrPk3tbtlIIlh+gtFYsWsvcdttPNvgVxKulHMwolplAADKdOKcCLj4Yvjja+FUK/cJZmDYxspJ80F25iXP6vOvRmycdjzE7dX0hQk6BZNK5lP2l5aAtCbNRvJrL68nrViKyw9F574Cmjt9mqaQjxnPvzsrukmOUJfsUi04PGes2teBgNr4dffcHslTcepoLs/OQrAeHrc9mM3TCBcylj+UDKWs3CspjtlXjNj6TFbj9tQ614J3Utg57fcXklTkKBbNK1ULuVMpruUDY15+XYvmAEEF78bjj8NR55wezVNwdoHYHum26rpznm8LEMpuOCtZmNT9Ijbq2kq8UzckaA7kDhJhA5vZ7oBzv8tMw33+bvdXknTiWfjhDvCBDvs3Sw7FB8GPH7B5uuAc28yI+FTHr54sIkE3aJpORV096ZNVsLzmW4w5QKBbnji39xeSVNIZE1QbH+me5g+X5hYNkZRe7xN4/m3ABqevtPtlTSVWDZme+cStIbkMP0dYcYzHg6cANa+wvSLfvr/ub2SphPPOnPB1hk7TgiftzPdABe+DQpZKU9Cgm7RxJK5JF1++8tL+lIm4+T5TDeYzgLn3gTPfAcycbdX47ryRkq7L9aSI/QFuinqYvlWsmcNroM1l8OOr0tZ0hSOlJekJ6CQZSDQzUTa45luXwec9xbYdy8kTrq9mqYSy8ZsLy0hl0alRhjoCHs/6F52vimFlIFulQXdSqmXK6W6S3+/XSn1D0qpM5xdmmh3jtR0F/L0TpoMtzUMw/O2vdOM25UsQjnotj/TfZKB0nhwz5cJAFz0LhjdB/ulzzuYoUrRTNT2EfAkTHlAf7CvNV43F94GxTw8/U23V9JUHAm648cAGAz2eru8BExZ24Vvg6NPwvBut1fjqkoz3Z8FUkqpC4APAy8AX3VsVULgUPeSyTF6S1McWyLTDbDqYlh0FvxaPggT2QSd/k46fB02H3iY/tAA4PH6SsuWG03P7se/4PZKmkIqn6KgC/ZnuhMnABgID7ZG0L1kE6y6BJ78mtwlmSKejdsfdMeOAjAQHvB+phvgvN8Cn7/tZ0tUGnTntdYauAH4tNb6nwEPNzkWXjCZm3SkTCCsNSHlb42abji1Oe6lh2HsRbdX46pkLklPwIG3puQIA11LgBbJdAfCsO3t8NyPZUMlzo2AtzLdfV2LW+NiDcw03JHn4fDjbq+kaTgZdA91LWmN105kMZx1rUkO5T3eerUOlQbdcaXURwMjuTIAACAASURBVIG3A/+plPIB9k4sEWIKrbUpL7G7pjtl2nf1BbpbJ+gG01kABb9u781x8Wzc/mmUuUnIxhnoXga0SKYb4OL3gC7KJlymTBS0vbyklOmOLCeVT5EpZOw9vhvOvcls3n5SbnZbHNlImTgOmNdOS2S6wZS1pUbMgK42VWnQfQuQAd6jtT4OrAL+zrFVibaXLqQp6qL9me7UCGAyWi0VdPetMv1Qf/0NKHq8u0YdkrmkI/XcAAM9K4EWyXSD6de98bXw5FfaOvMEp4LuvqDN3UsSw9ARpD+yHMD7mynBbN4+581mLLxMNkVr7UymO34c/GEGu5eRLqRJ5VL2Ht8NZ74aeleZ95w2VVHQXQq07wKsWaQjwHedWpQQVr9l2zdSJk3Q3TI1llNdeBtMHDRlJm0qkUs4FnR39q4k6At6v/XbVJe8z2Rjn/uh2ytxVbm8xImNlJGlDITNfoCWec/Z9nbIJuDZ77m9Etc5tx/Aeu0MAh4fkGPxdZhJyi/8EsYPur0aV1TaveS3gW8D/1J6aCUg/28TjrGu6u3PdJs3rv6uxa3zAWjZfD0Ee9q6LVMim3BgMI65UFORJfSH+1unvARgw2tMxvvRf1nwqa0smjV3vRzZSNm9mP5QP0DrXLCtvgyGNpoNlW3OqWmUJI5DzzIGS0F3y7zvbL3dfG3TDZWVlpd8EHg5EAPQWu8Flji1KCGsTHe334HyklAf/eGB1gu6g91wzo1tfdvXkUx3aTMc3YsYCA20RomAxeeDy+6AQ4/CocfcXo1rHN1I2YqZbqVMtvvQI3Byj9urcZVVmmR/eckJiCw5FXS3ygVb/2rYcLUJugt5t1fTcJUG3RmtdbnoTynlB6RfkHBMKm8y3baXl6RGoXuI/lA/E5kJ708XnOnC20zP7t0/cHslrkjkEg50vCkNAulebDLdrfLhZ9l6O4T74KH/6/ZKXBPLxuhQHfa/dhImcLIy3S11wXb+raA64Kn2znZbmW5HNuFGlpUv2EYnR+09vpu2vRPiR2Hfz9xeScNVGnTfr5T6U6BTKXUN8C2gvYsAhaPKmW4HWgbStYiB8EBrTBecac3LYGBdW5aYFHXRbKR0orwk0A3BbpPpbpVspSUUMZ1MnvsRjO13ezWusIabKKXsO2ixYO6sRZaWx8u3TIkAQM/SUgu4b0Ah5/ZqXGPdJbE1051Lm2mmPUtbL9MNcPbroXtJW3bAqTTo/ghwEtgJ/A7wY+DP5vsFpVRYKfWYUurXSqldSqn/VXp8nVLqUaXUPqXUnUqpYOnxUOn7faWfr51yrI+WHn9eKfW66v8zhdc4V9M9Cl1DpzJPrRZAKWWy3Qd+BeMH3F5NQ1mvGfs3Ug5D9yLADKpoqcDJcunvmKzlI591eyWuiGVi5cDYNqlR05IxsgS/z09vsLc1NsNNte3t5k7Qnp+4vRLXxHOlTHfAxkx3qdUkkaV0BboId4QZm2yh105HwEyo3HOP6dLSRirtXlLUWn9Ba/0WrfXNpb8vVF6SAV6ttb4AuBC4Vin1MuATwD9qrTcA48B7S89/LzBeevwfS89DKbUFuBU4B7gW+IxSyuZxc6LZlLuXONGnu/tU0N2SAdQFt2J6drfXhEonR8ATMVtYBkIDxLIx8sUWq0XsXQ7n3WzqLFMt9OFeoVg25tg0SiJLAVjUuYjRdAuVCABsuAYiy9q6xMSRjZTWPpKImQ0wGB5srUw3wLZ3gC603YbKeYNupdROpdTTc/2Z73e1Ye3mCpT+aODVmE4oAF8Bbiz9/YbS95R+frUy9/puAL6ptc5orfcD+4BLq/zvFB7jSMtAraeVl0ALZrrBbFRZ90pTYtJGPbsT2VLQ7UR5SfdiAPrD5mKtpXq8Wy7/oNkP8MS/ur2Shotmoo4H3UOdQ61VlwvQ4TcZy70/hehht1fjCqu8xNb3ndJgHHrMa6dlRsFPNXQmrH2FuWBro8+phTLd1wNvnOfPvJRSHUqpHcAwcC/wAjChtbbSRIcx7QcpfT0EUPp5FBia+vgsvzP1XO9XSm1XSm0/efLkQksTTc7aSGlreUkmBsVca5eXWLbeXurZ/ZDbK2kYxzLdieFy0D0QMhdrLXmHZNl5sP5V8OjnId8CkxOr4Eym28pWmtfOUHio9TLdABe90yQ02rA+F8xrpzvQjd/nt++gVslFpIWDbjAbKscPwIH/cnslDTNv0K21Pjjfn4UOrrUuaK0vxEywvBTYZNO6ZzvX57XWF2utL168eLFTpxENksqlCHWE7H0jK42Ap3tRa3YTmGpT+/XstoJuWy/UikWzGW5GprvlbvVafuO/mSzbM3e5vZKGimVjjo2Ap9uUJrVkphtMn/cNr4EnvtKWGyodu2BTvvL7zmB4sDUv9De/EcL95rXTJiodjhNXSsVKf9JKqYJSKlbpSbTWE8AvgcuB/lLLQTDB+JHS348Aq0vn8wN9wOjUx2f5HdGikrmkA51LSh94XYvKmYmWDZ6CXXDum2HX99qmZ7dVXmJrbeXkuNkMNyPT3bJ3SM68GhZvhof/2WQv24A1xtuRwCkYMd1hMJnuRC5BptCCdxEuea+5WHv+brdX0nCxjBNB93HznuMz29cGw4OMpcdYeCudxwTCZg/Scz869fnc4irdSNmjte7VWvcCncBvAp+Z73eUUouVUv2lv3cC1wC7McH3zaWnvRP4funvPyh9T+nnvyht1vwBcGupu8k6YCPQvlMc2kQyn3RmEyVA1xBKKQZCA61Zm2tps57djmS6k9NLBFp6Ay6Y7jeXfxBOPAMv3uf2ahoimUtS0AX7u5eUenRbFnWaDjgtme3e+FroXQXbv+T2ShrOkbsk8emvncHwIJlChsn8pL3naQbb3gGFLDzdHhv/K20ZWFbaIPk9YKHWfcuBX5Y2XD4O3Ku1/hHwJ8AfKqX2YWq2rf+XfgkYKj3+h5g2hWitdwH/D3gWuAf4oNa6UO26hbckc0kHBuOYcd50DwG03kjvmVZfBoPr26bExNp8a2ume8pgHKC1N+BaznuL+e9tk9Hw1kRBp6ZRWoY6zfvOyOSIvedpBr4OuOhd5kJt9AW3V9NQjnW+KXUugVPvOy25J2DpObDyYrMnoNUy+bOotLzkpil/blZK/S2Qnu93tNZPa623aq3P11qfq7X+eOnxF7XWl2qtN5RaEGZKj6dL328o/fzFKcf6a631mVrrs7XW7Xf/qg2lcilnBuMAdJWC7tJUypallOks0CY9u+PZOApFp7/TvoPOCLqDHUG6A92tfbEWCJvs0557YHzBrTueZ93tciboPpWtHAqb952WzHSD6dnt88P2L7u9koZyprzkRLlzCXBqQE6rvu9c9E44+Rwcav0ihkoz3VM7lrwOiGNa+QnhiFQu5cwI+I6QqbPEBN0tW9NtOb99enYnc0kigQg+VfUNvLklrKD7VPDUFq+bi95tLtraIIAqZ7qd2Eg55XVjZbpbMlsJ0LMMNl0HO75uJiq2Cdsz3cXiaXdJWj7oPucm87n8ZOtvqKy0pvvdU/78dinzPOz04kT7SuaTdPsdmEbZvcgEE9D6Nd1genavv7ItenbHs3G6g3bfHTlpugh0DpQfGggNtG7XG0v/ajPi+6l/h3zW7dU4ypHyknzGjPGeJXBq2Uw3wMXvNZuPn/2e2ytpiGwhS7qQtveCbXLMDI2Z5bXTkm0DwWw2Pvc3Ydd3Id3an8mVlpd8xdoUWfp+QCnV+ikQ4RpnupeMQNdg+du+UB8TmQmKurWDUS68rS16dluZbnsPehK6FoHv1Ftlf7gNMt0AF7/H7IN47odur8RR1nATW4Puco/uU5nuYEeQnmBP62a6wQzlGtoAj7fHhkpHLtjKQ5Wmb6SEFr5LAqbEJJeCnd9e+LkeVul92PNLbf8A0FqPA1udWZIQDtV0p0ZNAFUyEB6gqIvlMb4tq016didyCUdHwFvaItMNcOaroW8NbG/tCZVW4GRr95Jy0L102sOLOhe15kZKi1Jwyfvg8GNw5Em3V+M4Zy/YTr12wv4wPYGe1n7trNgGS89r+RKTSoNun1KqfH9VKTUI2Di1RIhTtNak8k7UdI+Y8pKSlm//ZmmTnt2JbMKZ8pIprxloo0y3r8Nknw78Ckb2ur0ax8SyMfzKb/MG3NMz3VCaStnK5SVg7qwFe+CRebsKtwRH9gNYQXf3jNdO51BrB91KmfebY7+GozvcXo1jKg26/x54WCn1l0qpvwQeAv6Pc8sS7SxdSFPURQf6dI+VO5dAm7R/s7RBz+5ELkFPwMZ2gVAKuqdPuB0MDzKZnySdb4PNYltLHSme+De3V+KYaCZKb6gXVdrrYYtyicD0TPdQ51Dr1uVawr2m+82u70K0tefYNaq8BNrgLgnAeTeDP2zaB7aoSjdSfhW4CThR+nOT1vprTi5MtC+r37Kt5SX5DGRi08pLyqPg2yHotnp2P/V1t1fimEQuYX9JUuLkaRmntnrd9Cxt+Y4Ujo3xhtMu2Noi0w1w2e+YSa6Pfd7tlTjKkXaTyWHwd/L/s/fm4W2VZ97/52ix5TXed8dx4iQkIfu+sKVAWQu0FNpSoEChLbQznZm+M/POO++0M53fbL+2M13pBlOglFIoU2jZylYIkBWy75uT2PG+SLKtXef949FxnFiSJeuRjiWdz3X5MtFyznORE+l77ud7f29yzy8glOdlwbWTVwrzb4a9z4B3WO/VJIV4srXKgGFVVX8A9ISmQxoYSGfENwJIFt2j0yjPNVJmjb0EzmV2n3oX+k/qvZqkIL2R0jssdgcusJdoo+Cz4roBER/oGoADz0/82jQkaTnLeaVgyTnv4fK8cpw+Z2aOgh9LaRPMuxE++O+MtrQlzV5SWDmasqWRFZVuEBYTj0PslGQgsaaXfB0xSfJ/hx6yAr9M1qIMshut0i3V062J7oLzGykhSyqWkNGZ3f6gH5ffRWGORNGtDVO6oFpZYsuimzWA5svELskHmdlQ6fA6KMqVbEsa6hpnLYEMHwV/IWseEvFvu5/SeyVJQxPdUqfgRrl2hnxDmW9rm74WKuZmbAN3rJXuW4CPAcMAqqqeBSR/ShkYCJJiLxmdRnlOdOdb8skx5WS+x1JDy+zenXmZ3do1I7XSrU2jvDC9JHSz1u/JkuvGZBIjvk9vhu6Deq9GOg6vg2k5EpNLYNw0So2Mn0o5lsZVIpFi208zdry3w+Mg35KP1WSVd9AwljYYc+1kcmwgiAr/inuhfYdoqswwYhXdXlVVVUAFUBRFsnHSwOAcI/6QvUTmcJxRe8m5RkpFUbLDJzeWJZ+FwdNw6j29VyKVIZ/YwpZb6damUZ5vL8mqaqXGkjvAnJOR1aekebrDVCszfirlWBQFVt0PvUfg5Dt6ryYpOLyO5EwyDXPDpn3uZIXFZPHtwteegZ83sYru3yiK8hOgRFGU+4HXgZ8lb1kG2Yzm6U62vQRCjU3Z8AWocdH1kFuccZndQ96Q6E5GpfsCe0mRtYgcU052ie6CCpj3MWFN8o7ovRppBNWg8HRLF04RRHc2VbpBjPfOK4PtP9d7JUlB+g1bwC++q6JYk7JCdOeVigmVe58BT2bN0Yg1veRbwLPAb4G5wD+oqvr9ZC7MIHtJnr1EOW+cN2RJR/hYcvJhwS2iKS6DGpy0SrfUayZCAoW2Q5IVX35jWXEveOyw/zm9VyKNId8QKqpc4eQZEg24YaqVZXlZMFlwLFYbLLsTDr2YkfGB0ptwR3oBVTRSXkDW7bCtuBe8Q7DnN3qvRCoxp5eoqvqaqqr/S1XVr6mq+loyF2WQ3SStkTKvVAz8GEN5XpZVuuFcZncGpVFolW6pDU3DvWLIh3X80JSKvIrsu26a1mVcg1NyJgqGcpbD+HJzzbkU5WT4ZMELWXGviA/MwEmD0ivdEfLdQfSSKCjZc+3UL4OaheLzJoN6AqKKbkVRnIqiOML8OBVFcaRqkQbZxbA/JLplDse5YBqlRrmtnAH3AEE1sxoLo9K4CspmZZTFJCmV7jDTKDXKbVlY6VYUWHFPqMFpj96rkUJSJwqGqXRDFmV1a5TOgNlXiwFLfq/eq5GKdE/3kNa8PV50W0wWSm2l2fO5ozVUdu2Fth16r0YaUUW3qqpFqqoWh/kpUlVVsgnOwEAw4hvBZrZhMVnkHXS477wmSo3yvHICaiB7YgMhIzO7td0RuZXu8AkUkIW2JI3FnxIT4zIkPlAT3VLTS6JUKyFLd9dWPSD+vxz4nd4rkYrT60zSLsl4ewlkwSj4C1n4ScgphB2P6r0SacRsL1EUZbGiKF8O/SxK5qIMspsR34hcawkIe0k40Z1tjU0aizMrs9vpFc020vsAonz5DXgGCAQD8s6XDuSVip6Avc+Cz6X3ahJm1F6SlEp3BNGdbZVugFkboXw2bHk4Y6wCvoAPl9+VkhHwGhW2iuy6dnKLYNFtoo/ElRlzEWIdjvPnwJNAVejnSUVRvpLMhRlkL0O+IbkpFBDZXpJNEV5jmdYAMy/PmMzuYd8wZsWMzWyTeNCeiKK7Iq+CoBpkwJMZXwRxsfjTYmLcoRf1XknC2L1JGuOtmM+bfjuWrKx0m0yw5otw9kM4s1Xv1Uhh9NqRecM23CP6SHLCFw+yZirlWFbcC3437HxS75VIIdZK933AalVV/0FV1X8A1gD3J29ZBtnMsG9YbsUyGISRfqPSfSFL7siYzG6n10lhTiHKBaOTJ00wIHZHIlW6s/m6mXEJTGvMiJ6ApDVSFlSOa9rWqMirwOnNglHwF7L402Argc0/0HslUhjtB5B97YRJLtHQGrjVDNktiImahdC4WsROZkCBKFbRrQBj91EDoccMDKQz5BuSO+TEPQhq4LxplBpapTtrplKOJYMyu4d9w3J3R0b6ReJClEo3ZKnoNplg0e1w4i1wdOi9moRweB1YTBbyLOMTaiZNhGmUGtoNW78ryz5zcgpg5X1w8A/Qf0Lv1SSMdsM2LVdmP0D4fHeN8rxyPAHPaON41rDqARg4Ccff1HslCROr6P5vYKuiKN9QFOUbwBbgkaStyiCrkV7pjjAYB0SVwmKyZKd4yqDMbumWpNER8JE93QC97izb6tVY/GlxU7Lnab1XkhBa5Ju0HRKIOFFQQ7th63H1yDtnurDyfjBZYOtP9F5JwiSn0h39hi2rBuSMZd7HRATntp/qvZKEiXU4zneAe4D+0M89qqr+VzIXZpC9DHmHkiO6w3gsFUWhzFaWfR5LjQzJ7B7ySb5mhsMPxtHI6ko3QEULNKwSuyRpvNXt8DjkViphwmpldYF4rnukW+5504HiWlh4K3z4BLjSOzEqafaSMPnuGlkrui05sPxzcPSPaZ+4FXN6CXAS+BPwLqAoirIsKSsyyHqkWwWGQx9QYewlkKVpAhoZktk95B2SPxgHIorufEs+eZa87PvyG8vSO6D3MLR/oPdKJo304SaqOmG1sipfPNc10iXvvOnEmgfFjX6aD8uRnnzj9wgrZDR7STb3kqy4BxQT7Ehvk0Ws6SXfBPYA3wO+Hfr5VhLXZZDFSK9ajmiie3wjJWRpmoDGeZnd6euzlF/pDm39RxDdWb9DArDg42DJg51P6L2SSWP32OWKbtcABH1RhVNpbilWkzV7RXftImi+VFhMAj69VzNptEq3tJv9UUtb5Bu2ynzxeZSV1qTiOph3g9gl8Y7ovZpJE2ul+zZglqqql6uqekXoZ2MyF2aQnXgDXnxBn+SmuMiebsjS6YJjWfIZUUH48HG9VzJppO+ODHUL76mtJOJLsjK+ayy2Yph/E+x7Lm2/BOVPFIw+jRLEDVtVfhVdw1kqugHWfhkc7Wlta3N4HeRb8rGarHIOOEFGNwgrS44pJzutSQCrviB2A9K4lyRW0b0PiPztY2AgieSM8+4DawFYwycUVOVX0efqy75BJxrFdTDnGtj5y7Qd0+z0OimIkG07KYZ7hB3JFPkjMqttSRpL7xCZ3Qd/r/dKJoV0e8kE0yg1qvOrs1c4AbRcJYblbP5B2vYEODz63bBl7bXTtE5ECG79SdpeN7GK7n8FdiqK8qqiKC9oP8lcmEF2MuwV47ylRgaO9Ea0loAQ3QE1kJ2DTjSW3yOE5uH0G3jiCXjwBX2SB5z0Rs3LBaPSDUDTBihtTkuLSVANMuQdkp8+AVGb4YDsFk4gbmbXPghnd8Kp9/VezaSQf8MWfZKpRlZfO4oCq78EPQfh5Nt6r2ZSxCq6HwP+Hfg3znm6v52sRRlkL0mpdI/0QUFk0a355LLWYwnQ8hEx8GTHf+u9krjRRsAXWWU2UnZH9HNrVOZXMugZxBtIz90BKZhMsPSz0Lop7XoCnF4nKqrknOWJLQIgKt1dI13ZNeTkQhZ9CvLKYPMP9V7JpEia6J7gcyerRTfAxZ8Qu5Bbfqz3SiZFrKJ7RFXV76mq+paqqm9rP0ldmUFWoolu6eklEZJLQHwBAnQPZ/EHmckMy+4W1YO+43qvJi5Go7tkj2Oe4Mtv9LrJ5i9AONcTkGYJOEmLfDPngi26kK/Kr8IT8IyuISvJyRfDcg6/lHafOZAka5KtBCy5UV+mie6svWGz2kSSyZFX0u5GH2IX3ZsURflXRVHWKoqyTPtJ6soMspJhX8heIruRcgJ7CWRpR/hYln4WFDN88Au9VxIXo5Vu2ZGBMVScwBDdFNfBrI2w6ylIo76IpIyAH+4RVe4Jhu1UFWR5bKBGGg/Lke7pHo6e765RlV+FO+DO7hu2FfeJQlEaXjexiu6lwBrgXzAiAw2SSPLsJZEr3WW2MkyKyfgCLK6FudfCridFZmyaIF10e4bAN2KI7nhYcgc42tLKZ2n32gHJOyTOzpiEU01+DUB2J5gAFFXDxR8Xnzluu96riYuk2EsmsCWBscMGhIYs3SYSt4bTq5k9VtH9phYVCFxrRAYaJAvpjZTeESGgolS6LSYLFbYKekayvNINYttupC+t0iiki+4JMro1sn7IyVjmXie2xnc+qfdKYiZp9pKimglfZtywjWH1F8E7lFbXji/ow+V3yb92YhDdo1nd2f59tf7PxXd7mo2Gjyq6FUX5G0VR1gKfGPNwerYaG6QF0ivdoyPgI4tuMJpTRpm5EUqa0spiIt0moE2jnOALsDinmDxLnnHdgPBZLrpN3Ky50iMFKCn2khgr3ZV5RvP2KPXLoHE1bPtJ2tiTpE+jBBjqmTD1Boyb/VGqLoI51wrRHSrWpQMTVboPAZ8EZiqKsklRlJ8B5YqizE3+0gyykWHfMGbFjM1sk3NAbRplFHsJiA+yrP8QA5FGsfxukUbRe0zv1cSE0ye70q2lCES/ZkaHnBjXjWDZXRDwwO5f672SmNAq3dLSS/xecPXHVOm2mq2U28qNGzaN1V+EgVY4+ke9VxITdo+wwkzLkXTteIfB64yp0m3skoxhw1fFv7mdv9R7JTEzkegeBP4OOAZcDnw39PjfKopiVLwNpKON81YmaESKmeHYKt2V+ZVGI6XGks+K5qYP0iM+0OF1kGPKIdccves/ZmK0l4CxQ3IeNQuhYSXseDQtBldo143NIukGP8a4QA3jhm0M826E4nrY8rDeK4kJrR+gJFfSzMAYM7oBcs25lOSWGJ87ANPXQOMaeP8HEPDpvZqYmEh0fxR4EZgFfAdYDQyrqnqPqqrrkr04g+xD+jjvUXtJ9KpldX41do8dt98t79zpSlG18Oju+hX4pv7/D6fXKTm5xBDdk2bFfdB7ROyUTHHkTxTURPfElW44l9VtAJitIj7w5NvQdUDv1UzIoHsQkLhLon3mxHjDZlw7Y7jkL8F+Om1Gw0cV3aqq/p2qqh8BWoEnADNQqSjKu4qipE+nlUHaMOQdkjvOe9ReMrGnG4zmlFFW3CO27dKgodLpdcr3VuZOmzAvF4zM3HEsuFk0VO54VO+VTMigZ1BepRKEnxvETWsMVBdk+Sj4C1l+D1hssHXqDz0Z9EgW3XHuktQU1NA53Cnn3OnO7KuhdjG88y0I+PVezYTEml7yqqqqO1RV/SnQpqrqBuCeJK7LIEuRXuke7hXZ0xN8OGod4d0u40sQgObLoXRGWlhMklLpnsDPrVGdX40v6GPAkx7Ng0nHmify3g/+HpxTuxI36BmUPI0yJILiqHTbPXZGfCPy1pDO5JeJZtw9T8NIv96riYrm6ZZnLwn9W4mhkRKE6O4Y7pBz7nRHUeCyv4GBk7D3Gb1XMyExiW5VVf96zB8/F3qsNxkLMshuNE+3NLTBOKbol7qWm2tUD0KYTLD8c3DqPeg5rPdqopIU0R2HLxeMpqbzWH4PBP2w8wm9VxIVu8cuudLdBSgx2ZIAagtrAeMz5zxWfxH87imfnjToGcSiWOR9Vzm7xFTXGK+dmoIaHF6HccOmMfc60VPyzv8/5avdsVa6R1FVdXcyFmJgAEnydMdQtawpEKLbqB6MYclnwWSd8l+ADq+DYqvsEfCxV7rBEN3nUdECzZeJ62YKR8BJF91DXUI0mS0xvbyuoA6A9qF2eWtId6oXQPOlsP2RKS2etF0SaQ3/zg5R5Y7x2qktMG7YzkOrdvcfh+Nv6L2aqMQtug0Mkon0KV8TjIDXyLfmU5pbytmhs/LOne4UVsK8G0INlS69VxOR5NhL4qt0G01NF7DiXrCfgaOv6b2SsKiqyqBnUH4jZYx+boC6QiG6jRv9C1j1BTHd9MjLeq8kIvJ3STpjiprU0ES3ce2MYe71cM8rwuM9hTFEt8GUQVVVHF6HZAHVG5PoBrHde3bYEN3nsfwecA/Cgef1XklYpF8zAb/wk8a4zVuRV4FJMRnjvC/kouuFt3nHI3qvJCwuvwtf0CdfOMUQ+aZRmVeJRbEYN/oXMucamNYIW3+i90oikpR+gDhEt7Yza1S6x2AyQdNaUfWewhii22DK4A648Qf9ckX3SOyiu66gjo4ho3JwHs2XQtks2DE1GyqlXzMjfYAas73EYrJQmVdpVJwulBd3hwAAIABJREFUxGwVw3KOviaGnkwxpDfCQWiMd+zCyWwyU11QbdzoX4jZInZKWjdB90G9VxMWu1ffSndlfiUmxWR87qQhhug2mDI4vZInCwb84BqMWUDVFdZxduisEf82FkURDZVntkzJL0Dp14w2jTLGRkqA+sJ6o1oZjhX3iOaw7VOv2j0a+SZromAwIAacxGEvAfGZY9zoh2HZ3WDOnbLxgXa3XV6lO+ATlrai2pjfYjVZqcirMCrdaYghug2mDJqAkubpdg0A6oSDcTTqCutwB9xG/NuFLLkDzDlTsqFy9JqR5c0dzcuNXTzVF9YbzXDhKK4TNpOdT0y5ngDpOcsjfaAG4qp0g/DmGjdsYSgoh8W3w+5fn5sqPEXQ+gGkxwXGUekGce0Yojv9MES3wZRBetVSG4yTXxbTy0ebU4zK0/kUlIsxzbufmnLiaVR0y0ovGYq/0l1XWEfXSBe+YHqMIU4pKz8vbn73/4/eKzkP6faSOAfjaNQX1tPj6sGXJiOsU8qaB0V84BQbtOTyu/AGvfJu2Eavndgr3RAakDNiiO50wxDdBlMGh9cBSKx0D2vTKGNritPSBAyPZRiW3wNu+5QTT9o1I+1GLc4hFSCEU1ANGlWncDRfChVzYdvP9F7JeYyKbpvkauUkKt0qqnHthKNqHrRcCdt/Bn6P3qsZJWk3bHHsroG4djqGOgw7ZJphiG6DKYN8f25opHuswypClW5juzcMMzZA+ewp11ApX3R3Q04h5MaeFV9fWA8YecthURRR7T77IbR/oPdqRpHu6ba3id/T6uN6m3GjPwFrHhQ3NPt+q/dKRtGuHXmiO7SzOolKtzfopd89tad3GpyPIboNpgzyRXd8le7inGKKrEW0OdvknD+T0Boq27ZB1369VzOK9GtmqCsuawlAfZEQWsbNWgQWfwqsBVOqoXLQM0i+JR+r2SrngPY2UMxxV7q1ATnGtROBWRuhch5s/hFMkYqu9H4AZ6e4dmJs+NcYjQ00LCZphSG6JeL2u/VeQlqTHE+3ErOnW1EUphdP57TztJzzZxpLPiMSBaZQtVu+6O6Oe5u3Or8as2I2btYiYSsWTXH7fisy0KcA0oebONpFpTLGiYIaNYU1WBQLZ5xn5K0lk1AUWPNF6NoLp7fovRogSfaSwmowmeN62+hUyiFDdKcThuiWhN1j57Y/3MZ3P/yu0RQzSRxeBzazjRxzjpwDDvcIwR3Hh1lTcROnHKfknD/TyC+D+TfBnqfBO6z3agAhuqVeM0PdcVe6LSYLNQU1hr0kGivvF01xO5/QeyWAyFmWOtzE3gbTGuJ+m9VkpaGogVZHq7y1ZBoLPwm2abDtp3qvBEhGpbsj7uQSOFfpNrK60wtDdEvCZrGxqGIRP9/7c25+/maODhzVe0lpR3LGecdmLdFoKm6iY7gDb8Arbx2ZxIp7wOOAfc/pvRIgCdfMUFdcTZQadYV1tA0Zle6IVM+Hpg2w/eci01pnpE8UtJ+ZlOgG40Z/QnIKYOmdcPAFcOgvMJNS6Z6E6C7NLSXPkmfc7KcZhuiWRK45l3/e8M985/Lv0Ofu49bf38pfv/PXxpZzHMgfAd8Xc0a3xvTi6QTVoPH3Fonpa0UaxQdTw2Li8Drkpd34PWLkfZz2EhDC6YzDsAhEZdX9MHgajv5R75XItZcEg2BvT0h0n3acJqgG5awnE1lxr7hZmwKzAqT3A8Q5Al5DURQaihqM76o0wxDdkrmq6Sr+cMsfuH3u7bx95m3ufvlu9vXu03tZaUFyKt3xie4ZxTMAjO3eSCiKqHa3fwAde/RejdxrZhIZ3Rozimcw4BkYrYIZhOGi66GobkrYBOweifaS4W4I+hIS3e6Am+6RbjnryUTKZ8Hsq8TNvl/fXUipN2x+jxisFGdyiUZjYaPRD5BmJE10K4rSqCjKW4qiHFAUZb+iKH8eerxMUZTXFEU5GvpdGnpcURTle4qiHFMUZY+iKMvGHOvu0OuPKopyd7LWLIuKvAr+bvXf8cR1T2A2mbnzpTt5/tjzei9ryiNddI/0xm0vmV48HYDTDqOZMiKLbgeLbUpUux1eB4U5scf7RWVUdE+u0g3GzVpUzFZYeS8cfxN69bPfBdUgDq9Dnui2h7b3Jym6jRv9GFn1gLB/HXxB12VItSZNchqlRmNRI21DbcYuSRqRzEq3H/grVVXnA2uAhxRFmQ/8LfCGqqqzgTdCfwa4Fpgd+nkAeBiESAe+DqwGVgFf14T6VGdO6RyeufEZFlct5u/f+3tePvmy3kua0kgV3QGfmIQXp+guzimmNLfU+AKMRn4ZzL8Z9jwDniFdl+LwSBRPowNO4q90a6Lb8OZOwLLPgTlH12E5Tq+ToBqUV620hyqNCVS6AU7ZjWsnKrM+AqXNug9aklrpHh2MMznR3VDUgCfgodfVK2c9BkknaaJbVdUOVVU/DP23EzgI1AM3AY+FXvYYcHPov28CHlcFW4ASRVFqgY8Cr6mq2q+q6gDwGnBNstYtm2m50/jpVT9lWdUyvv7+1zk2cEzvJU1ZnF6nPH/uSJ/4XVAe91ubipsM0T0RK+4Br1P3oRVSvwBHRXf8le6GogbMiplWe6uctWQqhZWw4BbY9SvwOHVZgvThJqODcSYnuqvyq8iz5BmfORNhMom+gDNboGO3bssY9AzKu3YcoV2S4rpJvb2xqBHAsJikESnxdCuKMgNYCmwFqlVV1VqQOwHtG64eGHvltIUei/T4hed4QFGUHYqi7Ojp6ZG6/kTJMefwrcu+RZ4lj796+68Y8Y3ovaQph6qqckV3nINxxjKrZBbHB48b43Wj0bhaDK3Q0WLiD/px+pzypgpq9pJJXDNa9JtR6Y6BVQ+IG7bdv9bl9JrvXp69pE1MMZ3kSHlFUYwEk1hZ8hmw5uta7ZZqL5nkJFMNQ3SnH0kX3YqiFAK/Bb6qqqpj7HOqUDVSlI2qqj9VVXWFqqorKivj/9JMNpX5lfzHpf/BSftJ/nHzPxqC7gJcfhd+1a/bCPixzC6dzaBnkD53n5y1ZCJaQ+XZnXB2ly5L0EbAS7WX5JWBZXKZ34ZwipGGFVC3TAgnHT4HpecsO9qguF78m5gkxrUTI3mlsOg22PuMLoOWAsEATq9Tbj9AAjdstQW1mBSTkWCSRiRVdCuKYkUI7idVVdWCfbtCthFCv7WW7XagcczbG0KPRXo87Vhdu5oHlzzISydf4tmjz+q9nCmFJqCkj4CPMzIQoKWkBYBjg4YVKCqLbgdLnm7VbuniaRIj4MeiCSejqSkGVj0AvYfh5NspP7X0nOVJDsYZS1NxE+1D7cZgtVgYHbT0y5Sf2ul1oqJKtJckdsNmNVupLag1Kt1pRDLTSxTgEeCgqqrfGfPUC4CWQHI38PyYx+8KpZisAewhG8qrwNWKopSGGiivDj2Wljyw6AHW1K7hW9u/xQn7Cb2XM2VIzgh44o4MhDGi2/DfRyevBC7+OOx9Vhd/rsMjbtSkeroTEN0zimcY0W+xsuAWyC/XxSYwFUX3jOIZBNSAMWApFmouhqb1ugxaGvAMAJKtSZO0lmgYWd3pRTIr3euBO4GNiqLsCv1cB/wbcJWiKEeBK0N/BngJOAEcA34GPAigqmo/8E1ge+jnn0KPpSUmxcQ3138Tm8XG3236O6MqFkK66B7uAZNlUtt25XnllOaWGpXuWFh+D3iHxHZvipE/jrlr0nm5YES/xYXVBss/B4dfEgNzUsigZxAFhUKrhKhJn1t81kxrnPi1UTDSb+Jk1f0weAqOvpbS0w64hegut8XfoB+WBIYqaTQUNhg3a2lEMtNL3lVVVVFVdZGqqktCPy+pqtqnqupHVFWdrarqlZqADqWWPKSq6ixVVReqqrpjzLEeVVW1JfSjfzhwgtQU1PC1FV9jf99+Xjzxot7LmRJooltaI+VQt7CWmCZ3ibeUtnB0UL8s4bShYQVUXww7Hk25P1dqQ5yqislwk0gu0TCi3+Jkxb3i945HU3raQc8gxbnFmE3mxA+mpU8kWK00RHecXHSDuEFO8aAlTXSX2iSkFvs9YrBScWKiu7GokX53P0NefeNbDWLDmEipE9fPvJ4F5Qv4wc4fGD4+kuDpHuqCoskLqJaSFiPBJBYUBVbeB5174cy2lJ5aaqXbNQABb0KVbiP6LU6mNYgplR88Bj5Xyk4rNWYywbhAjWm504z5APFgtoqbtuNvQG/qdiS15nopottxVvyWdcPmNG7Y0gFDdOuESTHxlaVf4ezwWf7n2P/ovRzdkW4vGepKqGrZUtLCsG+YzuFOOevJZBbeBrnTYNtPUnpau8eOWTFTZJVwzWhDKhK4UVMUhZaSFo4OGDskMbPqAXD1w77nJn6tJOweu7yYSUmiG4wEk7hZdjeYrMLbnSK0SneZrSzxg2nXTnFionvU1mbMCEgLDNGtI+vq1rGkcgk/2fMTPAGP3svRFbtXWAWkiW5nYqJ7dulsAMNiEgu5hbD0DjjwPDg6Jn69JOweO8U5xSgJRLWN4gytO4FKN8DcsrkcGjhk7JDEyoxLRN77tp+kzJ6UlJzlBIUTwIxpMzgxaDTXx0xRNSy4GXY9mbLJuAOeAQqtheSYJxcreh6j1qTE+gGmF0/HpJiMXZI0wRDdOqIoCg8tfYjukW5+c/g3ei9HV+weO4XWQqwma+IHCwZEc1MiortEiO5D/YcSX082sPLzEPTDB79I2SmliqcEplGO5aLSi7B77HSNdElYVBagKKIprmM3tG1PySnl2kvOQEEVWHITPtTsktn0ufvocxnzAWJm1QPgccCep1Nyun5XvxxrCYy5YZvcNEqNHHMOdQV1RqU7TTBEt86srlnN2tq1PLz74dHGsGzE7rHLE1AjfaAGoKhm0ocozClkRvEM9vful7OmTKd8FrRcJTK7U9SjYPdKFE+jle7JXzMgKt1g3KzFxaLbIbc4ZU1xdq/EzxpH4ukTGsbu2iRoWAm1i1M2aKnf0y/HWgLi2skrg5z8hA81Y9oMo9KdJhiiW2cUReGvVvwVTq+Tpw49pfdydENq1VLz5yZYtZxfPp8D/QckLChLWPl5UTE+lJpEHqk3as4uIfxyChI6zJzSOSgohuiOh9xCWHIH7P+d+HtIIr6Aj2HfsOScZTmie07pHACjJyAeFEVUu3sOQuu7ST/dgHtAbqVb0rUzo3iGMZgrTTBE9xRgbtlcLm+4nF8e/CUjvhG9l6MLDo9D4pCT0HCSBEX3gvIFdA530uvqlbCoLGD2VTBtOux4JCWnkyu6OxKucgPkW/NpKm7icP9hCYvKIlbdD0EffPhYUk/T7xYjHqRUK1U1JJwS8+RqlOeVU2Yr48jAESnHyxou/oQYD5+CRu5+t8RKt4SMbo3mac24/C6j8T8NMET3FOHziz6P3WPn2SPZOR5+0DMoL1FgKPEkChCVboADfUa1OyZMZlh+N5x8B3qSLzql745IEN0A88rmsa9vn5RjZQ3ls6DlSpHZnUR7khYzKaVa6RoA34g04QSi2m1UuuPEmieSTA69CAOtSTuNqqoMugcl2kvapDTgwjlrknHDNvUxRPcUYXHlYlbVrOKx/Y/hDXj1Xk7KkeqzlNQUN698HgqKIbrjYfnnwJwLW5NbdfIGvLj8LrkNcZIqlkuqltA53EnHUOqSXDKCVQ+IHYeDv0/aKbRKd2muBNE9GhcoRziBEE/HBo8RSPF487Rn1QOgmJL6uePwOvCrfjnXjscJbru0a0ezJhmie+pjiO4pxOcXfp5uVzcvHH9B76WklEAwgMPjkOzPnSYqIAlQYC2geVqz0UwZDwUVsPCTsPspUQlMEqPTKGXsjvi9otItSXQvq14GwAfdH0g5XtbQciWUzhBNcUkiKTnLkivdnoCHM84z0o6ZFUyrhwW3wIdPgNuRlFOM3rDJ2CUZCOWxlzQlfizEd1VDYYNha0sDDNE9hVhTu4aLyy/m0X2P4g/69V5OynB6naioEj3dXVBYJeVQCysWsrtnt5G7HA+rvyC23Xf+MmmnGBXdNgmi29EGqFAiR3TPLplNobWQD7s+lHK8rMFkhpX3w+n3RYRgEhjwCNFdYpPwWTMquuVcNwBzS0X6jbG7NgnWPAheJ+x8IimH127Yym3lEg7WKn6Xzkj8WCHmls01Kt1pgCG6pxCKonD/ovs54zzDq62v6r2clKENxpFqL5Hkz11evZwBzwDHB49LOV5WULsImtaLCLgkbZOPjoCXUemWLJ7MJjNLqpYYonsyLP0sWAtgy8NJOfyAewAFRdJ1c0ZYqfIrEj9WiJbSFmxmG3t790o7ZtZQvwymr4MtP4aA/KKVJrrlVLpPit9lzYkfK8Tc0rmccpzK2jCGdMEQ3VOMyxsvp6WkhZ/v/XnWxP+MCqgJRLfLG+Brz+zmfz+3F18gyv8biZXuFTUrANjRtUPK8bKG1V+AwdNw+OWkHF6rdEvZHRkMbeVLtAksq1rGcftxBt2D0o6ZFeSVCOG999lz0Z8SGXAPUJJbgtlkTvxg9jYx2MQk72vUarIyv3w+e3r2SDtmVrH2QbCfhkN/kH7oPrcYWiRHdLeCbZpIXZHEnLI5qKgcGzwm7ZgG8jFE9xTDpJi4b+F9HBs8xttn3tZ7OSkhVgH1zy8e4NkP2nhq22m+8UIEn7WqJjwCfiwNhQ3UFNSwvTM10/IyhrnXi8rx1h8n5fBSd0fsSRDdIV/3zu6d0o6ZNaz+gphuuv3n0g894JGYsyxxMM5YFlcu5mD/waxsqE+YudcJy8aWH0k/tNR+gP6TUCqvyg3nmikPDxi+7qmMIbqnINfMuIa6gjoeO5DczNqpwqg/N4qAOtTp4Kltp/ncuhncf0kzT249zQenwjTqeRzgG4aiWilrUxSFFdUr2NG1w/B1x4PZAivvg9ZN0CXfn6rtjkirdBfWSBnlrXFxxcVYTVY+7DYsJnFTPgvmXiviA30uqYfud/dLTLyRl9E9lkWVi/AFfRzsPyj92BmPyQyrvwRntkKb3N3JAc8AhdZCcsw5Eg7WKtXPDVBfWE+BtcBoppziGKJ7CmIxWbhj3h180PUBe3sy39sXS6X7P187QpHNylevnM1Xr5xDeUEO338zTJ6t46z4XVwnbX0rqlfQ7+7npOOktGNmBcvuBosNtstPo7B77FhNVvIsiSXUiIOdltZEqZFrzmVhxULD1z1Z1jwII32w9xmphx1wD8ipVAZ8It4wCZXuRZWLAAyLyWRZeodIr9r8A6mH7Xf1y9klCQaE9U6y6DYpJiPnPQ0wRPcU5eOzP06htZDHDzyu91KSzqBnEAWFQmth2Of9gSDvHevjhkW1lOTnUJBr4dYVDbx3rJdhzwUNM4528VvS0AEY4+vuNHzdcZFfBhffCrt/DSP9Ug+tTaNUFCXxgw3Ky+gey9KqpRzoO2A0Nk2GGRugeiFs/pGwjEli0DMoRzg5O0ANSs3o1qjKr6KmoMYQ3ZMlt0gM6Trw/LloPgn0eySJbke7mL4qsYlSY27pXA71HzJy3qcwhuieohTmFHLrnFv546k/0j7UrvdyksqgZ5Di3OKIzU272+wMefysnnkuqumSlkp8AZVtJy8Qc47QQBKJle7pRdOpzKs0RPdkWPugiA/c8ajUw2oNcQkTDIovQcmVbhDJN37Vz66eXdKPnfEoCqz5EvQchBNvSTlkUA3KE939J8Rvyb5cjUUVi9jVs8uwtE2W1V+QPiynz9VHhU1CUk0S4gI1FlctZsQ/YjRTTmEM0T2FuWPeHZgw8csDycs7ngo4PI6oEV5/PNCJxaRw2ZzK0cdWzCgl12LinaM9FxwsZC+R5OkGw9edENULYNZGER/o90g77IBnIOa8XF8gyEt7Ozja5Rz/5FAXBLxJqXSvqFlBrjmXd9rekX7srGDhrVBQJardEhhwDxBUg3LsJX0hUVPekvixwrCiZgWdw53GkJzJMq0hNCzncTH5UQI9rh4q8iSI7v6QTTEJN2xLq5YCRgP3VMYQ3VOYmoIaPtr8UZ47+hwOb3KmbE0FJtq2e3lvJ+tbKpiWZx19zGY1s7yplO2tF1a628UXtUVCs8sYVtSsoMfVwymHvO3KrGHdV4S43fustEP2u2Pb6vX6g9z64808+OSHfOLh98fbkbTkkpLp0tamkWfJY3Xtav505k/GzdpksOTCqvvh2GvQfSjhw2mRb+V5Eoab9B0Ha77Um/uxrK5dDcCWji1JOX5WsPYhMSznw8Qtmt6AF7vHToWMTPaBVjBZpFogNeoK6qjKqzJE9xTGEN1TnDvn38mIf4Q/HJefOzpVGHBHjvHqtLs53T9yXpVbY8WMMg6cdTA0Vkg5zkq1lmisqlkFwLbObdKPnfHMvAKq5osYL0nis9/VH1PF8gdvHWP3mUFuXd6Aw+3n6e0XVA5H4wLlV7oBLmu4jPahdmO40mRZca9oxpUQAdfnColuGRMF+45B2SypGd1jaS5upiqviq0dW5Ny/Kygbik0bQgNy/EldCjt2qnMG/89FDcDJ8VNvtmS+LEuQFEUllQtMUT3FMYQ3VOcBeULmF8+n2ePPpux1bJoiQK720Q03JLp4/27K2eUElRh5+kx0YGOs0mpIDQVNxm+7smi+XO79sHJxLPnvQEvTp9zQtE95PHz2PutXDmvmm99cjErmkr5xfutBIJj/h0lYTDOWC5ruAyAN8+8mZTjZzwFFbD4U6IZd7g3oUPJrXQfE9GGSUJRFNbUrWFr51b8QfnTFbOGdV8GR5toqkyAHpewMcoR3a1J8XNrrKhZQcdwB2cchjVpKmKI7jTg1jm3cnTgKHt6M6+bXVVVUenODV/p3n1mEItJYX5t8bjnlk4vxaTA9taxors9KZVuRVFYVbuKrZ1bs2ZSqFQW3gYFlfB+4jFesY5jfnLLKewuH1/eKHy3925o5nT/CG8c7Dr3IvsZMRnONv76kkF1QTXLqpbx8smXM/amOemseQgCHtj+SEKHkVbp9ntFKkaS/NwaVzRegd1jN6bhJsLsj4q/p80/SGiXTRPdCdtLVFU04SapARdgbe1aADZ3bE7aOQwmjyG604Drmq8jz5LHs0fkeWKnCg6vA7/qj1rpvqi2CJt1fLJJYa6F+XXFbNcSTLzD4B5MiugGWF+3nn53Pwf7jKEVcWO1waovCH9ugsNy+t3i7zuaeAoEVR57v5V1s8pZ0ih2Sa6eX019SR6/eL/13AsHz8A0+X7usVzXfB3HBo9xZOBIUs+TsVTOEeJp+8/A5570YfrcfVhNVopzErzBGjwFaiDpont9/XryLHm81vpaUs+T0ZhMIvP97E44PXkRKs1e4uwUjZ2VFyV2nCg0FTdRW1DL5rOG6J6KGKI7DSiwFnBd83W8cvIVnN4wCQxpTLSqpaqq7Gmzs6ghcjTc4oYSDnQ4RBVxNC5Qvr0ExJeggsI77UYaxaRYeR9Y8mDzDxM6jCa6y/Ii20v+dLibs3Y3d65pGn3MYjbxiWX1bDnRx+BIaMS2/UxS4gLHcvWMq7EoFl46+VJSz5PRrH0Ihntg728mfYg+Vx9ltrLEs92TnFyikWfJ45L6S3j99OtG7nIiLP405JUltMvW4+pBQUk8+aYn1BBcOTex40RBURTW1AprknHdTD0M0Z0mfHLOJ3EH3Lx44kW9lyKVAY8Q3eE+zLqdHpxuPxfVFEV8f0tVIXaXj94hr/DuQdIq3WW2MhaUL+Dd9neTcvyMJ78Mln4W9jwtKj6TRBPdkSxJAC/v66Qk38qV86vPe/yyuVUEVdh0tFds9SZpMM5YSm2lrK1by8snXzasSZOl+dLQsJwfTtom0O/uj9vP3do7zKPvnqTHOSbuclR0J8/TrXHVjKvod/fzYbcx2XTS5OSLG/7DL4nUmUnQM9JDqa0UiynB5kdNdFfNS+w4E7Cufh1Or5PdPbuTeh6D+DFEd5owv3w+88rm8eyRzGqo7HeFqpZhRPeJnmEAZlaEn1QJMKtSPHese+hcU1wSK5cbGjawt2cvg+7BpJ0jo1n7IAT9CQ2tiKXSve1kP6tmlGE1n/8Rt6SxhCKbhfeP94FrQESKJSEu8EKum3kdHcMd7Oo2BuVMCkUR1e6eQ3D8jUkdos/VF5ef+50jPWz89p/4pz8c4Ibvb6LD7god6JionOZLyPuegEvrLyXXnMvrp15P+rkympX3g9k66dHwva5eOU2UPYfEtVMg4VhRuKT+EnLNubzS+kpSz2MQP4boThMUReETsz/B4YHD7O3dq/dypNHvCVUtw9hLTvQOAdBcWRDx/S1VQnQf7xkCexugQFFyKt0AG+o3oKLy/tn3k3aOjKZsJsy7EXY8Ap6hSR2i392PxWShyBp+B6TD7uJ0/8h5E0w1zCaFlTPK2Hqi79yQiiSMY76QjY0bsZlthsUkES7+BBTWTNqe1Ofui7nS3e1w8+CTHzKzspB/umkBQ24/n/zxZpHz3nc86dYSjXxrPuvr1vP6qdeNXZJEKKoWKTi7fgVDPRO//gJ6XD1xNVEGgipvHupi15kLijPdh4SfO1GL0wQUWAu4tOFSXm191Ui/mWIYojuNuH7m9eRb8nn68NN6L0Uamqc7UqXbZjVRW2yL+P7aaTbyc8yi0m1vE8MqJA/GGcvF5RdTkltiWEwSYd2fiWainZObtNrv7qcsN7I3d1uosXZ1c/hK5JqZZZzoHcZ+9rB4IIlJAhr51nyuaLyCV1tfxRdMLDM4a7HkwOoH4PibcTfjqqoq7CUxVrr//ZXDePwBHrl7BXetncGP71xO24CLF/d0pFR0g7CYdLu62dOTeelVKWXdn4mpuNvi32WLt9L9rT8e5t5f7ODmH77HPzy/T+xOq6qodFclr4lyLNfMuIZ+d7+RfjPFMER3GlGYU8iNs27klZOvxG9v8HvB2QW9x+DUZtj/OzjwAhx9Ddp2iC+SkX5IcePFgHuAAmsBOebxQvlEzxDNFYWYTJGrAoqiMKu1O5yOAAAgAElEQVSyMFTpPp20vGUNs8nMurp1vHf2PaPyNFkaV0LjGtjyQwjEX4UZcA9EtZZsOdFPkc3CvDAxkwArZ4j3draG/JVJzMwdy3Uzr2PQM2ikCiTC8nvEJMgt8VW7HV4H/qA/pkr34IiX3+1q5zOrptNULnbZNrRUMLOygBe2HQHn2ZT4uTUua7gMi8nCH0/9MWXnzEgqZsO8G2DbT8ETeyBBUA3S7+qPeQT8K/s6efhPx7lmQQ13rW3i8c2n+MOeDjGV1z2Y1OSSsVzScAn5lnxeOWlYTKYShuhOM26bexveoJfnj8cQ9u8dhp1PwiNXwz9XwrfnwA+Ww39fA8/cDb+5E568FX7+Efj+MviPZvhmBfz8Ktj0behOfjRevzvyZMGTvcPMrIhsLdFoqSrkuFbpTrLoBmExMaIDE2T9n8HgaTj4QtxvjXbNAGw72cfKGWWYI9yszastxmxS8PUcE3aFnPy41zAZ1tetpzin2LCYJEJ+mUij2PNMXDaBeDK63zzUTSCocsuyc58liqJwy5J6+ttCN2oprHQX5RSxvm49r7a+aqRRJMr6vxC7bB/8Iua3DLgH8Kv+mET3sW4nf/mbXSxqmMb3Pr2Ur9+4gDnVhfz0nRNjkktSI7rzLHlc2XQlr7S+wrBvOCXnNJgYQ3SnGXNK57C4cnH0hsqAH3Y8Ct9dAs8/CK5BuPR/wfXfhlt+Cnc8C198F76wCe57HT7zjHj8mn+H9X8OAS+88U/wozVCgLcmz0rR7+4P6+f2+oOcGXAxM4qfW6OlqpAO+wiqvT0loluLDtzUvinp58pY5lwrxmi//7240ygiXTMATreP4z3DLAszwVTDZjXTUlmIzX5CVL9ShNVsZeP0jbxz5h18CY6lzmpWf1EMy/ngv2N+SzzTKF/d30lNsY1F9dPOe3zjvCqalVDqTgpFN8ANM2+ge6Sb7V3bU3rejKNhuUjC2fxDYTWJgV6XmIQai73kR28dZ8Qb4AefXkaOxYTZpPDZNU3sbbdzfH/I5pEi0Q3wqbmfYtg3zAvH4y9uGCQHQ3SnIbfOuZVWR2t4r9bJTfDwOvjDX4gt0Lv/AA9thY1/Dys/D4tvh9lXQc1CqF0ktvrnXC0eX/NFuPIb8IW34S8PwUf/BYY64Rc3wOvfgCQIhQH3AGW546uWp/uHCQTVmET3rMoCqhhECXhSkkRhRAdKwGQSI5rP7oRT78X11miV7kOdYtt4Qd20sM9rLKgtotJ7JuXiaWPjRpw+pyGeEqFyDrRcBdt/HrNwirXS7fIGePtID1fNrx5na5tfW8yivFB1vWxm/OtOgMsbL6fQWsjvj/8+pefNSDb8BTg7RHRpDIyK7vzootvp9vHSvg4+s3o608vP7Z7dvrKRsoIczh7dBXmlUFg1+bXHycLKhSysWMivDv7K2CWZIhiiOw356IyPUmQt4pkjz5x70O+FF78Gj90gqkC3Pwn3vAzNl0yuU7q4VkR0PbgFlt0F7/4nPHLVpHNOIxGpaqnFBTZHiQvUaKkqpEkJjfZOQRIFhKIDe/di99hTcr6MZPGnIb8c3v9+zG9x+V24/K6IovvAWQdARD+3xrLKANMYwlk0I+Zzy2Bt3VryLHm8efrNlJ4341j7oPDI7nsuppfHWunedLQHty/IRxfUjHtOURRWFvXToZbjNUVu7k4GNouNq5qu4vVTr+Pyu1J67oxj5hVQuxje+25MPUyjI+Bt0e0lbx7qxu0L8vGl5w9ny7WYuXlJPbbBI/jK5iQ9ueRC7lpwF62OVt4681ZKz2sQHkN0pyF5ljxunHUjr596XaR/DPXA4zeJMclrHoIvbRYNIzL+cecUwMe+B7c9ISLWfnzJpFMnLiQQDNDn7gvrlTvRG8rojqHS3VReQLO5W/whBUkUIHzdQTXIe+3xVWkNxmDNg1UPwJFXoOdwTG/Rqk6RKpYHOxyUFeRQXZwb9ThL88VxTqjJi5cMh81iY33det46/ZbRiJsIM6+AirmiKS4G+lx9mBUz03Kj74D88UAXxTYLq2eGv6mbZTrLiWAN21v7415yotw460ZG/CPGDVuiKIqodvcdg0N/mPDlXcOioFNVEL1C/c6RXkryrSydPr6I9JlVDcxW2jhBcgdxheOq6VfRWNTIo/sezagZH+mKIbrTlE/O+SS+oI/nd/0MfnoZnP0QPvEIXPMvyWkMm/8x+NL7UL8Mnn8I3vjmpCfDaQx4BgiqwbDbdid6hqgozKXYZp3wOFaziYX5/QQwpcReAiI6sDS3lLfb3k7J+TKWlZ8Hiy3moRU9I6LqVJUf/gvwQIeDebVFE476nmnqAGCPK3VbvRobp2+k29XN/t79KT93xqAosOp+8bnXNnEkWp9bjIA3KZG/8gJBlbcOdXPFRVXjhioBEAxQ7DzOUWU6bx7qTmT1k2J59XJqC2r5/QnDYpIw8z4mLEKbvjPh91jnSCdltjJyzZFv5INBlbeP9LChpSJsA3dLvosSZZhtI9Vh3p1czCYzn1vwOfb27jXiA6cAhuhOU1pKW1haMpdn9z+GGvTDfX+Ehbcm96TT6uGu54XdZNO3Jj3dS0MTUOEaVGJNLtGYY+2lS6kUU8dSgNlk5vLGy9nUtsloikuEggpY8hnY/WsRaTkBo1u9YXZH/IEghzqdzJ/AWgKQZz+BBytb+lOTXDKWSxsuxayYefOMUbFMiMWfgpwi2PrjCV/a55p4MM7utkH6hr18ZF4EYdR/EsU3grd8vphommJMionrZ17PlrNbRj3qBpPEZBahAR274MSfor60c7iT6vzoYvlgp4PeIQ+XzYng++4RSVev95bg8qbeW/2xWR+jzFbGo/seTfm5Dc7HEN3pSsdubm3dzSmLie03/LvwqKUCkxlu+C7Mvwn++H/h0OTjz6IJqBM9wzFZSzQa6eJEoBJfIHVb9hunG01xUljzkGjS3f6zCV8ardJ9sncYrz84oZ8bgL5j9OXUs/ds6qO0puVOY0X1CsMmkCi5RaIAsO85ET8ZhVhGwG860ouiwKWzI3h3u/YBkN+4iMOdDka8qZ/0d13zdQTUAK+2vpryc2cciz8tIkPf/c+oL+sa6aK6ILrofueIsKtFFt3CPnfAV8/mE73xrzVBbBYbd8y7g3fb3+Vwf2xWPoPkYIjudKT9A3jsRq4O5lJsLeSZrhSPJDeZ4OYfQ90S+O3noXNyY+kjdYXbR3z0DXvjEt1l3rOcClZzqm9kUmuZDGtq1xhNcTKoaIGLrhdpFN7oIrjH1YPFZKEkd3wk4IEO0UQ5vy4G0d17FFdxM6f7R3C4U79TccX0KzhhP8FJ+8mUnzujWPsQKKYJm3F7XD0TVrrfO9bLwvpplORHmGjbtR8UEw1zlxFUYU9b6puoZ5fOZnbpbCPrXQaWXNGQe/Jt8Z0agc7hTmryxzfWjuXtI93Mqy2mKtL05M69qHllDFnL+NPh+MfQy+D2ubeTb8nnv/fHHrVpIB9DdKcbZ7bB4zeDrQTbPS/xsZabef3066nfbszJh0//GvJK4Fe3g6Mj7kNoVcsLK90neoeA2JJLAHDbyfUNckqtEuPgU8RoU9wZoykuYdZ9BVwDsOtXUV/WM9JDZV5lWM/2gbMOcswmZlVOcN0EfDBwEkvV3NH3pZqNjRsBjESBRJlWD4tuhw8fjzgsJxAM0OvqjWoRGPb4+fD0AOtmRUmo6NoH5bNZNEMIsF1n4pwKLInrmq9jd89uTjuiV/cNYmD5PZA7Dd79r7BPj/hGcHqdUSvdI14/H5wa4NI5Ua6d9g9R6pezdlYFm46mvtINYoft1jm38srJV2gfatdlDQaG6E4vWt+DJ26BgkoRB1gynU/O+ST+oJ/fHv1t6tdTVCOEt2sQ/ucBCMYnPHtcPRTnFI9rUNHiAmOudPeLauFptVqMg08hG6dvpHukmz09e1J63oyjcTU0rBR9AlFivHpcPRHzcg91OmmpKgzfBHfeQQ5D0E9J8xIA9usgumsLa5lfPt/YJZHBhr8Qed1bfhT26X53PwE1ELH5FmDbyX78QZX1LVGq4V37oHoBZQU5NJXns/P0QKIrnxQ3zLwBgFdajfHeCWMrhlWfh4O/h96j457uHBHDkGoKIle697U78AVUVjdHmJLrGRKe7vrlXDK7gpO9w5zpT92O7FjunH8niqLw2P7HdDm/gSG604cTb4uR7cV1cM9LosIDzCyZyfq69Tx16Cm8AW/q11W7CK75Vzj5Dmz5YVxv7XX1hm2iPNE7hNmkML0sxia3ASG6HXkNnOpLrUf3isYryDHlGB7LRFEUWPdnMNAaNcZLq3SH41Cng4tqiiY+V8gONW3GMiqLctl/Vp+s9Y2NG9nTs2d0x8dgklS0wIKbhT3JNb763D0ikkaiie4tJ/rIMZtY0RRBOLntwjdeczEASxpL2Hl6UJcItpqCGhZVLDJu2GSx+kvCavLed8c9pcUFRrOX7GkT19yihghTcDt2gRoMiW7x2aVXtbumoIYbZt7Ac0efE3HDBinHEN3pwLHX4Ve3QekM+NyLosI8hrvm30Wvq5eXT76sz/qW3QVzrxej4+Pwd/e4eqjIH78ld7J3mOll+RNXLDVClW6lrDmlnm6AwpxCNtRv4NXWV42JX4ly0fUiZ/29yKPhe1zhRffAsJcuh4eLamMQ3V37wJIH5S0sqCvWxV4CwtetohqxkzLY8JfgcQjhfQFdI0I4RbOXbD7Rx5LGEvJyzOFf0HVA/K4WontpYwndTg8ddndi654kV0y/gv19++kc7tTl/BlFYSUsvVMkKDnOnveU9v83mr1k15lB6kvyqCiMECmo+cXrlzGrsoCaYhvvH9dHdAPcPf9uPAGPPrvjBobonvKceBue+gxUzBYj3cOMkF1bt5aWkhYeP/C4PuH3igIf+74Ycfvb+8EX28S03pEIle6e+OICGTgJ+RVUV1RwWodtu2ubr6XH1cOH3R+m/NwZhcksGuPad8CZreOedvvdOLyOsPYSbfz73JoYmig790D1fDCZWVBXzNHuIdy+1N8wzS6ZTXV+Ne+fTXEjdCZSuwhmXy0sJt7zPwMmqnQ73D72tdtZM2sCawlA9QIAloQGoOjl6/7I9I8ARk+ANNZ9WVSjN5+/W6vZS6LdsO1ps7OoIcrQpfYPoKQJCipQFIXlTaW6XTcg4oZX16zm6cNP4w+mPoEn2zFE91TmwyfgqU9B+Sy46wUoCP+loCgKd82/iyMDR9jaOV6spISCcrjpR8K79vo/TvhyVVXDVi2DQVVkdMeRXEL3Iaicy/TyfDod7pQLqEsbLiXPkmdYTGSw5A7IKwubRjGadhPmRu1wZ2j8+0T2ElUVuzGhiuXFddMIBFWOdDkTXHj8KIrChvoNbDm7xfjyk8ElfwUjfaKpcgzdI92YFTNltvDWka0n+gmqsHbmBKLbVgLFwtZ3UU0RZpOi2y5J87Rmmqc188bpN3Q5f8ZROgMu/gR88AsYOTdttGu4izJbGTnm8Ik2A8NeTvePsLgxgrUEoP1DqF8++sel00toG3DR7dRnlwTgM/M+Q+dwp3HTpgOG6J6K+Fxi6uMLX4aGFXDn7yA/gtcwxHUzr6PMVsbj+x+P+rqkMvtKWPUF2PowHIv+ZeDwOvAFfeOSS9oHXXj8wdiTS4JB6D4IVfNpKs9HVaFtILXV7nxrPpc2XMprp14zxFOi5OSLKZWHXoTeY+c9peW6R6p0lxXkUFkUffw7jnaRklKzEGA00/tQR+pFN8C6unU4fU729k4udtNgDNPXQNN6eP974D/X39I90k1FXgVmU3jryHvHerFZTSxriiKcOveJG7VQao7NaqalsnA0plIPNjZuZEfnDuwefXoSMo4NXwXvEGx/ZPSh9qF2GgobIr5l96ifO0Kl29kF9jPjRDfArtP6Vbsva7iM+sJ6nj70tG5ryFYM0T3VGDgFj34Udv4SLvmaENxFE4+OzTXn8qmLPsWm9k2cGDyRgoVG4Kp/hMqL4HdfOq9icCGRvHIne+NMLrGfBq8TqhcwvUy8J9W+boBrZ1xLv7ufbZ3bUn7ujGPV/WDOGdeYq9kEwla6u5zMrZ54/Ptoz0HNIgAay/LJsZhSnnqjsaZuDWbFzLvt7+py/ozjkr8UN1Z7fj36UPdId1R7wLaT/SxvKiXXEsHP7fcIS1L90vMenq9jPwCI5KSAGuCdtnd0W0NGUb0AZn9UFI1CFqX2oXbqCusivmVPmx1FgYX1EUR36ybxe/ra0YcW1E3DalbYqaPFxGwyc1PLTWzt3GrEB6YYQ3RPJY6+Dj+9DPpbRRTfR/6v8LnGyO1zbyfHlMMTB59I3honwpoHH/8ZDPfCW/9fxJdporu2oPa8x0+ExE/Monu0wWkBTeUi7UQP0b2hYQMF1gLDYiKDwiox4nvXr87LXo40TElVVY51DzG7OobdkU7NmzsfALNJYWZFQUrz3cdSnFPMospFvN9u+LqlMOsjULsENn17tNrdPdId0c/t8gY43OVkaWNp5GN27oWAV0RajmF+bTGdDjd9Qx5py4+HiysupjKv0rAIyGTDXwiL0s5fEggG6BjuoL6wPuLL97QNMrOigCKbNfwLjr8pbEl1S0YfslnNzK8t1i1yUuOmWTehoPDC8Rd0XUe2YYjuqUDAB2/9aygSsB4eeAvmXhv3YcpsZdw460Z+f/z39LsjV5mTTu0iWHkf7HhUTHELgya6L8w/PdE7TGGuhcpIneAXoh2/ah7lBTkU5Jh1aabMNedyReMVvHbqNXyB1E84zDjWfhn87vPSKLpHusNOo+wZ8uB0+yceigOiYlk2U4wQDzGrspBjOlW6QVhM9vftZ9CtX+UrY1AUuOL/iOjJD0UWcTTRvf+snUBQje7JPRPavWpYdd7D2uTTgzpZk0yKiY3TN/Ju+7u4/fr5gzOKprXQuAbe/z7dQ+34g37qi8KLblVV2XXGHvnaUVU4/hbMvGxc8Wzp9FL2tNnxB/QbqlZXWMeq2lU8f+x5Y7hbCjFEt94MnoafXAZv/5uYrHbfa6JxcpLcNf8uPAEPvzn8G4mLnASX/2+wTYOX/yZs/FvHcAcWk2Wcp1tropzQJqDRvV90hucKa0FTeUHKs7o1rm2+FqfXyXtn39Pl/BlF5RyYcy1s/9noVm+vq5eKvApMyvkfW8e7xd93TKK7Y/eon1tjVlUhZ/pHdEkwAVhTuwYV1bAmyWL2VcLb/fZ/MDLSi9PnjCi6tRSJxY1R0ifatkFxAxSfvyun9QMc6NDPU72xcSMuv4stHVt0W0PGseEvwH6att1PAkSsdHfY3fQOeVgcKZ+75zA4z8KsjeOeWjq9hBFvgCNd+t3sg6h2tw+180HXB7quI5swRLeeHH8LfrYRHG3wiUfglh+LRrIEmFkyk0vqL+GpQ0/hCeiz7QmIxs+Nfy88bfvG54F2DHdQnV89TkDFHRfYtX80iQKgqTyfUzpN+1pbt5YyWxnPH3tel/NnHOu+IrZ6dz8FiCSBcOJJ82PPqprguhnqgcFTUL/ivIdbqgoJqtCq083axRUXU2AtMISTLBQFrvwGDHfTvfl7QOS4QC1juarIFvl4bTugceW4h8sKcqgptulW6QZYWbOSQmuhMShHJrOvhtoltO/5JRBZdO+ZqInyaMhqGEZ0L6gT79FrMJfGlU1XUmAt4HfHfqfrOrIJQ3TrwUg//P6rYqR7fjnc+yosvHW0Mz5R7lpwF/3ufl468ZKU402a5fcIf+Wr/wc8538xdQ53jrOWuLwB2gddsSeX+NzQd2zUnwswvTyftn4XgWDq88qtJis3zryRP535E32uvpSfP+NoWgd1y0R2bjDA2eGz1BWMb2o61j1Efo6ZmuIowglExRKg8XybwKxQ/4Bevm6LycLKmpW8f/Z9fXL2M5HGVTD7arr3iGplpEbKXWcGo1e5HR0ifeICa4mG3s2UVrOVSxou4U9n/mQM55KFyQTX/CtnfU4Uxvcdaexus2MxKaM7HuPY/z9QtxRKpo97qrmiAJvVpOsNG0CeJY9rZlzDa6deY8SnT7Eq2zBEdypx28Wo2e8tFVmyq78In38DquZJPc3qmtXMKZ2j37AcDZMZrv82DHXCpu+c91Q40a1VGmNuouw5JAYahAZWADSVFeANBOl06ONx/Pjsj+NX/fzhRORR5gYxoiiw/s+g/zjBfc/ROdxJbeH4L8AjXU5mVxVObEk6vVmkotQuOe/hWZWFKIp+ohtgQ90G2ofaaXW06raGjOPyv6UjIAZ1XfhZA9A75KFtwMWSaH5u7UatYXylG0Qz5bEefYYraXxk+kcY8Aywq2eXbmvIOJrW0VY+gyp/gJzh8AWUPW2DzKstxmYNE3bQfwLO7oQFHw/7XrNJYW51EQd1jJzUuGHmDbj8Lt5pN1JwUkHSRLeiKI8qitKtKMq+MY+VKYrymqIoR0O/S0OPK4qifE9RlGOKouxRFGXZmPfcHXr9UUVR7k7WepOKqsLJTfDwenjtH4Sn9IvvwrX/BrkxVnXjQBuWc2zwGJvPbpZ+/LhoWCG86pt/AH3HAQgEA3SPdIdJLolTdLfvEL9rF48+NJpg0quPVWBmyUwWVy7muaPPGVVLGcy7CaoW0Pf2v+AL+sJWnY50OZk70VAcgNZ3hXiynl8Rt1nNNJTmcbxHn2sGRPoNYEQHyqR+OZ3VFwFQbRo/3ESzB0T05AK0bQ/dqC0K+/T8umICQZWjOnpzN9RvwGqyGhYTyZyaVsV0vx/e/Oa454JBlT1nokyi3P00oMDF4UU3iJ6Ag50O3b8nllYtpdxWzmutr+m6jmwhmZXuXwDXXPDY3wJvqKo6G3gj9GeAa4HZoZ8HgIdBiHTg68BqYBXwdU2oT3l6jgiB/fAG+NdGeOwGUfn9zDNw9+/Ps0Qkg2ubr6Uir4LHD+g4LEfjqm+CxQYvfQ1UlV5XL37VT03+BcklIW9uc6ye7tNbobAaSptHH5peFhLdOvm6AW5puYUT9hPs7tmt2xoyBpMJNv49Z4faAMbZS3qHPPQOeZlTPYHodg2KJsqm9WGfbqks1LXSXV9YT/O0ZkN0S6aj7mLKAwFyN/3XuOd2nR7EpMDCaCO8z2wXOyOW8GlK86dAM2WB9f+xd97hUdTbH343m930bHrvnYRQQ5EaBFRAKYqiXhF7uz8RFRvXgnrtiuL1YrkqqKAiVqSK9F4ChCSkkd57L1vn98dmkZgEAiSZ3bDv8/CIM7M7J2F35jPne87n2DHaezTb87eLLuD6EwXN5QQ4R+itS4vbryLkVDXRoNR0/sCm00Hit3rXEkXXg3UGeDtS26wWbVXWgNRCypTAKewt2kuLpkXUWK4Eek10C4KwB/i7b90s4Ku2v38FzD5n+9eCnkOAk0Qi8QauBbYJglAtCEINsI2OQt64yN0HX8+C/46AAx+BrbPec/iG5fDgHoi4psdqt8+HXCrntqjb2F+8n8yazF4/33lx8NQ3VWbtgNT15DfkA+Dv4N/usJzKJrwV1tjKLbv3vvmH9FPozvl9+jjZIJNKRPHqNnBd8HXYWNqwLmOdaDH0KyKnUeIRDoC3dXu3m4xSfU1klFcXdZUGcvfpS5FC4jvdHepuT3ZFoyi9AAbG+Y7jWOkx842vBynVqfCWO8ORz6A8rd2+k4V1RHg6dH29aanRZ7qDxnX5/gEuttjJpaLWdYN+UE5RYxEZNRmixtFfqFfVU6OsITBiht4UYOu/2rlwnW2i7KwfIHW93pVs6PzznsNQC24MJSZTA6fSomlhf5HZeau36euabk9BEEra/l4KGLpbfIGCc44rbNvW1Xbjo7ka1twMq2boB7ZMfgmeSNVntWe8C8Pv0lvo9SE3R9yMtdSa1amr+/S8nRJ3L3jEwLaXyK/NASDAsX2DSVabXWC3qCvST6M8Z9IX6Gvl/Jxtya8Wr1TATmbHnLA5bMrZRFlTmWhx9BskEorDJgHgk7G93a70Mr3ojvC6QJlW9k6Q2XVZmxvmYY9So6O4VjzBO853HCqdiqOlR0WLob9R0lSCt9cQfRnflmfPCidBEEgsqD1/PXfmnyBoIXJ6l4dYtDXSiTkOHiDePx4JEnYUmEtMeoL8en1iKMAlQp8wytsHe989uz+xoA5buZRwj7+tsKma9QLdcyBEz+Z8RHnrXyv2AxvAcM/hOFs580feH2KH0u8RrZFS0K+D9VhaSSKRPCCRSI5JJJJjFRUVF35BT2PlCMpGfSnFolP6ccTdGN/emzhbOzMzdCYbsjacneYnGlJLvY1XTQ55ZzYhs5C1q88VBIHsisbul5YUtNmr+Y/qsCvAxVbUTDfA/Oj56AQda1LXiBpHf6HEyhYHwQL7Ax+C6q8HqvTSBlzs5BceppS9C4LGgmXH2l7Qi24Qt5lyuOdwbCxtzCUmPYQgCHprUscAiF+if/BK1U/fy61qpq5FfX7Rnb4J7DzAd/h5zxPt40hqSQM6EVdJ3GzcGOIxxFzX3UPk1ecBEOgQqHfhGjQPdvz7rP1tYmEtA30USC3+tmq99z29BfD0d/T3vPPgaC0jyNWWpCJxbQNB76B0dcDV7CncI67V8BVAX4vusrayEdr+W962vQg4t9bAr21bV9s7IAjCZ4IgxAmCEOfu7t7ZIb2L1BLu3qR3W5DZ9P35u2B+9HxUOhXfp30vdihtQyvGkV90BD97H6TnTOmqalLR0KohpLt2gfmH9JlLr44NToGutuRXNYta3+jn4Me1gdfyQ8YP1KvEz2SYOiVNJXg7+EBTBRz+5Oz29LIGIjwv4FxSlaW3luzEL9eAQXRnlotn4WUltWKE1wiz6O4h6lX1tGha9A/3I+7V12avXwiNFSSeHYrThehurYeMLRA1Xd9XcB6ivR1pVGoorBG3LCjeP5606rSz037NXDqGTLefg5++fHHmf/Srqr88jCbvEKeL6zs2UaZthH3vw6Bb9Xan3SDGV0FykXHcH6YGTqLr9SkAACAASURBVKVJ3SS++UI/p69F93rA4ECyAPjtnO13trmYjAbq2spQtgLXSCQS57YGymvathknfVCrfbEEKYKYHDCZNalrqFOK/EQtkcDUV8iz0BKoUrXbddHOJfmH9M4onWQTAlxsaVBqqGkWdxz7PbH30Kxu5vNTn1/4YDPnpbipGB+nMAi/Vm+72VSFTieQUdpw4XruxO8ACUTP6vIQJ1s57g5Wok+IG+c7joKGgrOZNjOXTkmTvpLR294bpDKY86l+leTn+0nMr8JWLu26ATdpHaibYeidFzyPMUymBIj3iwdgd8FuUePoD+Q15OFl54W1ZZvTkaUVzFsDjj5IVt/EGF0CgwwPbBolHFsJP9wJHtEw/e1unyfWV0FRbQs1TaoLH9zLjPQeiaPckW15ZheT3qQ3LQO/Aw4CkRKJpFAikdwLvAlMlUgkmcCUtv8H2ARkA2eA/wGPAAiCUA28Chxt+/NK2zYzF8EjQx6hSd3EyuSVYoeCzncoBXIrAsrP6L1M2zA4l3Qr091aD2XJ+ibKTgh01Qt3scbBG4hyiWJm6Ey+Sf3mbObEzMUjCAJFDUX42PvA1Jf1ZVzbXqSotoUmlfb8ziU6LZxYA2GTwbHjYJ1zifC0J7NM3GEV43zN1oE9RXFjMXDOcBOPKH1/TfZOQjI+Z6BvJ+UBoK/7TlgJnrHgO6zj/r8R6eWAhUT82txgRTD+Dv7sKtwlahz9gfz6fH1pybnYucJdG6mz9uML2btMPbEQNj0NH42ADYv0ZUh3b7qo3q1YX/2xxlBiIrOQEe8fz86Cnai14ias+jO96V5ymyAI3oIgyARB8BME4QtBEKoEQZgsCEK4IAhTDAK6zbXkn4IghAqCECsIwrFz3udLQRDC2v6IrxpNkAjnCK4Nupbv0r6jtrVW1FjKm8tRIhCoBTYuPtvYlF3ZhFxqga9zN0pzcvfqnSiCxne62+DVnS+ibaCBx4Y9htxCznvH3hM7FJOlqrWKZk2zvvHWY4C+hOvkaipP/A5wfo/uM9uhoRiGXThjGe7hQGZ5o6i1uf4O/gQ5BrG3aK9oMfQXChr0PfjtXJKGLUAbPYf5TV9xh00Xy+ip66E0SV+S0o3VS2uZlFB3e9GbKSUSCRP9JnKk5Ih5uuBlIAgCOXU5BCmCOu5U+LLM/z98IZmDdXUqJH4P9h7wjx/1k6WtL7Dq9jcG+hiP6AaYEjCFBlUDR0qPiB1Kv8U8kfIK4YFBD9CsaRbdyeRsV/ig2yFr+9nGFEMTZaeZp79z+jewUnTaRAnneHWL3EwJ4G7rzv2D7mdHwQ72FJonfl0KBvEU4NDmdjPxWfCIIeLwczjQTITneVZHjn8Ftm4QMe2C5wn3tKdZpaVIRAcTMFsH9hSFDYU4yBxwlJ8jhCQSUka8yQFtNNfnvAYZf6tWbK2Dzc/os9wXsHw7F7HHwRuI949HpVNxsMRcl3uplDWX0ahuJMwprNP9x4pb2RvwMJInUuC5fLjvT32/0iWUlypsZQS42JJsJKJ7jO8YbC1tzSUmvYhZdF8hhDuHMyVgCt+mfkuDSrwl9LwGfa1qQNyD4DMMtjwHLTVkVXTTLrClVi+6Y+d26URhLZPi5WhtFKIb4M7oOwlzCmPpgaXUtNaIHY7JYahvPmsxKbOGWR9ho6rmdbvvcbCWdf7ChjJ9M9yQ27r8rJyLoUxFzGZKgAl+E1BqlRwuOSxqHKZOQWMBfg5+HZpsT5a28oD6CTTu0fo63KOfQ1Olvmzt23n6Zt0bPrig+8S5RHs7UlzXKnpt7jDPYTjIHMx13ZdBVq1+cnKoU2iHfS0qLZnljQw530CliyTWV0GKETywgb6Ze4LfBHYW7ESr04odTr/ELLqvIB4Y9AAN6ga+Tf1WtBhy63Kxklrh5eCrHxjUXIV221Lyq5sJde9GPXfyj6BphWHnz0IFuIrr1X0ucqmc18e9Tq2yluf3P49O0IkdkkmRX5+PVCLV13Qb8B3GOqsbuUH7p140dcbWJfr/DrurW+eJaPPcFbuZMs4zDnuZPTsLdooah6lT1FCkd5/4Gyfza7FxcEZ250/gFgEbn4R3w2FZtL5B+8b/6Zu0L4JoH+MYdCKzkDHWdyx7CveYrzOXyJnaM0DnojuluA6tTiC2s0mUl0iMryP51c3Uidz4b2Bq4FSqW6s5VnbswgebuWjMovsKYoDrAOL94vn69Nc0qsQRFpk1mYQ6hWIhsQDvQTD6YaTHVzFYSO9epvv4N/qlX+8h5z0s0Ai8us9lgOsAFsctZk/hHr45/Y3Y4ZgU+Q35+Nj7ILP4K6Ot1up4sfFGzjiN0/cGpPza/kXpm/UPaBOfAbfOl4n/jsJWhpej9dkpl2Ihk8oY5zuOXQW7zMLpEtHqtBQ2FnaYegtwsrCWwX5OSOw99FOCH9wL4xdD8Hi4awMMvPGiz/eXg4n4GcuJ/hOpaq0iuTJZ7FBMkqzaLFysXXCxdumwz1B73cEu8DIw1HWniOx+Y2C833hsLW3ZnLNZ7FD6JWbRfYXx0JCHqFfV822aONnu9Jp0Ipwj/toQ/xwttj68Kfsf4Re6jhWfhJKTMPSOC9bPBbraUt6gpFmlufyge4jbom5jSsAUPkj4gFMVp8QOx2TIr8/vML00p7IJpVZC6tjl+qzkugWw5hY4uAIO/hd+fkA/FW7soos6V4SXw9kpl2IS7x9PdWu1+XNyiZQ3l6PRaTpkuuua1WRXNDE0oC1TKZHoH/6v/hfc9t15R76fDzd7KzwdrYxCdI/3HY9UImVXwS6xQzFJsmqzOs1yg150uztY4elo3WPni2lbJUkxEr9uG0sbJgdM5o+8P1Bpxbcy7G+YRfcVRoxrDPF+8XyV8lWfZ7srWyqpbq0m0jnyr41W9vwZ9jwhkhIG7LoflF0IHkGAP54HaycYPO+C5wposw00BgcTAxKJhJfHvoynnSdP7X5KfN90E0AQBAoaCv5qomwjrS0bHebnAfN/1TdX5u6Drc/py0oU/nD7D92q5T6XSE97Mssb0WjFzTCP8x2HpcTSPGHwEjE03/rZtxfdp4rahuL0YHmAgWhv42imVFgpGOox1GwdeAkIgkBWXRahii5Ed2Edg3x7LssN4GpvhbfCmuRi47kfTA+ZToOqwWxd2guYRfcViFjZ7ozqDID2mW5gt3YgL1kuxLLwMHxzo95B4O8c/0pvFTj5RbBxvuC5Ao3IweRcHOWOvD3hbcqby3lm7zNodMaTiTdGqluraVQ3EujY3jM3o7QBqYVEX5JkZQ+TnoMlRfB0DjyZDg/vB4XvRZ8vwtMBlUZHrsifG4WVglE+o/gj7w9RJ6uaKrn1uYDeu/pcDJMoY3uwPMBAtI8jZ8obUWrEb0CL948nsybzrFe5me5R1FhEk7qJcOfwDvuaVRqyKhoZ2MOiGyDGR0FSofGI7tHeo3GxdmFD9gaxQ+l3mEX3FUiMawwT/Sb2ebY7vSYdgEiXyHbbsysayfK8Dm5eBcXH4Zs5UN92s9CoYPsr8PsiCJ4Aw+/q1rnOenUbmegGGOQ+iCWjl7C/aD/vHntX7HCMmk69ltFnukPc7LCylP61USIBWxdw8Lrk6bCGG2qKEWSdrg28lqLGIlKqUsQOxeTIqs3C1tIWT1vPdttPFtQS6m6HwqYLx5vLYIC3IxqdQKbIjbgAE/0mAphLTC4Sw3ctxi2mw77TxfXohL8G2vQkQwOcyK5sEt39xoClhSXTg6ezq2CX6LM9+htm0X2F8vDgh6lX1fNd2nd9ds70mnQ8bT1RWP110RIEoc0u0B6iZ8ItX0NZCrw/EJYPhg9iYe97MPQfcPs6sJCe5wx/4WQrR2EjI0fkqZRdcXPEzcyPns+a1DX8kP6D2OEYLTl1OQAEOQa1255R1kDE+YbiXCLhHvZYWVpwygiyTlcHXI2lhSVbc7de+GAz7ciq09flnmsXKAgCJwvqGOzf86UloC8vAeNopgxSBBHkGGR2wLlIUqpSkFnICHfqmOk2XBN6Y5UkLlC/epuQZzyWsrPDZqPWqdmca26o7EnMovsKJcatLdt9uu+y3SmVKQxwGdBuW3WTiroW9V92gVEz4JFDED0LanJBp4Z5a2DWf/X+zBdBqLvd2fHyxsiTw59krO9Y3jzyptlpoAsyajKwsbRp1xDXpNSQX91M1PnGv18illILon0cjWKpV2Gl4Crvq9iSu8XsmXuRZNdmE6IIabetqLaFykYlQ3tJdAe62mErlxpFXTford+OlB6hsqVS7FBMhtOVp4lwjkAu7dgLklxUh0cPN1EaGOzvhEwq4ZgRie5Il0ginSP57cxvYofSrzCL7iuYhwc/TJ2yrk+y3ZUtleTW5zLUc2i77VkV+kx0O7tAl2C4eaW+PnfhCRhw/SWdM8zDnjPlxpnpBpBaSHlz3Ju427izaOciqlqqxA7J6EivSSfcKVxvMdlGZrn+Qao3Mt0Ag3wVJLf58YrN7LDZlDaVsr94v9ihmAz1qnoqWioIcWovuhML9A9SvZXpllpIiPJyMIpMN8D1IdejE3RsydkidigmgU7QcbrqNDGuHUtLQG81OagXGnBBP9AtxkfBsdzqXnn/S2VW2CxSqlLIqMkQO5R+g1l0X8HEuMUwwW9Cn2S7T5SfAGCYx7B22w2Z6LDOBuPYuoD1pS/lhbrbU9moNJqhA53hZO3E+5Pep1ZZy5O7n0StM95Y+xpBEMioySDCpX3jbXqpXtRE9ZLojvVzolmlJadS/FWSSQGTcLNxY136OrFDMRmya7MBOjhQJBbWIre0IMrLsbOX9QjRPo6kltQbRfNriFMIUS5R5ma4blLQUECDuqHTeu6aJhXZFU0MC+wd0Q0wIsiZU0V1RtGIa+CGkBuwklrxfdr3YofSbzCL7iscQ7a7t51Mjpcdx1pq3SGLkFXRiNzSAh8nmx4/p6FkJcsIxNP5iHaNZumYpSSUJfDuUXNjpYGy5jLqlHUd3G5Siuuxk0vxd7btlfMaBl8YQ123zELGnLA57CnaQ0ljidjhmATp1fqG7TDn9kORTubXEuPjiNyy92570d4KGlo1FNa09No5LoaZoTNJqUohpdLcjHshDL+jzjLdJwr0ZR/DAy7snHWpDA90QaXRkVwk/nXHgJO1E9OCp7EhewP1KuNYwTF1zKL7Cmeg20Am+E1gVfIqalp7r54soSyBWPdYZNL2rgFZFU2EuNkhtbg0t4nzEeqhF91nyo1bdIN+KfjO6Dv5Nu1bfj3z64VfcAVgWNJs5+uOfkBFjK8Ci174zID+Yc1GJjUK0Q0wN2IugiDwY+aPYodiEqRWp6KwUuBj53N2m0arI6morlf8uc/FMOjEWD47s8NmY2tpy+rU1WKHYvSkVKVgJbXqUJYE+gZHSwtJr5WXAAxva6Y8mms8dd0At0fdToumhbVpa8UOpV9gFt1meHzY4zRpmvgk8ZNeef+qlirSa9KJ84zrsC+1pJ7IXioT8He2QS61IMsERDfA48MfZ5T3KF49+Kq5sZK/RPe5nrkarY7Ukvpese0yILWQEOPjeHbks9j42PswyX8S36V9Zx6o1A1OV50m2iW6nXNJRlkjLWrtX5Moe4kB3vpM+skC4xBODnIHbgy/kS25WyhvLhc7HKMmsSKRKJcoZBYd7SQT8mqI9nHERt4996xLwd3BiiBXW44Zmege4DqAeP94vkj+wtyU2wOYRbcZwpzDuDH8Rn5I/4H8+vwef/9dBbvQCTquDri63fbaZhUlda0M8O6dGktLqQWhHvZGMda7O1haWPLOhHdws3Fj0c5FV/wFLqM6Ax87Hxzkfz2UnalopFWt61XRDXpbsJTiOtEnUxp4ZMgjNKoa+SLpC7FDMWpUWhWZtZlEu0a3255Y2HuTKM9FbmlBrK+CE/nG4218e9TtaHVa1qabM5Vd0aJpIaUqheGewzvs02h1JBbUMawXS0sMxAW5cDy/xih6As5lcdxilFolH534SOxQTB6z6DYDwCODH0EmlfXKl2p7/nZ87X07lAmklujFcG+JboABXg6klZiG6AZwtnZm+dXLqVPWsXj34iu6sbKzJkrDsn1vTIU7l0F+ClrVurPuOmIT6RLJzNCZfH36624Ny9HoNJQ1lVHbWmt0N/DeJLM2E41OwwDX9takJ/NrcbKVnR2a1ZsM9XciqagOlcY4Htj8Hf2J94/nh/QfzHW5XZBUkYRGp+lUdKeVNtCi1p4t/+hN4gKdqW5SkV1pHNcdA4GOgdwedTs/Z/5MWnWa2OGYNGbRbQYAd1t37hhwB5tzN3Ow+GCPvW+jqpFDJYeYHDC53XIvQFqbC8WAXiovAYjydqC0vtVoJn11hyiXKF4e8zIJZQm8c/QdscMRhWZ1Mzn1OR0e1JKL6rCTSwlxs+vilT1DrK8+I3qq0Hgylk+NeApXa1ee3fMspU2lHfardWp2Fezi0R2PMvrb0Uz5cQrj147nup+uY2XySlRa0/kOXCqnq04DdMh0H8mtJi7QucM1qDcYGuCMUqM7e30zBh4a/BB1yjr+e+K/YodilBwrO4YECUM8hnTYZxhYM6wvRHeQ/hzGZh0I8ODgB3GycuL5fc/TpDauhwJTwiy6zZzlgUEPEKwI5oX9L/RYRuSPvD9Q69RcE3RNh32pJfW42slxd7DqkXN1hsEeLNWIboDdYXrIdBZEL+C7tO/4JfMXscPpc5Irk9EJOga7D263vbebKA2EuNlhJ5caTV036IflvDXhLSpaKrjl91v4KuUrjpYe5UDxAd44/AaTf5jMozse5UT5CeZGzOWF0S+wOG4x/o7+LEtYxt1b7qasqUzsH6NXOV11Gke5I372fw1TKqtvJaeyidEhrn0Sg6Fu3JimC0a7RnNL5C18n/49J8tPih2O0bGvaB+xbrE4yjuuuibk1eDlaI2PoueH4vydEDd7nGxlRlfXDeAod+T18a9zpvYMj+18rFeNF/ozZtFt5izWlta8Pu51KlsqeevIWz3ynj9l/kSoIpRBboM67EsrbWCAt2OvZp8MpSumVGJiYNHwRfrGykOvklSRJHY4fcrJCr0wGOT+1+dGo9Vxurh3mygNWFhIGOirMBoXCgNxXnF8dd1XBCuCeffYu9yz9R4e3PYg6zLWMcJrBB9d/RHbb97OsyOf5ZbIW1gQs4DPr/mcZfHLyKzN5B+b/kFOXY7YP0avkVSRRLRr+ybKQ9n6oVOjgvtGdPs42RDoasu+TOPqyVg4bCE+dj4s3LHwrK2iGahurSa5MplxfuM63Z+QV8PwPlolsbCQMCrYhQNZVUZZFjbOdxwvj3mZ42XHmbt+Lr+e+ZVmdbPYYZkUZtFtph0D3QZyX+x9rM9az/b87Zf1XmdqznCq4hRzwud0uGBptDrSSxt6bcCJAXcHK9zsrYzK+7S7WFpY8u6Ed/Gw9WDRriursTKxIpEQRQgKq78EdmZ5I0pN7zdRGoj1VXC6pB61kTRTGoh0ieSraV+xfvZ6vrjmCz6d8im75+3mvfj3mOg/EStpx5WjqYFT+Xra16h1ah7c9mC//CzVq+rJqMlgmGf7AVyHc6pxsLIk2qf3ekf+zoRwdw5kVRnVoBNHuSOfTP0EmVTGPVvvYXv+dqMUdn3NgeIDCAiM9x3fYV9ZfStFtS297npzLuPD3SmqbTG6um4Ds8JmsWb6GlxsXHhh/wtM+XEKHyR8YHbH6SaWYgdgxvh4cNCD7CncwysHX2GI+xBcbS4tQ7QyZSVWUituCL2hw77cqiaUGl2vNlEaGBbgxPF801wKc7J2Yvmk5dyx6Q6e3PUkn1/zeQev8/6GIAicqjjFJP9J7bYbSj16u4nSQKyfApVGR0ZZAzE+fXPOiyFYEUywIrjbx0e5RPHxlI+5a8tdPLbjMVZdt6pffZZOlp9EQGC4R/tmuEPZVYwIdumVWQBdMTHCnW8O5ZGQW8OYMLc+O++FCHQMZNW1q1i0axGLdi7Cx86HaNdoXG1ccbJyQiqRUtpcSnlzOS2aFmQWMlysXQh0DGRq4NR29p39hb2Fe3GxdunQBwBwJEdfWx0X5NJn8UyMcAdgT0bF2QFvxsYA1wGsvX4tCWUJfJf2HStTVvLV6a8Y5TWKhwY/1GltvBk95ky3mQ7IpDJeG/caDaoGXj306iVlQ87UnGFD9gbmRc7DxbrjBSu5SF9j3RfZp+GBzuRWNVPZqOz1c/UGkS6RvDL2FY6XH+etoz1T9mPM5NTlUKus7VDPfSK/Bgdry15vojRgGISRWGB6qyRdEe0azWvjXuNU5Sk+PfWp2OH0KAllCVhaWBLrHnt2W3lDK9kVTYwK7jvRBHBVqCsyqYTdGRV9et7u4O/oz5rpa3hlzCtEu0aTWp3Kltwt/C/pf6xIXMHugt1Ut1YjQUKzppnEikQ+O/UZN66/kfmb5rO/aL/YP0KPodVpOVB8gDE+Y7CQdJRDR3KqsZNLGdiHqyT+LrYEu9mxK934PjvnYiGxYITXCJbFL2PDnA3MHzCfzJpM5m+ez+LdiylqLBI7RKPEnOk20ynhzuE8OvRRliUs4/v077kt6rZuv1Yn6HjzyJvYyey4N/beTo9JyKvBTi4lwrN3y0vgr67zE/m1TI327PXz9QbTgqeRWpXKypSVDHIfxMzQmWKH1GvsLdoLwFU+V7XbfiRH70DR202UBoJcbfFRWLMrvZzbRwX0yTn7gqmBU5kZOpPPkz5not/EdiLVlDledpwY1xhsLG3Objucrc9U9lUTpQE7K0tGBLmwO6OC56YPuPAL+hhrS2vmhM9hTvics9sM7jZyqbzD8RXNFWzN3crq1NU89OdDjPUZy9Mjnu50eqMpkVKVQq2yttPSEoDDOVUMD3LBUtq3+clroj35cn8Odc1qFLbGvxrl7+DPE3FP8NDgh1iVsoqVySvZmb+TO6Lv4P7Y+7GXG2fGXgzMmW4zXXJn9J1M8JvA64df59vUb7v9uo8TP+Zw6WEWDVvUaZYb9KJ7aIBznyz5xvoqkEklRuUmcCk8NuwxRniN4N+H/k1WbZbY4fQaewv3EuYUho/9X2O8qxqVZFU0MaIPM5YSiYSrB3iwN7OSVrXx1Ob2BM+OfBY3Gzde2P8CSq1prgCdS6OqkeSq5A5Tbw/nVGFvZXl2PHtfMiHCnbTSBsrqW/v83JeCXCrvVHBDm6Vs9B2sn72exXGLSapM4ubfb+bb1G9Nui58d+FuJEgY4zOmw77qJhUZZY19vkoCMD3WG7VW4I/THa1BjRlbmS2PDHmE3+f8znXB1/Fl8pfM+GUGP6T/gE4wrt4YsTCL7h5CEAT+SCllc1IJu9LLOVPeSJNSI3ZYl4XUQsqy+GXE+8fzxpE3eO/Ye2h05/+ZNuds5pPET5gdNpubI27u9JhGpYa00vo+GTYAYC2TEuOj4LiJi26phZS3xr+FjaUNT+x6ol92jTeoGkgoS2CC34R224+2WWiN7MPaSoDJAzxpUWs52OaA0V9wkDuwdMxSsuqy+CTxE7HDuWz2F+9Ho9N0+Nwczq5meKBzn2cq4a/aXGMsMblU5FI5C2IW8Nvs3xjpPZI3jrzBwp0LqW01Hj/77qITdGzM3sho79E4WXdslNybqf93uyq0b1dJQD+cy8/Zho1JJX1+7p7Ay86L18a9xvczvifIMYhXD73K3VvupqTRNH+ensQsunsIiUTCg6sTeHjNce5aeZQpy3YT89JW7ll19KxllSliJbXig/gPmBc5j1Upq1iwZQF59XkdjlNpVSxLWMYze55hmMcwXhj9QpcWSyfza9EJ9JnoBv25EgtrjWZK3KXibuvOWxPeIrc+lyd3P9nvJlYeLD6IRtAw0W9iu+1Hc6uxsrQg1q9vGxqvCnHFVi7lz9P9z996nO84ZoXOYmXySlIqLzzl0pjZU7gHhZWincVkZaOSzPLGPi8tMRDl5YCHg1W/Et0G3GzcWDF5BU+PeJp9Rfu4deOtZwcTmQoJZQkUNRYxM6zzUr2daeW42skZ7Nd3ziUGJBIJMwZ5sy+z0qQGu/2dGLcYVl23in+P/TfpNenc9PtN7CncI3ZYomIW3T3I7/83js2Pjeenh6/ivZsH889JoRzNqebWzw7xyJoEcozUAuhCSC2kPD/6ed4a/xY5dTnM+nUWj+54lM+TPmdt2lpePfgq036exsrkldwUcRMfT/m4y2VKgGN51Ugk9KkNU1ygfkrcCRN1MTmX0d6jeWH0C+wr2sfSA0tNenn372zP395BPIFedA/xd8LKUtqn8VjLpIwLc2NHWnm/+j0bMEy5fOHAC6i1pvkAp9aq2VO4h/G+47G0+KtNyeA8MSqk78sDQC+cJka4sy+zEo2R2U72BBKJhPnR8/lm2jdodBrmb5rPuox1JvM9+T3rd2wtbZkcMLnDPp1OYE9mJRMi3PvU9eZcbhjkg0YnmGy224BEImFW2CzWXb8OHzsf/rn9nzy39zkKGgrEDk0UzKK7Bxnoq2CAtyPDA124abgfT10bxaElk3liagQ70sqZ9O4ublyx32TF9/SQ6fwy8xcWxCwguTKZ5ceX8+/D/2ZD9gaiXaL5dOqnvHTVS9jKbM/7Pgl5NUR6OuBg3XcNIuMj3LGytGCTiV/ADMyNmMvDgx9mfdZ6ViSuEDucHqFB1cD2/O1cF3RdO/FU16wmuaiOUSJlLKdEe1JS10pKsWlNNe0OCisFL171Ipk1mXyW9JnY4VwSuwt3U6usZVrwtHbbD2VXYSuX9pmve2dMifakrkXNjrT+62E80G0g625YR5xXHK8cfIXXD79u9PW7LZoW/sj7g2uCrmnXeGsgqaiO6iYVEyLEs3uM8XEk3MOeX070DxcQf0d/Vk9fzf2x97MldwvTf57Ogs0L+Db1W0oaS0zmYe1yMbuX9DJ2VpYsnBzO3OF+rE8sZvmfmUxZtptHrw7joYmhWMv6NnN3uXjaefL48MdZNGwRSq2SBlUDTlZO3fb71eoETuTXrZV1HAAAIABJREFUMnuoz4UP7kHsrSyZPMCDjUklvHB9tCg1nj3Nw4MfpqSphE8SP8HV2pVbo24VO6TLYmvuVpRaJbPDZrfbvj+rEp0AE0W6AV4d5YFEAttTy/vMI7wvmeg/ketDrufzU58zxmcMQz2Gih3SRfFT5k942How1mdsu+2Gem6ZiN/1yVEeeCus+epgLtfEeIkWR2/jbO3MiskreD/hfb46/RVqnZoXRr+A1MI472/b87fTpG7q0gVqe2oZFhKYGOHRx5H9hUQiYe5wP97YnEZKcZ1Rzgq4WKwtrVk4bCHzIufxy5lf2Jq7lTeOvMEbR97ATmaHk5UTgY6BDHQbyCC3QYz2Gd3psC9TxvSVh4ng42TDQxND2bF4IldHefDBn5lMfGfn2SVQU0MikWBtaY27rftFDdjIKGugUanp03puA9cP8qGyUcVhE/2d/x2JRMKLV73IRL+JvHb4NT5P+tykswW/nfmNUEUoMa4x7bbvyajAwcpSlNpKADd7K4b4O5mck8DFsGTUEnzsfVi8a7FJTassbSrlQPEBZofNbifwqptUpJc1iFbPbcBSasH8qwLZf6aKjLIGUWPpbaQWUp6Me5L7Y+/np8yfeGrPU0brjPNL5i/42vsy3HN4p/u3pZYzPNAZF7uuyyT7gltHBmAnl/L53hxR4+hpPO08eWjwQ/wy6xd+nfUrS0YtYWboTAa5D6KqpYovkr7g/3b8H1PWTeGnjJ9MtvStM8yiu4/xVtjwvzvjWHn3CKwspcz77CCvbTzd7yzJuuJYm4NIXGDf11lOivTATi7l98TiPj93byGzkPH+pPeZHjyd5ceXsyxhmUkK76SKJE5WnGRO+Jx2DbiCILA3s5IxYa6irk7MHOxDSnE9yUX9Z1DOuTjIHVgWv4x6VT2Ldy82mZvcL5m/oBN0zAmb0277kRx98/pokeq5z+XWEQFYWVrw5b7+JZw6QyKRsHDYQhbHLWZb3jYe3PYgdUrj+s6kVKZwpPQI8yLndToQJ7eyidSSeq41gpUJhY2MeSMC+D2xmOLaFrHD6RVCnUK5Leo2loxawtsT3ubHmT9y8PaDfDr1U4Icg1h6cCnzNs4jvz5f7FB7BLPoFolJkR5sfmw8/xgVwP/25jDjw70kFpie7dLFkpBbjbuDFX7OHevoehsbuZRrY7zYcKqEhlbTEBXdQWYh443xb3Br5K2sSlnFM3ueoUVjWhfoT059gsJKwdyIue22Z1c2UVTbwoQ2+zWxuHGYH9YyC1Yf6ujc01+IdIlk6ZilJJQl8MqhV0yiLvf79O8Z7zsePwe/dvsOZVdjLbMg1lec1ZFzcbGTc9vIAH44VkBaaf/rC+iMBTELeGv8W5yqOMX8zfMpbCgUO6SzrEhcgYPMoUtL283J+hWtabHefRlWl9wzLggB+OIKeGgzYGNpwxifMXw97Ws+iP+A8uZybt1wKzvzd4od2mVjFt0iYmdlyb9nx/L1PSNpVmm58eMDvPdHusnb2nWFRqtjT2YlV4W4dmkn2NssGBNEo1LDyv25opy/t7CQWLBk1BIeG/YYW3K3cO/We02mTCClMoU9hXtYEL0AO1n7Ee972uzWJoSLK7oVNjJmDfblt5PF1LX0nwe2vzMjZAYPDX6IX8/8yuuHXzfqVZMf0n+gurWaewbe02Hfoewq4gJdkFsaxy1u0ZRwHG1kLF2fYtS/055kesh0Ppv6GVUtVfxj0z9IrkwWOySOlBxhT+Ee7o29t8spiVuSSxjsp8DXqe8TQ53h52zL7CG+fHMoj/yq/jeb4XxIJBImB05m7fVr8Xf0Z+HOhSw/vhytznQrA4zjinSFMyHCnS2LJjB7iC//2XGGWf/dT1KhcS3J9QRHcqupblIxbaB4y3aD/Z2YMcib/+zIJL20f9VYSiQS7ou9j/cnvU9mTSZ3bLqD7LpsscM6L4Ig8P7x93GUO3Jb1G0d9m9KKiHcwx5/l/M74vQF868KpEWtZcWuM2KH0qs8MvgR7oq5i7Xpa3nt8GtG6QVf21rLp6c+ZazP2A51uflVzaSVNojqPPF3nGzlLL4mkkPZ1fx6sn+4UXSHOK84vpn+DTaWNtyz9R5RM5U6Qce7x97F286bfwz4R6fHnClvJLGwzmiy3AaeujYSSwsJb21NEzsUUfC19+XraV9zU/hNfJ70Oc/te+6Cg/qMFbPoNhIUNjLeu2Uwn80fTkVDKzd8tI9nfjzVr2q9NyeVYi2zYGKkuFnLV2bG4GAt46kfE/ulf+7kgMmsum4VrZpWFmxewJGSI2KH1CUbczZyuOQwjw59tEPmqbCmmaO5Ncwe6itSdO0Z6Kvg5uF+fLE3p183xUkkEp4Y/gR3x9zN2vS1PLjtQapbjav5eEXiCprVzSyOW9xh1WxDkr5nY7qRCafbRgYQF+jMsz8lcfIKKCU0EKIIYfX01YQoQli0axHfpX0nShxr09eSWp3KwmELsba07vSYrw/mIpdaMHe4X6f7xcJLYc09Y4PZeKqE1JIro0Tp71hJrVg6ZimLhi1ic85mnt7ztFEmBC6EWXQbGdfEeLHt8YncPz6YtccKuP4/+8jsBzd4nU5ga0opkyI9sJWL61Tpam/Fq7MGcqqwjg+3Z4oaS28R4xbDN9O+wdnamfu33c/XKV8b3bJ2nbKOd46+wyC3QZ3WV65va3idObhv7SXPx3PTB2BvbckzP52iRdV/Hoj/jkQi4Ym4J3h93OucqjjFvA3zOFZ6TOywAP0kwR/Sf2BuxFzCnMM67N94qoShAU74OYu/OnIuUgsJn84fjoejFXevPNKvH9z+jpuNG19e+yUT/Cbw+uHXeffou33aM1DQUMD7Ce8z1mcsM4JndHpMQ6uanxIKuX6QN272xmdTd9/4YBytLXl1w2m0OuO6lvcl98bey1NxT7EtbxtP7noSlda0JnaaRbcR4mwn518zovnqnpFUNCiZtnwvy/5IN+kv2vH8GsoblFwnYmnJucwY5M3c4X58uOMMb25Oo1FpmktV58Pf0Z/vZnzHJP9JvHPsHZ7b9xytmlaxwwL0ZSXvHH2HOmUdL171Yqd+vr+dKGZ4oLNRlJYYcLGT89rsWBILarlr5RGyKhrFDqlXuSH0Br6a9hVSiZS7t97NywdfFtWNoqqliqd3P42fgx+Lhi3qsD+nsomU4npmGFmW24CrvRWr7x2FTGrB3I8P8OfpMrFD6jNsZbZ8EP8Bt0fdzlenv2Lx7sV9cj1qUDXw+M7HkUqkLB2ztMt+op8SCmlSaVkwJqjXY7oUnGzlPDd9AAeyqli09iTqfrhK213ujLmTJaOWsLNgJ4/vetxorSk7Q7p06VKxY+hxPvvss6UPPPCA2GFcNkGudtwS50d5g5JVB/LYkVZGtI8CL0XnS2PGzOd7c0gprufNm2L7fJR3V8RHelBY08LqQ3l8sS+HxIJaThXWsfpQHm9sSuXL/blklDZQVNNMiIe90cR9Mcilcq4JugZLiSXfpn7L3qK9jPMdh4PcQbSYBEHgwxMf8l3ad9wXex8zQjpmntJK61m+PZNH4kMZ7C++A8W5RHg6EOhqx7eH8/n+SD6CIGBnZYlcakFSUR2nCmo5mlvDoewqTuTXkFxch9RCgoej6X1vATxsPbgx/EbUWjVr09eyLmMd1pbWDHAdgFTSd98JpVbJozsepaChgE+nfoqPfccVkNUH8ziYXcWbNw3q04m3F4OTrZxrY7zYe6aSL/blUNeiJszDHkcb44y3J7GQWDDOdxz2MntWp67mcOlh4v3jO50K2RMotUr+uf2fpFal8sGkD4h2je70OJ1O4Ml1iQS62rFoSkSvxNITxPoqsJZJ+XJfDoU1LcRHuveLQW+XQqxbLO627nx9+muSK5OZGji13STjvubll18uWbp06QXH+kqMbcm5J4iLixOOHTOOpdCeYn1iMa9vTKW8oZX7x4ewcHI4dlamMVBUqdEy9s0dDA1w5n93xokdTgcSC2r5+XghO9MrKK1vxcPBiuGBzjS0ajieX0NtsxoHa0sevTqMu8YEG40jwsWyu2A3z+59FgkSnhv1HNeHXC+Ki8zHJz9mReIK5kbM5YXRL3Tqlfvm5jT+tzebI0sm42qES70AxbUtPPdzErvbHFYuxNgwVx6bHMHIYPG9oy+V9Op03jn6DodLDxOiCOGpEU8xzndcr5+3UdXIM3ufYU/hHt6e8HaHke+gF06T3tuFt8Ka7x+4qtdjulxa1Vpe3XCaNYf1/sND/J0YH+5GXJALgiDQqtbSpNQikcC4MDeTfWjrim1523hu73N42nqyYsoKAh0De/T91Vo1T+x+gl0Fu3hj/BtcH3J9l8duSS7lodUJvD9vMHOGGlc9d2d8uD2TZdsyiPJy4MPbhhLh2TGJcrq4noS8aiQSCQN9FQzyVWBhIY5rWG/yS+YvvHTgJYZ7Dmf51ctxlDuKEodEIkkQBOGCAscsuk2I+lY1r29M5fujBXg6WvH0tVHMGepr9F+kHxMKWbwukdX3jmJcuPE4CnSGIAgdhOipwlo++DOTHWnlDPB25ON/DCPIza6LdzBuCuoL+Nf+f3Gi/ARTA6fyr1H/wtWmb6b26QQdnyZ+yorEFcwOm83LY17uVHDrdALj395JhKc9K+8e2SexXQ6ZZQ2cKKilpkmFtUzKQF9HFDays5lWjU5gc1IJn+zOpqpJyXPTonhgQqjIUV86giCws2An7x57l4KGAsb7jmfxiMWEKEJ65XyZNZk8sesJChoKWDJqCbdE3tLpcQeyKrn9f4dNRjgZKKhu5seEQramlJJe1kBXt+QpAzz49+xYk1zp7IqT5SdZuGMhSq2SZ0c+y+yw2T2SCFBqlTyz5xm252/nuZHPcfuA27s8tlWtZcqy3djIpGx6bDwyE8kc70wr56kfE6lrUXP7yAAmRrrTrNKyNaWMA2cqqWpqX+sc5mHPq7MGMjrERTTL3t5ic85mluxdgq+DLx9O+pAQp965Fp0Ps+juh6LbQEJeDa/8nkJiYR1RXg4sviaSyQM8jPKLpNUJTFu+B4CtiyYYZYzdQRAEtiSX8vRPp1Cqddw+KoCFk8NFHxN8KWh1WlamrGTFyRXYyexYMmoJ1wVd16v/NqVNpTy//3kOlxxmZuhMXhnzSqd13AA708u5e+VRlt86hFlDjMO5pCdoUWlZ/GMiG0+V8NZNscwbESB2SJeFSqvi29Rv+fTUp7RqWpkXNY+HBz+MwkrRI+/fomlhbdpaViTqP6fvTHiHOK+u72mPrElgX2YlR/41BWuZ6ZWCAdQ0qcgoa8BSKsFGZolMKqGuRc2W5FLWHM7H0kLCSzNjjM5d43Iobizm+f3Pc7T0KPF+8bw05iXcbC49OZNUkcS/9v+LnLocnh35bJf2gAaWbcvgw+2ZfHf/aK4K7ZsERE9R0aDk7S1prEv4a/iQq52ckcEujAhyYWq0J6BfKf9kVxYNSg1RXg68OnsgI4JMd8WtMxLKElh6YCkfTf6ox1dNuoNZdPdj0Q36bODGpBKWbcsgp7KJoQFOPHVtJGNCjSuTbMhy//f2YcwYZJzNTRdDWX0ry/7I4KfjhdjIpTwxNYI7rwpCauSrDZ1xpuYMLx54kaTKJK72v5oXrnrhsm52naHVaVmftZ53jr6DRtDw9IinuSn8pi4FviAIzP3kIKV1rexcHG+ypTxdodHquHvVUQ5lV7HmvtEmXWpioKqlio9OfsTPmT/jIHfgn0P+ydyIucgsLq1GuUndxK9nfuXzpM+pbKlkrO9YXh3zKu62XVuN5lU1MendXTw4MZRnrou61B/FqMmtbOLZn09xKLuaR68OY9GUCJO87nSGTtCxJnUNHyR8gI3MhpsjbubGsBvxd/Tv1usFQeBY2TF+zvyZzTmbcbNx4+UxLzPWd+x5X5dX1cTU9/dwbYwX/7ltaE/8KKJQWtdKUW0zEomEQb6KTuu8W9VafjtZxEc7z1BWp+SpayO5b3ywySbCOkOr03aZzOltzKK7n4tuAxqtjh8TClm+PZOSulbGhrly3/gQ4iPcRf8yNbSqufb9Pbg5WPHbP8eKHk9PklnWwKsbU9mTUUG0tyNvzx3EQN+eyfD1JRqdhm9Of8NHJz7C2tKa/xv6f8wJm9Olj213UWlVrM9az5fJX1LQUMBQj6G8Nva1C95ED2dXMe+zQ7w8M8ZoXQQul7oWNXP+u5/aFjU/PTyGYBMtVfo76dXpvH30bY6UHsHX3pdbIm/h+pDr8bD1uOBr1To1x0qPsbNgJxuyN9CgamCYxzAWDlvYYfhNZ7z4WzLfHcln3zNX49nPap/PRanRsuTnZH46Xsj80YG8MiumX11Xs2qz+CDhA/YU7UEn6BjoOpBrgq5htPdoghXBZ69LWp2W4qZiUqpSOFpylP3F+ylqLMJeZs+ssFk8MuSRbtX23tv2ALz9yfh+VbZzPmqbVTz2/Ul2Z1Rw99ggXrw+ul99hsTCLLqvENFtoFWt5dvD+azYlUVlo5JBfgoenBDKtIFeotR8C4LA/313gi3Jpfzw4FUMD3Tu8xh6G51OYENSCa9uOE1Vo5I5Q/24a0wQsX6mJ75z6nJYemApx8uP4yh3ZFrwNK4NupahHkO73RGu0qo4WX6SgyUHWX9mPeUt5cS4xnB/7P1MCpjUaf32uQiCwPwvjpBWWs++Z6422RKB7pBT2cRNHx/AwdqSnx8eY7TNoheLIAjsLdrLl8lfklCWAECgYyBxnnF42nliL7PHTmaHSqtCqVWSV59HenU6GTUZtGpbsZZaM95vPHdG38lg98HdEgOZZQ1MW76Xm+P8eePG2N7+EY2CNzal8umebJ6YGsHCyeFih9PjlDaVsilnE3/k/kFKVQoAEiRnS5fqlHUI6LWLvcyewR6DmRE8gymBU7rthPLriSIWrT3Jkumm3WNxKQiCwCsbTrNyfy53jA7g1VkDzcL7MjGL7itMdBtQaXT8fLyQT/dkk1PZRLiHPY9ODmdGrHefLkWuPpTH878m8/R1kTwS33GARX+irlnN8u2ZfHcknxa1lokR7owPd2OQnxOONpY4WsvwcrRGpdUhl1oYbeOrYYl2XcY6duTvQKlV4mzlTKx7LCGKEIIVwSisFGcFk0qrQqVVUdpUypnaMxwvP06LpgWpRMoIrxHcPfBurvK+qtsX858SCnlyXSIv3RDN3WODe/mnFZ/j+TXc9tkhBng78t39o7GR96+HjOzabPYW7eVo6VGOlx+nQdVxGIyD3IEolyginSMZ6TWS0T6jL8o+Tq3Vcdtnh8gsb2Tn4niT7LG4FHQ6gcU/JvLz8SJenT2Q+aP7voa1ryhqLCKlMoWs2iyqWqsAcLZ2xtPWkyiXKKJcoi7aKi67opGZH+0nysuB7x8YfUXa7gmCwJtb0vh0dzYPTQzl2Wn9syyrrzCL7itUdBvQ6gQ2JZXw4fZMMssbcbGTc/eYIBaMDcKxl/1rfzhWwLM/nWJcuDur7hphtCKzp6lvVbP6UB4r9+dS0dC5Wb+1zIJxYe5MjHQnPsLdqAa/nEuzupn9xfvZmb+T9Jp0cutyUek6n/wlt5ATqAhkuMdwxviMYYTXiA4j3S/Esdxqbv/fYYYGOLHmvlFXzE1wS3IpD69JYOoATz6+Y/glPxhXNiqpbFRS3aSivkWNu4M10d6ORiXkNToNTeommtRNyKVyZBYyHOWOl5Vhe/G3ZL4+mNfvmm67g1qr48FvEtiRVs7CthrvK+VaezlUNSq55dODVDWp2LhwPL5OveMRbgoIgsALvyWz+lD+FZEg603MovsKF90GdDqBP06Xse5YAdvTynF3sOKlG6KZNrDnM99ancCH2zNZvj2T8eFufDp/uOgj38WioLqZzPIGWtU6qptUVDQosZBIKK5tYX9WJYU1LQAEutoybaA3UwZ4MMTfyWjFplanpbixmAZ1A9ZSa+RSOVZSK+RSOXYyu8saSpBX1cScFQdQ2Mj45ZExONleGdlKAyv35/Dy76eZO9yPN26M7bZlmVYnsDWllFUHcjmSU91hv9zSgikDPLhjVCBjwoyrwbon+OFoAU//dIoHJoSwZPoAscMRBZVGx79+SWJdQiH/GBXAK7MG9sh1XaXR9bsmZtC7w/zj88NkVzby9T2j+kUj8+Wi0wk8/sNJfjtZzPMzBnDf+L632+sPmEW3WXR3ILGglmd/TiK1pJ4AF1sWjAli7nA/FD0wCe1QdhXv/ZHO0dwabhzmyxs3Gs/kSWNDEARyKpvYnVHBHyllHM2tRqMTsLeyZFigMxPC3bhxmN8VsVReXt/Kbf87RFWTil8eGdtvmgovlg/+zOCDPzMZ6OvIWzcNIsan674AQRD45UQR/9lxhpzKJtzs5cwb4U+EpwPuDlbYW1lSVNPC4Zxq1icWU92kYlKkOy/eENNvfr8JedXc9tlhRga7sOruEUb7sNoXCILAW1vS+WR3FldHebD81iHdmsbZqtayPbWcXenlZJQ3UlLbgq1cSotaS1m9kjAPe4b6OzE0wJmhAU5EeDqYtFtKUmEdD61OoKJByecL4pgQ0bUbzpWGRqvjse9PsjGphKeujeThiaEXXDWpbFSSWFCLUqPDw8GKAFdb3OysrtjVFrPoNovuTtFodWxNKeOLfdkcz6/FRiZl7nA/7hgdSISn/UUt9ao0Ov5MLWPV/lyO5FbjZm/F09dGcnOcn7kp4yKoaVJxIKuKA1mVHM2tJqOsEbnUglEhLtwwyIfpg7yxN5HpoxfD3swKHl+bSJNSw6q7RzAqxLQ8cnuaTUklvPBrMtXNKm4e7sfT10Xhdk6DpU4ncCS3mg+3Z3Igq4qBvo48Eh/GlAGeXWYlW9VavtiXwye7s1BqdDw6KYwHJ4aadBbzp4RClvyShKejNb/9cyzOV8DDaXf45lAeS9enEORqy2tzYhndxfcptaSetUcL+PVkEbXNauRSC0YEO+PrZEOLWt934q2wJrWknhMFtVS3DVlxsLIkPsqDSZHuDA1wJtDF1iQElkar4/ujBby+KRVnWzkf3zGMQX5OYodldGi0Op74IZH1icWMDHbhxeujifZ2PPtvrNHqSC6uZ3d6BRuTiskoa+zwHrZyKZFeDowMdiHQxY6RwS6EeVxcqaGpYhbdZtF9QZKL6li5P5ffE4tRaXUEu9kxqu1LEuBiS6CrHS52ciwk+ql6TUoNdS1qjuRUczy/hmO5NVQ1qfBRWHP/hBBuGxnQrx0n+oq00nq+P1LAzvRy8qqakVtaEB/hzm0jAxgf7mbyWb3Eglre25bBnowKQt3t+PiO4Z2OMb4SqWtW89HOTFYdyMVCImFSpAcejla0qrXsP1NFUW0LDtaWPDdtALeO8O+26Cmvb+XlDafZeKqEMA97lt4Qw9gwV5N6OM6vaua9ben8drKY0SEufHT7sHYPJWb0UzmfWneKotoWpsd6MXOwL37ONjSrtCTk1bA5uYRThXXIpRZcE+PJLXH+xAU5d1kGKAgC+dXNnMiv5UBWJTvSyqls1ItwR2tLxoa5cXWUB1eFuuLnbFz9KYIgsO10GW9uSSO7oomRwS58dNtQPPqxpeTlIggC644V8u+Np6lv1WArlxLu6YCV1ILTJfU0KjUAjAp2YWKkOyOCXLC3sqS0vpX8qmZyKps4VVjLqcI6NDq9tvRWWDPQV0GYhz2+Tjb4OOl//41KLY2tGpqUGhqUGmqbVQgCeCmsifR0YGSIS6/3n/UkZtFtFt3dpqJByZbkErallnMir4aGti/W+QhytWWwvxOzh/gyIcLdpJcdjRVBEEjIq2HDqRI2JpVQ0aDE2VbG2DA3YnwUxPoqiAtyNpkHnbTSet77I4Ntp8twtpXxcHwo80cHGVWzn7FwpryRL/blcDCrktoWNRYSCUP8nZgR6820WK9L7pXYmVbO878mU1TbwpQBnjw/YwBBRlxyYsju/3y8kJ+PFyG1kPDAhBAemxxu8g+fvUWLSstne7L5ZHcWLWptu31RXg7MG+HP7CG+l7RCoNMJpJU2kFRUy4n8WradLjs7btzfxYYJ4e5MjHBnTJibaKtzLSot21LL+OZgLkdzawhxt+PZ66KYGu1pUg+ZYlLdpOLP02WkFNeRXdmEUqMj3MOe0SGujA5xxd3h/A+7Wp1AUU0LO9LKOFFQS1JRHflVzWeFeGc4WFtiIdFPYAWQWkgYFuDEtIHeXD/YGw8H435YMotus+i+JARBoLZZTV51M3lVTdS1qBEE/RfA3soSW7mUWD8F3oort+NbDJQaLTvTytmcXMqx3BqKavWNmHKpBdE+jgS42OJiJ8fD0QonGzlD/J0IcLUV7can0epIK20gtaSehLwaThXWkVpaj72VJQ+MD+HuccH9smTGFGhVa/nqQC7LtmWg1OiYGOHO7KE+BLna4WZvhYudHFu5VBSBotHqOF1Sz+Hsag7nVHM0t5q6FjXWMgtuGubHwsnh/Xr4TU+i1GhJLqqnqlGJlUxKqLtdj2ejdTqB9LIGDmVXsf9MFQezKmlSabG0kDDIT58YiPVzIrYt09lbyZn6VjUn8mv57WQRW5NLaVJp8VZY889JYcwb4d/t5mQzvYdWJ1DZqKS4tgWJRK8n7K0ssbOSYie3PLtq16TUcKqwjgNZlWxK+v/27j1Gzuq84/j3t/ebvV7P2njxBS/GNDEI29SyuaSUtklwqBRUNZWIKtKkVFGrkITepLbqJYlahUgVUVpVaSOXkEa0TUOixG2JADUotFYAO2DwBQy2A7bxer2s1zt7353dp3/Ma3u9XtuDs3Pb+X2kkeedOXPmWT9zZp55z3nf6eJQzxB11VXccf0SbluT4ldv6ijJ9wAX3S66bR7rH57gxSN9PHe4l91HT3MiPcqpwfHzZimqBDevauN9a9tZ2dZE55JmVqeaaW2snbMPv8zkFF39oxzrG+FY3zDH+kZ46ehpXvhpL6MTU0B2Gnr9ykVsXr2Y+27z0o01AAALO0lEQVS9puLOTlKqutOjPPb8ER7fdZTj/aPn3ddQW0WquZ5USx0t9TVUV4lUcx0LGmpZ1tpAR2sDHa2NdLQ2sKy14V3NtmQmpzg1PH72rD6He4Y40D3Aa11pXjsxwPB4du/s6lQTWzpTbLl2MVtvvPK9+1Y445kpfvJWH8++0cNP3uxj7/H+s/lcsqCe9StauXF5K1s6U6xf2fquchoR9A6Nc+TUMIdODnLw5CAHugd4/cTA2dfvgoYa7r6xg3s2Xs2WzpRnYOeBQz2DPLrjTZ59o4e3eoeR4LY1KX5t4wruuuGqnA4aLoR5V3RL2gp8BagGtkXEQxdr66LbKtXweIbu9Bh73+7nwIkBnjlwkn3H0+e1qa0Wq1PN3HD1QlalmrlmcROLmmqpr6lGgvHJKSYyU0xF0J0eo3donMHRDINjEwyOZUiPZDh+eoTRiUm6B8aYnDZlKEFnezN3rF3Czde0ccPVC+lMNZfFAVeVamoq2N+Vpjs9Su9QthjuHRw7e31wNENmKugdGiM9kjk7/Tvd4uY6OlobaG+pZ9XiJtpb6unqH+H08ARD4xmGxycZGsuQHpm44DUD2S9m7+lYyLqOhWxctYgtnamK+Vnu+WxyKvjpO4PsPtrPs6/3sL8rzaGeQSKy7xVtTXWkmutItdSRas7OskgwNDbJyESGobHs66Z3aJyu/pGzX+QhO8u3ZmkLP3dVC9cvW8B7OxZy67WpslluZ+/eoZ5Bvr/7ON976W2OnBoGzr33dLQ2sqy1nvvfd21RztI0r4puSdXA68AHgGPATuCjEbF/tvYuus3OGRmfpKt/hMM9Q7x1apiegTHe6B5gf1eaE+lRLvcWIEFLXQ0tDTU0J1OCVy9qoKGmmuVtjaxoa2RFWxMr2hrpaG0s6zNj2OWdeT2d6B/leP8oXadH6Epn/+1Oj3G0b5iB0QyLm+tob6mjqS47hdxUl/111o7WBq5aWM/iZE96Z3szSxfUe71thRgYneC5w6fYfzxN90B2hq53KPslr3dwnCpBU112KWP2UsPiljo6Fjawoq2R5W1NXLe0hZVtjV7XX6EigheP9PHjQ70c7x/l+OkRuk6PcnJglK9/YjMbVhb+7DTzrei+FfhcRNyVbP8pQER8cbb2LrrNcjMxOcWxvhHSIxOMT04xNRXU1VRRW12FBEsXNJBqrvOeantXxjNT1FbLhbSZVYRci+5yWSS3HDg6bfsYsKVIsZjNG7XVVfPmB1OsdHi2w8zsQvPmnVHSJyXtkrSrp6en2OGYmZmZmZ1VLkX328DKadsrktvOioivRcSmiNi0ZIl/3tXMzMzMSke5FN07gbWSOiXVAfcC24sck5mZmZlZTspiTXdEZCQ9ADxJ9pSBj0TEviKHZWZmZmaWk7IougEi4gngiWLHYWZmZmb2bpXL8hIzMzMzs7LlotvMzMzMLM9cdJuZmZmZ5ZmLbjMzMzOzPHPRbWZmZmaWZy66zczMzMzyzEW3mZmZmVmeueg2MzMzM8szF91mZmZmZnnmotvMzMzMLM8UEcWOYc5J6gHeKtLTtwPvFOm5bXbOSWlyXkqPc1KanJfS45yUnmLm5JqIWHK5RvOy6C4mSbsiYlOx47BznJPS5LyUHuekNDkvpcc5KT3lkBMvLzEzMzMzyzMX3WZmZmZmeeaie+59rdgB2AWck9LkvJQe56Q0OS+lxzkpPSWfE6/pNjMzMzPLM+/pNjMzMzPLMxfdV0jSVkkHJB2U9Cez3F8v6VvJ/c9LWl34KCtLDjn5uKQeSbuTy+8UI85KIukRSScl7b3I/ZL0d0nOXpF0c6FjrDQ55OROSf3TxslfFjrGSiNppaRnJO2XtE/SZ2dp47FSYDnmxeOlgCQ1SHpB0stJTj4/S5uSrb9cdF8BSdXAPwAfAtYBH5W0bkaz+4G+iLgO+DLwpcJGWVlyzAnAtyJiQ3LZVtAgK9OjwNZL3P8hYG1y+STw1QLEVOke5dI5AfjfaePkCwWIqdJlgD+MiHXALcCnZnn/8lgpvFzyAh4vhTQG/HJErAc2AFsl3TKjTcnWXy66r8xm4GBEHI6IceDfgXtmtLkH+EZy/XHgVySpgDFWmlxyYgUWEc8Cpy7R5B7gXyLrOWCRpI7CRFeZcsiJFVhEdEXEi8n1AeBVYPmMZh4rBZZjXqyAktf/YLJZm1xmHpxYsvWXi+4rsxw4Om37GBcOxLNtIiID9AOpgkRXmXLJCcCvJ1Ozj0taWZjQ7BJyzZsV1q3J9O0PJN1Q7GAqSTIVvhF4fsZdHitFdIm8gMdLQUmqlrQbOAk8HREXHSulVn+56LZK8p/A6oi4CXiac9+EzeycF8n+pPF64O+B7xU5noohqQX4DvBgRKSLHY9lXSYvHi8FFhGTEbEBWAFslnRjsWPKlYvuK/M2MH0v6YrktlnbSKoBWoHegkRXmS6bk4jojYixZHMb8PMFis0uLpexZAUUEekz07cR8QRQK6m9yGHNe5JqyRZ2j0XEd2dp4rFSBJfLi8dL8UTEaeAZLjxGpWTrLxfdV2YnsFZSp6Q64F5g+4w224HfSq5/BPhh+KTo+XTZnMxY//hhsuvzrLi2Ax9LzsxwC9AfEV3FDqqSSVp2Zv2jpM1kPydK4gNrvkr+v/8ZeDUiHr5IM4+VAsslLx4vhSVpiaRFyfVG4APAazOalWz9VVPsAMpRRGQkPQA8CVQDj0TEPklfAHZFxHayA/Wbkg6SPWjp3uJFPP/lmJPPSPow2SPSTwEfL1rAFULSvwF3Au2SjgF/RfbAFyLiH4EngLuBg8Aw8IniRFo5csjJR4Dfk5QBRoB7S+UDax67HbgP2JOsVQX4M2AVeKwUUS558XgprA7gG8kZy6qA/4iI/yqX+su/SGlmZmZmlmdeXmJmZmZmlmcuus3MzMzM8sxFt5mZmZlZnrnoNjMzMzPLMxfdZmZmZmZ55qLbzMzMzCzPfJ5uM7MSJykF/E+yuQyYBHqS7eGIuC0Pz7kReCAi7p+j/h4gG+sjc9GfmVm58Xm6zczKiKTPAYMR8bd5fp5vA38dES/PUX9NwI6I2DgX/ZmZlRsvLzEzK2OSBpN/75T0I0nfl3RY0kOSflPSC5L2SFqTtFsi6TuSdiaX22fpcwFw05mCW9IvStqdXF5K7kfSHyd9vCLp89Me/7HktpclfRMgIoaBN5OfyjYzqzheXmJmNn+sB95L9qePDwPbImKzpM8CnwYeBL4CfDki/k/SKuDJ5DHTbQL2Ttv+I+BTEbFDUgswKumDwFpgMyBgu6Q7gF7gz4HbIuIdSYun9bML+AXghTn9q83MyoCLbjOz+WNnRHQBSDoEPJXcvgf4peT6+4F1ks48ZqGklogYnNZPB+fWjAPsAB6W9Bjw3Yg4lhTdHwReStq0kC3C1wPfjoh3ACLi1LR+TgLv+dn/TDOz8uOi28xs/hibdn1q2vYU597vq4BbImL0Ev2MAA1nNiLiIUn/DdwN7JB0F9m921+MiH+a/kBJn75Evw1J32ZmFcdrus3MKstTZJeaACBpwyxtXgWum9ZmTUTsiYgvATvJ7q1+EvjtZLkJkpZLWgr8EPiN5IwrzFhecj3nL1sxM6sYLrrNzCrLZ4BNyYGO+4HfndkgIl4DWs8cMAk8KGmvpFeACeAHEfEU8K/AjyXtAR4HFkTEPuBvgB9Jehl4eFrXtwNP5+0vMzMrYT5loJmZXUDS7wMDEbFtjvrbCPxBRNw3F/2ZmZUb7+k2M7PZfJXz14j/rNqBv5jD/szMyor3dJuZmZmZ5Zn3dJuZmZmZ5ZmLbjMzMzOzPHPRbWZmZmaWZy66zczMzMzyzEW3mZmZmVme/T9l/W68EJ6fFQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Running the same simulation for NITER times to calculate the mean of molecule concentrations\n", + "NITER = 100\n", + "res = numpy.zeros([NITER, 3001, 3])\n", + "tpnt = numpy.arange(0.0, 3.001, 0.001)\n", + "start = time.time()\n", + "\n", + "# Run the same simulation for NITER times\n", + "for i in range(0, NITER):\n", + " sim.reset()\n", + " # Setting concentrations (amount of molecules in this occasion) of the simulation\n", + " sim.setCompCount('comp', 'X', 500)\n", + " sim.setCompCount('comp', 'Y', 1000)\n", + " sim.setCompCount('comp', 'Z', 2100)\n", + " for t in range(0, 3001):\n", + " # Running the Wmdirect Solver for one step and saving the results\n", + " sim.run(tpnt[t])\n", + " res[i,t,0] = sim.getCompCount('comp', 'X')\n", + " res[i,t,1] = sim.getCompCount('comp', 'Y')\n", + " res[i,t,2] = sim.getCompCount('comp', 'Z')\n", + "\n", + "end = time.time()\n", + "print(\"Simulation Time (sec)\")\n", + "print(end - start) \n", + "# Calculation of mean of concentration\n", + "res_mean = numpy.mean(res, 0)\n", + "\n", + "plt.figure(figsize=(12,7))\n", + "# Plot number of molecules of 'X' over the time range:\n", + "plt.plot(tpnt, res_mean[:,0], label = 'X')\n", + "# Plot number of molecules of 'Y' over the time range:\n", + "plt.plot(tpnt, res_mean[:,1], label = 'Y')\n", + "# Plot number of molecules of 'Z' over the time range:\n", + "plt.plot(tpnt, res_mean[:,2], label = 'Z')\n", + "\n", + "plt.xlabel('Time (sec)')\n", + "plt.ylabel('#molecules')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Benchmarking\n", + "\n", + "Running the same simulation with different solvers to check the performance variation between them." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Wmrk4\n", + "Non-spatial deterministic solver based on the Runge-Kutta forth order method." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Solver definition\n", + "sim_rk4 = ssolver.Wmrk4(mdl, wmgeom)\n", + "sim_rk4.setRk4DT(1e-4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Wmdirect\n", + "Non-spatial stochastic solver based on Gillespie's SSA." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialization of random generator\n", + "r_direct = srng.create('mt19937', 256)\n", + "r_direct.initialize(23412)\n", + "# Solver definition\n", + "sim_direct = ssolver.Wmdirect(mdl, wmgeom, r_direct)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## RSSA\n", + "Non-spatial stochastic solver based on Gillespie's SSA. \n", + "It is called Reduction-based SSA due to the fact that it aims to reduce the number of propensity updates during the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialization of random generator\n", + "r_RSSA = srng.create('mt19937', 256)\n", + "r_RSSA.initialize(23412)\n", + "# Solver definition\n", + "sim_RSSA = ssolver.Wmrssa(mdl, wmgeom, r_direct)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Main Simulation\n", + "In this part the main simulation will run for the following cases: " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "| Run | #X | #Y | #Z |\n", + "| --- | ---- | ---- | ---- |\n", + "| 1 | 5 | 10 | 20 |\n", + "| 2 | 50 | 100 | 200 |\n", + "| 3 | 500 | 1000 | 2000 |\n", + "| 4 | 5000 | 10000 | 20000 | \n", + "| 5 | 50000 | 100000 | 200000 | " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAGtCAYAAADQwSggAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3XlY1eed///n58CRXRRkO7hhIooCIhKVc2KzmmhjGpM0qzbN0qb9JmmaNP1N+7sm36bt95pp06vTTNPJtJOZafubr8aaOs3SJjNx2qQzBldUwIW4xqiAICKbcFjOuX9/3Oa02Soq8GF5Pa6rVxQQXlrFF7fvz/t2jDGIiIiIiEjfedwOICIiIiIy3KhEi4iIiIicJ5VoEREREZHzpBItIiIiInKeVKJFRERERM6TSrSIiIiIyHlSiRYREREROU8q0SIiIiIi50klWkRERETkPEW7HaAvJkyYYKZOnep2DBEREREZwbZv395ojEnry9sOixI9depUysvL3Y4hIiIiIiOY4zjv9fVtNc4hIiIiInKeVKJFRERERM6TSrSIiIiIyHkaFjPRH6enp4fjx48TDAbdjuKa2NhYJk6ciNfrdTuKiIiIyKgybEv08ePHSUpKYurUqTiO43acQWeM4dSpUxw/fpycnBy344iIiIiMKsN2nCMYDJKamjoqCzSA4zikpqaO6pN4EREREbcM2xINjNoC/b7R/vMXERERccuwLtEiIiIiIm5Qib4IUVFRFBUVkZ+fz4033khzczMAf/zjH1m2bNkn/rht27YRHR3NunXrBiuqiIiIiPQjleiLEBcXR0VFBbt37yYlJYXnnnvunD8mFArxjW98g+uuu24QEoqIiIjIQFCJ7ielpaXU1NR85OXbtm1j7ty5HDp0CICf/OQn3HrrraSnpw92RBERERHpJ8N2xd2f+85v97C3trVf3+cs31ieunF2n942FArxhz/8gQceeOADL9+4cSNf+cpXeOWVV5g8eTI1NTW89NJLvPXWW2zbtq1f84qIiIjI4NFJ9EXo7OykqKiIzMxM6uvrWbx4ceR11dXVPPjgg/z2t79l8uTJADz22GM8/fTTeDz6ZRcREREZzkbESXRfT4z72/sz0R0dHVx//fU899xzPProowBkZWURDAbZuXMnPp8PgPLycu68804AGhsbef3114mOjmb58uWu5BcRERGRCzMiSrTb4uPjefbZZ1m+fDkPPfQQAOPGjeNf//VfWbx4MQkJCVx55ZW8++67kR9z7733smzZMhVoERERkT/X0QTtDZA+0+0kf5HmCvrJ3LlzKSwsZM2aNZGXZWRk8Lvf/Y6HH36YLVu2uJhOREREZAgL9cL+9fDiPfB3M+B3j7md6JwcY4zbGc6ppKTElJeXf+Bl1dXV5OXluZRo6NCvg4iIiAxbjQdg5yqoWgttdRCfCgW3w9wVkFkw6HEcx9lujCnpy9tqnENEREREBk+wFfb8BnauhuNbwYmC6dfB0h9A7hKIHuN2wj5RiRYRERGRgRUOw5H/scW5+rfQ2wlpM2Hx/4HCOyApw+2E500lWkREREQGxukjUPECVKyBlqMQkwxFd0HRSsguBsdxO+EFU4kWERERkf7TfQb2vmLL85ENgAPTroRrn4KZN4A3zuWA/UMlWkREREQujjFwdDNUrII9L0N3O6RMg6ufhDl3QfJEtxP2O5VoEREREbkwLTVQucaeOjcdAm8CzL7ZbteYXDqsxzXORSX6IkRFRVFQUEBPTw/R0dHcc889PP7443g8HsrLy/m3f/s3nn322Yv+OL/85S+57rrrIjcfioiIiLimJwj7XrMPCR5+C0wYplwOi56AWTdBTKLbCQeFSvRFeP/ab4CGhgbuvvtuWltb+c53vkNJSQklJR9dM9jb20t09Pn9sv/yl78kPz9fJVpERETcYQzU7rDFefc6CLZA8iRY9HX7oGDKNLcTDjqV6H6Snp7O888/z2WXXca3v/1t/vu//5sf/vCH/O53v+Pb3/42hw4d4vDhw0yePJlVq1bxzW9+kz/+8Y90dXXx8MMP86UvfQmAp59+mlWrVuHxeFi6dCklJSWUl5ezYsUK4uLi2LRpE3FxI2MgX0RERIa49gZ7EcrO1XCyGqJjIe9GKFoBOVeAZ/Refj0ySvR/fBNO7Orf95lZAEu/f14/ZNq0aYRCIRoaGj7yur179/L2228TFxfH888/T3JyMtu2baOrq4tAIMB1113HO++8wyuvvMKWLVuIj4+nqamJlJQU/uEf/oEf/vCHH3uyLSIiItKvervhwHqoWA373wATgomXwbK/t/POcePcTjgkjIwSPQx85jOfiZwgr1+/nqqqKtatWwdAS0sLBw4c4Pe//z333Xcf8fHxAKSkpLiWV0REREaZE7ttca56EToaITED/I/YU+e0GW6nG3JGRok+zxPjgXL48GGioqJIT0+nurr6A69LSEiIfNsYw09+8hOuv/76D7zNG2+8MSg5RURERADoaIJd6+xqurpK8HhhxlKYuxIuuQaiRkZVHAijd5Cln508eZIvf/nLPPLIIzjnWOdy/fXX89Of/pSenh4A9u/fz5kzZ1i8eDG/+MUv6OjoAKCpqQmApKQk2traBvYnICIiIqNDqBf2r4cX74G/mwH/8f/YBweX/gC+vh/u+L+Qe70K9DnoV+cidHZ2UlRUFFlx97nPfY6vfe1r5/xxX/jCFzhy5AjFxcUYY0hLS+Pll19myZIlVFRUUFJSwpgxY/j0pz/N3/7t33Lvvffy5S9/WQ8WioiIyIVrPAA7V9kHBdvqID4VSh6wO50zC9xON+w4xhi3M5xTSUmJKS8v/8DLqqurycvLcynR0KFfBxEREflEwVbY8xu7XeP4VnCiYPpiO+ecuwSix7idcEhxHGe7MaZPmxx0Ei0iIiIykoTDcOR/bHGu/i30dkLaTFj8f6DwDkjKcDvhiKASLSIiIjISnD5ir9+uWAMtRyEm2V6EUrQSsotH9BXcbhiwEu04zs+BZUCDMSb/7MtSgLXAVOAIcLsx5vRAZRAREREZ0brPwN5X7Wq6IxsAB6ZdCdc+BTNvAK+eoxooA3kS/UvgH4B/+7OXfRP4gzHm+47jfPPs978xgBlERERERhZj4Ohmu5Zuz8vQ3W6v3b76SZhzFyRPdDvhqDBgJdoY8z+O40z90ItvAq48++3/D/gjKtEiIiIi59ZSA5Vr7MhG0yHwJtgbBOeugMmlGtcYZIM9E51hjKk7++0TwCdOtjuO8yDwIMDkyZMHIZqIiIjIENMThH2v2YcED78FJgxTLodFT8CsmyAm0e2Eo5Zrl60Yu1vvE/frGWOeN8aUGGNK0tLSBjFZ30VFRVFUVER+fj433ngjzc3NAITDYR599FHy8/MpKCjgsssu49133wXg5z//OQUFBRQWFpKfn88rr7wSeX+9vb2kpaXxzW9+05Wfj4iIiAwBxkDNdvjd1+DvcmHd/dC4HxZ9HR7dCfe9Zk+fVaBdNdgn0fWO42QZY+ocx8kCGgb54/eruLg4KioqAPj85z/Pc889x1//9V+zdu1aamtrqaqqwuPxcPz4cRISEjh+/Dh/8zd/w44dO0hOTqa9vZ2TJ09G3t9//dd/kZuby69//Wu+973vnfPmQxERERlB2hvsRSg7V8PJaoiOhbwb7U7nnCvAo4umh5LBLtGvAp8Hvn/2v6/85TcfPkpLS6mqqgKgrq6OrKwsPGd/s0+caAf83333XZKSkkhMtF85JiYmRr4NsGbNGr761a/y05/+lE2bNuH3+wf5ZyEiIiKDqrcbDqy32zX2vwEmBNklsOwZmH0LxI1zO6F8goFccbcG+xDhBMdxjgNPYcvzi47jPAC8B9zeHx/r6a1P807TO/3xriJmpszkG/P79sxjKBTiD3/4Aw888AAAt99+O5dffjkbNmzgmmuuYeXKlcydO5c5c+aQkZFBTk4O11xzDbfccgs33ngjAMFgkN///vf80z/9E83NzaxZs0YlWkREZKQ6sdsW56oXoaMREjPA/4g9dU6b4XY66YMB+3cBY8xdxpgsY4zXGDPRGPOvxphTxphrjDHTjTHXGmOaBurjD4bOzk6KiorIzMykvr6exYsXA/bked++fXzve9/D4/FwzTXX8Ic//IGoqCj+8z//k3Xr1pGbm8vjjz/Ot7/9bQB+97vfcdVVVxEXF8ett97Kyy+/TCgUcvFnJyIiIv2qowm2PA//9Cn4WQC2/jNM8cPdL8Lje2Hxd1WghxHHPt83tJWUlJjy8vIPvKy6upq8vDyXElmJiYm0t7fT0dHB9ddfz2233cajjz76kbf74Q9/yHvvvcdPfvKTD7y8vLyc++67j127dnHrrbfy9ttvExdnl6I3NDTwyiuvRIr5JxkKvw4iIiLyCUK9cOhNe+q873UIdUNmoT1xLrgNElLdTih/xnGc7caYkr68ra797gfx8fE8++yzLF++nIceeoiqqioyMzPx+XyEw2GqqqooLCyktraWEydOUFxcDEBFRQVTpkyhtbWVDRs2cOzYMWJiYgD4xS9+wZo1a85ZokVERGQIajwAO1fZBwXb6iA+FUoesFs1MgvcTif9QCW6n8ydO5fCwkLWrFlDWloaX/ziF+nq6gJg/vz5PPLII9TX1/P1r3+d2tpaYmNjSUtL42c/+xkvvfQSV199daRAA9x000381V/9FV1dXR94uYiIiAxRwVbY8xu7XeP4VnCiYPpiWPoDyF0C0WPcTij9SOMcw5x+HURERFwUDsORDXZcY++r0NsJaTPtuEbhHZD0iffKyRCkcQ4RERGRgXT6iL1+u2INtByFmGQouguKVkJ2sa7gHgVUokVERET6ovuMPW2uWG1Pn3Fg2pVw7VMw8wbwxrkcUAbTsC7RxphRfavfcBjFERERGdaMgaOboWIV7HkZutthfA5c/STMuQuSJ7qdUFwybEt0bGwsp06dIjU1dVQWaWMMp06dIjY21u0oIiIiI09LDVSusSMbTYfAmwCzb7bbNSaXalxDhm+JnjhxIsePH+fkyZNuR3FNbGxs5EpxERERuUg9Qdj3mt2ucfgtMGGYEoBFT8CsmyAm0e2EMoQM2xLt9XrJyclxO4aIiIgMZ8ZA7Q5bnHevg2ALJE+CRV+3DwqmTHM7oQxRw7ZEi4iIiFyw9gZ7EcrO1XCyGqJjIe9Gu5ou5wrweNxOKEOcSrSIiIiMDr3dcGC93a5xYD2EeyG7BJY9A7NvgbhxbieUYUQlWkREREa2E7ttca56EToaITEDSh+2p85pM9xOJ8OUSrSIiIiMPB1NsGudXU1XVwkeL8xYCnNXwiXXQJQqkFwc/Q4SERGRkSHUC4fetKfO+16HUDdkFsKSp6HgNkhIdTuhjCAq0SIiIjK8NR6Anavsg4JtdRCXAiUP2J3OmQVup5MRSiVaREREhp9gK+z5jd2ucXwrOFEwfTEs/QHkLoHoMW4nlBFOJVpERESGh3AYjmyw4xp7X4XeTpgwAxZ/FwrvhKQMtxPKKKISLSIiIkPb6SP2+u2KNdByFGKS7UUoRSshu1hXcIsrVKJFRERk6Ok+Y0+bK1bb02ccmHYlXPsUzLwBvHEuB5TRTiVaREREhgZj4OhmW5z3vAzdbTA+B656EubcCeMmuZ1QJEIlWkRERNzVUgOVa+zIRtMh8CbA7Jvtdo3JpRrXkCFJJVpEREQGX08Q9r1mt2scfgtMGKYEYNETMOsmiEl0O6HIX6QSLSIiIoPDGKjdYYvz7nUQbIHkSbDo6/ZBwZRpbicU6TOVaBERERlY7Q32IpSdq+FkNUTHQt6NULQCcq4Aj8fthCLnTSVaRERE+l9vNxxYbx8SPLAewr2QXQLLnoHZt0DcOLcTilwUlWgRERHpPyd22+Jc9SJ0NEJiBpQ+bE+d02a4nU6k36hEi4iIyMXpaIJd66BiFdRVgscLM5bC3JVwyTUQpbohI49+V4uIiMj5C4fg0JuwcxXsex1C3ZBZAEuehoLbICHV7YQiA0olWkRERPqu8YAtzlVroa0O4lKg5AEouhuyCt1OJzJoVKJFRETkLwu2wp7f2O0ax7eCEwXTF8PSH0DuEoge43ZCkUGnEi0iIiIfFQ7DkQ32IcG9r0JvJ0yYAYu/C4V3QFKm2wlFXKUSLSIiIn9y+oi9frtiDbQchZhkexFK0UrILtYV3CJnqUSLiIiMdt1n7GlzxWp7+owD066Ea5+CmTeAN87lgCJDj0q0iIjIaGQMHN1si/Oel6G7DcbnwFVPwpw7YdwktxOKDGkq0SIiIqNJSw1UrrEjG02HwJsAs2+GuStgcqnGNUT6SCVaRERkpOsJwr7X7HaNw2+BCcOUACx6AmbdBDGJbicUGXZUokVEREYiY6B2px3X2PVrCLbA2Im2OBfdDSnT3E4oMqypRIuIiIwk7Q32IpSKF6BhL0THQt6NULQCcj4Fnii3E4qMCCrRIiIiw12oB/a/YU+dD6yHcC9kl8CyZ2D2LRA3zu2EIiOOSrSIiMhwdWK3PXGuWgsdjZCYAQsfsqfO6TPdTicyoqlEi4iIDCcdTbBrHVSsgrpK8HhhxlKYuxIuuQai9Fe7yGDQnzQREZGhLhyCQ2/CzlWw73UIdUNmASx5Ggpug4RUtxOKjDoq0SIiIkNV4wFbnKvWQlsdxKVAyQN2u0ZWodvpREY1lWgREZGhJNgKe35jdzof3wpOFExfDEt/ALlLIHqM2wlFBJVoERER94XDcGSD3a6x91Xo7YQJM2Dxd6HwDkjKdDuhiHyISrSIiIhbTh+x2zUq1kDLUYhJhqK77HaN7Hm6gltkCFOJFhERGUzdZ+xpc8Vqe/qMA9OuhGufgpk3gDfO5YAi0hcq0SIiIgPNGDi2xT4kuOdl6G6D8Tlw1ZMw504YN8nthCJynlSiRUREBkpLDVSusSMbTYfAmwCzb7bbNab4Na4hMoypRIuIiPSnniDse81u1zj8FpgwTAnAoidg1k0Qk+h2QhHpByrRIiIiF8sYqN1p55x3/RqCLTB2oi3ORXdDyjS3E4pIP1OJFhERuVDtDfYilIoXoGEvRMdC3o12u0bOp8AT5XZCERkgKtEiIiLnI9QD+9+wp84H1kO4F7JLYNkzMPsWiBvndkIRGQQq0SIiIn1xYrc9ca5aCx2NkJgBCx+yp87pM91OJyKDTCVaRETkk3Q0wa51ULEK6irB44UZS2HuSrjkGojSX6Mio5X+9IuIiPy5cAgOvWl3Ou97HULdkFkAS56GgtsgIdXthCIyBKhEi4iIADQesHPOlb+CtjqIS4GS++24Rlah2+lEZIhRiRYRkdEr2Ap7fmN3Oh/fCk4UTF8MS38AuUsgeozbCUVkiFKJFhGR0SUchiMb7Knz3lehtxMmzIDF34XCOyAp0+2EIjIMqESLiMjocPoIVKyByheg+SjEJMOcO+1DgtnzdAW3iJwXV0q04ziPA18ADLALuM8YE3Qji4iIjGDdZ+xpc8Vqe/qMA9OuhGuegpk3gDfO5YAiMlwNeol2HCcbeBSYZYzpdBznReBO4JeDnUVEREYgY+DYFrtdY8/L0N0G43PgqiftyfO4SW4nFJERwK1xjmggznGcHiAeqHUph4iIjBQtNVC5xl6I0nQIvAkw+2Youhum+DWuISL9atBLtDGmxnGcHwJHgU5gvTFm/WDnEBGREaAnCPtes9s1Dr8FJgxTArDoCZh1E8Qkup1QREYoN8Y5xgM3ATlAM/Brx3FWGmNWfejtHgQeBJg8efJgxxQRkaHKGKjdaeecd62DYDOMnWiLc9HdkDLN7YQiMgq4Mc5xLfCuMeYkgOM4vwH8wAdKtDHmeeB5gJKSEjPYIUVEZIhpb4CqtXZco2EvRMdC3o22OOdcAZ4otxOKyCjiRok+Cix0HCceO85xDVDuQg4RERnqQj2w/w176nxgPYR7IbsElj0Ds2+BuHFuJxSRUcqNmegtjuOsA3YAvcBOzp44i4iIAFC/x845V62FjkZIzICFD9kruNNnup1ORMSd7RzGmKeAp9z42CIiMkR1NNkZ54rVUFcBHi/MWGqL86XXQpTuBxORoUOfkURExD3hEBx60+503vc6hLohswCWPA0Ft0FCqtsJRUQ+lkq0iIgMvsYD9sS58lfQVgdxKVByvz11zip0O52IyDmpRIuIyOAItsKe39hZ5+NbwYmC6Yth6Q8gdwlEj3E7oYhIn6lEi4jIwAmH4cgGe+q891Xo7YQJM2Dxd6HwDkjKdDuhiMgFUYkWEZH+d/oIVKyByheg+SjEJMOcO2HuSsiepyu4RWTYU4kWEZH+0X3GnjZXrLanzzgw7Uq45imYeQN441wOKCLSf1SiRUTkwhkDx7bY7Rp7XobuNhifA1c9aU+ex01yO6GIDBPH2o6xsWYjG2s3khafxpMLn3Q70l+kEi0iIuevtRYq19gruE8dBG8CzF5ut2tM8WtcQ0TO6UzPGbad2EZZTRkbazdytO0oAL4EH9PGTXM53bmpRIuISN/0BGHfa3a7xuG3wIRhSgAu/xrMugliEt1OKCJDWNiEeafpHTbWbqSspoyKkxX0hnuJi47jsszLuDvvbgK+AFPGTsEZBl+Iq0SLiMgnMwZqd9o5513rINgMYyfCoieg6G5IGfqnRSLinsbOxkhp3ly3maZgEwAzU2Zyz6x78Pv8zE2fy5io4bfiUiVaREQ+qr0BqtbacY2GvRAdCzOXwdwVkHMFeKLcTigiQ1B3qJsdDTvYWLuRjTUb2Xd6HwApsSmU+koJ+AKU+kqZEDfB5aQXTyVaRESsUA/sf8OeOh9YD+FeyC6BZc/A7FsgbpzbCUVkiDHGcKT1SOS0uby+nM7eTqI90cxNn8tXi79KwBdgRsoMPI7H7bj9SiVaRGS0q99j55yr1kJHIyRmwMKH7EOC6TPdTiciQ0xrdytb6rZQVlPGptpN1J6pBWDK2Cksv3Q5AV+AyzIvI94b73LSgaUSLSIyGnU02RnnitVQVwEeL8xYaovzpddClP56EBErFA6x+9TuyPq5XY27CJkQid5EFmQt4IGCB/D7/ExMmuh21EGlz5IiIqNFOASH3rQ7nfe9DqFuyCyAJU9DwW2QkOp2QhEZIk6cOfGBBwJbu1txcMifkM8DBQ8Q8AUoSCvA6/G6HdU1KtEiIiNd4wF74lz5K2irg7gUKLnfnjpnFbqdTkSGgM7eTrbXb4/sbD7cchiA9Lh0rp58NQFfgIVZCxkXq2cj3qcSLSIyEgVbYc9v7Kzz8a3gRMH0xbD0achdCtHDb52UiPQfYwwHmg+wsWYjZbVl7KjfQXe4m5ioGOZlzOOW6bfg9/m5dNylw2JnsxtUokVERopwGI5ssKfOe1+F3k6YMAMWfxcK74CkTLcTioiLTgdPs6l2E2W19oHAk50nAbh03KXcOfNO/D4/8zLmERsd63LS4UElWkRkuDt9BCrWQOUL0HwUYpJhzp0wdyVkz9MV3CKjVE+4h8qGSruzuXYje0/txWAYO2bsB3Y2ZyboC+wLoRItIjIcdZ+xp80Vq+3pMw5MuxKu/hbkLQNvnMsBRcQNx9qORUY0tp7YypmeM0Q5URSmFfJQ0UMEfAFmpc4iShcmXTSVaBGR4cIYOLbFbtfY8zJ0t8H4HLjqSXvyPG6S2wlFZJCd6TnD1rqtlNXaBwKPtR0DIDsxm0/nfNrubM66jLFjxrqcdORRiRYRGepaa6Fyjb2C+9RB8CbA7OV2u8YUv8Y1REaRsAlT3VQd2dlc0VBBr+klLjqOyzIvY0XeCgK+AFPGTtEDgQNMJVpEZCjqCcK+1+x2jcNvgQnDlABc/jWYdRPEJLqdUEQGycmOk2yq2xTZ2dwUbAJgZspM7pl9DwFfgKL0IsZEaevOYFKJFhEZKoyB2p12znnXOgg2w9iJsOgJKLobUqa5nVBEBkF3qJsdDTsis837T+8HICU2Bb/Pj9/np9RXyoS4CS4nHd1UokVE3NbeAFUv2vLcsBeiY2HmMpi7AnKuAD0AJDKiGWN4t/XdSGkuP1FOMBQk2hNNcXoxjxU/ht/nZ0bKDDyOx+24cpZKtIiIG0I9sP8NW5wPrIdwL2SXwLJnYPYtEKdbwURGspauFrbUbYmsn6s7UwfA1LFTuXn6zfaBwMzLiPfGu5xUPolKtIjIYKrfY+ecq9ZCRyMkZsDCh+xDgukz3U4nIgMkFA6x+9TuyGnzrsZdhE2YRG8iC7IW8IWCL+D3+ZmYNNHtqNJHKtEiIgOto8nOOFeshroK8HhhxhIoWgmXXgtR+lQsMhKdOHOCspoyymrtA4Ft3W04OORPyOeLBV8kkB0gf0I+Xo/X7ahyAfSZW0RkIIRDcOhNu9N53+sQ6obMAljyNBTcBgmpbicUkX7W2dtJ+YnyyIjG4ZbDAKTHp3Pt5Gvx+/wszFrIuFiNa40EKtEiIv2p8YA9ca78FbTVQVwKlNxvxzWyCt1OJyL9yBjD/tP72VS7ibLaMnbU76A73E1MVAzzMuZxy/RbCPgCXDLuEu1sHoFUokVELlawFfb8xs46H98KTpQd01j6NOQugegYtxOKSD85HTwdKc2bajdxsvMkAJeOu5Q7Z95JwBegOKOY2OhYl5PKQFOJFhG5EOEwHNlgT533vgq9nTBhBiz+LhTeAUmZbicUkX7QE+6hsqGSjbX2gcDqU9UYDMkxyZRmlUZ2Nmcm6M/8aKMSLSJyPk4fgYo1UPkCNB+FmGSYcyfMXQnZ83QFt8gIcKz1GGW1ZWys3cjWE1s503OGKCeKOWlzeKjoIQK+ALNSZxGlHe6jmkq0iMi5dJ+xp80Vq+3pMw5MuxKu/hbkLQNvnMsBReRinOk5w9a6rZHifKztGADZidl8OufTBHwB5mfNJ2lMkstJZShRiRYR+TjGwLEtdrvGnpehuw3G58BVT9qT53GT3E4oIhcobMJUN1VHdjZXNlTSa3qJi45jfuZ8VuatJJAdYHLSZD0QKJ9IJVpE5M+11kLlGqh4AU4dBG8CzF5ut2tM8WtcQ2SYOtlxMjLXvLl2M6e7TgOQl5LH52d/Hr/PT1F6EWOixricVIYLlWgRkZ4g7HvNbtc4/BaYMEwJwOWPw6zlEJPodkIROU9doS5u0ghwAAAgAElEQVR21O+I7Gzef3o/ACmxKQSyA5EHAifETXA5qQxXKtEiMjoZA7U77ZzzrnUQbIaxE2HREzDnLki9xO2EInIejDG82/Ju5LS5/EQ5wVCQaE80xenFPFb8GIHsALnjc/E4HrfjygigEi0io0t7A1S9aMtzw16IjoWZy2DuCsi5AvS0vciw0dLVwpa6LZHT5rozdQBMHTvVXnSSHaAko4R4b7zLSWUkUokWkZEv1AP737DF+cB6CPdCdgnc8CPIvxXidAWvyHDQG+5ld+PuyGnz7sbdhE2YJG8SC7IW8MXCL+L3+clOzHY7qowCKtEiMnLV77FzzlVroaMREjNg4UP2IcH0mW6nE5E+qGuvi6ye21y3mbbuNhwc8ifk88WCLxLIDlAwoYBojyqNDC79jhORkaWjCXb/u11NV1cBHi/MWAJFK+1V3FH6tCcylHX2dlJ+ojxy2vxuy7sApMenc+3ka/Fn+ynNKiU5JtnlpDLa6W8TERn+wiE49KYtzvteh1A3ZBbAkqeh4DZISHU7oYh8AmMM+0/vj5TmHfU76An3EBMVQ0lGCZ+d/lkC2QGmJU/TzmYZUlSiRWT4ajwIFaug8lfQVgdxKVByvx3XyCp0O52IfIKmYBObajdFHghs7GwE4NJxl3LXzLsI+AIUZxQTGx3rclKRT6YSLSLDS7AV9rxkHxI8tgWcKDumsfRpyF0C0TFuJxSRD+kJ9VBxsoJNtZsoqy2j+lQ1BkNyTDKlWaX4fX78Pj8ZCRluRxXpM5VoERn6wmE4ssEW572vQm8nTJgBi78LhXdAUqbbCUXkQ461HqOstoyy2jK21m2lo7eDKCeKOWlzeLjoYQLZAfJS8ojSWkkZplSiRWToOn0EKtZA5QvQfBRikmHOnTB3JWTP0xXcIkPImZ4zkZ3NZTVlHG8/DkB2YjbLpi3Dn+1nfuZ8ksYkuZxUpH+oRIvI0NJ9xp42V6y2p884MO0KuPpbkLcMvHFuJxQRIGzCVJ+qjqyfq2yopNf0Ehcdx4LMBXxu1ucIZAeYnDRZDwTKiKQSLSLuM8bON+9cBXtehu42GJ8DVz1pT57HTXI7oYgADR0NkbnmzbWbOd11GoC8lDw+P/vzBLIDFKUV4Y3yupxUZOCpRIuIe1proXINVLwApw6CNwFmL7fbNab4Na4h4rKuUBc76ndE1s8dOH0AgNTYVC7Pvjyyszk1TmskZfRRiRaRwdUThH2v2ZsED78FJgyT/XD54zBrOcQkup1QZNQyxvBuy7uRBwK3n9hOMBTE6/FSnF7M4/Mex+/zkzs+F4/jcTuuiKtUokVk4BkDtTvtnPOudRBshrETYdETMOcuSL3E7YQio1ZLVwub6zZHxjROnDkBwNSxU7ll+i0EsgOUZJQQ7413OanI0KISLSIDp/0kVK215blhL0THwsxlMHcF5FwBWm0lMuh6w73sbtwdGdHY3bibsAmT5E1iQdYCHix8EL/PT3ZitttRRYY0lWgR6V+hHtj/hp1zPvAGhHshuwRu+BHk3wpx49xOKDLq1LXXRbZobK7bTFt3Gx7HQ35qPg8WPkjAFyB/Qj7RHtUCkb7SnxYR6R/1e+ycc9Va6GiExAxY+JB9SDB9ptvpREaVjp4OyuvLI9dqv9vyLgAZ8RksnrKYUl8ppVmlJMcku5xUZPhSiRaRC9fRBLv/3a6mq6sAjxdmLIGilfYq7ih9ihEZDMYY9p/eHzlt3lG/g55wDzFRMZRklPDZ6Z8lkB1gWvI07WwW6Sf6G05Ezk84BIfetMV53+sQ6oaMAljyfSi4HRK06kpkMDQFm9hUuyly2tzY2QjApeMu5e6Zd+PP9lOcXkxsdKzLSUVGpnOWaMdxSoGVwCIgC+gEdgOvAauMMS0DmlBEhobGg1CxCip/BW11EJcCJffbcY2sQrfTiYx4PaEeKk5WRK7Vrm6qBmBczDhKs0ojO5szEjJcTioyOvzFEu04zn8AtcArwN8ADUAskAtcBbziOM6PjDGvDnRQEXFBsBX2vGS3axzbAo4HLl0MS5+G3CUQHeN2QpER7WjrUTuiUbORrSe20tHbQZQTxZy0OTxS9AiB7AB5KXlEadONyKA710n054wxjR96WTuw4+z//s5xnAkDkkxE3BEOw5ENtjjvfRV6O2FCLlz7HXsFd1Km2wlFRqz27na2nNhidzbXlHG8/TgA2YnZLJu2DH+2nwWZC0gco0uJRNz2F0v0+wXacZwEoNMYE3YcJxeYCfyHMabnY0q2iAxHp49AxRqofAGaj0JMsi3Nc1dC9jxdwS0yAMImTPWpantDYE0ZVSer6DW9xEXHsSBzAffMvoeAL8CkpEl6IFBkiOnrg4X/AyxyHGc8sB7YBtwBrBioYCIyCLo7oPpV+5DgkQ2AA9OugKu/BXnLwBvndkKREaeho8E+DFizkU11m2juagYgLyWPe/Pvxe/zU5RWhDfK63JSEflL+lqiHWNMh+M4DwD/aIz5geM4FRf6QR3HGQf8C5APGOB+Y8ymC31/InIejLHzzTtXwZ6XobsNxufAVU/ak+dxk9xOKDKidIW62F6/nY01G9lYt5EDpw8AkBqbyqLsRZEHAlPjtNlGZDjpc4k+u6VjBfDA2ZddzFMMPwb+0xjzWcdxxgDxF/G+RKQvWmuhco29SfDUQfAmwOzldrvGFL/GNUT6iTGGwy2HI9dqbz+xnWAoiNfjpTi9mMfnPU7AFyB3fK5GNESGsb6W6K8C/y/wkjFmj+M404C3LuQDOo6TDHwKuBfAGNMNdF/I+xKRc+gJ2l3OFavtbmcThsl+uPxxmLUcYvRwkkh/aOlqYXPd5sjO5hNnTgAwdexUbs29Fb/PT0lGCfFenRmJjBR9KtHGmP/BzkW///3DwKMX+DFzgJPALxzHmQNsB75qjDlzge9PRP6cMVC70xbnXesg2AxjJ8KiJ2DOXZB6idsJRYa93nAvuxt3R9bP7T61m7AJk+RNYqFvIQ8WPkjAF8CX6HM7qogMkHPtif5n4FljzK6PeV0C9uHCLmPM6vP8mMXAV4wxWxzH+THwTeB/f+j9Pwg8CDB58uTzePcio1T7Sahaa8tzw16IjoWZy2DuCsi5ArRHVuSi1LbXUlZbxqbaTWyu20xbdxsex0P+hPxIac6fkE+0R5cBi4wG5/qT/hzwvx3HKcDeUngSe9nKdGAs8HPgfAo0wHHguDFmy9nvr8OW6A8wxjwPPA9QUlJizvNjiIwOoR7Y/4adcz7wBoR77Tq6G34E+bdC3Di3E4oMWx09HZTXl0duCDzSegSAjPgMFk9ZjN/nZ2HWQpJjkt0NKiKuONee6ArgdsdxEoES/nTtd7UxZt+FfEBjzAnHcY45jjPj7Pu4Bth7Ie9LZNSq3wM7V9uT545GSMyAhQ/ZhwTTZ7qdTmRYMsaw//T+yIjGjoYd9IR7iI2KZV7mPG6fcTsBX4Cc5Bw9ECgifZ6Jbgf+2I8f9yvA6rObOQ4D9/Xj+xYZmTqaYPe/29V0dRXg8cKMJVC0Ei69FqL0T8gi5+tU5yk21W2K7Gxu7LT3h00fP50VeSso9ZUyL2MeMVG64l5EPsiVv3XPnnCXuPGxz5sxWv0l7gmH7FaNitXwzmsQ6oaMAljyfSi4HRK0V1bkfPSEeqg4WREZ0ahuqgZgXMw4SrNK8Wf78fv8pMenu5xURIY6HV19EmPgp36YfTNc8Vdup5HRpvEgVKyCyl9BWx3EpUDJ/XZcI6vQ7XQiw8rR1qOREY2tJ7bS0dtBtBNNYVohX5n7FQK+AHmpeXgcj9tRRWQYOa8S7ThOvDGmY6DCDClNh+2Gg5YaO2uqfboy0IKtsOcle+p8bAs4Hrh0MSx9GnKXQLT+OVmkL9q729lyYou9IbB2I8fbjwMwMXEiN15yI6W+UhZkLiBxjD6vi8iF61OJdhzHj72mOxGYfHa/85eMMQ8NZDhXHd9m/9vVYjcfLHjQ3TwyMoXDcGSD/T229xXo7YQJuXDtd+wV3EmZbicUGfLCJszeU3spqyljY+1Gqk5W0Wt6iY+OZ37WfO6ZfQ8BX4DJY7UuVUT6T19Pop8BrgdeBTDGVDqO86kBSzUUnDm78SB5Imz5KVz2BfDon/qkn5w+AhVroPIFaD4KMWNtaZ670q6o0xy+yF/U0NFAWY3d2bypbhPNXc0A5KXkcW/+vfh9forSivBGeV1OKiIjVZ/HOYwxxz600ifU/3GGEP8jdoxj70uw7n7Y/58w89Nup5LhrLsDql+12zWObAAcmHYFXP0tyFsG3ji3E4oMWV2hLrbXb2djzUbKass42HwQgAlxE/jUxE9FdjanxulhWxEZHH0t0cfOjnQYx3G8wFeB6oGLNUR4PJB3k70yefM/qkTL+TPGzjfvXAV7XobuNhg/Fa76a3sF97hJbicUGZKMMRxuORwZ0SivL6cr1IXX46U4o5jPXPIZ/D4/ueNztbNZRFzR1xL9ZeDHQDZQA6wHHh6oUENKVLSdh/6vb0FdlTYjSN+01kLlGjvrfOogeBNg9nK7XWOKX+MaIh+jpaslsrN5Y+1G6jvqAZg6diqfzf0sfp+fkowS4r3xLicVEen7ZSuNwIoBzjJ0FX8e/vi0PY2++Wdup5GhqicI+1632zUOvQkmDJP9cPnjMGu5NryIfEhvuJfdjbsj6+d2n9pN2IRJ8iax0LcQv8/ubPYl+tyOKiLyEX3dzpGDvWVw6p//GGPMZwYm1hATNw7mroDyX8C139bGBPkTY6B2py3Ou9ZBsNmO/yx6wo5rpF7idkKRIaW2vTZSmrfUbaGtpw2P4yF/Qj5fKvwSfp+f/An5RHt0jYGIDG19/Sz1MvCvwG+B8MDFGcIWfBm2/jNs+xe4+km304jb2k9C1Vpbnhv2QnQszFxmv9jKuQI8UW4nFBkSOno6KK8vj8w2H2k9AkBmQibXTb2OUl8pC7MWkhyT7G5QEZHz1NcSHTTGPDugSYa61EtgxlIo/7k9ZdQmhdEn1AMH1sPO1XDgDQj32nV0N/wI8m+1/2IhMsoZY9h3el9k/dyOhh30hHuIjYplXuY8bp9xOwFfgJzkHD0QKCLDWl9L9I8dx3kK+0Bh1/svNMbsGJBUQ9XCh+zMa9VamHev22lksNTvscW5ai10nN0fvvAh+5Bg+ky304m47lTnqQ88EHgqeAqA6eOnsyJvBX6fn+KMYmKidOumiIwcfS3RBcDngKv50ziHOfv90WPq5ZBRAGXPwpQATJjudiIZKB1NsPvf7Wq6ugrweGHGEihaCZdea7e2iIxSPaEeKk5WREY0qpvsxtPxMeNZ6FtIwBeg1FdKeny6y0lFRAaOY4w59xs5zkFgljGme+AjfVRJSYkpLy9340N/1P434MV7oLcL8m6ERV8D31y3U0l/CIfsVo2K1fDOaxDqtl80zV0BBbdDgi5xkNHJGMPRtqOR0rz1xFY6ezuJdqKZkz4Hv89PwBcgLzUPj6ObXUVk+HIcZ7sxpqQvb9vX47TdwDig4YJTjRS518Nju2DLz2Drv9gb6KZdCZd/DXI+pf2/w1HjQahYBZW/grY6iEuBkvvtuIb2gsso1dbdxta6rWystTcE1rTXADAxcWLkopP5mfNJHKPVjSIyOvX1JPqPQCGwjQ/ORA/KirshdRL954Itdu3dpufgTIN9yOzyx2HGDfa2Qxm6gq2w5yV76nxsCzgeuHSxPXXOXQLRmt2U0SUUDlHdVB05ba48WUnIhIiPjmd+1nwCvgABX4BJY3XLpoiMXOdzEt3XEn3Fx73cGPPf55ntggzZEv2+niBUvgBlP4bTR2BCLgQeg4LbIHqM2+nkfeEwHNlgbxHc+wr0dtr/r4pWwJw7tf9bRp36M/VsrLUPA26u20xzVzMAs1JnReaai9KK8EZ5XU4qIjI4+r1Eu23Il+j3hXph78vw9t9D/S576Yb/ESi+B8YkuJ1u9Dr9ni3OlS9A81GIGWtX0s1daf/1QCM4MkoEe4PsqN8RGdE42HwQgAlxEyK3A5b6SkmJTXE5qYiIO/qtRDuO87Yx5nLHcdqw2zgirwKMMWbsxUXtm2FTot9nDBz8Pbz9DLxXZmdsF3wZ5n8R4vWX06Do7rDz6jtX2dNnHJh2hd2ukbdMe75lVDDGcKj5UOS0uby+nK5QF16Pl+KMYgK+AH6fn9zxudrZLCJC/5boncYY11dPDLsS/eeObrFlev9/gDcBSu6zO4aTs91ONvIYY+ebK1bD7peguw3GTz07rnEXjNMsp4x8LV0tH9jZXN9RD0BOck6kNM/LmEe8N97lpCIiQ09/bucY+rMeQ93kBXD3r+yFHWU/hs0/hS3/ZGdwA1/Vrun+0FoLlWvsyMapg/aLldnLbXme4te4hoxoveFedjXuitwQuPvUbsImTNKYJBZmLYysn8tKzHI7qojIiHKuk+jjwI8+6fXGmE98XX8a1ifRH3b6CGz8B9j5f7Vr+mL0BO3tkRWr7W5nE4bJfrtdY9ZyiNHaLRm5atprIqV5S90W2nra8Dge8ifkR06b8yfkE+3RpUAiIuejP0+io4BE7Ay09IfxU+GGH8IV34AtP9Wu6fNhDNTutMV51zoINtuHNxc9Ycc1Ui9xO6HIgOjo6WDbiW2R2eYjrUcAyEzI5Lqp1+H3+VmQtYDkmGR3g4qIjCLnOoneYYwpHsQ8H2tEnUR/WLAVyn8Om/8R2uu1a/rjtJ+EqrW2PDfshagYe4I/dwXkXAGeKLcTivSrsAmz//T+yM7mHQ076A33EhsVS0lmSeS0OSc5Rw8Eioj0Iz1YOBz1BO1cb9mP4fS7kDodLn/MXjc9GndNh3rgwHrYuRoOvAHhXvsFRtEKu54ubpzbCUX61anOU5GT5k21mzgVPAVA7vjcyM7m4oxiYqJ0EZCIyEDpzxKdYoxp6rdkF2hUlOj3hXqh+hXY8MzZXdPZUPoIzPv86Ng1Xb/HFueqtdDRCAnpMOcOu5oufabb6UT6TU+oh50NOymrtbPN1U3VAIyPGc9C38LIaXNafJrLSUVERg9dtjISGAMH/wBv/+jsrunxZ3dNPzjydk13NMHuf7c7nesqwOOFGUtscb70WojSw1Ey/BljONp2NDKisfXEVjp7O4l2opmTPseW5mw/eSl5eByNcomIuEEleqT58K7pefdC6cPDe9d0OASH3oKKVfDOaxDqhowCO+dccDskpLqdUOSitXW3sbVuK2W1tjjXtNcAMClpUmT13GWZl5E4RttkRESGApXokap+L5T9vd1M4XjsmEPgseG1a7rxoC3Olb+Ctjp7m2Ph7VB0N2TNcTudyEUJhUPsPbU3UpqrTlYRMiHio+NZkLUgUpwnjdXFPyIiQ5FK9Eh3+j3Y+JMP7pq+/HHIdn2RyscLtsKel+x2jWNb7BcAly62p865SyBaD0rJ8FV/pv5PDwTWbaKlqwUHh7zUvMhc85z0OXg9XrejiojIOahEjxbtJ2HLz2DrP0NXy9ld04/btW9ur70Kh+G9t+1Dgntfgd5OmJB79gruOyEp0918Ihco2BtkR/2OyGnzweaDAKTFpVHqKyXgC7DQt5CU2BH27IKIyCigEj3aBFth+y9g03N217Sv2JbpmcsGf9f06ffs9duVL0DzUYgZa1fSzV1pV9S5Xe5FzpMxhkPNhyKleXv9drpCXXg9XuZlzIusn8sdn6udzSIiw5xK9Gjl1q7p7g576+LOVXBkA+DAtCvsdo28ZeCNG7iPLTIAmoPNbK7bHCnODR0NAExLnobf58fv81OSWUJctH5vi4iMJCrRo104BHtfths9TgzQrmlj7HxzxWrY/RJ0t9krzYtW2Cu4x+nBKRk+esO97GrcFVk/t7txNwZD0pgkFmb9aWdzVmKW21FFRGQAqUSLFdk1/YydT+6PXdOttfa0u+IFOHXQrtybvdyW58mluqpcho2a9ppIad5St4X2nnY8joeCCQWRnc2zU2cT7dGechGR0UIlWj7q2FZbpve9fv67pnuC9sdVrIZDb4IJw2S/3a4x6yaISRrw+CIXq6Ong20ntkVGNN5rfQ+ArISsyIjGgqwFJMcku5xURETcohItn6yhGt7+e9j167+8a9oYqN1pT5x3/RqCzXYsZM5ddqdz6iXu5Bfpo7AJs69pX2T93I6GHfSGe4mNiqUksyRy2pwzNkcPBIqICKASLX3RfNTumt7xbx/cNZ08CarW2lPnhr0QFWNfN3eFXZ3niXI7ucgnauxsZFPtpkhxbgo2AZA7PjdSmovTixkTNYAP2oqIyLClEi199/6u6W3/DMEWcKLAhOw6uqIVdj1d3Di3U4p8rJ5QDzsbdkZGNN5pegeA8THj7c7m7AClWaWkxae5nFRERIYDlWg5f8FWeyrd2WRX4qXPdDuRyEcYY3iv9T3KasvYVLuJrSe20tnbSbQTTVF6kZ1tzvaTl5KHx9FDriIicn7Op0TrsXOxYseC/xG3U4h8RFt3G1vqtkRGNGraawCYlDSJz1zyGQK+APOz5pPg7af1jSIiIn2gEi0iQ0ooHGLPqT2R0lx1soqQCZHgTWB+5nzum30ffp+fSWO1i1xERNyjEi0irjtx5gSbajdRVlvG5rrNtHS14OAwK3UW9+ffj9/nZ076HLwer9tRRUREAJVoEXFBsDfI9vrtkdnmg80HAUiLS+OKiVcQ8AUo9ZUyPna8y0lFREQ+nkq0iAw4YwwHmw9GRjS212+nK9TFGM8YijOKuemSm/Bn+5k+brp2NouIyLCgEi0iA6I52Mzmus2R9XMNHQ0ATEuexm25txHIDjAvYx5x0XEuJxURETl/KtEi0i96wj3sOrnLluaajew5tQeDYeyYsSzMWojf5yeQHSAzIdPtqCIiIhdNJVpELtjxtuNsrN1IWU0ZW09spb2nHY/joWBCAf9rzv/Cn+0nPzWfKN10KSIiI4xKtIj0WUdPB9tObIuMaLzX+h4AWQlZXD/1egLZARZkLWDsmLEuJxURERlYKtEi8onCJsy+pn2R0ryzYSe94V7iouMoySjhrpl3UeorJWdsjh4IFBGRUUUlWkQ+oLGzMbKzeVPtJpqCTQDMGD+Dz+V9Dn+2n+L0YsZEjXE5qYiIiHtUokVGue5QNzsbdkZK8ztN7wCQEpvCwqyFBLIDlGaVkhaf5nJSERGRoUMlWmSUMcbwXut7kRGNbSe20dnbSbQTTVF6EV8t/ip+n5+ZKTPxOB6344qIiAxJKtEio0Bbdxtb6rZE1s/VnqkFYHLSZHvRic/P/Kz5JHgTXE4qIiIyPKhEi4xAoXCIPaf2RErzrsZdhEyIBG8CCzIXcH/+/fiz/UxKmuR2VBERkWFJJVpkhDhx5kTkgcDNdZtp6WrBwWFW6izuz7+fQHaAwrRCvB6v21FFRESGPZVokWEq2Btke/32yGnzoZZDAKTFpXHlxCsJZAdYmLWQ8bHjXU4qIiIy8qhEiwwTxhgONh+M3BC4vX473eFuxnjGMC9jHjdPv5lSXynTx03XzmYREZEBphItMoQ1B5vZVLeJjbUb2Vi7kYaOBgAuSb6E22fcTiA7wLyMecRFx7mcVEREZHRRiRYZQnrCPVSdrLKluWYje07twWAYO2ZsZGez3+cnMyHT7agiIiKjmkq0iMuOtR2zDwTWlP3/7d17cFznfZ/x50eAJHgVCd4BXkCZGsliw4gXiRco1J1AZbdyZ9yJk9hyEyvOKJ2MXTdp7aTTSTr1eFx3PG2mbW6yY6d1Y7uy6niUiUGJlEyL94tuFClZsngR76RIERIJEre3f+zhFqIBikfi7mKB5zNzBrvvnj3n3X3xAt89+573sO3YNt7peocRMYJFUxfx8C0P09zQzMIpC6kZUVPpqkqSpIwhWiqz813n2XZsGxsPFy52cvDtgwA0jGugdX4rqxpWsXzWciaOmljhmkqSpIFULERHRA2wAzicUvpopepxJZuObGLuhLnMnjC70lVRFetNvbx8+uXiuOZnTzxLd283Y2rHsGzGMn79w7/OqoZVNE1s8oRASZKqRCWPRH8O2AsMysNtu47v4nee+B0AHv9njzNv4rwK10jV5FTHqeKczZuPbOb0hdMA3Dj5Rj5186dobmhm8fTFjKoZVeGaSpKk96MiIToiZgMfAb4MfKESdXgve0/vBWB0zWgeWvsQ3279Ng3jGypcKw1WnT2dPHvi2eKcza+ceQWA+rp6VjaspLmhmZUNK5k6ZmqFaypJkq6FSCmVf6cRjwJfASYAv9/fcI6I+CzwWYC5c+cuPXDgQHkrCVzsucjrb73OZ9Z+hkmjJ/Gt1m8xfez0stdDg09Kif3t+4tzNu84voOO7g5qR9SyePpiVjWsYlXDKm6qv4kRMaLS1ZUkSVchInamlJZd1brlDtER8VHg/pTS70bEnQwQovtatmxZ2rFjR1nq15/nTz7Pb6/9bRrGNfDN1m9SX1dfsbqocto729l6dGtx+rkj544AMHfCXFY1rKK5sZlbZ97KuJHjKlxTSZL0fgz2EP0V4FNAN1BHYUz0YymlTw70nEqHaIDtx7bz8JMPc/111/NIyyPOnDAM9PT28NKbLxWHaLx46kV6Ug/jRo5j+czlNDcWhmjMmTCn0lWVJEnXwKAO0e/aeZUcib7kmcPP8Hvrf48Fkxbw4M0Pctecuxg/anylq6Vr6Ni5Y8UhGluObqG9s50gWDhlIasaC0M0Fk1bxMgRIytdVUmSdI3lCdHOE53D7Y238/U7vs6Xt36ZP3zmDxk1YhS3N95OS1MLd8y5w6/xq1BHdwc7j+9k4+HCLBo/P/tzAKaPmc5dc+6iubGZFbNWMLlucoVrKkmSBpOKHom+WoPlSPQlvamXF06+QNv+NtbuX8uJjhOMrhnN6tmrWdO0htWNqxk7cmylq6l+pJR49a1X2XS4MGfzzuM76eztZNSIUSydsbR4We0FkxY4Z7MkScNM1QznuFqDLUT31Zt6ee66o8cAABGeSURBVPbEs7Ttb+OJA09wquMUdTV1rJ69mtb5rdzeeDtjasdUuprD2pkLZ9hydEvxaPOJjhMAfOi6D7GqcRXNDc0snbGUutq6CtdUkiRVkiG6Qnp6e9h1YlcxUJ++cJoxtWO4c/adtDS10NzYbFArg67eLl44+ULxstp73txDIjFx1ERWNqwsTj83c9zMSldVkiQNIoboQaC7t5udx3fStr+NJw88yZmLZxhbO5a75t5Fy7xCoPZqddfOG2+/wabDm9h4ZCPbjm3jXNc5aqKGRdMWFS92snDKQmpG1FS6qpIkaZAyRA8y3b3dbDu2jbX71/LkwSc5e/Es40eO5+65d9PS1MLKWSsZWeNsD3mc6zrH9mPbi0ebD759EICGcQ3FIRq3zbrNqQglSdJVM0QPYl29XWw9upW2/W2sO7iOtzvfZsKoCdw9525a57eyfNZyp0/rR2/q5eXTLxenn3vu5HN093YzpnYMt868tThEo2likycESpKk98UQXSW6errYfHQzbfvbWH9wPe90vcN1o6/jnrn30DKvhdtm3UbtiOE7C+GpjlPvmrP59IXTANxUf1MxNC+evthhMZIk6ZowRFehzp5ONh3ZxI/3/5inDj7F+e7zTBo9iXvn3UtLUwvLZiwb8oG6s6eTXSd2FS+r/cqZVwCor6svjmte2bCSqWOmVrimkiRpKDJEV7kL3RfYeGQjbfvbePqNp+no7qC+rp57595L6/xWlkxfMiROkEspsa99H5uPbGbj4Y3sOL6Dju4OakfUsnj6YlY1FMY231h/IyNiRKWrK0mShjhD9BDS0d3BM4efoW1/GxsObaCju4MpdVO4b959tM5vZfH0xVUVMNs729l6dGvxhMCj544CMG/ivGJovnXmrV6sRpIklZ0heog633WeDYc3sHb/WjYc2sDFnotMHzOd+5ruo6WphV+e9suDLlD39Paw+83dxennXjz1Ir2pl3Ejx7F85vLiFQJnT5hd6apKkqRhzhA9DJzvOs9PDv2Etv1t/PTQT+ns7WTG2BmsaVpDS1MLi6YuqtgsFcfOHSsead5ydAvtne0EwcIpC4vTz/3StF9yFhJJkjSoGKKHmXc63+HpQ0/Ttr+NjYc30tXbxaxxs2hpaqGlqYWFUxaWNFB3dHew8/jOYnB+/ezrAEwfM70YmlfMWsGkukklq4MkSdIHZYgexto723n6jUKg3nRkE9293TSOb2RN0xpam1r5cP2HP3CgTinx6luvFodo7Dq+i87eTkbXjGbpjKXF6ecWTFrgnM2SJKlqGKIFwNmLZ1l/cD1tB9rYemQr3ambORPmFI9Q3zj5xqsOuWcunCnMonFkI5uPbOZkx0kAFkxaUJx+bumMpdTV1pXyJUmSJJWMIVq/4K0Lb7H+jfX8eN+P2XZsGz2ph6aJTcUx1DdMuuFdgbqrt4vnTzxfmLP5yCb2vLmHRGLiqInvmrN55riZFXxVkiRJ144hWld0+sJp1h1cR9u+NrYf305v6uX6666npamF+rp6Nh3ZxLZj2zjXdY6aqGHRtEXF6edunnLzkJijWpIk6XKGaF21Ux2nWHdgHW0H2thxbAeJROP4xuK45ttm3cbEURMrXU1JkqSSM0TrfTnVcYqOrg5mT5jtCYGSJGnYyROia0tdGVWPqWOmwphK10KSJGnwG1yXt5MkSZKqgCFakiRJyskQLUmSJOVkiJYkSZJyMkRLkiRJORmiJUmSpJwM0ZIkSVJOhmhJkiQpJ0O0JEmSlJMhWpIkScrJEC1JkiTlZIiWJEmScjJES5IkSTkZoiVJkqScDNGSJElSToZoSZIkKSdDtCRJkpSTIVqSJEnKyRAtSZIk5WSIliRJknIyREuSJEk5GaIlSZKknAzRkiRJUk6GaEmSJCknQ7QkSZKUkyFakiRJyskQLUmSJOVkiJYkSZJyMkRLkiRJORmiJUmSpJwM0ZIkSVJOhmhJkiQpJ0O0JEmSlJMhWpIkScrJEC1JkiTlZIiWJEmScjJES5IkSTkZoiVJkqScDNGSJElSToZoSZIkKSdDtCRJkpSTIVqSJEnKqewhOiLmRMRTEbEnIl6KiM+Vuw6SJEnSB1FbgX12A/86pbQrIiYAOyPiiZTSngrURZIkScqt7EeiU0pHU0q7sttvA3uBxnLXQ5IkSXq/KjomOiKagMXA1krWQ5IkScqjYiE6IsYDPwA+n1Jq7+fxz0bEjojYcfLkyfJXUJIkSRpARUJ0RIykEKC/k1J6rL91Ukp/mVJallJaNm3atPJWUJIkSbqCSszOEcA3gL0ppa+Xe/+SJEnSB1WJI9HNwKeAuyPiuWy5vwL1kCRJkt6Xsk9xl1J6Bohy71eSJEm6VrxioSRJkpSTIVqSJEnKyRAtSZIk5WSIliRJknIyREuSJEk5GaIlSZKknAzRkiRJUk6GaEmSJCknQ7QkSZKUkyFakiRJyskQLUmSJOVkiJYkSZJyMkRLkiRJORmiJUmSpJwM0ZIkSVJOhmhJkiQpJ0O0JEmSlJMhWpIkScrJEC1JkiTlZIiWJEmScjJES5IkSTkZoiVJkqScDNGSJElSToZoSZIkKSdDtCRJkpSTIVqSJEnKyRAtSZIk5WSIliRJknIyREuSJEk5GaIlSZKknAzRkiRJUk6GaEmSJCknQ7QkSZKUkyFakiRJyskQfQUppUpXQZIkSYNQbaUrMFit23ucR366j4d+ZT69CS509XChq4eL3b10dvf+wvoDxe08Qby/VdMAW+5/3Q++3VILorTbL+3mS1z7ctS/ut//UooSV776f3dKvP1Sv//V/P74u3nl7Vf537Vqfv9L+d5PnziaO2+cXrLtXwuG6AG8c7GbHQdOs/n1NytdFUmSpGFl1YemGKKr1QO3NLJk7mSOt1+gbmQNo2tHFH+Oqh3R/6evAT6Q9fcpcKDPbv0djRl43f622//a1XyE8GqVevRNqY/el77+Jd5+iV9AKbde8pFb/m5eeful3by/m1faful/Oat581X//pey/qV+70fVDP4Rx4boK5hTP5Y59WMrXQ1JkiQNMoM/5kuSJEmDjCFakiRJyskQLUmSJOVkiJYkSZJyMkRLkiRJORmiJUmSpJwM0ZIkSVJOhmhJkiQpJ0O0JEmSlJMhWpIkScrJEC1JkiTlZIiWJEmScjJES5IkSTkZoiVJkqScDNGSJElSTpFSqnQd3lNEnAQOVGDXU4FTFdivyst2Hh5s56HPNh4ebOfhoVLtPC+lNO1qVqyKEF0pEbEjpbSs0vVQadnOw4PtPPTZxsOD7Tw8VEM7O5xDkiRJyskQLUmSJOVkiL6yv6x0BVQWtvPwYDsPfbbx8GA7Dw+Dvp0dEy1JkiTl5JFoSZIkKSdD9AAiojUiXomI1yLii5Wuj64sIuZExFMRsSciXoqIz2Xl9RHxRES8mv2cnJVHRPxp1r4vRMSSPtv6dLb+qxHx6T7lSyPixew5fxoRUf5XKoCIqImIZyPi8ez+/IjYmrXN9yJiVFY+Orv/WvZ4U59tfCkrfyUiWvqU2/cHgYiYFBGPRsTLEbE3Ilban4eWiPhX2d/r3RHxtxFRZ1+ufhHxzYg4ERG7+5SVvO8OtI+SSim5XLYANcDPgeuBUcDzwM2VrpfLFdtsFrAkuz0B+BlwM/CfgC9m5V8Evprdvh/4ByCAFcDWrLweeD37OTm7PTl7bFu2bmTP/ceVft3DdQG+APxv4PHs/veBT2S3/xx4OLv9u8CfZ7c/AXwvu31z1q9HA/Oz/l5j3x88C/Bt4KHs9ihgkv156CxAI7APGJPd/z7wL+zL1b8Aq4ElwO4+ZSXvuwPto5SLR6L7dxvwWkrp9ZRSJ/Bd4IEK10lXkFI6mlLald1+G9hL4Y/0AxT+GZP9/Fh2+wHgb1LBFmBSRMwCWoAnUkqnU0pngCeA1uyxiSmlLanQQ/+mz7ZURhExG/gI8Eh2P4C7gUezVS5v50vt/yhwT7b+A8B3U0oXU0r7gNco9Hv7/iAQEddR+Ef8DYCUUmdK6S3sz0NNLTAmImqBscBR7MtVL6W0ATh9WXE5+u5A+ygZQ3T/GoE3+tw/lJWpCmRf8y0GtgIzUkpHs4eOATOy2wO18ZXKD/VTrvL7L8C/AXqz+1OAt1JK3dn9vm1TbM/s8bPZ+nnbX+U1HzgJ/HU2bOeRiBiH/XnISCkdBv4zcJBCeD4L7MS+PFSVo+8OtI+SMURrSImI8cAPgM+nlNr7PpZ9anU6mioWER8FTqSUdla6LiqpWgpfB/9ZSmkxcI7C17NF9ufqlo1XfYDCB6YGYBzQWtFKqSzK0XfL9ffBEN2/w8CcPvdnZ2UaxCJiJIUA/Z2U0mNZ8fHs6x+ynyey8oHa+Erls/spV3k1A/80IvZT+Hr2buC/UvgKsDZbp2/bFNsze/w64E3yt7/K6xBwKKW0Nbv/KIVQbX8eOu4F9qWUTqaUuoDHKPRv+/LQVI6+O9A+SsYQ3b/twA3ZWcKjKJzE8KMK10lXkI2N+wawN6X09T4P/Qi4dFbvp4G/61P+YHZm8ArgbPY1UBuwJiImZ0dK1gBt2WPtEbEi29eDfbalMkkpfSmlNDul1EShX65PKf0G8BTw8Wy1y9v5Uvt/PFs/ZeWfyM74nw/cQOFkFfv+IJBSOga8ERE3ZkX3AHuwPw8lB4EVETE2a4NLbWxfHprK0XcH2kfplPrMxWpdKJwx+jMKZ/f+UaXr4/Ke7XU7ha9uXgCey5b7KYyZWwe8CjwJ1GfrB/Dfs/Z9EVjWZ1u/ReHklNeA3+xTvgzYnT3nv5FdrMilYm1+J/9/do7rKfzjfA34P8DorLwuu/9a9vj1fZ7/R1lbvkKfmRns+4NjAW4BdmR9+ocUztC3Pw+hBfgT4OWsHf4nhRk27MtVvgB/S2GcexeFb5U+U46+O9A+Srl4xUJJkiQpJ4dzSJIkSTkZoiVJkqScDNGSJElSToZoSZIkKSdDtCRJkpSTIVqSyiQivhIRd0XExyLiSwOs88cRkSJiQZ+yz2dly95j+/sjYuo1rvM713J7kjRUGKIlqXyWA1uAO4ANV1jvRQoXh7jknwMvlbBekqScDNGSVGIR8bWIeAG4FdgMPAT8WUT8+wGe8kPggey5HwLOAqf6bO/XIuLFiNgdEV8dYJ+fjIhtEfFcRPxFRNRk5a0RsSsino+IdVnZH0fE7/d57u6IaOpnm38QEdsj4oWI+JOsbFxE/H22vd0R8at53x9Jqka1772KJOmDSCn9QUR8n8Ilar8APJ1Sar7CU9opXPb6H1EI098DfhMgIhqArwJLgTPA2oj4WErph5eeHBEfBn4VaE4pdUXE/wB+IyL+AfgrYHVKaV9E1F/ta4iINRQuqXwbhauM/SgiVgPTgCMppY9k6113tduUpGrmkWhJKo8lwPPATcDeq1j/uxSGdHwM+L99ym+lEMJPppS6ge8Aqy977j0UQvb2iHguu389sALYkFLaB5BSOp2j/muy5VlgV/Y6bqAw9OS+iPhqRPxKSulsjm1KUtXySLQklVBE3AJ8C5hNYUjG2EJxPAesTCl1DPDUx4GvATtSSu0RkWu3wLdTSu86eTEi/skA63fz7oMqdQNs8ysppb/4hQcilgD3A/8xItallP5DnspKUjXySLQklVBK6bmU0i3Az4CbgfVAS0rplisEaFJK54F/C3z5soe2AXdExNRsnPOvAT+5bJ11wMcjYjpARNRHxDwKJzWujoj5l8qz9fdTOFJ+KRDP76dKbcBvRcT4bL3GiJieDS85n1L6XxRC/5L3fFMkaQjwSLQklVhETAPOpJR6I+KmlNKeq3leSum7/ZQdjYgvAk9RODr89ymlv7tsnT0R8e8ojJceAXQB/zKltCUiPgs8lpWfAO4DfgA8GBEvAVspBP7L97s2G2u9OTsq/g7wSWAB8LWI6M328/DVvDZJqnaRUqp0HSRJkqSq4nAOSZIkKSdDtCRJkpSTIVqSJEnKyRAtSZIk5WSIliRJknIyREuSJEk5GaIlSZKknAzRkiRJUk7/D1qtrsT754xeAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Running the same simulation for NITER times to calculate the mean of molecule concentrations\n", + "import numpy as np\n", + "\n", + "NITER = 100\n", + "sim_times = numpy.zeros([3, 5])\n", + "tpnt = numpy.arange(0.0, 3.001, 0.001)\n", + "simulators = [sim_rk4, sim_direct, sim_RSSA]\n", + "plt_ = [1e1, 1e2, 1e3, 1e4, 1e5]\n", + "\n", + "for (i_sim, sim) in enumerate(simulators):\n", + " for j in range(0, 5):\n", + " start = time.time()\n", + " for i in range(0, NITER):\n", + " sim.reset()\n", + " # Setting concentrations (amount of molecules in this occasion) of the simulation\n", + " sim.setCompCount('comp', 'X', 5 * np.power(10, j))\n", + " sim.setCompCount('comp', 'Y', 10 * np.power(10, j))\n", + " sim.setCompCount('comp', 'Z', 20 * np.power(10, j))\n", + " for t in range(0, 3001):\n", + " # Running the Solver for one step\n", + " sim.run(tpnt[t])\n", + " end = time.time()\n", + " sim_times[i_sim, j] = end - start\n", + "\n", + "plt.figure(figsize=(12, 7))\n", + "# Plot simulation time of Rk4 solver for the different populations of molecules:\n", + "plt.plot(plt_, sim_times[0, :], label='Rk4')\n", + "# Plot simulation time of Direct Method solver for the different populations of molecules:\n", + "plt.plot(plt_, sim_times[1, :], label='Direct')\n", + "# Plot simulation time of RSSA solver for the different populations of molecules:\n", + "plt.plot(plt_, sim_times[2, :], label='RSSA')\n", + "\n", + "plt.xlabel('# Molecules')\n", + "plt.ylabel('Time (s)')\n", + "plt.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}