From 905709a4dbdba79622334b2d1c44201fe5eb0123 Mon Sep 17 00:00:00 2001 From: TomDonoghue Date: Fri, 26 Jun 2020 00:49:17 -0700 Subject: [PATCH] big sweep of cleans & updates --- 00-Introduction.ipynb | 147 ++++--- 01-JupyterNotebooks.ipynb | 182 ++++----- 02-DataAnalysis.ipynb | 180 ++++---- 03-Python.ipynb | 127 ++++-- 04-DataSciencePython.ipynb | 6 +- 05-DataGathering.ipynb | 224 +++++----- 06-DataWrangling.ipynb | 186 +++++---- 07-DataCleaning.ipynb | 315 +++++++------- 08-DataPrivacy&Anonymization.ipynb | 33 +- 09-DataVisualization.ipynb | 276 +++++++------ 10-Distributions.ipynb | 146 +++---- 11-TestingDistributions.ipynb | 176 ++++---- 13-OrdinaryLeastSquares.ipynb | 211 ++++++---- 14-LinearModels.ipynb | 413 ++++++++++--------- 15-Clustering.ipynb | 275 ++++++++----- 16-DimensionalityReduction.ipynb | 266 ++++++++---- 17-Classification.ipynb | 312 ++++++++------ 18-NaturalLanguageProcessing.ipynb | 631 ++++++++++++++++------------- A1-PythonPackages.ipynb | 48 ++- A2-Git.ipynb | 163 +++++--- 20 files changed, 2454 insertions(+), 1863 deletions(-) diff --git a/00-Introduction.ipynb b/00-Introduction.ipynb index 7bc3bd8..ee31aed 100644 --- a/00-Introduction.ipynb +++ b/00-Introduction.ipynb @@ -9,13 +9,36 @@ } }, "source": [ - "# Data Science in Practice\n", + "# Introduction\n", "\n", - "Welcome to the hands on materials for the Data Science in Practice class.\n", + "Welcome to the hands on materials for Data Science in Practice.\n", "\n", "This notebook will guide through getting the tools you will need for working with these tutorials and assignments." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Alerts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Throughout these tutorials, you will see colored 'alert' text:\n", + "\n", + "
\n", + "Green alerts provide key information and definitions.\n", + "
\n", + "\n", + "
\n", + "Blue alerts provide links out to further \n", + "resources. \n", + "
" + ] + }, { "cell_type": "markdown", "metadata": { @@ -28,9 +51,11 @@ "\n", "### Software\n", "\n", - "- Working install of python3.6, with the anaconda distribution ([datahub](http://datahub.ucsd.edu) satisfies this requirement)\n", - "- Jupyter Notebooks ([datahub](http://datahub.ucsd.edu) satisfies this requirement)\n", - "- git/GitHub" + "- Working install of Python (>= 3.6), with the anaconda distribution\n", + " - If you are in the official class, [datahub](http://datahub.ucsd.edu) satisfies this requirement\n", + "- Jupyter Notebooks\n", + " - Also satisfied by [datahub](http://datahub.ucsd.edu)\n", + "- git and a GitHub account" ] }, { @@ -39,12 +64,17 @@ "source": [ "### Prerequisites\n", "\n", - "This class, and this series of tutorials, presumes that you already have some basic knowledge of programming.\n", + "These tutorials presume that you do already have some basic knowledge of programming. \n", "\n", - "In particular it assumes some knowledge Python, covering the standard library. \n", - "\n", - "If you are somewhat unfamiliar with Python, you can follow the links in the Python notebook to catch up. \n", + "In particular, it assumes knowledge of the Python programming language and standard library. \n", "\n", + "If you are somewhat unfamiliar with Python, you can follow the links in the Python notebook to catch up." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "### Computational Resources\n", "\n", "The examples throughout these tutorials, and in the assignments are not computationally heavy. \n", @@ -52,6 +82,19 @@ "You should be able to run all these materials on any computer you have access to, assuming it will run the aforementioned tools. " ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Installing Python\n", + "\n", + "- If you are running code locally, we recommend you install a new version of Python with Anaconda, as described below\n", + " - If you are in the official course, you can use [datahub](http://datahub.ucsd.edu) for everything you need\n", + "- If you are on Mac, you have a native installation of python. This native installation of Python may be older, will not include the extra packages that you will need for this class, and is best left untouched. \n", + " - Downloading Anaconda will install a separate, independent install of Python, leaving your native install untouched. \n", + "- Windows does not require Python natively and so it is not typically pre-installed." + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -65,61 +108,61 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "" + "" ] }, { "cell_type": "markdown", - "metadata": { - "nbpresent": { - "id": "0f4dd046-4020-465c-85f6-3d92ac9fe145" - } - }, + "metadata": {}, "source": [ "
\n", - "Jupyter notebooks are a way to intermix code, outputs and plain text. \n", - "They run in a web browser, and connect to a kernel to be able to execute code. \n", + "Anaconda is an open-source distribution of Python, designed for scientific computing, data science and machine learning. \n", "
\n", "\n", "
\n", - "The official Jupyter website is available \n", - "here.\n", - "
\n", - "\n", - "
" + "The anaconda website is \n", + "here,\n", + "with the download page\n", + "here.\n", + "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note that you do not need to download Jupyter separately, as it comes packaged with anaconda, described below. " + "Anaconda itself is a distribution, meaning that is a version of Python with a collection of packages that are curated and maintained together. \n", + "\n", + "Using a pre-built distribution is useful, as it comes with the packages that you need for data science.\n", + "\n", + "Anaconda also comes with `conda`, which is a package manager, allowing you to download, install, and manage other packages. \n", + "\n", + "The anaconda distribution includes all packages that are needed for these tutorials." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "" + "" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { - "id": "a0fd64ab-0202-4900-8e6d-155c29c2e750" + "id": "0f4dd046-4020-465c-85f6-3d92ac9fe145" } }, "source": [ "
\n", - "Anaconda is an open-source distribution of Python, designed for scientific computing, data science and machine learning. \n", + "Jupyter notebooks are a way to intermix code, outputs and plain text. \n", + "They run in a web browser, and connect to a kernel to be able to execute code. \n", "
\n", "\n", "
\n", - "The anaconda website is \n", - "here,\n", - "with the download page\n", - "here.\n", + "The official Jupyter website is available \n", + "here.\n", "
" ] }, @@ -127,28 +170,25 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Anaconda itself is a distribution, that is, a collection of packages that are curated and maintained together, and serve as powerful. \n", - "\n", - "Anaconda also comes with conda, which is a package manager, allowing you to download, install, and manage other packages. \n", - "\n", - "The anaconda distribution includes all packages that are required for these tutorials." + "Note that you do not need to download Jupyter separately, as it comes packaged with the Anaconda distribution." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Notes\n", - "-----\n", - "- If you are on Mac, you have a native installation of python. This native installation of Python may be older, will not include the extra packages that you will need for this class, and is best left untouched. \n", - " - Downloading anaconda will install a separate, independent install of Python, leaving your native install untouched. \n", - "- Windows does not require Python natively and so it is not typically pre-installed. \n", - "- If you want a local copy (which is a good idea going forward!), follow this tutorial step-by-step. Alternatively, you can use [datahub](http://datahub.ucsd.edu) for everything in this course." + "#### Checking Your Python Version\n", + "\n", + "You can check which installation of Python you are using, and which version it is.\n", + "\n", + "Once you have installed anaconda, you should see you are using Python in an anaconda folder. \n", + "\n", + "The version number that is printed should also be 3.6 or greater. " ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -161,10 +201,8 @@ } ], "source": [ - "# You can check which python you are using, and what version it is.\n", - "# Once you have installed anaconda, you should see you are using Python in your anaconda folder\n", - "# Make sure that the version you have is 3.6 (or at least 3.X)\n", - "# Note: these are command-line functions that may not work on windows\n", + "# Check the installed version of Python\n", + "# Note: these are command-line functions that may not work on windows\n", "!which python\n", "!python --version" ] @@ -185,7 +223,7 @@ }, "source": [ "
\n", - "Git is a tool, a software package, for version control. Github is an online hosting service that can be used with git, and offers online tools to use git. \n", + "Git is a tool, a software package, for version control. \n", "
\n", "\n", "
\n", @@ -206,6 +244,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "
\n", + "Github is an online hosting service that can be used with git, and offers online tools to use git. \n", + "
\n", + "\n", "
\n", "Create an account on \n", "Github.\n", @@ -293,17 +335,20 @@ "You do not need to use environments, however you may find it useful if you want or need to maintain multiple different versions of Python. \n", "\n", "If you want to use an environment, and already have conda, you can run this command from command line:
\n", - "$ conda create --name *envname* python=3.6 anaconda
\n", + "\n", + "``$ conda create --name *envname* python=3.7 anaconda``
\n", + "\n", "^ Replace '*envname*' with a name to call this environment.
\n", - "This will install a new environment, with Python 3.6 and the anaconda distribution.\n", + "\n", + "This will install a new environment, with Python 3.7 and the anaconda distribution.\n", "\n", "You will then need to activate this environment (everytime) you want to use it. \n", "\n", "To activate your environment:
\n", - "$ source activate *envname*\n", + "``$ conda activate *envname*``\n", "\n", "To deactivate your environment:
\n", - "$ source deactivate *envname*" + "``$ conda deactivate``" ] } ], diff --git a/01-JupyterNotebooks.ipynb b/01-JupyterNotebooks.ipynb index eabcf90..a786ac4 100644 --- a/01-JupyterNotebooks.ipynb +++ b/01-JupyterNotebooks.ipynb @@ -227,12 +227,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Code Cells" + "### Code Cells\n", + "\n", + "Code cells are cells that contain code, that can be executed. \n", + "\n", + "Comments can also be written in code cells, indicated by '#'. " ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -243,7 +247,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -261,7 +265,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 3, "metadata": { "slideshow": { "slide_type": "slide" @@ -269,12 +273,13 @@ }, "outputs": [], "source": [ + "# Define a variable in code\n", "my_string = 'hello world'" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 4, "metadata": { "slideshow": { "slide_type": "fragment" @@ -290,12 +295,13 @@ } ], "source": [ + "# Print out a variable\n", "print(my_string)" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 8, "metadata": { "slideshow": { "slide_type": "slide" @@ -308,19 +314,19 @@ "'HELLO WORLD'" ] }, - "execution_count": 21, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# tab completion, print(my_string.upper())\n", + "# Operations that return objects get printed out as output\n", "my_string.upper()" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 9, "metadata": { "slideshow": { "slide_type": "slide" @@ -328,12 +334,13 @@ }, "outputs": [], "source": [ + "# Define a list variable\n", "my_list = ['a','b','c']" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 7, "metadata": { "slideshow": { "slide_type": "fragment" @@ -349,6 +356,7 @@ } ], "source": [ + "# Print out our list variable\n", "print(my_list)" ] }, @@ -370,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -380,7 +388,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -400,7 +408,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 12, "metadata": { "slideshow": { "slide_type": "fragment" @@ -408,7 +416,7 @@ }, "outputs": [], "source": [ - "# get information about variables you've created\n", + "# Get information about a variable you've created\n", "my_string?" ] }, @@ -510,7 +518,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 25, "metadata": { "slideshow": { "slide_type": "slide" @@ -518,13 +526,13 @@ }, "outputs": [], "source": [ - "# access quick reference sheet\n", + "# Access quick reference sheet for interactive Python (this opens a reference guide)\n", "%quickref" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -562,6 +570,7 @@ "line": { "alias": "OSMagics", "alias_magic": "BasicMagics", + "autoawait": "AsyncMagics", "autocall": "AutoMagics", "automagic": "AutoMagics", "autosave": "KernelMagics", @@ -570,6 +579,7 @@ "cd": "OSMagics", "clear": "KernelMagics", "colors": "BasicMagics", + "conda": "PackagingMagics", "config": "ConfigMagics", "connect_info": "KernelMagics", "cp": "Other", @@ -616,11 +626,10 @@ "pfile": "NamespaceMagics", "pinfo": "NamespaceMagics", "pinfo2": "NamespaceMagics", - "pip": "BasicMagics", + "pip": "PackagingMagics", "popd": "OSMagics", "pprint": "BasicMagics", "precision": "BasicMagics", - "profile": "BasicMagics", "prun": "ExecutionMagics", "psearch": "NamespaceMagics", "psource": "NamespaceMagics", @@ -660,7 +669,7 @@ }, "text/plain": [ "Available line magics:\n", - "%alias %alias_magic %autocall %automagic %autosave %bookmark %cat %cd %clear %colors %config %connect_info %cp %debug %dhist %dirs %doctest_mode %ed %edit %env %gui %hist %history %killbgscripts %ldir %less %lf %lk %ll %load %load_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls %lsmagic %lx %macro %magic %man %matplotlib %mkdir %more %mv %notebook %page %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %popd %pprint %precision %profile %prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx %reload_ext %rep %rerun %reset %reset_selective %rm %rmdir %run %save %sc %set_env %store %sx %system %tb %time %timeit %unalias %unload_ext %who %who_ls %whos %xdel %xmode\n", + "%alias %alias_magic %autoawait %autocall %automagic %autosave %bookmark %cat %cd %clear %colors %conda %config %connect_info %cp %debug %dhist %dirs %doctest_mode %ed %edit %env %gui %hist %history %killbgscripts %ldir %less %lf %lk %ll %load %load_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls %lsmagic %lx %macro %magic %man %matplotlib %mkdir %more %mv %notebook %page %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %pip %popd %pprint %precision %prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx %reload_ext %rep %rerun %reset %reset_selective %rm %rmdir %run %save %sc %set_env %store %sx %system %tb %time %timeit %unalias %unload_ext %who %who_ls %whos %xdel %xmode\n", "\n", "Available cell magics:\n", "%%! %%HTML %%SVG %%bash %%capture %%debug %%file %%html %%javascript %%js %%latex %%markdown %%perl %%prun %%pypy %%python %%python2 %%python3 %%ruby %%script %%sh %%svg %%sx %%system %%time %%timeit %%writefile\n", @@ -668,19 +677,19 @@ "Automagic is ON, % prefix IS NOT needed for line magics." ] }, - "execution_count": 30, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# You can check a list of available magic commands\n", + "# Check a list of available magic commands\n", "%lsmagic" ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 15, "metadata": { "slideshow": { "slide_type": "slide" @@ -690,22 +699,22 @@ { "data": { "text/plain": [ - "'/Users/shannonellis/Desktop/Teaching/COGS108/Tutorials'" + "'/Users/tom/Documents/EdCode/108Org/Tutorials'" ] }, - "execution_count": 31, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# see current working directory\n", + "# Check the current working directory\n", "%pwd" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 16, "metadata": { "slideshow": { "slide_type": "fragment" @@ -721,13 +730,13 @@ } ], "source": [ - "# all variables\n", + "# Check all currently defined variables\n", "%who" ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 17, "metadata": { "slideshow": { "slide_type": "fragment" @@ -744,18 +753,18 @@ "b int 2\n", "my_list list n=3\n", "my_string str hello world\n", - "np module kages/numpy/__init__.py'>\n" + "np module kages/numpy/__init__.py'>\n" ] } ], "source": [ - "# all variables; more info\n", + "# Chcek all variables, with more information about them\n", "%whos" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 18, "metadata": { "slideshow": { "slide_type": "slide" @@ -766,15 +775,6 @@ "name": "stdout", "output_type": "stream", "text": [ - "### Markdown cells\n", - "# history\n", - "%hist\n", - "# specify you're writing HTML\n", - "%%HTML\n", - "

This is a paragraph

\n", - "%%bash\n", - "# Equivalently, (for bash) use the %%bash cell magic to run a cell as bash (command-line)\n", - "pwd\n", "# In a code cell, comments can be typed\n", "a = 1\n", "b = 2\n", @@ -786,41 +786,20 @@ "my_string.upper()\n", "my_list = ['a','b','c']\n", "print(my_list)\n", - "# Import numpy for examples\n", - "import numpy as np\n", - "# Check the docs for a numpy array\n", - "np.array?\n", - "# Check the full source code for numpy append function\n", - "np.append??\n", - "# get information about variables you've created\n", - "my_string?\n", - "# Move your cursor just after the period, press tab, and a drop menu will appear showing all possible completions\n", - "np.\n", - "# In a code cell, comments can be typed\n", - "a = 1\n", - "b = 2\n", - "# Cells can also have output, that gets printed out below the cell.\n", - "print(a + b)\n", - "my_string = 'hello world'\n", - "print(my_string)\n", - "# tab completion, print(my_string.upper())\n", + "# Operations that return objects get printed out as output\n", "my_string.upper()\n", + "# Define a list variable\n", "my_list = ['a','b','c']\n", - "print(my_list)\n", "# Import numpy for examples\n", "import numpy as np\n", "# Check the docs for a numpy array\n", "np.array?\n", - "# Check the full source code for numpy append function\n", - "np.append??\n", "# get information about variables you've created\n", "my_string?\n", - "# Move your cursor just after the period, press tab, and a drop menu will appear showing all possible completions\n", - "np.\n", "# access quick reference sheet\n", "%quickref\n", - "# You can check a list of available magic commands\n", - "%lsmagic\n", + "# access quick reference sheet (this opens a reference guide)\n", + "%quickref\n", "# see current working directory\n", "%pwd\n", "# all variables\n", @@ -828,32 +807,12 @@ "# all variables; more info\n", "%whos\n", "# history\n", - "%hist\n", - "# For example, we can time how long it takes to create a large list\n", - "%timeit list(range(100000))\n", - "%%timeit\n", - "# For example, we could time a whole cell\n", - "a = list(range(100000))\n", - "b = [n + 1 for n in a]\n", - "# You can run a terminal command by adding '!' to the start of the line\n", - "!pwd\n", - "\n", - "# Note that in this case, '!pwd' is equivalent to line magic '%pwd'. \n", - "# The '!' syntax is more general though, allowing you to run anything you want through command-line\n", - "%%bash\n", - "# Equivalently, (for bash) use the %%bash cell magic to run a cell as bash (command-line)\n", - "pwd\n", - "# list files in directory\n", - "!ls\n", - "# change current directory\n", - "!cd .\n", - "# history\n", "%hist\n" ] } ], "source": [ - "# history\n", + "# Check code history\n", "%hist" ] }, @@ -869,14 +828,14 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1.6 ms ± 26.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" + "1.63 ms ± 23 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" ] } ], @@ -896,14 +855,14 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "6.59 ms ± 97.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" + "7.92 ms ± 1.65 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" ] } ], @@ -925,14 +884,14 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/Users/shannonellis/Desktop/Teaching/COGS108/Tutorials\r\n" + "/Users/tom/Documents/EdCode/108Org/Tutorials\r\n" ] } ], @@ -946,14 +905,14 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/Users/shannonellis/Desktop/Teaching/COGS108/Tutorials\n" + "/Users/tom/Documents/EdCode/108Org/Tutorials\n" ] } ], @@ -965,7 +924,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 23, "metadata": { "slideshow": { "slide_type": "fragment" @@ -976,29 +935,31 @@ "name": "stdout", "output_type": "stream", "text": [ - "00-Introduction.ipynb 13-OrdinaryLeastSquares.ipynb\r\n", - "01-JupyterNotebooks.ipynb 14-LinearModels.ipynb\r\n", - "02-DataAnalysis.ipynb 15-Clustering.ipynb\r\n", - "03-Python.ipynb 16-DimensionalityReduction.ipynb\r\n", - "04-DataSciencePython.ipynb 17-Classification.ipynb\r\n", - "05-DataGathering.ipynb 18-NaturalLanguageProcessing.ipynb\r\n", + "00-Introduction.ipynb 14-LinearModels.ipynb\r\n", + "01-JupyterNotebooks.ipynb 15-Clustering.ipynb\r\n", + "02-DataAnalysis.ipynb 16-DimensionalityReduction.ipynb\r\n", + "03-Python.ipynb 17-Classification.ipynb\r\n", + "04-DataSciencePython.ipynb 18-NaturalLanguageProcessing.ipynb\r\n", + "05-DataGathering.ipynb \u001b[34m19-Geospatial\u001b[m\u001b[m\r\n", "06-DataWrangling.ipynb A1-PythonPackages.ipynb\r\n", "07-DataCleaning.ipynb A2-Git.ipynb\r\n", - "08-DataPrivacy&Anonymization.ipynb LICENSE\r\n", + "08-DataPrivacy&Anonymization.ipynb LICENSE.txt\r\n", "09-DataVisualization.ipynb README.md\r\n", - "10-Distributions.ipynb \u001b[34mfiles\u001b[m\u001b[m\r\n", - "11-TestingDistributions.ipynb \u001b[34mimg\u001b[m\u001b[m\r\n" + "10-Distributions.ipynb X2-ShellScripting.ipynb\r\n", + "11-TestingDistributions.ipynb XX-GeoSpatialAnalysis.ipynb\r\n", + "12-StatisticalComparisons.ipynb \u001b[34mfiles\u001b[m\u001b[m\r\n", + "13-OrdinaryLeastSquares.ipynb \u001b[34mimg\u001b[m\u001b[m\r\n" ] } ], "source": [ - "# list files in directory\n", + "# List files in directory\n", "!ls" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 24, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1006,7 +967,7 @@ }, "outputs": [], "source": [ - "# change current directory\n", + "# Change current directory\n", "!cd ." ] }, @@ -1016,8 +977,7 @@ "source": [ "
\n", "For more useful information, check out Jupyter Notebooks \n", - "tips & tricks\n", - ", and more information on how \n", + "tips & tricks, and more information on how \n", "notebooks work.\n", "
" ] @@ -1039,7 +999,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/02-DataAnalysis.ipynb b/02-DataAnalysis.ipynb index ea22def..b87d6e8 100644 --- a/02-DataAnalysis.ipynb +++ b/02-DataAnalysis.ipynb @@ -16,37 +16,35 @@ "This notebook goes through some minimal examples of the kinds of things we might want to do using data science approaches. \n", "\n", "In particular, it briefly introduces analyzing data for the purposes of:\n", - "- Predictions: to analyze available data in order to be able to make predictions about future data\n", - "- Classification: to group data in meaningful ways\n", - "- Knowledge Discovery: to seek to discover new knowledge about the data and the phenomena they represent\n", + "- `Prediction`: to analyze available data in order to be able to make predictions about future data\n", + "- `Classification`: to group and label data in useful and meaningful ways\n", + "- `Knowledge Discovery`: to seek to discover new knowledge about the data and the phenomena they represent\n", "\n", - "These examples will already start using packages in the python data-science toolkit, and some simple algorithms to demostrate example cases. \n", + "These are not the only tasks we might have in data science, but these examples do capture some of the key tasks when doing data science. \n", "\n", - "The goal here is see, in code, the outline of the kinds of things data science is interested in doing. \n", + "These examples will already start using packages in the Python data-science toolkit, and some simple algorithms to demonstrate example cases. \n", "\n", - "These tools and algorithms will be more fully described and properly introduced in future notebooks." + "The goal here is show, in code, the outline of the kinds of things data science is interested in doing. You don't yet need to be able to follow how the code works for these examples. These tools and algorithms will be more fully described and properly introduced in future notebooks." ] }, { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", - "# Import matplotlib and numpy for some quick examples\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np" + "# Import numpy and matplotlib for some quick examples\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Prediction" + "## Prediction" ] }, { @@ -66,17 +64,17 @@ "source": [ "### Example Problem\n", "\n", - "Let's say we wanted to predict dogs weight, from their length. \n", + "Let's say we wanted to predict the weight of dogs, given that we know their length. \n", "\n", - "Maybe, for example, it's easier to use a tape measure than to get a dog onto a scale, so if we could infer their weight from their length, we could save a lot of time. " + "We could imagine, for example, in the case of a veterinary clinic, in some cases it might be easier to measure a dog with a tape measure, rather than to get it dog onto a scale, if we can then estimate the information we need.\n", + "\n", + "So how do we go about making such predictions?" ] }, { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# We start with some data\n", @@ -91,29 +89,29 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGfJJREFUeJzt3Xu4XXV95/H3J4R4ASy3wHAxXGZQ\npFZBTjEadcCKIoNQL63wMIoXGp3qeMMZRWux2MfHPl6qow4aEdFpRFuVekMlWpTaNsgJIhdBoSkp\nMZREjIDVCjHf+WOto5vD3icrydlnn3Der+fZz97rt39rrW8WO3yyfuuWqkKSpC2ZN+oCJEk7BgND\nktSJgSFJ6sTAkCR1YmBIkjoxMCRJnQwtMJI8PMllSW5Icn2SV7ftb03yoyRXt68TB8x/QpIfJLk5\nyRuHVackqZsM6zqMJPsB+1XVVUl2A1YBvw/8IfCzqnrXFPPuBPwQOB5YC1wJnFZV3x9KsZKkLRra\nHkZV3VZVV7Wf7wZuAA7oOPsxwM1Vtbqq7gE+BZwynEolSV3Mn4mVJDkYOAq4AlgCvDLJC4Fx4Kyq\n2jhplgOAW3um1wKPH7DspcBSgF122eXoww8/fFprl6QHslWrVv24qhZ26Tv0wEiyK/BZ4DVVdVeS\n84C3AdW+vxt4yeTZ+iyq79hZVS0DlgGMjY3V+Pj4dJUuSQ94SdZ07TvUs6SS7EwTFsur6nMAVXV7\nVf2qqjYDH6EZfppsLfDwnukDgXXDrFWSNLVhniUV4KPADVX1np72/Xq6PRu4rs/sVwKHJTkkyQLg\nVOALw6pVkrRlwxySWgK8ALg2ydVt25uA05IcSTPEdAvwMoAk+wPnV9WJVbUpySuBrwE7ARdU1fVD\nrFWStAVDC4yq+jb9j0VcMqD/OuDEnulLBvWVJM08r/SWJHViYEiSOjEwJEmdGBiSpE4MDElSJwaG\nJKkTA0OS1ImBIUnqxMCQJHViYEiSOjEwJEmdGBiSpE4MDElSJwaGJKkTA0OS1ImBIUnqxMCQJHVi\nYEiSOhlaYCR5eJLLktyQ5Pokr27b35nkxiTXJLk4ye4D5r8lybVJrk4yPqw6JUndDHMPYxNwVlU9\nClgMvCLJEcAK4NFV9Rjgh8DZUyzjuKo6sqrGhlinJKmDoQVGVd1WVVe1n+8GbgAOqKpLq2pT220l\ncOCwapAkTZ8ZOYaR5GDgKOCKSV+9BPjKgNkKuDTJqiRLh1edJKmL+cNeQZJdgc8Cr6mqu3ra30wz\nbLV8wKxLqmpdkn2AFUlurKrL+yx/KbAUYNGiRdNevySpMdQ9jCQ704TF8qr6XE/7GcBJwOlVVf3m\nrap17ft64GLgmAH9llXVWFWNLVy4cLr/CJKk1jDPkgrwUeCGqnpPT/sJwBuAk6vq5wPm3SXJbhOf\ngacD1w2rVknSlg1zD2MJ8ALgqe2psVcnORH4ALAbzTDT1Uk+BJBk/ySXtPPuC3w7yfeA7wBfrqqv\nDrFWSdIWDO0YRlV9G0ifry7p0zYxBHVi+3k18Nhh1SZJ2npe6S1J6sTAkCR1YmBIkjoxMCRJnRgY\nkqRODAxJUicGhiSpEwNDktSJgSFJ6sTAkCR1YmBIkjoxMCRJnRgYkqRODAxJUicGhiSpEwNDktSJ\ngSFJ6sTAkCR1YmBIkjoZWmAkeXiSy5LckOT6JK9u2/dMsiLJTe37HgPmP6Ptc1OSM4ZVpySpm2Hu\nYWwCzqqqRwGLgVckOQJ4I/CNqjoM+EY7fR9J9gTOAR4PHAOcMyhYJGlHsmrNRj542c2sWrNx1KVs\ntfnDWnBV3Qbc1n6+O8kNwAHAKcCxbbePA98E3jBp9mcAK6rqJwBJVgAnABcNq15JGrZVazZy+vkr\nuWfTZhbMn8fyMxdz9EE7zr+FZ+QYRpKDgaOAK4B92zCZCJV9+sxyAHBrz/Tatq3fspcmGU8yvmHD\nhuksW5Km1crVd3DPps1sLrh302ZWrr5j1CVtlaEHRpJdgc8Cr6mqu7rO1qet+nWsqmVVNVZVYwsX\nLtzWMiVp6BYfuhcL5s9jp8DO8+ex+NC9Rl3SVhnakBRAkp1pwmJ5VX2ubb49yX5VdVuS/YD1fWZd\ny2+GrQAOpBm6kqQd1tEH7cHyMxezcvUdLD50rx1qOAqGGBhJAnwUuKGq3tPz1ReAM4B3tO+f7zP7\n14C39xzofjpw9rBqlaSZcvRBe+xwQTFhmENSS4AXAE9NcnX7OpEmKI5PchNwfDtNkrEk5wO0B7vf\nBlzZvs6dOAAuSRqNVPU9NLBDGhsbq/Hx8VGXIUk7jCSrqmqsS1+v9JYkdWJgSJI6MTAkSZ0YGJKk\nTgwMSVInBoYkqRMDQ5LUiYEhSerEwJAkdWJgSJI6MTAkSZ0YGJKkTgwMSVInBoak+1i1ZiMfvOxm\nVq3ZOOpSNMsM9Yl7knYsq9Zs5PTzV3LPps0smD+P5Wcu3mEf9qPp5x6GpF9bufoO7tm0mc0F927a\nzMrVd4y6JM0iBoakX1t86F4smD+PnQI7z5/H4kP3GnVJmkUckpL0a0cftAfLz1zMytV3sPjQvRyO\n0n0MLTCSXACcBKyvqke3bZ8GHtl22R34aVUd2WfeW4C7gV8Bm7o+PlDS9jv6oD0MCvU1zD2MC4EP\nAJ+YaKiq5098TvJu4M4p5j+uqn48tOqkabBqzUb/Na45Y2iBUVWXJzm433dJAvwh8NRhrV8aNs8o\n0lwzZWAkeTDNsNKTgf2BXwDXAV+uquu3Y71PBm6vqpsGfF/ApUkK+HBVLZuixqXAUoBFixZtR0nS\n1ul3RpGBoQeygYGR5K3As4BvAlcA64EHA48A3tGGyVlVdc02rPc04KIpvl9SVeuS7AOsSHJjVV3e\nr2MbJssAxsbGahtqkbbJxBlF927a7BlFmhOm2sO4sqreOuC797T/M9/qf9InmQ88Bzh6UJ+qWte+\nr09yMXAM0DcwpFHxjCLNNQMDo6q+PNWMVbWeZq9jaz0NuLGq1vb7MskuwLyqurv9/HTg3G1YjzR0\nnlGkuWSLB72TfJHmmEKvO4FxmuML/zFgvouAY4G9k6wFzqmqjwKnMmk4Ksn+wPlVdSKwL3Bxc1yc\n+cAnq+qrW/OHkiRNvy5nSa0GFvKb/8k/H7id5ljGR4AX9Jupqk4b0P6iPm3rgBPbz6uBx3aoS5I0\ng7oExlFV9ZSe6S8mubyqnpJke86UkiTtQLrcS2phkl8f3G4/L2wn7xlKVZKkWafLHsZZwLeT/DMQ\n4BDgj9sD0h8fZnGSpNlji4FRVZckOQw4nCYwbmya65fAe4dcnyRpltjikFSSC6rql1X1vaq6GtgJ\nuGT4pUmSZpMuxzB+lOQ8gCR7ACuAvxpqVZKkWWeLgVFVbwHuSvIh4FLg3VX1saFXJkmaVaa6l9Rz\neia/A7ylfa8kz6mqzw27OEnS7DHVQe9nTZr+LrBz216AgSFJc8hU95J68UwWIkma3QYew0jyJ+1B\n7kHfPzXJScMpS5I020w1JHUt8KUk/wFcBWygeR7GYcCRwNeBtw+9QknSrDDVkNTngc+3F+0tAfYD\n7qI5pXZpVf1iZkqUJM0GXa70vgkY9ChVSdIc0eXCPUmSDAxJUjdd7iW1pEubJOmBrcsexvs7tkmS\nHsCmujXIE4An0jxA6XU9Xz2M5o61U0pyAXASsL6qHt22vRX4I5pTdAHeVFX3u/NtkhOA97XrOb+q\n3tHpTyNJGpqp9jAWALvShMpuPa+7gOd1WPaFwAl92v+yqo5sX/3CYifgg8AzgSOA05Ic0WF9kqQh\nmuo6jG8B30pyYVWt2doFV9XlSQ7ehpqOAW6uqtUAST4FnAJ8fxuWJUmaJl0e0fqgJMuAg3v7V9VT\nt3Gdr0zyQmAcOKuqNk76/gDg1p7ptcDjBy0syVJgKcCiRYsGdZMkbacuB73/huZOtX8C/K+e17Y4\nD/jPNLcWuQ14d58+6dNWgxZYVcuqaqyqxhYuXLiNZUmStqTLHsamqjpvOlZWVbdPfE7yEeBLfbqt\nBR7eM30gsG461i9J2nZT3a12zyR7Al9M8sdJ9ptoa9u3WpL9eiafDVzXp9uVwGFJDkmyADgV+MK2\nrE+SNH2m2sNYRTMUNDFE1DsMVcChUy04yUXAscDeSdYC5wDHJjmynf8W4GVt3/1pTp89sao2JXkl\n8DWa02ovqKrrt/LPJUmaZqkaeHhghzM2Nlbj4+OjLkOSdhhJVlXVWJe+WzyGMenZ3hPuBK6tqvVb\nW5wkacfU5aD3S4EnAJe108cCK4FHJDm3qv7fkGqTJM0iXQJjM/CoiTOckuxLc3rs44HLAQNDkuaA\nLtdhHNx7OiywHnhEVf0EuHc4ZUmSZpsuexh/n+RLNBfwATwXuDzJLsBPh1aZJGlW6RIYr6AJiSU0\np9h+AvhsNadXHTfE2iRJs0iXZ3oX8Jn2JUmao6Z6Hsa3q+pJSe7mvvdyCk2OPGzo1UmSZo2pbm/+\npPZ9t5krR5I0W3U5S4okT0ry4vbz3kkOGW5ZkqTZZouBkeQc4A3A2W3TAuCvhlmUJGn26bKH8Wzg\nZODfAapqHc2jWiVJc0iXwLinPVOqANrrLyRJc0yXwPjrJB8Gdk/yR8DXgY8MtyxJ0mzT5TqMdyU5\nHrgLeCTwp1W1YuiVSZJmlamuw3gN8A/Ad9uAMCQkaQ6bag/jQOB9wOFJrgH+kSZA/qm98aAkaQ6Z\n6sK91wO0z9UeA54IvAT4SJKfVtURM1OiJGk26HLQ+yHAw4Dfal/rgCu2NFOSC5KsT3JdT9s7k9yY\n5JokFyfZfcC8tyS5NsnVSXzmqiTNAgMDI8myJP8AfJrmiXv/CPxBVY1V1Ys7LPtC4IRJbSuAR1fV\nY4Af8puLAfs5rqqO7PqsWUnScE21h7EIeBDwb8CPgLVsxfMvqupy4CeT2i6tqk3t5Eqa4ySSpB3A\nwMCoqhOA3wXe1TadBVyZ5NIkfzYN634J8JVBqwcuTbIqydKpFpJkaZLxJOMbNmyYhrIkSf1MeR1G\ne4X3dUl+CtzZvk4CjgHO2daVJnkzsAlYPqDLkqpal2QfYEWSG9s9ln41LgOWAYyNjVW/PpKk7TfV\nMYxXJflUkluBy2mC4gfAc4A9t3WFSc5ol3V6G0j3096viqpaD1xME1CSpBGaag/jYJqn7L22qm6b\njpUlOYHmzrf/tap+PqDPLsC8qrq7/fx04NzpWL8kadtNdR3G67ZnwUkuAo4F9k6ylmYI62yaA+kr\nkgCsrKqXJ9kfOL+qTgT2BS5uv58PfLKqvro9tUiStt8W7yW1rarqtD7NHx3Qdx1wYvt5NfDYYdUl\nSdo2nZ64J0mSgSFJ6sTAkCR1YmBIkjoxMCRJnRgYkqRODAxJUicGhiSpEwNDktSJgSFJ6sTAkCR1\nYmBIkjoxMCRJnRgYkqRODAxJUicGhiSpEwNDktSJgSFJ6mSogZHkgiTrk1zX07ZnkhVJbmrf9xgw\n7xltn5uSnDHMOiVJWzbsPYwLgRMmtb0R+EZVHQZ8o52+jyR7AucAjweOAc4ZFCya2qo1G/ngZTez\nas3GUZciaQc3f5gLr6rLkxw8qfkU4Nj288eBbwJvmNTnGcCKqvoJQJIVNMFz0ZBKfUBatWYjp5+/\nkns2bWbB/HksP3MxRx9k7kraNqM4hrFvVd0G0L7v06fPAcCtPdNr27b7SbI0yXiS8Q0bNkx7sTuy\nlavv4J5Nm9lccO+mzaxcfceoS5K0A5utB73Tp636dayqZVU1VlVjCxcuHHJZO5bFh+7Fgvnz2Cmw\n8/x5LD50r1GXJGkHNtQhqQFuT7JfVd2WZD9gfZ8+a/nNsBXAgTRDV9oKRx+0B8vPXMzK1Xew+NC9\nHI6StF1GERhfAM4A3tG+f75Pn68Bb+850P104OyZKe+B5eiD9jAoJE2LYZ9WexHwT8Ajk6xN8lKa\noDg+yU3A8e00ScaSnA/QHux+G3Bl+zp34gC4JGk0UtX30MAOaWxsrMbHx0ddhiTtMJKsqqqxLn1n\n60FvSdIsY2BIkjoxMCRJnRgYkqRODAxJUicGhiSpEwNDktSJgSFJ6sTAkCR1YmBIkjoxMCRJnRgY\nkqRODAxJUicGhiSpEwNDktSJgSFJ6sTAkCR1YmBIkjqZ8cBI8sgkV/e87krymkl9jk1yZ0+fP53p\nOiVJ9zV/pldYVT8AjgRIshPwI+DiPl3/vqpOmsnaJEmDjXpI6veAf66qNSOuQ5K0BaMOjFOBiwZ8\n94Qk30vylSS/PZNFSZLub2SBkWQBcDLwN32+vgo4qKoeC7wf+NsplrM0yXiS8Q0bNgynWEnSSPcw\nnglcVVW3T/6iqu6qqp+1ny8Bdk6yd7+FVNWyqhqrqrGFCxcOt2JJmsNGGRinMWA4Ksl/SpL28zE0\ndd4xg7VJkiaZ8bOkAJI8FDgeeFlP28sBqupDwPOA/5FkE/AL4NSqqlHUKklqjCQwqurnwF6T2j7U\n8/kDwAdmui5J0mCjPktKkrSDMDAkSZ0YGJKkTgwMSVInBoYkqRMDQ5LUiYEhSerEwJAkdWJgSJI6\nMTAkSZ0YGJKkTgwMSVInBoYkqRMDQ5LUiYEhSerEwJAkdWJgSJI6MTAkSZ0YGJKkTkYWGEluSXJt\nkquTjPf5Pkn+T5Kbk1yT5HGjqFOS1Jg/4vUfV1U/HvDdM4HD2tfjgfPad0nSCMzmIalTgE9UYyWw\ne5L9Rl2UJM1Vo9zDKODSJAV8uKqWTfr+AODWnum1bdttvZ2SLAWWtpM/S/KDIdW7tfYGBu09zWVu\nl8HcNv25XQabjm1zUNeOowyMJVW1Lsk+wIokN1bV5T3fp888db+GJmgmh83IJRmvqrFR1zHbuF0G\nc9v053YZbKa3zciGpKpqXfu+HrgYOGZSl7XAw3umDwTWzUx1kqTJRhIYSXZJstvEZ+DpwHWTun0B\neGF7ttRi4M6qug1J0kiMakhqX+DiJBM1fLKqvprk5QBV9SHgEuBE4Gbg58CLR1Trtpp1w2SzhNtl\nMLdNf26XwWZ026TqfocFJEm6n9l8Wq0kaRYxMCRJnRgY0yTJTkm+m+RL7fQhSa5IclOSTydZMOoa\nRyHJ7kk+k+TGJDckeUKSPZOsaLfNiiR7jLrOmZbktUmuT3JdkouSPHiu/maSXJBkfZLretr6/kbm\n0i2DBmyXd7Z/l65JcnGS3Xu+O7vdLj9I8oxh1GRgTJ9XAzf0TP8F8JdVdRiwEXjpSKoavfcBX62q\nw4HH0myjNwLfaLfNN9rpOSPJAcCrgLGqejSwE3Aqc/c3cyFwwqS2Qb+R3lsGLaW5ZdAD1YXcf7us\nAB5dVY8BfgicDZDkCJrf0G+38/zfJDtNd0EGxjRIciDw34Dz2+kATwU+03b5OPD7o6ludJI8DHgK\n8FGAqrqnqn5Kc9uXj7fd5uS2oTk78CFJ5gMPpbmDwZz8zbQX7P5kUvOg38icuWVQv+1SVZdW1aZ2\nciXN9WnQbJdPVdUvq+pfaM4unXxt23YzMKbHe4H/DWxup/cCftrzH3bitiZzzaHABuBj7XDd+e11\nN/tOXFPTvu8zyiJnWlX9CHgX8K80QXEnsAp/M70G/UYG3TJoLnoJ8JX284xsFwNjOyU5CVhfVat6\nm/t0nYvnL88HHgecV1VHAf/OHBt+6qcdjz8FOATYH9iFZqhlsrn4m9kS/24BSd4MbAKWTzT16Tbt\n28XA2H5LgJOT3AJ8imZY4b00u8oTF0bO1duarAXWVtUV7fRnaALk9olhhPZ9/YjqG5WnAf9SVRuq\n6l7gc8AT8TfTa9BvZM7fMijJGcBJwOn1mwvpZmS7GBjbqarOrqoDq+pgmoNOf1dVpwOXAc9ru50B\nfH5EJY5MVf0bcGuSR7ZNvwd8n+a2L2e0bXNx2/wrsDjJQ9vjXRPbZc7/ZnoM+o3M6VsGJTkBeANw\nclX9vOerLwCnJnlQkkNoTgr4zrSv3yu9p0+SY4HXV9VJSQ6l2ePYE/gu8N+r6pejrG8UkhxJczLA\nAmA1zS1e5gF/DSyi+Z/nH1TV5IOeD2hJ/gx4Ps2wwneBM2nGnOfcbybJRcCxNLfqvh04B/hb+vxG\n2oD9AM2ZQD8HXlxV93ti5wPBgO1yNvAg4I6228qqennb/800xzU2Aa+pqq9MXuZ212RgSJK6cEhK\nktSJgSFJ6sTAkCR1YmBIkjoxMCRJnRgYmnOS/GzIy39Rkv17pm9JsneH+Y5Kcv40rP93kly4vcuR\nJjMwpOn3IppbfmytNwHv396VV9W1wIFJFm3vsqReBoYEJFmY5LNJrmxfS9r2t7bPJfhmktVJXtUz\nz1vaZxOsaJ9p8fokzwPGgOVJrk7ykLb7/0xyVZJrkxzeZ/27AY+pqu+107sm+Vjb/5okz23bf5bk\nL5KsSvL1JMf01HZyzyK/SHPnAWnaGBhS4300z6L4XeC5tLeqbx0OPIPmdtHnJNk5yVjb7yjgOTQh\nQVV9Bhinuc/PkVX1i3YZP66qx9E8v+H1fdY/BlzXM/0Wmtte/E777IO/a9t3Ab5ZVUcDdwN/DhwP\nPBs4t2f+ceDJW78ZpMHmb7mLNCc8DTiiufMEAA9r/9UP8OX2Fh2/TLIe2Bd4EvD5iUBI8sUtLP9z\n7fsqmoCZbD+aW8H31vPrPYSq2th+vAf4avv5WuCXVXVvkmuBg3vmX8+2DYtJAxkYUmMe8ISePQIA\n2gDpvZ/Tr2j+3vS7nfRUJpYxMf9kvwAe3Ltq+t+e+t6eO5RunlhuVW3uudMt7bJ+MXlmaXs4JCU1\nLgVeOTHR3jRxKt8GnpXmWdy70jxxccLdwG79ZxvoBuC/TFHP1j73/BHcd4hL2m4GhuaihyZZ2/N6\nHe0zttsDzN8HXj7VAqrqSppbSn+PZrhpnObJedA8i/lDkw56T6mqbgR+q2cY7M+BPZJcl+R7wHFb\n+Wc8DvjyVs4jTcm71UrbKMmuVfWzJA8FLgeWVtVV27G81wJ3V9V2XYuR5EHAt4An9TzyVdpu7mFI\n225ZkquBq4DPbk9YtM7jvsdLttUi4I2GhaabexiSpE7cw5AkdWJgSJI6MTAkSZ0YGJKkTgwMSVIn\n/x8+i+jv9VQAkQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAbPUlEQVR4nO3df5xV9X3n8debHxJArdgZXBQpk9ZgrDVIbjFmDEUbDWGtJiZp9OEmFBOJ27iJ0exGk6ZY08c+0kcSGzfuakBFszUaq1J/G0ZrQ6UrcUAEFInWIYgQgYqiQpAfn/3jnMHr8L3DnR9n7gz3/Xw85nHP+Z5fnzle5u359T2KCMzMzDoaVOsCzMysf3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJRUWEJKOlvSYpFWSnpH01bz9SkkvS1qW/0yvsPw0SaslvSDp8qLqNDOzNBX1HISkMcCYiFgq6RBgCfAJ4M+BNyPi+50sOxj4FXA6sA54EjgvIp4tpFgzM9tHYUcQEbEhIpbmw28Aq4Cjqlx8MvBCRLwYEW8DtwNnF1OpmZmlDOmLjUgaD5wILAaagYslfR5oBS6LiC0dFjkKeKlsfB1wUoV1zwJmAYwcOfKDxx57bK/WbmZ2IFuyZMnmiGhMTSs8ICQdDNwFXBIRWyVdB3wHiPzzB8AFHRdLrCp5Liwi5gBzAEqlUrS2tvZW6WZmBzxJv640rdC7mCQNJQuHWyPiboCIeCUidkfEHmAu2emkjtYBR5eNjwXWF1mrmZm9W5F3MQm4EVgVEVeXtY8pm+2TwMrE4k8Cx0hqknQQcC5wb1G1mpnZvoo8xdQMfA5YIWlZ3vZN4DxJE8lOGa0BvgQg6UjghoiYHhG7JF0M/BwYDNwUEc8UWKuZmXVQWEBExOOkryU8WGH+9cD0svEHK81rZmbF85PUZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzs6TCAkLS0ZIek7RK0jOSvpq3f0/Sc5KWS5ov6bAKy6+RtELSMkmtRdVpZmZpRR5B7AIui4j3Ax8CvizpOKAFOD4iTgB+BVzRyTpOjYiJEVEqsE4zM0soLCAiYkNELM2H3wBWAUdFxIKI2JXP9gQwtqgazMys+/rkGoSk8cCJwOIOky4AHqqwWAALJC2RNKu46szMLGVI0RuQdDBwF3BJRGwta/8W2WmoWyss2hwR6yWNBlokPRcRCxPrnwXMAhg3blyv129mVq8KPYKQNJQsHG6NiLvL2mcAZwLnR0Sklo2I9fnnRmA+MLnCfHMiohQRpcbGxt7+FczM6laRdzEJuBFYFRFXl7VPA74BnBUR2yosO1LSIe3DwBnAyqJqNTOzfRV5BNEMfA44Lb9VdZmk6cC1wCFkp42WSboeQNKRkh7Mlz0CeFzS08AvgQci4uECazUzsw4KuwYREY8DSkx6MNHWfkppej78IvCBomozM7P985PUZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzs6TCXjlqZmbvtnTtFuYtaqNt81s0NYxkZnMTk8aNqnVZFRV2BCHpaEmPSVol6RlJX83bD5fUIun5/DO5dyTNyOd5XtKMouo0M+sLV7es5vy5i7l/+QZWvryVB5Zv4Py5i7m6ZXWtS6uoyFNMu4DLIuL9wIeAL0s6DrgceDQijgEezcffRdLhwGzgJGAyMLtSkJiZ9XdL125h7sI2tu/cTUTWtidg+87dzF3YxtK1W2pbYAWFBUREbIiIpfnwG8Aq4CjgbOCWfLZbgE8kFv8Y0BIRr0bEFqAFmFZUrWZmRZq3qI3f7tqdnLZj127mLWrr44qq0ycXqSWNB04EFgNHRMQGyEIEGJ1Y5CjgpbLxdXlbat2zJLVKat20aVNvlm1m1ivaNr+198ihoz0BazZv69uCqlR4QEg6GLgLuCQitla7WKItuXsjYk5ElCKi1NjY2N0yzcwK09QwkkGpv2rAIMH4hhF9W1CVCg0ISUPJwuHWiLg7b35F0ph8+hhgY2LRdcDRZeNjgfVF1mpmVpSZzU0MGzI4OW3YkMHMbG7q44qqU+RdTAJuBFZFxNVlk+4F2u9KmgHck1j858AZkkblF6fPyNvMzAacSeNGceGUJoYPHbz3SGKQYPjQwVw4pf/e6lrkcxDNwOeAFZKW5W3fBL4L3CHpC8Ba4DMAkkrARRHxxYh4VdJ3gCfz5a6KiFcLrNXMrFCXnj6BqRNGM29RG2s2b2N8w4h+/xyEotKVkwGoVCpFa2trrcswMxswJC2JiFJqmrvaMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsqcjO+sxsgFm6dgvzFrXRtvktmhpG9vvO5KxYDggzA+DqltXMXZi9GjMCnl2/lUee3ciFU5q49PQJtS7PasCnmMyMpWu3MHdhG9t37t77asw9Adt37mbuwjaWrt1S2wKtJhwQZsa8RdmRQ8qOXbuZt6itjyuy/sABYWa0bX6LSq+G2ROwZvO2vi3I+gUHhJnR1DBy76swOxokGN8wom8Lsn7BF6nNuulAuuNnZnMTjzy7ke079z3NNGzIYGY2N9WgKqu1wgJC0k3AmcDGiDg+b/sZ0H47xGHAaxExMbHsGuANYDewq9Lr8Mxq5UC742fSuFFcOKWJuQvb2LFrN3siO3IYNmQwF04ZuMFnPVPkEcTNwLXAT9obIuKz7cOSfgC83snyp0bE5sKqM+um8jt+2pXf8TN1wugB+Qf10tMnMHXCaOYtamPN5m2MbxgxoI+KrOcKC4iIWChpfGqaJAF/DpxW1PbNilLNHT8D9Y/qpHGjBmzt1vs6DQhJ7yE7TfQR4EhgO7ASeCAinunBdj8CvBIRz1eYHsACSQH8OCLmdFLjLGAWwLhx43pQkll1fMeP1YuKdzFJuhJYBJwMLAZ+DNwB7AK+K6lF0gnd3O55wG2dTG+OiEnAx4EvS5pSacaImBMRpYgoNTY2drMcs+r5jh+rF50dQTwZEVdWmHa1pNFAl/+XXdIQ4Bzgg5XmiYj1+edGSfOBycDCrm7LrAi+48fqRcUjiIh4oLMFI2JjRLR2Y5sfBZ6LiHWpiZJGSjqkfRg4g+y0llm/0H7Hz/Chg/ceSQwSDB/qO37swLLfi9SS7iO7JlDudaCV7PrAbyssdxswFWiQtA6YHRE3AufS4fSSpCOBGyJiOnAEMD+7js0Q4KcR8XBXfimzovmOH6sHikpX29pnkK4BGnnnj/pngd8Aw4FDI+JzhVbYBaVSKVpbu3NQY2ZWnyQtqfSsWTW3uZ4YEeUXie+TtDAipkjqyZ1MZmbWj1XTF1OjpL0Xo/Ph9tuF3i6kKjMzq7lqjiAuAx6X9O+AgCbgL/MLyLcUWZyZmdXOfgMiIh6UdAxwLFlAPJc1xw7ghwXXZ2ZmNbLfU0ySboqIHRHxdEQsAwYDDxZfmpmZ1VI11yBelnQdgKRRQAvwD4VWZWZmNbffgIiIbwNbJV0PLAB+EBHzCq/MzMxqquI1CEnnlI3+Evh2/hmSzomIu4suzszMaqezi9R/1mH8KWBo3h6AA8LM7ABWMSAiYmZfFmJmZv1LZ919/1V+UbrS9NMknVlMWWZmVmudnWJaAdwv6bfAUmAT8B7gGGAi8AjwPwuv0MzMaqKzU0z3APfkD8k1A2OArWS3uM6KiO19U6KZmdVCNU9SPw9UejWomZkdoKp5UM7MzOqQA8LMzJKq6YupuZo2MzM7sFRzBPGjKtvMzOwA0llXGycDHyZ7YdClZZMOJevRtVOSbgLOBDZGxPF525XAhWS3zAJ8MyL26RlW0jTgmnw7N0TEd6v6bczMrNd0dgRxEHAwWYgcUvazFfh0Feu+GZiWaP/7iJiY/6TCYTDwv4GPA8cB50k6rortmZlZL+rsOYhfAL+QdHNE/LqrK46IhZLGd6OmycALEfEigKTbgbOBZ7uxLjMz66ZqXjk6TNIcYHz5/BFxWje3ebGkzwOtwGURsaXD9KOAl8rG1wEnVVqZpFnALIBx48ZVms3MzLqomovU/0jWk+tfAf+97Kc7rgN+n6yrjg3ADxLzKNEWlVYYEXMiohQRpcbGxm6WZWZmHVVzBLErIq7rjY1FxCvtw5LmAvcnZlsHHF02PhZY3xvbNzOz6nXWm+vhkg4H7pP0l5LGtLfl7V0maUzZ6CeBlYnZngSOkdQk6SDgXODe7mzPzMy6r7MjiCVkp3baT/mUn1YK4L2drVjSbcBUoEHSOmA2MFXSxHz5NcCX8nmPJLuddXpE7JJ0MfBzsttcb4qIZ7r4e5mZWQ8pouLp/QGnVCpFa2trrcswMxswJC2JiFJq2n6vQXR4N3W714EVEbGxp8WZmVn/VM1F6i8AJwOP5eNTgSeA90m6KiL+b0G1mZlZDVUTEHuA97ffgSTpCLLbVU8CFgIOCDOzA1A1z0GML789FdgIvC8iXgV2FlOWmZnVWjVHEP8q6X6yB+YAPgUslDQSeK2wyszMrKaqCYgvk4VCM9ktrz8B7ors9qdTC6zNzMxqqJp3UgdwZ/5jZmZ1orP3QTweEadIeoN394Ukstw4tPDqzMysZjrr7vuU/POQvivHzMz6i2ruYkLSKZJm5sMNkpqKLcvMzGptvwEhaTbwDeCKvOkg4B+KLMrMzGqvmiOITwJnAW8BRMR6slePmpnZAayagHg7v5MpAPLnH8zM7ABXTUDcIenHwGGSLgQeAeYWW5aZmdVaNc9BfF/S6cBWYALw1xHRUnhlZmZWU509B3EJsAh4Kg8Eh4KZWR3p7AhiLHANcKyk5cC/kQXG/8s76jMzswNYZw/KfR0gfy90CfgwcAEwV9JrEXFc35RoZma1UM1F6uHAocDv5D/rgcX7W0jSTZI2SlpZ1vY9Sc9JWi5pvqTDKiy7RtIKScsk+R2iZmY1UDEgJM2RtAj4Gdkb5f4N+ExElCJiZhXrvhmY1qGtBTg+Ik4AfsU7D9+lnBoREyu9K9XMzIrV2RHEOGAY8BvgZWAdXXj/Q0QsBF7t0LYgInblo0+QXecwM7N+qGJARMQ04I+B7+dNlwFPSlog6W96YdsXAA9V2jywQNISSbM6W4mkWZJaJbVu2rSpF8oyMzPYz3MQ+RPUKyW9Brye/5wJTAZmd3ejkr4F7AJurTBLc0SslzQaaJH0XH5EkqpxDjAHoFQqRWoeMzPrus6uQXxF0u2SXgIWkgXDauAc4PDublDSjHxd5+cBtI+8vyciYiMwnyyQzMysD3V2BDGe7C1yX4uIDb2xMUnTyHqG/ZOI2FZhnpHAoIh4Ix8+A7iqN7ZvZmbV6+w5iEt7smJJtwFTgQZJ68hOSV1BduG7RRLAExFxkaQjgRsiYjpwBDA/nz4E+GlEPNyTWszMrOv22xdTd0XEeYnmGyvMux6Yng+/CHygqLrMzKw6Vb1RzszM6o8DwszMkhwQZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZUmFvlLPaW7p2C/MWtdG2+S2aGkYys7mJSeNG1bosMxsgCj2CkHSTpI2SVpa1HS6pRdLz+WfyL5akGfk8z0uaUWSdB6KrW1Zz/tzF3L98Aytf3soDyzdw/tzFXN2yutalmdkAUfQpppuBaR3aLgcejYhjgEfz8XeRdDgwGzgJmAzMrhQktq+la7cwd2Eb23fuJiJr2xOwfedu5i5sY+naLbUt0MwGhEIDIiIWAq92aD4buCUfvgX4RGLRjwEtEfFqRGwBWtg3aKyCeYva+O2u3clpO3btZt6itj6uyMwGolpcpD4iIjYA5J+jE/McBbxUNr4ub9uHpFmSWiW1btq0qdeLHYjaNr+198ihoz0BazZv69uCzGxA6q93MSnRlvyTFxFzIqIUEaXGxsaCyxoYmhpGMii1B4FBgvENI/q2IDMbkGoREK9IGgOQf25MzLMOOLpsfCywvg9qOyDMbG5i2JDByWnDhgxmZnNTH1dkZgNRLQLiXqD9rqQZwD2JeX4OnCFpVH5x+oy8zaowadwoLpzSxPChg/ceSQwSDB86mAun+FZXM6tOoc9BSLoNmAo0SFpHdmfSd4E7JH0BWAt8Jp+3BFwUEV+MiFclfQd4Ml/VVRHR8WK3deLS0ycwdcJo5i1qY83mbYxvGOHnIMysSxSVrmYOQKVSKVpbW2tdhpnZgCFpSUSUUtP660VqMzOrMQeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7MkB4SZmSX1eUBImiBpWdnPVkmXdJhnqqTXy+b5676u08ys3g3p6w1GxGpgIoCkwcDLwPzErP8aEWf2ZW1mZvaOWp9i+lPg3yPi1zWuw8zMOqh1QJwL3FZh2smSnpb0kKQ/7MuizMyshgEh6SDgLOAfE5OXAr8XER8AfgT8UyfrmSWpVVLrpk2biinWzKwO1fII4uPA0oh4peOEiNgaEW/mww8CQyU1pFYSEXMiohQRpcbGxmIrNjOrI7UMiPOocHpJ0n+SpHx4Mlmd/9GHtZmZ1b0+v4sJQNII4HTgS2VtFwFExPXAp4H/KmkXsB04NyKiFrWamdWrmgRERGwDfrdD2/Vlw9cC1/Z1XWZm9o5a38VkZmb9lAPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVmSA8LMzJIcEGZmllSzgJC0RtIKScsktSamS9L/kvSCpOWSJtWiTjOzejWkxts/NSI2V5j2ceCY/Ock4Lr808zM+kB/PsV0NvCTyDwBHCZpTK2LMjOrF7U8gghggaQAfhwRczpMPwp4qWx8Xd62oXwmSbOAWfnom5JWF1RvVzUAlY6O6pn3S2XeN2neL5X1xr75vUoTahkQzRGxXtJooEXScxGxsGy6EsvEPg1ZsHQMl5qT1BoRpVrX0d94v1TmfZPm/VJZ0fumZqeYImJ9/rkRmA9M7jDLOuDosvGxwPq+qc7MzGoSEJJGSjqkfRg4A1jZYbZ7gc/ndzN9CHg9IjZgZmZ9olanmI4A5ktqr+GnEfGwpIsAIuJ64EFgOvACsA2YWaNau6vfnfbqJ7xfKvO+SfN+qazQfaOIfU7rm5mZ9evbXM3MrIYcEGZmluSA6CWSBkt6StL9+XiTpMWSnpf0M0kH1brGWpB0mKQ7JT0naZWkkyUdLqkl3zctkkbVus6+Julrkp6RtFLSbZLeU6/fGUk3SdooaWVZW/I7Uk9d8FTYL9/L/y0tlzRf0mFl067I98tqSR/rjRocEL3nq8CqsvG/A/4+Io4BtgBfqElVtXcN8HBEHAt8gGwfXQ48mu+bR/PxuiHpKOArQCkijgcGA+dSv9+Zm4FpHdoqfUfKu+CZRdYFz4HqZvbdLy3A8RFxAvAr4AoASceRfYf+MF/m/0ga3NMCHBC9QNJY4D8DN+TjAk4D7sxnuQX4RG2qqx1JhwJTgBsBIuLtiHiNrBuVW/LZ6nLfkN29N1zSEGAEWQ8BdfmdyR+QfbVDc6XvSN10wZPaLxGxICJ25aNPkD0fBtl+uT0idkREG9ndnx2fLesyB0Tv+CHwP4A9+fjvAq+V/Yds7yak3rwX2ATMy0+/3ZA/93JE+zMt+efoWhbZ1yLiZeD7wFqyYHgdWIK/M+UqfUcqdcFTjy4AHsqHC9kvDogeknQmsDEilpQ3J2atx/uJhwCTgOsi4kTgLersdFJKfj79bKAJOBIYSXbqpKN6/M7sj/9tAZK+BewCbm1vSszW4/3igOi5ZuAsSWuA28lOE/yQ7NC3/UHEeu0mZB2wLiIW5+N3kgXGK+2nBfLPjTWqr1Y+CrRFxKaI2AncDXwYf2fKVfqO1H0XPJJmAGcC58c7D7IVsl8cED0UEVdExNiIGE92keifI+J84DHg0/lsM4B7alRizUTEb4CXJE3Im/4UeJasG5UZeVs97pu1wIckjcivV7Xvl7r/zpSp9B2p6y54JE0DvgGcFRHbyibdC5wraZikJrKL+L/s8fb8JHXvkTQV+HpEnCnpvWRHFIcDTwH/JSJ21LK+WpA0kezi/UHAi2RdpgwC7gDGkf2x/ExEdLxIeUCT9DfAZ8lOEzwFfJHsnHHdfWck3QZMJeu6+hVgNvBPJL4jeaBeS3anzjZgZkTs80bKA0GF/XIFMAz4j3y2JyLionz+b5Fdl9gFXBIRD3VcZ5drcECYmVmKTzGZmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSCs7kh6s+D1/4WkI8vG10hqqGK5EyXd0Avb/yNJN/d0PWYOCLPe9xdkXWh01TeBH/V04xGxAhgraVxP12X1zQFhBkhqlHSXpCfzn+a8/cq8X/5/kfSipK+ULfPtvG/+lvydDl+X9GmgBNwqaZmk4fns/03SUkkrJB2b2P4hwAkR8XQ+frCkefn8yyV9Km9/U9LfSVoi6RFJk8tqO6tslfeRPdlv1m0OCLPMNWTvYvhj4FPkXbfnjgU+RtZ98mxJQyWV8vlOBM4hCwUi4k6glayfnIkRsT1fx+aImET2/oKvJ7ZfAlaWjX+brBuJP8r7/v/nvH0k8C8R8UHgDeBvgdOBTwJXlS3fCnyk67vB7B1D9j+LWV34KHBc1pMDAIfm/1cP8EDe5cUOSRuBI4BTgHvaA0DSfftZ/9355xKyQOloDFnX6OX17D0CiIgt+eDbwMP58ApgR0TslLQCGF+2/Ea6d5rLbC8HhFlmEHBy2f/xA5AHRnl/SLvJ/t2kulfuTPs62pfvaDvwnvJNk+6ueWdZD5572tcbEXvKeoIlX9f2jgubdYVPMZllFgAXt4/knQx25nHgz5S9S/pgsjcKtnsDOCS9WEWrgD/opJ6uvrf7fbz7lJVZlzkgrB6NkLSu7OdS8ndE5xeEnwUu6mwFEfEkWRfLT5OdPmolezMcZO8Svr7DRepORcRzwO+Undb6W2CUpJWSngZO7eLveCrwQBeXMXsX9+Zq1k2SDo6INyWNABYCsyJiaQ/W9zXgjYjo0bMQkoYBvwBOKXuFqVmX+QjCrPvmSFoGLAXu6kk45K7j3dc7umsccLnDwXrKRxBmZpbkIwgzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7Ok/w+k75bMUlS0EQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ "# Plot the data: Always visualize your data!\n", - "f, ax = plt.subplots()\n", - "ax.plot(lengths, weights , '.')\n", - "plt.xlabel('Length (cm)'); plt.xlim([30, 125]);\n", - "plt.ylabel('Weight (kg)'); plt.ylim([5, 25]);" + "fig, ax = plt.subplots()\n", + "ax.plot(lengths, weights, '.', ms=15)\n", + "ax.set(xlabel='Length (cm)', ylabel='Weight (kg)',\n", + " xlim=[30, 125], ylim=[5, 25]);" ] }, { "cell_type": "code", "execution_count": 4, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Polyfit (degree=1) will fit a linear fit to the data, of the form y = ax + b\n", @@ -130,7 +128,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Predicted weight for a new data point, weight is 13.3460674157\n" + "Predicted weight for a new data point, weight is 13.35.\n" ] } ], @@ -138,7 +136,7 @@ "# So now we can predict the weight of a new observation (a new dog)\n", "new_length = 62\n", "pred_weight = a * new_length + b \n", - "print('Predicted weight for a new data point, weight is', pred_weight)" + "print('Predicted weight for a new data point, weight is {:1.2f}.'.format(pred_weight))" ] }, { @@ -148,9 +146,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGkNJREFUeJzt3Xu4XXV95/H3JwnRClhugeFiuMyg\nlFqFcorBaBu0KGWoVmtbeBjFC41O63jDGUVrsdjH2qdqddTBRqTYaYptVeoNlZSC1NYgJ4hcBIWm\npMRQEjECjtYQ850/1jq6Oex9spKcffYJ5/16nv3svX77t9b6ZrHDJ+u3bqkqJEnannmjLkCStHsw\nMCRJnRgYkqRODAxJUicGhiSpEwNDktTJ0AIjyeOSXJXk1iS3JHl12/7WJN9KckP7Om3A/Kcm+UaS\nO5K8cVh1SpK6ybCuw0hyMHBwVV2fZG9gDfBrwG8C36uqd04x73zgm8ApwHrgOuDMqvr6UIqVJG3X\n0PYwquruqrq+/fwAcCtwaMfZTwTuqKq1VbUF+Cjw3OFUKknqYsFMrCTJEcDxwLXAUuCVSV4EjAPn\nVtXmSbMcCtzVM70eeMqAZS8HlgPsueeeJxxzzDHTWrskPZKtWbPm21W1qEvfoQdGkr2AjwOvqar7\nk1wIvA2o9v1dwEsnz9ZnUX3HzqpqBbACYGxsrMbHx6erdEl6xEuyrmvfoZ4llWQPmrBYWVWfAKiq\ne6rqR1W1DfgQzfDTZOuBx/VMHwZsGGatkqSpDfMsqQAfBm6tqnf3tB/c0+15wM19Zr8OODrJkUkW\nAmcAnxpWrZKk7RvmkNRS4IXATUluaNveBJyZ5DiaIaY7gZcDJDkEuKiqTquqrUleCXwBmA9cXFW3\nDLFWSdJ2DC0wqupL9D8WcfmA/huA03qmLx/UV5I087zSW5LUiYEhSerEwJAkdWJgSJI6MTAkSZ0Y\nGJKkTgwMSVInBoYkqRMDQ5LUiYEhSerEwJAkdWJgSJI6MTAkSZ0YGJKkTgwMSVInBoYkqRMDQ5LU\niYEhSepkaIGR5HFJrkpya5Jbkry6bf+TJLcluTHJZUn2GTD/nUluSnJDkvFh1SlJ6maYexhbgXOr\n6meAJcDvJjkWWAU8saqeBHwTOG+KZZxcVcdV1dgQ65QkdTC0wKiqu6vq+vbzA8CtwKFVdUVVbW27\nrQYOG1YNkqTpMyPHMJIcARwPXDvpq5cCnxswWwFXJFmTZPnwqpMkdbFg2CtIshfwceA1VXV/T/ub\naYatVg6YdWlVbUhyILAqyW1VdU2f5S8HlgMsXrx42uuXJDWGuoeRZA+asFhZVZ/oaT8bOB04q6qq\n37xVtaF93whcBpw4oN+KqhqrqrFFixZN9x9BktQa5llSAT4M3FpV7+5pPxV4A/Ccqvr+gHn3TLL3\nxGfgWcDNw6pVkrR9w9zDWAq8EHhGe2rsDUlOA94P7E0zzHRDkg8CJDkkyeXtvAcBX0ryNeArwGer\n6vNDrFWStB1DO4ZRVV8C0uery/u0TQxBndZ+Xgs8eVi1SZJ2nFd6S5I6MTAkSZ0YGJKkTgwMSVIn\nBoYkqRMDQ5LUiYEhSerEwJAkdWJgSJI6MTAkSZ0YGJKkTgwMSVInBoYkqRMDQ5LUiYEhSerEwJAk\ndWJgSJI6MTAkSZ0YGJKkToYWGEkel+SqJLcmuSXJq9v2/ZKsSnJ7+77vgPnPbvvcnuTsYdUpSepm\nmHsYW4Fzq+pngCXA7yY5FngjcGVVHQ1c2U4/RJL9gPOBpwAnAucPChZJ2p2sWbeZD1x1B2vWbR51\nKTtswbAWXFV3A3e3nx9IcitwKPBcYFnb7SPA1cAbJs3+bGBVVX0HIMkq4FTg0mHVK0nDtmbdZs66\naDVbtm5j4YJ5rDxnCSccvvv8W3hGjmEkOQI4HrgWOKgNk4lQObDPLIcCd/VMr2/b+i17eZLxJOOb\nNm2azrIlaVqtXnsvW7ZuY1vBg1u3sXrtvaMuaYcMPTCS7AV8HHhNVd3fdbY+bdWvY1WtqKqxqhpb\ntGjRzpYpSUO35Kj9WbhgHvMDeyyYx5Kj9h91STtkaENSAEn2oAmLlVX1ibb5niQHV9XdSQ4GNvaZ\ndT0/GbYCOIxm6EqSdlsnHL4vK89Zwuq197LkqP13q+EoGGJgJAnwYeDWqnp3z1efAs4G3tG+f7LP\n7F8A3t5zoPtZwHnDqlWSZsoJh++72wXFhGEOSS0FXgg8I8kN7es0mqA4JcntwCntNEnGklwE0B7s\nfhtwXfu6YOIAuCRpNFLV99DAbmlsbKzGx8dHXYYk7TaSrKmqsS59vdJbktSJgSFJ6sTAkCR1YmBI\nkjoxMCRJnRgYkqRODAxJUicGhiSpEwNDktSJgSFJ6sTAkCR1YmBIkjoxMCRJnRgYkh5izbrNfOCq\nO1izbvOoS9EsM9Qn7knavaxZt5mzLlrNlq3bWLhgHivPWbLbPuxH0889DEk/tnrtvWzZuo1tBQ9u\n3cbqtfeOuiTNIgaGpB9bctT+LFwwj/mBPRbMY8lR+4+6JM0iDklJ+rETDt+XlecsYfXae1ly1P4O\nR+khhhYYSS4GTgc2VtUT27a/Bp7QdtkH+G5VHddn3juBB4AfAVu7Pj5Q0q474fB9DQr1Ncw9jEuA\n9wN/MdFQVb818TnJu4D7ppj/5Kr69tCqk6bBmnWb/de45oyhBUZVXZPkiH7fJQnwm8AzhrV+adg8\no0hzzZSBkeTRNMNKTwcOAX4A3Ax8tqpu2YX1Ph24p6puH/B9AVckKeDPqmrFFDUuB5YDLF68eBdK\nknZMvzOKDAw9kg0MjCRvBX4VuBq4FtgIPBp4PPCONkzOraobd2K9ZwKXTvH90qrakORAYFWS26rq\nmn4d2zBZATA2NlY7UYu0UybOKHpw6zbPKNKcMNUexnVV9dYB3727/Z/5Dv+TPskC4PnACYP6VNWG\n9n1jksuAE4G+gSGNimcUaa4ZGBhV9dmpZqyqjTR7HTvql4Hbqmp9vy+T7AnMq6oH2s/PAi7YifVI\nQ+cZRZpLtnvQO8mnaY4p9LoPGKc5vvAfA+a7FFgGHJBkPXB+VX0YOINJw1FJDgEuqqrTgIOAy5rj\n4iwA/qqqPr8jfyhJ0vTrcpbUWmARP/mf/G8B99Acy/gQ8MJ+M1XVmQPaX9ynbQNwWvt5LfDkDnVJ\nkmZQl8A4vqp+sWf600muqapfTLIrZ0pJknYjXe4ltSjJjw9ut58XtZNbhlKVJGnW6bKHcS7wpST/\nAgQ4Evid9oD0R4ZZnCRp9thuYFTV5UmOBo6hCYzbmub6IfCeIdcnSZoltjskleTiqvphVX2tqm4A\n5gOXD780SdJs0uUYxreSXAiQZF9gFfCXQ61KkjTrbDcwquotwP1JPghcAbyrqv586JVJkmaVqe4l\n9fyeya8Ab2nfK8nzq+oTwy5OkjR7THXQ+1cnTX8V2KNtL8DAkKQ5ZKp7Sb1kJguRJM1uA49hJPm9\n9iD3oO+fkeT04ZQlSZptphqSugn4TJL/AK4HNtE8D+No4Djg74G3D71CSdKsMNWQ1CeBT7YX7S0F\nDgbupzmldnlV/WBmSpQkzQZdrvS+HRj0KFVJ0hzR5cI9SZIMDElSN13uJbW0S5sk6ZGtyx7G+zq2\nSZIewaa6NchJwFNpHqD0up6vHktzx9opJbkYOB3YWFVPbNveCvw2zSm6AG+qqofd+TbJqcB72/Vc\nVFXv6PSnkSQNzVR7GAuBvWhCZe+e1/3ACzos+xLg1D7tf1pVx7WvfmExH/gA8CvAscCZSY7tsD5J\n0hBNdR3GF4EvJrmkqtbt6IKr6pokR+xETScCd1TVWoAkHwWeC3x9J5YlSZomXR7R+qgkK4AjevtX\n1TN2cp2vTPIiYBw4t6o2T/r+UOCunun1wFMGLSzJcmA5wOLFiwd1kyTtoi4Hvf+W5k61vwf8z57X\nzrgQ+M80txa5G3hXnz7p01aDFlhVK6pqrKrGFi1atJNlSZK2p8sextaqunA6VlZV90x8TvIh4DN9\nuq0HHtczfRiwYTrWL0naeVPdrXa/JPsBn07yO0kOnmhr23dYkoN7Jp8H3Nyn23XA0UmOTLIQOAP4\n1M6sT5I0fabaw1hDMxQ0MUTUOwxVwFFTLTjJpcAy4IAk64HzgWVJjmvnvxN4edv3EJrTZ0+rqq1J\nXgl8gea02our6pYd/HNJkqZZqgYeHtjtjI2N1fj4+KjLkKTdRpI1VTXWpe92j2FMerb3hPuAm6pq\n444WJ0naPXU56P0y4CTgqnZ6GbAaeHySC6rq/w6pNknSLNIlMLYBPzNxhlOSg2hOj30KcA1gYEjS\nHNDlOowjek+HBTYCj6+q7wAPDqcsSdJs02UP4x+TfIbmAj6AXweuSbIn8N2hVSZJmlW6BMbv0oTE\nUppTbP8C+Hg1p1edPMTaJEmzSJdnehfwsfYlSZqjpnoexpeq6mlJHuCh93IKTY48dujVSZJmjalu\nb/609n3vmStHkjRbdTlLiiRPS/KS9vMBSY4cblmSpNlmu4GR5HzgDcB5bdNC4C+HWZTmoC9/Gf7o\nj5p3SbNSl7OkngccD1wPUFUbkjhMpenz5S/DM58JW7bAwoVw5ZVw0kmjrkrSJF2GpLa0Z0oVQHv9\nhTR9rr66CYsf/ah5v/rqUVckqY8ugfE3Sf4M2CfJbwN/D3xouGVpTlm2rNmzmD+/eV+2bNQVSeqj\ny3UY70xyCnA/8ATg96tq1dAr09xx0knNMNTVVzdh4XCUNCtNdR3Ga4B/Ar7aBoQhoeE56SSDQprl\nptrDOAx4L3BMkhuBf6YJkC+3Nx6UJM0hU12493qA9rnaY8BTgZcCH0ry3ao6dmZKlCTNBl0Oev8U\n8Fjgp9vXBuDa7c2U5OIkG5Pc3NP2J0luS3JjksuS7DNg3juT3JTkhiQ+c1WSZoGBgZFkRZJ/Av6a\n5ol7/wz8RlWNVdVLOiz7EuDUSW2rgCdW1ZOAb/KTiwH7Obmqjuv6rFlJ0nBNtYexGHgU8O/At4D1\n7MDzL6rqGuA7k9quqKqt7eRqmuMkkqTdwMDAqKpTgV8A3tk2nQtcl+SKJH8wDet+KfC5QasHrkiy\nJsnyqRaSZHmS8STjmzZtmoayJEn9THkdRnuF981Jvgvc175OB04Ezt/ZlSZ5M7AVWDmgy9L2FiQH\nAquS3NbusfSrcQWwAmBsbKz69ZEk7bqpjmG8KslHk9wFXEMTFN8Ang/st7MrTHJ2u6yz2kB6mKra\n0L5vBC6jCShJ0ghNtYdxBM1T9l5bVXdPx8qSnEpz59tfqqrvD+izJzCvqh5oPz8LuGA61i9J2nlT\nXYfxul1ZcJJLgWXAAUnW0wxhnUdzIH1VEoDVVfWKJIcAF1XVacBBwGXt9wuAv6qqz+9KLZKkXdfl\n9uY7parO7NP84QF9NwCntZ/XAk8eVl2SpJ3T6Yl7kiQZGJKkTgwMSVInBoYkqRMDQ5LUiYEhSerE\nwJAkdWJgSJI6MTAkSZ0YGJKkTgwMSVInBoYkqRMDQ5LUiYEhSerEwJAkdWJgSJI6MTAkSZ0YGJKk\nToYaGEkuTrIxyc09bfslWZXk9vZ93wHznt32uT3J2cOsU5K0fcPew7gEOHVS2xuBK6vqaODKdvoh\nkuwHnA88BTgROH9QsGhqa9Zt5gNX3cGadZtHXYqk3dyCYS68qq5JcsSk5ucCy9rPHwGuBt4wqc+z\ngVVV9R2AJKtogufSIZX6iLRm3WbOumg1W7ZuY+GCeaw8ZwknHG7uSto5oziGcVBV3Q3Qvh/Yp8+h\nwF090+vbtodJsjzJeJLxTZs2TXuxu7PVa+9ly9ZtbCt4cOs2Vq+9d9QlSdqNzdaD3unTVv06VtWK\nqhqrqrFFixYNuazdy5Kj9mfhgnnMD+yxYB5Ljtp/1CVJ2o0NdUhqgHuSHFxVdyc5GNjYp896fjJs\nBXAYzdCVdsAJh+/LynOWsHrtvSw5an+HoyTtklEExqeAs4F3tO+f7NPnC8Dbew50Pws4b2bKe2Q5\n4fB9DQpJ02LYp9VeCnwZeEKS9UleRhMUpyS5HTilnSbJWJKLANqD3W8DrmtfF0wcAJckjUaq+h4a\n2C2NjY3V+Pj4qMuQpN1GkjVVNdal72w96C1JmmUMDElSJwaGJKkTA0OS1ImBIUnqxMCQJHViYEiS\nOjEwJEmdGBiSpE4MDElSJwaGJKkTA0OS1ImBIUnqxMCQJHViYEiSOjEwJEmdGBiSpE4MDElSJzMe\nGEmekOSGntf9SV4zqc+yJPf19Pn9ma5TkvRQC2Z6hVX1DeA4gCTzgW8Bl/Xp+o9VdfpM1iZJGmzU\nQ1LPBP6lqtaNuA5J0naMOjDOAC4d8N1JSb6W5HNJfnYmi5IkPdzIAiPJQuA5wN/2+fp64PCqejLw\nPuDvpljO8iTjScY3bdo0nGIlSSPdw/gV4PqqumfyF1V1f1V9r/18ObBHkgP6LaSqVlTVWFWNLVq0\naLgVS9IcNsrAOJMBw1FJ/lOStJ9PpKnz3hmsTZI0yYyfJQWQ5DHAKcDLe9peAVBVHwReAPz3JFuB\nHwBnVFWNolZJUmMkgVFV3wf2n9T2wZ7P7wfeP9N1SZIGG/VZUpKk3YSBIUnqxMCQJHViYEiSOjEw\nJEmdGBiSpE4MDElSJwaGJKkTA0OS1ImBIUnqxMCQJHViYEiSOjEwJEmdGBiSpE4MDElSJwaGJKkT\nA0OS1ImBIUnqxMCQJHUyssBIcmeSm5LckGS8z/dJ8r+T3JHkxiQ/P4o6JUmNBSNe/8lV9e0B3/0K\ncHT7egpwYfsuSRqB2Twk9VzgL6qxGtgnycGjLkqS5qpR7mEUcEWSAv6sqlZM+v5Q4K6e6fVt2929\nnZIsB5a3k99L8o0h1bujDgAG7T3NZW6Xwdw2/bldBpuObXN4146jDIylVbUhyYHAqiS3VdU1Pd+n\nzzz1sIYmaCaHzcglGa+qsVHXMdu4XQZz2/TndhlsprfNyIakqmpD+74RuAw4cVKX9cDjeqYPAzbM\nTHWSpMlGEhhJ9kyy98Rn4FnAzZO6fQp4UXu21BLgvqq6G0nSSIxqSOog4LIkEzX8VVV9PskrAKrq\ng8DlwGnAHcD3gZeMqNadNeuGyWYJt8tgbpv+3C6Dzei2SdXDDgtIkvQws/m0WknSLGJgSJI6MTCm\nSZL5Sb6a5DPt9JFJrk1ye5K/TrJw1DWOQpJ9knwsyW1Jbk1yUpL9kqxqt82qJPuOus6ZluS1SW5J\ncnOSS5M8eq7+ZpJcnGRjkpt72vr+RubSLYMGbJc/af8u3ZjksiT79Hx3XrtdvpHk2cOoycCYPq8G\nbu2Z/mPgT6vqaGAz8LKRVDV67wU+X1XHAE+m2UZvBK5st82V7fSckeRQ4FXAWFU9EZgPnMHc/c1c\nApw6qW3Qb6T3lkHLaW4Z9Eh1CQ/fLquAJ1bVk4BvAucBJDmW5jf0s+08/yfJ/OkuyMCYBkkOA/4r\ncFE7HeAZwMfaLh8Bfm001Y1OkscCvwh8GKCqtlTVd2lu+/KRttuc3DY0Zwf+VJIFwGNo7mAwJ38z\n7QW735nUPOg3MmduGdRvu1TVFVW1tZ1cTXN9GjTb5aNV9cOq+leas0snX9u2ywyM6fEe4H8B29rp\n/YHv9vyHnbityVxzFLAJ+PN2uO6i9rqbgyauqWnfDxxlkTOtqr4FvBP4N5qguA9Yg7+ZXoN+I4Nu\nGTQXvRT4XPt5RraLgbGLkpwObKyqNb3NfbrOxfOXFwA/D1xYVccD/485NvzUTzse/1zgSOAQYE+a\noZbJ5uJvZnv8uwUkeTOwFVg50dSn27RvFwNj1y0FnpPkTuCjNMMK76HZVZ64MHKu3tZkPbC+qq5t\npz9GEyD3TAwjtO8bR1TfqPwy8K9VtamqHgQ+ATwVfzO9Bv1G5vwtg5KcDZwOnFU/uZBuRraLgbGL\nquq8qjqsqo6gOej0D1V1FnAV8IK229nAJ0dU4shU1b8DdyV5Qtv0TODrNLd9Obttm4vb5t+AJUke\n0x7vmtguc/4302PQb2RO3zIoyanAG4DnVNX3e776FHBGkkclOZLmpICvTPv6vdJ7+iRZBry+qk5P\nchTNHsd+wFeB/1ZVPxxlfaOQ5DiakwEWAmtpbvEyD/gbYDHN/zx/o6omH/R8REvyB8Bv0QwrfBU4\nh2bMec79ZpJcCiyjuVX3PcD5wN/R5zfSBuz7ac4E+j7wkqp62BM7HwkGbJfzgEcB97bdVlfVK9r+\nb6Y5rrEVeE1VfW7yMne5JgNDktSFQ1KSpE4MDElSJwaGJKkTA0OS1ImBIUnqxMDQnJPke0Ne/ouT\nHNIzfWeSAzrMd3ySi6Zh/T+X5JJdXY40mYEhTb8X09zyY0e9CXjfrq68qm4CDkuyeFeXJfUyMCQg\nyaIkH09yXfta2ra/tX0uwdVJ1iZ5Vc88b2mfTbCqfabF65O8ABgDVia5IclPtd3/R5Lrk9yU5Jg+\n698beFJVfa2d3ivJn7f9b0zy623795L8cZI1Sf4+yYk9tT2nZ5GfprnzgDRtDAyp8V6aZ1H8AvDr\ntLeqbx0DPJvmdtHnJ9kjyVjb73jg+TQhQVV9DBinuc/PcVX1g3YZ366qn6d5fsPr+6x/DLi5Z/ot\nNLe9+Ln22Qf/0LbvCVxdVScADwB/CJwCPA+4oGf+ceDpO74ZpMEWbL+LNCf8MnBsc+cJAB7b/qsf\n4LPtLTp+mGQjcBDwNOCTE4GQ5NPbWf4n2vc1NAEz2cE0t4LvrefHewhVtbn9uAX4fPv5JuCHVfVg\nkpuAI3rm38jODYtJAxkYUmMecFLPHgEAbYD03s/pRzR/b/rdTnoqE8uYmH+yHwCP7l01/W9P/WDP\nHUq3TSy3qrb13OmWdlk/mDyztCsckpIaVwCvnJhob5o4lS8Bv5rmWdx70TxxccIDwN79ZxvoVuC/\nTFHPjj73/PE8dIhL2mUGhuaixyRZ3/N6He0zttsDzF8HXjHVAqrqOppbSn+NZrhpnObJedA8i/mD\nkw56T6mqbgN+umcY7A+BfZPcnORrwMk7+Gc8GfjsDs4jTcm71Uo7KcleVfW9JI8BrgGWV9X1u7C8\n1wIPVNUuXYuR5FHAF4Gn9TzyVdpl7mFIO29FkhuA64GP70pYtC7kocdLdtZi4I2GhaabexiSpE7c\nw5AkdWJgSJI6MTAkSZ0YGJKkTgwMSVIn/x85GgIrvQ5AOgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAb70lEQVR4nO3de5RV5Z3m8e/DRRTUFpvCwQtNZUYxtm28VLykEgdNNOjYmpiko8tJaJJInI6jRu2JJp3GmF6z0ivGjhNnNKCimTZeWqW9G0vbDi09EIsKCoqKbRFEiECLooLK5Td/7F16KN5TnLrs2lWc57PWWefsd99+tT2cx317tyICMzOzzoaUXYCZmQ1MDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7OkwgJC0gGSnpC0RNKzki7M26+Q9Kqkhfnr1CrzT5b0gqSXJF1WVJ1mZpamou6DkDQOGBcRbZL2ABYAnwP+DHg7Iq7qYt6hwIvAScAK4Cng7Ih4rpBizcxsO4XtQUTEqohoyz+/BSwB9qtx9qOBlyLi5Yh4H7gdOKOYSs3MLGVYf6xE0gTgCGA+0AycL+mrQCtwSUSs6zTLfsArFcMrgGOqLHsaMA1g1KhRRx188MF9WruZ2c5swYIFayOiITWu8ICQtDtwN3BRRKyXdB3wQyDy958AX+s8W2JRyWNhETEDmAHQ1NQUra2tfVW6mdlOT9Lvqo0r9ComScPJwuHWiLgHICJei4gtEbEVmEl2OKmzFcABFcP7AyuLrNXMzLZV5FVMAm4ElkTE1RXt4yom+zywODH7U8CBkhol7QKcBdxXVK1mZra9Ig8xNQNfARZJWpi3fRc4W9LhZIeMlgHfBJC0L3BDRJwaEZslnQ/8ChgK3BQRzxZYq5mZdVJYQETEk6TPJTxUZfqVwKkVww9Vm9bMzIrnO6nNzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSYUFhKQDJD0haYmkZyVdmLf/WNLzkp6RNFvSXlXmXyZpkaSFklqLqtPMzNKK3IPYDFwSER8FjgW+JekQoAU4NCIOA14ELu9iGSdExOER0VRgnWZmllBYQETEqohoyz+/BSwB9ouIRyNicz7ZPGD/omowM7Oe65dzEJImAEcA8zuN+hrwcJXZAnhU0gJJ04qrzszMUoYVvQJJuwN3AxdFxPqK9u+RHYa6tcqszRGxUtJYoEXS8xExJ7H8acA0gPHjx/d5/WZm9arQPQhJw8nC4daIuKeifQpwGnBORERq3ohYmb+vBmYDR1eZbkZENEVEU0NDQ1//CWZmdavIq5gE3AgsiYirK9onA98BTo+IDVXmHSVpj47PwMnA4qJqNTOz7RW5B9EMfAU4Mb9UdaGkU4FrgT3IDhstlHQ9gKR9JT2Uz7sP8KSkp4HfAA9GxCMF1mpmZp0Udg4iIp4ElBj1UKKt45DSqfnnl4GPFVWbmZntmO+kNjOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7MkB4SZmSUV9shRMzPbVtvydcya20772ndoHDOKqc2NHDl+dNllVVXYHoSkAyQ9IWmJpGclXZi37y2pRdLS/D25dSRNyadZKmlKUXWamfWHq1te4JyZ83ngmVUsfnU9Dz6zinNmzufqlhfKLq2qIg8xbQYuiYiPAscC35J0CHAZ8HhEHAg8ng9vQ9LewHTgGOBoYHq1IDEzG+jalq9j5px2Nm7aQkTWtjVg46YtzJzTTtvydeUWWEVhARERqyKiLf/8FrAE2A84A7gln+wW4HOJ2T8LtETE6xGxDmgBJhdVq5lZkWbNbefdzVuS497bvIVZc9v7uaLa9MtJakkTgCOA+cA+EbEKshABxiZm2Q94pWJ4Rd6WWvY0Sa2SWtesWdOXZZuZ9Yn2te98sOfQ2daAZWs39G9BNSo8ICTtDtwNXBQR62udLdGW3LwRMSMimiKiqaGhoadlmpkVpnHMKIakftWAIYIJY0b2b0E1KjQgJA0nC4dbI+KevPk1SePy8eOA1YlZVwAHVAzvD6wsslYzs6JMbW5kxLChyXEjhg1lanNjP1dUmyKvYhJwI7AkIq6uGHUf0HFV0hTg3sTsvwJOljQ6Pzl9ct5mZjboHDl+NOce38huw4d+sCcxRLDb8KGce/zAvdS1yPsgmoGvAIskLczbvgv8CLhT0teB5cCXACQ1AedFxDci4nVJPwSeyue7MiJeL7BWM7NCXXzSRCZNHMusue0sW7uBCWNGDvj7IBTVzpwMQk1NTdHa2lp2GWZmg4akBRHRlBrnrjbMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0sqsrM+Mxtk2pavY9bcdtrXvkPjmFEDvjM5K5YDwswAuLrlBWbOyR6NGQHPrVzPY8+t5tzjG7n4pIlll2cl8CEmM6Nt+Tpmzmln46YtHzwac2vAxk1bmDmnnbbl68ot0ErhgDAzZs3N9hxS3tu8hVlz2/u5IhsIHBBmRvvad6j2aJitAcvWbujfgmxAcECYGY1jRn3wKMzOhggmjBnZvwXZgOCT1GY9tDNd8TO1uZHHnlvNxk3bH2YaMWwoU5sbS6jKylZYQEi6CTgNWB0Rh+ZtdwAdl0PsBbwREYcn5l0GvAVsATZXexyeWVl2tit+jhw/mnOPb2TmnHbe27yFrZHtOYwYNpRzjx+8wWe9U+QexM3AtcAvOhoi4ssdnyX9BHizi/lPiIi1hVVn1kOVV/x0qLziZ9LEsYPyB/XikyYyaeJYZs1tZ9naDUwYM3JQ7xVZ7xUWEBExR9KE1DhJAv4MOLGo9ZsVpZYrfgbrj+qR40cP2tqt73UZEJJ2JTtM9ClgX2AjsBh4MCKe7cV6PwW8FhFLq4wP4FFJAfw8ImZ0UeM0YBrA+PHje1GSWW18xY/Vi6pXMUm6ApgLHAfMB34O3AlsBn4kqUXSYT1c79nAbV2Mb46II4FTgG9JOr7ahBExIyKaIqKpoaGhh+WY1c5X/Fi96GoP4qmIuKLKuKsljQW6/b/skoYBZwJHVZsmIlbm76slzQaOBuZ0d11mRfAVP1Yvqu5BRMSDXc0YEasjorUH6/wM8HxErEiNlDRK0h4dn4GTyQ5rmQ0IHVf87DZ86Ad7EkMEuw33FT+2c9nhSWpJ95OdE6j0JtBKdn7g3Srz3QZMAsZIWgFMj4gbgbPodHhJ0r7ADRFxKrAPMDs7j80w4JcR8Uh3/iizovmKH6sHimpn2zomkK4BGvjwR/3LwO+B3YA9I+IrhVbYDU1NTdHa2pOdGjOz+iRpQbV7zWq5zPWIiKg8SXy/pDkRcbyk3lzJZGZmA1gtfTE1SPrgZHT+ueNyofcLqcrMzEpXyx7EJcCTkv4NENAI/EV+AvmWIoszM7Py7DAgIuIhSQcCB5MFxPNZc7wH/LTg+szMrCQ7PMQk6aaIeC8ino6IhcBQ4KHiSzMzszLVcg7iVUnXAUgaDbQAf19oVWZmVrodBkREfB9YL+l64FHgJxExq/DKzMysVFXPQUg6s2LwN8D38/eQdGZE3FN0cWZmVp6uTlL/aafh3wLD8/YAHBBmZjuxqgEREVP7sxAzMxtYuuru+6/yk9LVxp8o6bRiyjIzs7J1dYhpEfCApHeBNmANsCtwIHA48BjwPwuv0MzMStHVIaZ7gXvzm+SagXHAerJLXKdFxMb+KdHMzMpQy53US4FqjwY1M7OdVC03ypmZWR1yQJiZWVItfTE119JmZmY7l1r2IH5WY5uZme1Euupq4zjgE2QPDLq4YtSeZD26dknSTcBpwOqIODRvuwI4l+ySWYDvRsR2PcNKmgxck6/nhoj4UU1/jZmZ9Zmu9iB2AXYnC5E9Kl7rgS/WsOybgcmJ9r+LiMPzVyochgL/GzgFOAQ4W9IhNazPzMz6UFf3Qfwa+LWkmyPid91dcETMkTShBzUdDbwUES8DSLodOAN4rgfLMjOzHqrlkaMjJM0AJlROHxEn9nCd50v6KtAKXBIR6zqN3w94pWJ4BXBMtYVJmgZMAxg/fny1yczMrJtqOUn9D2Q9uf4V8JcVr564DviPZF11rAJ+kphGibaotsCImBERTRHR1NDQ0MOyzMyss1r2IDZHxHV9sbKIeK3js6SZwAOJyVYAB1QM7w+s7Iv1m5lZ7brqzXVvSXsD90v6C0njOtry9m6TNK5i8PPA4sRkTwEHSmqUtAtwFnBfT9ZnZmY919UexAKyQzsdh3wqDysF8JGuFizpNmASMEbSCmA6MEnS4fn8y4Bv5tPuS3Y566kRsVnS+cCvyC5zvSkinu3m32VmZr2kiKqH9wedpqamaG1tLbsMM7NBQ9KCiGhKjdvhOYhOz6bu8CawKCJW97Y4MzMbmGo5Sf114DjgiXx4EjAPOEjSlRHxfwuqzczMSlRLQGwFPtpxBZKkfcguVz0GmAM4IMzMdkK13AcxofLyVGA1cFBEvA5sKqYsMzMrWy17EP8i6QGyG+YAvgDMkTQKeKOwyszMrFS1BMS3yEKhmeyS118Ad0d2+dMJBdZmZmYlquWZ1AHclb/MzKxOdPU8iCcj4pOS3mLbvpBElht7Fl6dmZmVpupJ6oj4ZP6+R0TsWfHaw+FgfWrePDj7bDjqqOx93ryyKzIzaruKCUmflDQ1/zxGUmOxZVndmD4dPv1puOMOaGuDO+/MhqdPL7sys7q3w4CQNB34DnB53rQL8PdFFmV1Yt48uOoq2LABOrp82bo1G77qKu9JmJWslj2IzwOnA+8ARMRKskePmvXONdfAxo3pce++m403s9LUEhDv51cyBUB+/4NZ77344od7Dp1t3QpLl/ZvPWa2jVoC4k5JPwf2knQu8Bgws9iyrC4cdBAMqfIVHDIkG29mpdlhQETEVWT3QNwNTAT+OiJ+VnRhVgcuvBB23TU9btdd4YIL+rceM9tGV0+Uu0jSxyUNi4iWiPjLiLg0Ilr6s0DbiR17LFx6KYwc+eGexJAh2fCll2bjzaw0Xd1JvT9wDXCwpGeAfwXmAv8v76jPrPd+8AM45ZTshPTSpXDggdmehcPBrHQ7fKJc/lzoJuATZM+FOA54IyIOKb687vET5czMuqerJ8rVcpJ6N2BP4A/y10pgfg0rvUnSakmLK9p+LOl5Sc9Imi1pryrzLpO0SNJCSf7FNzMrQVfnIGZImgvcQbbX8K/AlyKiKSKm1rDsm4HJndpagEMj4jDgRT68+S7lhIg4vFqymZlZsbragxgPjAB+D7wKrKAbz3+IiDnA653aHo2IzfngPLLzHGZmNgB11VnfZODjwFV50yXAU5IelfSDPlj314CHq60eeFTSAknTulqIpGmSWiW1rlmzpg/KMjMz2MHzIPI7qBdLegN4M3+dBhwN9Lg3NUnfAzYDt1aZpDkiVkoaC7RIej7fI0nVOAOYAdlJ6p7WZGZm2+rqHMQFkm6X9AowhywYXgDOBPbu6QolTcmXdU5UuYQq7++JiFgNzCYLJDMz60dd7UFMILuD+tsRsaovViZpMlnPsP85IjZUmWYUMCQi3so/nwxc2RfrNzOz2lUNiIi4uDcLlnQbMAkYI2kF2SGpy8lOfLdIApgXEedJ2he4ISJOBfYBZufjhwG/jIhHelOLmZl13w6fSd1TEXF2ovnGKtOuBE7NP78MfKyouszMrDY1PVHOzMzqjwPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVlSYU+Us/K1LV/HrLnttK99h8Yxo5ja3MiR40eXXZaZDRKF7kFIuknSakmLK9r2ltQiaWn+nvzFkjQln2appClF1rkzurrlBc6ZOZ8HnlnF4lfX8+Azqzhn5nyubnmh7NLMbJAo+hDTzcDkTm2XAY9HxIHA4/nwNiTtDUwHjgGOBqZXCxLbXtvydcyc087GTVuIyNq2BmzctIWZc9ppW76u3ALNbFAoNCAiYg7weqfmM4Bb8s+3AJ9LzPpZoCUiXo+IdUAL2weNVTFrbjvvbt6SHPfe5i3MmtvezxWZ2WBUxknqfSJiFUD+PjYxzX7AKxXDK/K27UiaJqlVUuuaNWv6vNjBqH3tOx/sOXS2NWDZ2g39W5CZDUoD9SomJdqSP3kRMSMimiKiqaGhoeCyBofGMaMYktqCwBDBhDEj+7cgMxuUygiI1ySNA8jfVyemWQEcUDG8P7CyH2rbKUxtbmTEsKHJcSOGDWVqc2M/V2Rmg1EZAXEf0HFV0hTg3sQ0vwJOljQ6Pzl9ct5mNThy/GjOPb6R3YYP/WBPYohgt+FDOfd4X+pqZrUp9D4ISbcBk4AxklaQXZn0I+BOSV8HlgNfyqdtAs6LiG9ExOuSfgg8lS/qyojofLLbunDxSROZNHEss+a2s2ztBiaMGen7IMysWxTVzmYOQk1NTdHa2lp2GWZmg4akBRHRlBo3UE9Sm5lZyRwQZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbU7wEhaaKkhRWv9ZIu6jTNJElvVkzz1/1dp5lZvRvW3yuMiBeAwwEkDQVeBWYnJv2XiDitP2szM7MPlX2I6dPAv0XE70quw8zMOik7IM4Cbqsy7jhJT0t6WNIf92dRZmZWYkBI2gU4HfiHxOg24I8i4mPAz4B/7GI50yS1Smpds2ZNMcWamdWhMvcgTgHaIuK1ziMiYn1EvJ1/fggYLmlMaiERMSMimiKiqaGhodiKzczqSJkBcTZVDi9J+g+SlH8+mqzOf+/H2szM6l6/X8UEIGkkcBLwzYq28wAi4nrgi8B/k7QZ2AicFRFRRq1mZvWqlICIiA3AH3Zqu77i87XAtf1dl5mZfajsq5jMzGyAckCYmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkkoLCEnLJC2StFBSa2K8JP0vSS9JekbSkWXUaWZWr4aVvP4TImJtlXGnAAfmr2OA6/J3MzPrBwP5ENMZwC8iMw/YS9K4sosyM6sXZe5BBPCopAB+HhEzOo3fD3ilYnhF3raqciJJ04Bp+eDbkl4oqN7uGgNU2zuqZ94u1XnbpHm7VNcX2+aPqo0oMyCaI2KlpLFAi6TnI2JOxXgl5ontGrJg6RwupZPUGhFNZdcx0Hi7VOdtk+btUl3R26a0Q0wRsTJ/Xw3MBo7uNMkK4ICK4f2Blf1TnZmZlRIQkkZJ2qPjM3AysLjTZPcBX82vZjoWeDMiVmFmZv2irENM+wCzJXXU8MuIeETSeQARcT3wEHAq8BKwAZhaUq09NeAOew0Q3i7VedukebtUV+i2UcR2h/XNzMwG9GWuZmZWIgeEmZklOSD6iKShkn4r6YF8uFHSfElLJd0haZeyayyDpL0k3SXpeUlLJB0naW9JLfm2aZE0uuw6+5ukb0t6VtJiSbdJ2rVevzOSbpK0WtLiirbkd6SeuuCpsl1+nP9bekbSbEl7VYy7PN8uL0j6bF/U4IDoOxcCSyqG/xb4u4g4EFgHfL2Uqsp3DfBIRBwMfIxsG10GPJ5vm8fz4bohaT/gAqApIg4FhgJnUb/fmZuByZ3aqn1HKrvgmUbWBc/O6ma23y4twKERcRjwInA5gKRDyL5Df5zP838kDe1tAQ6IPiBpf+C/ADfkwwJOBO7KJ7kF+Fw51ZVH0p7A8cCNABHxfkS8QdaNyi35ZHW5bciu3ttN0jBgJFkPAXX5nclvkH29U3O170jddMGT2i4R8WhEbM4H55HdHwbZdrk9It6LiHayqz8731vWbQ6IvvFT4H8AW/PhPwTeqPgP2dFNSL35CLAGmJUffrshv+9ln457WvL3sWUW2d8i4lXgKmA5WTC8CSzA35lK1b4j1brgqUdfAx7OPxeyXRwQvSTpNGB1RCyobE5MWo/XEw8DjgSui4gjgHeos8NJKfnx9DOARmBfYBTZoZPO6vE7syP+twVI+h6wGbi1oykxWa+3iwOi95qB0yUtA24nO0zwU7Jd344bEeu1m5AVwIqImJ8P30UWGK91HBbI31eXVF9ZPgO0R8SaiNgE3AN8An9nKlX7jtR9FzySpgCnAefEhzeyFbJdHBC9FBGXR8T+ETGB7CTRP0XEOcATwBfzyaYA95ZUYmki4vfAK5Im5k2fBp4j60ZlSt5Wj9tmOXCspJH5+aqO7VL335kK1b4jdd0Fj6TJwHeA0yNiQ8Wo+4CzJI2Q1Eh2Ev83vV6f76TuO5ImAZdGxGmSPkK2R7E38Fvgv0bEe2XWVwZJh5OdvN8FeJmsy5QhwJ3AeLIfyy9FROeTlDs1ST8Avkx2mOC3wDfIjhnX3XdG0m3AJLKuq18DpgP/SOI7kgfqtWRX6mwApkbEdk+k3BlU2S6XAyOAf88nmxcR5+XTf4/svMRm4KKIeLjzMrtdgwPCzMxSfIjJzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhdUfS2wUv/88l7VsxvEzSmBrmO0LSDX2w/j+RdHNvl2PmgDDre39O1oVGd30X+FlvVx4Ri4D9JY3v7bKsvjkgzABJDZLulvRU/mrO26/I++X/Z0kvS7qgYp7v533zt+TPdLhU0heBJuBWSQsl7ZZP/t8ltUlaJOngxPr3AA6LiKfz4d0lzcqnf0bSF/L2tyX9raQFkh6TdHRFbadXLPJ+sjv7zXrMAWGWuYbsWQwfB75A3nV77mDgs2TdJ0+XNFxSUz7dEcCZZKFARNwFtJL1k3N4RGzMl7E2Io4ke37BpYn1NwGLK4a/T9aNxJ/kff//U94+CvjniDgKeAv4G+Ak4PPAlRXztwKf6v5mMPvQsB1PYlYXPgMckvXkAMCe+f/VAzyYd3nxnqTVwD7AJ4F7OwJA0v07WP49+fsCskDpbBxZ1+iV9XywBxAR6/KP7wOP5J8XAe9FxCZJi4AJFfOvpmeHucw+4IAwywwBjqv4P34A8sCo7A9pC9m/m1T3yl3pWEbH/J1tBHatXDXp7po3VfTgubVjuRGxtaInWPJlbew8s1l3+BCTWeZR4PyOgbyTwa48CfypsmdJ7072RMEObwF7pGeragnwn7qop7vP7T6IbQ9ZmXWbA8Lq0UhJKypeF5M/Izo/IfwccF5XC4iIp8i6WH6a7PBRK9mT4SB7lvD1nU5Sdykingf+oOKw1t8AoyUtlvQ0cEI3/8YTgAe7OY/ZNtybq1kPSdo9It6WNBKYA0yLiLZeLO/bwFsR0at7ISSNAH4NfLLiEaZm3eY9CLOemyFpIdAG3N2bcMhdx7bnO3pqPHCZw8F6y3sQZmaW5D0IMzNLckCYmVmSA8LMzJIcEGZmluSAMDOzpP8P6drns0nZ1t4AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, "execution_count": 6, @@ -160,8 +158,8 @@ ], "source": [ "# We can check how our prediction fits in with the data we observed\n", - "ax.plot(new_length, pred_weight, '.r')\n", - "f" + "ax.plot(new_length, pred_weight, '.r', ms=15)\n", + "fig" ] }, { @@ -173,7 +171,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The (absolute) error of our prediction is 1.35393258427 kg's.\n" + "The (absolute) error of our prediction is 1.35 kilograms.\n" ] } ], @@ -182,7 +180,7 @@ "actual_weight = 14.7\n", "error = actual_weight - pred_weight\n", "\n", - "print('The (absolute) error of our prediction is', str(error), 'kg\\'s.')" + "print('The (absolute) error of our prediction is {:1.2f} kilograms.'.format(error))" ] }, { @@ -199,7 +197,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Classification" + "## Classification" ] }, { @@ -216,24 +214,27 @@ "metadata": {}, "source": [ "### Problem\n", - "Our local zoologist is investigating a group of squirrels. \n", "\n", - "She would like to know how many different species there are present in the population, but only has basic data to work with. \n", + "Let's now imagine our local zoologist is investigating a group of squirrels. \n", + "\n", + "She would like to know how many different species there are present in the population. However, she only has a limited set of basic data to work with.\n", "\n", - "We can try and cluster the data we have, and look for (what look like) meaningful groupings. " + "We can try and cluster the data we have, and look for (what look like) meaningful groupings.\n", + "\n", + "In this case, let's imagine we were able to weigh and measure a selection of squirrels that otherwise look about the same. \n", + "\n", + "Our task is then to analyze the data to see if there appear to be any meaningful groupings." ] }, { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# We observe a bunch of squirrels with [height (cm), weight (grams)] pairs\n", - "dat = np.array([[10., 600.], [16., 1200], [6., 800], [12., 700.], [17., 1400.],\n", - " [8., 500.], [20., 1500.], [21., 1300.], [11., 800.], [18., 1100.]])" + "data = np.array([[10., 600.], [16., 1200], [6., 800], [12., 700.], [17., 1400.],\n", + " [8., 500.], [20., 1500.], [21., 1300.], [11., 800.], [18., 1100.]])" ] }, { @@ -243,49 +244,58 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEKCAYAAADTgGjXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGOdJREFUeJzt3Xu0nXV95/H3h8SAokiA4GACJGjQ\nQadeOGos1uIdrDXWywyOsxoVJ9MW67VLYTot1q7poo4VdXRoI6aCIsiglqiooKLUGQOcCHIRKZko\ncICSyFUrBUK+88d+jtkczjk558nZZ5/L+7XWWWc/v+d59v7mWTv55Pdcfr9UFZIktbFHvwuQJM1e\nhogkqTVDRJLUmiEiSWrNEJEktWaISJJaM0QkSa0ZIpKk1gwRSVJrC/tdQC8ccMABtXz58n6XIUmz\nyqZNm35eVUsms8+cDJHly5czODjY7zIkaVZJcuNk9/F0liSpNUNEktSaISJJas0QkSS1ZohIkloz\nRCRJrRkikqTWDBFJUmuGiCSpNUNEktRaz0IkyfokW5NcM6L9j5Ncn+TaJB/qaj8pyeZm3Su62o9p\n2jYnObFX9UqSJq+XY2d9BvgEcOZwQ5IXAauB36iq+5Mc2LQfARwHPA14IvCtJIc3u30SeBkwBFye\nZENV/biHdUuSJqhnIVJVlyRZPqL5D4FTqur+ZputTftq4Jym/adJNgPPbdZtrqotAEnOabY1RCRp\nBpjuayKHA7+V5NIk30vynKZ9KXBz13ZDTdtY7ZKkGWC6h4JfCCwGVgHPAc5NchiQUbYtRg+5Gu2N\nk6wF1gIccsghU1KsJGl8090TGQK+VB2XATuAA5r2g7u2WwbcOk77I1TVuqoaqKqBJUsmNaeKJKml\n6Q6RfwBeDNBcOF8E/BzYAByXZM8kK4CVwGXA5cDKJCuSLKJz8X3DNNcsSRpDz05nJTkbOBo4IMkQ\ncDKwHljf3Pb7ALCmqgq4Nsm5dC6YbwdOqKqHmvd5O/BNYAGwvqqu7VXNkqTJSeff8LllYGCgnB5X\nkiYnyaaqGpjMPj6xLklqzRCRJLVmiEiSWjNEJEmtGSKSpNYMEUlSa4aIJKk1Q0SS1JohImne2nTj\nXXzy4s1suvGufpcya033KL6SNCNsuvEu3nT6Rh7YvoNFC/fgrLet4shDF/e7rFnHnoikeWnjljt4\nYPsOdhQ8uH0HG7fc0e+SZiVDRNK8tOqw/Vm0cA8WBB61cA9WHbZ/v0ualTydJWleOvLQxZz1tlVs\n3HIHqw7b31NZLRkikuatIw9dbHjsJk9nSZJaM0QkSa0ZIpKk1gwRSVJrhogkqTVDRJLUmiEiSWrN\nEJEktdazEEmyPsnWJNeMsu5PklSSA5rlJPl4ks1Jrkry7K5t1yS5oflZ06t6JUmT18ueyGeAY0Y2\nJjkYeBlwU1fzscDK5mctcFqz7X7AycDzgOcCJyfx8VJJmiF6FiJVdQlw5yirTgXeB1RX22rgzOrY\nCOyb5CDgFcBFVXVnVd0FXMQowSRpZnK+jrlvWsfOSvJq4Jaq+lGS7lVLgZu7loeatrHaJc1wztcx\nP0zbhfUkjwH+FPjz0VaP0lbjtI/2/muTDCYZ3LZtW/tCJU0J5+uYH6bz7qwnASuAHyX5GbAM+GGS\nf0Onh3Fw17bLgFvHaX+EqlpXVQNVNbBkyZIelC9pMpyvY36YttNZVXU1cODwchMkA1X18yQbgLcn\nOYfORfR7quq2JN8E/qrrYvrLgZOmq2ZJ7Tlfx/zQsxBJcjZwNHBAkiHg5Kr69BibXwC8EtgM/Ap4\nC0BV3ZnkL4HLm+0+WFWjXayXNAM5X8fcl6pRLzHMagMDAzU4ONjvMiRpVkmyqaoGJrOPT6xLkloz\nRCRJrRkikqTWDBFJUmuGiCSpNUNEktSaISJJas0QkSS1ZohI0iQ5xP1O0zoUvCTNdg5x/3D2RCRp\nEhzi/uEMEUmaBIe4fzhPZ0nSJDjE/cMZIpI0SQ5xv5OnsyRJrRkikqTWDBFJUmuGiCSpNUNEktSa\nISJJas0QkSS1ZohIklrrWYgkWZ9ka5Jrutr+R5KfJLkqyZeT7Nu17qQkm5Ncn+QVXe3HNG2bk5zY\nq3olSZPXy57IZ4BjRrRdBDy9qn4D+CfgJIAkRwDHAU9r9vlfSRYkWQB8EjgWOAJ4Y7OtJGkG6FmI\nVNUlwJ0j2i6squ3N4kZgWfN6NXBOVd1fVT8FNgPPbX42V9WWqnoAOKfZVtI0cw4NjaafY2e9FfhC\n83opnVAZNtS0Adw8ov15vS9NUjfn0NBY+nJhPcmfAtuBs4abRtmsxmkf7T3XJhlMMrht27apKVQS\n4BwaGtu0h0iSNcCrgDdV1XAgDAEHd222DLh1nPZHqKp1VTVQVQNLliyZ+sKlecw5NDSWaT2dleQY\n4P3Ab1fVr7pWbQA+n+QjwBOBlcBldHoiK5OsAG6hc/H9P05nzZKcQ0Nj61mIJDkbOBo4IMkQcDKd\nu7H2BC5KArCxqv6gqq5Nci7wYzqnuU6oqoea93k78E1gAbC+qq7tVc2SxuYcGhpNdp5RGmVlshed\nU0+/RaeHcB9wDfC1mfyP+cDAQA0ODva7DEmaVZJsqqqByewzZk8kyQeA3wW+C1wKbAX2Ag4HTmkC\n5r1VdVXbgiVJs9t4p7Mur6oPjLHuI0kOBA6Z+pIkSbPFmCFSVV8bb8eq2kqndyJJmqd2eWE9yVd4\n5LMZ9wCDwN9V1b/2ojBJ0sw3kedEtgC/BD7V/NwL3E7n2sineleaJGmmm8gtvs+qqhd2LX8lySVV\n9cIkM/YOLUlS702kJ7Ikya8voDevhx8Jf6AnVUmSZoWJ9ETeC3w/yf+j8wT5CuCPkuwNnNHL4iRJ\nM9suQ6SqLkiyEngqnRD5Sae57gc+2uP6JEkz2C5PZyVZ38zz8aOqupLO8CMX9L40SfOVc5fMHhM5\nnXVLktOq6g+TLAa+hndlSeoR5y6ZXXbZE6mqPwPuTfK3wIXA31TV3/e8MknzknOXzC7jjZ312q7F\ny4A/a35XktdW1Zd6XZyk+Wd47pIHt+9w7pJZYLzTWb87YvkK4FFNewGGiKQp59wls8t4Y2e9ZToL\nkaRhzl0ye4x5TSTJf2supI+1/sVJXtWbsiRJs8F4p7OuBr6a5F+BHwLb6MwnshJ4JvAt4K96XqEk\nacYa73TW+cD5zYOGRwEH0Rl88XPA2qq6b3pKlCTNVBN5Yv0G4IZpqEWSNMtMZABGSZJGZYhIklqb\nyNhZR02kTZI0/0ykJ/I/J9j2MEnWJ9ma5Jqutv2SXJTkhub34qY9ST6eZHOSq5I8u2ufNc32NyRZ\nM5E/lCRpeow37Mnzgd+kMynVe7pW7UNnJN9d+QzwCeDMrrYTgW9X1SlJTmyW3w8cS+fW4ZXA84DT\ngOcl2Q84GRig85T8piQbqsqhPSVpBhivJ7IIeCydoHlc18+9wOt39cZVdQlw54jm1eycyOoM4DVd\n7WdWx0Zg3yQHAa8ALqqqO5vguAg4ZiJ/MElS7433nMj3gO8l+UxV3ThFn/eEqrqtef/bkhzYtC8F\nbu7abqhpG6tdkjQDTGQ+kT2TrAOWd29fVS+ewjoySluN0/7IN0jWAmsBDjnkkNE2kSRNsYmEyP8G\n/hY4HXhoNz/v9iQHNb2Qg4CtTfsQcHDXdsuAW5v2o0e0f3e0N66qdcA6gIGBgVGDRpI0tSZyd9b2\nqjqtqi6rqk3DPy0/bwMwfIfVGuD8rvbfb+7SWgXc05z2+ibw8iSLmzu5Xt60SZJmgPHuztqvefmV\nJH8EfBm4f3h9VY28aD5y/7Pp9CIOSDJE5y6rU4BzkxwP3AS8odn8AuCVwGbgV8Bbhj8jyV8Clzfb\nfXBXnytJmj6pGv3MT5KfMs51iao6rJeF7Y6BgYEaHBzsdxmSNKsk2VRVA5PZZ7y7s1bsfkmSpLls\nlxfWR8y1Puwe4Oqq2jrKOknSPDGRu7OOB54PXNwsHw1sBA5P8sGq+myPapMkzXATCZEdwL+tqtsB\nkjyBZlgS4BLAEJGkeWoit/guHw6Qxlbg8OYuqQd7U5YkaTaYSE/kH5N8lc5DhwCvAy5Jsjdwd88q\nkyTNeBMJkRPoBMdRdG73PRP4YnXuDX5RD2uTJM1wE5ljvYDzmh9Jkn5tvCfWv19VL0jyCx4+6GHo\nZMs+Pa9OkjSjjfew4Qua34+bvnIkSbPJRO7OIskLkryleX1AEp9mlyTtOkSSnExnCtuTmqZFwOd6\nWZQkaXaYSE/k94BXA/8CUFW30pkmV5I0z00kRB5o7tAqgOb5EEmSJhQi5yb5O2DfJP8Z+Bbwqd6W\nJUmaDSbynMiHk7wMuBd4CvDnVXVRzyuTJM144z0n8i7g/wBXNKFhcEiSHma8nsgy4GPAU5NcBfxf\nOqHyA6eolSTB+A8b/glAkkXAAPCbwFuBTyW5u6qOmJ4SJUkz1UQGYHw0sA/w+ObnVuDqXhYlSZod\nxrsmsg54GvAL4FI6p7M+UlV3TVNtkqQZbrxbfA8B9gT+GbgFGML5QyRJXcYMkao6BngO8OGm6b3A\n5UkuTPIXu/OhSd6d5Nok1yQ5O8leSVYkuTTJDUm+0FyLIcmezfLmZv3y3flsSdLUGfdhw+q4BrgA\n+Dqdu7OeBLyz7QcmWQq8AxioqqcDC4DjgL8GTq2qlcBdwPHNLscDd1XVk4FTm+0kSTPAmCGS5B1J\nzklyM3AJ8CrgeuC1wH67+bkLgUcnWQg8BrgNeDE7J746A3hN83p1s0yz/iVJspufr3FsuvEuPnnx\nZjbd6OUvj4U0vvHuzlpO5x/td1fVbVP1gVV1S5IPAzcB9wEXApuAu6tqe7PZELC0eb0UuLnZd3uS\ne4D9gZ9PVU3aadONd/Gm0zfywPYdLFq4B2e9bRVHHrq432X1hcdC2rXxrom8p6rOm8oAAUiymE7v\nYgXwRGBv4NjRShjeZZx13e+7NslgksFt27ZNVbnzzsYtd/DA9h3sKHhw+w42brmj3yX1jcdC2rUJ\nTUo1xV4K/LSqtlXVg8CX6DzIuG9zegs6T8vf2rweAg4GaNY/HnjEE/NVta6qBqpqYMmSJb3+M8xZ\nqw7bn0UL92BB4FEL92DVYfv3u6S+8VhIuzaRhw2n2k3AqiSPoXM66yXAIHAx8HrgHGANcH6z/YZm\n+QfN+u80Q9OrB448dDFnvW0VG7fcwarD9p/Xp288FtKupR//Hje3CP8HYDtwBfA2Otc+zqFz0f4K\n4D9V1f1J9gI+CzyLTg/kuKraMt77DwwM1ODgYA//BJI09yTZVFUDk9pnLv6n3hCRpMlrEyL9uCYi\nSZojDBFJUmuGiCSpNUNEktSaISJJas0QkSS1ZohIklozRCRJrRkikqTWDBFpijkHieaTfgzAKM1Z\nzkGi+caeiDSFnINE840hIk0h5yDRfOPpLGkKOQeJ5htDRJpiRx662PDQvOHpLElSa4aIJKk1Q0SS\n1JohIklqzRCRJLVmiEiSWjNEJEmtGSKSpNb6EiJJ9k1yXpKfJLkuyfOT7JfkoiQ3NL8XN9smyceT\nbE5yVZJn96NmSdIj9asn8jHgG1X1VOAZwHXAicC3q2ol8O1mGeBYYGXzsxY4bfrL1Wzn8OxSb0z7\nsCdJ9gFeCLwZoKoeAB5Isho4utnsDOC7wPuB1cCZVVXAxqYXc1BV3TbNpWuWcnh2qXf60RM5DNgG\n/H2SK5KcnmRv4AnDwdD8PrDZfilwc9f+Q03bwyRZm2QwyeC2bdt6+yfQrOLw7FLv9CNEFgLPBk6r\nqmcB/8LOU1ejySht9YiGqnVVNVBVA0uWLJmaSjUnODy71Dv9GMV3CBiqqkub5fPohMjtw6epkhwE\nbO3a/uCu/ZcBt05btZr1HJ5d6p1p74lU1T8DNyd5StP0EuDHwAZgTdO2Bji/eb0B+P3mLq1VwD1e\nD9FkHXnoYk540ZMNEGmK9Ws+kT8GzkqyCNgCvIVOoJ2b5HjgJuANzbYXAK8ENgO/araVJM0AfQmR\nqroSGBhl1UtG2baAE3pelCRp0nxiXZLUmiEiSWrNEJEktWaISJJaM0QkSa0ZIpKk1gwRSVJrhogk\nqTVDRH3lPB/S7NavYU8k5/mQ5gB7Iuob5/mQZj9DRH3jPB/S7OfpLPWN83xIs58hor468tDFhoc0\ni3k6S5LUmiEiSWrNEJEktWaISJJaM0QkSa0ZIpKk1gwRSVJrhogkqbW+hUiSBUmuSPLVZnlFkkuT\n3JDkC0kWNe17Nsubm/XL+1WzJOnh+tkTeSdwXdfyXwOnVtVK4C7g+Kb9eOCuqnoycGqznSRpBuhL\niCRZBvwOcHqzHODFwHnNJmcAr2ler26Wada/pNlektRn/eqJfBR4H7CjWd4fuLuqtjfLQ8DS5vVS\n4GaAZv09zfYPk2RtksEkg9u2betl7ZKkxrSHSJJXAVuralN38yib1gTW7WyoWldVA1U1sGTJkimo\nVJK0K/0Yxfco4NVJXgnsBexDp2eyb5KFTW9jGXBrs/0QcDAwlGQh8HjgzukvW5I00rT3RKrqpKpa\nVlXLgeOA71TVm4CLgdc3m60Bzm9eb2iWadZ/p6oe0RORJE2/mfScyPuB9yTZTOeax6eb9k8D+zft\n7wFO7FN9kqQR+jopVVV9F/hu83oL8NxRtvlX4A3TWpgkaUJmUk9EkjTLGCKSpNYMEUlSa4aIJKk1\nQ0SS1JohIklqzRCRJLVmiEiSWjNEJEmtGSKSpNYyF8cyTPIL4Pp+1zFDHAD8vN9FzBAei508Fjt5\nLHZ6SlU9bjI79HXsrB66vqoG+l3ETJBk0GPR4bHYyWOxk8dipySDk93H01mSpNYMEUlSa3M1RNb1\nu4AZxGOxk8diJ4/FTh6LnSZ9LObkhXVJ0vSYqz0RSdI0mHMhkuSYJNcn2ZxkXk+lm+RnSa5OcmWb\nuy5msyTrk2xNck1X235JLkpyQ/N7cT9rnC5jHIsPJLml+W5cmeSV/axxuiQ5OMnFSa5Lcm2Sdzbt\n8+67Mc6xmNR3Y06dzkqyAPgn4GXAEHA58Maq+nFfC+uTJD8DBqpq3t0Dn+SFwC+BM6vq6U3bh4A7\nq+qU5j8Yi6vq/f2sczqMcSw+APyyqj7cz9qmW5KDgIOq6odJHgdsAl4DvJl59t0Y51j8eybx3Zhr\nPZHnApuraktVPQCcA6zuc03qg6q6BLhzRPNq4Izm9Rl0/sLMeWMci3mpqm6rqh82r38BXAcsZR5+\nN8Y5FpMy10JkKXBz1/IQLQ7KHFLAhUk2JVnb72JmgCdU1W3Q+QsEHNjnevrt7Umuak53zfnTNyMl\nWQ48C7iUef7dGHEsYBLfjbkWIhmlbe6cr5u8o6rq2cCxwAnNaQ0J4DTgScAzgduAv+lvOdMryWOB\nLwLvqqp7+11PP41yLCb13ZhrITIEHNy1vAy4tU+19F1V3dr83gp8mc7pvvns9uY88PD54K19rqdv\nqur2qnqoqnYAn2IefTeSPIrOP5pnVdWXmuZ5+d0Y7VhM9rsx10LkcmBlkhVJFgHHARv6XFNfJNm7\nuVhGkr2BlwPXjL/XnLcBWNO8XgOc38da+mr4H8zG7zFPvhtJAnwauK6qPtK1at59N8Y6FpP9bsyp\nu7MAmtvRPgosANZX1X/vc0l9keQwOr0P6Ay0+fn5dCySnA0cTWeE1tuBk4F/AM4FDgFuAt5QVXP+\ngvMYx+JoOqcrCvgZ8F+GrwnMZUleAPwjcDWwo2n+r3SuBcyr78Y4x+KNTOK7MedCRJI0feba6SxJ\n0jQyRCRJrRkikqTWDBFJUmuGiCSpNUNE81qSX45YfnOST+xin1fvaoToJEcn+eoY696V5DHj7Hte\nc4v2bklyTpKVu/s+0ngMEWmSqmpDVZ2yG2/xLmDUEEnyNGBBVW3Zjfcfdhrwvil4H2lMhog0hiRL\nknwxyeXNz1FN+697K0melGRjs/6DI3o2j216FT9JclY63gE8Ebg4ycWjfOyb6Hpaupkf54dJfpTk\n203bB5KckeTCdOaMeW2SD6Uzd8w3mqEsoPMg2UuTLOzB4ZEAQ0R6dNfkO1cCH+xa9zHg1Kp6DvA6\n4PRR9v8Y8LFmm5HjtD2LTq/jCOAwOgNifrzZ7kVV9aJR3u8oOvM6kGQJnbGLXldVzwDe0LXdk4Df\noTOE+eeAi6vq3wH3Ne00Yx9tBp4xoSMhteD/UDTf3VdVzxxeSPJmYKBZfClwRGeIIQD2GR6PrMvz\n2Tn3xOeB7ol8LquqoeZ9rwSWA9/fRT0HAdua16uAS6rqpwAjhuH4elU9mORqOkP8fKNpv7r5nGFb\n6fR8Nu3ic6VWDBFpbHsAz6+q+7obu0JlV+7vev0QE/v7dh+w1/BHMfZUBvdDp7eR5MHaOX7RjhGf\ns1fznlJPeDpLGtuFwNuHF5I8c5RtNtI51QWdUaMn4hfAyB7NsOuAJzevfwD8dpIVzefvN8H373Y4\ncG2L/aQJMUSksb0DGGhmePsx8AejbPMu4D1JLqNzKuqeCbzvOuDrY1xY/xqdEXapqm3AWuBLSX4E\nfGEyxSd5Ap3TdXN+dF71j6P4Sruhed7jvqqqJMcBb6yq1bvxfo8GLqZzEf6h3azt3cC9VfXp3Xkf\naTxeE5F2z5HAJ5oJfu4G3ro7b1ZV9yU5GVhKZ16L3XE38NndfA9pXPZEJEmteU1EktSaISJJas0Q\nkSS1ZohIklozRCRJrRkikqTW/j+oa1dwUoq5LwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEGCAYAAACkQqisAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAaE0lEQVR4nO3dfZiddX3n8fen4WlAccAMbDIJV4KGWIRq6CmCsW4AJUAtSaO0eLk1IrvZbrGWYqOw7TaU7i6psSKuljZICqgFKdIQAQ3Ig6m75WHCAOHBlCxSMhMk44YBrCMP4bt/3L/DnExmTs65M+fcM+d8Xtd1rpz7d//uc77c10k+3E+/nyICMzOzPH6p6ALMzGzycoiYmVluDhEzM8vNIWJmZrk5RMzMLLd9ii6gEaZOnRqzZs0qugwzs0ll48aNP42Irnq2ackQmTVrFj09PUWXYWY2qUj613q38eksMzPLzSFiZma5OUTMzCw3h4iZmeXmEDEzs9wcImZmlptDxMzMcnOImJlZbg4RMzPLzSFiZma5OUTMzCy3hoWIpDWStkt6dET7H0jaLOkxSZ+vaL9I0pa0bmFF+2mpbYukCxtVr5mZ1a+RAzBeDXwFuLbcIOkkYBHwKxHxsqTDUvvRwNnAO4HpwPclHZU2+yrwQaAPeEDSuoh4vIF1m5lZjRoWIhGxQdKsEc3/BVgZES+nPttT+yLg+tT+Y0lbgOPTui0R8RSApOtTX4eImdkE0OxrIkcBvy7pPkk/kPRrqb0b2FrRry+1jdW+G0nLJPVI6hkYGGhA6WZmNlKzQ2Qf4BDgBGA5cIMkARqlb1Rp370xYnVElCKi1NVV15wqZmaWU7MnpeoDboqIAO6X9DowNbXPrOg3A9iW3o/VbmZmBWv2kcha4GSAdOF8P+CnwDrgbEn7S5oNzAHuBx4A5kiaLWk/sovv65pcs5mZjaFhRyKSrgMWAFMl9QErgDXAmnTb7yvA0nRU8pikG8gumL8GnBcRO9PnfApYD0wB1kTEY42q2czM6qPs3/DWUiqVwnOsm5nVR9LGiCjVs42fWDczs9wcImZmlptDxMzMcnOImJlZbg4RMzPLzSFiZma5NfuJdTOzCWFtbz+r1m9m2+AQ0zs7WL5wLovnjTo0n1XhEDGztrO2t5+LbtrE0Ks7AegfHOKimzYBOEjq5NNZZtZ2Vq3f/EaAlA29upNV6zcXVNHk5RAxs7azbXCornYbm0PEzNrO9M6OutptbA4RM2s7yxfOpWPfKbu0dew7heUL5xZU0eTlC+tm1nbKF899d9bec4iYWVtaPK/boTEOfDrLzMxyc4iYmVluDhEzM8vNIWJmZrk5RMzMLDeHiJmZ5eYQMTOz3BwiZmaWW8NCRNIaSdslPTrKuj+WFJKmpmVJ+rKkLZIekXRcRd+lkp5Mr6WNqtfMxtfa3n7mr7yL2RfeyvyVd7G2t7/okqwBGnkkcjVw2shGSTOBDwLPVDSfDsxJr2XAFanvocAK4D3A8cAKSYc0sGYzGwfl+Tr6B4cIhufrcJC0noaFSERsAHaMsuoy4LNAVLQtAq6NzL1Ap6RpwELgjojYERHPA3cwSjCZ2cTi+TraR1OviUg6E+iPiIdHrOoGtlYs96W2sdpH++xlknok9QwMDIxj1WZWL8/X0T6aFiKSDgT+BPiz0VaP0hZV2ndvjFgdEaWIKHV1deUv1Mz2mufraB/NPBJ5GzAbeFjS08AM4EFJ/47sCGNmRd8ZwLYq7WY2gXm+jvbRtBCJiE0RcVhEzIqIWWQBcVxE/ARYB3w83aV1AvBCRDwLrAdOlXRIuqB+amozswls8bxuLl1yLN2dHQjo7uzg0iXHeuj1FtSw+UQkXQcsAKZK6gNWRMRVY3S/DTgD2AL8HDgHICJ2SPoL4IHU75KIGO1ivZlNMJ6voz0oYtRLDJNaqVSKnp6eosswM5tUJG2MiFI92/iJdTMzy80hYmZmuTlEzMwsN4eImZnl5hAxM7PcHCJmZpZbw54TMTNrRWt7+1m1fjPbBoeY3tnB8oVz2/p5GIeImVmNykPcl0coLg9xD7RtkPh0lplZjTzE/e4cImZmNfIQ97tziJiZ1chD3O/OIWJmViMPcb87X1g3M6tR+eK5784a5hAxM6uDh7jflU9nmZlZbg4RMzPLzSFiZma5OUTMzCw3h4iZmeXmEDEzs9wcImZmlptDxMzMcmtYiEhaI2m7pEcr2lZJ+pGkRyT9o6TOinUXSdoiabOkhRXtp6W2LZIubFS9Zja2tb39zF95F7MvvJX5K+9ibW9/0SXZBNHII5GrgdNGtN0BHBMRvwL8C3ARgKSjgbOBd6Zt/lrSFElTgK8CpwNHAx9Nfc2sScpzaPQPDhEMz6HhIDFoYIhExAZgx4i22yPitbR4LzAjvV8EXB8RL0fEj4EtwPHptSUinoqIV4DrU18zaxLPoWHVFHlN5JPAd9P7bmBrxbq+1DZW+24kLZPUI6lnYGCgAeWatSfPoWHVFBIikv4EeA34ZrlplG5RpX33xojVEVGKiFJXV9f4FGpmnkPDqmp6iEhaCnwI+FhElAOhD5hZ0W0GsK1Ku5k1iefQsGqaGiKSTgM+B5wZET+vWLUOOFvS/pJmA3OA+4EHgDmSZkvaj+zi+7pm1mzW7hbP6+bSJcfS3dmBgO7ODi5dcqyHQzdgD/OJSDqA7Kjh14HpwBDwKHBrRDy2h22vAxYAUyX1ASvI7sbaH7hDEsC9EfF7EfGYpBuAx8lOc50XETvT53wKWA9MAdbs6XvNbPx5Dg0bi4bPKI1YIV0M/CZwD7AR2A4cABwFnJTefyYiHmlGofUolUrR09NTdBlmZpOKpI0RUapnm2pHIg9ExMVjrPuipMOAI+r5MjMzay1jhkhE3Fptw4jYTnZ0YmZmbWqPc6xL+g6731b7AtAD/G1E/KIRhZmZ2cRXy91ZTwE/A65MrxeB58iujVzZuNLMzGyi2+ORCDAvIt5fsfwdSRsi4v2SfKeUmVkbq+VIpEvSGxfQ0/vyI+GvNKQqMzObFGo5EvkM8ENJ/5dsGJLZwO9LOgi4ppHFmZnZxLbHEImI2yTNAd5BFiI/yprjZeBLDa7PzNrM2t5+Vq3fzLbBIaZ3drB84Vw/6DiB7fF0lqQ1aYj2hyPiIbInx29rfGlm1m48d8nkU8s1kX5JVwBIOoRsYqlvNLQqM2tLnrtk8tljiETEfwNelPQ3wO3AX0XE3zW8MjNrO567ZPIZM0QkLSm/yEbUPQHoBSK1mZmNK89dMvlUOxL5zYrXh8gCZN+KZTOzceW5SyafamNnndPMQszMyndh+e6syWPMEJH0p8BXI+L5MdafDBwYEbc0qjgzaz+eu2RyqfacyCbgFkm/AB4EBsjmEJkDvBv4PvA/G16hmZlNWNVOZ90M3JweNJwPTCMbfPEbwLKI8O0SZmZtrpYn1p8EnmxCLWZmNsnU8rChmZnZqBwiZmaWWy1jZ82vpc3MzNpPLUci/6vGNjMzazPVnhM5EXgv2aRUF1SsOphsJN+qJK0he7J9e0Qck9oOBb4FzAKeBn47Ip6XJOBy4Azg58AnIuLBtM1S4E/Tx/73iPAcJmZmE0S1I5H9gDeRBc2bK14vAh+p4bOvBk4b0XYhcGdEzAHuTMsAp5M9fzIHWAaURw0+FFgBvAc4HliRRhI2M7MJoNpzIj8AfiDp6oj413o/OCI2SJo1onkRsCC9vwa4B/hcar82IgK4V1KnpGmp7x0RsQNA0h1kwXRdvfWYmdn4q2V63P0lrSY7BfVG/4g4Ocf3HR4Rz6btn5V0WGrvBrZW9OtLbWO170bSMrKjGI444ojRupiZ2TirJUT+Afgb4GvAzj30zUujtEWV9t0bI1YDqwFKpdKofczMbHzVEiKvRcQV4/R9z0malo5CpgHbU3sfMLOi3wxgW2pfMKL9nnGqxczM9lK1SakOTRe2vyPp9yVNK7el9jzWAUvT+6XAzRXtH1fmBOCFdNprPXCqpEPSBfVTU5uZmU0A1Y5ENrLrKaXlFesCOLLaB0u6juwoYqqkPrK7rFYCN0g6F3gGOCt1v43s9t4tZLf4ngMQETsk/QXwQOp3Sfkiu5mZFU/ZDVGtpVQqRU9PT9FlmJlNKpI2RkSpnm32eE1kjPnUXwA2RcT2UdaZmVmbqOXC+rnAicDdaXkBcC9wlKRLIuLrDarNzMwmuFpC5HXglyPiOQBJh5M9Uf4eYAPgEDEza1O1DMA4qxwgyXbgqHSB+9XGlGVmZpNBLUci/yTpFrKHDgE+DGyQdBAw2LDKzMxswqslRM4jC475ZLf7Xgt8O41zdVIDazMzswmuljnWA7gxvczMzN5QbT6RH0bE+yS9xK7jVYksWw5ueHVmZjahVRsK/n3pzzc3rxwzM5tMark7C0nvk3ROej9V0uzGlmVmZpPBHkNE0gqyiaMuSk37Ad9oZFFmZjY51HIk8lvAmcC/AUTENrJpcs3MrM3VEiKvpDu0AiA9H2JmZlZTiNwg6W+BTkn/Cfg+cGVjyzIzs8mgludEviDpg8CLwFzgzyLijoZXZmZmE16150TOB/430JtCw8FhZma7qHYkMgO4HHiHpEeA/0MWKv/s2QXNzAyqP2z4xwCS9gNKwHuBTwJXShqMiKObU6KZmU1UtQzA2AEcDLwlvbYBmxpZlJmZTQ7VromsBt4JvATcR3Y664sR8XyTajMzswmu2i2+RwD7Az8B+oE+PH+ImZlVqHZN5DRJIjsaeS/wGeAYSTvILq6vaFKNZmY2QVW9JpKeVH9U0iDwQnp9CDgeyB0ikv4I+I9kT8FvAs4BpgHXA4cCDwK/GxGvSNqfbCKsXwX+H/A7EfF03u+26tb29rNq/Wa2DQ4xvbOD5Qvnsnhed9FlFcL7wmzPxjydJenTkq6XtBXYQBYem4ElZP/Q5yKpG/g0UIqIY4ApwNnAXwKXRcQc4Hng3LTJucDzEfF24LLUzxpgbW8/F920if7BIQLoHxziops2sba3v+jSms77wqw21a6JzCKbzfD4iDgyIn43Iv46Ih6OiNf38nv3ATok7QMcCDwLnMzw7InXAIvT+0VpmbT+lHSazcbZqvWbGXp15y5tQ6/uZNX6zQVVVBzvC7PaVLsmckEjvjAi+iV9AXgGGAJuBzYCgxHxWurWB5TPG3QDW9O2r0l6AXgr8NPKz5W0DFgGcMQRRzSi9Ja3bXCorvZW5n1hVpuaJqUaT5IOITu6mA1MBw4CTh+la3lK3tGOOmK3hojVEVGKiFJXV9d4ldtWpnd21NXeyrwvzGrT9BABPgD8OCIGIuJV4Cayu7860+ktyIZc2Zbe9wEzAdL6twAedqUBli+cS8e+U3Zp69h3CssXzi2oouJ4X5jVpogQeQY4QdKB6drGKcDjwN3AR1KfpcDN6f26tExaf1e6a8zG2eJ53Vy65Fi6OzsQ0N3ZwaVLjm3LO5K8L8xqoyL+PZb058DvAK8BvWS3+3YzfItvL/AfIuJlSQcAXwfmkR2BnB0RT1X7/FKpFD09PQ38LzAzaz2SNkZEqa5tWvF/6h0iZmb1yxMiRZzOMjOzFuEQMTOz3BwiZmaWm0PEzMxyc4iYmVluDhEzM8vNIWJmZrnVMse6mdXIc5BYu3GImI2T8hwk5SHky3OQAA4Sa1k+nWU2TjwHibUjh4jZOPEcJNaOHCJm48RzkFg7coiYjRPPQWLtyBfWzcZJ+eK5786yduIQMRtHi+d1OzSsrfh0lpmZ5eYQMTOz3BwiZmaWm0PEzMxyc4iYmVluDhEzM8vNIWJmZrkVEiKSOiXdKOlHkp6QdKKkQyXdIenJ9Ochqa8kfVnSFkmPSDquiJpt8lrb28/8lXcx+8Jbmb/yLtb29hddklnLKOpI5HLgexHxDuBdwBPAhcCdETEHuDMtA5wOzEmvZcAVzS/XJqvy8Oz9g0MEw8OzO0jMxkfTQ0TSwcD7gasAIuKViBgEFgHXpG7XAIvT+0XAtZG5F+iUNK3JZdsk5eHZzRqriCORI4EB4O8k9Ur6mqSDgMMj4lmA9OdhqX83sLVi+77UtgtJyyT1SOoZGBho7H+BTRoent2ssYoIkX2A44ArImIe8G8Mn7oajUZpi90aIlZHRCkiSl1dXeNTqU16Hp7drLGKCJE+oC8i7kvLN5KFynPl01Tpz+0V/WdWbD8D2NakWm2S8/DsZo3V9BCJiJ8AWyWV/xafAjwOrAOWpralwM3p/Trg4+kurROAF8qnvcz2ZPG8bi5dcizdnR0I6O7s4NIlx3qkXbNxUtRQ8H8AfFPSfsBTwDlkgXaDpHOBZ4CzUt/bgDOALcDPU1+zmnl4drPGKSREIuIhoDTKqlNG6RvAeQ0vyszM6uYn1s3MLDeHiJmZ5eYQMTOz3BwiZmaWm0PEzMxyc4iYmVluDhEzM8utqIcNzVjb28+q9ZvZNjjE9M4Oli+c64cCzSYZh4gVojzPR3mY9vI8H4CDxGwS8eksK4Tn+TBrDQ4RK4Tn+TBrDQ4RK4Tn+TBrDQ4RK4Tn+TBrDb6wboUoXzz33Vlmk5tDxArjeT7MJj+fzjIzs9wcImZmlptDxMzMcnOImJlZbg4RMzPLzSFiZma5OUTMzCy3wkJE0hRJvZJuScuzJd0n6UlJ35K0X2rfPy1vSetnFVWzmZntqsgjkT8EnqhY/kvgsoiYAzwPnJvazwWej4i3A5elfmZmNgEUEiKSZgC/AXwtLQs4GbgxdbkGWJzeL0rLpPWnpP5mZlawoo5EvgR8Fng9Lb8VGIyI19JyH1AeD6Mb2AqQ1r+Q+u9C0jJJPZJ6BgYGGlm7mZklTQ8RSR8CtkfExsrmUbpGDeuGGyJWR0QpIkpdXV3jUKmZme1JEQMwzgfOlHQGcABwMNmRSaekfdLRxgxgW+rfB8wE+iTtA7wF2NH8ss3MbKSmH4lExEURMSMiZgFnA3dFxMeAu4GPpG5LgZvT+3VpmbT+rojY7UjEzMyabyI9J/I54AJJW8iueVyV2q8C3praLwAuLKg+MzMbodD5RCLiHuCe9P4p4PhR+vwCOKuphZmZWU0m0pGImZlNMg4RMzPLzSFiZma5OUTMzCw3h4iZmeXmEDEzs9wcImZmlptDxMzMcnOImJlZbg4RMzPLTa04lqGkl4DNRdcxQUwFflp0EROE98Uw74th3hfD5kbEm+vZoNCxsxpoc0SUii5iIpDU432R8b4Y5n0xzPtimKSeerfx6SwzM8vNIWJmZrm1aoisLrqACcT7Ypj3xTDvi2HeF8Pq3hcteWHdzMyao1WPRMzMrAkcImZmllvLhYik0yRtlrRFUlvPxy7paUmbJD2U59a9yUzSGknbJT1a0XaopDskPZn+PKTIGptljH1xsaT+9Nt4SNIZRdbYLJJmSrpb0hOSHpP0h6m97X4bVfZFXb+NlromImkK8C/AB4E+4AHgoxHxeKGFFUTS00ApItruQSpJ7wd+BlwbEcekts8DOyJiZfofjEMi4nNF1tkMY+yLi4GfRcQXiqyt2SRNA6ZFxIOS3gxsBBYDn6DNfhtV9sVvU8dvo9WORI4HtkTEUxHxCnA9sKjgmqwAEbEB2DGieRFwTXp/DdlfmJY3xr5oSxHxbEQ8mN6/BDwBdNOGv40q+6IurRYi3cDWiuU+cuyUFhLA7ZI2SlpWdDETwOER8Sxkf4GAwwqup2ifkvRIOt3V8qdvRpI0C5gH3Eeb/zZG7Auo47fRaiGiUdpa53xd/eZHxHHA6cB56bSGGcAVwNuAdwPPAn9VbDnNJelNwLeB8yPixaLrKdIo+6Ku30arhUgfMLNieQawraBaChcR29Kf24F/JDvd186eS+eBy+eDtxdcT2Ei4rmI2BkRrwNX0ka/DUn7kv2j+c2IuCk1t+VvY7R9Ue9vo9VC5AFgjqTZkvYDzgbWFVxTISQdlC6WIekg4FTg0epbtbx1wNL0filwc4G1FKr8D2byW7TJb0OSgKuAJyLiixWr2u63Mda+qPe30VJ3ZwGk29G+BEwB1kTE/yi4pEJIOpLs6AOy0Zr/vp32haTrgAVkw3w/B6wA1gI3AEcAzwBnRUTLX3AeY18sIDtdEcDTwH8uXxNoZZLeB/wTsAl4PTX/V7JrAW3126iyLz5KHb+NlgsRMzNrnlY7nWVmZk3kEDEzs9wcImZmlptDxMzMcnOImJlZbg4Ra2uSfjZi+ROSvrKHbc7c0wjRkhZIumWMdedLOrDKtjemW7T3iqTrJc3Z288xq8YhYlaniFgXESv34iPOB0YNEUnvBKZExFN78fllVwCfHYfPMRuTQ8RsDJK6JH1b0gPpNT+1v3G0Iultku5N6y8ZcWTzpnRU8SNJ31Tm08B04G5Jd4/ytR+j4mnpND/Og5IelnRnartY0jWSblc2Z8wSSZ9XNnfM99JQFpA9SPYBSfs0YPeYAQ4Rs46KyXceAi6pWHc5cFlE/BrwYeBro2x/OXB56jNynLZ5ZEcdRwNHkg2I+eXU76SIOGmUz5tPNq8DkrrIxi76cES8Czirot/bgN8gG8L8G8DdEXEsMJTaSWMfbQHeVdOeMMvB/4di7W4oIt5dXpD0CaCUFj8AHJ0NMQTAweXxyCqcyPDcE38PVE7kc39E9KXPfQiYBfxwD/VMAwbS+xOADRHxY4ARw3B8NyJelbSJbIif76X2Tel7yraTHfls3MP3muXiEDEb2y8BJ0bEUGVjRajsycsV73dS29+3IeCA8lcx9lQGL0N2tCHp1Rgev+j1Ed9zQPpMs4bw6Syzsd0OfKq8IOndo/S5l+xUF2SjRtfiJWDkEU3ZE8Db0/t/Bv69pNnp+w+t8fMrHQU8lmM7s5o4RMzG9mmglGZ4exz4vVH6nA9cIOl+slNRL9TwuauB745xYf1WshF2iYgBYBlwk6SHgW/VU7ykw8lO17X86LxWHI/ia7YX0vMeQxERks4GPhoRi/bi8zqAu8kuwu/cy9r+CHgxIq7am88xq8bXRMz2zq8CX0kT/AwCn9ybD4uIIUkrgG6yeS32xiDw9b38DLOqfCRiZma5+ZqImZnl5hAxM7PcHCJmZpabQ8TMzHJziJiZWW7/H+WWuxqzJxA1AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ "# Visualize our data!\n", - "f, ax = plt.subplots()\n", - "ax.plot(dat[:, 0], dat[:, 1], '.')\n", - "plt.xlabel('Height (cm)'); plt.xlim([0, 25]);\n", - "plt.ylabel('Weight (kg)'); plt.ylim([300, 1700]);" + "fig, ax = plt.subplots()\n", + "ax.plot(data[:, 0], data[:, 1], '.', ms=12)\n", + "ax.set(xlabel='Height (cm)', ylabel='Weight (kg)',\n", + " xlim=[0, 25], ylim=[300, 1700]);" ] }, { "cell_type": "code", "execution_count": 10, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "# Lets try a classification algorithm\n", - "# If you're unfamiliar with KMeans, we'll come back to how it works later\n", - "from sklearn.cluster import KMeans\n", - "kmeans = KMeans(2).fit(dat)" + "# Use scikit-learn to import a classification algorithm\n", + "from sklearn.cluster import KMeans" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, + "outputs": [], + "source": [ + "# Apply K-means clustering\n", + "# We'll come back to how this algorithm works later\n", + "kmeans = KMeans(2).fit(data)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0, 1, 0, 0, 1, 0, 1, 1, 0, 1], dtype=int32)" + "array([1, 0, 1, 1, 0, 1, 0, 0, 1, 0], dtype=int32)" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -297,54 +307,58 @@ }, { "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": true - }, + "execution_count": 13, + "metadata": {}, "outputs": [], "source": [ "# We can use these to split our dataset up into putative groupings\n", - "cl_1 = dat[kmeans.labels_ == 0]\n", - "cl_2 = dat[kmeans.labels_ == 1]" + "cl_1 = data[kmeans.labels_ == 0]\n", + "cl_2 = data[kmeans.labels_ == 1]" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEKCAYAAADTgGjXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGKZJREFUeJzt3XuU33V95/Hnq6EBRREwwcUETlCD\nLrr1suMlxdooXsBaY73s4rpno7KbbSv12qOw3RbXnq3UtaKuXdqoVPBCZFFLVFQQidRdbhNBLiIl\nixYGKImHm1YKAu/94/sd8sswM5n5Zn7zm8vzcc6c3+/7+V5+7/meX+aV7+3zSVUhSVIXvzLoAiRJ\n85chIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1Nlegy6gH5YtW1arVq0adBmS\nNK9s3br1p1W1fDrrLMgQWbVqFcPDw4MuQ5LmlST/MN11PJ0lSerMEJEkdWaISJI6M0QkSZ0ZIpKk\nzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdda3EElyWpLtSa4Z0/4HSa5Pcm2SD/W0n5hkWzvvFT3t\nR7dt25Kc0K96JUnT18++sz4DfAI4Y7QhyYuBdcCvVdV9SQ5q248AjgWeDjwR+HaSw9vV/hJ4GTAC\nXJ5kc1X9sI91S5KmqG8hUlUXJVk1pvn3gJOr6r52me1t+zpgU9v+4yTbgOe187ZV1Y0ASTa1yxoi\nkjQHzPY1kcOB30hyaZLvJnlu274CuLlnuZG2baJ2SdIcMNtdwe8FHAC8AHgucFaSJwEZZ9li/JCr\n8TacZAOwAeDQQw+dkWIlSZOb7SOREeDL1bgMeAhY1rYf0rPcSuDWSdofoao2VtVQVQ0tXz6tMVUk\nSR3Ndoj8LfASgPbC+VLgp8Bm4Ngkeyc5DFgNXAZcDqxOcliSpTQX3zfPcs2SpAn07XRWkjOBtcCy\nJCPAScBpwGntbb/3A+urqoBrk5xFc8H8AeBtVfVgu53jgW8BS4DTquraftUsSZqeNH/DF5ahoaFy\neFxJmp4kW6tqaDrr+MS6JKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ4aIpMXr\n4ovhgx9sXtXJbPfiK0lzw8UXw1FHwf33w9KlcMEFsGbNoKuadzwSkbQ4bdnSBMiDDzavW7YMuqJ5\nyRCRtDitXdscgSxZ0ryuXTvoiuYlT2dJWpzWrGlOYW3Z0gSIp7I6MUQkLV5r1hgee8jTWZKkzgwR\nSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ31LUSSnJZke5Jrxpn3h0kqybJ2Okk+nmRb\nkquSPKdn2fVJbmh/1verXknS9PXzSOQzwNFjG5McArwMuKmn+RhgdfuzATi1XfZA4CTg+cDzgJOS\nHNDHmiVJ09C3EKmqi4A7xpl1CvBeoHra1gFnVOMSYP8kBwOvAM6vqjuq6k7gfMYJJklzlON1LHiz\n2ndWklcDt1TVD5L0zloB3NwzPdK2TdQuaa5zvI5FYdYurCd5NPBHwJ+MN3uctpqkfbztb0gynGR4\nx44d3QuVNDMcr2NRmM27s54MHAb8IMlPgJXA95P8C5ojjEN6ll0J3DpJ+yNU1caqGqqqoeXLl/eh\nfEnT4ngdi8Ksnc6qqquBg0an2yAZqqqfJtkMHJ9kE81F9Lur6rYk3wL+rOdi+suBE2erZkl7wPE6\nFoW+hUiSM4G1wLIkI8BJVfXpCRY/F3glsA34BfAWgKq6I8mfApe3y32gqsa7WC9pLnK8jgUvVeNe\nYpjXhoaGanh4eNBlSNK8kmRrVQ1NZx2fWJckdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLU\nmSEiSerMEJGk6bKL+4fNalfwkjTv2cX9LjwSkaTpsIv7XRgikjQddnG/C09nSdJ02MX9LgwRSZou\nu7h/mKezJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOutbiCQ5Lcn2JNf0tP2P\nJD9KclWSryTZv2feiUm2Jbk+ySt62o9u27YlOaFf9UqSpq+fRyKfAY4e03Y+8Iyq+jXg74ETAZIc\nARwLPL1d538lWZJkCfCXwDHAEcAb22UlSXNA30Kkqi4C7hjTdl5VPdBOXgKsbN+vAzZV1X1V9WNg\nG/C89mdbVd1YVfcDm9plJc02x9DQOAbZd9ZbgS+271fQhMqokbYN4OYx7c/vf2mSduEYGprAQC6s\nJ/kj4AHg86NN4yxWk7SPt80NSYaTDO/YsWNmCpXUcAwNTWDWQyTJeuBVwJuqajQQRoBDehZbCdw6\nSfsjVNXGqhqqqqHly5fPfOHSYuYYGprArJ7OSnI08D7gN6vqFz2zNgNfSPIR4InAauAymiOR1UkO\nA26hufj+72azZkk4hoYm1LcQSXImsBZYlmQEOInmbqy9gfOTAFxSVb9bVdcmOQv4Ic1prrdV1YPt\ndo4HvgUsAU6rqmv7VbOkSTiGhsaRnWeUxpmZ7ENz6uk3aI4Q7gWuAb4+l/+YDw0N1fDw8KDLkKR5\nJcnWqhqazjoTHokkeT/w28AW4FJgO7APcDhwchsw76mqq7oWLEma3yY7nXV5Vb1/gnkfSXIQcOjM\nlyRJmi8mDJGq+vpkK1bVdpqjE0nSIrXbC+tJvsojn824GxgG/rqq/rkfhUmS5r6pPCdyI/Bz4JPt\nzz3A7TTXRj7Zv9IkSXPdVG7xfXZVvahn+qtJLqqqFyWZs3doSZL6bypHIsuTPHwBvX0/+kj4/X2p\nSpI0L0zlSOQ9wPeS/D+aJ8gPA34/yb7A6f0sTpI0t+02RKrq3CSrgafRhMiPmua6D/hon+uTJM1h\nuz2dleS0dpyPH1TVlTTdj5zb/9IkLVqOXTJvTOV01i1JTq2q30tyAPB1vCtLUr84dsm8stsjkar6\nY+CeJH8FnAf8RVX9Td8rk7Q4OXbJvDJZ31mv7Zm8DPjj9rWSvLaqvtzv4iQtQqNjl4weiTh2yZw2\n2ems3x4zfQXwq217AYaIpJnn2CXzymR9Z71lNguRpIc5dsm8MeE1kST/tb2QPtH8lyR5VX/KkiTN\nB5Odzroa+FqSfwa+D+ygGU9kNfAs4NvAn/W9QknSnDXZ6axzgHPaBw2PBA6m6Xzxc8CGqrp3dkqU\nJM1VU3li/QbghlmoRZI0z0ylA0ZJksZliEiSOptK31lHTqVNkrT4TOVI5H9OsW0XSU5Lsj3JNT1t\nByY5P8kN7esBbXuSfDzJtiRXJXlOzzrr2+VvSLJ+Kr+UJGl2TNbtyRrg12kGpXp3z6z9aHry3Z3P\nAJ8AzuhpOwG4oKpOTnJCO/0+4BiaW4dXA88HTgWen+RA4CRgiOYp+a1JNlfVnVP79SRJ/TTZkchS\n4DE0QfPYnp97gNfvbsNVdRFwx5jmdewcyOp04DU97WdU4xJg/yQHA68Azq+qO9rgOB84eiq/mCSp\n/yZ7TuS7wHeTfKaq/mGGPu8JVXVbu/3bkhzUtq8Abu5ZbqRtm6hdkjQHTGU8kb2TbARW9S5fVS+Z\nwToyTltN0v7IDSQbgA0Ahx566HiLSJJm2FRC5H8DfwV8CnhwDz/v9iQHt0chBwPb2/YR4JCe5VYC\nt7bta8e0bxlvw1W1EdgIMDQ0NG7QSJJm1lTuznqgqk6tqsuqauvoT8fP2wyM3mG1Hjinp/0/tHdp\nvQC4uz3t9S3g5UkOaO/kennbJkmaAya7O+vA9u1Xk/w+8BXgvtH5VTX2ovnY9c+kOYpYlmSE5i6r\nk4GzkhwH3AS8oV38XOCVwDbgF8BbRj8jyZ8Cl7fLfWB3nytJmj2pGv/MT5IfM8l1iap6Uj8L2xND\nQ0M1PDw86DIkaV5JsrWqhqazzmR3Zx225yVJkhay3V5YHzPW+qi7gauravs48yRJi8RU7s46DlgD\nXNhOrwUuAQ5P8oGq+myfapMkzXFTCZGHgH9ZVbcDJHkCbbckwEWAISJJi9RUbvFdNRogre3A4e1d\nUr/sT1mSpPlgKkcif5fkazQPHQK8Drgoyb7AXX2rTJI0500lRN5GExxH0tzuewbwpWruDX5xH2uT\nJM1xUxljvYCz2x9Jkh422RPr36uqFyb5Gbt2ehiabNmv79VJkua0yR42fGH7+tjZK0eSNJ9M5e4s\nkrwwyVva98uS+DS7JGn3IZLkJJohbE9sm5YCn+tnUZKk+WEqRyK/A7wa+CeAqrqVZphcSdIiN5UQ\nub+9Q6sA2udDJEmaUoicleSvgf2T/Cfg28An+1uWJGk+mMpzIh9O8jLgHuCpwJ9U1fl9r0ySNOdN\n9pzIO4H/A1zRhobBIUnaxWRHIiuBjwFPS3IV8H9pQuVih6iVJMHkDxv+IUCSpcAQ8OvAW4FPJrmr\nqo6YnRIlSXPVVDpgfBSwH/C49udW4Op+FiVJmh8muyayEXg68DPgUprTWR+pqjtnqTZJ0hw32S2+\nhwJ7A/8I3AKM4PghkqQeE4ZIVR0NPBf4cNv0HuDyJOcl+W978qFJ3pXk2iTXJDkzyT5JDktyaZIb\nknyxvRZDkr3b6W3t/FV78tmSpJkz6cOG1bgGOBf4Bs3dWU8G3tH1A5OsAN4ODFXVM4AlwLHAnwOn\nVNVq4E7guHaV44A7q+opwCntcpKkOWDCEEny9iSbktwMXAS8CrgeeC1w4B5+7l7Ao5LsBTwauA14\nCTsHvjodeE37fl07TTv/qCTZw8/XJC6+GD74weZ1sXNfSJOb7O6sVTR/tN9VVbfN1AdW1S1JPgzc\nBNwLnAdsBe6qqgfaxUaAFe37FcDN7boPJLkbeDzw05mqSTtdfDEcdRTcfz8sXQoXXABr1gy6qsFw\nX0i7N9k1kXdX1dkzGSAASQ6gObo4DHgisC9wzHgljK4yybze7W5IMpxkeMeOHTNV7qKzZUvzR/PB\nB5vXLVsGXdHguC+k3ZvSoFQz7KXAj6tqR1X9EvgyzYOM+7ent6B5Wv7W9v0IcAhAO/9xwCOemK+q\njVU1VFVDy5cv7/fvsGCtXdv8r3vJkuZ17dpBVzQ47gtp96bysOFMuwl4QZJH05zOOgoYBi4EXg9s\nAtYD57TLb26nL27nf6ftml59sGZNc9pmy5bmj+ZiPn3jvpB2L4P4e9zeIvxvgQeAK4D/SHPtYxPN\nRfsrgH9fVfcl2Qf4LPBsmiOQY6vqxsm2PzQ0VMPDw338DSRp4UmytaqGprXOQvxPvSEiSdPXJUQG\ncU1EkrRAGCKSpM4MEUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSLSDHMMEi0mg+iA\nUVqwHINEi41HItIMcgwSLTaGiDSDHINEi42ns6QZ5BgkWmwMEWmGrVljeGjx8HSWJKkzQ0SS1Jkh\nIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZwMJkST7Jzk7yY+SXJdkTZIDk5yf5Ib29YB22ST5\neJJtSa5K8pxB1CxJeqRBHYl8DPhmVT0NeCZwHXACcEFVrQYuaKcBjgFWtz8bgFNnv1zNd3bPLvXH\nrHd7kmQ/4EXAmwGq6n7g/iTrgLXtYqcDW4D3AeuAM6qqgEvao5iDq+q2WS5d85Tds0v9M4gjkScB\nO4C/SXJFkk8l2Rd4wmgwtK8HtcuvAG7uWX+kbdtFkg1JhpMM79ixo7+/geYVu2eX+mcQIbIX8Bzg\n1Kp6NvBP7Dx1NZ6M01aPaKjaWFVDVTW0fPnymalUC4Lds0v9M4hefEeAkaq6tJ0+myZEbh89TZXk\nYGB7z/KH9Ky/Erh11qrVvGf37FL/zHqIVNU/Jrk5yVOr6nrgKOCH7c964OT29Zx2lc3A8Uk2Ac8H\n7vZ6iKbL7tml/hjUeCJ/AHw+yVLgRuAtNKfWzkpyHHAT8IZ22XOBVwLbgF+0y0qS5oCBhEhVXQkM\njTPrqHGWLeBtfS9KkjRtPrEuSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSGi\ngXKcD2l+G1S3J5LjfEgLgEciGhjH+ZDmP0NEA+M4H9L85+ksDYzjfEjznyGigXKcD2l+83SWJKkz\nQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZwMLkSRLklyR5Gvt9GFJLk1yQ5IvJlna\ntu/dTm9r568aVM2SpF0N8kjkHcB1PdN/DpxSVauBO4Hj2vbjgDur6inAKe1ykqQ5YCAhkmQl8FvA\np9rpAC8Bzm4XOR14Tft+XTtNO/+odnlJ0oAN6kjko8B7gYfa6ccDd1XVA+30CLCifb8CuBmgnX93\nu/wukmxIMpxkeMeOHf2sXZLUmvUQSfIqYHtVbe1tHmfRmsK8nQ1VG6tqqKqGli9fPgOVSpJ2ZxC9\n+B4JvDrJK4F9gP1ojkz2T7JXe7SxEri1XX4EOAQYSbIX8DjgjtkvW5I01qwfiVTViVW1sqpWAccC\n36mqNwEXAq9vF1sPnNO+39xO087/TlU94khEkjT75tJzIu8D3p1kG801j0+37Z8GHt+2vxs4YUD1\nSZLGGOigVFW1BdjSvr8ReN44y/wz8IZZLUySNCVz6UhEkjTPGCKSpM4MEUlSZ4aIJKkzQ0SS1Jkh\nIknqzBCRJHVmiEiSOjNEJEmdGSKSpM6yEPsyTPIz4PpB1zFHLAN+Ougi5gj3xU7ui53cFzs9taoe\nO50VBtp3Vh9dX1VDgy5iLkgy7L5ouC92cl/s5L7YKcnwdNfxdJYkqTNDRJLU2UINkY2DLmAOcV/s\n5L7YyX2xk/tip2nviwV5YV2SNDsW6pGIJGkWLLgQSXJ0kuuTbEuyqIfSTfKTJFcnubLLXRfzWZLT\nkmxPck1P24FJzk9yQ/t6wCBrnC0T7Iv3J7ml/W5cmeSVg6xxtiQ5JMmFSa5Lcm2Sd7Tti+67Mcm+\nmNZ3Y0GdzkqyBPh74GXACHA58Maq+uFACxuQJD8Bhqpq0d0Dn+RFwM+BM6rqGW3bh4A7qurk9j8Y\nB1TV+wZZ52yYYF+8H/h5VX14kLXNtiQHAwdX1feTPBbYCrwGeDOL7Lsxyb74N0zju7HQjkSeB2yr\nqhur6n5gE7BuwDVpAKrqIuCOMc3rgNPb96fT/INZ8CbYF4tSVd1WVd9v3/8MuA5YwSL8bkyyL6Zl\noYXICuDmnukROuyUBaSA85JsTbJh0MXMAU+oqtug+QcEHDTgegbt+CRXtae7Fvzpm7GSrAKeDVzK\nIv9ujNkXMI3vxkILkYzTtnDO103fkVX1HOAY4G3taQ0J4FTgycCzgNuAvxhsObMryWOALwHvrKp7\nBl3PII2zL6b13VhoITICHNIzvRK4dUC1DFxV3dq+bge+QnO6bzG7vT0PPHo+ePuA6xmYqrq9qh6s\nqoeAT7KIvhtJfpXmj+bnq+rLbfOi/G6Mty+m+91YaCFyObA6yWFJlgLHApsHXNNAJNm3vVhGkn2B\nlwPXTL7WgrcZWN++Xw+cM8BaBmr0D2brd1gk340kAT4NXFdVH+mZtei+GxPti+l+NxbU3VkA7e1o\nHwWWAKdV1X8fcEkDkeRJNEcf0HS0+YXFtC+SnAmspemh9XbgJOBvgbOAQ4GbgDdU1YK/4DzBvlhL\nc7qigJ8A/3n0msBCluSFwN8BVwMPtc3/heZawKL6bkyyL97INL4bCy5EJEmzZ6GdzpIkzSJDRJLU\nmSEiSerMEJEkdWaISJI6M0S0qCX5+ZjpNyf5xG7WefXueohOsjbJ1yaY984kj55k3bPbW7T3SJJN\nSVbv6XakyRgi0jRV1eaqOnkPNvFOYNwQSfJ0YElV3bgH2x91KvDeGdiONCFDRJpAkuVJvpTk8vbn\nyLb94aOVJE9Ockk7/wNjjmwe0x5V/CjJ59N4O/BE4MIkF47zsW+i52npdnyc7yf5QZIL2rb3Jzk9\nyXlpxox5bZIPpRk75pttVxbQPEj20iR79WH3SIAhIj2qZ/CdK4EP9Mz7GHBKVT0XeB3wqXHW/xjw\nsXaZsf20PZvmqOMI4Ek0HWJ+vF3uxVX14nG2dyTNuA4kWU7Td9HrquqZwBt6lnsy8Fs0XZh/Driw\nqv4VcG/bTtv30TbgmVPaE1IH/g9Fi929VfWs0YkkbwaG2smXAkc0XQwBsN9of2Q91rBz7IkvAL0D\n+VxWVSPtdq8EVgHf2009BwM72vcvAC6qqh8DjOmG4xtV9cskV9N08fPNtv3q9nNGbac58tm6m8+V\nOjFEpIn9CrCmqu7tbewJld25r+f9g0zt39u9wD6jH8XEQxncB83RRpJf1s7+ix4a8zn7tNuU+sLT\nWdLEzgOOH51I8qxxlrmE5lQXNL1GT8XPgLFHNKOuA57Svr8Y+M0kh7Wff+AUt9/rcODaDutJU2KI\nSBN7OzDUjvD2Q+B3x1nmncC7k1xGcyrq7ilsdyPwjQkurH+dpoddqmoHsAH4cpIfAF+cTvFJnkBz\num7B986rwbEXX2kPtM973FtVleRY4I1VtW4Ptvco4EKai/AP7mFt7wLuqapP78l2pMl4TUTaM/8a\n+EQ7wM9dwFv3ZGNVdW+Sk4AVNONa7Im7gM/u4TakSXkkIknqzGsikqTODBFJUmeGiCSpM0NEktSZ\nISJJ6swQkSR19v8Bs9fukjLRPQAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEGCAYAAACkQqisAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAZNUlEQVR4nO3de5RlZXnn8e8PCGCjCEhjsBvsVhsz6MTLVBDEOHgHY2zjJYOrZ9kqMz2ZaJRo4mXIBMcMs4xjRIwOSStE0A7IqJFWUUFFiTOCVANyldCDNJQg3S5uKggCz/yxd9lFd1V11e46darqfD9r1aq9n/3ufR72Ol0P7768b6oKSZK62KXfCUiS5i+LiCSpM4uIJKkzi4gkqTOLiCSps936nUAv7L///rVs2bJ+pyFJ88qGDRt+WlWLp7PPgiwiy5YtY3h4uN9pSNK8kmTTdPfxcpYkqTOLiCSpM4uIJKkzi4gkqTOLiCSpM4uIJKkzi4gkqTOLiCSpM4uIJKkzi4gkqTOLiCSps54VkSSnJ9mc5Opt4n+S5Pok1yT54Jj4e5NsbLe9bEz86Da2Mcl7epWvJGn6ejkA46eAjwFnjgaSvABYCfx2Vd2f5IA2fihwLPA04AnAN5Ic0u72ceAlwAhwaZL1VXVtD/OWJE1Rz4pIVV2UZNk24f8MfKCq7m/bbG7jK4Gz2/iPkmwEDmu3bayqGwGSnN22tYhI0hww2/dEDgF+N8klSb6T5Hfa+BLgljHtRtrYRPHtJFmTZDjJ8JYtW3qQuiRpW7NdRHYD9gUOB/4cOCdJgIzTtiaJbx+sWltVQ1U1tHjxtOZUkSR1NNuTUo0AX6iqAr6f5GFg/zZ+0Jh2S4Fb2+WJ4pKkPpvtnsgXgRcCtDfOdwd+CqwHjk2yR5LlwArg+8ClwIoky5PsTnPzff0s5yxJmkDPeiJJzgKOAvZPMgKcCJwOnN4+9vsAsLrtlVyT5ByaG+YPAm+pqofa47wV+DqwK3B6VV3Tq5wlSdOT5m/4wjI0NFTOsS5J05NkQ1UNTWcf31iXJHVmEZEkdWYRkSR1ZhGRJHVmEZEkdWYRkSR1ZhGRNJDWrYNly2CXXZrf69b1O6P5abaHPZGkvlu3DtasgXvvbdY3bWrWAVat6l9e85E9EUkD54QTthaQUffe28Q1PRYRSQPn5punF9fELCKSBs7BB08vrolZRCQNnJNOgkWLHhlbtKiJa3osIpIGzqpVsHYtPPGJkDS/1671pnoXPp0laSCtWmXRmAn2RCRJnVlEJEmdWUQkSZ1ZRCRJnVlEJEmdWUQkSZ1ZRCRJnVlEJEmd9ayIJDk9yeYkV4+z7c+SVJL92/Uk+WiSjUmuTPLsMW1XJ7mh/Vndq3wlzSzn6xgMveyJfAo4ettgkoOAlwBjx8s8BljR/qwBTm3b7gecCDwHOAw4Mcm+PcxZ0gwYna9j0yao2jpfh4Vk4elZEamqi4A7xtl0MvAuoMbEVgJnVuNiYJ8kBwIvAy6oqjuq6k7gAsYpTJLmFufrGByzek8kySuBH1fVD7bZtAS4Zcz6SBubKD7esdckGU4yvGXLlhnMWtJ0OV/H4Ji1IpJkEXAC8JfjbR4nVpPEtw9Wra2qoaoaWrx4cfdEJe005+sYHLPZE3kysBz4QZKbgKXAZUl+k6aHcdCYtkuBWyeJS5rDnK9jcMxaEamqq6rqgKpaVlXLaArEs6vqJ8B64A3tU1qHA3dX1W3A14GXJtm3vaH+0jYmaQ5zvo7B0bP5RJKcBRwF7J9kBDixqk6boPl5wMuBjcC9wJsAquqOJH8FXNq2e39VjXezXtIc43wdgyFV495imNeGhoZqeHi432lI0rySZENVDU1nH99YlyR1ZhGRJHVmEZEkdWYRkSR1ZhGRJHVmEZEkdWYRkaRpcIj7R+rZy4aStNCMDnE/OkLx6BD3MLgvVtoTkaQpcoj77VlEJGmKHOJ+exYRSZoih7jfnkVEkqbIIe63ZxGRpClyiPvt+XSWJE2DQ9w/kj0RSVJnFhFJUmcWEUlSZxYRSVJnFhFJUmcWEUlSZxYRSVJnFhFJUmc9KyJJTk+yOcnVY2L/M8kPk1yZ5J+S7DNm23uTbExyfZKXjYkf3cY2JnlPr/KVNDHn0NBEetkT+RRw9DaxC4CnV9VvA/8CvBcgyaHAscDT2n3+V5Jdk+wKfBw4BjgUeH3bVtIsGZ1DY9MmqNo6h4aFRNDDIlJVFwF3bBM7v6oebFcvBpa2yyuBs6vq/qr6EbAROKz92VhVN1bVA8DZbVtJs8Q5NDSZft4TeTPw1XZ5CXDLmG0jbWyi+HaSrEkynGR4y5YtPUhXGkzOoaHJ9KWIJDkBeBAY7RBnnGY1SXz7YNXaqhqqqqHFixfPTKKSnENDk5r1IpJkNfAKYFVVjRaEEeCgMc2WArdOEpc0S5xDQ5OZ1SKS5Gjg3cArq2rsVdb1wLFJ9kiyHFgBfB+4FFiRZHmS3Wluvq+fzZylQeccGprMpPOJJNmTptfwu8ATgPuAq4GvVNU1O9j3LOAoYP8kI8CJNE9j7QFckATg4qr6o6q6Jsk5wLU0l7neUlUPtcd5K/B1YFfg9B19rqSZ5xwamki2XlHaZkPyPuD3gW8DG4DNwJ7AIcAL2uV3VtWVs5HodAwNDdXw8HC/05CkeSXJhqoams4+k/VELq2q902w7cNJDgC8tSZJA2zCIlJVX5lsx6raTNM7kSQNqB3OsZ7kS2z/WO3dwDDw91X1y14kJkma+6bydNaNwM+BT7Q/9wC309wb+UTvUpMkzXU77IkAz6qq549Z/1KSi6rq+Ul8UkqSBthUeiKLk/z6Bnq7PPpK+AM9yUqSNC9MpSfyTuC7Sf4fzTAky4E/TrIXcEYvk5MkzW077IlU1Xk0b5Af3/48FfhGVf2iqj7S4/wkDRjnLplfdlhEkpzeDtH+g6q6gubN8fN6n5qkQePcJfPPVO6J/DjJqQBJ9qWZWOozPc1K0kBy7pL5ZyqXs/4rcE+SvwPOB/6mqv6h55lJGjjOXTL/TFhEkrx69IdmRN3DgcuBamOSNKOcu2T+mezprN/fZv1y4DfaeAFf6FVSkgbTSSc190DGXtJy7pK5bbKxs940m4lI0uhw8yec0FzCOvjgpoA4DP3cNWERSfIXwMer6s4Jtr8QWFRVX+5VcpIGj3OXzC+TXc66Cvhykl8ClwFbaOYQWQE8E/gG8D96nqEkac6a7HLWucC5SVYARwIH0gy++BlgTVXdNzspSpLmqh0Oe1JVNwA3zEIukqR5ZiovG0qSNC6LiCSps6mMnXXkVGKSpMEzlZ7I304xJkkaMJO9J3IE8FyaSaneMWbT3jQj+U4qyenAK4DNVfX0NrYf8FlgGXAT8IdVdWeSAKcALwfuBd5YVZe1+6wG/qI97H+vKucwkaQ5YrKeyO7Ao2kKzWPG/NwDvHYKx/4UcPQ2sfcA36yqFcA323WAY2jeP1kBrAFGRw3eDzgReA5wGHBiO5KwJGkOmOw9ke8A30nyqaraNN0DV9VFSZZtE14JHNUunwF8G3h3Gz+zqgq4OMk+SQ5s215QVXcAJLmApjCdNd18JEkzbyrT4+6RZC3NJahft6+qF3b4vMdX1W3t/rclOaCNLwFuGdNupI1NFN9OkjU0vRgOdshPSZoVUyki/xv4O+CTwEM9yiPjxGqS+PbBqrXAWoChoaFx20iSZtZUisiDVXXqDH3e7UkObHshBwKb2/gIcNCYdkuBW9v4UdvEvz1DuUiSdtJkk1Lt197Y/lKSP05y4GisjXexHljdLq8Gzh0Tf0MahwN3t5e9vg68NMm+7Q31l7YxSdIcMFlPZAOPvKT052O2FfCkyQ6c5CyaXsT+SUZonrL6AHBOkuOAm4HXtc3Po3m8dyPNI75vAqiqO5L8FXBp2+79ozfZJUn9l+aBqIVlaGiohoeH+52GJM0rSTZU1dB09tnhPZEJ5lO/G7iqqjaPs02SNCCmcmP9OOAI4MJ2/SjgYuCQJO+vqk/3KDdJ0hw3lSLyMPCvqup2gCSPp3mj/DnARYBFRJIG1FQGYFw2WkBam4FD2hvcv+pNWpKk+WAqPZF/TvJlmpcOAV4DXJRkL+CunmUmSZrzplJE3kJTOI6kedz3TODz7ThXL+hhbpKkOW4qc6wX8Ln2R5KkX5tsPpHvVtXzkvyMR45XFZrasnfPs5MkzWmTDQX/vPb3Y2YvHUnSfDKVp7NI8rwkb2qX90+yvLdpSZLmgx0WkSQn0kwc9d42tDvwmV4mJUmaH6bSE/kD4JXALwCq6laaaXIlSQNuKkXkgfYJrQJo3w+RJGlKReScJH8P7JPkPwLfAD7R27QkSfPBVN4T+VCSlwD3AE8F/rKqLuh5ZpKkOW+y90SOB/4PcHlbNCwckqRHmKwnshQ4BfitJFcC/5emqHzP2QUlSTD5y4Z/BpBkd2AIeC7wZuATSe6qqkNnJ0VJ0lw1lQEYHwXsDTy2/bkVuKqXSUmS5ofJ7omsBZ4G/Ay4hOZy1oer6s5Zyk2SNMdN9ojvwcAewE+AHwMjOH+IJGmMye6JHJ0kNL2R5wLvBJ6e5A6am+snzlKOkqQ5atKXDatxNXAe8FWap7OeDLx9Zz40yZ8muSbJ1UnOSrJnkuVJLklyQ5LPtjf0SbJHu76x3b5sZz5bO7BuHSxbBrvs0vxet67fGfWP50LaoQmLSJK3JTk7yS3ARcArgOuBVwP7df3AJEuAtwFDVfV0YFfgWOCvgZOragVwJ3Bcu8txwJ1V9RTg5LademHdOlizBjZtgqrm95o1g/nH03MhTUmaYbHG2ZB8mPbdkKq6bcY+sCkiFwPPoHkL/ovA3wLrgN+sqgeTHAG8r6peluTr7fL3kuxGc49mcU2UODA0NFTDw8MzlfLgWLas+WO5rSc+EW66abaz6S/PhQZQkg1VNTSdfSa7J/KOnU9p3OP+OMmHgJuB+4DzgQ3AXVX1YNtsBFjSLi8Bbmn3fTDJ3cDjgJ+OPW6SNcAagIMPPrgXqS98N988vfhC5rmQpmRKk1LNpCT7AiuB5cATgL2AY8ZpOtrTyCTbtgaq1lbVUFUNLV68eKbSHSwTFd9BLMqeC2lKZr2IAC8GflRVW6rqV8AXaJ7+2qe9XAXNkCu3tssjwEEA7fbHAg670gsnnQSLFj0ytmhREx80ngtpSvpRRG4GDk+yqH2E+EXAtcCFwGvbNquBc9vl9e067fZvTXY/RDth1SpYu7a57p80v9eubeKDxnMhTcmEN9Z7+qHJfwP+HfAgcDnwH2jufZxN8+TX5cC/r6r7k+wJfBp4Fk0P5NiqunGy43tjXZKmr8uN9b4UkV6ziEjS9HUpIv24nCVJWiAsIpKkziwikqTOLCKSpM4sIpKkziwikqTOLCKSpM4sItJMcg4SDZgJR/GVNE2jc5Dce2+zPjoHCThcihYseyLSTDnhhK0FZNS99zZxaYGyiEgzxTlINIAsItJMcQ4SDSCLiDRTnINEA8giIs0U5yDRAPLpLGkmrVpl0dBAsSciSerMIiJJ6swiIknqzCIiSerMIiJJ6swiIknqzCIiSeqsL0UkyT5JPpfkh0muS3JEkv2SXJDkhvb3vm3bJPloko1Jrkzy7H7krHnM4dmlnulXT+QU4GtV9VvAM4DrgPcA36yqFcA323WAY4AV7c8a4NTZT1fz1ujw7Js2QdXW4dktJNKMmPUikmRv4PnAaQBV9UBV3QWsBM5om50BvKpdXgmcWY2LgX2SHDjLaWu+cnh2qaf60RN5ErAF+Icklyf5ZJK9gMdX1W0A7e8D2vZLgFvG7D/Sxh4hyZokw0mGt2zZ0tv/As0fDs8u9VQ/ishuwLOBU6vqWcAv2HrpajwZJ1bbBarWVtVQVQ0tXrx4ZjLV/Ofw7FJP9aOIjAAjVXVJu/45mqJy++hlqvb35jHtDxqz/1Lg1lnKVfOdw7NLPTXrRaSqfgLckuSpbehFwLXAemB1G1sNnNsurwfe0D6ldThw9+hlL2mHHJ5d6ql+DQX/J8C6JLsDNwJvoilo5yQ5DrgZeF3b9jzg5cBG4N62rTR1Ds8u9UxfikhVXQEMjbPpReO0LeAtPU9KkjRtvrEuSerMIiJJ6swiIknqzCIiSerMIiJJ6swiIknqzCIiSerMIqL+cZ4Pad7r1xvrGnSj83yMDtM+Os8H+Ha5NI/YE1F/OM+HtCBYRNQfzvMhLQgWEfWH83xIC4JFRP3hPB/SgmARUX84z4e0IPh0lvrHeT6kec+eiCSpM4uIJKkzi4gkqTOLiCSpM4uIJKkzi4gkqTOLiCSps74VkSS7Jrk8yZfb9eVJLklyQ5LPJtm9je/Rrm9sty/rV86SpEfqZ0/k7cB1Y9b/Gji5qlYAdwLHtfHjgDur6inAyW07SdIc0JcikmQp8HvAJ9v1AC8EPtc2OQN4Vbu8sl2n3f6itr0kqc/61RP5CPAu4OF2/XHAXVX1YLs+Aixpl5cAtwC02+9u2z9CkjVJhpMMb9mypZe5S5Jas15EkrwC2FxVG8aGx2laU9i2NVC1tqqGqmpo8eLFM5CpJGlH+jEA45HAK5O8HNgT2JumZ7JPkt3a3sZS4Na2/QhwEDCSZDfgscAds5+2JGlbs94Tqar3VtXSqloGHAt8q6pWARcCr22brQbObZfXt+u0279VVdv1RCRJs28uvSfybuAdSTbS3PM4rY2fBjyujb8DeE+f8pMkbaOv84lU1beBb7fLNwKHjdPml8DrZjUxSdKUzKWeiCRpnrGISJI6s4hIkjqziEiSOrOISJI6s4hIkjqziEiSOrOISJI6s4hIkjqziEiSOstCHMswyc+A6/udxxyxP/DTficxR3gutvJcbOW52OqpVfWY6ezQ17Gzeuj6qhrqdxJzQZJhz0XDc7GV52Irz8VWSYanu4+XsyRJnVlEJEmdLdQisrbfCcwhnoutPBdbeS628lxsNe1zsSBvrEuSZsdC7YlIkmaBRUSS1NmCKyJJjk5yfZKNSQZ6PvYkNyW5KskVXR7dm8+SnJ5kc5Krx8T2S3JBkhva3/v2M8fZMsG5eF+SH7ffjSuSvLyfOc6WJAcluTDJdUmuSfL2Nj5w341JzsW0vhsL6p5Ikl2BfwFeAowAlwKvr6pr+5pYnyS5CRiqqoF7kSrJ84GfA2dW1dPb2AeBO6rqA+3/YOxbVe/uZ56zYYJz8T7g51X1oX7mNtuSHAgcWFWXJXkMsAF4FfBGBuy7Mcm5+EOm8d1YaD2Rw4CNVXVjVT0AnA2s7HNO6oOqugi4Y5vwSuCMdvkMmn8wC94E52IgVdVtVXVZu/wz4DpgCQP43ZjkXEzLQisiS4BbxqyP0OGkLCAFnJ9kQ5I1/U5mDnh8Vd0GzT8g4IA+59Nvb01yZXu5a8FfvtlWkmXAs4BLGPDvxjbnAqbx3VhoRSTjxBbO9brpO7Kqng0cA7ylvawhAZwKPBl4JnAb8Df9TWd2JXk08Hng+Kq6p9/59NM452Ja342FVkRGgIPGrC8Fbu1TLn1XVbe2vzcD/0RzuW+Q3d5eBx69Hry5z/n0TVXdXlUPVdXDwCcYoO9Gkt+g+aO5rqq+0IYH8rsx3rmY7ndjoRWRS4EVSZYn2R04Fljf55z6Isle7c0ykuwFvBS4evK9Frz1wOp2eTVwbh9z6avRP5itP2BAvhtJApwGXFdVHx6zaeC+GxOdi+l+NxbU01kA7eNoHwF2BU6vqpP6nFJfJHkSTe8DmtGa/3GQzkWSs4CjaIb5vh04EfgicA5wMHAz8LqqWvA3nCc4F0fRXK4o4CbgP43eE1jIkjwP+GfgKuDhNvxfaO4FDNR3Y5Jz8Xqm8d1YcEVEkjR7FtrlLEnSLLKISJI6s4hIkjqziEiSOrOISJI6s4hooCX5+Tbrb0zysR3s88odjRCd5KgkX55g2/FJFk2y7+faR7R3SpKzk6zY2eNIk7GISNNUVeur6gM7cYjjgXGLSJKnAbtW1Y07cfxRpwLvmoHjSBOyiEgTSLI4yeeTXNr+HNnGf91bSfLkJBe329+/Tc/m0W2v4odJ1qXxNuAJwIVJLhznY1cx5m3pdn6cy5L8IMk329j7kpyR5Pw0c8a8OskH08wd87V2KAtoXiR7cZLdenB6JMAiIj1qzOQ7VwDvH7PtFODkqvod4DXAJ8fZ/xTglLbNtuO0PYum13Eo8CSaATE/2rZ7QVW9YJzjHUkzrwNJFtOMXfSaqnoG8Lox7Z4M/B7NEOafAS6sqn8N3NfGacc+2gg8Y0pnQurA/0PRoLuvqp45upLkjcBQu/pi4NBmiCEA9h4dj2yMI9g698Q/AmMn8vl+VY20x70CWAZ8dwf5HAhsaZcPBy6qqh8BbDMMx1er6ldJrqIZ4udrbfyq9nNGbabp+WzYwedKnVhEpIntAhxRVfeNDY4pKjty/5jlh5jav7f7gD1HP4qJpzK4H5reRpJf1dbxix7e5nP2bI8p9YSXs6SJnQ+8dXQlyTPHaXMxzaUuaEaNnoqfAdv2aEZdBzylXf4e8G+TLG8/f78pHn+sQ4BrOuwnTYlFRJrY24Chdoa3a4E/GqfN8cA7knyf5lLU3VM47lrgqxPcWP8KzQi7VNUWYA3whSQ/AD47neSTPJ7mct2CH51X/eMovtJOaN/3uK+qKsmxwOurauVOHO9RwIU0N+Ef2snc/hS4p6pO25njSJPxnoi0c/4N8LF2gp+7gDfvzMGq6r4kJwJLaOa12Bl3AZ/eyWNIk7InIknqzHsikqTOLCKSpM4sIpKkziwikqTOLCKSpM7+P2r+EBuGFiK8AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ "# And visualize the classification\n", - "f, ax = plt.subplots()\n", - "ax.plot(cl_1[:, 0], cl_1[:, 1], '.b')\n", - "ax.plot(cl_2[:, 0], cl_2[:, 1], '.r')\n", - "plt.xlabel('Height (cm)'); plt.xlim([0, 25]);\n", - "plt.ylabel('Weight (kg)'); plt.ylim([300, 1700]);" + "fig, ax = plt.subplots()\n", + "ax.plot(cl_1[:, 0], cl_1[:, 1], '.b', ms=12)\n", + "ax.plot(cl_2[:, 0], cl_2[:, 1], '.r', ms=12)\n", + "ax.set(xlabel='Height (cm)', ylabel='Weight (kg)',\n", + " xlim=[0, 25], ylim=[300, 1700]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Evaluating classification, especially in unsupervised cases such as this (when we don't know the answer) is very much non-trivial. It's hard to know if there really are two groups here - or perhaps more, or fewer. We'll come back to how these analyses actually work and how to evaluate what you get out of them. " + "In the above example, we tried to see if partition the data into two groups worked well and, visually, it looks quite reasonable!\n", + "\n", + "Note, however, that properly evaluating classification is difficult. That is especially true in this case, since we don't know the answer. That means this example is unsupervised - we don't know the answer, or have any labels to learn these patterns in the data.\n", + "\n", + "So, in this case, the answer looks plausible, but it's hard to know if there really are two groups here. There could be more, or fewer. We'll come back to how these analyses actually work and how to evaluate what you get out of them. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Knowledge Discovery" + "## Knowledge Discovery" ] }, { @@ -360,14 +374,18 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Knowledge discovery is not necessarily methodoligically distinct from prediction and classification, in that seeking new knowledge will likely include analysis focused on classification and prediction. " + "Knowledge discovery is not necessarily methodologically distinct from prediction and classification. Seeking new knowledge will likely include analysis focused on classification and prediction, and other related analyses.\n", + "\n", + "However, we can consider that the data science problems can have different contexts and approaches. Asking how predict one known variable from another (such as a dog's weight from it's length), or to classify data into a previously known categorization scheme (such as labeling different kinds of species) are tasks that use data science to answer previously known questions. \n", + "\n", + "Sometimes, in data analyses, we also want to explore and discover new findings and ideas from a dataset without having pre-defined questions. We might try to ask about the structure of the data, or look for new patterns we didn't know before. This is sometimes also called 'exploratory data analysis', as opposed to 'hypothesis driven' work. " ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -381,7 +399,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/03-Python.ipynb b/03-Python.ipynb index 4567849..932a66e 100644 --- a/03-Python.ipynb +++ b/03-Python.ipynb @@ -1,12 +1,19 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Python" + ] + }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ - "![title](img/python.png)" + "" ] }, { @@ -17,17 +24,17 @@ "source": [ "
\n", "Python is an \n", - "open-source, \n", - "high-level , \n", - "general purpose, \n", - "interpreted, \n", - "programming language, \n", + "open-source, \n", + "high-level , \n", + "general purpose, \n", + "interpreted, \n", + "programming language, \n", "one of the most popular for data science applications. \n", "
\n", "\n", "
\n", "The official Python\n", - "website.\n", + "website.\n", "
" ] }, @@ -43,27 +50,54 @@ "- Python is explicitly and by design, user-friendly.\n", "- Python also has a massive user community, who contribute to a large number of high-quality, well maintained open-source tools.\n", " - The best language for your project is one which has the things you need.\n", - "- In part for the reasons listed above, Python is heavily used in industry." + "- In part for the reasons listed above, Python is heavily used in industry\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "The Python programming language is developed and maintained by the\n", + "Python Software Foundation.\n", + "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Tutorials for Learning Python\n", + "## Python Versions\n", "\n", - "- [Codecademy](https://www.codecademy.com/tracks/python) is great for beginner levels.\n", - "- There is also the [Official Beginners Guide](https://wiki.python.org/moin/BeginnersGuide).\n", - "- [Learn Python the Hard Way](https://learnpythonthehardway.org/book/) is a great tutorial for a more in-depth overview.\n", - " - It isn't actually particularly hard, although note that the currently available version is in Python2. \n", - "- [Whirlwind Tour of Python](https://github.com/jakevdp/WhirlwindTourOfPython) is a free collection of Jupyter notebooks that takes you through Python. \n", - " - This book is especially good (and specifically designed for) if you have some experience with programming in some other language, and want to quickly run through the specifics of Python.\n", - " \n", + "This class uses Python3, the currently developed version of Python, and more specifically Python version 3.6 or above. \n", "\n", - "## Python Practice\n", + "Python2 has reached \"End of Life\" meaning it is no longer supported or maintained by the Python Organization. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Python Resources\n", + "\n", + "These materials presume prior knowledge of the Python programming language. \n", "\n", - "- [Python Challenge](http://www.pythonchallenge.com/) is a good place for (sometimes infuriating) programming challenges.\n", - "- [Leet Code](https://leetcode.com/) is a place for more intense technical coding questions and challenges (geared towards industry interviews)." + "If you are note yet familiar, here are some entry level materials for learning Python:\n", + "\n", + "- [Codecademy](https://www.codecademy.com/tracks/python) is good for a beginner's introduction to the language.\n", + "- [The Official Beginners Guide](https://wiki.python.org/moin/BeginnersGuide) is supported by the Python organization.\n", + "- [Whirlwind Tour of Python](https://github.com/jakevdp/WhirlwindTourOfPython) is a free collection of Jupyter notebooks that takes you through Python. \n", + " - This book is especially good (and specifically designed for) if you have some experience with programming in some other language, and want to quickly run through the specifics of Python." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "A much broader list of resources and guides for learning Python is available \n", + "here.\n", + "
" ] }, { @@ -83,26 +117,36 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Python2 vs. Python3\n", - "\n", - "This class will use Python3 - it is the currently developed version of Python. Specifically 3.6 is the most recent version, released in 2016. \n", - "\n", - "Python3 was a break from Python2, because there were some larger changes that broke [backwards compatibility](https://en.wikipedia.org/wiki/Backward_compatibility). \n", - "\n", - "Python2 is still popular, and often used, partly because it takes a while with major new releases for everything to be available, and to get things updated. Now though, Python3 has pretty much everything available, and is the future of Python. \n", - "\n", - "In practice, Python 2 & 3 are very similar - learning one will be mostly relevant for knowing the other, and code can usually be made compatible between both with minimal changes." + "## Standard Library" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "
\n", - "The official Python documentation includes a discussion of Py2 vs. Py3, including guidance on which to use. \n", + "
\n", + "The Standard Library refers to everything in Python that is part of standard version and install of Python.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "The Python \n", + "Standard Library\n", + "comes with a lot of basic functionality. \n", "
" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Part of what makes Python a powerful language is the standard library itself, which is a rich set of tools for programming. However, the standard library itself does not include data science tools, and a lot of the power of Python stems for a rich ecosystem of packages that can be added and used with Python. " + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -115,21 +159,34 @@ "metadata": {}, "source": [ "
\n", - "Packages are basically just collections of code. The anaconda distribution comes with all the core packages you will need for this class. \n", + "Packages are collections of code. Packages from outside the standard library can be installed and added to Python.\n", "
\n", "\n", "
\n", - "For getting other packes, anaconda comes with\n", + "For managing and installing packages, Anaconda comes with the \n", "conda\n", - "a package manager, with support for downloading and installing other packages.\n", + "package manager.\n", "
" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scientific Python\n", + "\n", + "When we say that Python is good for data science, and scientific computing, what we really mean is that there is a rich ecosystem of available open-source external packages, that greatly expand the capacities of the language beyond the standard library. \n", + "\n", + "This set of packages, which we will introduce as we go through these materials, is sometimes referred to as 'Scientific Python', or the 'Scipy' ecosystem. \n", + "\n", + "For the purposes of these materials, the Anaconda distribution that we are using contains all the packages you need. " + ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -143,7 +200,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/04-DataSciencePython.ipynb b/04-DataSciencePython.ipynb index 3aa2629..5010181 100644 --- a/04-DataSciencePython.ipynb +++ b/04-DataSciencePython.ipynb @@ -4,11 +4,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Data Science in Python\n", + "# Scientific Python\n", "\n", "Python has a large number of tools available for doing data science. \n", "\n", - "The core of Data Science in Python revolves around some a set of core modules, typically comprising {scipy, numpy, pandas, matplotlib and scikit-learn}. \n", + "The core of Data Science in Python revolves around some a set of core modules, typically comprising {`scipy`, `numpy`, `pandas`, `matplotlib` and `scikit-learn`}. \n", "\n", "Here we will explore the basics of these modules and what they do. " ] @@ -100,7 +100,7 @@ ], "source": [ "# Let's flip a bunch of coins!\n", - "coin_flips = [sts.bernoulli.rvs(0.5) for i in range(100)]\n", + "coin_flips = [sts.bernoulli.rvs(0.5) for ind in range(100)]\n", "print('The first ten coin flips are: ', coin_flips[:10])\n", "print('The percent of heads from this sample is: ', sum(coin_flips) / len(coin_flips) * 100, '%')" ] diff --git a/05-DataGathering.ipynb b/05-DataGathering.ipynb index 1536f13..a8916f8 100644 --- a/05-DataGathering.ipynb +++ b/05-DataGathering.ipynb @@ -12,7 +12,7 @@ "metadata": {}, "source": [ "
\n", - "Data Gathering is simply the process of collecting your data together.\n", + "Data Gathering is the process of accessing data collecting it data together.\n", "
" ] }, @@ -20,13 +20,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "This notebook covers strategies you can use to gather data for an analysis. \n", + "This notebook covers strategies for finding and gathering data.\n", "\n", - "If you want to move on to first working on data analyses (with provided data) you can move onto the next tutorials, and come back to this one later.\n", + "If you want to start by working on data analyses (with provided data) you can move onto the next tutorials, and come back to this one later.\n", "\n", - "Data gathering can encompass anything from launching a data collection project, web scraping, pulling from a database, downloading data in bulk. \n", - "\n", - "It might even include simply calling someone to ask if you can use some of their data. " + "Data gathering can encompass many different strategies, including data collection, web scraping, accessing data from databases, and downloading data in bulk. Sometimes it even includes things like calling someone to ask if you can use some of their data, and asking them to send it over. " ] }, { @@ -35,32 +33,49 @@ "source": [ "## Where to get Data\n", "\n", - "### The Web \n", + "There are lots of way to get data, and lots of places to get it from. Typically, most of this data will be accessed through the internet, in one way or another, especially when pursuing indepent research projects. \n", + "\n", + "### Institutional Access\n", "\n", - "The web is absolutely full of data or ways to get data, either by hosting **data repositories** from which you can download data, by offering **APIs** through which you can request specific data from particular applications, or as data itself, such that you can use **web scraping** to extract data directly from websites. \n", + "If you are working with data as part of an institution, such as a company of research lab, the institution will typically have data it needs analyzing, that it collects in various ways. Keep in mind that even people working inside institutions, with access to local data, will data still seek to find and incorporate external datasets. \n", "\n", - "### Other than the Web\n", + "### Data Repositories\n", "\n", - "Not all data is indexed or accessible on the web, at least not publicly. \n", + "**Data repositories** are databases from which you can download data. Some data repositories allow you to explore available datasets and download datasets in bulk. Others may also offer **APIs**, through which you can request specific data from particular databases.\n", "\n", - "Sometimes finding data means chasing down data wherever it might be. \n", + "### Web Scraping\n", "\n", - "If there is some particular data you need, you can try to figure out who might have it, and get in touch to see if it might be available.\n", + "The web itself is full of unstructured data. **Web scraping** can be done to directly extract and collect data directly from websites.\n", "\n", + "### Asking People for Data\n", + "\n", + "Not all data is indexed or accessible on the web, at least not publicly. Sometimes finding data means figuring out if any data is available, figuring out where it might be, and then reaching out and asking people directly about data access. If there is some particular data you need, you can try to figure out who might have it, and get in touch to see if it might be available." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "### Data Gathering Skills\n", + "\n", "Depending on your gathering method, you will likely have to do some combination of the following:\n", - "- Download data files from repositories\n", - "- Read data files into python\n", - "- Use APIs \n", - "- Query databases\n", - "- Call someone and ask them to send you a harddrive" + "\n", + "- Direct download data files from repositories\n", + "- Query databases & use APIs to extract and collect data of interest\n", + "- Ask people for data, and going to pick up data with a harddrive\n", + "\n", + "Ultimately, the goal is collect and curate data files, hopefully structured, that you can read into Python." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Data Repositories" + "## Definitions: Databases & Query Languages\n", + "\n", + "Here, we will introduce some useful definitions you will likely encounter when exploring how to gather data. \n", + "\n", + "Other than these definitions, we will not cover databases & query languages more in these tutorials. " ] }, { @@ -68,12 +83,7 @@ "metadata": {}, "source": [ "
\n", - "A Data Repository is basically just a place that data is stored. For our purposes, it is a place you can download data from. \n", - "
\n", - "\n", - "
\n", - "There is a curated list of good data source included in the \n", - "project materials.\n", + "A database is an organized collection of data. More formally, 'database' refers to a set of related data, and the way it is organized. \n", "
" ] }, @@ -81,7 +91,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Databases" + "
\n", + "A query language is a language for operating with databases, such as retrieving, and sometimes modifying, information from databases.\n", + "
" ] }, { @@ -89,7 +101,16 @@ "metadata": {}, "source": [ "
\n", - "A database is an organized collection of data. More formally, 'database' refers to a set of related data, and the way it is organized. \n", + "SQL (pronounced 'sequel') is a common query language used to interact with databases, and request data.\n", + "
\n", + "\n", + "
\n", + "If you are interested, there is a useful introduction and tutorial to SQL\n", + "here\n", + "as well as some useful 'cheat sheets' \n", + "here\n", + "and\n", + "here.\n", "
" ] }, @@ -97,7 +118,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Structured Query Language - SQL" + "## Data Repositories" ] }, { @@ -105,16 +126,12 @@ "metadata": {}, "source": [ "
\n", - "SQL (pronounced 'sequel') is a language used to 'communicate' with databases, making queries to request particular data from them.\n", + "A Data Repository is basically just a place that data is stored. For our purposes, it is a place you can download data from. \n", "
\n", "\n", "
\n", - "There is a useful introduction and tutorial to SQL\n", - "here\n", - "as well as some useful 'cheat sheets' \n", - "here\n", - "and\n", - "here.\n", + "There is a curated list of good data source included in the \n", + "project materials.\n", "
" ] }, @@ -122,11 +139,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "SQL is the standard, and most popular, way to interface with relational databases.\n", - "\n", - "Note: None of the rest of the tutorials presume or require any knowledge of SQL. \n", - "\n", - "You can look into it if you want, or if it is relevant to accessing some data you want to analyze, but it is not required for this set of tutorials. " + "For our purposes, data repositories are places you can download data directly from, for example [data.gov](https://www.data.gov/)." ] }, { @@ -149,6 +162,12 @@ "here\n", "or for a much broader, more technical, overview try\n", "here.\n", + "
\n", + "\n", + "
\n", + "This\n", + "list\n", + "includes a collection of commonly used and available APIs. \n", "
" ] }, @@ -156,45 +175,48 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "APIs offer a lot of functionality - you can send requests to the application to do all kinds of actions. In fact, any application interface that is designed to be used programatically is an API, including, for example, interfaces for using packages of code. \n", + "APIs offer a lot of functionality - you can send requests to the application to do all kinds of actions. In fact, any application interface that is designed to be used programmatically is an API, including, for example, interfaces for using packages of code. \n", + "\n", + "One of the many things that APIs do, and offer, is a way to query and access data from particular applications / databases. For example, there is a an API for Google maps that allows for programmatically querying the latitude & longitude positions of given addresses. \n", "\n", - "One of the many things that APIs do, and offer, is a way to query and access data from particular applications / databases. The benefit of using APIs for data gathering purposes is that they typically return data in nicely structured formats, that are relatively easy to analyze." + "The benefit of using APIs for data gathering purposes is that they typically return data in nicely structured formats, that are relatively easy to analyze." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Launching URL Requests from Python" + "### Launching URL Requests from Python\n", + "\n", + "In order to use APIs, and for other approaches to collecting data, it may be useful to launch URL requests from Python.\n", + "\n", + "Note that by `URL`, we just mean a file or application that can be reached by a web address. Python can be used to organize and launch URL requests, triggering actions and collecting any returned data. \n", + "\n", + "In practice, APIs are usually special URLs that return raw data, such as `json` or `XML` files. This is compared to URLs we are typically more used to that return web pages as `html`, which can be rendered for human viewers (html). The key difference is that APIs return structured data files, where as `html` files are typically unstructured (more on that later, with web scraping). \n", + "\n", + "If you with to use an API, try and find the documentation for to see how you send requests to access whatever data you want. \n", + "\n", + "#### API Example\n", + "\n", + "For our example here, we will use the Github API. Note that the URL we use is `api.github.com`. This URL accesses the API, and will return structured data files, instead of the html that would be returned by the standard URL (github.com)." ] }, { "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Imports\n", - "# requests lets you make http requests from python\n", - "import requests\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", + "execution_count": 10, "metadata": {}, + "outputs": [], "source": [ - "In practice, APIs are usually special URLs that return raw data (json or XML) as opposed to a web page to be rendered for human viewers (html). Find the documentation for a particular API to see how you send requests to access whatever data you want. For example, let's try the Github API. " + "import pandas as pd\n", + "\n", + "# We will use the `requests` library to launch URL requests from Python\n", + "import requests" ] }, { "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, + "execution_count": 11, + "metadata": {}, "outputs": [], "source": [ "# Request data from the Github API on a particular user\n", @@ -203,16 +225,16 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "b'{\"login\":\"TomDonoghue\",\"id\":7727566,\"avatar_url\":\"https://avatars0.githubusercontent.com/u/7727566?v=4\",\"gravatar_id\":\"\",\"url\":\"https://api.github.com/users/TomDonoghue\",\"html_url\":\"https://github.com/TomDonoghue\",\"followers_url\":\"https://api.github.com/users/TomDonoghue/followers\",\"following_url\":\"https://api.github.com/users/TomDonoghue/following{/other_user}\",\"gists_url\":\"https://api.github.com/users/TomDonoghue/gists{/gist_id}\",\"starred_url\":\"https://api.github.com/users/TomDonoghue/starred{/owner}{/repo}\",\"subscriptions_url\":\"https://api.github.com/users/TomDonoghue/subscriptions\",\"organizations_url\":\"https://api.github.com/users/TomDonoghue/orgs\",\"repos_url\":\"https://api.github.com/users/TomDonoghue/repos\",\"events_url\":\"https://api.github.com/users/TomDonoghue/events{/privacy}\",\"received_events_url\":\"https://api.github.com/users/TomDonoghue/received_events\",\"type\":\"User\",\"site_admin\":false,\"name\":\"Tom\",\"company\":\"UC San Diego\",\"blog\":\"tomdonoghue.github.io\",\"location\":\"San Diego\",\"email\":null,\"hireable\":null,\"bio\":\"Cognitive Science Grad Student @ UCSD. \\\\r\\\\nOn Twitter @TomDonoghue\",\"public_repos\":13,\"public_gists\":0,\"followers\":13,\"following\":35,\"created_at\":\"2014-05-28T20:20:48Z\",\"updated_at\":\"2018-01-09T04:15:59Z\"}'" + "b'{\"login\":\"TomDonoghue\",\"id\":7727566,\"node_id\":\"MDQ6VXNlcjc3Mjc1NjY=\",\"avatar_url\":\"https://avatars0.githubusercontent.com/u/7727566?v=4\",\"gravatar_id\":\"\",\"url\":\"https://api.github.com/users/TomDonoghue\",\"html_url\":\"https://github.com/TomDonoghue\",\"followers_url\":\"https://api.github.com/users/TomDonoghue/followers\",\"following_url\":\"https://api.github.com/users/TomDonoghue/following{/other_user}\",\"gists_url\":\"https://api.github.com/users/TomDonoghue/gists{/gist_id}\",\"starred_url\":\"https://api.github.com/users/TomDonoghue/starred{/owner}{/repo}\",\"subscriptions_url\":\"https://api.github.com/users/TomDonoghue/subscriptions\",\"organizations_url\":\"https://api.github.com/users/TomDonoghue/orgs\",\"repos_url\":\"https://api.github.com/users/TomDonoghue/repos\",\"events_url\":\"https://api.github.com/users/TomDonoghue/events{/privacy}\",\"received_events_url\":\"https://api.github.com/users/TomDonoghue/received_events\",\"type\":\"User\",\"site_admin\":false,\"name\":\"Tom\",\"company\":\"UC San Diego\",\"blog\":\"https://tomdonoghue.github.io\",\"location\":\"San Diego\",\"email\":null,\"hireable\":null,\"bio\":\"Cognitive Science Grad Student @ UC San Diego working on analyzing electrical brain activity. Also teaching Python & Data Science. \\\\r\\\\n\\\\r\\\\n\",\"twitter_username\":null,\"public_repos\":13,\"public_gists\":0,\"followers\":97,\"following\":83,\"created_at\":\"2014-05-28T20:20:48Z\",\"updated_at\":\"2020-06-19T21:35:12Z\"}'" ] }, - "execution_count": 3, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -224,46 +246,48 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ + "login TomDonoghue\n", + "id 7727566\n", + "node_id MDQ6VXNlcjc3Mjc1NjY=\n", "avatar_url https://avatars0.githubusercontent.com/u/77275...\n", - "bio Cognitive Science Grad Student @ UCSD. \\r\\nOn ...\n", - "blog tomdonoghue.github.io\n", - "company UC San Diego\n", - "created_at 2014-05-28T20:20:48Z\n", - "email None\n", - "events_url https://api.github.com/users/TomDonoghue/event...\n", - "followers 13\n", + "gravatar_id \n", + "url https://api.github.com/users/TomDonoghue\n", + "html_url https://github.com/TomDonoghue\n", "followers_url https://api.github.com/users/TomDonoghue/follo...\n", - "following 35\n", "following_url https://api.github.com/users/TomDonoghue/follo...\n", "gists_url https://api.github.com/users/TomDonoghue/gists...\n", - "gravatar_id \n", - "hireable None\n", - "html_url https://github.com/TomDonoghue\n", - "id 7727566\n", - "location San Diego\n", - "login TomDonoghue\n", - "name Tom\n", - "organizations_url https://api.github.com/users/TomDonoghue/orgs\n", - "public_gists 0\n", - "public_repos 13\n", - "received_events_url https://api.github.com/users/TomDonoghue/recei...\n", - "repos_url https://api.github.com/users/TomDonoghue/repos\n", - "site_admin False\n", "starred_url https://api.github.com/users/TomDonoghue/starr...\n", "subscriptions_url https://api.github.com/users/TomDonoghue/subsc...\n", + "organizations_url https://api.github.com/users/TomDonoghue/orgs\n", + "repos_url https://api.github.com/users/TomDonoghue/repos\n", + "events_url https://api.github.com/users/TomDonoghue/event...\n", + "received_events_url https://api.github.com/users/TomDonoghue/recei...\n", "type User\n", - "updated_at 2018-01-09T04:15:59Z\n", - "url https://api.github.com/users/TomDonoghue\n", + "site_admin False\n", + "name Tom\n", + "company UC San Diego\n", + "blog https://tomdonoghue.github.io\n", + "location San Diego\n", + "email None\n", + "hireable None\n", + "bio Cognitive Science Grad Student @ UC San Diego ...\n", + "twitter_username None\n", + "public_repos 13\n", + "public_gists 0\n", + "followers 97\n", + "following 83\n", + "created_at 2014-05-28T20:20:48Z\n", + "updated_at 2020-06-19T21:35:12Z\n", "dtype: object" ] }, - "execution_count": 4, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -277,11 +301,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "
\n", - "This\n", - "list\n", - "includes a collection of commonly used and available APIs. \n", - "
" + "As we can see above, in a couple lines of code, we can collect a lot of structured data about a particular user.\n", + "\n", + "If we wanted to do analyses of Github profiles and activity, we could use the Github API to collect information about a group of users, and then analyze and compare the collected data. " ] }, { @@ -311,6 +333,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "By web scraping, we typically mean something distinct from using the internet to access an API. Rather, web scraping refers to using code to systematically navigate the internet, and extract information of internet, from html or other available files. Note that in this case one is not interacting directly with a database, but simply exploring and collecting whatever is available on web pages.\n", + "\n", "Note that the following section uses the 'BeautifulSoup' module, which is not part of the standard anaconda distribution. \n", "\n", "If you do not have BeautifulSoup, and want to get it to run this section, you can uncomment the cell below, and run it, to install BeautifulSoup in your current Python environment. You only have to do this once." @@ -434,7 +458,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "From the soup object, you can explore that the page is much more organized, and in such a way that you can extract particular components of interest. \n", + "From the soup object, you can explore the page in a more organized way, and start to extract particular components of interest.\n", "\n", "Note that it is still 'messy' in other ways, in that there might or might not be a systematic structure to how the page is laid out, and it still might take a lot of work to extract the particular information you want from it." ] @@ -448,18 +472,18 @@ "Web scraping is distinct from using an API, even though many APIs may be accessed over the internet. Web scraping is different in that you are (programmatically) navigating through the internet, and extracting data of interest. \n", "\n", "Note:\n", - "Be aware that scraping data from websites (without using APIs) can often be an involved project itself - scraping sites can take a considerable amount of tuning to get the data you want. \n", + "Be aware that scraping data from websites (without using APIs) can often be an involved project itself. Web scraping itself can take a considerable amount of time and work to get the data you want. \n", "\n", - "Be aware that data presented on websites may not be well structured, or in an organzed format that lends itself to easy analysis.\n", + "Be aware that data presented on websites may not be well structured, and may not be in an organized format that lends itself to easy collection and analysis.\n", "\n", - "If you try scraping websites, also make sure you are allowed to scrape the data, and follow the websites terms of service. " + "If you try scraping websites, you should also check to make sure you are allowed to scrape the data, and follow the websites terms of service. " ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -473,7 +497,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/06-DataWrangling.ipynb b/06-DataWrangling.ipynb index 5a45532..838fb52 100644 --- a/06-DataWrangling.ipynb +++ b/06-DataWrangling.ipynb @@ -22,34 +22,34 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Note: Throughout this notebook, we will be using '!' to run the shell command 'cat' to print out the contents of example data files." + "In this notebook, we will focus on loading different types of data files. Other aspects of 'wrangling' such as combining different datasets will be covered in future tutorials, and are explored in the assignments.\n", + "\n", + "Note: Throughout this notebook, we will be using `!` to run the shell command `cat` to print out the contents of example data files." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Python I/O" + "## Python I/O\n", + "\n", + "Let's start with basic Python utilities for reading and loading data files. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "
\n", - "Python has some basic tools for I/O (input / output). \n", - "
\n", - "\n", "
\n", "Official Python \n", "documentation \n", - "on I/O.\n", + "on input / output.\n", "
" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -63,12 +63,12 @@ ], "source": [ "# Check out an example data file\n", - "!cat files/dat.txt" + "!cat files/data.txt" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -82,20 +82,29 @@ ], "source": [ "# First, explicitly open the file object for reading\n", - "f_obj = open('files/dat.txt', 'r')\n", + "file_obj = open('files/data.txt', 'r')\n", "\n", "# You can then loop through the file object, grabbing each line of data\n", - "for line in f_obj:\n", - " # Note that I'm removing the new line marker at the end of each line (the '\\n')\n", + "for line in file_obj:\n", + " # Here we explicitly remove the new line marker at the end of each line (the '\\n')\n", " print(line.strip('\\n'))\n", "\n", "# File objects then have to closed when you are finished with them\n", - "f_obj.close()" + "file_obj.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since opening and closing files basically always goes together, there is a shortcut to do both of them together, which is the `with` keyword. \n", + "\n", + "By using `with`, file objects will be opened, and then automatically closed at the end of the code block. " ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -108,10 +117,9 @@ } ], "source": [ - "# Since opening and closing files basically always goes together, there is a shortcut to do both of them\n", - "# Use 'with' keyword to open files, and the file object will automatically be closed at the end of the code block\n", - "with open('files/dat.txt', 'r') as f_obj:\n", - " for line in f_obj:\n", + "# Use 'with' keyword to open, read, and then close a file\n", + "with open('files/data.txt', 'r') as file_obj:\n", + " for line in file_obj:\n", " print(line.strip('\\n'))" ] }, @@ -119,9 +127,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Using Python's I/O is a pretty 'low level' way to read data files, and often takes a lot of work sorting out the details of reading files - for example, in the above example, dealing with the new line character explicitly. \n", + "Using input / output functionality from standard library Python is a pretty 'low level' way to read data files. This strategy often takes a lot of work to organize and define the details of how files are organized and how to read them. For example, in the above simple example, we had to deal with the new line character explicitly. \n", "\n", - "As long as you have reasonably well structured data files, using standardized file types, you can use higher-level functions that will take care of a lot of these details - loading data straight into pandas data objects, for example." + "As long as you have reasonably well structured data files, using standardized file types, you can use higher-level functions that will take care of a lot of these details - loading data straight into `pandas` data objects, for example." ] }, { @@ -142,16 +150,14 @@ "
\n", "Official Pandas\n", "documentation \n", - "on I/O. \n", + "on input / output. \n", "
" ] }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, + "execution_count": 16, + "metadata": {}, "outputs": [], "source": [ "import pandas as pd" @@ -160,9 +166,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Tab complete to check out all the read functions available\n", @@ -173,18 +177,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## File types" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "
\n", - "There are many different standardized (and un-standardized) file types in which data may be stored. Here, we will start by examing CSV and JSON files. \n", - "
" + "## File types\n", + "\n", + "There are many different file types in which data may be stored. \n", + "\n", + "Here, we will start by examining CSV and JSON files. " ] }, { @@ -210,7 +207,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -225,7 +222,7 @@ ], "source": [ "# Let's have a look at a csv file (printed out in plain text)\n", - "!cat files/dat.csv" + "!cat files/data.csv" ] }, { @@ -237,10 +234,8 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": true - }, + "execution_count": 18, + "metadata": {}, "outputs": [], "source": [ "# Python has a module devoted to working with csv's\n", @@ -249,7 +244,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -264,8 +259,8 @@ ], "source": [ "# We can read through our file with the csv module\n", - "with open('files/dat.csv') as csvfile:\n", - " csv_reader = csv.reader(csvfile, delimiter=',')\n", + "with open('files/data.csv') as csv_file:\n", + " csv_reader = csv.reader(csv_file, delimiter=',')\n", " for row in csv_reader:\n", " print(', '.join(row))" ] @@ -279,10 +274,8 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": true - }, + "execution_count": 20, + "metadata": {}, "outputs": [], "source": [ "# Pandas also has functions to directly load csv data\n", @@ -291,13 +284,26 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", + "\n", "\n", " \n", " \n", @@ -310,21 +316,21 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -341,14 +347,21 @@ "2 9 10 11 12" ] }, - "execution_count": 11, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Let's read in our csv file\n", - "pd.read_csv(open('files/dat.csv'), header=None)" + "pd.read_csv(open('files/data.csv'), header=None)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, using `Pandas` save us from having to do more work (write more code) to use load the file. " ] }, { @@ -374,7 +387,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -390,12 +403,12 @@ ], "source": [ "# Let's have a look at a json file (printed out in plain text)\n", - "!cat files/dat.json" + "!cat files/data.json" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -421,10 +434,8 @@ }, { "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true - }, + "execution_count": 24, + "metadata": {}, "outputs": [], "source": [ "# Python also has a module for dealing with json\n", @@ -433,20 +444,18 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": true - }, + "execution_count": 25, + "metadata": {}, "outputs": [], "source": [ "# Load a json file\n", - "with open('files/dat.json') as dat_file: \n", + "with open('files/data.json') as dat_file: \n", " dat = json.load(dat_file)" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -471,10 +480,8 @@ }, { "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": true - }, + "execution_count": 27, + "metadata": {}, "outputs": [], "source": [ "# Pandas also has support for reading in json files\n", @@ -483,7 +490,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -494,7 +501,7 @@ "dtype: object" ] }, - "execution_count": 18, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -507,32 +514,41 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "age 53\n", "firstName John\n", + "age 53\n", "dtype: object" ] }, - "execution_count": 19, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Read in our json file with pandas\n", - "pd.read_json(open('files/dat.json'), typ='series')" + "pd.read_json(open('files/data.json'), typ='series')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion\n", + "\n", + "As a general guideline, for loading and wrangling data files, using standardized data files, and loading them with 'higher-level' tools such as `Pandas` makes it easier to work with data files. " ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -546,7 +562,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/07-DataCleaning.ipynb b/07-DataCleaning.ipynb index 6af16c9..e2bc6d3 100644 --- a/07-DataCleaning.ipynb +++ b/07-DataCleaning.ipynb @@ -14,16 +14,16 @@ "metadata": {}, "source": [ "
\n", - "'Data Cleaning' is the process of finding and either removing or fixing 'bad data', where 'bad data' typically refers to corrupt and/or inaccurate data points. \n", + "'Data Cleaning' is the process of finding and either removing or fixing 'bad data'. \n", + " \n", + "By 'bad data' we mean missing, corrupt and/or inaccurate data points. \n", "
" ] }, { "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, + "execution_count": 6, + "metadata": {}, "outputs": [], "source": [ "# Imports\n", @@ -69,19 +69,17 @@ }, { "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, + "execution_count": 7, + "metadata": {}, "outputs": [], "source": [ "# Python has the special value 'None', which can encode a missing, or null value\n", - "dat_none = None" + "data_none = None" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -99,7 +97,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -109,19 +107,19 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Note that 'None' acts like a null type (as if the variable doesn't exist)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mdat_none\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Note that 'None' acts like a null type (as if the variable doesn't exist)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mdata_none\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mAssertionError\u001b[0m: " ] } ], "source": [ "# Note that 'None' acts like a null type (as if the variable doesn't exist)\n", - "assert dat_none" + "assert data_none" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -131,15 +129,15 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Since None is a null type, basic operations will fail when None is in the data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mdat_lst\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdat_lst\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdat_lst\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Since None is a null type, basic operations will fail when None is in the data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mdata_lst\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_lst\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_lst\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'int' and 'NoneType'" ] } ], "source": [ "# Since None is a null type, basic operations will fail when None is in the data\n", - "dat_lst = [1, 2, 3, None]\n", - "sum(dat_lst) / len(dat_lst)" + "data_lst = [1, 2, 3, None]\n", + "sum(data_lst) / len(data_lst)" ] }, { @@ -151,19 +149,17 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": true - }, + "execution_count": 14, + "metadata": {}, "outputs": [], "source": [ "# Numpy also has a special value for 'not a number' - NaN\n", - "dat_nan = np.nan" + "data_nan = np.nan" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -172,31 +168,29 @@ "float" ] }, - "execution_count": 7, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# It's actually a special float value\n", - "type(dat_nan)" + "type(data_nan)" ] }, { "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": true - }, + "execution_count": 16, + "metadata": {}, "outputs": [], "source": [ "# It doesn't evaluate as null (unlike None)\n", - "assert dat_nan" + "assert data_nan" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -205,19 +199,19 @@ "True" ] }, - "execution_count": 9, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# Numpy actually has multiple versions of NaN - but they are all actually the same.\n", + "# Numpy has multiple ways to write NaN - but they are all actually the same.\n", "np.nan is np.NaN is np.NAN" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -236,7 +230,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -245,7 +239,7 @@ "2.0" ] }, - "execution_count": 11, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -259,7 +253,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## The 'Art' of Data Cleaning\n", + "### The 'Art' of Data Cleaning\n", "\n", "Dealing with missing data is a decision point: what do you do?\n", "- Do you drop the observation?\n", @@ -274,13 +268,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Impossible Values\n", - "\n", - "Data cleaning includes checking for and dealing with impossible values. Impossible values can occur due to encoding or data entry errors. \n", + "### Impossible Values\n", "\n", "Be wary that datasets may also encode missing data as a special value - for example using '-999' for missing age. \n", "\n", - "These have to be dealt with, or they will skew your results." + "These have to be dealt with, or they will skew your results.\n", + "\n", + "Data cleaning includes checking for and dealing with impossible values. Impossible values can also occur due to encoding or data entry errors. " ] }, { @@ -291,23 +285,21 @@ "\n", "Example problem: we have two separate files that collectively have id number, age, weight, and height for a group of people. \n", "\n", - "Let's say that ultimately, we are interested in how age relates to height (is it really true that older people shrink!?)\n", + "Let's say that ultimately, we are interested in how age relates to height. We might want to ask, for example, if older people have a lower average height than younger people (is it really true that older people shrink!?)\n", "\n", "Data Files:\n", - "- messy_dat.json, has id & height information\n", - "- messy_dat.csv, has id, age, & weight information" + "- messy_data.json, has id & height information\n", + "- messy_data.csv, has id, age, & weight information" ] }, { "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": true - }, + "execution_count": 21, + "metadata": {}, "outputs": [], "source": [ "# Load in the json file\n", - "df1 = pd.read_json('files/messy_dat.json')\n", + "df1 = pd.read_json('files/messy_data.json')\n", "\n", "# Since JSON files read in columns alphabetically, re-arrange columns\n", "df1 = df1[['id', 'height']]" @@ -315,25 +307,25 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", - "\n", "
001234
115678
2291011
\n", " \n", @@ -345,22 +337,22 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -376,7 +368,7 @@ "3 4 173.0" ] }, - "execution_count": 13, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -388,10 +380,8 @@ }, { "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true - }, + "execution_count": 23, + "metadata": {}, "outputs": [], "source": [ "# Let's use pandas to drop the NaN value(s)\n", @@ -402,25 +392,25 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", - "\n", "
001168.0
112155.0
223NaN
334173.0
\n", " \n", @@ -432,17 +422,17 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -457,7 +447,7 @@ "3 4 173.0" ] }, - "execution_count": 15, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -469,37 +459,35 @@ }, { "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": true - }, + "execution_count": 25, + "metadata": {}, "outputs": [], "source": [ "# Read in the CSV data file\n", - "df2 = pd.read_csv('files/messy_dat.csv')" + "df2 = pd.read_csv('files/messy_data.csv')" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", - "\n", "
001168.0
112155.0
334173.0
\n", " \n", @@ -512,25 +500,25 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -547,7 +535,7 @@ "3 4 -999 12.0" ] }, - "execution_count": 17, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -566,10 +554,8 @@ }, { "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": true - }, + "execution_count": 27, + "metadata": {}, "outputs": [], "source": [ "# So, since we don't need it, lets drop the weight column instead\n", @@ -578,7 +564,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -587,7 +573,7 @@ "0" ] }, - "execution_count": 19, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -608,10 +594,8 @@ }, { "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": true - }, + "execution_count": 29, + "metadata": {}, "outputs": [], "source": [ "# Now lets merge our data together\n", @@ -622,25 +606,25 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", - "\n", "
0012011.0
11227NaN
2232514.0
334-99912.0
\n", " \n", @@ -653,19 +637,19 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -681,7 +665,7 @@ "2 4 173.0 -999" ] }, - "execution_count": 21, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -693,25 +677,25 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", - "\n", "
001168.020
112155.027
224173.0-999
\n", " \n", @@ -724,49 +708,49 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -787,7 +771,7 @@ "max 4.000000 173.000000 27.000000" ] }, - "execution_count": 22, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -801,17 +785,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "So, it looks like our average age is ~ -300.... \n", + "So, it looks like our average age is about -300. That... doesn't seem right. \n", "\n", - "That doesn't seem right. At some point in data collection, missing age values seem to have been encoded as -999. We need to deal with these data. " + "At some point in data collection, missing age values seem to have been encoded as -999. We need to deal with these data. " ] }, { "cell_type": "code", - "execution_count": 23, - "metadata": { - "collapsed": true - }, + "execution_count": 32, + "metadata": {}, "outputs": [], "source": [ "# Drop all rows with an impossible age\n", @@ -820,7 +802,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -829,7 +811,7 @@ "23.5" ] }, - "execution_count": 24, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -841,25 +823,25 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", - "\n", "
countcount3.0000003.0000003.000000
meanmean2.333333165.333333-317.333333
stdstd1.5275259.291573590.351026
minmin1.000000155.000000-999.000000
25%25%1.500000161.500000-489.500000
50%50%2.000000168.00000020.000000
75%75%3.000000170.50000023.500000
maxmax4.000000173.00000027.000000
\n", " \n", @@ -872,13 +854,13 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -893,7 +875,7 @@ "1 2 155.0 27" ] }, - "execution_count": 25, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -903,20 +885,29 @@ "df" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that in this example the problematic or missing values were relatively easy to locate - since we could see all our data. In real datasets, we may have hundreds to thousands of rows and potentially dozens of columns. In those cases, searching manually for missing or problematic values will not work very well. Strategies and programmatic approaches for identifying and dealing any bad values are necessary for any data analysis project. " + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Data Cleaning Notes\n", "\n", - "This is really just the start of data cleaning - getting data into a fit shape for analysis can include any \n", - "Tips:\n", + "This is really just the start of data cleaning - getting data into a fit shape for analysis can include a considerable amount of exploration and work to ensure high quality data goes into the analysis. \n", + "\n", + "Tips for data cleaning:\n", "- Read any documentation for the dataset you have\n", " - Things like missing values might be arbitrarily encoded, but should (hopefully) be documented somewhere\n", "- Check that data types are as expected. If you are reading in mixed type data, make sure you end up with the correct encodings\n", - "- Visualize your data! Have a look that the distribution seems reasonable\n", - "- Check basic statistics. df.describe() can give you a sense if the something is being really skewed\n", - "- Keep in mind how your data were collected. \n", + " - Having numbers read in as strings, for example, is a common way data wrangling can go wrong, and this can cause analysis errors\n", + "- Visualize your data! Have a look that the distribution seems reasonable (more on this later)\n", + "- Check basic statistics. df.describe() can give you a sense if the data is really skewed\n", + "- Keep in mind how your data were collected\n", " - If anything comes from humans entering information into forms, this might take a lot of cleaning\n", " - Fixing data entry errors (typos)\n", " - Dealing with inputs using different units / formats / conventions\n", @@ -941,7 +932,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -955,7 +946,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/08-DataPrivacy&Anonymization.ipynb b/08-DataPrivacy&Anonymization.ipynb index bafa82d..429fc7d 100644 --- a/08-DataPrivacy&Anonymization.ipynb +++ b/08-DataPrivacy&Anonymization.ipynb @@ -10,7 +10,7 @@ "\n", "A lot of data, perhaps the vast majority of data typically used in data science, is, directly or indirectly, about people. \n", "\n", - "Individuals have certain privacy rights regarding who can know or share information about specifically identified individuals. This is true in particular about certain classes of sensitive information (for example, health-related information has special protections), but also applies to all other data as well. " + "Individuals have privacy rights regarding who can know or share information about specifically identified individuals. This is true in particular about certain classes of sensitive information. For example, health-related information has special protections. Regardless of the data type, data privacy and security should also be a key concern when analyzing human data." ] }, { @@ -29,7 +29,7 @@ "\n", "\n", "
\n", - "Wikipedia\n", + "Wikipedia\n", "has an overview of information privacy.\n", "
" ] @@ -46,7 +46,7 @@ "metadata": {}, "source": [ "
\n", - "Data Anonymization is a type of information sanitization - that is the removal of sensitive information - for the purpose of privacy protection. It is a procedure to modify a data set such that the individuals it reflect are anonymous. Most, typically this means the removal or personally identifiable information of data sets such that the identify of individuals contained in the data set are anonymous.\n", + "Data Anonymization is a type of information sanitization - that is the removal of sensitive information - for the purpose of privacy protection. It is a procedure to modify a data set such that the individuals it reflect are anonymous. Typically this means the removal or personally identifiable information from data sets such that the identify of individuals contained in the data set are anonymous.\n", "
\n", "\n", "
\n", @@ -59,13 +59,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Data protection and anonymization are interdisciplinary components of data science and data practice, including everything from the considerations of ethics & legalities of data use, to the practical and technical challenges of protecting and anonymizing data. \n", + "Data protection and anonymization are interdisciplinary components of data science and data practice. Data protection includes everything from considerations of the ethics & legalities of data use, to the practical and technical challenges of protecting and anonymizing data. \n", "\n", "Anonymizing data typically comes down to removing any personally identifiable data from a dataset, or, if this information must be kept, separating the identifiable data from sensitive information. \n", "\n", - "Part of the difficulty of data anonymization is that while we can provably demonstrate that a given dataset is anonymized, this rests on particular assumptions - most notably that the dataset is only provable anonymized under the assumption that no extra external information is used to attempt to de-identify it. \n", - "\n", - "In practice, de-anonymizing data can often be done by combining multiple datasets - using information from one or several available information sources to decode the individuals included in some other dataset. " + "Part of the difficulty of data anonymization is that while we can provably demonstrate that a given dataset is anonymized, this rests on particular assumptions. Most notably, datasets are only provably anonymized under the assumption that no extra external information is available to be used to attempt to de-identify it. In practice, this means that de-anonymization of data can often be done by combining multiple datasets. By using information from multiple information sources, one can often use processes of elimination to decode the individuals included in a particular dataset." ] }, { @@ -80,7 +78,7 @@ "- What the data is / contains, and who it is about, \n", " - Certain data types, and/or populations may have special protections, for example health-related information.\n", "- Who owns the data and in what capacity they are acting (company, university, etc.)\n", - " - Regulations for scientific research are different than those for companies\n", + " - For example, regulations for scientific research are different than those for companies\n", "- User agreements / consent procedures that were in place when the data were collected. \n", " - Individuals have a right to self-determination in terms of what their data is used for. Data should only be used for things that are covered by it's terms of use / terms of collection / consent procedures.\n", "- What the data is to be used for.\n", @@ -88,7 +86,7 @@ "- Where the data was collected and where it is stored, and who it is about.\n", " - Different regions (countries, etc) often have different regulations.\n", "\n", - "Much of these regulations apply more directly to the collection, storage, and release of datasets, but aspects also apply to the use of datasets, including publicly available datasets. Available datasets often have a user agreement for using the data, and, in particular, attempting to identify individuals from datasets may at a minimum break user agreements, and/or (depending on the nature of the data) be illegal based on consumer and research subject protection laws. " + "Much of these regulations apply more directly to the collection, storage, and release of datasets (rather than analysis), but aspects also apply to the use of datasets, including publicly available datasets. Available datasets often have a user agreement for using the data, and, in particular, attempting to identify individuals from datasets may at a minimum break user agreements, and/or (depending on the nature of the data) be illegal based on consumer and research subject protection laws. " ] }, { @@ -146,7 +144,7 @@ "metadata": {}, "source": [ "
\n", - "Safe Harbor is an official agreement regarding how to deal with datasets that have personal data, in particular, specific guidelines on what information to remove from datasets in order to anonymize them. It is a single set of data protection requirements shared across many contexts and countries. \n", + "Safe Harbor is an official agreement regarding how to deal with datasets that have personal data. It describes specific guidelines on what information to remove from datasets in order to anonymize them. It is a single set of data protection requirements shared across many contexts and countries.\n", "
\n", "\n", "
\n", @@ -160,7 +158,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The Safe Harbor method requires that the following identifiers of the individual or of relatives, employers, or household members of the individual, are removed:\n", + "The Safe Harbor method requires that the following identifiers of the individuals be removed:\n", "- Names\n", "- Geographic Subdivisions smaller than a state**\n", "- Dates (such as birth dates, etc), and all ages above 90\n", @@ -180,7 +178,6 @@ "- Certificate/license numbers\n", "- Any other unique identifying number, characteristic, or code\n", "\n", - "\n", "** The first three numbers of the zip code can be kept, provided that more than 20,000 people live in the region covered by all the zip codes that share the same initial three digits (the same geographic subdivision). " ] }, @@ -190,21 +187,21 @@ "source": [ "### Unique Identifiers\n", "\n", - "The logic Safe Harbor (and/or Data Anonymization in general) is to remove any unique information that could be used to identify you. \n", + "The goal of Safe Harbor, and Data Anonymization in general, is to remove any unique information that could be used to identify you. \n", "\n", - "This is perhaps most obvious for things like names, but some of the seemingly less obvious specifications of Safe Harbour also relate to the idea that leaving the specified information in a dataset is a risk for identification of individuals contained in the dataset. \n", + "This is perhaps most obvious for things like names. Other, perhaps less obvious specifications of Safe Harbour, are also based on the that this information being in a dataset creates a risk for identification of individuals contained in the dataset. \n", "\n", "For example, while it may be innocuous to talk about a 37 year old male who lives in Los Angeles (as there are many candidates, such that the specific individual is not revealed), it might actually be quite obvious who the person is when talking about a 37 year old male who lives in Potrero, California, a town of about 700 people. This is the same reason ages above 90 have to be removed - even in a fairly large area, say San Diego, it may be fairly obvious who the 98 year old female participant is. \n", "\n", - "Basically - any information that makes you stand out is liable to identify you, and so anonymization attempts to remove these idiosyncracies from data, such that individuals do not stand out in a way that lets someone figure out who they are.\n", + "Basically - any information that makes you stand out is liable to identify you. Anonymization attempts to remove these kinds of indications from the data, such that individuals do not stand out in a way that lets someone figure out who they are.\n", "\n", - "This also underlies the difficulty in protecting data in the face of multiple data sources, since collecting observations together makes it much easier to start to pick out people more uniquely - so it may still be relatively easy to identify the 37 year old male from LA if you also happen to know (or figure out) that he has a poodle, is 5'6\", works at UCLA, and was at Griffith Park on Saturday, April 15th, all of which may be relatively easy to figure out by combining publicly available, or easily obtainable, data." + "This also underlies the difficulty in protecting data in the face of multiple data sources, since collecting observations together makes it much easier to start to pick out people more uniquely. It may still be relatively easy to identify the 37 year old male from LA if you also happen to know (or figure out) that he has a poodle, is 5'6\", works at UCLA, and was at Griffith Park on Saturday, April 15th. All of this extra information may be relatively easy to figure out by combining publicly available, or easily obtainable, data." ] } ], "metadata": { "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -218,7 +215,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/09-DataVisualization.ipynb b/09-DataVisualization.ipynb index 17b175c..6bc1814 100644 --- a/09-DataVisualization.ipynb +++ b/09-DataVisualization.ipynb @@ -4,15 +4,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Data Visualization with Python\n", + "# Data Visualization\n", "\n", - "Data Visualization might mean a of different things. \n", + "Data Visualization can refer to a lot of different things. Here, we will start with making static 2D visualizations of data.\n", "\n", - "Here we are only going to deal with basic 2D plotting, using Matplotlib, which is a library for plotting with Python.\n", - "\n", - "Matplotlib is very well supported with examples that you can use to figure out how it works. \n", - "\n", - "Here, we will run through a quick intro of using matplotlib, with examples adapted from the official materials. " + "To do so, we will use the `matplotlib` package. Matplotlib is a large and well supported package that forms the basis of a lot of plotting in Python." ] }, { @@ -24,46 +20,19 @@ "
\n", "\n", "
\n", - "Check out matplotlibs official\n", - "website\n", + "Check out the matplotlib\n", + "website,\n", "including their introductory \n", "tutorial,\n", - "and list of \n", - "examples.\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Pyplot vs Pylab\n", - "\n", - "Note that matplotlib is an and old, and quite massive, module, and actually has a couple different ways to use it. \n", - "\n", - "Short version: import 'matplotlib.pyplot', like we do here is perhaps most common, and will work!\n", - "\n", - "Long version: follow the following link to learn a bit about the different ways in which matplotlib can be used (pyplot, pylab, etc.). \n", - "\n", - "Ultimately, it all calls the same underlying code, there is just different syntax for accessing everything. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "A description of the different ways to interact with matplotlib is availabe\n", - "here.\n", + "and gallery of \n", + "examples.\n", "
" ] }, { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Import matplotlib - the main python plotting package\n", @@ -83,7 +52,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Line graph" + "## Line graph\n", + "\n", + "First, we will create a simple line graph." ] }, { @@ -94,7 +65,7 @@ { "data": { "text/plain": [ - "[]" + "[]" ] }, "execution_count": 2, @@ -103,16 +74,17 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvIAAAH0CAYAAABfKsnMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3XeYVdXhtuFnTWPovXdEOoI0W6JEo2LXSOyiomiMiTGa\n9ktMLDE9xiSaREURwSiWxHxqFI1RY6eL9CJdmrShDMO0/f0xwxFwRoozs8+Zee7r4jqutfc5846C\nvGz2WjtEUYQkSZKk1JIWdwBJkiRJB88iL0mSJKUgi7wkSZKUgizykiRJUgqyyEuSJEkpyCIvSZIk\npSCLvCRJkpSCLPKSJElSCrLIS5IkSSnIIi9JkiSlIIu8JEmSlIIs8pIkSVIKsshLkiRJKcgiL0mS\nJKUgi7wkSZKUgizykiRJUgrKiDtAsgghLAUaAMtijiJJkqTqqxOwNYqizl/0gyzyn2pQu3btJj17\n9mwSdxBJkiRVT/PmzWPnzp0V8lkW+U8t69mzZ5Np06bFnUOSJEnV1MCBA5k+ffqyivgs75GXJEmS\nUpBFXpIkSUpBFnlJkiQpBVnkJUmSpBRkkZckSZJSkEVekiRJSkEWeUmSJCkFWeQlSZKkFGSRlyRJ\nklKQRV6SJElKQRZ5SZIkKQVVSJEPIQwPIdwbQngrhLA1hBCFEB7bz3uODSG8GELYFELYGUL4MIRw\nUwgh/XPec0UIYXIIYXsIISeE8EYI4cyK+B4kSZKkVFJRV+RvBb4F9Ac+3t/JIYRzgDeB44FngfuA\nLOAeYEI57/k9MBZoDYwGHgP6As+HEL71hb8DSZIkKYVUVJH/LtANaABc/3knhhAaUFLEi4ChURRd\nHUXR9yn5Q8B7wPAQwkX7vOdY4BbgI+CIKIq+G0XRDcBAYBPw+xBCpwr6XiRJkqSkVyFFPoqi16Mo\nWhRFUXQApw8HmgMToiiausdn5FFyZR8++4eBb5S+/iKKos17vGcZ8BegFnDVIcaXJEmSUk4ci11P\nLH2dWMaxN4Fc4NgQQq0DfM9L+5wjSZIkfa7nZq5mW15B3DG+kIwYvmb30teF+x6IoqgwhLAU6A10\nAeaFEOoCbYHtURStKePzFpW+djuQLx5CmFbOoR4H8n5JkiSltpdmreHGJ2bQtUU9Ro8YROdmdeOO\ndEjiuCLfsPQ1p5zju+cbHeL5kiRJUpnmr93KLU/PBGDx+u38/pUFMSc6dHFckY9VFEUDy5ovvVI/\noIrjSJIkqYps3pHPqHFTyc0vAqBT0zr88ty+Mac6dHFckd99Bb1hOcd3z285xPMlSZKkvRQWFXPD\n49NZuWknAHWz0hk9YhAN62TGnOzQxVHkd//9xWfuaQ8hZACdgUJgCUAURTso2Zu+XgihdRmfd3jp\n62fuuZckSZIAfvnifN79aGNifM+F/Tm8Zf0YE31xcRT510pfh5Vx7HigDvBuFEW7DvA9p+1zjiRJ\nkpTwzLRVjHlnaWJ888ndOKV3qxgTVYw4ivwzwAbgohDCoN2TIYRs4K7S4d/2ec/9pa8/CSE03uM9\nnYAbgF3AI5WUV5IkSSlqxorN/PjZWYnxsN6t+NZXusaYqOJUyGLXEMK5wLmlw91/vDkmhDC29J83\nRFH0PYAoiraGEEZRUujfCCFMoOTprGdTsjXlM8CTe35+FEXvhhD+ANwMfBhCeAbIAi4EmgDfLn04\nlCRJkgTA+q15fOOxaeQXFgPQvWV97r6gH2lpIeZkFaOidq3pD1yxz1yX0h8Ay4Hv7T4QRdG/Qggn\nAD8BzgeygcWUFPU/l/WE2CiKbgkhzKLkCvy1QDEwHfhdFEUvVND3IUmSpGpgV2ER1z02jXVbS+7W\nblQnk9EjBlG3VvXZtLFCvpMoim4Hbj/I97wDnH6Q7xkLjD2Y90iSJKlmiaKIn/5rNjNWlGxqmBbg\nvosH0KFpnZiTVaw47pGXJEmSKs2495bz1NRVifFPzujFlw5vFmOiymGRlyRJUrXx7kcbuPOFuYnx\n+QPaMfK4TvEFqkQWeUmSJFULKzflcsPfp1NUXLLcsl+7hvzivD6EUD0Wt+7LIi9JkqSUl5tfyKhx\nU9mcWwBA8/q1eODyQWRnpsecrPJY5CVJkpTSoiji+09/yPy12wDISk/j/ssG0qphdszJKpdFXpIk\nSSntr298xL9nrUmMf35ubwZ2bPw576geLPKSJElKWa/NX8fvX1mQGF9xTEcuHNwhxkRVxyIvSZKk\nlLR4/Xa+88QH7H6U6NFdmnDrmb3iDVWFLPKSJElKOTk7C7h23FS27SoEoG2j2vzlkgFkpteceltz\nvlNJkiRVC0XFETdNmMGSDTsAyM5M48ERA2lar1bMyaqWRV6SJEkp5fevLOD1BZ8kxr8b3o/ebRrG\nmCgeFnlJkiSljOdnruZvb3yUGH9z6GGc1a9NjIniY5GXJElSSpj9cQ7ff2ZmYvyV7s255ZTuMSaK\nl0VekiRJSW/j9l1cN34aeQXFAHRpXpc/XXwk6Wkh5mTxschLkiQpqRUUFXP936fz8ZadANSvlcHo\nEYNokJ0Zc7J4WeQlSZKU1H7+wlwmL90EQAjwp4v7c1jzejGnip9FXpIkSUlrwuQVjHtveWL8vVO6\nc2KPljEmSh4WeUmSJCWlacs38dP/NzsxPvOI1nxz6GExJkouFnlJkiQlnTU5O7lu/HQKiiIAerZu\nwG+HH0EINXdx674s8pIkSUoqeQVFXDd+Ghu27wKgSd0sHrx8IHWyMmJOllws8pIkSUoaURTx43/O\n4sNVOQCkpwX+cskA2jepE3Oy5GORlyRJUtJ4+O2l/HPGx4nxz87sxTGHNY0xUfKyyEuSJCkpvL1o\nA798cV5ifOGg9ow4pmOMiZKbRV6SJEmxW75xBzc8Pp3ikrWtDOjQiDvP7e3i1s9hkZckSVKstu8q\nZNS4qeTsLACgZYNa3H/ZQGplpMecLLlZ5CVJkhSb4uKIW576gIXrtgOQlZHGA5cPokWD7JiTJT+L\nvCRJkmJz72uLeXnOusT4V+f1pX/7RjEmSh0WeUmSJMXi5TlruefVhYnxyOM6c/7AdjEmSi0WeUmS\nJFW5heu2cfOTHyTGx3Vtyo9P7xFjotRjkZckSVKV2pKbz6hxU9mRXwRA+ya1ue/iAWSkW00Phv+2\nJEmSVGUKi4r59hMzWL4xF4A6WemMHjGIxnWzYk6WeizykiRJqjK/mTiftxZtSIzv/no/erRqEGOi\n1GWRlyRJUpV4dsYqRr+1NDG+8cSunNa3dYyJUptFXpIkSZXuw1Vb+OE/ZiXGX+3Zkpu+2i3GRKnP\nIi9JkqRKtX5bHteNn0Z+YTEAXVvU454L+5GWFmJOltos8pIkSao0+YXFfPOx6azJyQOgQXYGo0cM\non52ZszJUp9FXpIkSZUiiiJue242U5dvBiAtwL2XDKBzs7oxJ6seLPKSJEmqFI9NWsETk1cmxj86\nrQcndGseY6LqxSIvSZKkCjdpyUbueG5OYnxu/zaM+nKXGBNVPxZ5SZIkVaiPt+zkm3+fTmFxBECf\ntg349flHEIKLWyuSRV6SJEkVZmd+EdeOm8rGHfkANKuXxQOXDyI7Mz3mZNWPRV6SJEkVIooifviP\nD5mzeisAGWmBv146kLaNasecrHqyyEuSJKlCPPDmEp6buToxvuOc3gzp3CTGRNWbRV6SJElf2BsL\n1vObifMT40uO6sClR3WMMVH1Z5GXJEnSF7Lkk+18+4kZRCVrWxncqTG3n9U73lA1gEVekiRJh2xb\nXgGjxk1lW14hAK0bZvPXSweSlWHNrGz+G5YkSdIhKS6O+O6TH/DRJzsAqJWRxoOXD6J5/VoxJ6sZ\nLPKSJEk6JPe8upBX561PjH87/Aj6tmsYY6KaxSIvSZKkg/birDXc+9rixPja47twTv+2MSaqeSzy\nkiRJOijz1mzllqdmJsZfPrwZPxzWI8ZENZNFXpIkSQds0458Ro2bys6CIgA6Na3DfRcPID0txJys\n5rHIS5Ik6YAUFBVzw9+ns2rzTgDqZqUzesQgGtbJjDlZzWSRlyRJ0gH5xb/n8d6SjYnxPRf25/CW\n9WNMVLNZ5CVJkrRfT01dydh3lyXGN5/cjVN6t4ovkCzykiRJ+nzTV2zm1mdnJ8bDerfiW1/pGmMi\ngUVekiRJn2Pd1jy+MX4a+UXFAHRvWZ+7L+hHmotbY2eRlyRJUpnyCoq4bvw01m/bBUCjOpmMHjGI\nurUyYk4msMhLkiSpDFEUceu/ZvPByi0ApKcF/nLJADo0rRNzMu1mkZckSdJnjH13Gc9MW5UY//j0\nnhzXtVmMibQvi7wkSZL28u7iDdz173mJ8fkD2jHyuE7xBVKZLPKSJElKWLkplxsen05RcQRAv3YN\n+cV5fQjBxa3JxiIvSZIkAHLzCxk1biqbcwsAaF6/Fg9cPojszPSYk6ksFnlJkiQRRRHfe3om89du\nAyArPY37LxtIq4bZMSdTeSzykiRJ4i+vL+bFWWsT45+f25uBHRvHmEj7E2uRDyGcEUJ4JYSwKoSw\nM4SwJITwdAjhmHLOPzaE8GIIYVPp+R+GEG4KIfj3PZIkSYfo1bnruPs/CxPjK47pyIWDO8SYSAci\ntiIfQvgN8AIwAJgI/AmYDpwDvBNCuGyf888B3gSOB54F7gOygHuACVWXXJIkqfpYtG4bNz35AVHJ\n2laO7tKEW8/sFW8oHZBYHssVQmgFfA9YBxwRRdH6PY59BXgNuBN4rHSuATAaKAKGRlE0tXT+p6Xn\nDg8hXBRFkYVekiTpAK3espMRYyazfVchAG0b1eYvlwwgM927r1NBXP+VOpZ+7Ul7lniAKIpeB7YB\nzfeYHl46nrC7xJeemwfcWjq8vlITS5IkVSNbcvO5Ysxk1uTkAVAnK50HRwykab1aMSfTgYqryC8C\n8oEhIYS9HhEWQjgeqA+8usf0iaWvE8v4rDeBXODYEII/8yRJkvZjZ34RVz86lUXrtwOQmR544PKB\n9G7TMOZkOhixFPkoijYBPwRaAnNDCA+GEH4VQngKeAX4D3DdHm/pXvq6kH1EUVQILKXkNqEulRpc\nkiQpxRUWFfOtx6czbfnmxNzvv96PLx/e/HPepWQUyz3yAFEU/TGEsAwYA4za49BiYOw+t9zs/uNh\nTjkft3u+0f6+bghhWjmHeuzvvZIkSaksiiL+75+z+O/8T2vWz87sxTn928aYSocqzl1rfgA8A4wF\nDgPqAgOBJcDfQwi/jSubJElSdfS7lxfw9LRVifH1Qw9j5Jc6x5hIX0Rcu9YMBX4DPBtF0c17HJoe\nQjiPkltobgkh3B9F0RI+veJe3o1bu+e37O9rR1E0sJxM0yjZClOSJKnaeeSdpfz1jY8S468PbMcP\nTu3+Oe9QsovrivyZpa+v73sgiqJcYDIl2Y4snV5Q+tpt3/NDCBlAZ6CQkqv5kiRJ2sNzM1dz5wtz\nE+OTerTgV1/rSwghxlT6ouIq8rt3lylvVcXu+fzS19dKX4eVce7xQB3g3SiKdlVMPEmSpOrh7UUb\nuOWpTx/4NKBDI+67ZAAZ7hWf8uL6L/hW6eu1IYS9VleEEE4DjgPygHdLp58BNgAXhRAG7XFuNnBX\n6fBvlZpYkiQpxcxalcN146dSUFTS4ru2qMfDVwymdlZ6zMlUEeLateYZSvaJ/yowL4TwLLAW6EnJ\nbTcB+FEURRsBoijaGkIYVfq+N0IIE4BNwNmUbE35DPBklX8XkiRJSWrphh1c+chkduQXAdC6YTbj\nRg6hcd2smJOposRS5KMoKg4hnA7cAFwEnEfJ7TGbgBeBP0dR9Mo+7/lXCOEE4CfA+UA2JVtV3lx6\nflSF34IkSVLSWr8tjxFjJrFxR8ldyg1rZ/LoyCG0aVQ75mSqSHHuI18A/LH0x4G+5x3g9EoLJUmS\nlOK25hVwxZgprNy0E4DszDTGXDmIbi3rx5xMFc1VDpIkSdXErsIirh03lXlrtgKQnha47+IBDOzY\nJOZkqgwWeUmSpGqgqDjiu09+wPtLNiXmfvW1vny1V8sYU6kyWeQlSZJSXBRF3PH8HF6ctTYx94Nh\n3blgUPsYU6myWeQlSZJS3H2vLWbce8sT4yuP7cT1JxwWYyJVBYu8JElSCnti8gru/s/CxPjMI1rz\nszN7+dTWGsAiL0mSlKJenrOWnzw7KzH+Utdm3H1BP9LSLPE1gUVekiQpBU1aspFvPzGD4tIn6fRt\n25D7Lx9IrQyf2lpTWOQlSZJSzPy1W7lm3FTyC4sB6NS0Do9cNZh6tWJ7RJBiYJGXJElKIas253LF\nmMlsyysEoFm9WowbeRTN6tWKOZmqmkVekiQpRWzakc+IMZNZt3UXAPVqZfDoyMF0aFon5mSKg0Ve\nkiQpBeTmF3LV2Cks+WQHAFnpaTw4YiC92zSMOZniYpGXJElKcgVFxVz/2HRmrtwCQAjwx4v6c+xh\nzWJOpjhZ5CVJkpJYcXHED575kP8t/CQxd+fZvTm9b+sYUykZWOQlSZKS2K8nzufZGR8nxjee2JXL\nj+kUXyAlDYu8JElSkhr95hIefHNJYnzxkPZ89+RuMSZSMrHIS5IkJaFnZ6ziFy/OS4xP6dWSn5/T\nhxB8aqtKWOQlSZKSzBsL1vP9pz9MjId0asKfLz6SjHSrmz7lzwZJkqQkMmPFZq5/bDqFxREAPVrV\nZ/QVg8jOTI85mZKNRV6SJClJfPTJdkaOncLOgiIA2jaqzaMjh9CwdmbMyZSMLPKSJElJYG1OHiMe\nnszm3AIAGtfJZNzVQ2jZIDvmZEpWFnlJkqSY5ews4Ioxk/l4y04AamemM+bKwRzWvF7MyZTMLPKS\nJEkxyisoYtSjU1mwbhsAGWmBv102gCM7NI45mZKdRV6SJCkmRcURNz4xg8nLNiXmfjv8CIZ2bxFj\nKqUKi7wkSVIMoiji1n/N5pW56xJzPzm9J18b0C7GVEolFnlJkqQY3PPqIp6YvCIxvvb4Low6vkuM\niZRqLPKSJElVbPx7y/jzfxclxl87si0/GtYjvkBKSRZ5SZKkKvTirDX87Lk5ifHQ7s35zfAjSEsL\nMaZSKrLIS5IkVZF3P9rATRM+ICp5aCv92jfir5cOIDPdSqaD588aSZKkKjBndQ7XjptGflExAF2a\n1+WRKwdTJysj5mRKVRZ5SZKkSrZiYy5XPjKF7bsKAWjZoBbjRg6hSd2smJMplVnkJUmSKtGG7bsY\nMWYSn2zbBUD97AweHTmEdo3rxJxMqc4iL0mSVEm27yrkqkemsGxjLgBZGWk8fMVgerRqEHMyVQcW\neUmSpEqQX1jMN8ZPY9bHOQCkBbj34iMZ0rlJzMlUXVjkJUmSKlhxccQtT8/k7cUbEnO/OK8vp/Zu\nFWMqVTcWeUmSpAoURRF3vjCX52euTszdcnI3Lh7SIcZUqo4s8pIkSRXob//7iLHvLkuMRxzTkW+d\n2DW+QKq2LPKSJEkV5KmpK/ntxAWJ8el9W3HbWb0Jwae2quJZ5CVJkirAf+et4//+OSsxPqZLU+65\nsD/paZZ4VQ6LvCRJ0hc0bfkmbnh8OkXFEQC9WjfggREDqZWRHnMyVWcWeUmSpC9g0bptjBw7lbyC\nYgDaN6nN2JGDaZCdGXMyVXcWeUmSpEO0estORoyZTM7OAgCa1s1i/MijaFE/O+Zkqgks8pIkSYdg\nS24+I8ZMZk1OHgB1s9IZe9UQOjWrG3My1RQWeUmSpIO0M7+IkWOnsHj9dgAy0wMPXD6Ivu0axpxM\nNYlFXpIk6SAUFhXzrcenM33FlsTc3Rf050uHN4sxlWoii7wkSdIBiqKI//vnLP47f31i7razenF2\nvzYxplJNZZGXJEk6QL97eQFPT1uVGH9z6GFcdVznGBOpJrPIS5IkHYAxby/lr298lBhfMKgd3z+1\ne4yJVNNZ5CVJkvbjuZmrufOFuYnxST1a8Mvz+hKCT21VfCzykiRJn+OtRZ9wy1MfJMYDOzbmvksG\nkJFujVK8/BkoSZJUjg9XbeEb46dRUBQBcHiLejx8xSBqZ6XHnEyyyEuSJJVp6YYdXPXIFHbkFwHQ\npmE2464eQqM6WTEnk0pY5CVJkvaxflseI8ZMYuOOfAAa1s5k3NVDaN2wdszJpE9Z5CVJkvawNa+A\nK8ZMYeWmnQBkZ6Yx5srBdG1RP+Zk0t4s8pIkSaXyCoq4dtxU5q3ZCkB6WuAvlwxgYMfGMSeTPssi\nL0mSBOzML+KaR6fy/pJNiblff60vJ/VsGWMqqXwZcQeQJEmK245dhVz96JS9SvwPh/Xg64Pax5hK\n+nwWeUmSVKNtyyvgqkemMHX55sTcLSd34/qhh8WYSto/i7wkSaqxcnYWcMWYyXywckti7v9O68F1\nJ1jilfws8pIkqUbavCOfy8dMYvbHWxNzPzuzFyO/1DnGVNKBs8hLkqQaZ8P2XVz20CTmr92WmLvr\n3D5cdnTHGFNJB8ciL0mSapT1W/O49KFJLFq/HYAQ4DdfO4ILBruwVanFIi9JkmqMtTl5XDL6fZZs\n2AFAWoDff70fXxvQLuZk0sGzyEuSpBrh4y07uWT0+yzfmAuUPOzpjxf256x+bWJOJh0ai7wkSar2\nVmzM5eLR7/Pxlp0AZKYH7r34SIb1aR1zMunQxf5k1xDCSSGEZ0MIa0MIu0IIq0MIL4cQTi/j3GND\nCC+GEDaFEHaGED4MIdwUQkiPI7skSUp+Szfs4MIH30uU+Kz0NP526UBLvFJerFfkQwi/Bb4PrAKe\nAzYAzYGBwFDgxT3OPQf4B5AHPAlsAs4C7gGOA75ehdElSVIKWLx+GxePnsQn23YBUCsjjQcuH8jQ\n7i1iTiZ9cbEV+RDCKEpK/KPAtVEU5e9zPHOPf24AjAaKgKFRFE0tnf8p8BowPIRwURRFE6oqvyRJ\nSm7z127l0tGT2LijpGJkZ6bx8BWDOa5rs5iTSRUjlltrQgi1gF8AKyijxANEUVSwx3A4JVfqJ+wu\n8aXn5AG3lg6vr7zEkiQplcz+OIeLH3w/UeLrZqXz6FVDLPGqVuK6In8yJcX8j0BxCOEMoA8lt81M\njqLovX3OP7H0dWIZn/UmkAscG0KoFUXRrkrKLEmSUsDMlVu4/OFJbM0rBKB+rQzGjhzCwI6NY04m\nVay4ivzg0tc8YAYlJT4hhPAmMDyKok9Kp7qXvi7c94OiKCoMISwFegNdgHmVkliSJCW9acs3ceWY\nKWzbVVLiG2RnMP7qo+jXvlHMyaSKF1eR373C5PvAXODLwAdAZ+D3wCnA05QseAVoWPqaU87n7Z7f\n76/SEMK0cg712N97JUlS8pq0ZCMjx05hR34RAI3rZDL+6qPo07bhft4ppaa4tp/c/XULgbOjKHo7\niqLtURTNAs6jZBebE0IIx8SUT5IkpZB3Fm/gykc+LfHN6mXxxLVHW+JVrcV1RX5L6euMKIqW7Xkg\niqLcEMLLwNXAEOA9Pr3iXt6vxt3zW8o5vufnDyxrvvRK/YD9vV+SJCWX/y38hGvHTWVXYTEALerX\n4vFRR9G1Rf2Yk0mVK64r8gtKX8sr3ptLX2vvc363fU8MIWRQcktOIbCkogJKkqTk9+rcdYx69NMS\n37phNk9ed4wlXjVCXEX+v0AE9AohlJVh9+LXpaWvr5W+Divj3OOBOsC77lgjSVLNMXH2Gr7x2DTy\ni0pKfNtGtXny2mPo3KxuzMmkqhFLkY+iaDnwPNAB+M6ex0IIpwCnUnK1fvd2k89Q8tTXi0IIg/Y4\nNxu4q3T4t0qOLUmSksTzM1dzw+MzKCyOAOjQpA5PXnc0HZrWiTmZVHVie7IrcANwJPCH0n3kZ1By\ni8y5lDzB9ZooinIAoijaWvok2GeAN0IIE4BNwNmUbE35DPBk1X8LkiSpqv1z+iq+9/RMSjs8XZrV\n5fFRR9OqYXa8waQqFtetNURRtAoYCNwHHE7JlfmhlFypPy6Kon/sc/6/gBMoeQDU+cC3gQLgZuCi\nKIqiKgsvSZJi8dSUldyyR4k/vEU9JlxniVfNFOcVeUof+PTt0h8Hcv47wOmVGkqSJCWl8e8v56f/\nmp0Y92hVn8euOYpm9WrFmEqKT6xFXpIk6UCMeXspd74wNzHu07YB40ceReO6WTGmkuJlkZckSUnt\ngf99xK9emp8Y92vfiHEjh9CwdmaMqaT4WeQlSVLSuve/i7j7PwsT40EdG/PIVYOpn22JlyzykiQp\n6URRxD3/WcifX1ucmDuqcxPGXDmYurWsLxJY5CVJUpKJoohfT5zPA//79IHtX+rajNEjBlE7Kz3G\nZFJyschLkqSkEUURP39hHmPeWZqYG9q9OfdfNpDsTEu8tCeLvCRJSgrFxRG3PTeH8e8vT8yd3Ksl\n911yJLUyLPHSvizykiQpdsXFET9+dhYTpqxMzJ3etxV/uuhIMtNje36llNQs8pIkKVZFxRHff2Ym\n/5z+cWLu7H5t+MMF/ciwxEvlsshLkqTYFBQVc/NTM3l+5urE3PkD2vHb4UeQnhZiTCYlP4u8JEmK\nRX5hMd+ZMIOXZq9NzF08pD2/OLcvaZZ4ab8s8pIkqcrtKizihr9P59V56xNzI47pyO1n9bbESwfI\nIi9JkqpUXkER142fxv8WfpKYu/pLnbn1jJ6EYImXDpRFXpIkVZnc/EJGjZvKO4s3JuauH3oYPzi1\nuyVeOkgWeUmSVCW27ypk5NgpTF66KTH3nZMO56avHm6Jlw6BRV6SJFW6rXkFXDlmMtNXbEnMff/U\n7tzwla4xppJSm0VekiRVqpzcAkaMmcTMVTmJuR+f3oNrjz8sxlRS6rPIS5KkSrNpRz6XPzyJOau3\nJuZuO6sXVx3XOcZUUvVgkZckSZViw/ZdXPbQJOav3ZaY+8V5fbj0qI4xppKqD4u8JEmqcOu35nHJ\nQ5NYvH47ACHAb84/ggsGtY85mVR9WOQlSVKFWpOzk0tGT2Lphh0ApAW4+4J+nHdku5iTSdWLRV6S\nJFWYVZtzuWT0JFZsygUgPS3wxwv7c1a/NjEnk6ofi7wkSaoQyzfu4JLRk/h4y04AMtMD9148gGF9\nWsWcTKqeLPKSJOkL++iT7Vw6ehJrt+YBkJWext8uG8BJPVvGnEyqvizykiTpC1m0bhuXPDSJT7bt\nAqBWRhpXybKaAAAgAElEQVQPjhjECd2ax5xMqt4s8pIk6ZDNW7OVyx6axMYd+QDUzkzn4SsGcWzX\nZjEnk6o/i7wkSToksz/O4bKHJ7EltwCAulnpPHLVEIZ0bhJzMqlmsMhLkqSD9sHKLYx4eBJb8woB\nqF8rg7EjhzCwY+OYk0k1h0VekiQdlKnLNnHlI1PYvqukxDesncn4q4dwRLtGMSeTahaLvCRJOmDv\nL9nIyLFTyM0vAqBxnUweu+YoerdpGHMyqeaxyEuSpAPy9qINXDNuCnkFxQA0q5fF3685mu6t6sec\nTKqZLPKSJGm/Xl+wnuvGTyO/sKTEt6hfi8dHHU3XFvViTibVXBZ5SZL0uf4zdx03/H06+UUlJb51\nw2weH3U0nZvVjTmZVLNZ5CVJUrlemrWGbz8xg8LiCIC2jWoz4dqjad+kTszJJFnkJUlSmR59dxl3\nPD+H0g5Px6Z1eHzU0bRtVDveYJIAi7wkSdpHYVExd74wl3HvLU/MdWlel8evOZpWDbNjTCZpTxZ5\nSZKUsDWvgBv+Pp23Fm1IzPVr34iHRgyief1aMSaTtC+LvCRJAmDFxlyufnQKi9ZvT8ydcURr7v56\nP7Iz02NMJqksFnlJksTUZZu4dvw0Nu3IT8zdeGJXbvpqN9LSQozJJJXHIi9JUg337IxV/PCZWYnt\nJbPS0/jt8CM498i2MSeT9Hks8pIk1VDFxRF/+M9C7nt9cWKuad0sHhwxkIEdm8SYTNKBsMhLklQD\n7cwv4ntPz+Tfs9Yk5g5vUY8xVw52j3gpRVjkJUmqYdZvzWPUuKnMXJWTmDuhW3PuveRIGmRnxphM\n0sGwyEuSVIPMXb2Vax6dwuqcvMTclcd24tYzepKRnhZjMkkHyyIvSVIN8ercddw4YQa5+UUApKcF\nbjurFyOO6RRvMEmHxCIvSVI1F0URD721lF++NI8oKpmrXyuD+y4dwAndmscbTtIhs8hLklSNFRQV\n87P/N5snJq9MzLVrXJsxVw6mW8v6MSaT9EVZ5CVJqqZycgu4/u/TePejjYm5gR0b8+DlA2lar1aM\nySRVBIu8JEnV0NINO7h67BSWbNiRmDvvyLb86mt9yc5MjzGZpIpikZckqZp576ONfOOxaeTsLEjM\nfe+Ubtzwla6EEGJMJqkiWeQlSapGnpqykh8/O4vC4pJVrbUy0vjDBf0544jWMSeTVNEs8pIkVQPF\nxRG/mTifB95ckphrVq8WD10xiP7tG8WYTFJlschLkpTicvMLuWnCB7wyd11irker+jx85WDaNqod\nYzJJlckiL0lSCluTs5NrHp3KnNVbE3Nf7dmCP150JPVq+du8VJ35K1ySpBQ1a1UO14ybwrqtuxJz\no77cmR+d1pP0NBe1StWdRV6SpBQ0cfYabnryA/IKigHISAv8/Nw+XDykQ8zJJFUVi7wkSSkkiiL+\n+sZH/O7lBYm5BtkZ3H/ZQI7t2izGZJKqmkVekqQUsauwiB//czb/mL4qMdepaR0evnIwhzWvF2My\nSXGwyEuSlAI27cjnG+OnMXnZpsTcUZ2bcP9lA2lcNyvGZJLiYpGXJCnJLV6/nasfncLyjbmJuQsG\nteOuc/uSlZEWYzJJcbLIS5KUxN5etIHr/z6NbXmFAIQAPxrWg2uP70II7kwj1WQWeUmSktRj7y/n\ntufmUFQcAVA7M50/XtSfU3u3ijmZpGRgkZckKckUFUf84t/zGPPO0sRcqwbZPHTFIPq0bRhjMknJ\nxCIvSVIS2b6rkBufmMFr89cn5vq2bchDVwyiZYPsGJNJSjZJs0ImhHBZCCEq/XFNOeccG0J4MYSw\nKYSwM4TwYQjhphBCelXnlSSpoq3anMvwv727V4kf1rsVT113jCVe0mckxRX5EEJ74D5gO1DmRrgh\nhHOAfwB5wJPAJuAs4B7gOODrVRJWkqRKMH3FZq4dN5UN2/MTc98cehjfO6U7aWkuapX0WbFfkQ8l\nS+4fATYC95dzTgNgNFAEDI2i6Oooir4P9AfeA4aHEC6qosiSJFWo52au5qIH30+U+Mz0wO+/3o8f\nDOthiZdUrtiLPHAjcCJwFbCjnHOGA82BCVEUTd09GUVRHnBr6fD6ygwpSVJFi6KIP766kBufmEF+\nYTEAjetk8tjVRzF8YLuY00lKdrHeWhNC6An8GvhTFEVvhhBOLOfU3fMTyzj2JpALHBtCqBVF0a5K\niCpJUoXKKyjiB898yHMzVyfmDmtelzFXDqZj07oxJpOUKmIr8iGEDGA8sAL48X5O7176unDfA1EU\nFYYQlgK9gS7AvIrMKUlSRftk2y6uGz+V6Su2JOa+1LUZf7l0AA1rZ8aYTFIqifOK/M+AI4EvRVG0\ncz/n7t40N6ec47vnG+3vi4YQppVzqMf+3itJ0he1YO02Ro6dwsdbPv2t75KjOnDH2b3JTE+GO14l\npYpYinwI4ShKrsLfHUXRe3FkkCSpqr0+fz3ffmIG23cVApAW4NYzenHVcZ0o2ftBkg5clRf50ltq\nxlFym8xPD/Btu6+4l/c4u93zW8o5nhBF0cByck0DBhxgHkmSDlgURYx9dxk/f2EuxVHJXN2sdO69\n5EhO7NEy3nCSUlYcf4dXD+gG9ATy9ngIVATcVnrO6NK5P5aOF5S+dtv3w0r/YNAZKASWVG50SZIO\nTmFRMT/7f3O44/lPS3zbRrX5xzePtcRL+kLiuLVmF/BwOccGUHLf/NuUlPfdt928BlwKDAOe2Oc9\nxwN1gDfdsUaSlExydhbwrcen89aiDYm5/u0bMXrEIJrXrxVjMknVQZUX+dKFrdeUdSyEcDslRf7R\nKIoe2uPQM8BvgItCCPfu3ks+hJAN3FV6zt8qLbQkSQdpxcZcRj46hcXrtyfmzurXht8NP4LszPQY\nk0mqLmLdR/5ARVG0NYQwipJC/0YIYQKwCTibkq0pnwGejDGiJEkJU5Zt4rrx09i0Iz8x952TDuem\nrx7uolZJFSYlijxAFEX/CiGcAPwEOB/IBhYDNwN/jqIoijOfJEkA/5i2iv/75yzyi0qe1JqVkcbv\nhh/BOf3bxpxMUnWTVEU+iqLbgds/5/g7wOlVlUeSpANVXBzxh/8s5L7XFyfmmtXL4oHLBzGwY+MY\nk0mqrpKqyEuSlIp25hdxy9Mf8OKstYm57i3r89AVg2jfpE6MySRVZxZ5SZK+gPVb87hm3FQ+XPXp\nw8eHdm/OvRcfSf3szBiTSaruLPKSJB2iOatzuObRqazJyUvMXXlsJ249oycZ6XE8qkVSTWKRlyTp\nEPxn7jq+M2EGuflFAKSnBW4/uzeXH90x5mSSagqLvCRJByGKIka/tYRfvTSf3ful1a+VwV8uHcDx\n3ZrHG05SjWKRlyTpAOUXFvOz/zebCVNWJubaN6nNmCsGc3jL+jEmk1QTWeQlSToAa3J28p0JHzB5\n6abE3OBOjbn/soE0rVcrxmSSaiqLvCRJ+/HSrDX86J+zyNlZkJj72oC2/OprfamVkR5jMkk1mUVe\nkqRy5OYXcufzc/e6lSYtwC2ndOebQw8jhBBjOkk1nUVekqQyfLhqCzdN+IAlG3Yk5to2qs09F/Zn\nSOcmMSaTpBIWeUmS9lBcHPHAm0u4+5UFFBZHifmz+rXhrnP70LC2D3mSlBws8pIklVqTs5Obn5zJ\ne0s2JubqZqVz5zl9+NqAtt5KIympWOQlSaLsBa392zfiTxf1p2PTujEmk6SyWeQlSTVaeQtab/hK\nV2486XAy09NiTCdJ5bPIS5JqLBe0SkplFnlJUo3jglZJ1YFFXpJUo7igVVJ1YZGXJNUYE2ev4Yf/\ncEGrpOrBIi9JqvZc0CqpOrLIS5KqNRe0SqquLPKSpGqpvAWtZx7Rml+c19cFrZJSnkVeklTtuKBV\nUk1gkZckVSsuaJVUU1jkJUnVggtaJdU0FnlJUsqbtSqH70yY4YJWSTWKRV6SlLKKiyMefKtkQWtB\nkQtaJdUsFnlJUkoqb0HrHef04XwXtEqqASzykqSU44JWSbLIS5JSSFkLWkOAG4Z25TtfdUGrpJrF\nIi9JSgnlLWj9wwX9OKpL0xiTSVI8LPKSpKTmglZJKptFXpKUtFzQKknls8hLkpJSWQta+7VvxJ8u\n7E+nZi5olSSLvCQpqbigVZIOjEVekpQ0ylrQ2qZhNvdc2N8FrZK0D4u8JCl25S1oPeOI1vzy3L40\nrOOCVknal0VekhSrNTk7ueWpmbz7kQtaJelgWOQlSbFxQaskHTqLvCSpyrmgVZK+OIu8JKlKuaBV\nkiqGRV6SVCVc0CpJFcsiL0mqdC5olaSKZ5GXJFUqF7RKUuWwyEuSKoULWiWpclnkJUkVzgWtklT5\nLPKSpArjglZJqjoWeUlShShrQWudrHTuOLs3wwe2c0GrJFUwi7wk6QtzQaskVT2LvCTpkLmgVZLi\nY5GXJB2SmSu38N0nP3BBqyTFxCIvSTooG7bv4ncTF/DUtJVEn65ndUGrJFUxi7wk6YAUFBUz7r3l\n/PHVhWzLK0zMu6BVkuJhkZck7ddbiz7hjufnsnj99r3mT+zRgtvO6kXHpi5olaSqZpGXJJVrxcZc\n7vr3XF6Zu26v+c7N6vLTM3tyYo+WMSWTJFnkJUmfkZtfyF9f/4gH31pCfmFxYr5uVjo3nnQ4Vx3X\nmawMd6SRpDhZ5CVJCVEU8dzM1fzqxfms3Zq317HzB7Tjh8O606JBdkzpJEl7sshLkgCY/XEOdzw/\nhynLNu81f0S7htx+dm8GdGgcUzJJUlks8pJUw23akc/vX1nAE5NX7LWdZLN6WfxgWA+GD2hHWpq7\n0UhSsrHIS1INVVhUzN8nreDuVxawdY/tJDPSAlce24kbv3o4DbLdE16SkpVFXpJqoHcXb+CO5+ey\nYN22veaP79acn53Zi64t6sWUTJJ0oCzyklSDrNqcyy9fnMeLs9buNd+hSR1+dmYvTurZwoc6SVKK\nsMhLUg2wM7+I+//3Eff/7yN27bGdZJ2sdG74Sleu/lJnsjPTY0woSTpYFnlJqsaiKOLFWWv55Yvz\n+HjLzr2Ondu/DT86rSetGrqdpCSlIou8JFVT89du5fbn5vD+kk17zfdp24Dbz+rNoE5NYkomSaoI\nsRT5EEJT4DzgDKAv0BbIB2YBjwCPRFFUXMb7jgVuBY4GagOLgDHAvVEUFVVNeklKblty8/nDfxby\n2PvLKd5jO8kmdbP4/qnduWBQe9LdTlKSUl5cV+S/DvwNWAO8DqwAWgJfAx4CTgshfD2KPt3ROIRw\nDvAPIA94EtgEnAXcAxxX+pmSVGMVFUc8PrlkO8ktuQWJ+fS0wIhjOnLTSd1oWMftJCWpuoiryC8E\nzgb+veeV9xDCj4HJwPmUlPp/lM43AEYDRcDQKIqmls7/FHgNGB5CuCiKoglV+l1IUpKYtGQjtz8/\nl3lrtu41f1zXptx2Vm+6tawfUzJJUmWJpchHUfRaOfNrQwj3A78AhlJa5IHhQHNg3O4SX3p+Xgjh\nVuC/wPWARV5SjbJ6y05++eI8XvhwzV7z7RrX5tYzenFq75ZuJylJ1VQyLnbd/ffBhXvMnVj6OrGM\n898EcoFjQwi1oijaVZnhJCkZ5BUU8eCbS/jrG4vJK/h0SVF2Zho3DO3KqOO7uJ2kJFVzSVXkQwgZ\nwIjS4Z6lvXvp68J93xNFUWEIYSnQG+gCzKvUkJIUoyiKeHnOOu7691xWbd57O8mz+rXh/07rQZtG\ntWNKJ0mqSklV5IFfA32AF6MoenmP+YalrznlvG/3fKP9fYEQwrRyDvU4oISSFJOF67Zxx/NzeGfx\nxr3me7ZuwO1n9eKoLk1jSiZJikPSFPkQwo3ALcB84PKY40hS0sjZWcAfX13IuPeWU7THfpKN6mTy\nvVO6c/GQDm4nKUk1UFIU+RDCt4A/AXOBk6Io2rTPKbuvuDekbLvnt+zva0VRNLCcDNOAAftPK0lV\no6g44qmpK/ndywvYtCM/MZ8W4LKjO3Lzyd1oVCcrxoSSpDjFXuRDCDdRshf8bEpK/PoyTlsADAK6\nAXvdGlN6X31nShbHLqnctJJUNaYu28Rtz81hzuq9t5M8uksTbjurNz1bN4gpmSQpWcRa5EMIP6Tk\nvvgPgJOjKNpQzqmvAZcCw4An9jl2PFAHeNMdaySlurU5efz6pXn864PVe823bVSbn5zRk9P6tHI7\nSUkSEGORL32Y052UXGE/pYzbafb0DPAb4KIQwr17PBAqG7ir9Jy/VWZeSapMeQVFPPz2Uv7y+mJy\n84sS87Uy0vjGCYfxjRMOo3aW20lKkj4VS5EPIVxBSYkvAt4CbizjCtOyKIrGAkRRtDWEMIqSQv9G\nCGECsImSp8N2L51/smrSS1LFiaKIV+et565/z2X5xty9jp3etxU/Pr0n7RrXiSmdJCmZxXVFvnPp\nazpwUznn/A8Yu3sQRdG/QggnAD8BzgeygcXAzcCfoyiKyvoQSUpWi9dv584X5vLmwk/2mu/esj63\nnd2LYw9rFlMySVIqiKXIR1F0O3D7IbzvHeD0is4jSVVpa14Bf351EWPfXUbhHttJNqydyc0nd+PS\nozqQkZ4WY0JJUiqIfdcaSaopiosjnpm2it++PJ8N2z/dTjIEuGRIB245pTtN6rqdpCTpwFjkJakK\nTF+xmTuem8PMVXs/oHpIpybcdnYvercp7zEZkiSVzSIvSZVo/dY8fj1xPv+c/vFe860aZPPjM3py\n1hGt3U5SknRILPKSVAl2FRbxyDvLuPe/i9ixx3aSWRlpXHd8F64fehh1svxfsCTp0Pm7iCRVsNfn\nr+fOF+aydMOOveZP7d2Sn5zeiw5N3U5SkvTFWeQlqYIs3bCDn78wl9fmr99rvmuLetx2Vi++fHjz\nmJJJkqoji7wkfUHLNuzgobeX8OSUlRQUfbqdZP3sDL771W5cfkxHMt1OUpJUwSzyknSIpi3fzOg3\nl/Dy3LXs+Ui6EODCQe353qndaVavVnwBJUnVmkVekg5CcXHEf+atY/SbS5i6fPNnjg/s2Jjbz+pN\n33ZuJylJqlwWeUk6AHkFRfxj+ioeemvpZxaxAgzt3pxrv9yFYw5r6naSkqQqYZGXpM+xaUc+499b\nzrj3lrFxR/5exzLTA+f0b8uoL3ehe6v68QSUJNVYFnlJKsOyDTt4+O2lPD1tJXkFxXsdq5+dwaVH\ndeSq4zrRskF2TAklSTWdRV6S9lDeAlaAto1qM/JLnblwcHvq1fJ/n5KkePk7kaQab38LWHu3acC1\nx3fh9L6t3UZSkpQ0LPKSaiwXsEqSUplFXlKN4wJWSVJ1YJGXVGMcyALWK4/tRKuGLmCVJCU/i7yk\nam/6is08+L+yF7C2aZjNyC915qIhHVzAKklKKf6uJalaKi6OeHXeOh4sZwFrr9YNuO4EF7BKklKX\nRV5StbJ7AevDby1lSRkLWE/o1pzrjncBqyQp9VnkJVULLmCVJNU0FnlJKc0FrJKkmsoiLyklTV9R\n8gTWiXNcwCpJqpn8HU5Syti9gHX0W0uYsswFrJKkms0iLynp5RUU8c/pH/PQW0vKXcB67fFdONYF\nrJKkGsQiLylpbdqRz2PvL+fRd8tewHp2v7aMOr4zPVo1iCmhJEnxschLSjqfu4C1VgaXHN2Bq47t\n7AJWSVKNZpGXlDQOZAHrhYPbUz87M56AkiQlEYu8pFi5gFWSpENjkZcUCxewSpL0xVjkJVUpF7BK\nklQxLPKSqsTyjSULWJ+a6gJWSZIqgkVeUqWasWIzD7qAVZKkCmeRl1ThCouKeW3+ehewSpJUiSzy\nkirErsIi3l28kZdmr+E/c9exObfgM+e4gFWSpIpjkZd0yPIKinhjwSdMnL2G/85bz7ZdhZ85xwWs\nkiRVDou8pIOyfVchr89fz8TZa3l9wXpy84vKPK9Vg2zOObKNC1glSaokFnlJ+5WTW8Cr89bx0uy1\nvLnoE/ILi8s8r13j2pzWpxWn9W1N/3aNSEvz9hlJkiqLRV5SmTZu38Urc0vK+7uLN1BYHJV5Xpfm\ndUvKe5/W9G7TwHvfJUmqIhZ5SQnrtubx8py1vDRrLZOWbqSc7k6PVvU5rU9rTuvbisNb1LO8S5IU\nA4u8VMOt2pzLxNlreWn2Wqav2PyZvd53O6JdQ4aVXnnv3Kxu1YaUJEmfYZGXaqClG3bw0uw1TJy9\nlg9X5ZR5TggwsENjhvVpxbA+rWjXuE4Vp5QkSZ/HIi/VAFEUsXDd9kR5n792W5nnpQU4qnNTTu/b\nilN7t6JFA3ebkSQpWVnkpWoqiiLmrN7KS7PX8NKstSzZsKPM8zLTA8ce1ozT+rTi5F4taVqvVhUn\nlSRJh8IiL1UjxcURM1ZuYeLsNbw0ey2rNu8s87ysjDRO6Nac0/q04qSeLWlYO7OKk0qSpC/KIi+l\nuKLiiMlLNzFx9hpenrOOtVvzyjyvTlY6X+negmF9WvGVHi2oV8tf/pIkpTJ/J5dSUEFRMe99tJGX\nZq/llTlr2bgjv8zz6mdn8NWeLRnWpxUndGtOdmZ6FSeVJEmVxSIvpYi8giLeXrSBl2av5dV568jZ\nWVDmeY3rZHJyr5ac1rc1xx3WjKyMtCpOKkmSqoJFXkpiufmF/G/BJ7w4ey2vz1/P9l2FZZ7XvH4t\nTu3dktP6tOaozk3ISLe8S5JU3VnkpSSzLa+A1+av56VZa3lj4XryCorLPK9Nw2yGlT5ddUCHxqSn\n+XRVSZJqEou8lAS25Obzytx1TJy9lrcXbSC/qOzy3rFpncTTVfu1a0gIlndJkmoqi7wUk0+27eKV\nuWt5adZa3luykaLiqMzzDm9Rj9P6tGJYn9b0bF3f8i5JkgCLvFSl1uTsZOLstbw0ey1Tlm0iKru7\n06t1A07vW1Leu7aoV7UhJUlSSrDIS5UoZ2cBc1bn8MHKLbwyZx0frNxS7rn92zfitNLbZjo0rVOF\nKSVJUiqyyEsVZMP2XcxZvZXZH+cwZ3UOsz/eyopNueWeHwIM7tSE0/q04tTerWjTqHYVppUkSanO\nIi8dpCiKWLs1j9kf713ay3ui6p7S0wLHdGnKsD6tOKV3S1rUz66CxJIkqTqyyEufI4oiVmzKLSnt\nq3OYs3orcz7OKfdJqvvKTA90a1mfPm0aMrBTY07u2ZLGdbMqObUkSaoJLPJSqf/f3r0H2VnfdRx/\nf5PNPdkFQoEkIAQMEJKx01K5RVsuNlKttCo4OJY6HQGrdYBKLzPWWunYkXYqQrHWS2Wo2JFOabl0\nZCQKGSnFyoh4CYR7UiUJAySQ3SS7ue3XP57nbDbLLizJ2efZ5+T9mtn5zT6/PSffmSfnOZ/ze37n\n99s7mKx7ZdvQSHsruPcNjL4J00gzp01h6YJuli3sZvnCHpYv6mHJ0XOZ0TV1giuXJEmHIoO8Dkm7\n9gzyzEt9PF6OtK/ZsJW1m/ro3713XI+fO6OL04YCezfLF/Vw4pFz3FFVkiRVxiCvjjewey9rN/Wy\nZmMvT5Tz2Z96sW/MTZdGOnz2NJYv6mFZGdqXLezh+CNmM8WdVCVJUo0M8uoo23bu4YmNw6bGbOjl\n2Ze3jbnZ0khHd88oAvvCbpYtKqbHLOyZ6SZMkiRp0jHIq7Fe3b6rWO6xnBrz+MZe1r2yfdyPP/bw\nWUNTY5Yt6mHZwm5XkZEkSY1hkFcjvNQ7MDTCvqacHrPhtf5xPTYCFh85Z19oX1iE9sNmu3qMJElq\nLoO8JpXMZMNr/azZ0Fuuz76VNRt7eblv57geP3VKsOSouUPz2Zcv6mHpgm7mzvC/uiRJ6iymG9Vm\ncDBZv3k7a8q12VvLPb62Y/e4Hj996hROXTBvX2hf2MMpx8xj5jSXe5QkSZ2vUUE+Io4FPg9cCMwH\nNgF3Addl5qt11qbC7r2D9A3sYWv/brb276a31Q7s3u/Ycy9t5/GNW9m+a3zLPc6ePpXTFhQj7K1l\nH5ccPZdpLvcoSZIOUY0J8hFxEvAwcBRwN/AkcAZwNXBhRKzIzM01ltgRMpOB3YP7h+8dI4P4sKA+\nUATzVmAfbzB/I/Nmdu23PvuyhT0sPnIOU13uUZIkaUhjgjzw5xQh/qrMvLl1MCJuAD4OfAH4aE21\nTSqDg0nfwJ7XjYK/fmR8tEC+Z9zrq7fD/DnTWb5o39SY5Yt6OPbwWS73KEmS9CYaEeTL0fiVwHrg\nqyO6PwdcCVwWEddm5vjXH5zEdu0Z3C9kt8J4K5APD+IjA3vfzj3k+JZNb7sI6J45jZ5Z0+ie1VW0\n5e/FseJnQfdMli/q4ejuGYZ2SZKkA9CIIA+cV7arMnO/4eLM7IuIH1AE/bOA+6su7kCtfvIl7vmv\njaOOlg/srm5UfKTpXVPKAN41FL6Hgvh+obyrCOatY7OnMXd6lzueSpIkVaApQf6Usn16jP5nKIL8\nybxJkI+IR8foOvXASjtwz728jTsf2zAhzz1vRtfQ6HcrkL8ulI8xYu6qL5IkSZNfU4J8T9luHaO/\ndfywCmppm55Z08bsmzolho2Cdw0F8NFGx1uBvHVs3swuulzNRZIkqaM1Jci3TWaePtrxcqT+nVXW\ncsbiI/jyJW/fN2I+e184nz19qnPHJUmSNKamBPnWiHvPGP2t469VUEvbHD9/DsfPn1N3GZIkSWqg\npsy/eKpsTx6jf0nZjjWHXpIkSeooTQnyq8t2ZUTsV3NEzANWADuAH1ZdmCRJklSHRgT5zHwOWAWc\nAHxsRPd1wBzgtk5ZQ16SJEl6M02ZIw/w28DDwFci4gJgLXAmxRrzTwOfqbE2SZIkqVKNGJGHoVH5\ndwG3UgT4a4GTgJuAszJzc33VSZIkSdVq0og8mfl/wEfqrkOSJEmqW2NG5CVJkiTtY5CXJEmSGsgg\nL0mSJDWQQV6SJElqIIO8JEmS1EAGeUmSJKmBDPKSJElSAxnkJUmSpAYyyEuSJEkNZJCXJEmSGigy\ns+4aJoWI2Dxr1qwjli5dWncpkiRJ6lBr166lv79/S2bOP9jnMsiXImId0A2sr/ifPrVsn6z431W1\nPMXb+C8AAAe7SURBVM+HBs9z5/McHxo8z4eGus7zCUBvZi4+2CcyyNcsIh4FyMzT665FE8fzfGjw\nPHc+z/GhwfN8aOiE8+wceUmSJKmBDPKSJElSAxnkJUmSpAYyyEuSJEkNZJCXJEmSGshVayRJkqQG\nckRekiRJaiCDvCRJktRABnlJkiSpgQzykiRJUgMZ5CVJkqQGMshLkiRJDWSQlyRJkhrIIF+TiDg2\nIm6JiI0RsTMi1kfEjRFxeN216eBFxPyIuDwi7oyIZyOiPyK2RsRDEfEbEeFrr0NFxIciIsufy+uu\nR+0TEReUr+kXy+v2xoi4LyJ+ru7a1B4R8fMRsSoiXiiv289HxLcj4uy6a9P4RcTFEXFzRHw/InrL\n6/HfvcljzomIeyNiS3nu/zsiromIqVXVfSC66i7gUBQRJwEPA0cBdwNPAmcAVwMXRsSKzNxcY4k6\neJcAXwM2AauB/wWOBn4J+Drwvoi4JN2RraNExHHAnwHbgLk1l6M2iogvAZ8EXgDuAV4B3gacDpwL\n3FtbcWqLiPgi8ClgM3AXxTn+ceADwC9HxIcz8w3DoCaN3wfeTnEtfgE49Y3+OCI+AHwHGAC+BWwB\nfgH4U2AFxXv6pOTOrjWIiPuAlcBVmXnzsOM3AB8H/jIzP1pXfTp4EXE+MAf4h8wcHHb8GOAR4Djg\n4sz8Tk0lqs0iIoB/AhYD3wU+AVyRmV+vtTAdtIi4Avgr4BvAlZm5a0T/tMzcXUtxaovy2rwBeBn4\nicx8aVjfecADwLrMPLGmEvUWlOfsBeBZ4D0UA2rfzMwPjfK33eXf9QArMvPfy+MzKc772cCvZubt\nFZX/lnh7v2LlaPxKYD3w1RHdnwO2A5dFxJyKS1MbZeYDmfm94SG+PP4i8Bflr+dWXpgm0lXA+cBH\nKF7H6gARMQP4AsVdtdeFeABDfEc4niIT/dvwEA+QmauBPoo7MGqAzFydmc+M8673xRTn9vZWiC+f\nY4BiZB/gtyagzLYwyFfvvLJdNUrI6wN+AMwGzqq6MFWm9aa/p9Yq1DYRsRS4HrgpMx+sux611Xsp\n3uS/CwyWc6g/HRFXO2+6ozwD7ALOiIgjh3dExLuBecA/11GYJtz5ZfuPo/Q9COwAzik/1E86zpGv\n3ill+/QY/c9QjNifDNxfSUWqTER0AR8ufx3toqGGKc/pbRQjtr9Xczlqv58s2wHgMWD58M6IeJBi\nmtzLVRem9snMLRHxaeAG4ImIuItirvxJwEUU0+Z+s8YSNXHGzGWZuSci1gHLgBOBtVUWNh4G+er1\nlO3WMfpbxw+roBZV73qKIHBvZt5XdzFqiz8A3gH8VGb2112M2u6osv0k8ATw08B/UnwX4ssUAy/f\nxqlyjZeZN0bEeuAW4IphXc8Ct46ccqOO0ehc5tQaqSIRcRVwLcUqRZfVXI7aICLOpBiF/5PM/Ne6\n69GEaL1P7gEuysyHMnNbZv4P8IsUX6h7j9Nsmi8iPgXcAdxKMRI/h2JVoueBb5YrF0mTikG+eq1P\ndj1j9LeOv1ZBLapIRPwOcBPFiN55mbml5pJ0kMopNX9LcTv2szWXo4nTuhY/lpnrh3dk5g6gdWft\njCqLUntFxLnAF4F7MvN3M/P5zNyRmf9B8YFtA3BtRLhqTedpdC4zyFfvqbI9eYz+JWU71hx6NUxE\nXAPcDKyhCPEv1lyS2mMuxet4KTAwbBOopFiBCuCvy2M31lalDlbrmj3Wm/irZTurglo0cd5ftqtH\ndpQf2B6hyEzvqLIoVWLMXFYO2CymuCP3fJVFjZdz5KvXukisjIgpI9YYn0ex8cAO4Id1FKf2Kr88\ndT3FnNr3ZuYrNZek9tkJ/M0Yfe+keMN/iOJNwmk3zXU/kMBpI6/ZpdaXX9dVW5barLUiyVhLTLaO\nv275UTXeA8CvARcCfz+i790UKwk+mJk7qy5sPByRr1hmPgesAk4APjai+zqKOXm3ZabrUDdcRHyW\nIsQ/ClxgiO8smdmfmZeP9kOx8yfAN8pj36qzVh24zPwR8D3gxyh23x4SESuBn6UYrXcVqmb7ftle\nGRGLhndExPsoBtkGKHZlV2e5g2IX30sj4l2tg+WGUH9U/vq1OgobD3d2rUG5KdTDFKsh3E2xnNGZ\nFGvMPw2ck5mb66tQBysifp3iC1N7KabVjPZt+PWZeWuFZakiEfGHFNNr3Nm1A0TEsRTX7OMoRugf\no7jd/kGK0fpL3aW52SJiCsX3HX6GYvOnO4EXKabOvR8I4JrMvKm2IjVuEfFBitcnwDEUH7ifZ98H\ntlcy8xMj/v4Oig9rtwNbKJYdPaU8/ivj3Fyqcgb5mkTEccDnKW7lzAc2UVw4rsvMV9/osZr8hgW5\nN/IvmXnuxFejqhnkO09EvI1iqdGLgAVAL0Uo+OPMfKTO2tQeETGN4k75pcBpFFMqtlDMj/9KZq6q\nsTy9BeN4D/5RZp4w4jErgM8AZwMzKZYdvYXi3O+dmEoPnkFekiRJaiDnyEuSJEkNZJCXJEmSGsgg\nL0mSJDWQQV6SJElqIIO8JEmS1EAGeUmSJKmBDPKSJElSAxnkJUmSpAYyyEuSJEkNZJCXJEmSGsgg\nL0mSJDWQQV6SJElqIIO8JEmS1EAGeUmSJKmBDPKSJElSAxnkJUmSpAYyyEuSJEkN9P89nPOVA6wB\njAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAHwCAYAAAD5Keq8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZxWZcH/8c81O9uA7AgiILKD7Bq5ZZqipo9b7mgqttrik9XPrLTHp6ynVbPMBXFNU8syQ63UNDcWRVkFBWTfYViG2a/fHzPcAg2rM3Pue+bzfr18na7rnDPzHRP5cnuu64QYI5IkSZLSW1bSASRJkiTtncVdkiRJygAWd0mSJCkDWNwlSZKkDGBxlyRJkjKAxV2SJEnKABZ3SZIkKQNY3CVJkqQMYHGXJEmSMoDFXZIkScoAFndJkiQpA1jcJUmSpAyQk3SAdBFCWAgUAosSjiJJkqTGrQewKcbYc39usrh/qLBZs2Zt+/fv3zbpIJIkSWq85syZw7Zt2/b7Pov7hxb179+/7bRp05LOIUmSpEZsxIgRvPnmm4v29z6fcZckSZIygMVdkiRJygAWd0mSJCkDWNwlSZKkDGBxlyRJkjKAxV2SJEnKABZ3SZIkKQNY3CVJkqQMYHGXJEmSMoDFXZIkScoAFndJkiQpA1jcJUmSpAxQJ8U9hHBuCOG2EMLLIYRNIYQYQnhwL/eMCSH8LYSwPoRQHEJ4J4TwtRBC9h7uOT2E8GIIoSiEsCWE8EYI4bK6+BkkSZKkdJZTR1/nBuAIYAuwFOi3p4tDCGcCTwAlwKPAeuDTwC+AjwPn1XLPl4HbgHXAg0AZcC4wMYQwOMb4jTr6WSRJkqS0U1ePynwd6AMUAl/Y04UhhELgLqASOD7GeGWM8TpgKPAacG4I4YJd7ukB/JTqgj8yxvilGOPXgSHA+8B/hxA+Vkc/iyRJkpR26qS4xxhfiDHOjzHGfbj8XKAD8EiMceoOX6OE6k/u4T/L/xVAPvDrGOOiHe7ZAPywZvj5A4wvSZKkJub1Bet4f82WpGPsl7p6VGZ/nFBzfKaWcy8BxcCYEEJ+jLF0H+6ZtMs1exRCmLabU3t8vEeSJEmNw6K1W/ncA9OoqorceuEwPtGvY9KR9kkSu8r0rTnO2/VEjLECWEj1Hyh67eM9K4CtQLcQQvO6jSpJkqTGZEtpBePvn0rRtnI2l1Zww5MzKSmvTDrWPkniE/fWNcei3ZzfPt9mP+9pUXNd8Z6+eYxxRG3zNZ/ED9/TvZIkScpcVVWRax+dzvzV1Y/I5OVk8dtLhlOQu9tNDdNKOu7jHmqO+/K8/Ee5R5IkSU3Ir/45n+dmr0qNbzl7MEO6tdnDHeklieK+/VPz1rs5X7jLdftzz6aPkEuSJEmN1DMzV/Krf85Pja86uidnD++WYKL9l0Rxf7fm2GfXEyGEHKAnUAEs2Md7ulD9mMzSGOMeH5ORJElS0/Puys1c+4fpqfExh7fn22Mzb1+SJIr78zXHU2o5dyzQHHh1hx1l9nbP2F2ukSRJkgDYWFzG+PunUlxWvQC1e9vm3HbhMHKy0/GJ8T1LIvHjwFrgghDCyO2TIYQC4Oaa4W93uedeoBT4cs3LmLbfcxBwfc3wjnrKK0mSpAxUUVnFlx9+i8Xrqx/KaJGXzd2XjaRN87yEkx2YOtlVJoTwX8B/1Qw71xw/FkKYWPO/18YYvwEQY9wUQhhPdYF/MYTwCNVvRD2D6m0fHwce3fHrxxgXhhCuA24FpoYQHgXKqH6ZUzfgZzHG1+riZ5EkSVLjcMukufz7vbWp8c/PH0qfTq0STPTR1NV2kEOBy3aZ68WHe7F/AHxj+4kY45MhhOOA7wDnAAXAe8C1wK21vYE1xnhbCGFRzdcZR/V/LZgN3BBjvK+Ofg5JkiQ1Ak9MW8rd/16YGn/1k4dz8sDOe7gj/dVJcY8x3gjcuJ/3vAKcup/3PAU8tT/3SJIkqWl5e8lG/t+fZqTGnxrQia9+8vAEE9WNzHsqX5IkSdqN1ZtL+NwD0yirqAKgT6eW/Pz8oWRlhb3cmf4s7pIkSWoUSisq+cKDb7JyUwkArZvlcte4kbTMr6unw5NlcZckSVLGizHy/T/PYtoHGwDICvDri4ZxaLsWCSerOxZ3SZIkZbwHX/+AR6YsSY2vP7U/xxzeIcFEdc/iLkmSpIz2+oJ13PTU7NT4rGFdufLongkmqh8Wd0mSJGWspRuK+eJDb1JRVb2b+JBurfnR2YMJIfMXo+7K4i5JkqSMtK2skqvvn8b6rWUAtG+Zz+8uHUFBbnbCyeqHxV2SJEkZJ8bIdY+/zewVmwDIzQ7ccclwurRulnCy+mNxlyRJUsa5418L+Os7K1LjH5w5iJE92iaYqP5Z3CVJkpRRXpi7mp88Ozc1vuSo7lw4unuCiRqGxV2SJEkZ4/01W/jKI28Rq9eiMrpnW753+sBkQzUQi7skSZIywqaScsbfP5XNJRUAHNy6gN9cPJy8nKZRaZvGTylJkqSMVlkV+doj01mwZisABblZ3DluJO1b5iecrOFY3CVJkpT2fv73d3l+7urU+MfnDGFQ19YJJmp4FndJkiSltb++s5zbX3g/Nf78cYdx5tCuCSZKhsVdkiRJaWv28k1c99g7qfHxfTtw3cl9E0yUHIu7JEmS0tL6rWWMv38q28orAejZvgW/umAY2Vkh4WTJsLhLkiQp7ZRXVvHFh6axbOM2AFrm53DXuBG0bpabcLLkWNwlSZKUdv736Tm8vmA9ACHAL88fSu+OrRJOlSyLuyRJktLKH6YsYeKri1Lj/z6pDycO6JRcoDRhcZckSVLaeHPxBm54cmZqfOrgznzpE70TTJQ+LO6SJElKC6s2lfD5B6ZRVlkFQL/Orfi/c48ghKa5GHVXFndJkiQlrqS8kqsfmMbqzaUAHNQ8l7vGjaRFfk7CydKHxV2SJEmJijHynT/N5O0lGwHIzgrcftFwDmnbPOFk6cXiLkmSpETd+8oinnhzaWp8w2n9GdO7fYKJ0pPFXZIkSYl55b21/O/f5qTG543oxuVjeiQXKI1Z3CVJkpSIxeuK+dLDb1JZFQEYekgbbj5rkItRd8PiLkmSpAa3tbSCqx+YysbicgA6tsrnd5eOID8nO+Fk6cviLkmSpAYVY+Qbj73N3JWbAcjLzuKOS0fQqbAg4WTpzeIuSZKkBvXr599j0syVqfHNZw1iePeDEkyUGSzukiRJajB/n72Kn/19Xmp8+ZgefGbkIQkmyhwWd0mSJDWI+as28/VHp6fGH+vVju+c1j/BRJnF4i5JkqR6V1Rczvj7p7KltAKAbgc14/aLh5ObbR3dV/6dkiRJUr2qrIpc88hbLFpXDECz3GzuGjeSti3yEk6WWSzukiRJqlc/eWYuL81bkxr/9Lwj6N+lMMFEmcniLkmSpHrz5+nL+N1LC1LjL3+iN6cN6ZJgosxlcZckSVK9mLG0iG8+/k5qfGL/jlx7Up8EE2U2i7skSZLq3JrNpVz9wFRKK6oAOKxDC35x/lCyskLCyTKXxV2SJEl1qqyiii8+NI0VRSUAtCrI4a5xI2lVkJtwssxmcZckSVKduumpWUxZtAGAEODWC4fRq0PLhFNlPou7JEmS6sxDb3zAQ28sTo2/eXI/PtG3Y4KJGg+LuyRJkurElEXr+f6fZ6XGnz7iYD5/XK8EEzUuFndJkiR9ZMs3buMLD06joioCMPDgQn5yzhBCcDFqXbG4S5Ik6SMpKa/k6gemsnZLGQDtWuRx57iRNMvLTjhZ42JxlyRJ0gGLMfLtJ95h5rJNAORkBX5z8XC6tmmWcLLGx+IuSZKkA3bXywt4cvry1Pj7ZwzkyF7tEkzUeFncJUmSdED+NW8Nt0yamxpfOPoQLjmye4KJGjeLuyRJkvbborVbuebhN6lZi8qIQw/ipjMGuRi1HlncJUmStF82l5Rz1f1T2VRSAUDnwgJ+e8lw8nKslvXJv7uSJEnaZ1VVka8/+jbvrd4CQF5OFneOG0HHVgUJJ2v8LO6SJEnaZ7/853z+MWdVanzL2YMZ0q1NgomaDou7JEmS9skzM1dw6z/np8ZXHd2Ts4d3SzBR02JxlyRJ0l7NXbmJa//wdmp8zOHt+fbYfgkmanos7pIkSdqjDVvLGH//VIrLKgHo3rY5t104jJxsq2RD8u+2JEmSdquisoov//5NlqzfBkCLvGzuvmwkbZrnJZys6bG4S5Ikabd++Le5vPLeutT45+cPpU+nVgkmaros7pIkSarV49OWMuGVhanx1048nJMHdk4wUdNmcZckSdJ/mL5kI9f/aUZq/KkBnfjKCYcnmEgWd0mSJO1k9aYSPvfAVMoqqgDo06klPz9/KFlZIeFkTZvFXZIkSSmlFZV8/sFprNpUCkDrZrncNW4kLfNzEk4mi7skSZIAiDHyvSdn8ebijQBkBfj1RcM4tF2LhJMJLO6SJEmq8cDrH/Do1CWp8fWn9ueYwzskmEg7srhLkiSJ195fx01PzU6NzxrWlSuP7plgIu3K4i5JktTELVlfzJcefpPKqgjAkG6t+dHZgwnBxajpJNHiHkI4LYTwXAhhaQhhWwhhQQjhsRDCx3Zz/ZgQwt9CCOtDCMUhhHdCCF8LIWQ3dHZJkqTGYGtpBVc/MI31W8sAaN8yn99dOoKCXOtVukmsuIcQfgz8FRgOPAP8CngTOBN4JYRwyS7Xnwm8BBwL/Am4HcgDfgE80nDJJUmSGoeyiio+/+A05qzYBEBuduCOS4bTpXWzhJOpNons6xNC6Ax8A1gFDIkxrt7h3CeA54EfAA/WzBUCdwGVwPExxqk189+tufbcEMIFMUYLvCRJ0j6oqopc9/jbvDx/bWru5v8axMgebRNMpT1J6hP3Q2u+9xs7lnaAGOMLwGZgxyXM59aMH9le2muuLQFuqBl+oV4TS5IkNRIxRm5+eg5/nr48Nfe1Ew/n/FHdE0ylvUmquM8HyoDRIYT2O54IIRwLtAL+scP0CTXHZ2r5Wi8BxcCYEEJ+PWSVJElqVH730gImvLIwNb74yO589ZOHJ5hI+yKRR2VijOtDCN8Cfg7MDiE8CawDDgPOAP4OfG6HW/rWHOfV8rUqQggLgYFAL2DOnr53CGHabk71268fQpIkKQM9NnUJt0yamxqfMrAzPzhzkDvIZIDE3l0bY/xlCGERMAEYv8Op94CJuzxC07rmWLSbL7d9vk2dhpQkSWpEnp+7im//cUZqfGTPtvzygqFkZ1naM0GSu8p8E3gcmEj1J+0tgBHAAuChEMJP9ufL1Rzj3i6MMY6o7S9g7t7ulSRJylTTPtjAFx/6cK/2/l0KueuykW77mEESKe4hhOOBHwN/iTFeG2NcEGMsjjG+CZwFLAP+O4TQq+aW7Z+ot/7PrwZA4S7XSZIkqcZ7qzdz5X1TKCmvAqDbQc2477OjKCzITTiZ9kdSn7ifXnN8YdcTMcZiYDLV2YbVTL9bc+yz6/UhhBygJ1BB9af1kiRJqrGiaBvj7pnMxuJyANq2yOP+K0bTsbAg4WTaX0kV9+27v3TYzfnt82U1x+drjqfUcu2xQHPg1Rhjad3EkyRJynwbi8sYd89klheVANA8L5t7Lx9Frw4tE06mA5FUcX+55nh1CKHrjidCCGOBjwMlwKs1048Da4ELQggjd7i2ALi5Zvjbek0sSZKUQbaVVXLVfVOZv3oLADlZgTsuGcERh7iXR6ZKaleZx6nep/1EYE4I4U/ASqA/1Y/RBODbMcZ1ADHGTSGE8TX3vRhCeARYT/XWkX1r5h9t8J9CkiQpDVVUVnHN799k6gcbUnM/+8wRHNtndw87KBMktY97VQjhVOBLwAVUL0htTnUZ/xtwa4zxuV3ueTKEcBzwHeAcoIDqrSOvrbl+rzvKSJIkNXYxRq7/0wz+MefDnbW/e/oAzhzadQ93KRMkuY97OfDLmr/29Z5XgFPrLZQkSVKG++lz7/KHqUtT488fdxhXHt0zwUSqK4nt4y5JkqS6NfGVhdz+wvup8TnDu/GtU/ru4Q5lEou7JElSI/DU28u56a+zU+MT+nXklnMGE4JvRW0sLO6SJEkZ7t/z13LtH6azfcXfsO5tuP2i4eRmW/UaE//flCRJymAzlxXxuQemUl5Z3doP69CCCZeNolledsLJVNcs7pIkSRlq0dqtXH7vZLaWVQLQubCA+688koNa5CWcTPXB4i5JkpSBVm8uYdyEyazdUv2i+cKCHO6/cjRd2zRLOJnqi8VdkiQpw2wuKefyCVNYvL4YgPycLCZcPoo+nVolnEz1yeIuSZKUQUorKvncA9OYvWITANlZgdsvGs7IHm0TTqb6ZnGXJEnKEJVVkWsffZtX31+XmvvRWYM5cUCnBFOpoVjcJUmSMkCMkZuemsXTM1ak5q47uS+fGXVIgqnUkCzukiRJGeD2F97j/tc+SI0vH9ODLx5/WIKJ1NAs7pIkSWnukcmL+elz81Lj04Z04XunD/CtqE2MxV2SJCmNPTdrJdf/aUZq/PHe7fj5Z44gK8vS3tRY3CVJktLUlEXrueb3b1FV/VJUBnUt5I5LRpCf41tRmyKLuyRJUhp6d+Vmrpw4hdKKKgAObdecey8fTauC3ISTKSkWd0mSpDSzdEMx4ya8waaSCgDat8zn/itG06FVfsLJlCSLuyRJUhpZv7WMcRMms2pTKQAt83OY+NlRHNquRcLJlDSLuyRJUpooLqvgiolTWLBmKwB52VnceekIBnVtnXAypQOLuyRJUhoor6ziiw+9yfQlGwEIAX5x/lDG9G6fcDKlC4u7JElSwqqqIt96/B1efHdNau7GTw/ktCFdEkyldGNxlyRJStiPn5nLH99alhpfc0JvLhvTI7lASksWd0mSpATd/fICfvfSgtT4glGHcO1JfRJMpHRlcZckSUrIk28t4+an56TGJw3oxM3/NYgQfCuq/pPFXZIkKQH/mreGbzz2dmo8qsdB3HbhMHKyrWeqnf9kSJIkNbDpSzbyhQenUVEVAejbqRV3jxtFQW52wsmUzizukiRJDej9NVu4YuIUissqAejaphn3XTGa1s1zE06mdGdxlyRJaiCrNpUw7p7JrN9aBsBBzXO574rRdG5dkHAyZQKLuyRJUgMo2lbOZRMms2zjNgCa5WYz4fJR9O7YMuFkyhQWd0mSpHpWUl7J+PunMnflZgCyswK/uWQ4w7oflHAyZRKLuyRJUj2qrIp89ZG3mLxwfWruJ+cM4RN9OyaYSpnI4i5JklRPYozc8ORMnp21KjV3/an9OGdEtwRTKVNZ3CVJkurJL/8xn99PXpwajz+mJ1cfe1iCiZTJLO6SJEn14IHXP+BX/5yfGp81rCv/b2z/BBMp01ncJUmS6tjfZqzge3+emRof16cDPzl3CFlZIcFUynQWd0mSpDr02vvr+Noj04nVL0XliG6t+c3Fw8nNtnbpo/GfIEmSpDoye/kmrr5/KmWVVQD0at+CCZePokV+TsLJ1BhY3CVJkurAkvXFXHbvZDaXVgDQsVU+910xmnYt8xNOpsbC4i5JkvQRrd1SyqX3vMGazaUAtCrI4b4rRnNI2+YJJ1NjYnGXJEn6CLaUVnDFxCksWlcMQF5OFnePG0n/LoUJJ1NjY3GXJEk6QGUVVXzhwWm8s7QIgKwAt104jCN7tUs4mRoji7skSdIBqKqKfOOxt3l5/trU3M3/NZiTB3ZOMJUaM4u7JEnSfooxcvPTc/jL28tTc9ee1IeLjuyeYCo1dhZ3SZKk/fS7lxYw4ZWFqfGlRx3KNSf0TjCRmgKLuyRJ0n54bOoSbpk0NzUeO6gzN54xkBB8K6rql8VdkiRpHz0/dxXf/uOM1PioXm35xflDyc6ytKv+WdwlSZL2wbQPNvDFh96ksioC0L9LIXeOG0lBbnbCydRUWNwlSZL2Yv6qzVwxcQol5VUAHNK2Gfd9dhSFBbkJJ1NTYnGXJEnag+UbtzFuwmSKtpUD0K5FHvdfcSQdCwsSTqamxuIuSZK0GxuLy7hswmRWFJUA0CIvm4mfHU3P9i0STqamyOIuSZJUi21llVx531Tmr94CQG524I5LRzC4W+uEk6mpsrhLkiTtoqKyimt+/ybTPtiQmvvZZ4ZyzOEdEkylps7iLkmStIMYI9f/aQb/mLM6Nfe90wdwxhEHJ5hKsrhLkiTt5P+efZc/TF2aGn/h+MO44uieCSaSquUkHUCSJCkdxBj52XPz+M2L76fmzhvRjW+e3DfBVNKHLO6SJKnJizHyo0lzufOlBam5T/bryI/OHkwIvhVV6cHiLkmSmrQYIzc9NZuJry5KzZ3QryO3XzycnGyfKlb6sLhLkqQmq6oq8t0/z+ShNxan5j41oBO/vmg4eTmWdqUXi7skSWqSKqsi/++P7+y0EPW0IV345flDyfWTdqUhi7skSWpyKiqruO7xd/jTW8tSc2cN68r/nTvEx2OUtizukiSpSSmvrOJrj07n6XdWpObOG9GNW84ZQnaWC1GVvizukiSpySirqH4j6rOzVqXmLjqyOzefOYgsS7vSnMVdkiQ1CSXllXzpoTf559wP34h6+ZgefP/TA9zyURnB4i5Jkhq9kvJKxt8/lZfnr03NXX1sL/7f2H6WdmUMi7skSWrUissquHLiVF5bsC4196VPHMY3PtXX0q6Mkviy6RDCMSGEJ0IIK0IIpTXH50IIp9Zy7ZgQwt9CCOtDCMUhhHdCCF8LIWQnkV2SJKW3LaUVXD5hyk6l/esn9rG0KyMl+ol7COEG4H+AtcBfgRVAe2AYcDzwtx2uPRN4AigBHgXWA58GfgF8HDivAaNLkqQ0t6mknMsmTOatxRtTc988pS9fPL53gqmkA5dYcQ8hnEd1af8HcHaMcfMu53N3+N+FwF1AJXB8jHFqzfx3geeBc0MIF8QYH2mo/JIkKX1tLC5j3ITJvLO0KDV3w2n9ueqYXgmmkj6aRB6VCSFkAT8GioGLdi3tADHG8h2G5wIdgEe2l/aaa0qAG2qGX6i/xJIkKVOs31rGRXe9sVNp/8GZAy3tynhJfeI+BugJPA5sCCGcBgyi+jGYyTHG13a5/oSa4zO1fK2XqP4DwJgQQn6MsbSeMkuSpDS3ZnMpF9/9OvNWbQEgBPjhWYO5cHT3hJNJH11SxX1UzXEV8CYweMeTIYSXgHNjjGtqpvrWHOft+oVijBUhhIXAQKAXMGdP3ziEMG03p/rtW3RJkpSOVm0q4aK7Xuf9NVuB6tL+k3OGcN7IQxJOJtWNpHaV6Vhz/DzQDDgRaEX1p+7PAscCj+1wfeuaYxG12z7fpm5jSpKkTLB84zbO/91rqdKenRX45flDLe1qVJL6xH379o2B6k/W364ZzwohnEX1J+vHhRA+VstjM7XZvp9T3NuFMcYRtX6B6k/ih+/D95IkSWlkyfpiLrr7dZas3wZATlbg1guHcergLgknk+pWUp+4b6g5LtihtAMQY9xG9afuAKNrjts/UW9N7Qp3uU6SJDUBi9Zu5fzfvZYq7bnZgd9cPNzSrkYpqeL+bs1x427Oby/2zXa5vs+uF4YQcqhe6FoBLKirgJIkKb29t3oL59/5GsuLSgDIy8nizktH8qmBnRNOJtWPpIr7S1QX7cNDCHm1nB9Uc1xUc3y+5nhKLdceCzQHXnVHGUmSmoZ5qzZzwZ2vs2pT9W/9BblZ3HPZSD7Rr+Ne7pQyVyLFPca4luq3n7YGvrfjuRDCScDJVD/2sn37x8epfrvqBSGEkTtcWwDcXDP8bT3HliRJaWD28k1ccOfrrN1SXdqb52Vz7+WjOebwDgknk+pXYm9OBa4FjgS+E0I4FpgMHAqcRfUbUsfHGDcCxBg3hRDGU13gXwwhPAKsB86geqvIx6n+g4AkSWrEZiwt4pJ73qBoW/V7Glvm5zDxs6MY2aNtwsmk+pdYcY8xrg4hHEn1m0/PAo4CNgNPAz+KMb6+y/VPhhCOA74DnAMUAO9R/QeAW2OMe91RRpIkZa43F2/gsgmT2VxSAUCrghzuv2I0w7oflHAyqWEk+Yk7Mcb1VBfva/fx+leAU+s1lCRJSjtTFq3n8gmT2VpWCUCb5rk8cMWRDO62uw3npMYn0eIuSZK0N6+9v44rJk5hW3l1aW/bIo8HrzySAQcX7uVOqXGxuEuSpLT18vw1jL9/KiXlVQC0b5nPw+OPpE+nVgknkxqexV2SJKWlF+au5nMPTqOsorq0dyrM5+HxR3FYh5YJJ5OSYXGXJElp59lZK/nyw29SXlm998TBrQt4ePxR9GjfIuFkUnIs7pIkKa08/c4KvvrIW1RUVZf2Q9o24+GrjuKQts0TTiYly+IuSZLSxp+nL+Prj06nprPTs30LHrrqSA5u0yzZYFIasLhLkqS08NjUJXzziXfY/maWwzq04OHxR9GpsCDZYFKasLhLkqTEPfzGYq7/04zUuG+nVjx41ZF0aJWfYCopvVjcJUlSou57dRHf/8us1HhAl0IevOpI2rbISzCVlH4s7pIkKTF3v7yAm5+ekxoP6daa+68YTZvmlnZpVxZ3SZKUiNtfeI//e/bd1Hh49zZMvGI0hQW5CaaS0pfFXZIkNagYI7/653x++Y/5qbnRPdoy4bOjaJlvNZF2x18dkiSpwcQY+b9n3+U3L76fmhtzWDvuvmwkzfOsJdKe+CtEkiQ1iBgj//v0HO7+98LU3LF9OnDnpSMoyM1OMJmUGSzukiSp3sUYufEvs7jvtQ9Sc5/s15HbLx5uaZf2kcVdkiTVq6qqyHeenMnvJy9OzZ08sBO3XTicvJysBJNJmcXiLkmS6k1lVeRbT7zD49OWpuZOH9KFX5w/lNxsS7u0PyzukiSpXlRUVvHfj73Nn6cvT82dPawrPzl3CDmWdmm/WdwlSVKdK6+s4muPTOfpGStSc58Z2Y0fnT2E7KyQYDIpc1ncJUlSnSqtqOSah9/iudmrUnMXH9md/zlzEFmWdumAWdwlSVKdKSmv5AsPTuOFd9ek5i4f04Pvf3oAIVjapY/C4i5JkurEtrJKrn5gKi/PX5ua+9yxvfj22H6WdqkOWNwlSdJHtrW0givvm8LrC9an5q45oTfXntTH0i7VEYu7JEn6SDaXlPPZe6cw9buhWsEAACAASURBVIMNqblrT+rDVz55eIKppMbH4i5Jkg5Y0bZyLpswmelLNqbmvnVKP75w/GEJppIaJ4u7JEk6IBuLy7j0nsnMWFaUmrvhtP5cdUyvBFNJjZfFXZIk7bd1W0q5+O43mLtyc2ruf84cyKUf65FcKKmRs7hLkqT9snpzCRff9QbzV28BIAT40VmDuWB094STSY2bxV2SJO2zlUUlXHTX6yxYuxWArAD/d+4RnDOiW8LJpMbP4i5JkvbJso3buOiu1/lgXTEA2VmBn3/mCM4c2jXhZFLTYHGXJEl7tWR9MRfe9TpLN2wDICcrcNuFwxg7uEvCyaSmw+IuSZL2aOHarVx01+usKCoBIC87i9svHs5JAzolnExqWizukiRpt95bvYWL7nqd1ZtLAcjLyeJ3l47gE307JpxManos7pIkqVaTF67ncw9MZUNxOQAFuVncPW4URx/ePuFkUtNkcZckSf/h8WlL+X9/fIfyyghA87xsJlw+iqN6tUs4mdR0WdwlSVJKVVXkp8+9y29efD81175lHneNG8mw7gclmEySxV2SJAGwraySrz86nWdmrUzN9e3UinsuH0m3g5onmEwSWNwlSRKwalMJV903lRnLilJzx/ftwG0XDqNVQW6CySRtZ3GXJKmJm7msiKvum8rKTSWpuc9+vAffObU/OdlZCSaTtCOLuyRJTdizs1bytUems628Eqh+G+pNZwzkkqMOTTiZpF1Z3CVJaoJijNz50gJueWYusXrjGFoV5PCbi4dzzOEdkg0nqVYWd0mSmpiyiipueHIGf5i6NDXXvW1zJlw+kt4dWyWYTNKeWNwlSWpCNhaX8fkHp/H6gvWpudE92nLHpSNo2yIvwWSS9sbiLklSE7FgzRauvG8qC9duTc2dM7wbPzx7EPk52Qkmk7QvLO6SJDUBr763ls8/OI1NJRWpuW+e0pcvHHcYIYQEk0naVxZ3SZIauUcmL+aGJ2dSUVW9CrUgN4tffGYoYwd3STiZpP1hcZckqZGqrIrcMmkOd728MDXXsVU+d182kiHd2iSYTNKBsLhLktQIbS2t4KuPTOcfc1al5gZ0KeSey0fSpXWzBJNJOlAWd0mSGpnlG7dx5X1TmbNiU2rupAGd+OX5Q2mR72/9UqbyV68kSY3I9CUbGX//VNZsLk3Nfe64Xnzr5H5kZbkIVcpkFndJkhqJp99ZwbV/mE5pRRUAOVmB/z1rEOeP6p5wMkl1weIuSVKGizFy+wvv8dPn5qXmWjfL5Y5LRvCxw9olmExSXbK4S5KUwUorKvn2EzP401vLUnO92rfgnstH0bN9iwSTSaprFndJkjLUui2lfO6BaUz9YENq7mO92vHbS4bTpnlegskk1QeLuyRJGWj+qs1ccd8Ulqzflpq7YNQh/M9/DSI3OyvBZJLqi8VdkqQM8695a/jyQ2+yubQCgBDg+rH9ueqYnoTgzjFSY2VxlyQpgzzw2iJufGo2lVURgOZ52fzqgmGcNKBTssEk1TuLuyRJGaCisoqbn57DxFcXpea6tC7g7stGMvDg1skFk9RgLO6SJKW5zSXlXPP7t3jx3TWpuSO6teaucSPpWFiQYDJJDcniLklSGluyvpgr75vCvFVbUnOnDu7Mz84bSrO87ASTSWpoFndJktLUtA/Wc/X901i3tSw1d80Jvfn6iX3IynIRqtTUWNwlSUpDf56+jOsef4eyiioA8rKzuOWcwZw9vFvCySQlxeIuSVIaiTHyi3/M59Z/zk/NtW2Rx52XjmBkj7YJJpOUNIu7JElpoqS8km889jZ/fWdFau7wji2557JRdG/XPMFkktJB2rxaLYRwaQgh1vx11W6uOT2E8GIIoSiEsCWE8EYI4bKGzipJUl1bvbmEC+58fafSfszh7Xnii2Ms7ZKANPnEPYRwCHAbsAVouZtrvlxzzTrgQaAMOBeYGEIYHGP8RgPFlSSpTs1ZsYkrJ05heVFJau7Sow7l+58eQE522nzGJilhiRf3UP1u5nupLuR/BP6jgIcQegA/BdYDI2OMi2rmfwBMAf47hPBEjPG1hkktSVLdeH7uKq55+C22llUCkBXg+58eyGVjeiQbTFLaSYc/xn8FOAH4LLB1N9dcAeQDv95e2gFijBuAH9YMP1+PGSVJqlMxRu7590Kuum9qqrS3zM9hwuWjLO2SapXoJ+4hhP7ALcCvYowvhRBO2M2l2+efqeXcpF2ukSQprZVXVvH9v8zi4TcWp+a6HdSMey4bRd/OrRJMJimdJVbcQwg5wAPAYuD6vVzet+Y4b9cTMcYVIYStQLcQQvMYY/Fevu+03Zzqt5cMkiR9ZEXF5Xzx4Wm88t661Nzw7m24c9xI2rfMTzCZpHSX5Cfu3wOGAUfHGLft5drWNcei3ZwvAlrUXLfH4i5JUlIWrd3KFfdNYcGaD58MPXPowfz4nCEU5GYnmExSJkikuIcQRlP9KfvP6mhB6fb3Pse9XRhjHLGbTNOA4XWQRZKk//DGgnV87sFpbCwuT81de1IfrjmhN9X7NEjSnjV4cd/hEZl5wHf38bYioD3Vn6ivq+V8Yc1x00cOKElSHXts6hKu/9MMyiurP1/Kz8nip+cdwaePODjhZJIySRK7yrQE+gD9gZIdXroUge/XXHNXzdwva8bv1hz77PrFQghdqH5MZunenm+XJKkhVVVFfvzMXK57/J1UaW/fMp9Hrj7K0i5pvyXxqEwpcM9uzg2n+rn3f1Nd1rc/RvM88HHglB3mthu7wzWSJKWF4rIKrn30bZ6ZtTI1169zK+6+bCTdDvJNqJL2X4MX95qFqFfVdi6EcCPVxf2+GOPdO5y6F/gm8OUQwr07vIDpID7ckeaO+sosSdL+WFlUwlX3T2Hmsg+f4DyhX0duvXAYLfMTf/ehpAyVEf/2iDEuDCFcB9wKTA0hPAqUAecC3ai7Ra6SJH0kM5cVceV9U1i1qTQ1d+XRPbn+1P5kZ7kIVdKBy4jiDhBjvC2EsAj4BjCO6ufzZwM3xBjvSzKbJEkAz85aydcemc628uo3oWZnBX5w5kAuPvLQhJNJagzSqrjHGG8EbtzD+aeApxoqjyRJ+yLGyO9eWsCPn5lLrNmYuFVBDr+9eARHH94+2XCSGo20Ku6SJGWasooqvvOnGTw2bWlq7tB2zbnnslH07tgywWSSGhuLuyRJB2jD1jI+/+A03li4PjU3umdbfnfJCA5qkZdgMkmNkcVdkqQD8P6aLVwxcQofrPvwFSLnjujGD88aTF5OEq9JkdTYWdwlSdpPr7y3li88OI1NJRWpuW+d0o/PH9eLENw5RlL9sLhLkrQffj95Md99ciYVVdWrUAtys/jl+UM5ZVCXhJNJauws7pIk7YOS8kp++Lc53P/aB6m5ToX53D1uFIO7tU4wmaSmwuIuSdJezF25ia/+fjrvrtqcmhvUtZC7x42ic+uCBJNJakos7pIk7UaMkYmvLuJHk+ZSVlGVmh87qDM/+8wRNM/zt1FJDcd/40iSVIs1m0u57vG3efHdNam5gtwsvnv6AC4a3d1FqJIanMVdkqRdvDB3Ndc9/jZrt5Sl5gZ0KeTWC4fSu2OrBJNJasos7pIk1Sgpr+SWSXOZ+OqinebHH9OTb5zcl/yc7GSCSRIWd0mSgNoXoHZslc/PPnMExxzeIcFkklTN4i5JatJ2twD1xP6d+Mm5Q2jbIi/BdJL0IYu7JKnJcgGqpExicZckNUkuQJWUaSzukqQmxQWokjKVxV2S1GS4AFVSJrO4S5IaPRegSmoMLO6SpEZtdwtQbzhtABcf6QJUSZnD4i5JarRcgCqpMbG4S5IaHRegSmqMLO6SpEbFBaiSGiuLuySpUXABqqTGzuIuScp4LkCV1BRY3CVJGa22Baj9uxRymwtQJTUyFndJUkZyAaqkpsbiLknKOC5AldQUWdwlSRnDBaiSmjKLuyQpI7gAVVJTZ3GXJKU9F6BKksVdkpTGdrcA9aqje3LdKS5AldS0WNwlSWnp3ZWb+crv39ppAWqHVvn87LwjOLaPC1AlNT0Wd0lSWokxct+ri/ihC1AlaScWd0lS2nABqiTtnsVdkpQWXIAqSXtmcZckJcoFqJK0byzukqTEuABVkvadxV2S1OD2tAD1x+cMpl3L/ATTSVJ6srhLkhqUC1Al6cBY3CVJDcYFqJJ04CzukqR65wJUSfroLO6SpHrlAlRJqhsWd0lSvdj9AtSO/PicIS5AlaT9ZHGXJNW5NZtL+ebjb/PCDgtQ83OyuOH0AVziAlRJOiAWd0lSnXIBqiTVD4u7JKlO7G4B6pVH9+SbLkCVpI/M4i5J+shcgCpJ9c/iLkk6YC5AlaSGY3GXJB2Q1ZtK+NYT77gAVZIaiMVdkrRfSisqufeVRdz2z/lsLatMzffvUsitFwzl8E4uQJWk+mBxlyTts+fnruIHT81m0brineZdgCpJ9c/iLknaqwVrtvA/f52902MxAL07tuQHZwxkTO/2CSWTpKbD4i5J2q3NJeX8+vn3mPDKQsorY2q+VUEOXz+xD5d+7FBys7MSTChJTYfFXZL0H6qqIn98axk/fmYuazaXpuZDgPNHHsI3Tu5Le3eMkaQGZXGXJO3k7SUb+f5fZjF9ycad5od3b8NNZwxicLfWCSWTpKbN4i5JAmDN5lJ+8sxcHpu2dKf5jq3yuf7U/pw59GC3eJSkBFncJamJK6uo4r5XF3HrP+ezubQiNZ+XncWVx/TkS5/oTct8f7uQpKT5b2JJasL+NW8NNz01iwVrtu40f2L/jtxw2gB6tG+RUDJJ0q4s7pLUBH2wbiv/89c5/GPOqp3me3VowfdOH8DxfTsmlEyStDsWd0lqQraWVnD7C+9x98sLKausSs23zM/hq588nMvG9CAvx+0dJSkdWdwlqQmIMfLn6cv50aQ5rNpUutO580Z047pT+tKxVUFC6SRJ+8LiLkmN3MxlRdz4l1lM/WDDTvNDD2nDjWcMZOghbRJKJknaHxZ3SWqk1m0p5afPvcsjU5YQP3zpKe1b5vPtsf04e1hXsrLc3lGSMoXFXZIamfLKKh547QN+8Y95bC75cHvH3OzAFR/vyZdP6E2rgtwEE0qSDkQixT2E0A44CzgNGAx0BcqAGcC9wL0xxqpa7hsD3AAcBRQA7wETgNtijJUNk16S0te/56/lpqdmMX/1lp3mj+/bge+dPoBeHVomlEyS9FEl9Yn7ecBvgRXAC8BioBNwNnA3MDaEcF6MH/7H3RDCmcATQAnwKLAe+DTwC+DjNV9TkpqkJeuLufnp2Tw7a+ftHXu0a873Pj2AE/p1SiiZJKmuJFXc5wFnAE/v+Ml6COF6YDJwDtUl/oma+ULgLqASOD7GOLVm/rvA88C5IYQLYoyPNOhPIUkJKy6r4I4X3+eOlxZQVvHhf6hskZfNNZ88nM9+vAf5OdkJJpQk1ZVEinuM8fndzK8MIdwB/C9wPDXFHTgX6ADcv72011xfEkK4Afgn8AXA4i6pSYgx8td3VvDDv81hRVHJTufOHtaVb43tR6dCt3eUpMYkHRenltccK3aYO6Hm+Ewt178EFANjQgj5McbSWq6RpEZj9vJN3PjULCYvXL/T/OCurbnxjIGMOPSghJJJkupTWhX3EEIOMK5muGNJ71tznLfrPTHGihDCQmAg0AuYs5fvMW03p/rtX1pJalgbtpbxs7+/y8NvLKZqh+0d27XI41un9OPcEd3c3lGSGrG0Ku7ALcAg4G8xxmd3mG9dcyzazX3b532LiKRGp6KyiocnL+Znz82jaFt5aj4nK3DZmB585ZOH07qZ2ztKUmOXNsU9hPAV4L+BucCl+3t7zTHu8SogxjhiN99/GjB8P7+vJNWr195fx01PzWLuys07zR9zeHu+/+kB9O7YKqFkkqSGlhbFPYTwJeBXwGzgkzHG9btcsv0T9dbUrnCX6yQpoy3dUMyP/jaXp2es2Gm+e9vm3HBaf04a0IkQfCxGkpqSxIt7COFrVO/FPpPq0r66lsveBUYCfYCdnlGveS6+J9WLWRfUb1pJql8l5ZXc8a/3+e2L71O6w/aOzXKz+fIJvbny6J4U5Lq9oyQ1RYkW9xDCt6h+rn06cFKMce1uLn0euBg4Bfj9LueOBZoDL7mjjKRMFWNk0syV/O/Tc1i2cdtO584cejDfHtuPLq2bJZROkpQOEivuNS9P+gHVn6B/qpbHY3b0OPBj4IIQwm07vICpALi55prf1mdeSaovc1du4qa/zOa1Bet2mh94cCE3njGQUT3aJpRMkpROEinuIYTLqC7tlcDLwFdqeVZzUYxxIkCMcVMIYTzVBf7FEMIjwHqq377at2b+0YZJL0l1Y2NxGb/4+zwefGMxlTvs73hQ81yuO7kf5486hGy3d5Qk1UjqE/eeNcds4Gu7ueZfwMTtgxjjkyGE44DvAOcABcB7wLXArTHGve4oI0npoLIq8vvJi/nZc++yofjD7R2zswKXHnUoXz+xD62bu72jJGlniRT3GOONwI0HcN8rwKl1nUeSGsrkheu58S+zmL1i007zYw5rx/c/PZC+nd3eUZJUu8R3lZGkpmD5xm38aNJcnnp7+U7zXds047un9+fkgZ3d3lGStEcWd0mqRyXlldz98gJuf+F9tpVXpuYLcrP44vG9ufrYXm7vKEnaJxZ3SaoHMUaem72Km5+ezZL1O2/veNqQLlx/an+6tnF7R0nSvrO4S1Ide2/1Zm56ajYvz9/51RT9OrfixjMGclSvdgklkyRlMou7JNWRom3l/Oof87n/tUVU7LC9Y5vmufz3p/py4ahDyMnOSi6gJCmjWdwl6SMqKi7nwTc+YMK/F7Jua1lqPivAxUceyrUn9eGgFnkJJpQkNQYWd0k6QEvWFzPhlYU8OmUJxWWVO507smdbbjxjIP27FCaUTpLU2FjcJWk/zVhaxJ0vL+BvM1bs9MZTgINbF3D9af05bXAXt3eUJNUpi7sk7YOqqsi/5q3hzpcW8NqCdf9xvm+nVow/thdnHHEweTk+xy5JqnsWd0nag9KKSv48fTl3vbSA+au3/Mf5j/dux/hjenFcnw5+wi5JqlcWd0mqRVFxOQ9N/oCJryxi9ebSnc5lZwVOH9KF8cf0YlDX1gkllCQ1NRZ3SdrBnhactsjL5oLR3bni6J6+PEmS1OAs7pLEnhecdirM57Mf78mFo7vTulluQgklSU2dxV1Sk+WCU0lSJrG4S2pyXHAqScpEFndJTYYLTiVJmcziLqnRW7qhmAn/XsQjUxbvdsHpZz/eg24HNU8ooSRJe2dxl9RozVxWxO9eqn3BacdW1QtOLzrSBaeSpMxgcZfUqMQYeXHeGu78lwtOJUmNi8VdUqOwfcHp3S8vYN4qF5xKkhofi7ukjFa0rZyH3nDBqSSp8bO4S8pI2xecPjplMVtdcCpJagIs7pIyysxlRdz50gKedsGpJKmJsbhLSnvbF5ze9dICXn3/Pxec9unUkvHH9OLMoV1dcCpJarQs7pLSVmlFJX+Zvpy7drPgdMxh7bj6WBecSpKaBou7pLSztwWnpw3uwtXHuuBUktS0WNwlpQ0XnEqStHsWd0mJ26cFp6O707q5C04lSU2XxV1SIvZ1wekZQw8mPyc7gYSSJKUXi7ukBrUvC07HH9uL411wKknSTizukhpE0bZyHn5jMfe+stAFp5IkHQCLu6R65YJTSZLqhsVdUp2LMTJjWRF3v7zQBaeSJNURi7ukOhFj5J2lRUyauZJnZq5g0bri/7jGBaeSJB04i7ukA1ZVFZm2eAOTZqzk2VkrWbZxW63XueBUkqSPzuIuab9UVFbxxsL1TJq5gmdnrWLNLgtNt2uRl82nBnbmio/3ZHA3F5xKkvRRWdwl7VVZRRWvvL+WZ2as5LnZK9lQXF7rdYUFOZw0oDNjB3Xm6MPbU5Dr4zCSJNUVi7ukWpWUV/KveWt4ZuZK/jFnFZtLKmq9rl2LPD41sBOnDOrCx3q1Iy8nq4GTSpLUNFjcJaVsLa3ghXdXM2nGSl54dzXFu2zfuF2nwnxOGdiZUwZ1YXTPtmRn+dy6JEn1zeIuNXFF28r555xVTJq5kpfmraG0oqrW67q2acapg6vL+rBD2pBlWZckqUFZ3KUmaP3WMp6btZJJM1fy6vtrKa+MtV7Xq30LThnUmbGDujCoa6E7wkiSlCCLu9RErN5UwrM1Zf31Beuoqr2r069zq1RZ79OppWVdkqQ0YXGXGrFlG7cxacYKnpm5kmmLNxB3U9YHd21dU9Y706tDy4YNKUmS9onFXWpkFq3dmnp76dtLi3Z73YhDD2LsoM6cPLAzh7Rt3oAJJUnSgbC4Sxkuxsj81VuYNGMlk2auYO7KzbVelxXgyJ7tGDu4uqx3Kixo4KSSJOmjsLhLGSjGyKzlm5g0cwWTZq5kwZqttV6XkxUY07s9Ywd15lMDOtGuZX4DJ5UkSXXF4i5liKqqyPSlG3lmZvUn60vWb6v1urycLI49vANjB3XmxP6daN08t4GTSpKk+mBxl9JYZVVkyqL1PDNzJc/MXMnKTSW1XtcsN5tP9OvAKYO6cEK/jrTM95e2JEmNjb+7S2mmvLKK1xesY9LMlTw3ayVrt5TVel2r/Bw+2b8jpwzqwnF9OtAsL7uBk0qSpIZkcZfSQGlFJf+ev5ZJM1fy99mrKNpWXut1bZrn8qkBnRg7qAtjercjP8eyLklSU2FxlxKyraySF99dzaSZK3l+7mq2lFbUel37lvmcPLC6rB/Zqy252VkNnFSSJKUDi7vUgDaXlPP83NU8M3MlL7y7mpLyqlqv69K6IPX20hGHHkR2lm8vlSSpqbO4S/WopLySeas2887SIl6Yu5qX56+lrLL2st69bXPGDurM2MFdOKJba0KwrEuSpA9Z3KU6srW0gjkrNjFzWREzl1cf31u9hYqquNt7endsydhBnTllUGcGdCm0rEuSpN2yuEsHoKi4nFnLi5i5vIhZNSV9wdqtxN139JT+XQo5dVBnxg7uTO+Oreo/rCRJahQs7tJerNlcyqwdCvrM5UW7fflRbXq0a87Arq0Z2q0NnxrYiUPbtajHtJIkqbGyuEs1YoysKCpJPeoyq6akr9pUuk/3Z4XqR18GHdyagV1bM+jgQvofXEhhgW8ulSRJH53FXU1SVVVk8frinR51mbV8E+u31v6yo13lZgf6dm5VXdIPLmRg19b071zoS5AkSVK9sbir0ausiixYs4WZy4uYuay6pM9evonNu9k3fVcFuVn071LIoINbM6hrIQMPbk2fTq3Iy3E/dUmS1HAs7mpUyiqqmLdqc/XC0WWbmLm8iDkrNu12v/RdtcrPYcDBhQzqWl3SBx3cmp7tW/z/9u49yM76ruP4+5vskmwuuy2BlEupgXALpDqWlhaiLVCLVKstLWitUqcjrSgzQKXTztibVB3BmSIXse1YGax2BAELVRmJQsaUYtuRjjqFcGsSLZBIk1A2IZvLhq9//J5Ddo97yIbsnmefk/drZufHPr+zm+/Mw57zOb/zfX4Pfd70SJIk1czgrsYa2bWHNRuHeXhMP/pjG7eye88ktnYBXj2vn+VHD3HqUXtD+usOnccsb3YkSZJmIIO7GmHrjt088szwuItGn3x2Gy+zRfo4rxmcM+6i0eVHD3Hk0Fz3TZckSY1hcNeMs+WFXeNaXR55Zph1m16Y9M8fc+hA1Y9eXTh61BCHL5wzjRVLkiRNP4O7avXs8I5xF40+/MwwT/9ocnukR8Bxh80f1+py6lFDDM1z+0VJktR7GhXcI+K1wOeA84BFwAbgLuCqzHyuztpUvPhisnXnKMMju3l+ZPfecUcZy7FRfvDcdr739DCbtk1uj/TZs4ITFi8oF41WrS7Ljhxk/pxG/S8sSZL0ijUm9UTEUuBBYDFwN/AocDpwOXBeRKzIzM01ltgzdo2+OEHYrr52jJZj29vmd5RjW3eOkpPsO+/kkL5ZLDtiYdWPXtpdTjpiIXP73SNdkiQdvBoT3IE/o4T2yzLzxtbBiLgW+Cjwh8AlNdU2o2Qm23ftGRe69wbs0XFBfKLV8JHde7pW67xDZnPKkYMv9aMvP3qI4xcvoN/tFyVJksZpRHCPiOOAc4H1wE1t058FPgJcFBFXZubkr2Kcwfa8mP8vWA+PjI5f4W5bDW8F8+GR3YxOdruVabBgTh+Dc/sYHOhnaKD/pXFooJ/Buf0MDfSxaMEcTjlqkCWL5jPb7RclSZL2qRHBHTinGldm5rg76WTm1oj4JiXYvwW4r9vFvVLrN73ATaueHLca3grg2yZ5V8/pMHtWMDi3b2/YHhO+S/DuZ3Cgry2Ml6+Fc/u8WZEkSdI0aEpwP6kaH+8w/wQluJ/IPoJ7RDzUYerkV1baK7dt5yi3P/TUtPzuuf2zJgzWrRDeHszH/vf8Q2a7v7kkSdIM05TgPlSNz3eYbx1/VRdqmTJDA523LYyAhXP6GJo3ZpW7FcDn7Q3enVbD5/R5IackSVIvaUpw35fW8vA+G7sz87QJf0FZiX/DVBa1L4cvnMM173v9mMC9d1w4p49Z9n5LkiSp0pTg3lpRH+owP9j2uEaY2z+bX37T6+ouQ5IkSQ3QlKsIH6vGEzvMn1CNnXrgJUmSpEZrSnBfVY3nRsS4miNiIbACGAG+1e3CJEmSpG5oRHDPzO8DK4ElwKVt01cB84Gv9Moe7pIkSVK7pvS4A/w28CBwQ0S8HVgDvBk4m9Ii88kaa5MkSZKmVSNW3OGlVfc3ArdQAvuVwFLgBuCMzNxcX3WSJEnS9GrSijuZ+QPgQ3XXIUmSJHVbY1bcJUmSpIOZwV2SJElqAIO7JEmS1AAGd0mSJKkBDO6SJElSAxjcJUmSpAYwuEuSJEkNYHCXJEmSGsDgLkmSJDWAwV2SJElqgMjMumuYESJi88DAwKHLli2ruxRJkiT1sDVr1jAyMrIlMxft0KbhfwAAB9dJREFUz88Z3CsRsQ4YBNZ3+Z8+uRof7fK/q+7yPB8cPM8HB89z7/McHxzqPM9LgOHMPHZ/fsjgXrOIeAggM0+ruxZNH8/zwcHzfHDwPPc+z/HBoYnn2R53SZIkqQEM7pIkSVIDGNwlSZKkBjC4S5IkSQ1gcJckSZIawF1lJEmSpAZwxV2SJElqAIO7JEmS1AAGd0mSJKkBDO6SJElSAxjcJUmSpAYwuEuSJEkNYHCXJEmSGsDgXpOIeG1E3BwRz0TEzohYHxHXRcSr665NBy4iFkXExRHxtYh4MiJGIuL5iHggIn4jIvzb61ERcVFEZPV1cd31aGpFxE9HxJ0RsaF67t4QESsj4ufqrk0HLiJ+vjqfT1XP22sj4vaIOKPu2jR5EXFBRNwYEd+IiOHq+fiv9/EzZ0bEPRGxJSK2R8R/RcQVETG7W3VPRl/dBRyMImIp8CCwGLgbeBQ4HbgcOC8iVmTm5hpL1IG7EPgCsAFYBfwP8BrgvcCXgXdGxIXpHdB6SkQcA9wIbAMW1FyOplhEfAr4fWAT8A+Uv+/DgJ8EzgLuqa04HbCIuAb4OLAZuItyno8H3g28LyI+mJkvG/40Y3wK+AnKc/FTwMkv9+CIeDdwJ7ADuA3YAvwC8CfACspr+ozgnVNrEBH3AucCl2XmjWOOXwt8FPhSZl5SV306cBFxDjAf+MfMfHHM8SOA7wDHABdk5p01lagpFhEB/DNwLPB3wMeAD2fml2stTFMiIi4E/hb4F+C9mbm1bb4/M3fXUpwOWPXc/DTwQ+DHM/PZMXNnA/cD6zLzuJpK1H6oztlTwJPA2ygLaF/NzF+b4LGD1eOGgBWZ+e/V8bmU834G8CuZeWuXyn9ZflzfZRFxHCW0rwduapv+LPACcFFEzO9yaZpCmXl/Zv792NBeHd8IfLH69qyuF6bpdBlwDvAhyt+xekTV2nYNsB34QHtoBzC0N96PUTLRt8eGdoDMXAVsBQ6vozDtv8xclZlPTPJT7Qso5/bWVmivfscOyso9wG9NQ5mviMG9+86pxpUThLqtwDeBecBbul2Yuqb1Aj9aaxWaMhGxDLgauD4zV9ddj6bcmZRPUu4Bnqv6oD8REZfb+9wzngB2AadHxGFjJyLircBCyqct6j2tXPZPE8ytprxhPzMi5nSvpM7sce++k6rx8Q7zT1BW5E8E7utKReqaiOgDPlh9O9GThBqmOqd/RbmO4XdrLkfT403V+L/Ad4HXj52MiNWU1rcfdrswTY3M3BIRnwCuBR6JiLsove5LgV+ktMH9Zo0lavp0zGWZORoR64BTgeOANd0sbCIG9+4bqsbnO8y3jr+qC7Wo+64GlgP3ZOa9dRejKfEZysWJP5WZI3UXo2mxuBovAdYBPwN8m9Je8XngZ4Hbsf2t0TLzuohYD9wMfHjM1JPALe0tNOoZjcpltsrMPFGNXjXcYyLiMuBKyi5CF9VcjqZARJxOWWX/fGb+W931aNq0toMLysr6fZm5LTMfBs6nXAT3Nttmmi0iPg7cAdxCWWmfD5wGrAW+GhF/XF91qtGMymUG9+5rvXMb6jA/2PY49YCIuBS4HngEODszt9Rckg7QmBaZx4FP11yOptdz1bg2M/9z7ET1KUvr07PTu1qVpkxEnEW5APnrmfk7mbk2M7dn5ncpb86eBq6sNphQb2lULjO4d99j1Xhih/kTqrFTD7waJiKuAP4U+B4ltG+suSRNjQWUv+NlwI4xN11Kyg5RAH9eHbuutio1FVrP2z/qMN8K9gNdqEXT413VuKp9IjO3U7bxnUVpi1Nv6ZjLqgWaYymbSaztZlGd2OPefa0nhXMjYlbbHt8LKRv9jwDfqqM4Ta3qYqergf8A3pGZm2ouSVNnJ/AXHebeQHmBf4DyomAbTbOtprxwnxARh2Tmrrb55dW4vqtVaSq1dgzptOVj63j7uVfz3Q/8KnAe8Ddtc2+l7PS3OjN3druwibji3mWZ+X1gJbAEuLRt+ipKT91XMtN9oBsuIj5NCe0PAW83tPeWzBzJzIsn+gK+Xj3sL6tjt9VZqw5M9bd7G+Wj9M+MnYuId1AuTn0ed4pqsm9U40ci4uixExHxTsqi2g7KXc/VW+6g3CX3/RHxxtbB6gZMf1B9+4U6CpuId06tQUQspfzxLwbupmwv9GbgbEqLzJmZubm+CnWgIuLXKRc47QFuZOLeuPWZeUsXy1KXRMTvUdplvHNqj4iIxZT7bBxPCXnfoewqcz7lorUPZObt9VWoA1HdZOteyo5BW4GvARsprXDvolygeEVmXl9bkZq0iHgP8J7q2yMob67XsvcN2qbM/Fjb4++gvDm7FdhC2Qb0pOr4L03yZk7TzuBek4g4Bvgc5aOZRcAG4C7gKi9cbL4xwe3l/GtmnjX91ajbDO69KSIOpdxJ8XzgaErAewD4o8y0vbHhIqKf8kn4+4FTKC0SWyhv0m7IzJU1lqf9MInX4P/OzCVtP7MC+CRwBjCXsg3ozZRzv2d6Kt1/BndJkiSpAexxlyRJkhrA4C5JkiQ1gMFdkiRJagCDuyRJktQABndJkiSpAQzukiRJUgMY3CVJkqQGMLhLkiRJDWBwlyRJkhrA4C5JkiQ1gMFdkiRJagCDuyRJktQABndJkiSpAQzukiRJUgMY3CVJkqQGMLhLkiRJDWBwlyRJkhrg/wDrzzI1wqPxDgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": { "image/png": { - "height": 250, - "width": 377 - } + "height": 248, + "width": 375 + }, + "needs_background": "light" }, "output_type": "display_data" } @@ -122,9 +94,6 @@ "x = np.arange(0, 11)\n", "y = x**2\n", "\n", - "# In matplotlib, we can make a figure and then plot to it\n", - "# Make a figure\n", - "f = plt.figure()\n", "# To plot, simply pass the x and y data to the plot function\n", "plt.plot(x, y)" ] @@ -135,7 +104,7 @@ "source": [ "Without any other information, matplotlib will add a number of plotting attributes by default.\n", "\n", - "For example, by default we get lines around the plot, tick marks as well as axis number labels. \n", + "For example, by default we get lines around the plot, tick marks, and axis number labels. \n", "\n", "We can customize all of these things, and add more stuff to the plot as well." ] @@ -146,16 +115,15 @@ "source": [ "## Scatter Plot\n", "\n", - "Lets try creating a Scatter plot\n", - "Let's image two groups of data, that we want to plot together on a scatter plot to compare. " + "Next, lets try creating a scatter plot. \n", + "\n", + "To do so, we can simulate two groups of data, that we want to plot together on a scatter plot to compare." ] }, { "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": true - }, + "execution_count": 3, + "metadata": {}, "outputs": [], "source": [ "# Create some Data\n", @@ -170,119 +138,169 @@ "metadata": {}, "source": [ "### Creating a Scatter Plot\n", + "\n", "The 'scatter' command works about the same as the plot command, but makes a scatter plot instead of a line. \n", "\n", - "Here, we're adding another argument, 'c' which specifies the colour to make the points\n", + "Here, we're adding another argument, `color` which specifies the color to make the points. \n", "\n", - "There are lots of optional arguments we can add to 'plot' and 'scatter'" + "Note there are lots of optional arguments we can add to 'plot' and 'scatter', that we will explore more later. " ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 14, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAusAAAH0CAYAAACEkWPuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzt3XuQJWd55/nfU8A6QFYLW4OGCfB0ebS6Vq/H7maQvJrp\ng3TGZQ2e9YAvEbMxgEMqdY8tBhU2GGRjFagkBjxejLqxMNNNtfHIjtj1ZcGXZU2Nj9TVBoGJ6IYw\nKgkkhFsWi1gWIdRYEhdT7/7x5pHqci55eTPzzczvJ6LiqCrrZGfpnJP55Ps+z/Oac04AAAAA4jNT\n9wEAAAAAGI1gHQAAAIgUwToAAAAQKYJ1AAAAIFIE6wAAAECkCNYBAACASBGsAwAAAJEiWAcAAAAi\nRbAOAAAARIpgHQAAAIgUwToAAAAQKYJ1AAAAIFIE6wAAAECkCNYBAACASBGsAwAAAJEiWAcAAAAi\n9ey6D6BKZva3knZJOl3zoQAAAKDdZiWdcc79YJGdBAnWzexnJPUk/bCkfy7pbEm/75x7VY59vVjS\nsqSrJZ0r6RFJH5J0s3PusYKHuuu5z33u919yySXfX3A/AAAAwFj33XefnnrqqcL7CTWy/mvyQfrf\nS/qipIvz7MTMzpd0t6TzJP2JpM9KeqmkRUlXm9kVzrlHCxzn6UsuueT7T548WWAXAAAAwGT79u3T\nqVOnThfdT6ic9V+UdKF8iskvFNjPe+UD9Rucc69wzt3onLtK0rslXSTp7YWPFAAAAGiIIMG6c+4u\n59wDzjmXdx/JqPq8fD757ds2v1XSE5JebWZn5T5QAAAAoEFi6gZzZfK46pzb2LzBOfcNSR+T9DxJ\nl1d9YAAAAEAdYgrWL0oe7x+z/YHk8cIKjgUAAACoXUytG89JHh8fs3348+dP25GZjasgzVX4CgAA\nANQhppF1AAAAAJvENLI+HDk/Z8z24c+/Pm1Hzrl9o36ejLjvzX5oAAAAQPViGln/XPI4Lif9guRx\nXE47AAAA0CoxBet3JY/zZrbluMzsbElXSHpS0ieqPjAAAACgDpUH62b2HDO7OOmr/jTn3IOSViXN\nSnrttqfdLOksSXc4556o5EABAACAmgXJWTezV0h6RfLtC5PHHzWzDyT//VXn3BuT/36RpPskPSQf\nmG92vaS7JR02s37ye5fJ92C/X9JbQhwvAAAA0AShCkx/WNLPbfvZP0u+JB+Yv1FTOOceNLOXSFqW\ndLWkl0t6RNIhSTc75x4LdLwAAABA9IIE6865t0l6W8rfPS3JJmx/WNI1IY4LAAAAaLKYCkwBAAAA\nbEKwDgAAAESKYB0AAACIVEwrmAIAAFRrfV0aDKQzZ6Rdu6R+X5qbq/uogKcRrAMAgO4ZDKTlZenE\niZ3b9u+XlpZ84A7UjDQYAADQLSsr0vz86EBd8j+fn5eOHav2uIARCNYBAEB3DAbSwYPSxsbk39vY\nkA4c8L8P1IhgHQAAdMfy8vRAfWhjQ7rllnKPB5iCYB0AAHTD+vr41Jdx1tb884CaUGAKAJiOjhlo\ng7wpLYMB73fUhmAdADAeHTPQJmfOVPs8IADSYAAAo9ExA22za1e1zwMCIFgHAOxExwy0Ud5ZIGaP\nUCOCdQDATnTMQBvNzfn0rSx6PfLVUSuCdQDAVnTMQJstLUkzKcOfmRnpppvKPR5gCoJ1AMBWRTpm\nALHr96UjR6YH7DMz0tGjpMCgdgTrAICt6JiBtltYkFZXfYrLKL2e337ttdUeFzACrRsBAFvRMQNd\n0O/7L9YQQOQI1gEAW9ExA10yN0dwjqgRrAMAthp2zMhSZErHDAAFMMExHsE6AGCnpSW/4FGa9o10\nzACQE4skT0eBKQBgJzpmACgZiySnw8g6AGC0hQVpdtYveLS2tnN7r+dH1McE6kxrAxgn6yLJu3d3\nd0yAYB0AMF6OjhlMawOYJs8iyV09bxCsAwCmS9kxY2Vl8mjZcFr76FFaWANdVWSR5C7OzpGzDgAI\nIuu0NgueAt3EIsnZEKwDAILIM60NoHtYJDkbgnUAQGFFprUBdAuLJGdDsA4AKOy3fzvf87o6rQ10\nGYskZ0OwDgAo7M//PN/zujqtDXTZcJHkLLq8SDLdYAAAhayvSw89lO+5XZ3Wxhg05+8MFklOj2Ad\nAFBIkVSWrk5rYxua83fOcJHkaR2kWCSZNBgAQEF5U1lmZxk0hVhzvsMWFqTVVZ/iMkqv57d3fU0G\nRtYBAIXkTWV5+cvDHgcaiDXnOy/HIsmdQ7AOACgkb+x0/fVhjwMNxJrzSKRcJLmTSIMBABRCZwfk\nQnN+IBWCdQBAYUtLvhAsja53dkCCNeeBVAjWAQCFDTs7TAvY6eyAp7HmPJAKOesA8qEaCNssLPgO\nL7fc4rMVtuv1/Ig6gTokseY8kBLBOoBs6IeMCejsgNRYcx5IhWC9ZlzQ0CgrK5PbrA37IR89mrkx\nLp+FdqGzQ3Gt/0wMK5OzFJlSmYwOIlivCYOTaJyS+iHzWQC26tRngjXngakoMK0Bi7WhkfL0Q56C\nzwKwVec+E9sqk922zU9/T2UyOoxgvWJZByfpUIUolNAPmc8CsFVnPxMLCzr1zlV96pyebNsmk/Sp\nc3o69U7WnEd3kQZTMRZrQyMV6Yc8Jr+UzwKwVVc/Eysr0sEb+9rY6OtSrauvgXbpjM5olwbq697H\n5zRzo3T0XOJ1dBPBeoWKDE5ST4NaBe6HzGcB2Kqrn4ntswn3ak73aucflLEUBmgV0mAqxGJtaKzA\n/ZD5LABbdfUzUUIpDNA6BOsVYrE2NFbgfsh8FoCtuviZKKEUBmglgvUKsVgbGmvYDzmLCf2Q+SwA\nW3XxM9HV2QQgK4L1CrFYGxptaenp9mpTTemHzGcB2KqLn4kuziYAeRCsVyjw4CRQrW39kMdK0Q+Z\nzwKwVRc/E12cTQDyIFivWMDBSaB6CwvS6qqPEkbp9fz2FP3V+CwAW3XtM9HF2QQgD4L1igUcnATq\n0e9Lx49L99wjHTrk2zMcOuS/P3489ZuWzwKwVdc+E12cTQDyIFivQcDBSaA+c3PSDTdIv/Zr/jHH\nFZTPArBV1z4TXZtNAPIw51zdx1AZMzu5d+/evSdPnqz7UJ62vu4r28+c8Xl4/T6jBugmPgvAVkU+\nE036PK2sbF0YaZThbEJbblLQDfv27dOpU6dOOef2FdkPK5jWbG4u3hMoUCU+C8BWeT4Tg4FfaGhU\n//L9+/1IdmzpMwsL0uysz6hbW9u5vdfzI+qxHTdQFYJ1AABaYNoI9YkT0vx8nCPU/b7/atKMAFAV\ngnUAABpuMJieSiL57QcOSLt3xzlSzQwbsBMFpgAANNzy8vRAfWhjw6ecAGgGRtYBAKQfNNj6+ugc\n9UnW1vzzeI2B+BGsA0DDhAysSy1I5A6gEoNB/ufxcgDxI1gHgIYIHViXVpDYxJYkDXbmTLXPA1At\nctYBoAFWVnzgPC7dYRhYHzuWbn9ZCxJTj96GPlBMtWtXtc8DUC2CdQCIXBmBdSkFiaXdAWCSvJMU\nTG4AzUCwDgCRCx1YFylInIiWJLWYm/PZRVn0euSrA01BsA4AESsjsC5SkDhWaXcASGNpSZpJeUWf\nmfErggJohmDBupm92MyOmdmXzOxbZnbazG4zs+/LuJ+fMLNVM/uimT1lZl8wsz80sx8NdawA0BRl\nBNalFCSWcgeAtPp96ciR6QH7zIwvGCYFBmiOIMG6mZ0v6aSkayR9UtK7JX1B0qKkj5vZuSn38+uS\n/lzSXkl/IemQpFOS/p2kj5nZq0IcLwA0RRmBdSkFibQkqd3CgrS66lNcRun1/PZMnX0A1C5U68b3\nSjpP0g3OufcMf2hmvynpFyW9XdLPT9qBmb1Q0hsl/b+Sfsg595VN266UdKekZUm/F+iYASB6ZQTW\npRQk0pIkCv2+/6LFPdAehYP1ZFR9XtJpSbdv2/xWSQclvdrM3uCce2LCrnbLj/T/9eZAXZKcc3eZ\n2TckvaDo8QJAk5QRWA8LErOkmE8tSKQlSVTm5gjOgbYIkQZzZfK46pzb0gbAOfcNSR+T9DxJl0/Z\nzwOSvi3ppWb2jzZvMLP9ks6W9JcBjhcAGqOsTh/BCxJpSQIApQgRrF+UPN4/ZvsDyeOFk3binPua\npDdL+seS7jWzI2b2DjP7A0mrkv67pP+Y5oDM7OSoL0kXp3k+AMSkjE4fpRQk0pIEAIILEayfkzw+\nPmb78OfPn7Yj59xtkn5KPj3ngKQbJf2spIclfWB7egwAdEFZnT6CFyTSkgQAggtVYBqEmb1J0n+W\ndFjSb0n6svxo+Dsk/b6Z/bBz7k3T9uOc2zdm/yflO80AQKMsLEizs34dobW1ndt7PT9QnTX+DV6Q\nWNaBAkBHhQjWhyPn54zZPvz51yftxMxeJunXJX3QOfdLmzadMrNXyqfZvMHM3uec+0KB4wWARiqz\n00fQgkRakgDIiNPFeCGC9c8lj+Ny0i9IHsfltA/92+Txru0bnHNPmtknJb1S0o/I93AHgE5qTKeP\nxhwogLoMBtLy8ujuVPv3+1KYrk/EhchZHwbX82a2ZX9mdrakKyQ9KekTU/bzPcnjuPaMw59/O89B\nAgAAIB4rK9L8/Pg2sidO+O3HjlV7XLEpHKw75x6U79YyK+m12zbfLOksSXcMe6yb2XPM7OKkP/tm\nf5U8HjSzF23eYGb/Rj7o/6aku4seMwAAAOozGEgHD0obG5N/b2NDOnDA/35XhSowvV4+iD5sZn1J\n90m6TL4H+/2S3rLpd1+UbH9IPsAf+iP5Pur/WtJ9ZvZB+QLTS+RTZEzSjc65RwMdMwAAAGqwvDw9\nUB/a2PA1611NhwkSrDvnHjSzl0halnS1pJdLekTSIUk3O+ceS7GPDTN7ufzo/L+Xz09/nqSvSfqw\npMPOudUQxwsA6Ciq2IDara9nW0FZ8s2l1te7+XEN1rrROfewpGtS/N5p+VHyUdu+I+m25Aux46IH\noCmoYgOikTelZTDoZpgRVZ91NAQXPQBNsrIyOTl2WMV29GiGFaAA5HXmTLXPa7oQ3WDQJZRuA2gS\nqtiA6OzaVe3zmo5gHelx0QPQNHmq2ACUKu/ke1cn7UmDQXqUbmMUahcQK6rYgCjNzfms2Swfz16v\nux9LgnWkw0UP23WldoGbkebqchUb71tEbmnJZ82mGQOcmZFuuqn8Y4oVwTrS6fJFDzuVUbAXW3DR\nlZuRNutiFRvvWzREvy8dOTI9u3Zmxl9Kuvy2JWcd6XTxoofRQtcuDAZ+fnPPHmlx0Q+fLC7673u9\nemofKKRuh65VsfG+RcMsLEirq/5UP0qv57d3vUkTI+tIp2sXPYwXsnYhxpZ6WW9Gdu/u9pBPzLpU\nxcb7Fg3V7/uv2CZXY0KwjnS6dNHDSOvr0qd+b12vOnFCTmNWNhtlXO1CrMEFhdTtkaeKTZL++q+b\nFyXwvkXDzc0172NXFdJgkM7wopdFl0u3W2Rzlson3+lTUlIH6pt3sl2MLfWKFFIjTktLPuk1i6a1\nnuV9C7QawTrSy3LR63rpdoXW16XDh6Vbb/WPIa+/21NgdylQ7UKswUWRQmrEaVjFlkXT+q3zvgVa\njWAd6Q0vetMCdkq3K1F2XeaoLJUzClS7EGtwQSF1O11+efbnNGnkmfct0GoE68iG0u0oVNH0YVSW\nykD+Bsxl3dn2G7dYgwsKqdsp1pvDUHjfAq1GgSmyo3S7VlXUZY7LUrlXc1rTfvVUcNm5WIMLCqnb\nKdabw1B43wKtRrCO/CjdrkUVTR8mDSgua0mrmtezVGDZuViDC9bAbqdYbw5D4X0LtBppMECDVFWX\nOWlA8U71dVBH9N3k9DE2JWZS7ULM3YUopG6fWG8OQ+J9i6YosytCSxGsAw1SVerttAHFY1rQvFZ1\nXL3RbRzT1C7EGlxQSN0+Md8chhLh+5aYDFvEuFp1Q5AGAzRIVam3aa7jd6qvO9XXpVpXXwPt0hm9\n9sZd+ievSlm7MAwupiXg1xEULyxIs7M+h2htbef2Xs9faAjUm2NpyVddp8khi2XkOWtdUCTv28HA\np+uNmgXcv9+/FHx0OibG1aobhGAdaJCqUm+zpMDeqzndqzn1etKt78h4YJEEFyNRSN0uMd8cblck\n2q35fUtMhh1iXa26Qcy5zE3YGsvMTu7du3fvyZMn6z4UIJf1dT9jmNU992S/Tg8G2QYiV1cLnl8J\nilGFwSDOm8OhadGu9MwNRWTRbuXnDDRDr5e9+Pn48dIOp0r79u3TqVOnTjnn9hXZD8E60DBVnvca\nHDcAk8V4c9jwaLfDMRnGqXKEKUKhgnXSYICGqTL1NuYsFSCt0XF5hK1nq+jLWpIinapiexkQUJGu\nCLwxnkawDjRM1am3pG6jqRpV6NjwaLfKmIxzUYO0fUGyihCsAw1Ux4h3jAORwDiNK3Rs+AhkFTFZ\no26+4LV9QbKKEKwDDcWINzBaI5tPNHwEsuyYrHE3X/C6sCBZBQjWgYZjxBvYqpGp3w0fgSwzJmvk\nzRe8LH2Ah5q2IFkFWME0Jiz3BgCFFEn9rlXDRyDLXCQ2z80XIhLratUNQrAeA5bgBYAgiqR+16rM\naLciZcRkjb35wjOGXRGmvTliWJAsUgTrdVtZ8Yl2485Gw0S8Y8eqPS4AaKBGp343fASyjJissTdf\n2Gphwa8L0OuN3t7r+e0UHIxEznqdSMQDgKAanfpddV/WEoTuVNXomy9sRVeE3AjW69TIKigAiFfD\nU79bsRJZyJis0TdfGI2uCJkRrNel4QtgAECMWtF8oiUjkCFissbffAEBEKzXpeELYABArJaWfKlP\nmonLCFO/n8EIZDtuvoCCKDCtC4l4AFAKmk+0S8PrboHCCNbrQiIeAJSG5hPtwc0Xuo40mLqQiAcA\npWpJ6jfUirpbIDeC9bqQiAcAlSD1ux24+UJXEazXKZIqKE58AICm4OYLXUOwXqeaF8AYDHyr91GD\n+/v3+3sJphQBAADqQ4Fp3WqqglpZ8YP647JwTpzw248dC/rPAgAAIANG1mNQcSLeYDB9MF/y2w8c\nkHbvZoQdAACgDgTrMakoEW95OV2avOR/75ZbRgfr5LoDAACUi2C9Y9bXszWgkXybrPX1ZwJxct2B\nfLjBBQBkRbBepxqu3INB/ufNzflc90kpNMNc96NHWWwEGOIGFwCQF8F6HWq8cp85k/955LoD2XGD\nCwAogm4wVau5DcuuXfmflyfXHeiyrDe4eWe+AADtRbBepQiu3HlHunfvzp/rDnQVN7gAgKII1qsU\nwZV7bs5n2mTR60kPPZTv32OkEF1VpJgbAIAhgvWqRHTlXlryi6KmMTMj3XRTsVx3oIuKFHMDADBE\nsF6ViK7c/b505Mj0gH1mxhe99fvFct2BLuIGFwAQAt1gqhLZlXthQZqd9Zk2a2s7t/d6fkR9mOOe\nN9edbjDoqsbd4NIEHgCiRLBelQiv3P2+/0pzjR7mumfJ5On1uNajuxpzg0sTeACIGsF6VSK+cs/N\npQuql5Z8V8k0NbLDXHegqxpxg0sTeACIHjnrVcnbhiWioek8ue5Al2Up5t5j6/qvew5Lt94qHT5c\nfluYCFrJAgCmI1ivUp42LJFZWJBWV/19xCi9nt/OIByQ7gb3Kg10XD19xu3RRbcv+s/94qK0Z4//\nQJUVJEfQShYAMJ055+o+hsqY2cm9e/fuPXnyZH0HMW3aWXpmaDryiJd6NCCdwWB0Mfe1WtERHdSz\nVPH5YH3d3wxkdc89fMgBIKV9+/bp1KlTp5xz+4rsh5z1qmVtwxKxtLnuQNeNKua+9JGBXvm+g7K0\naSi7d4c7LxRpJduSDz2DDQCagmC9DlnasABojS03uL0caSihgvXIWslOEvo0SfMbAE1DsF4nhqaB\nbiqyonGIc0aErWS3KyOopvkNgCaiwBQAqlb3isYRt5KVfFA9Pz/+fmYYVB87ln6fNL8B0FQE6wBQ\ntbrTUCJuJVtWUE3zGwBNRRoM0CKUQTREDGkoZa9ylvPNmCeonjbgX3fWEQAUQbAOtABFcw0TQxrK\nsAl82layaf/tAm/GsoJqmt8AaDLSYICGKyO/FyWLJQ0l9CpnBd+MZaXy1511BABFMLIONFjW/N6Q\nrbpRUNlpKGmFaiUb4M1YVlAdQ9YRAORFsA40WBn5vahIWWkoeRVtJRvgzVhWUB1D1hEA5BUsDcbM\nXmxmx8zsS2b2LTM7bWa3mdn35dhX38w+aGZfTvb1JTP7iJm9PNTxAk1XJL8XkQidhlKXQG/GacHx\npVrX63RYb9Gtep0O61Ktp3peLFlHCGR9XTp8WLr1Vv/ISQ0tF2Rk3czOl3S3pPMk/Ymkz0p6qaRF\nSVeb2RXOuUdT7uu/SPplSV+U9KeSvirpBZL2SXqZpA+HOGag6Siaa4k2rGgc6M04DKq3x/1XaaAl\nLaunnTcEnz5nv+a+vCTNTY7YY8k6QgFU0qOjQqXBvFc+UL/BOfee4Q/N7Dcl/aKkt0v6+Wk7MbMD\n8oH670o66Jz79rbtzwl0vEDjUTTXMk1e0Tjgm3F7UH2tVnREB/UsbchJsk2/6yT98OPplh2NLesI\nGbH8LDqscBpMMqo+L+m0pNu3bX6rpCckvdrMzpqyn++RD+r/TiMCdUlyzn2n6PECbUHRHKIR8M04\nDKpnZvyI+jBQl7YG6lu+T7lCUluyjjqH5WfRcSFG1q9MHledc1s+Sc65b5jZx+SD+cslTfoE/Zh8\nusttkjbM7Cck7ZH0TUmfdM59PMCxoiRNnsHfril/C0VziEbgN+PCgjQ7K53708t61uNhK6jbkHXU\nOVTSo+NCBOsXJY/3j9n+gHywfqEmB+v/Inn8pqRPyQfqTzOzE5J+xjn3/007IDM7OWbTxdOei2za\nlELYtL9lXH7vJBTNoRQlvBn7L1yXHj+xI/VlogzLjjY566hTWH4WCNIN5pzk8fEx24c/f/6U/ZyX\nPP6yfCriv5J0tqQfkrQqab+kP8x/mAitTYvxNPVvWVry6QJpUDSHUoV+MyapDKkD9W3PQ0uUtVIW\n0CAx9VkfnuX/QdJPOudOJ99/xsxeKelzknpm9qPTUmKcc/tG/TwZcd8b6Hg7rU2L8TT5b4mhaI50\nAkgK/2akghoS74MW4VqRX4iR9eHI+Tljtg9//vUp+xlu/9SmQF2S5Jx7UtJHkm9fmvUAEV6eFMJY\nNf1vqatobjDw+96zR1pc9AOli4v++16Pga1OCvlmpIIaEu+DFuBaUVyIkfXPJY8Xjtl+QfI4Lqd9\n+37GBfWPJY/PTXlcKEmbUgjb8rdUXTRHFzWMFerNSAU1JN4HDce1IowQwfpdyeO8mc1s7ghjZmdL\nukLSk5I+MWU/A/lc9Uu37ycxLDj92wDHHI8Gzgu1aTGeNv0tUjVFc01OG0KFir4ZqaCGxPugwbhW\nhFM4DcY596B8AeispNdu23yzpLMk3eGce0LyCxuZ2cVJf/bN+3lI0p9J+qfyK58+zczmJf24/Kj7\nXxQ95ig0eF6oTSmEbfpbqtL0tCE0CBXUkHgfNBTXinBC5KxL0vWSviLpsJl9yMzeYWZ3yq9eer+k\nt2z63RdJuk+j2zi+VtLDkn7TzP7SzH7DzP5I0oclfVfSdc65cV1nmqOprUcSbUohbNPfUoUiaUNA\nZptXSJqkjmVH19elw4elW2/1j7zJyxPz+wAjca0IK0iwnoyuv0TSByRdJukNks6XdEjS5c65R1Pu\n54uS9kn6Lflc90VJL5Mfcb/COffHIY63Vi1Yia1NKYRt+luqQBc1VC62ZUcbPCvaaLG9DzAR14qw\ngrVudM49LOmaFL93WhNa5yaLHr0u+WqfFqzE1qYUwjb9LVUgbQi1iGXZUarl6hXL+wBTca0IK6Y+\n6+3XltYj8imE8/Pp7jtiTyFs/N9S4YWLtCHUqs5lR6mWiwfLz0aPa0VYBOtValHrkRgW4wmlsX/L\nYOBnakbdAO7f7+9CAh8saUPorBbMimIKRuyD4VoRVqgCU6TRsnmhNqUQNu5vqalIeZg2lEWX04bQ\nElTLtRt1CMFxrQiLkfUqtXBeqE0phI35W2qejm982hC6p+iHukWzotiGOoTScK0Ih2C9Si2eF2pT\nCmH0f0vN0/GNTRtC94RKFWvZrCgS1CGUimtFOKTBVIl5IRQVyXR849KG0D0hU8VaOCsKsWpPBbhW\nhMHIetWYF0IREU3HNyZtCN0TesS0xbOindWi7myx41pRHMF61ZgXQhERTsdHnzaUF1eW5gqdKsaC\nDO0T0cBHV7T2WlEB0mDqwLwQ8mI6vnx0hmi2slLFlpamL3c/xKxo/CIc+ADGYWS9LswLIQ+m48tF\nZ4jmK2vElFnRdsk7gPHEE2GPA0iBYL1uzAshC6bjy0NniHYoc8R0YUGanfVpM2trO7f3en5EnfdF\n/PK+Ru98p3T33aUsOgeMQ7AONA1FyuVghcp2KDtVjFnRdsgz8DHEDBsqRrAONE0k0/GtilXoDNEe\nVaWKMSvafFkGPrZjhg0VosAUaKIai5RbWX9ZJM8ZcWE9C6Q1HPhIWzi8Hb3XURFG1oGmqmE6vrX1\nl3SGiFee9zepYkhrWh3CNMywoQIE60DTVTQd3+r6S1pixmcw8HUEo9KT9u+fXOAXSaoYGmI48PEr\nv+ILSLOi93rtWpWWOQJpMABSafXK3LTEjMvKih8ZH1dHMJzCOXZs/D5YzwJZnXVWvucxw1abVqZl\njsDIOoCpWl9/SUvMeIScwqFzC7Jghq1RWpuWOQLBOoCpOrEyN3nOcSijhSadW5AGM2yN0eq0zBFI\ngwEwVSfqL9N2hiDPuTxFpnCAougk1BitTsscgWAdwFSdmR0mz7letNBE3ZaW0rdyZIatFl28pycN\nBsBUnZodLjPPmdzpyToxhYOo0Ukoep1Iy9yGYB3AVJ2svwyZ51ykDWGXdGYKB1Gb1nu91/Mj6nxm\na9HFe3qCdQCpUH+ZU5daFhTVqSkcRI1OQtHq4j09wTqAVJgdzqFrLQuK6uQUDqJGJ6HodPGengJT\nAKlRf5lR11oWhECBH2qyvi4dPizdeqt/bHJBYpt1sWkPI+sAMmF2OKXWryRVEqZwUDFKSpqna2mZ\nBOsAcmHNjBKvAAAgAElEQVR2eIoutiwIhQI/VISSkmbq2j09wToAlKGLLQtCYgoHJctSUnLdddKp\nU9Iv/AJvv1h06Z6eYB0AytDFlgVlYAoHJclSUuKcdPvt/ovUmHh05Z6eYB0AytDFlgVAQ+QpKRki\nNSY+bb+nJ1gHgDLQhhCIVt6SkqEd3VbbPrSLWhGsA0BZutayAGiIEKUhGxvS//VLA/WfTysZlIs+\n6wBQlmHLgml9w9vSsgBoiBClIddqRb/xN/PjZ8+G+TLHjhX/x9BpjKwDwASFZ7e71LIAaIiiH7er\nNNARHdSzxOrEKB/BOgCMEHShlK60LAAaIk9JyWZLWp4eqA8NVycmWEdOBOsAsE1pC6W0vWUB0CBZ\nSko2u1Tr6umEnCRL+6QyVydmEKD1CNYBYJMsC6Uwuw00V9pVMHc8T76VTOpAfSj06sRBp/8QMwpM\nAWCTLAulDGe3ATTTwoK0uupLR9LapQhWJ15Z8dMCFLd2AsE6ACTyLJQynN0G0Ez9vnT8uHTPPdL1\n10s2Zcj8jGpenTjr9F/RpvKoHWkwAJDIe00LPbuN8pDei3Hm5qTbb5f27p0cCw/kU0sy5axL4VJS\n8kz/kQ7TaATrAJDIO0sdcnYb5SC9F2ktLEj33Se9612jt9+rOa1pv3qqYXXiItN/3JU2FmkwAJDI\nO0sdanYb5SC9F1kMBtK73z35d5a1pO+mDaFCrk5cZPoPjUWwDgCJvCOrjMjGi/ReZJUmy+RO9XVQ\nR6YH7KFXJ2b6r5MI1gEgMVwoJYtQs9soB919kEWWLJNjWtC8VnVcY1rJ9Hq+1UymxRimYPqvk8hZ\nB4BNsiyUEnJ2G+GR3ousss6s3Km+7lRfd9y4rlf9kwoql5n+6ySCdQDYJO1CKaFntxEe3X2QVd5s\nkdNnzUk3VPCmGU7/ZbkLZfqv8UiDAYBtpi2UUsbsNsIjvRdZNSLLZGnJjxakwfRfKzCyDgAj9Pv+\ni77czdWIwAtRaUSWCdN/nUOwDgATzM0RnDdVIwIvRKUxWSYLC9LsrK+IXlsbfVA33cSbuSUI1gEA\nrdSYwAtRaUyROdN/nUGwDiAdLghooMYEXohG47JMmP5rPQpMAUw2GPjhxj17pMVFH80sLvrvez1W\nkUHUhoHXtHq8aAIvRIEic8SEkXUA462sTB5eGq7TfvQoVy1Ei/Re5EGWCWJBsA5gtKzrtO/eTbSD\naBF4IS+yTFA3gnUAo+VZp51gHZEj8ALQNOSsA9ipyDrtAAAgGEbWgbI1cd6dddoBAIgCwTpQlsHA\np5KMGqHev9/3lIs1bYR12gEAiAJpMEAZVlZ8l5RxqSTDLirHjlV7XGmxTjsAAFEgWAdCy9pFJcY+\n5azTDgBAFAjWgdDydFGJzXCd9ixYpx0AgODIWQdCKtJFJbZAl3XaASB6TexhgGwI1oGQ2tRFZbhO\n+7SUHtZpB4DKNbmHAbIhDQYIqW1dVBYWpNVVn+IySq/nt197bbXHBQAd1vQeBsgm2Mi6mb1Y0rKk\nqyWdK+kRSR+SdLNz7rGc+3yVpDuSbw84594f4liB0pTdRaWO+U7WaQeAaGTtYbB7NyPsTRckWDez\n8yXdLek8SX8i6bOSXippUdLVZnaFc+7RjPv8AUm/JenvJX1viOMESldWF5UY5jtZpx0AapenhwHB\nerOFSoN5r3ygfoNz7hXOuRudc1dJerekiyS9PcvOzMwk/Y6kRyW9L9AxAuUro4sK850AABXrYYDm\nKhysJ6Pq85JOS7p92+a3SnpC0qvN7KwMu71B0lWSrkmeDzTH0pIvukxjWheVNvRsBwAEUaSHQRnW\n16XDh6Vbb/WP3BSUI0QazJXJ46pzbktE4Zz7hpl9TD6Yv1zS1LeLmV0i6Z2SDjnnTpjZVQGOEahO\nyC4qzHfWhhR9ALGJpYdBKZmZnHTHChGsX5Q83j9m+wPywfqFmhKsm9mz5QtK/07SrwY4NqAeCwvS\n7KwPntfWdm7v9fyI+qSzWZt6tjdIDOUBADBK2T0M0lhZmTwWNczMPHo0ZaMwTrpThQjWz0keHx+z\nffjz56fY15KkH5H0L51zT+U9IDM7OWbTxXn3CWRWtItKm3q2N0TwixAABFRWD4O0gnei4aSbSjSL\nIpnZZfKj6e9yzn287uMBgsnbRSWW+c6OoB0agNgNexhkmXSd1sMgi6CZmZx0UwsRrA9Hzs8Zs334\n86+P20GS/vLf5FNpCq9Z7pzbN+bfOSlpb9H9A5WIYb6zQxpVHkBuJ9BZS0t+sDnN+WpaD4Msgmdm\nNuqkW68QrRs/lzxeOGb7BcnjuJx2yfdRv1DSJZK+aWZu+CXfUUaSjiY/u63wEQNNUPd8Z4c0ph3a\nYOCHyfbskRYX/VV4cdF/3+vRDQjogGEPg2lNx9L0MMgiaCeaxpx04xAiWL8reZw3sy37M7OzJV0h\n6UlJn5iwj29JWhnz9ankdz6afE+KDLqhjJ7tGCm2dmgj0W8fQGJhQVpd9af8UXo9vz1kmnfQzMxG\nnHTjUTgNxjn3oJmtynd8ea2k92zafLOksyT9V+fcE5JkZs+RdL6k7zjnHkz28ZSk60bt38zeJl90\n+rvOufcXPV6gUeqa7+yY6MsDyO0EsE3RHgZZBc3MjP6kG5dQBabXS7pb0mEz60u6T9Jl8j3Y75f0\nlk2/+6Jk+0OSZgP9+0A7hezZjrGiLw8gtxPAGHl7GGQVNDMz+pNuXEKkwSgZIX+JpA/IB+lvkB89\nPyTpcufcoyH+HaCT6pjv7JioywPI7ZyMJRSBSgTNzIz6pBufYK0bnXMPS7omxe+dlmQZ9vs2SW/L\ne1xAK1Q939kxdbdDm4h++6OxkApQue2ZmZdqXX0NtEtndEa7NFBf98qfdyZmZkZ90o1PNH3WAaRQ\n1XxnB0VbHkBu504spALUYpiZ+b8fGOjX3LJ62hlsr2m/brUl/a9H+1vvl7cPNr3mNdJHPxrhSTc+\nBOsAoIjLA8jt3IpiW6BWC1rRtToo04actqZKOEk9ndB+zct0VNK1k2fBLrhA+vznJefG/4PUZIXJ\nWQeANoiyPIDczq3yFNsCCCO5WTbnP4Pbc5qH35tLbpbf+MbJLWcfeMA/XnTR6O3UZEliZB1ALCLJ\nx4+uPIDczmcEX0IRQCZZb5bf9a7pv+ecD9rf/37piSciOOnGh2AdQL0iLRSMqjwg2oT6ilFsC9Qn\nz81yWhsb0h13SMePl7P/hiMNBkB9WJUznbrWF48NxbZAfcpePbRLLWczIlgHUI+shYIdXWb6aVEm\n1FeMYlugPlXc9Hb9PD8GaTAA6sGqnNlFl1BfMYptgfpUcdPLLNhIBOsAqkehYDFRJdRXiGJboD5V\n3PQyCzYSaTAAqlekUBDdtrQ0PXd/qM3FtkDVhjfLZWIWbCSCdQDVo1AQeVFsC9Qny81yVsyCjUWw\nDqB6FAqiCIptgXpkuVl+wxuYBQuEnHUA1aNQEEV1vdgWqMvCgjQ764v+19Z2bu/1fODd70uXXDK9\n6xezYFMRrAOoHoWCyGF0XN7RYlugTmlvlrME9hiLYB1APViVEylFusgtgDQ3y8yCFUawDpSM89MY\nw9xHpkgxwcrK5LfIcJHbo0dJUQeixixYbgTrQEkYDUyBKVJMkHWR2927easAaB+CdaAEjAZmwBQp\nxmCRWwAgWAeCYzQwJ6ZIsQmL3AKAR591ILA8o4EAtmKRWwDwCNaBgIqMBgJ4BovcAoBHsA4ExGgg\nEAaL3AKAR7AOBMRoIBAGi9wCgEewDgTEaCAQxnCR2yxY5BZAG9ENBgiI0UAgHBa5BTqE9r1jEawD\nAQ1HA7MUmTIaCIzGIrdAB7CC4FSkwQCBLS354CENRgOByRYWpNVVf1M7Sq/nt3d+cTGgiVZW/PTZ\nuBGu4QqCx45Ve1yRYWQdCIzRQCAsFrmND68FCmMFwdQI1oESLCxIs7N+waO1tZ3bez0/ot7R8w6Q\nC4vc1o+MBQSTZwXBjr65CNaB7QINGTEaCKBNVlYmD4QOMxaOHiUtCVMUWUGwgxdQgnVgqKQhI0YD\nATQdGQsIqsgKgh28oFJgCkgUuQDABHkyFoCxWEEwE4J1IOuQUd4RAQBooCIZC8BIrCCYCcE6wJAR\nAIxVJGMBGIkVBDMhWEe3MWQEABORsYDghisIZtHhFQQJ1tFtDBkBwERkLKAUrCCYGt1g0O3eggwZ\nAcBEZCygFKwgmBrBepexugVDRgAwxTBjIUvGYIczFpAFKwimQrDeVaxu4TFkBABTLS35S0KaWvyO\nZywgK1YQnIpgvYtY3eIZDBkhElynEDMyFlA6VhAciwLTLqJV4VYUuaBGg4G//9uzR1pc9G+vxUX/\nfa9HLTPisbAgra769+UovZ7f3ubJWKAOjKx3TZFWhW2942XICDUhGw1NQ8YCUD2C9a4p0qqwzWdi\nilxQMbLR0GRkLADVIVjvGloVjseQESqUJxuNYB0AuodgvWtoVTgdQ0YoGdloAIC0KDDtGloVArVj\n4VwAQFoE610zbFWYBa0KgaDIRgMApEWw3kW0KgRqRTYaACAtgvUuGrYqnBaw06oQKAXZaACAtAjW\nu4rVLYDakI0GAEiLbjBdRqtCoDZLS37BozTtG8lGA4DuIlgHrQqBGrBwLgAgDdJgAKAmZKMBAKZh\nZB0AakQ2GgBgEoJ1AIgA2WgAgFFIgwEAAAAiRbAOAAAARIo0mBqRowoAaCQuYEBlCNZrMBhIy8vS\niRM7t+3f7/sv06YNABAdLmBA5QjWK7ayMrmv8okTfqGUo0dp1wYAiEjWCxij70AQBOsVGgymL4Ai\n+e0HDki7dzNAAQCIQJYL2HXXSYcOSX/zNzu3M/oOZEaBaYWWl9MtLS7537vllnKPBwCAVLJcwJwb\nHahLz4y+HzsW7tiAliNYr8j6+ugUv0nW1vzzAACoTZ4L2CTD6ePBINw+gRYjWK9I3nMS5zIAQK3K\nuBAxfQykRrBekTNnqn0eAABBlHUhYvoYSIUC04rs2lXt89BRdF8AEFqZF6LBgHMUMEWwYN3MXixp\nWdLVks6V9IikD0m62Tn3WIrnnyvplZJ+QtL/JOlFkr4t6TOSfkfS7zjnUla3xCdv4TsF80iF3scA\nylLmuYPpY2CqIGkwZna+pJOSrpH0SUnvlvQFSYuSPp4E4tP8rKSjki6T9NeSbpP0x5L2SHq/pD8w\nMwtxvHWYm/MxUxa9HgMOSGFlxXdXGFcARvcFAEXkuYClxfQxMFWonPX3SjpP0g3OuVc45250zl0l\nH7RfJOntKfZxv6SflPRi59x/cM79inPuWkkXS3pY0k9L+qlAx1uLpSVpJuX/8ZkZ6aabyj0etEDW\n5v1ULAPII8sFLAtm/ICpCn/yklH1eUmnJd2+bfNbJT0h6dVmdtak/Tjn7nTO/dn2VBfn3JclvS/5\n9mVFj7dO/b505Mj0893MjF8AjnMYpqJ5P4AqpL2AZcH0MZBKiE/dlcnj6ohA+xuSPibpeZIuL/Bv\nfCd5/IcC+4jCwoK0uurPUaP0en77tddWe1xoIJr3A6jStAvYD/2QlDZbleljILUQBaYXJY/3j9n+\ngPzI+4WSMs/Bm9mzJb0m+fYvUj7n5JhNF2f998vQ7/svGnegkCLN+3mjAchj2gVsZWV6ah7Tx0Am\nIYL1c5LHx8dsH/78+Tn3/075ItMPO+c+knMfUZqbI2ZCATTvB1CXcRewhQVpdtan3K2t7dze6/kR\ndQJ1ILWo+6yb2Q2S3iDps5JenfZ5zrl9Y/Z3UtLeMEcH1Izm/QBixPQxEFSIYH04cn7OmO3Dn389\ny07N7D9JOiTpXkl959zX8h0e0FI07wcQM6aPgSBCFJh+Lnm8cMz2C5LHcTntO5jZ6yW9R9I9kq5M\nOsIA2Izm/QAAtF6IYP2u5HHezLbsz8zOlnSFpCclfSLNzszszfL92T8tH6h/JcAxAu1E834AAFqt\ncLDunHtQ0qqkWUmv3bb5ZklnSbrDOfeEJJnZc8zs4qQ/+xZmdpN8QelJ+dSXrxY9PqDVaN4PAECr\nhSowvV7S3ZIOm1lf0n2SLpPvwX6/pLds+t0XJdsfkg/wJUlm9nOSliV9V9JfSbrBdvZrPe2c+0Cg\nYwbage4LAAC0VpBg3Tn3oJm9RD7YvlrSyyU9Il8gerNz7rEUu/nB5PFZkl4/5nfWJH2g2NECLUT3\nBQAAWilY60bn3MOSrknxe6cl7Rgyd869TdLbQh0P0El0XwAAoFVCFJgCAAAAKAHBOgAAABApgnUA\nAAAgUgTrAAAAQKSCFZgCAAAAlWt5JzSCdQAAADTPYCAtL0snTuzctn+/X+W7BWuMkAYDAACAZllZ\nkebnRwfqkv/5/Lx07Fi1x1UCgnUAAAA0x2AgHTwobWxM/r2NDenAAf/7DUawDgAAgOZYXp4eqA9t\nbEi33FLu8ZSMYB0AAADNsL4+PvVlnLU1/7yGIlgHAABAM+RNaWlwKgzBOgAAAJrhzJlqnxcBWjcC\nAKZqeRtjAE2xa1e1z4sAwToAYKyOtDEG0BR5TzgNPlERrAMARlpZmdwdbdjG+OhR6dprqz02ICbM\nPFVobs6PFGQpMu31Gv2CEKwDAHbI2sZ49+5GD1xlRnAGiZmn2iwt+ZGCNO0bZ2akm24q/5hKRIEp\nAGCHjrUxTm0w8IN0e/ZIi4s+Blhc9N/3eo1uOIGMOrSAZnz6fenIER+ITzIz46f+Gn7HRLAOANii\ng22MUyE4w1DHFtCM08KCtLrq75JH6fX89hbk6JEGAwDYokgb47amgpAWhM3yzDzxfihBv++/Wp6X\nRrAOANiig22MpyI4w1CRmacWxY9xmZtr9f9c0mAAAFt0sI3xRKQFYbMOLqCJmhGsAwC26GAb44kI\nzrAZM0+oGsE6AGCLYRvjLBrexngigjNsxswTqkawDgDYYWlpele0oRa0MZ6I4AybMfOEqhGsAwB2\n6Fgb44kIzrAZM0+oGsE6AGCkDrUxnojgDNsx84Qq0boRADBWR9oYT9Wx1c0xxXDmaVrv/S7MPKF8\nBOsAgKla3sZ4KoIzbLewIM3O+p76a2s7t/d6/qaN9wKKIlhHGF0fdgPQegRn2I6ZJ1SBYB3FDAZ+\nab9RK4bs3+/njrlyAWgJgjOM0vWZJ5SLYB35raxMnhM+ccIneR492v4KNACdQnAGoCp0g0E+g8H0\n5E3Jbz9wgKX8AAAAciBYRz7Ly+naIkj+9265pdzjAQAAaCGCdWS3vj46R32StTX/PAAAAKRGsI7s\n8qa0kAoDAACQCcE6sjtzptrnAQAAdBTBOrLbtava5wEAAHQUwTqyy9s3nX7rAAAAmRCsI7u5Ob/g\nURa9Hk2JAQAAMiJYRz5LS9JMyrfPzIxfgxsAAACZEKwjn35fOnJkesA+M+NXMCUFBgAAIDOCdeS3\nsCCtrvoUl1F6Pb/92murPS4AAICWeHbdB4CG6/f91/q676N+5ozv+tLvk6MOAABQEME6wpibIzgH\nAAAIjDQYAAAAIFKMrAOIAplUAADsRLAOoFaDgbS8LJ04sXPb/v2+SyjNhAAAXUUaDIDarKxI8/Oj\nA3XJ/3x+Xjp2rNrjAgAgFgTrAGoxGEgHD0obG5N/b2NDOnDA/z4AAF1DGgyAWiwvTw/UhzY2pFtu\nIR0GQA0oqEHNCNYBVG59fXzqyzhra/55XCMBVIKCGkSCYB1A5fKmtAwGBOsAwho5cP6Jlcl5esOC\nmqNHWaUbpSNYB1C5M2eqfR4AbDdu4PwqDbSqg3qWUhbU7N7NCDtKRYEpgMrt2lXt8wBgs0mdqJa0\nPD1QHxoW1AAlIlgHULm8g1AMXgEoalInqku1rp5OyGXZ4bCgBigJwTqAys3N+fqsLHo98tUBFDep\nE1VfvqDGsu6U3rIoETnrEaE7FLpkaclPQ6dp3zgzI910U/nHBKDdpnWi2iUKahAfgvUI0B0KXdTv\nS0eOTF8YaWbGN1zgMwCgqGkD4GdEQU3ZGJjMjmC9Zit0h0IGbTvJLSxIs7O+Pmttbef2Xs+PqBOo\nAwhh2gD4QP5k45QxFYaT1FQMTOZHsF6jrMut0x2qu9p8kuv3/VfbbkQAxGfaAPi9mtOa9qunDKu2\nUVAzFQOTxRCs14jl1pFGV05yc3Nc7wCUK801dFlLWtV8uvaNFNRMxcBkcXSDqUmR5dbRHVlPcjQk\nAIDx0nSiulN9HdQRfTcJkca2caSgJpU8A5PYimC9JkWWW0d3cJIDgLCWlnycPckxLWheqzqu3ujc\n9V5PWl1t9nRmBRiYDIM0mJqw3DqmKXKSI50EAEZL24nq+Exf/+FoXy+7jIKavIoMTPK/+BkE6zVh\nuXVMw0kOmI7CZOSRrRMVBTV5MTAZBsF6TVhuHdNwkgPGa3OHJFSDTlTlY2AyjGDBupm9WNKypKsl\nnSvpEUkfknSzc+6xqvcTu2GRS5Y0B7pDdQsnOWC0rnRIQjXoRFUeBibDCFJgambnSzop6RpJn5T0\nbklfkLQo6eNmdm6V+2mKNEUuQ3SH6h5OcsBOdEgCmiNN953tGJjcKVQ3mPdKOk/SDc65VzjnbnTO\nXSUfbF8k6e0V76cRhkUu0wJ2ukN1Eyc5YCc6JAHNwsBkcYWD9WQ0fF7SaUm3b9v8VklPSHq1mZ1V\nxX6aZmHBd3/q9UZvpztUt3GSA55BGzigeRiYLC7EyPqVyeOqc27LeIdz7huSPibpeZIur2g/jdPv\nS8ePS/fcIx065EeCDh3y3x8/zhu3yzjJAc9gfQqgmRiYLCZEgelFyeP9Y7Y/ID9ifqGkSafMUPuR\nmZ0cs+niSc+rG0UuGCVbizGgveiQBDQX3XfyCxGsn5M8Pj5m+/Dnz69oP0DrcJID6JAEtAEDk9m1\nss+6c27fqJ8nI+57Kz4cIBhOcugyOiQB6KIQOevDEe9zxmwf/vzrFe0HANBCdEgC0EUhgvXPJY8X\njtl+QfI4Lhc99H4AAC1FhyQAXRMiWL8reZw3sy37M7OzJV0h6UlJn6hoPwCAlqJDEoCuKRysO+ce\nlLQqaVbSa7dtvlnSWZLucM49IUlm9hwzuzjpq557PwCAbqINHIAuCVVger2kuyUdNrO+pPskXSbf\nO/1+SW/Z9LsvSrY/JB+Y590PAKCj6JAEoCuCBOvOuQfN7CWSliVdLenlkh6RdEjSzc65x6rcDwCg\nG+iQBKDtgrVudM49LOmaFL93WpIV3Q8AAADQdiEKTAEAAACUgGAdAAAAiBTBOgAAABApgnUAAAAg\nUgTrAAAAQKQI1gEAAIBIEawDAAAAkSJYBwAAACJFsA4AAABEimAdAAAAiBTBOgAAABApgnUAAAAg\nUgTrAAAAQKQI1gEAAIBIEawDAAAAkTLnXN3HUBkze/S5z33u919yySV1HwoAAABa7L777tNTTz31\nNefcuUX207Vg/W8l7ZJ0usbDuDh5/GyNx4By8Rq3H69x+/Eatx+vcfvV/RrPSjrjnPvBIjvpVLAe\nAzM7KUnOuX11HwvKwWvcfrzG7cdr3H68xu3XlteYnHUAAAAgUgTrAAAAQKQI1gEAAIBIEawDAAAA\nkSJYBwAAACJFNxgAAAAgUoysAwAAAJEiWAcAAAAiRbAOAAAARIpgHQAAAIgUwToAAAAQKYJ1AAAA\nIFIE6wAAAECkCNYLMrMXm9kxM/uSmX3LzE6b2W1m9n117AfhFX1tzOxcM7vOzD5oZp83s6fM7HEz\n+6iZLZgZn8OalfH5M7NXmZlLvq4LebzILuRrbGb95PP85WRfXzKzj5jZy8s4dqQT8Hr8E2a2amZf\nTM7XXzCzPzSzHy3r2DGdmf2Mmb3HzP7KzM4k59bfy7mvRsVcLIpUgJmdL+luSedJ+hNJn5X0UklX\nSvqcpCucc49WtR+EF+K1MbOfl/Tbkh6RdJekv5P0jyX9lKRzJP2xpJ91fBhrUcbnz8x+QNJnJD1L\n0vdKOuCce3/I40Z6IV9jM/svkn5Z0hcl/d+SvirpBZL2SfpL59ybgv8BmCrg9fjXJb1J0qOSPiT/\n+v6Pkn5S0rMlvcY5lytARDFm9mlJ/1zS38t//i6W9PvOuVdl3E/zYi7nHF85vyR9RJKT9LptP//N\n5Ofvq3I/fMX5Gku6StL/Imlm289fKB+4O0k/Xfff2tWv0J8/SSbpLyU9KOk3kn1cV/ff2eWvgOfq\nA8nvf0DS/zBi+3Pq/lu7+hXoXP1CSd+V9GVJ523bdmWyny/U/bd29St5DS5IzrEvS16P36vjvVL1\nFyPrOSV3Zp+XdFrS+c65jU3bzpYfRTX5D/wTZe8H4VXx2pjZr0p6u6Tfcs69rvBBI5MyXmMzW5T0\nbvmLyVWS3ipG1msT8Fz9PZIelvSUpAucc98u87iRXsDX+DJJn5D0p865fzdi+xn5jISzw/4FyMrM\nXiY/U51pZL2pMRe5svldmTyubn6xJck59w1JH5P0PEmXV7QfhFfFa/Od5PEfCuwD+QV9jc3sEknv\nlHTIOXci5IEit1Cv8Y/Jp7v8n5I2krzmN5vZIrnMtQv1Gj8g6duSXmpm/2jzBjPbL+ls+VkzNFcj\nYy6C9fwuSh7vH7P9geTxwor2g/BKfW3M7NmSXpN8+xd59oHCgr3Gyet5h3xq068WPzQEEuo1/hfJ\n4zclfUrSn8vfmN0m6W4zWzOzFxQ5UOQW5DV2zn1N0pvla4ruNbMjZvYOM/sDSauS/ruk/xjgeFGf\nRsZcz677ABrsnOTx8THbhz9/fkX7QXhlvzbvlLRH0oedcx/JuQ8UE/I1XpL0I5L+pXPuqaIHhmBC\nvcbnJY+/LOleSf9K0qcl/aCk/03SvKQ/lE9/QrWCfY6dc7eZ2WlJx+RrFIY+L+kDzrmv5D1IRKGR\nMRcj60ANzOwGSW+Qr0J/dc2Hg4KSXNdflfQu59zH6z4elGJ4vfwHST/pnPuoc+7vnXOfkfRK+e4U\nPVJims3M3iTpj+SLiM+XdJZ8p58vSPr9pBsQUCmC9fyGd1/njNk+/PnXK9oPwivltTGz/yTpkPzo\n3Pv7ArMAAANLSURBVJXJ1CvqUfg1TtJf/pv8tOpN4Q4NgYT6HA+3f8o5d3rzBufck/IdJiTfAg7V\nCvIaJ0WLvy5fYPpLzrkvOOeedM6dkr8h+38kvcHM/lmAY0Y9GhlzEazn97nkcVxe0wXJ47i8qND7\nQXjBXxsze72k90i6Rz5Q/3L+w0MAIV7j702ef4mkb25aCMnJd4KRpKPJz24rfMTIKvS5etxF/LHk\n8bkpjwvhhHqN/23yeNf2DckN2Sfl46YfyXqAiEYjYy5y1vMbfpjnzWxmRPufKyQ9Kd8Gqor9ILyg\nr42ZvVk+T/3Tkn7MOffVwMeL7EK8xt+StDJm2175C/tH5S8SpMhUL9TneCDfg/nS7ftJ7Eke/zbA\nMSObUK/x9ySP4wqFhz+nbWdzNTLmYmQ9J+fcg/LV4bOSXrtt883yeW53DPt0mtlzzOzipMdn7v2g\nOqFe42TbTfKB+klJfQL1OIR4jZ1zTznnrhv1JelPk1/73eRn/0fpfxS2CHiufkjSn0n6p5IWN28z\ns3lJPy4/6k5np4oFPFf/VfJ40MxetHmDmf0b+UDum/KrXyJibYu5WBSpgBFL1t4n6TL5Pp73S/qf\nXbJkrZnNyo+4POScm827H1QrxGtsZj8nX6z0XfkUmFFV6Kedcx8o56/AJKE+x2P2/TaxKFLtAp6r\nX5zs5wfkR9o/Jd8N5hXyo+7/3jn3x6X/Qdgh0Ll6Rr724F9L+oakD8qvZnqJfIqMSXq9c+5QFX8T\ntjKzV8h/1iS/2uyPyxf+Dm+yvuqce2Pyu7NqU8xVxrKoXfqSP2n/jvyqV9+W9JB8393v2/Z7s/In\n89NF9sNX815jSW9Lfj7p63jdf2eXv0J9jkfsd/jaX1f339j1r4Dn6hfI33Q/lOznq/JB3Uvr/hu7\n/hXiNZb0HEmvl0+DOCPf/ecr8n315+v+G7v8leJaenrT77Yq5mJkHQAAAIgUOesAAABApAjWAQAA\ngEgRrAMAAACRIlgHAAAAIkWwDgAAAESKYB0AAACIFME6AAAAECmCdQAAACBSBOsAAABApAjWAQAA\ngEgRrAMAAACRIlgHAAAAIkWwDgAAAESKYB0AAACIFME6AAAAECmCdQAAACBSBOsAAABApP5/itlc\nukOlWyEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAugAAAHwCAYAAAD0N5r7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3da5BkZ33n+e+/DHiErBZItsyEtdE9aNSSoiSbUWtAWEMnUsUUWkfMouXi8drIoC5agZFXCkZ+4R25C1QtxhFeD8iNIZbuqTKWsT0xzCwQYXvsii2kapZLsLQgMBUSaIQb4xEXW2BalgWGqWdfPJmoVF1ZeTuZeS7fT0TGUee51FN1VFm/85znPP9IKSFJkiSpHGam3QBJkiRJTzOgS5IkSSViQJckSZJKxIAuSZIklYgBXZIkSSoRA7okSZJUIgZ0SZIkqUQM6JIkSVKJGNAlSZKkEjGgS5IkSSViQJckSZJKxIAuSZIklcizpt2ASYqIvwD2AKen3BRJkiTV2z7gTErpnwy6Y6MCOrDnnHPOueCKK664YNoNkSRJUn099NBDPPXUU0Pt27SAfvqKK6644NSpU9NuhyRJkmrswIEDPPjgg6eH2dcx6JIkSVKJGNAlSZKkEjGgS5IkSSViQJckSZJKxIAuSZIklYgBXZIkSSoRA7okSZJUIgZ0SZIkqUQM6JIkSVKJGNAlSZKkEjGgS5IkSSViQJckSZJKxIAuSZIklYgBXZIkSSoRA7okSZJUIgZ0SZIkqUSeVcRBIuI1QAt4EfBTwHnA76eUXjfEsS4GloAbgQuBrwIfAu5OKX2riPZKdbOxAWtrcOYM7NkDc3MwOzvtVkmSpGEUEtCBXyMH878D/gq4fJiDRMQlwMeBi4APAw8DLwbuAG6MiOtSSo8X0mKpBtbWYGkJTp48e93Bg7C4mMO6JEmqjqKGuLwF2A/sAX5phOO8hxzOb08p3ZRS+tWU0g3AO4HLgLeP3FKpJpaXYX5+53AO+f35eVhZmWy7JEnSaAoJ6Cml+1NKj6SU0rDHiIgXAvPAaeDd21a/FXgSuDkizh26oVJNrK3BrbfC5ubu221uwuHDeXtJklQNZXpI9Ib2cjWl9IzYkVJ6AvgY8Fzg2kk3TCqbpaXe4bxjcxOOHh1veyRJUnGKGoNehMvayy92Wf8IuYd9P7Brf2BEnOqyaqix8VKZbGx0H9bSzfp63s8HRyVJKr8y9aCf315+u8v6zvvPm0BbpNIadriKw1wkSaqGMvWg9xLtZc9x7imlAzseIPesX11ko6RJO3NmsvtJkqTJKlMPeqeH/Pwu6/ds205qpD17em9T5H6SJGmyyhTQv9Be7u+y/tL2stsYdakRhp3X3PnQJUmqhjIF9Pvby/mIeEa7IuI84DrgKeCTk26YVCazs7kI0SBaLR8QlSSpKiYe0CPi2RFxebtq6A+klB4FVoF9wG3bdrsbOBe4L6X05EQaKpXY4iLM9PnbOzMDR46Mtz2SJKk4hTwkGhE3ATe1//mC9vKlEfG+9n//TUrpV9r//RPAQ8CXyWF8qzcDHweORcRce7uXANeTh7bcVUR7paqbm4Pjx3sXK5qZgRMnHN4iSVKVFNWD/iLg9e3XK9rvvXDLe6/p5yDtXvRrgPeRg/mdwCXAMeClKaXHC2qvVHkLC7C6moev7KTVyusPHZpsuyRJ0mgK6UFPKb0NeFuf257m6SkTd1r/FeCWItol1d3cXH5tbOR5zs+cybO1zM055lySpKqq0jzokrqYnTWQS5JUF2WaxUWSJElqPAO6JEmSVCIGdEmSJKlEDOiSJElSiRjQJUmSpBIxoEuSJEklYkCXJEmSSsSALkmSJJWIAV2SJEkqEQO6JEmSVCIGdEmSJKlEDOiSJElSiRjQJUmSpBIxoEuSJEklYkCXJEmSSsSALkmSJJWIAV2SJEkqEQO6JEmSVCIGdEmSJKlEDOiSJElSiRjQJUmSpBIxoEuSJEklYkCXJEmSSsSALkmSJJWIAV2SJEkqEQO6JEmSVCIGdEmSJKlEDOiSJElSiRjQJUmSpBIxoEuSJEklYkCXJEmSSsSALkmSJJWIAV2SJEkqEQO6JEmSVCIGdEmSJKlEDOiSJElSiRjQJUmSpBIxoEuSJEklYkCXJEmSSsSALkmSJJWIAV2SJEkqEQO6JEmSVCIGdEmSJKlEDOiSJElSiRjQJUmSpBIxoEuSJEklYkCXJEmSSsSALkmSJJWIAV2SJEkqEQO6JEmSVCLPmnYDNLyNDVhbgzNnYM8emJuD2dlpt0qSJEmjMKBX0NoaLC3ByZNnrzt4EBYXc1iXJElS9TjEpWKWl2F+fudwDvn9+XlYWZlsuyRJklQMA3qFrK3BrbfC5ubu221uwuHDeXtJkiRViwG9QpaWeofzjs1NOHp0vO2RJElS8QzoFbGx0X1YSzfr63k/SZIkVYcBvSKGHa7iMBdJkqRqMaBXxJkzk91PkiRJ0+E0ixWxZ89k95M0HdY3kCQZ0Cti2HnNnQ9dqgbrG0iSOhziUhGzs/mP9CBaLXvepCqwvoEkaavCAnpEXBwRKxHxWER8NyJOR8S9EfH8AY/zLyLiw+39vxMRfxkRfxIRNxbV1qpaXISZPs/YzAwcOTLe9kganfUNJEnbFRLQI+IS4BRwC/Ap4J3Al4A7gE9ExIV9HueXgI8Cc+3lO4F1oAX814i4q4j2VtXcHBw/3jukz8zAiRPeDpeqwPoGkqTtiupBfw9wEXB7SummlNKvppRuIAfsy4C39zpARDwb+HXgO8CBlNLNKaX/I6V0M3AN8F3groj44YLaXEkLC7C6moev7KTVyusPHZpsuyQNzvoGkqSdjPyQaES8EJgHTgPv3rb6rcCtwM0RcWdK6cldDnUBcD7wuZTSF7auSCk9FBFfBK4CfoQc1htrbi6/nO1BqrZR6hv4uy5J9VXELC43tJerKaVn3KhNKT0RER8jB/hrgd3+HH0D+Gtgf0RcmlJ6pLMiIvYDlwKfTSk9XkCba2F21j/SUpVZ30CStJMiAvpl7eUXu6x/hBzQ97NLQE8ppYi4DXg/cCoiPgg8BvwE8L8CG8DP9dOgiDjVZdXl/ewvSZNgfQNJ0k6KCOjnt5ff7rK+8/7zeh0opfSBiHgM+EPgF7es+jrwO+QHTyWpFqxvIEnaySQKFUV7mXpuGPE64ATwfwNHgS8De4EjwG+TZ3P52V7HSSkd6HL8U8DVfbVaksasU99gkAdFrW8gSWer23N5RQT0Tg/5+V3W79m23Y7a48xXgM8BN28Zz/5wRNxMHkrz2oh4eUrpgdGaLEnlsLiYixD1M9Wi9Q0k6ZnqWoW5iGkWOzOu7O+y/tL2stsY9Y554NnA+g4Pm24CnR/9jr3jklRF1jeQpOHUuQpzET3o97eX8xExszVcR8R5wHXAU8AnexynM7/5j3VZ33n/H4ZtqHZWt9tCUtUsLMC+fbkI0fr62etbrdxzbjiXpGzQKsx791brM3TkgJ5SejQiVsk94LcB79qy+m7gXOC9W+dAj4jL2/s+vGXbj7aXr4mI30wpfW7L9i8CXkMex/6RUdusrK63haQqsr6BJPVvmCrMVco0kVLPZzd7HyTiEuDj5GqiHwYeAl4CXE8e2vLTW+cvj4gEkFKKbcdZAW4h95J/kPyQ6D7gJuA5wL0ppbeM0M5TV1999dWnTnWbhbE5lpd7X3l2bqlblVSSJJXFxgZceeXg+33+85Pt8Dhw4AAPPvjgg90mL9lNEWPQSSk9ClwDvI8czO8ELgGOAS8doLjQAjmgfwJ4Rfs4/xL4f4H/bZRwrqcNelto2GqHkiRJRRulCnNVFDbNYkrpK+Rw3c+20eX9RA757yuqXTpb3W8LSZKk+mpCFeZCetBVHRsbg825DPmhtY2N8bRHkiRpEE2owmxAb5gm3BaSJEn11YQqzAb0hmnCbSFJklRfnSrMg6haFWYDesM04baQJEmqt8XF3gXeOqpYhdmA3jBNuC0kSZLqre5VmA3oDdOE20KSJKn+FhZgdTXnlJ20Wnl9Feu5FDbNoqpjcRHm5/ubarGKt4UkSVIz1LUKswG9gTq3hfqtJFq120KSJKlZZmerHci3c4hLQ9X5tpAkSVKV2YPeYHW9LSRJklRlBnTV7raQJElSlTnERZIkSSoRA7okSZJUIgZ0SZIkqUQM6JIkSVKJGNAlSZKkEjGgS5IkSSViQJckSZJKxIAuSZIklYgBXZIkSSoRA7okSZJUIs+adgMkSZJUbxsbsLYGZ87Anj0wNwezs9NuVXkZ0CVJkjQWa2uwtAQnT5697uBBWFzMYV3PZECXJEmlZw9s9Swvw623wubmzutPnoT5eThxAg4dmmzbys6ALkmSSsse2GpaW9s9nHdsbsLhw7B3r+dxKx8SlSRJpbS8nHtYdwrn8HQP7MrKZNul3paWeofzjs1NOHp0vO2pGgO6JEkqnUF7YNfWJtMu9bax0f2iqpv19byfMgO6JEkqHXtgq2vYiyUvsp5mQJckSaViD2y1nTkz2f3qyIAuSZJKxR7YatuzZ7L71ZGzuEiSJsrp8tSLPbDVNuxsLM7i8jQDuiRpIpwuT/2yB7baZmfz7/Qgw5RaLS/Ut3KIiyRp7JwuT4OwB7b6Fhdhps+UOTMDR46Mtz1VY0CXJI2V0+VpUJ0e2EHYA5ttbMCxY3DPPXk5rQdn5+bg+PHeIX1mJlcS9eLqmQzokqSxcro8DcMe2MGsreWLlCuvhDvuyD+PO+7I/261pnPhu7AAq6v56++k1crrDx2abLuqwDHokqSxGWW6PHtDm63TA9vr7os9sHkI2W4/p84QshMnJh+G5+byy4fDB2NAlySNzSjT5fnHu9qKCGQLC7BvX76rsr5+9vpWK/cUNzmcDzqEbO/e6fy8Zmf9nR6EAV2SGmIaPVhOl9c8Rc/WYw/s7oYZQtbkC5qqMKBLUs1Nc3pDp8trlnEOtbAH9mwOIasvHxKVpBqb9vSGTpfXHM7WM3lWXK0vA7ok1VQZApPT5TWHs/VMnkPI6suALkk1VZbA5HR59TfKUAsNzyFk9WVAl6QaKlNgsmBJ/TnUYjocQlZfBnRJqqGyBSYLltSbQy2mwyFk9eUsLpJUQ2UMTE6XV18OtZiexcX8oHc/w9kcQlYdBnRJqqEyByany6sfh1pMjxVX68khLpJUQwYmTZJDLabLIWT1Yw+6JNVQJzAN8qCogUmjcKjFdDmErF4M6JJUUwYmTZJDLcrBIWT14BAXSaoppzfUpDnUQiqGPeiSVGMLC7BvXy5CtL5+9vpWK/ecG85VFIdaSKMzoEtSzRmYNA0OtZCGZ0CXhmDQURUZmCSpGgzo0gDW1mBpaeeZMQ4ezA/lOVRAkiSNwodEpT4tL+cZMbpNW3fyZF6/sjLZdkmSpHoxoEt9WFvrPXUY5PWHD+ftJUmShmFAl/qwtNTfXNKQtzt6dLztkSRJ9WVAl3rY2BisGiPk6ew2NsbTHkmSVG8GdKmHYYerOMxFkiQNw4Au9XDmzGT3kyRJzWZAl3rYs2ey+0mSpGYzoEs9DDuvufOhS5KkYRQW0CPi4ohYiYjHIuK7EXE6Iu6NiOcPcayrIuK+iPhK+1jfiIj1iPjFotor9Wt2NhchGkSrZcVGSZI0nEICekRcApwCbgE+BbwT+BJwB/CJiLhwgGO9AfgMcBPwUeDfA/8ZCOBnimivNKjFRZjp87dlZgaOHBlveyRJUn09q6DjvAe4CLg9pfSuzpsR8Q7gLcDbgTf1OkhEXAv8B+DzwI0ppa9tW//sgtorDWRuDo4f712saGYGTpxweIskSRreyD3oEfFCYB44Dbx72+q3Ak8CN0fEuX0c7jeAHwJetz2cA6SUvjdaa6XhLSzA6moevrKTViuvP3Rosu2SJEn1UkQP+g3t5WpK6Rl9iymlJyLiY+QAfy3QdWboiLgYeBnwaWAjIq4HDgAJ+Cxw//bjS5M2N5dfGxt5nvMzZ/JsLXNzjjkfN3/mkqSmKCKgX9ZefrHL+kfIAX0/uwR04J9v2f4jwMu3rf/ziHhVSum/9WpQRJzqsuryXvtK/ZidNRxOytoaLC3tXM314MH8fIBDiiRJdVLEQ6Lnt5ff7rK+8/7zehznovbyZ4ErgFe1j/1Pgd8DrgL+OCKeM3xTJVXJ8jLMz+8cziG/Pz8PKyuTbZckSeNU1EOiu4n2MvXY7oe2LN+YUvqj9r/PRMTryaH9GuDVwB/udqCU0oEdG5J71q/up9GSpmttrfdDuZDXHz4Me/faky5JqocietA7PeTnd1m/Z9t23Xyrvfwu8CdbV6SUEvDh9j9fPGgDJVXP0lLvcN6xuQlHj463PZIkTUoRPehfaC/3d1l/aXvZbYz69uM80eVh0E6AP2eAtkmV1tQHIzc2ug9r6WZ9Pe/XhJ+PJKneigjo97eX8xExszVcR8R5wHXAU8Anexznc8DfAD8aET+eUvr6tvVXtpenR2+yVG5NfzBybbfHyXvsZ0CXJFXdyENcUkqPAqvAPuC2bavvBs4F7kspPdl5MyIuj4hnzKiSUvo+8N72P38jIma2bH8V8Abg++SqolJt+WBkvmMwyf0kSSqToh4SfTPwceBYRMwBDwEvAa4nD225a9v2D7WXse39fwfMAb8IXBURDwA/Rn4w9B8Bd/YzzaJUVT4Yme3Z03ubIveTJKlMinhItNOLfg3wPnIwvxO4BDgGvDSl9Hifx/l7ckC/G3guuUf+fyGH/59JKb2jiPZKZeWDkdmwFx11vFiRJDVPYdMsppS+AtzS57bbe863rvt74G3tl9QYPhj5tNnZPNZ+kJ9Hq1W/n4MkqZkK6UGXNLpRHoyso8VFmOnzE2pmBo4cGW97JEmaFAO6VBI+GPlMc3Nw/HjvkD4zAydOOLxFklQfBnSpJHww8mwLC7C6moev7KTVyusPHZpsuyRJGqfCxqBLGo0PRu5sbi6/mlq0SZLUPAZ0qSR8MHJ3s7PN+V4lSc3mEBepRHwwUpIkGdClEvHBSEmSZECXSsYHIyVJajbHoEsl5IORkiQ1lwFdKjEfjJQkqXkc4iJJkiSViAFdkiRJKhEDuiRJklQiBnRJkiSpRAzokiRJUokY0CVJkqQSMaBLkiRJJeI86FIDWQBJkqTyMqBLDbK2BktLcPLk2esOHoTFxRzWJUnS9BjQpYZYXoZbb4XNzZ3XnzwJ8/Nw4gQcOjTc17BnXpKk0RnQpQZYW9s9nHdsbsLhw7B372A96fbMS5JUHAO6VCPderCXlnqH847NTTh6tP9APYmeeUmSmsSALtXAbj3Y11wDn/70YMdbX89hv9fwlHH3zEuS1EROsyhV3PJy7qHeKZzD4OG8Y22t9zbD9MxLkqTdGdClCuu3B3sYZ87svn5jo/tFQTednnlJktSdAV2qsEF6sAe1Z8/u6/vpYS9yP0mSmsIx6FJFDdODPYheY8V79bAXvZ8kqR6ckrc3A7pUUePsiW61en9Y9uphL3o/SVK1OSVv/xziIlXUuHqiZ2bgyJHe2w37IeqHryQ1T68JDTpT8q6sTLZdZWVAlypqHD3RMzN5vvJ+QvTsbO7xGEQ/PfOSpHoZdEpen1UyoEuVNWxP9DXX7Px+qwWrq4MVE1pczKG+H/32zKv8Njbg2DG45568dGYeSbtxSt7BOQZdqqhOD/YgD4q2WvDAA8U9oDM3B8eP9+4ZGaRnXuXl+FFJgxplSt4m33E1oEsVtriYx+z10zOxtQd7dra4D76FBdi3L/d4rK+fvb7Vyl/X4FZty8u7X4h1xo+eODHYXRhJ9TbKlLwGdDWK0xvVR1l6sOfm8sv/t+pp0PGje/d6QSYpc0re4RjQG8Tb0/VUph7sInvmVR7DjB/1s0QSOCXvsAzoDeHt6XqzB1vj4vhRSaNwSt7hGNAbwNvTzWEPtorm+FFJoxh2QoOmf344zWIDOL2RpGE5flTSqJySd3AG9Job5fa0JDl+VNKoOhMa9ArpTsn7NAN6zY1ye1qSHD8qqQgLC7kYXqu18/phiuXVmWPQa87b05JG4fhRSUVxQoP+GdBrztvTkkY1bEEsSdqJExr0ZkCvOW9PSxrVKAWx7CmTpMEZ0GvO29OSijBoQSwLo0nS8AzoDeDtaUlF6Hf8qIXRJGk0BvQGGOX2tCRtt9v4UQujSdLonGaxIZzeSNIkWBhNkkZnD3qDOL2RpHEapTCan0GS9DQDegM5vZGkcRilMJqfSZL0NIe4SJIKYWE0SSqGAV2SVAgLo0lSMQzokqRCWBhNkophQJckFaJTGG0QFkaTpLMZ0CVJhVlczDUV+mFhNEnamQFdklSYTmG0XiHdwmiS1J0BXZJUKAujSdJonAddklQ4C6NJ0vAM6Ko1w4E0XRZGk6TBGdBVS2trsLS0c9nxgwfzg2yOfZUkSWXkGHTVzvIyzM/vHM4hvz8/Dysrk22XJElSPwzoqpW1Nbj1Vtjc3H27zU04fDhvL0mSVCYGdNXK0lLvcN6xuQlHj463PZIkSYMyoKs2Nja6D2vpZn097ydJklQWhQX0iLg4IlYi4rGI+G5EnI6IeyPi+SMc82BE/I+ISBFxT1FtVT0NO1zFYS6SJKlMCpnFJSIuAT4OXAR8GHgYeDFwB3BjRFyXUnp8wGOeB/wu8PfAjxTRTtXbmTOT3U+SJGkciupBfw85nN+eUroppfSrKaUbgHcClwFvH+KYvwWcD/x6QW1Uze3ZM9n9JEmSxmHkgB4RLwTmgdPAu7etfivwJHBzRJw7wDFfCdwC3A48Nmob1QzDzmvufOiSJKlMiuhBv6G9XE0pPWP+jJTSE8DHgOcC1/ZzsIi4CDgBfCil9P5hGhQRp3Z6AZcPczxVw+xsLkI0iFbLKoeSJKlcihiDfll7+cUu6x8h97DvB/p5HO84+cLhTaM3TU2zuJiLEPUz1eLMDBw5Mv42SdO0sZEfhD5zJg/nmpvzolRqMj8TqqGIgH5+e/ntLus77z+v14Ei4hDwSuBfp5S+PmyDUkoHuhz/FHD1sMdV+c3NwfHjvYsVzczAiRMOb1F9ra3lugA7TT168GC+mPX/f6k5/EyolknMgx7tZdp1o4h9wL3AB1JK/2nMbVKNLSzA6moevrKTViuvP3Rosu2SJmV5Od9J6lYX4OTJvH5lZbLtkjQdfiZUTxE96J0e8vO7rN+zbbtuVoCngDcX0CY13Nxcfnkrb/L8mU/X2lrvO0iQ1x8+DHv32msm1ZmfCdVURED/Qnu5v8v6S9vLbmPUO64mh/y/joid1t8VEXcBH04p3TRwK9VIs7OGw0nx9mk5LC319wwG5O2OHvW8SHXmZ0I1FRHQ728v5yNiZutMLu1iQ9eRe8Y/2eM495Fne9nuUuAg8FngFPCZkVssqVDLy7v30HRun544kYcW2cs+Hhsb3W9hd7O+nvfz5y/Vj58J1TVyQE8pPRoRq+SZWm4D3rVl9d3AucB7U0pPdt6MiMvb+z685Ti373T8iHgDOaD/cUrp10Ztr6RiDXL79I1vhHvvhT//87PX28s+urV+5snqsp9/jKX68TOhuop6SPTNwDeAYxHxoYj49Yj4CPAW8tCWu7Zt/1D7JaniBrl9mtLO4Rx8SKkIZ85Mdj9J5eZnQnUVEtBTSo8C1wDvA14C3AlcAhwDXppSeryIryOpXIa5fbqbzkNKw/b6NN2ePb23KXI/SeXmZ0J1FTEGHYCU0leAW/rcdsenQLts+z5y8JdUMuMI0j6kNLxhf2b+rKV68jOhuiYxD7qkmhrXbdDOQ0oazOxsHss/iFbLsaZSXfmZUF0GdElDG+dtUIe5DGdxMVfK7cfMDBw50v+xNzbg2DG455689CJKKr9xfiZofAzokoY2ztugPqQ0nLk5OH689x/kmZk87WU/53BtLfeqXXkl3HFH/gN+xx35362WF1NSmY3jM0HjZ0CXNLRhbp/2y4eUhrewAKurOTzvpNXK6w8d6n0sS4RL1VfkZ4Imo7CHRCU10+JiDmj9TrXYL3txRjM3l1+jFIWyRLhUH0V8JmhyDOiSRtK5fdpPkOuXDykVZ3Z2+J+lJcKl+hnlM0GT4xAXSSPrdfv0J38Sos/JVX1IqRxGKREuSRqNPeiSCtHr9unycu9edh9SKg9LhEvS9BjQJRWq2+3ThQXYty8Pg1hfP3t9q5V7zg3n5WCJcEmaHgO6pInxIaXqsES4JE2PAV3SxPmQUvlZIlySpseALkk6S2eO+0EeFHX2nfHz7pPUDAZ0SdKOBpnj3tl3xmttLU97udMF08GD+Vx590KqDwO67JGRtKN+57h39p3x6jUDUqea64kTVoKU6sKA3mD2yEjqxdl3pstqrlIzGdAbyh4ZSf1y9p3psZrr9Pj/u6bJgN5A9shIGoaz70zWKNVcPU/D8+6yymBm2g3Q5A3TIyNJmqxRqrlqOMvL+e5xtwujzt3llZXJtkvNY0BvmFF6ZCRJk2M118ka9O6yF0IaJwN6w9gjI0nVYDXXyfLussrEgN4w9shIUjVYzXVyvLussjGgN4w9MpJUDZ1qroOwmutwvLussjGgN4w9MpJUHYuLuRBUP6zmOjzvLqtsDOgNY4+MJFVHp5prr5BuNdfReHdZZWNAbyB7ZCSpOhYWYHU1d5bspNXK6y0qNzzvLqtsLFTUQJ0emV7TSdkjI0nlYDXX8ercXR7kQVHvLg/P/497M6A31MIC7NuXp4laXz97fauVe84N55JUHlZzHZ/FxVyEqJ+pFr27PByrtPbPgN5g9shIkpR5d3m8lpd3/9l2qrSeOOFwLTCgC3tkJEkC7y6Py6BVWvfu9WdsQJckSWrz7nLxhqnSakCXJEnSM3h3uRijVGlt8s/faRYlSZI0FlZpHY4BXZIkSWNhldbhOMRFkhrA8bSSpsEqrcMxoEtSjVVl3mEvIKR6skrrcAzoklRTVZh3uCoXEFLVlOWi1yqtwzGgS1INVWHe4SpcQKi3sgRBZWW86LVK6+B8SFSSamiYeYcnadALiKbP6FBGa2u5p/PKK+GOO3KouuOO/O9Wy3M2DcvLOQh3663uXPSurEy2XZ0qrTM9UqdVWp9mQJekmhll3uFJKfsFhHZX1iDYZGW/6F1YgNXVfAgXNOMAABdrSURBVPG2k1Yrr/duWeYQF0mqmVHmHZ7E0AQLl1RbFYZPNVEVqnVapbV/BnRJqpmyzztc9gsI7a4KQbBpqnbRa5XW3hziIkk1U/Z5h8t+AaHuqjB8qoms1lk/BnRJqpmyzztc9gsIdWcQLCcveuvHgC5JNdOZd3gQk5x3uOwXEOrOIFhOXvTWjwFdkmpocbH3lGYdk553uOwXEOrOIFhOXvTWjwFdkmpoGvMOb2zAsWNwzz15udu44zJfQKg7g2A5edFbP87iIkk1tbAA+/blWTTW189e32rl4DtqeBqmcmHnAqLXdH1VKVzSlGnjLNteXlbrrJdIKU27DRMTEaeuvvrqq0+dOjXtpkjSRI0rQC4v9x+ydypAsrY2/guIcSpjWfVxW1sbLAiurtbvZ1BWo/4+qlgHDhzgwQcffDCldGDQfQ3okqShFBnUqtgD3eQw1OTvveyqftFbJwb0PhnQJak4rdbgQx0eeGBszZkoe5ENgmVXxYveuhkloDsGXZI0sKpVLiya1TQt2152VuusNgO6JGlgoxSsqXpoaPrFyXYGQal4TrMoSRpYkwvWWE1T0rgZ0CVJA2tywZomX5xImgwDuiRpYE0uWNPkixNJk2FAlyQNrMmVC5t8cSJpMnxIVJI0lKZWLrSa5vQ5c4zqzoAuSRrK3BwcP95/wZo69SA39eJk2ppYuVXN5BCXKdnYgGPH4J578nJjY9otkqTBLSzkIjyt1s7rW628vm7VJDsXJzM9/orW8eJkWpaX80VRtzsXJ0/m9Ssrk22XNA72oE+YV/+S6qapBWsWFmDfPqtpTsLaWu87NZDXHz4Me/f6c1e1RUpp2m2YmIg4dfXVV1996tSpqXz95eX+bwXXrbdJkuqsaRcnk9ZqDT7m/4EHxtYcqS8HDhzgwQcffDCldGDQfe1BnxCv/iWpvqymOT5WblUTFTYGPSIujoiViHgsIr4bEacj4t6IeH6f+58bEb8QEX8QEQ9HxJMR8UREfDoi7oyI5xTV1mlYWurvYSLI2x09Ot72SJJUBVZuVRMVEtAj4hLgFHAL8CngncCXgDuAT0TEhX0c5mXA+4FXAJ8H3gX8IfATwG8C90fEPyqivZM2ytW/JElNZuVWNVFRQ1zeA1wE3J5SelfnzYh4B/AW4O3Am3oc42vA64APpJT+YcsxzgMeAH4auA349wW1eWJGufr39pwkqcms3KomGrkHPSJeCMwDp4F3b1v9VuBJ4OaIOHe346SUPptS+v2t4bz9/hM8HcpfPmp7p8Grf0mShmPlVjVREUNcbmgvV1NKzxhl3Q7XHwOeC1w7wtf4Xnv5/RGOMTVe/UuSNJxO5dZBWLlVVVdEQL+svfxil/WPtJf7R/ganUkH/7SfjSPi1E4v4PIR2jA0r/4lSRre4mLvolAdVm5VHRQR0M9vL7/dZX3n/ecNc/CI+GXgRuCzQCXrg3n1L0nS8KzcqqYpbJrFXUR7OXBFpIh4FXAv+QHSV6eUvtdjl/yFUjqw0wt4eNA2FMWrf0mShrewAKuruQNrJ61WXm+hP9VBEbO4dHrIz++yfs+27foSETcB/xH4BnB9SulLwzWvHDpX//1WEvXqX5KkZ5qbyy8rt6ruigjoX2gvu40xv7S97DZG/SwR8VrgD8g95zeklB7psUslLCzAvn25CNH6+tnrW63cc244lySpOyu3qu6KCOj3t5fzETGzdSaX9hzm1wFPAZ/s52AR8fPAfcB/pwY959t59S9JkqTdjBzQU0qPRsQqeS7028gVQDvuBs4F3ptSerLzZkRc3t73GWPCI+L15AdBv0wO518etX1l5dW/JEmSdlJUJdE3Ax8HjkXEHPAQ8BLgevLQlru2bf9Qe9l5gJSIuJ4czmfIvfK3RMS23fjblNK9BbVZkiRJKp1CAnq7F/0aYIk8JeLPAF8FjgF3p5S+2cdh9vL0rDLdnsH+MnlWF0mSJKmWiupBJ6X0FeCWPrc9q2s8pfQ+4H1FtUeSJEmqoknMgy5JkiSpTwZ0SZIkqUQKG+IiSaofp4SVpMkzoEuSzrK2BktLcPLk2esOHoTFRYuqSdK4OMRFkvQMy8swP79zOIf8/vw8rKxMtl2S1BQGdEnSD6ytwa23wubm7tttbsLhw3l7SVKxDOiSpB9YWuodzjs2N+Ho0fG2R5KayIAuSQLyA6HdhrV0s76e95MkFceALkkChh+u4jAXSSqWAV2SBOSpFCe5nyRpZwZ0SRKQ5zmf5H6SpJ0Z0CVJwPDzmjsfuiQVy0JFkiQgVwg9eHCwB0VbLSuLStNmxd/6MaBLkn5gcTEXIepnqsWZGThyZPxtkrQzK/7Wl0NcJEk/MDcHx4/n8L2bmRk4ccI//tK0WPG33gzokqRnWFiA1dU8fGUnrVZef+jQZNslKbPib/05xEWSdJa5ufxybKtUPsNU/PVuV7UY0CVJXc3OGsilMhml4q+/y9XhEBdJkqSKsOJvMxjQJUmSKsKKv83gEBcNzDGpkiRNhxV/m8GArr4536okSdNlxd9mMKCrL8vLu0/p1Jlv9cQJp16TJGm7ou4+W/G3GQzo6mnQ+Vb37vVKXZIkGM/dZyv+1p8PiaqnYeZblSSp6cZV7dOKv/VnQNeuRplvVZKkphp3tU8r/tabQ1y0q1HmW3W8mySpqSZR7dOKv/VlQNeunG9VkqTBTLrapxV/68chLtqV861KkjQYq31qVAZ07cr5ViVJGsxnPjPcft59VocBXbvqzLc6COdblSQ11fIy/O7vDrevd5/VYUBXT4uLvady6nC+VUlSU3VmbklpuP29+6wOHxJVT535VntNF+V8q5KkqhjHzCeDzNyynXeftZUBXX1ZWIB9+/I0UOvrZ69vtXLPueFcklRm46jsCcPN3NLh3WdtZ0BX35xvVZJUZcvLu98N7lT2PHFi8AI/w87AEuHdZ53NgK6BOd+qJKlqBq3suXfvYKF52BlYXv96q33qbD4kKkmSam+Yyp6DGHYGln/2z4bbT/VmQJckSbU2SmXPflk3REUyoEuSpFqbRGVP64aoSAZ0SZJUa8OODx90P+uGqCgGdEmSVGvDjg8fdL9O3ZBeId26IerFgC5JkmptkuPDFxZgdTUPX9lJq5XXO3OLduM0i5IkqdY648MHeVB0lPHh1g3RqAzokiSp9hYXcxGifqZaLGp8uHVDNCyHuEiSpNpzfLiqxIAuSZIawfHhqgqHuEiSpMZwfLiqwIAuTZh/FCRp+hwfrjIzoEsTsrYGS0s7zyJw8GB+gMkxj5IkyTHo0gQsL+fZA7pN8XXyZF6/sjLZdkmSpPKxB10as7U1uPXW3lN7bW7C4cOwd6896ZJUFIcVVl8Tz6EBXRqzpaX+5t2FvN3RowZ0SRqVwwqrr8nn0CEu0hhtbAxWuQ5gfT3vJ0kajsMKq6/p59CALo3R2tpk95Okpht0WKGft+XjOTSgS2N15sxk95OkphtmWKHKxXNoQJfGas+eye4nSU3msMLq8xxmBnRpjIZ9eKWuD71I0jg5rLD6PIeZAV0ao9nZ/KT5IFqt+k8fJUnj4LDC6vMcZk6zqNKp23yni4v5SfN+xtPNzMCRI+NvkyTVkcMKq89zmBnQVRp1ne90bg6OH+/9RPrMDJw4Uc3vUZLKwGGF1ec5zBziolKo+3ynCwuwupqHr+yk1crrDx2abLskqU4cVlh9nsPMHnRN1E7DV772tcHmO927t5pXynNz+VW3ITySVCYOK6w+z2GBAT0iLgaWgBuBC4GvAh8C7k4pfWuA41wALAI3Af8YeBz4U2AxpfRXRbVXk7Xb8JXzzx98vtMqBvSO2VkDuSSNi8MKq89zWNAQl4i4BDgF3AJ8Cngn8CXgDuATEXFhn8e5EPhEe79H28f5VPu4pyLihUW0V5PVa/jKt7892PHqON+pJKk4Diusvqafw6J60N8DXATcnlJ6V+fNiHgH8Bbg7cCb+jjOvwP2A+9MKf2bLce5Hfit9te5saA2awL6Ldc7zHHthZYkdeOwwupr8jkcOaC3e7XngdPAu7etfitwK3BzRNyZUnpyl+OcC9wMPNneb6vfJgf9V0TEC1NKXxq13ZqMQcr1DqJu851KksbDYYXV18RzWMQQlxvay9WU0jOiWErpCeBjwHOBa3sc56XAOcDH2vttPc4msNr+5/Ujt1gTMUy53n7Vbb5TSZKkjiKGuFzWXn6xy/pHyD3s+4HdCrH2cxzax9lVRJzqsuryXvuqOOMsu1vHB0IkSZKgmB7089vLbo/6dd5/3oSOo5IY1zCUOs53KkmS1DGJedCjvUyTOk5K6cCOB8g961eP2A71aRzDUOo636kkSVJHET3onZ7t87us37Ntu3EfRyVR9DCUOs93KkmS1FFEQP9Ce9ltbPil7WW3seVFH0clMUy53vO7XJ7Vfb5TSZKkjiKGuNzfXs5HxMzWmVwi4jzgOuAp4JM9jvPJ9nbXRcR5W2dyiYgZ8oOmW7+eKmDQcr3/5b/AC17QvPlOJUmSOkYO6CmlRyNilRygbwPetWX13cC5wHu3zoEeEZe39314y3H+LiJ+jzxv+tuAO7cc55eBfcCfOQd6tQxbrtdALkmSmqqoh0TfDHwcOBYRc8BDwEvIc5Z/Ebhr2/YPtZex7f1/C7wc+DcR8SLgU8AVwCuBb5AvAFQxCwuwbx8cPQrr62evb7Xyg5+OLZckSSoooLd70a8BloAbgZ8BvgocA+5OKX2zz+M8HhEvJVcSvQl4GfA48DvAYkrpr4poryavyeV6JUmSBlHYNIsppa8At/S57fae863rvgnc0X6pZppYrleSJGkQRcziIkmSJKkgBnRJkiSpRAzokiRJUokY0CVJkqQSMaBLkiRJJWJAlyRJkkrEgC5JkiSViAFdkiRJKhEDuiRJklQiBnRJkiSpRAzokiRJUokY0CVJkqQSMaBLkiRJJWJAlyRJkkrEgC5JkiSVSKSUpt2GiYmIx88555wLrrjiimk3RZIkSTX20EMP8dRTT30zpXThoPs2LaD/BbAHOD3lpnRc3l4+PNVWaJw8x83gea4/z3H9eY6bYZLneR9wJqX0TwbdsVEBvWwi4hRASunAtNui8fAcN4Pnuf48x/XnOW6Gqpxnx6BLkiRJJWJAlyRJkkrEgC5JkiSViAFdkiRJKhEDuiRJklQizuIiSZIklYg96JIkSVKJGNAlSZKkEjGgS5IkSSViQJckSZJKxIAuSZIklYgBXZIkSSoRA7okSZJUIgb0gkXExRGxEhGPRcR3I+J0RNwbEc8f8DgXtPc73T7OY+3jXjyutqs/o57jiDg3In4hIv4gIh6OiCcj4omI+HRE3BkRzxn396DdFfV7vO2YByPif0REioh7imyvBlfkOY6IqyLivoj4SvtY34iI9Yj4xXG0Xf0r8G/yv4iID7f3/05E/GVE/ElE3Diutqu3iHhNRLwrIj4aEWfan6/vH/JYhX/uj8JCRQWKiEuAjwMXAR8GHgZeDFwPfAG4LqX0eB/HubB9nP3AR4D/D7gceCXwDeClKaUvjeN70O6KOMftD/T/CnwTuB/4b8AFwL8CXtA+/lxK6Ttj+ja0i6J+j7cd8zzgc8CPAj8CvD2l9GtFtlv9K/IcR8QbgP8A/D3wR8Bp4HnAlcBjKaWfK7j56lOBf5N/CXgP8CTwQeCvgIuBVwHPBX4tpfT2cXwP2l1EfBb4KeDvyOflcuD3U0qvG/A4hX/ujyyl5KugF/BnQAL+923vv6P9/v/V53He297+Hdvev739/p9O+3tt6quIcwy8CPgF4Dnb3j8PONU+zp3T/l6b+irq93jbvivkC7J/2z7GPdP+Ppv8KvCz+lrg+8BngRfssP7Z0/5em/wq6PP62cDfAk8Bl21bdwXwHfLF2Q9P+/tt4oscoC8FAnh5+7y+fxr/rxT9sge9IBHxQuBRcu/JJSmlzS3rzgO+Sv4f6KKU0pO7HOdc4K+BTeAfp5Se2LJupv019rW/hr3oE1TUOe7xNX4e+H3gj1JK/2rkRmsg4zjHEfFK4EPAzcCzgN/BHvSpKfIcR8RJ4GXAVSmlz4+t0RpYgX+Tfxz4GvC5lNJP7bD+c8BVwI+mSfew6hki4uXku9ID9aBP4m/7MByDXpwb2svVrScXoB2yP0a+FXZtj+O8FDgH+NjWcN4+ziaw2v7n9SO3WIMq6hzv5nvt5fdHOIaGV+g5joiLgBPAh1JKQ42LVOEKOcft54FeBnwa2IiI6yPiV9rPkcy1O1Q0PUX9Ln+D3Gm2PyIu3boiIvaTe28/azivtEn8bR+YHyDFuay9/GKX9Y+0l/sndBwVbxLn5lB7+acjHEPDK/ocHyd/zr5plEapUEWd43++ZfuPtF//J/CbwP8DfDYi/ukI7dRoCjnPKQ8zuI38e3wqIn43In49Iu4jD0ncAF5bQHs1PaXMXc+a5BerufPby293Wd95/3kTOo6KN9ZzExG/DNxIHs+6MswxNLLCznFEHCI/2P2vU0pfL6BtKkZR5/ii9vJngb8hPzC4BvwY8FbykKY/joirUkr/MHxzNaTCfpdTSh+IiMeAPwS2zszzdfKQNYebVlspc5c96JMT7eWog/6LOo6KN/S5iYhXAfeSxzq+OqX0vR67aDr6OscRsY98Pj+QUvpPY26TitXv7/EPbVm+MaX0wZTSmZTSo8DryUNf9gOvHk8zNaK+P68j4nXkuyIfJT8Y+tz2cg34beA/jqmNKoep5C4DenE6V1jnd1m/Z9t24z6OijeWcxMRN5E/4L8BvNyHf6eqqHO8Qp714c1FNEqFKuocf6u9/C7wJ1tXtIdFfLj9zxcP2kAVopDz3B5nvkIeynJzSunhlNJTKaWHyXdJTgGvbT+gqGoqZe4yoBfnC+1ltzFKnYdLuo1xKvo4Kl7h5yYiXgt8gHyrtJVS+kKPXTReRZ3jq8lDIP66XTgjRUQi3w4HuKv93odGa66GUPRn9RPbHyxr6wT4cwZom4pT1HmeJ0+1uL7DA4SbwMn2Pw8M00iVQilzl2PQi3N/ezkfETM7TNNzHblH7ZM9jvPJ9nbXRcR5O0yzOL/t62lyijrHnX1+HrgP+O/A9facl0JR5/g+8m3w7S4FDpKfMzgFfGbkFmtQRZ3jz5HHnv9oRPz4Ds8ZXNlenh69yRpCUef5h9vLH+uyvvO+zxlUV6F/24tiD3pB2uMOV8lzlN+2bfXdwLnAfVvn0IyIyyPi8m3H+Tvg99rbv23bcX65ffw/M8xNXlHnuP3+68nn+S+Bg57Pcijw9/j2lNIbt794ugf9j9vvvXts34x2VOA5/j65qBzAb2ydVjEirgLeQJ4u9T8X/C2oDwV+Xn+0vXxNRPzk1hUR8SLgNeSxyR8prvUah4h4dvscX7L1/WH+X5kECxUVaIdSsQ8BLyHPWf5F4Ke3zpXavuVNSim2HefC9nH2k3/pP0V+IOWV5HHKP93+H0oTVsQ5jojryQ8czZDHNn5lhy/1tymle8f0bWgXRf0edzn2G7BQ0dQV+Fn9XPKDgteS74Y8QO5RfTV5aMudKaV3jPnbURcFnucV4BZyL/kHgS+Tw9xNwHOAe1NKbxnzt6MdtJ/huqn9zxcAryDPqtO5sPqblNKvtLfdB/wF8OWU0r5txxno/5WJKKokqa8flIX9n8h/gL9K/mX+MvBbwAU7bJtoP0+0w7oL2vt9uX2cr5LD3MXT/h6b/hr1HJN71lKP1+lpf59NfhX1e7zDtp1zf8+0v8emvwr8rH4u+W7nw+QHRr9NvgD/n6f9Pfoq5jyTZ/F4A/kC7FvkOyPfJF+c/dy0v8cmv9q/e339LSVfVHX9+zrI/yuTeNmDLkmSJJWIY9AlSZKkEjGgS5IkSSViQJckSZJKxIAuSZIklYgBXZIkSSoRA7okSZJUIgZ0SZIkqUQM6JIkSVKJGNAlSZKkEjGgS5IkSSViQJckSZJKxIAuSZIklYgBXZIkSSoRA7okSZJUIgZ0SZIkqUQM6JIkSVKJGNAlSZKkEvn/ARhCNry9F9vXAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, "metadata": { "image/png": { - "height": 250, - "width": 373 - } + "height": 248, + "width": 372 + }, + "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot the first set of data\n", - "plt.scatter(x, y1, c='blue')\n", - "# We now want to plot the second set of data on the same plot. \n", - "# The 'hold' command tells Python to hold onto the current figure and add the next data to it. \n", - "plt.hold\n", - "# Plot the second set of data\n", - "plt.scatter(x, y2, c='red')" + "plt.scatter(x, y1, color='blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAugAAAHwCAYAAAD0N5r7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df5AkZ33n+c+3bewVslogbNkOyzG9yPrlHmGiRwvCWqYk1XmsZWMPHT9s1osMUjM6jHyaY3FcEAtqrJlh2djDQhoZbpmh26wWH45l40ARxmt3qKTp4RAKjh4TWIV+YOGRYSUjW4BayAIb9XN/PFmanu6qrsrMJzOfzHy/IipK01mVk6Psyvrm9/k+38eccwIAAAAQh6mqDwAAAADASQToAAAAQEQI0AEAAICIEKADAAAAESFABwAAACJCgA4AAABEhAAdAAAAiAgBOgAAABARAnQAAAAgIgToAAAAQEQI0AEAAICIEKADAAAAEfnRqg+gTGb2V5KmJZ2o+FAAAADQbDOS1pxz/zTtG1sVoEuaPu2008666KKLzqr6QAAAANBcDzzwgJ599tlM721bgH7ioosuOmt1dbXq4wAAAECD7dq1S8ePHz+R5b3UoAMAAAARIUAHAAAAIkKADgAAAESEAB0AAACICAE6AAAAEBECdAAAACAiBOgAAABARAjQAQAAgIgQoAMAAAARIUAHAAAAIkKADgAAAESEAB0AAACICAE6AAAAEBECdAAAACAiBOgAAABARAjQAQAAgIj8aNUHgAr0+1KvJ62tSdPTUrcrzc5WfVQAAABQoADdzN4gqSPp5ZJ+SdIZkv7QOffmDPs6R9J+SVdJeomkxyV9RtLNzrnvhDje1ur1pP37pWPHtm7bvVtaWPDBOmqJ+y4AAJohVAb9vfKB+fckfVPShVl2YmbnSrpX0tmS7pT0oKRXSNon6Sozu8w592SQI26bxUXp+uul9fXh248dk/bskY4cka67rtxjQy7cdwEA0CyhatDfKel8SdOSfivHfj4iH5zf6Jy72jn3bufclZI+JOkCSe/PfaRt1OttH5wPrK9Le/f616MWFhf9fdWw4Fw6ed+1tFTucQEAgOyCBOjOuXucc19zzrms+zCzl0raI+mEpA9v2vw+Sc9IusbMTs98oG21f//44HxgfV06cKDY40EQ3HcBANBMMXVxuTJ5XnbOnRJyOOeelvR5SS+UdGnZB1Zr/f7o9OooKyv+fYga910AADRTTAH6BcnzwyO2fy15Pn/cjsxsddhDGWvjay1r2pR0a9S47wIAoLliCtDPTJ6fGrF98PMXlXAszbG2Vu77UAruuwAAaK469UG35HlsnbtzbtfQHfgs+lzIg4re9HS570Mpor3votcjAAC5xRSgDzLkZ47YPr3pdZhE1v569OWLWnT3XfR6BAAgmJhKXB5KnkfVmJ+XPI+qUccws7M+QEqj0yHrGbmo7rvo9QgAQFAxBej3JM97zOyU4zKzMyRdJulZSfeVfWC1t7AgTU14qqempJtuKvZ4kFs09130egQAILjSA3Qze4GZXZisGvo859wjkpYlzUi6YdPbbpZ0uqQ7nHPPlHKgTdLtSocPjw/Sp6b8SqKUItRCFPdd9HoEACC4IAG6mV1tZh83s49Lenfy41cNfmZmH9zw8p+T9ICkYam0d0h6QtIhM/uMmX3AzO6WX6n0YUnvCXG8rTQ/Ly0v+zTqMJ2O337ddeUeFzKr/L6LXo8AABQi1CTRl0t6y6afvTR5SNKjkn5n3E6cc4+Y2SWS9ku6StJrJD0u6ZCkm51z3w50vO3U7foHnTYaY35empnxiemVla3bOx2fOS9kUCRPr0d+3wAAGClIgO6c+11Jvzvha0/oZMvEYdu/IenaEMeFEWZnCZAapLL7rmh7PQIAUG8xtVkEkEPp913R9XoEADyP0fJaI0AHkE1UvR4BAJJYl6IhYmqzCKBOoun1CACQxLoUDUKADiC7KHo9AgBYl6JZCNABZFd5r0cAgCTWpWgYAnQA+dBjHwCqxboUjcMkUQD50WMfAKrDuhSNQ4AOIBx67ANA+ViXonEocQEAAKgz1qVoHAJ0AACAOmNdisYhQAcAAKgz1qVoHAJ0AACAumNdikZhkigAoFx0+wHCG6xLMW6xItalqAUCdABAOXo9v5jKsH7Nu3f7DCBBA5Dd/Lw0M+MXIVpZ2bq90/GZcz5n0SNABwAUb3Fx+8zesWPSnj0+s8eiVkB2rEvRCAToAIBi9Xrjh90lv33vXmnHDjJ8QF6sS1FrTBIFABRr//7xwfnA+rofngeAFiODDgAxadqwdL8/vOZ8Oysr/n11/ncDQA4E6AAQg6ZOoOz1sr+PAB1AS1HiAgBVW1z0EyRHZZoHEyiXlso9rhDW1sp9HwA0AAE6AFQp7QTKrBnpqkxPl/s+AGgAAnQAqFLTJ1BmLcupYzkPAARCgA4AVckzgbIuZmd9DX0anQ715wBajQAdAKqSZwJlnSws+OXFJzE15Vc6BIAWI0AHgKq0ZQJltysdPjw+SJ+a8iuJUt4CoOUI0AGgKm2aQDk/Ly0v+/KVYTodv/2668o9LgCIEH3QAaAqbZtA2e36R9MWYwKAwAjQAaAqgwmUaSaKNmEC5exs/f8NAFAgSlwAoEpMoAQAbEKADgBVYgIlAGATSlwAoGrz89LMjF+EaGVl6/ZOx2fOCc4BjMMcj0YgQAeAGDCBEkAevZ5fmXjYnJbdu305HTf5tUGADgAxYQIlgLQWF6Xrr5fW14dvP3ZM2rPHl8nRyrQWqEEHAACoq15v++B8YH1d2ru3fisRtxQBOgAAQF3t3z8+OB9YX/dzXRA9SlwAAABCK2M+Sb+fbh0FyU9E7/cppYscAToAAEAoZU7WzFqu0usRoEeOAB0AAMSvDh2Oyp6subZW7vtQGgJ0AAAQr7q0D0w7WXPHjvzHPT1d7vtQGiaJAgCAOC0u+ozzqDrrQUZ6aanc4xqmismaWQP8GG5osC0CdAAAEJ86tQ/MM1kzj9lZP4qQRqcTX2kQtiBABwAA8alT+8A8kzXzWliQpiYM56ampJtuyv93onAE6AAAIC5VZaSzqnKyZrcrHT48PkifmvKTUylvqQUCdAAAEJcqM9JZVD1Zc35eWl725SvDdDp+e4jOMSgFXVwAAEBc6tY+MIbJmt2uf9ShHSXGIkAHAABxqTojndZgsmaaspyiJmvOzhKQNwAlLgAAIC4xZKTTYrImAiJABwAAcalj+0AmayIgAnQAABCfOmakmayJQKhBBwAA8RlkpMctVhRbRprJmuPx/2YsAnQAABCn+XlpZsYvQrSysnV7p+Mz57EE5xsxWXOrXs8vQDVsMu3u3X7UJMZzWQECdAAAEC8y0s2wuLj9aMixY9KePX40hBIgAvS643oFAGgFMtL11euNL1WS/Pa9e6UdO1qfSSdArylGiQAAQC3s3z8+OB9YX/clTS0PYujiUkOLi34UaNR6CINRoqWlco8LAADgFP1+ugWcJD/foN8v5nhqggC9ZtKOEvV65RwXAADAFlkDkZYHMAToNZNllAgAAKASa2vlvq8hCNBrhFEiAABQK9PT5b6vIQjQa4RRIgAAUCtZJ3u2fJIoXVxqhFEioPlonQqgUWZnfXu5NCUAnU7rL3wE6DXCKBHQXLROBdBYCwu+vdwkk+impvzqsC1HiUuNMEoENBOtUwE0WrcrHT7sg+/tTE35lUQJXMIF6GZ2jpktmdljZvYDMzthZrea2YtT7uefm9mdyfu/b2Z/bWZ/YmZXhTrWuhqMEqXBKBEQN1qnAmiF+XlpedkHJsN0On77ddeVe1yRClLiYmbnSrpX0tmS7pT0oKRXSNon6Sozu8w59+QE+/ktSR+R9IykT0v6pqRzJL1O0r8ws/c6594f4pjrilEioFlYYA9Aa3S7/sFkm7HMOZd/J2Z/JmmPpBudc7dv+Pktkt4p6aPOubeP2ccLJP2tpB+X9HLn3EMbtl0k6c8lrUt6sXPuBxmPc3Vubm5udXU1y9ujsbg4PuM2GCXiRhSIV78v7dyZ/n333893GQDEbteuXTp+/Phx59yutO/NXeJiZi+VD85PSPrwps3vk8+GX2Nmp4/Z1VmSzpT08MbgXJKccw9IeljSaZJ+Iu8x1x2jREAz0DoVADBMiBKXK5PnZefcKTld59zTZvZ5+QD+Uknbfa08IZ9BP9/MznPOfW2wwczOl3SepC9PUirTBowSAfVH61QAwDAhAvQLkueHR2z/mnyAfr62CdCdc87MbpD0CUmrZvZpSY9J+jlJ/4ukvqQ3TXJAZjaqhuXCSd5fJ7OzBORAXdE6FQAwTIgA/czk+akR2wc/f9G4HTnnPmVmj0n6pKTf3LDpW5L+QNLXsx4kAMSG1qkAgGHKWKjIkuexs1HN7M2Sjkj6fyQdkPSopB2SbpL0+5I6kn5t3H5GFeMnmfW5iY4aAArGAnsAEEbTSn5DBOiDDPmZI7ZPb3rdUEmd+ZKkr0i6ZkM9+4Nmdo18Kc0bzexy59zRfIcMAHFofOvUpn1rAohKU1dhDrFQ0aDjyvkjtp+XPI+qUR/YI+kFklaGTDZdlzT4X5+6VQ0AxKqxC+z1ej7dv3OntG+fv7PYt8//udOhFQ2A3Jq8CnOIAP2e5HmPmZ2yPzM7Q9Jlkp6VdN+Y/fx48vxTI7YPfv4PWQ4S2+v3pUOHpIMH/XO/X/URAe3RuNapTf7WBBCFpq/CnLvExTn3iJkty2fAb5B0+4bNN0s6XX6homcGPzSzC5P3PrjhtZ9Lnt9gZh90zn1lw+tfLukN8nXsd+c9ZpzU1KEhoG4a0zo17bfmjh1cZACk1vRVmEOtJHqupHslnS3pTkkPSHqlpCvkS1t+eWP/cjNzkuScs037WZJ0rXyW/NPyk0RnJF0t6cck3eqce2eO42zESqKhsCIpgOA6nfSzXo8eLexwADRPXVZhrnQlUcln0SVdIunj8oH5uySdK+mQpFelWFxoXj5A/4KkX0328yuS/l9J/zpPcI5TNX1oCEAF+v10wbkkraxQUwcglTaswhyszaJz7hvywfUkr7URP3fyQf7HQx0XhqtsaKj24/cARsrzrcl1AMCE2rAKcxl90BGZPEmuzN+hFLsDzdeGb03UD4mhxmnDKswE6C1UepJrXLH7oKMDxe5AvbXhWxP1QWKosdqwCnOQGnTUS6lJLordgfZow7cm6oFWn402WIU5jbqtwkyA3kKlJrmyFLsDqKc2fGsifiSGWmFhYfwCbwN1XIWZAL2FSkty0dEBaJ+mf2sifiSGWqGxqzAnCNBbqLQkVxv6IAE4VdO/NRE3EkOt0rhVmDdgkmhLLSz48rtJkgyZk1x0dADaaX5empnxmcmVla3bOx1/USE4R2i0+mydxqzCvAkBeksNklyTriSa6XuUjg5AezX1WxNxIzHUWrOzzbq0EKC3WOFJLjo6AGjatybiRmIIDUGA3nKFJrkGxe5p6gHp6AAAyIrEEBqCAB2SCkxylVLsDgCASAyhMejigmLR0QEAUCZafaIBCNBRvCb3QQIAxIXEEBqAEheUg44OAICy0OoTNUeAjnLR0QEAUAYSQ6gxAnQAANBcJIZQQwToAIB0yEgCQKEI0AEAk+n1pP37h7ew273bd8+gphfAZtzUp0aADgAYb3FRuv760WsaHDvm1zw4coSOTAA8buozo80iAGB7vd72wfnA+rq0d69/PYB2W1z0N+2jFo0a3NQvLZV7XDVBgA4A2N7+/ZOtBiz51x04UOzxAIgbN/W5EaADAEbr99Mtmy75vtP9fjHHAyB+3NTnRoAOABjtE5/I9j4yYkA7cVMfBJNEAQBbbTe5axJra2GPB61HI5CayHpz3utxQjcgQAcAnGpcx5ZJTE+HOx60Go1AaibrzTk39aegxAUAcNKkk7vGIWJCADQCqaGsN+fc1J+CAB0AcFKayV2jdDoMVSM3GoHUVHJz7iZ8+fOv46b+FAToAAAvy+SuzaampJtuCnM8aDUagdRTX7Na0W7ZhK83SUfVUV/c1G9EgA4A8PKmIKem/EqiZMKQE41A6qvXk/ZrQc9NGGI+pykd0E2MgGxCgA4A8PJM0up0pOVl6brrwh0PWitPIxBUa21NultdXa/Dzwfpm8tdBn9+TlPaqyO6W13miG5CFxcAgJd1kta73y194AMTv5x2eRiHRiD1NbiMLGleJzSjm3RAl2vllNcMyloO6Cbdre4p74NHgA4A8LKWprz5zRO9jHZ5mBSNQOpr42f4bnV1t7r6RfXVVU/TWtOaptVTV1/dVHPOZ/9UBOgAAG921kfKaYp/J+zYMq61+qBd3pEjVMkge7BGkFe9YZeRr2p2S0C+EY2ftqIGHQBw0sKCn+w5iQk7ttAuD2kNgrw0CPK8fl86dEg6eNA/VzFxtoDLSOsQoAMATup2pcOHx3+7pujYQrs8ZEGQl06v529Sdu6U9u3z/z/27fN/7nTKvfEt4DLSOgToAIBTzc/7jiydzvDtKTq20C4PWRHkTS7GFVcDXkZaiRp0AMBW3a5/5Gy5kqddHuUK9RaiW8/8vDQz40dVVla2bu90fKa4zcF52hKyHTvK+/8V6DLSSgToANASmb4kZ2dzfZPSLq99QnfrIcjbXpYSsrJvaHJeRlqJAB0AGq7K9oataZdH9Cip2G49BHlb5Skh4/9l3AjQAaDBqm5v2Ph2eTR3f17MpRZNRQlZczFJFAAaKob2ho1ulxfjzLwK0a2nfJSQNRcBOgA0VCwBUyPb5cVw9xMRuvVUozUlZC1EgA4ADRRTwNTIdnmx3P1EIk+pBbJrfAlZixGgA0ADxRYwNaonckx3P5Gg1KIajS4hazkmiQJAA8UYMDWmXR4z87ag1KI6Cwt+qsMkAzq1KSEDAToANFHMAVPt2+XFePdTMUotqjMoIRs3JaJWJWSgxAUAmoiAqUAx3/1UhFKLajWqhAySyKADQCMNAqY0pdIETBPi7mcoSi2q1ZgSMkgiQAeAxiJgKgh3P0NRahGH2peQQRIlLgDQWI1sbxiLRjZ3z49SCyAMMujwGBMDGml+XpqZ8W24V1a2bu90fOxIcJ4S6eKRKLUA8iNAb7tezy+4MWyodvdunyVq0RcL0EQETAXh7mdblFoA2RGgt9ni4vbZn2PHfAHrkSOMR25CoIM6ImAqAHc/AApAgN5Wvd74oVnJb9+7V9qxo7VZoI0YcECrEYSOxt0PgIAI0Ntq//7JWjtI/nUHDrQ+8mTAAa3FnSkAlIouLm3U76drDyb5+sp+v5jjqYG0Aw5ZVwIHorO46O88R10zBnemS0vlHhcANBgBehtljR5bHHVmGXAAao87UwCoBAF6G62tlfu+mmPAAa3FnSkAVIIAvY2mp8t9X80x4IBW4s4UACpDgN5GWSdztXQSGAMOaCXuTAGgMnRxaaPZWd95IU12rNNpbQsxBhzQStyZAohBS9u7EqC31cKC77wwSX3p1JRfDa+lGHBAK3FnCqBKLW/vGqzExczOMbMlM3vMzH5gZifM7FYze3GGfV1sZneY2TeSfT1hZitm9puhjrf1ul3p8GEffG9naso39m7wh2CcwYBDGi0ecEBTcGcKoCq0dw0ToJvZuZJWJV0r6YuSPiTp65L2SfqCmb0kxb7eKunPJV0t6XOSfk/Sf5Nkkl4T4niRmJ+Xlpd9NDlMp+O3s+qOFhbG38sMtHzAAU3BnSmAKtDeVVK4EpePSDpb0o3OudsHPzSzWyS9U9L7Jb193E7M7FJJH5N0v6SrnHN/s2n7CwIdLwa6Xf9oaY3XpAYDDuOuGQw4oFEohQNQNlY6lySZcy7fDsxeKukRSSckneucW9+w7QxJj8tnv892zj0zZl/HJL1a0sXOuftzHdjw/a/Ozc3Nra6uht41WqLX89eClZWt2zodH5808DqBNltcnPzOlNE2AHn0+9LOnenfd//9USYVd+3apePHjx93zu1K+94QGfQrk+fljcG5JDnnnjazz0vaI+lSSSPHIczsHPng/EuS+mZ2haRdkpykL0u6Z/P+gbIx4FAt/r9XYH5empnhzhRA8fK0d23Yl0GIAP2C5PnhEdu/Jh+gn69tAnRJ/2zD6++WdPmm7X9hZq9zzv3luAMys1Ep8gvHvReYxOxs464FUWv5ZP7qcWcKoAy0d31eiAD9zOT5qRHbBz9/0Zj9nJ08/5qkv5P0OvmA/qckvU/SNZI+a2YXO+f+IfvhAqiTcRUWg8n8VFiMESK45s4UQJFo7/q8MvqgW/I8rtj9RzY8v80598fJn9fM7C2SLpJ0iaTXS/rkdjsaVeuTZNbnJjloANVLO5l/xw4y6Vsw/ACgLmjv+rwQbRYHGfIzR2yf3vS6Ub6TPP9A0p9s3OD8TNY7kz++Iu0BAqinLJP5sQG9hAHUCe1dnxcig/5Q8nz+iO3nJc+jatQ37+fpEZNBBwH8aSmODai1Npf89vuj48pRVlb8+9ry/2hbDD8AqCPau0oKk0G/J3neY2an7C9ps3iZpGcl3TdmP1+Rrz3/STP76SHbB313TmQ/VKAeej2fFNi5U9q3z19/9u3zf+50GrsuwynyTOaHGH4AUE+sdC4pQIDunHtE0rKkGUk3bNp8s6TTJd2xsQe6mV1oZqd0VHHO/VDSR5M//seNwb6ZXSzprZJ+KL+qKNBYrahK6PelQ4ekgwf9c7+/5SVM5s8hz/ADAFSNlc6DTRJ9h6R7JR0ys66kByS9UtIV8qUt79n0+geSZ9v0838vqSvpNyVdbGZH5bu4vF7SP5H0rknaLAJ11fiqhBQTFpnMnwO9hAHUXcvbuwYJ0J1zj5jZJZL2S7pK0mvkVxA9JOlm59y3J9zP3ycB/v8h6U3yGfnvywf/v+ec++8hjheIVaNXOE7ZL5HJ/Dkw/ACgKVra3jVYm0Xn3DckXTvhazdnzjdu+3tJv5s8gNZo9KTIDEMDs92udu9O9/+koZP502P4AQBqLcQkUQABNHpSZMYJiwsL4+cJDTR4Mn96DD8AQK0RoAORaGxVQo6hASbzZ0QvYQCoNQJ0IBKNrUrIOTTAZP6MGH4AgNoKVoMOIJ/GViUEGBpo+WT+bAbDD+Nq/xl+AIDoEKADkRhUJTRuUmTAoYGWTubPbn5empnxNf0rK1u3dzo+c05wDgBRIUAHItLIFY4bOzRQEww/AEDtEKADEcldlRBjENbYoYGaYfgBAGqDAB2ITKaqhBQrdFaikUMDAAAUgwAdiFCqqoSUK3RWggmLAABMjAAdiNjYqoQMK3RWFvwyYREAgIkQoAN1lmWFzioDYCYsAgAwFgE6UFc5VuisPBhmwiIAACOxkihQVzlX6AQAAHEiQAfqKsAKnQAAID4E6EBdBVyhEwAAxIMAHagrVugEAKCRCNCBuhqs0JkGK3QCABA9urgAdZZxhU66HAIAEC8CdKDOUq7Q2VNX+zvDuzPu3u3jfSpgAACoFiUuQN3Nz0vLy758ZZhOR1pe1qK7Tnv2jG6dfuyYT8YvLWU/lH5fOnRIOnjQP/f72fcFAEBbkUEHmmDMCp293vgku+S3790r7diRLpPe6/lFTcnMAwCQHwE60CB9zaqnWa1JmpbUlTQrHzxPUqYu+dcdODB5QL24uH3wP8jMHzkiXXfdZPsEAKDNCNCBBtgug33JJdKXvpRufysrPhk/buJo0Zl5AADaiAAdqLlxGey0wflArzc+QC8yMw8AlaLdFSpEgA7U2KQZ7CzW1rbf3u+PnnA6yqSZeQCoDJNqisWNz0QI0IEaS5PBTmt6evvtvV62/U6SmQeASjCppjjc+KRCm0WgprJksNMYd50cl2EP/T4AKFTaSTVZsxRttLioUX1+nRSmz2/DEKADNVXkd0OnMz7LPS7DHvp9AFCoLJNqMN6YGx8b/Mf6utzbuPEZIEAHaqqoTPTUlHTTTeNfl3UkkhFMANHJM6kG20tx42NuXY/fwI2PRIAO1FYRmeipKV9aOUkQPTvrywbTmCQzDwClyzOpBqMlNz5uwpc7ST/70IruW+TGhwAdqKmsmehLLhn+805HWl5ON+9pYcEH9ZOYNDOP+PX70qFD0sGD/pkkImqPSTXFSG5gbMzLBgav++IHuPGhiwtQU4MMdppR2U5HOno0XJerblc6fHj8vKo0mXnEiyYMaCwm1RQj4w3ME4+stb4lLwF63dFPtNnGnN+FBT/xfZLyvo0Z7NnZcL8m8/PSzIyfL7WysnV7p+P/XgK3epuk+9z//it9HXlTT5f+Itcj1AyTaoqR8QZmTdOtb8lLgF5XOVJZxPQ1MOH5jSWD3e36B79bzTSu+9yV6mlB+9Vxx6RPbtpIah11kHVIkgvc9pLPvdNkZS6D1/XU1dltrx5yzrXmIWl1bm7O1d7HPubc1JRz0ujH1JRzi4unvO2uu5zbvXv4y3fv9tsRgQzn9667nOt0hr+00+HcIp9R1w3Juev0MfdD+d/X9RTXIyA6d901/tq78XeaC+tEvnnuNheQIY971HGSc7fdVvWR5zc3N+ckrboMMas5N+nc2vozs9W5ubm51dXVqg8lu14vXU3D8rLU7Y4dnh68nMXRKpbx/A6QwUZo/b60c+fwbVeqp2Xt0Y8o2+8rEB2+LIM7sdjTz79tsuvEc5rSHi3rbnV1//31//7atWuXjh8/ftw5tyvte+niUjcZFlJgcbQayblQxuysdOON0nvf65/rfnFD9ba7Hixo/2TBucTCLqiH+Xl/I9npDN+epd1Vy83Md/XB8w7ruSTk3JwWHvz5OU1pr47obnWpHhI16PWScSGFO77X1/r6ZL/pg+9QklwVyLNQRtuvZCjMqCYMv6i+Ojo2cW2pJH5fUQ9Mqgnukv9rXlf9yoze4w7ocp3aTcAkHVVHB3ST7laXlrwJAvQ6yZjaPnO1J2nyiwrfoRXJs1AGJwsFGdWEoat0/Y2fx+8r6iJku6uW63alE0e66l7f1YXrfXXV07TWfLcWdfXVJEahJe9JBOh1krGf6LTSv4/v0AqwUAYiNOqLMst1RRK/r0BLnWzJO6vbV7YGGLTkPRUBep3k6Cea+j18h5aPhTIQoVHd57JcVyTx+wq0GNVDkyNAr5OMt5U9pTz+150AACAASURBVH8f36EVYKEMRGrYgliD60qqGnSJ31cAVA9NgC4udTJIZaXwzCWd52u70uA7tAIZzi9T3VGGwYJYUxu+Mb6qWa1od6rg/Ju/0FE/w/UIANqGAL1uFhZO/ZbcztSUTv8PNxHz1UnK88tUd5RlWPe5/Vp4vnXaOM9pSm/5y5u0c6ffB+1cAWA0AvS6GZbKGmbDVGhivhrJcH6BsnS70tGj0v33S7fdJl1xoKt73nRYbsTv67D+xpKvZ9+zR1paKue4AaBuCNDrKOVCCsR8NcNCGYjcxgWx/qdPzstG/L4O+hvv0bL+QKf+vrIwGgCMZs5tXtOpucxsdW5ubm51dbXqQwknxVToXs8vQrSysnUb7Y0ixVR31Em/r0Ov7emJR7b2Nx6l0/FZeQBoml27dun48ePHnXO70r6XAL2FiPkAFKHfl3buTP++++/nGgSgefIE6LRZbCHaGwEoAovhAkAY1KADAIJgMVwACIMAHQAQBIvhAkAYBOgAgCBYDBcAwiBABwAEwWK4ABAGAToAIBgWRgOA/AjQAQDBsDAaAORHgA4ACIrFcAEgH/qgo/FYmAkoX7frH3z+ACA9AnQ0Vq8n7d8vHTu2ddvu3b5WluF1oFgsjAYA6VHigkZaXJT27BkenEv+53v2SEtL5R4XAADAOAToaJxeT7r+eml9ffvXra9Le/dmX54cAACgCAToaJz9+8cH5wPr69KBA8UeDwAAQBoE6GiUfn90WcsoKyv+fQAAADEIFqCb2TlmtmRmj5nZD8zshJndamYvzrHP3Wb2nJk5MzsY6ljRXFnLVShzAQAAsQjSxcXMzpV0r6SzJd0p6UFJr5C0T9JVZnaZc+7JlPs8Q9J/lvT3kn4ixHGi+dbWyn0fAABAaKEy6B+RD85vdM5d7Zx7t3PuSkkfknSBpPdn2Odtks6U9IFAx4gWmJ4u930AAACh5Q7QzeylkvZIOiHpw5s2v0/SM5KuMbPTU+zztZKulXSjpMfyHiPaI2tfc/qhAwCAWITIoF+ZPC87507pneGce1rS5yW9UNKlk+zMzM6WdETSZ5xznwhwfGiR2Vm/CFEanQ4LqQAAgHiEqEG/IHl+eMT2r8ln2M+XNMlUvMPyNw5vz3pAZrY6YtOFWfeJ+lhY8IsQTdJqcWpKuumm4o8JwBj9vp+tvbbma866Xe6cAbRWiAD9zOT5qRHbBz9/0bgdmdl1kl4r6dedc98KcGxooW5XOnx4/GJFU1PSkSOUt6DZoo97ez2/eMGw/qi7d/s7bj6kQDDRXxMgKVAXlzEseXbbvshsRtKtkj7lnPuvef5C59yuEX/HqqS5PPtGPczPSzMzfhGilZWt2zsdnznnex9NVYu4d3Fx+zvpY8f8cNiRI9J115V7bEDD1OKagOeFCNAHGfIzR2yf3vS6UZYkPSvpHQGOCVC36x9kC9A2tYh7e73xw1yS3753r7RjB9EDkFEtrgk4RYgA/aHk+fwR289LnkfVqA/MyQf5f2tmw7a/x8zeI+lO59zVqY8SrTU7S0BeJm6IqlWbuHf//skmikj+dQcOEKADGdTmmoBThAjQ70me95jZ1MZOLsliQ5fJZ8bvG7OfO+S7vWx2nqTdkr4saVXSn+c+YgDBMXwah1rEvf3+8F+U7ays+PdxtwekUotrArbIHaA75x4xs2X5Ti03SLp9w+abJZ0u6aPOuWcGPzSzC5P3PrhhPzcO27+ZvVU+QP+sc+69eY8XQHhph0/JshejNnFvb5KGXiPexy8KMLHaXBOwRahJou+QdK+kQ2bWlfSApFdKukK+tOU9m17/QPI8tJYFQH2kGT5929ukW2+V/uIvtm4ny55fbeLetbVy3we0VG2uCdgixEJFcs49IukSSR+XD8zfJelcSYckvco592SIvwdAfNIMnzo3PDiXTmbZl5bCHVvb1CbunZ4e/5qQ7wNaqjbXBGwRrM2ic+4bkq6d8LUTZ86dcx+XD/ybh3F+1FyW4dPtMEkpn9rEvVlPLr8UQCq1uSZgizL6oGMzZtOhIbIOn26HSUrZ1SbunZ3117o0d3edDgkMIKXaXBOwRZASF6SwuOjH8Ud9MTHOjxopahh0MEkJ6Qzi3jTSxL39vnTokHTwoH/OdY4WFvxyvpOYmvIriwFIpehrAopDBr1MNCOdHOU/tVDkMCiTlLJZWPD3+JPMC5g07i1k0K/blQ4fHn9NnJry7X/aei0EcirimoDikUEvU5ZmpG3T6/nb9507pX37/JVi3z7/506nmJoKZFZkzMQkpWwGce+45PSkcW+hg37z89Lysv9sD9Pp+O0sbQhkFvqagHIQoJclTzPStqD8p3ayDJ9OiklK2YWKe9MO+mW6f+52paNHpfvvl267zScmbrvN//noUaIFIADuheuHEpey0Ix0e5T/1Faa4dM0OL35dLv+kadarNQVCGdn23GtAyoS4pqA8hCgl4VmpNtjLeLamrSUOA0mKYWTNe5lBUKgmbgXrgdKXMpCM9LRKP+pvXHDpy97mWQTrn7AJKU45Bn0AwDkQwa9LDQjHY3yn0YYN3y6uEjDjjph0A8AqkOAXhYW5hiNSKBRRg2fzs9LMzO+OmllZev2TsdnzgnO48CgHwBUhwC9TDQjHY5IoDWYpFQfDPoBQHUI0MvEwhzDEQmEUaOol0lK8WPQLz41+ogDyIkAvWyM829FJJBPIcs8Agz6xYKPONA+5pyr+hhKY2arc3Nzc6urq1UfihdROqTyQ+n10kUCy8t8I0npZl6yAgUy4FesWvz/B+pr165dOn78+HHn3K607yWDXqUIxvmjycxQ/pMeizuhBAz6VYePONBeZNBbLMrMTK9HJDCpTid9WdDRo4UdDpqv8pG2luEjDtRbngw6AXpLRV9RQiSwvX5f2rkz/fvuv5//j0AN8BGvHl9DyIsSF6S2f//ky7Kvr/ukdqkBegTlP1GLeXEnvtWA3GL+iDddNKWfaDUC9Bbq99MNm0q+4qTf58IfjRgXd+JbDQgmxo94G4wr/Tx2zI8+Myk3Qg1LDhGgtxCZmQaIbXEnvtWAoGL7iLcBk3JrqqHJoamqDwDlIzPTADEt7pT2Wy3rHSLQIjF9xNsiS+knKra46JM/o8oCBsmhpaVyjysAAvQWIjPTAIPFndIoanEnvtWA4GL6iLdBntJPVKThySEC9BYiM9MQCwu+xc4kilrmkW81oDAxfMTbIk/pJyrS8OQQAXoLkZlpiMHiTuO+wYtc3IlvNaAwMXzE24LSz5ppQXKIAL2lyMw0xPy8b1Lf6Qzf3un47UVNzORbDShU1R/xtqD0s2ZakByii0tLDTIzk64kSmYmYt2uf1TRYopvNaBwVX7E24LSz/IE+T1uQXKIAL3F5uelmRlflrWysnV7p+Mz51yAaqKKxZ34VgNKw/ptxRmUfqapmqD0M52g3RBbkBwiQG85MjPIhW81AA2xsOA78k0y75DSz3SCL5XRguQQATokkZlBDnyrAWgASj+LUcgCUC1IDjFJFEA+tJoA0BBMyg2vsG6IDe92QQYdQH5MaADQEJR+hpOnG+LY/9cNH/IgQAcQBt9qABqE0s/88nRDnOj/fYOTQwToAMLiWw0AoJK6ITY0OUSADgAt0LDvLgA1UGo3xIYlhwjQAaDBgvYeBoAUWtANsTAE6ADQUMF7DxeIDD8QVgyfqRZ0QywMATpQhRiunGi0QnoPF4AMf/1xOYtLbJ8plsrIyDnXmoek1bm5OQdU5q67nNu92zlp62P3br8dCGDUr9moR6dT/jF+7GPOTU1tf1xTU84tLpZ/bBiPy1l8Yv1MxXpcRZubm3OSVl2GmJWFioCyLC76NMKosb5BvcHSUrnHhcbJ03u4LGkz/FnbtaEYXM7iE/NnigWg0qPEBShDXeoN0AiF9x4OIMvqgnwk4sDlLE6xf6Ya2g2xMAToQBliv3KiUUrpPZxDoasLonBczuJTp89Uw7ohFoYSF6Bodag3QKOU2ns4gzwZflSLy1mc+Ew1DwE6UDSunChZ7L2HY8/wYzQuZ3HiM9U8BOhA0bhyomSD3sNplNl7OPYMP0bjchYnPlPNQ4AOFI0rJyqwsOB7Ck+i7N7DsWf4MRqXszjxmWoeAnSgaFw5UYFuVzp8eHyQPjXlVxIt89ct9gw/RuNyFic+U81DgA4UjSsnKlJ27+F+Xzp0SDp40D9vNzEw5gw/RuNyFi8+U81Cm0WgDKx1jIqU0Xs4y9Ligwz/uH7aVWT4s2hTb2cuZ3Fq2meq9bIsP1rXh6TVubm57Gu2Anm0da1jNFreX+u77nKu0xn+vk4n/uXi27rcPZezeNX9M9Ukc3NzTtKqyxCzmvOBayuY2erc3Nzc6upq1YeCtur1/KodKytbt3U6PtVEWgM10euly6QuL4/+9a5jBnpxcfJsZROXMOdyFrc6fqaaZteuXTp+/Phx59yutO8lQAeqwJUTDdDppFu0ptORjh4t7HBKFfLmpO64nAHD5QnQqUEHqsBax6i5Oi0tXgSWuz+JyxkQHl1cAACptXlFSZa7B1A0AnQAQGptXlGyzTcnAMpBiQuyoegQaLU2ryjZ5psTAOUgQEc6WRoeA2icNq8o2eabEwDlIEDH5Mb1FDt2zLc1aGpPMQDPG6wombaLSxMG2tp8cxILBnHRdATomEyvN77hr+S3790r7djBtxHQcG1dUbLNNydVYxAXbUGAXqFaZQDoKQbUU4EXmjYvLd7Wm5MqMYiLNiFAr0DtMgBtb3gM1FFJF5r5eWlmpn0rSrb55qQKDOIGVKvsYHsRoJeslhmAPD3F+NAD5Sv5QtPt+kfbvvfbenNSBQZxA6hddrDdCNBLVNsMAD3FgPqo8ELTxhUl23pzUiYGcQOoZXaw3YIF6GZ2jqT9kq6S9BJJj0v6jKSbnXPfmeD9p0u6WtK/lDQn6eclrUt6SNInJd3unPuHUMdbhdpmAOgpBtRHbS809dbGm5OyMIibU22zg+0WZCVRMztX0qqkayV9UdKHJH1d0j5JXzCzl0ywm1dL+oSkX5V0v6Tb5QPzn5P0QUn3mNk/CXG8Vaj10tD0FAPqodYXGmA4BnFzynLTjsoFCdAlfUTS2ZJudM5d7Zx7t3PuSvlA/QJJ759gH38j6c2SftY594ZkH9dLOl/ScUm/LOmGQMdbulovDT3oKZYGPcWA8tX6QgMMxyBuDty011buAN3MXippj6QTkj68afP7JD0j6ZqkhGUk59yXnXN/uLmMxTn3tKTfS/54ed7jrUrtMwALC74dwSToKQZUo/YXGmArBnFz4Ka9tkJk0K9Mnpedc6eMoSTB9eclvVDSpTn+jn9Mnn+YYx+Vqn0GYNBTbFyQTk8xoDq1v9AAWzGImwM37bUVIkC/IHl+eMT2ryXP5+f4OwZTiv90kheb2eqwh6QLcxxDLo3IAMzPS8vL/so3TKfjtzMDHKhGIy40wFYM4mbETXtthejicmby/NSI7YOfvyjLzs3st+U7w3xZ0lKWfcSgMUtD01MMiFdjLjTAqVgYKiNu2murjD7oljy71G80e52kW+UnkL7eOfePY97i/yLndo3Y36p8C8dKNGppaHqKAXFq1IUGOImFoTLgpr22QgTogwz5mSO2T2963UTM7GpJfyTpCUlXOOe+nu3w4kEGAEDhuNCgwRjEzYCb9loKUYP+UPI8qsb8vOR5VI36Fmb2RkmfkvQtSR3n3ENj3lIblHEDKBwXGjTcrPq6UYf0Xh3UjTqkWdEWcCSaPNRSiAz6PcnzHjOb2tjJxczOkHSZpGcl3TfJzszsNyTdIel/qCGZ883IAAAoHBcaNFGv5xfeGVaysXu3zxYTYG5FfVDt5A7QnXOPmNmyfC/0G+RXAB24WdLpkj7qnHtm8EMzuzB574Mb92Vmb5GfCPqofHD+aN7jixll3AAKx4UGTbG4uH3p1rFjvpTjyBFGh4bhpr1WQk0SfYekeyUdMrOupAckvVLSFfKlLe/Z9PoHkufBBFKZ2RXywfmUfFb+WjPb9DZ91zl3a6BjBgAAddDrjZ9XIfnte/dKO3aQDR6Fm/ZaCBKgJ1n0SyTtl2+J+BpJj0s6JOlm59y3J9jNDp2siR916/uofFcXoFpkIACgPPv3TzbJUfKvO3CAAB21FqzNonPuG5KunfC1W1LjzrmPS/p4qOMBCkH9IwCUq99P1yZQ8nXW/T6JE9RWiC4uQDssLvr6xlFfFIP6x6XarqcFAPHp9cp9HxABAnRgEmnrH/liAIAw1tbKfR8QgTJWEgXqj/pHtBTTLVC56enxrwn5PiACBOjAONQ/ooWYboFoZP1F4xcUNUaJCzAO9Y9oGaZbICqzs/6uMI1OhwQJao0AHRiH+ke0CNMtEKWFhfFL1Q9MTflVMYEaI0AHxqH+ES2SZboFULhuVzp8eHyQPjXlVxKlvAU1R4AOjEP9I1oiz3QLoHDz89Lysi9fGabT8duvG7XWIVAfTBIFxhnUP6aJXKh/RA3lmW7BrztK0e36B+2F0HAE6MAkFhb8rLhJxv6pf0RNMd0CtTE7S0CORqPEBZgE9Y9oAaZbAEAcCNCBSVH/iIZjugUAxIESFyAN6h/RYEy3AOqHr6NmIkAHsqD+EQ3FdAugHljtt9kI0AEAzxtMtxi3WBHTLfA8UrilW1zc/jM6WO33yBGqLuuKAB0eF1gAifl5aWbGL0K0srJ1e6fjM+cE5y1HCrcSaVf73bGD01BHBOhtxwUWwBBMt8C2SOFWJstqv3yN1w8BeptxgQUwBtMtsAUp3MrkWe2Xz3G90GaxrdJeYLMuMQgAaJYsKVwEkWe1X9QLAXpbcYEFAKSVJ4WL3Fjttz0ocWmjAGNk1KUCQAvlSeHyJZEbq/22BwF6G+W4wPb+ZpY5pQDQVqRwK8Vqv+1BgN5GGS+Uq/esac87mVMKAK1FCjezECPPrPbbHgTobZTxQnnHndNad9u/hkn7ANBgTUrhllSrGbqbMav9tgOTRNso44XyLjfZ+5hTCgANNUjhphFbCrfX88e0c6e0b5+PYPft83/udIK2PFlc9MH0qIz3YOR5aWnyfQ5W+50aE8Gx2m+9EaC3UYYL7FF19FVNfoFl0j4ANNTCwvjocCC2FG4REfMIRXYznp+Xlpf9/cQwnY7fTrlpfVHi0lYpxsjWbUoHXPoLLJP2AaCBBinccdHn1JT0678ufeELPmNTdbuvkhdYKnrFT1b7bTYC9LZKcYH97P98RHd/Jv1Fikn7ANBQ8/PSzIyPKldWtm4/80zpqaekT37y1J9X2e6r6Ih5gzJX/GS132aixKXNJhwj+6srso2RMWkfwfX70qFD0sGD/pk6KqA63a509Kh0//3Sbbf5gPZNb5LMfHA+TMASklRKXmCJFT+RFxn0tptgjKz7M9l3DQQRug0CgHAGKdxeT3rf+yQXYbuvEhdY6vWkW27J9tcx8owBAnR424yR0XcVlVpc3L4Uiwb8QBxKLCFJraQFlsZdrsZh5BkDlLhgInWetI8aK7INAoBwSi4hSa2EBZYmvVxth4FADBCgYyL0XUUlsmTkAJQv9qLrEhZYSnO5GoaRZ2xEgI6J0XcVpYo9IwfgpJJKSDIreIGlLJerjRh5xmbUoCMV+q6iNCVO6gKQUwklJLktLGj9V/Zoyk22/sdUiog5z0AAI88YhgAdmdB3FYWLPSMH4KQSSkjy6qmrP9Jh/Sddrx/Rupwk27B98OfnNKX/VUf0r9XVpEeX9bIzMyN97GME59iKAB1oozoMgdQhIwfAq0G7r/37pWNuXl/XjG7SAV2uUxdYMklH1dEB3aS7XVd/maLJTNbLzjvfSXCO4QjQgTapUz/xGmTkAGywsOBbnk4yU7LkouuNNeJ3q6u71dUvqq+ueprWmtY0rZ66+qpO3jCkWdmTyxVCI0AH2qJu/cRrkJEDsMGg3de4XoMVFF0PqxH/qmZPCchHvW+SSwqXK4RGFxegDeraT5wG/EC9RNruq4wpLVyuEBIZdKANYl7hbzsRZ+QAjBBhu68yprRwuUJIBOhA0+XpJx7D+Ov8vG91cOCAP67NOh2fiuLbDohLRO2+yqoR53KFUAjQgaZrQj/xCDNyQOn4/c+szBrxUZer1+zo6xce7UlfWJP6nD9sjwAdaLom9ROPKCMHlKZO3ZciVnaTmecvV5w/ZMAkUaDp6CeOgX5fOnRIOnjQP/f7VR8Rxllc9FHlqNTvoPvS0lK5x1VDgxrxcRM5g9aIc/6QERl0oOlo0AsyePWUtvvSjh2cxzFKrRHn/CEHc85VfQylMbPVubm5udXV1aoPBShXp5O++PLo0cIOByUa1/9eOpkyjKH/PU7ic1uowkv6OX+tt2vXLh0/fvy4c25X2veSQQcqUPpcr4hX+EOByODVV927L9VAoVNaOH/IiQAdKFFllQY06G2nuva/RzO6L7VZmeeP7j6NxCRRoCSVzxWKdIU/FCRPBg/Va1L3pTYq4/z1ev66vXOntG+fH/nct8//udOJZ0VoZEIGHShBNJUG9BNvDzKw9Ub3pWAqudwVff7GzS0ZZHwaMLekrV9XBOhACaKrNKCfePORga03ui/lVmnzoiLPXzQZn2K1vfkUJS5Awag0QCXIwNbbYOnLNLIufdlAlZcUFnn+smR8aqby8xcBAnSgYHkqDYDMyMDW38LC+FV1Bui+9Ly0CebCrrVFnL8WZHyiOX8VI0AHCkalASpBBrb+Kln6sv6iSTAXcf5akPGJ5vxVjAAdzVfx8uZUGqAyZGDrj+5LqUSXYA59/hqe8Ynu/FWISaJorkhmmFBpgMrQ/74Z6L40sSibF4U8fw3P+ER5/ipCgI5miqgF1aDSIO2Kz0272KAi8/PSzIwfB15Z2bq90/GZc4Lz+NF9aayoE8whzl/DMz5Rn7+SEaAjSrkSDRG2oFpY8PcDk9TVUWmA4MjAoiUanmBufMan8ecvBQJ0RCVIVUp0TcepNEAkyMCi4RqeYPYanPFpxfmbEJNEEY0gfU8jnmHCXC8AKFYrmhc1uLtPK87fhMigo1SjRtiDVaVEPsOESgMAKFaDE8wnNXhuSSvO3wSCBehmdo6k/ZKukvQSSY9L+oykm51z30mxn7MkLUi6WtLPSnpS0p9KWnDOfTPU8aJc40pXvvvdQFUpNZlhQqUBABSjNSWFDc34tOb8jREkQDezcyXdK+lsSXdKelDSKyTtk3SVmV3mnHtygv28JNnP+ZLulvRHki6UdK2kf2lmr3LOfT3EMaM8kzRUSWtQlbLlGsQMEwBovQYnmLdqYManVedvhFAZ9I/IB+c3OuduH/zQzG6R9E5J75f09gn28+/lg/MPOef+7Yb93CjptuTvuSrQMaMEk5auZN33lmsSM0wAAGpsgrk12n7+cgfoZvZSSXsknZD04U2b3yfpeknXmNm7nHPPbLOf0yVdI+mZ5H0b/b58oP+rZvZSsuj1kaahSlpDq1Ia3oIKAJBOAxPMrdLW8xeii8uVyfOyc+6UUMw597Skz0t6oaRLx+znVZJOk/T55H0b97MuaTn54xW5jxilyNJQJY2RVSksbw4AAGosRIB+QfL88IjtX0uezy9pPzKz1WEP+Xp2lCRrQ5VJjaxKaXALKgAA0HwhAvQzk+enRmwf/PxFJe0HkSiyMcrYqhSajgMAgJoqow+6Jc+urP0453YN3YHPos/lPA5MqKjGKBNXpbR9hgkAAKilEAH6ILN95ojt05teV/R+EIkiKkcyVaW0dYYJAACopRAlLg8lz6Nqw89LnkfVlofeDyKRZcnel72MqhQAANBuITLo9yTPe8xsamMnFzM7Q9Jlkp6VdN+Y/dyXvO4yMztjYycXM5uSb+W48e9DDaRdsveWW6hKAQAA7ZY7QHfOPWJmy/IB9A2Sbt+w+WZJp0v66MYe6GZ2YfLeBzfs53tm9l/k+6b/rqR3bdjPb0uakfRn9ECvl6xL9lKVAgAA2irUJNF3SLpX0iEz60p6QNIr5XuWPyzpPZte/0DybJt+/u8kXS7p35rZyyV9UdJFkl4r6Qn5GwDUDEv2AgAATC5IgJ5k0S+RtF/SVZJeI+lxSYck3eyc+/aE+3nSzF4lv5Lo1ZJeLelJSX8gacE5980Qx4vy0VAFAABgMsHaLDrnviHp2glfuzlzvnHbtyXtSx5oGEpXAAAAtheiiwsAAACAQAjQAQAAgIgQoAMAAAARIUAHAAAAIkKADgAAAESEAB0AAACICAE6AAAAEBECdAAAACAiBOgAAABARAjQAQAAgIgQoAMAAAARIUAHAAAAIkKADgAAAESEAB0AAACICAE6AAAAEBFzzlV9DKUxsydPO+20sy666KKqDwUAAAAN9sADD+jZZ5/9tnPuJWnf27YA/a8kTUs6UfGhbHRh8vxgpUeBInGOm49z3Hyc4+bjHDdf2ed4RtKac+6fpn1jqwL0GJnZqiQ553ZVfSwoBue4+TjHzcc5bj7OcfPV6RxTgw4AAABEhAAdAAAAiAgBOgAAABARAnQAAAAgIgToAAAAQETo4gIAAABEhAw6AAAAEBECdAAAACAiBOgAAABARAjQAQAAgIgQoAMAAAARIUAHAAAAIkKADgAAAESEAD0wMzvHzJbM7DEz+4GZnTCzW83sxSn3c1byvhPJfh5L9ntOUceOyeQ9x2Z2upn9GzP7v83sQTN7xsyeNrMvmdm7zOzHiv43YHuhPseb9rnbzJ4zM2dmB0MeL9ILeY7N7GIzu8PMvpHs6wkzWzGz3yzi2DGZgN/H/9zM7kze/30z+2sz+xMzu6qoY8d4ZvYGM7vdzD5nZmvJtfUTGfcV/JqfFwsVBWRm50q6V9LZku6U9KCkV0i6QtJDki5zzj05wX5ekuznfEl3S/r/JF0o6bWSnpD0Kufc14v4N2B7Ic5xclH/75K+LekeSX8p6SxJ/0rSzyT77zrnvl/QPwPbCPU53rTPMyR9RdJPq9OHqgAABxpJREFUSvoJSe93zr035HFjciHPsZm9VdLHJP29pD+WdELSiyTtlPSYc+5NgQ8fEwj4ffxbkj4i6RlJn5b0TUnnSHqdpBdKeq9z7v1F/BuwPTP7sqRfkvQ9+fNyoaQ/dM69OeV+gl/zg3DO8Qj0kPRnkpyk/23Tz29Jfv6fJtzPR5PX37Lp5zcmP//Tqv+tbX2EOMeSXi7p30j6sU0/P0PSarKfd1X9b23rI9TneNN7l+RvyP5dso+DVf872/wIeK2+VNIPJX1Z0s8M2f6Cqv+tbX0Eula/QNJ3JT0r6YJN2y6S9H35G7Mfr/rf28aHfAB9niSTdHlyXj9Rxe9KEQ8y6IGY2UslPSKfPTnXObe+YdsZkh6X/yU62zn3zDb7OV3S30pal/SzzrmnN2ybSv6OmeTvIIteolDneMzf8RuS/lDSHzvn/lXug0YqRZxjM3utpM9IukbSj0r6A5FBr0zIc2xmxyS9WtLFzrn7CztopBLw+/inJf2NpK84535pyPavSLpY0k+6KjKseJ6ZXS4/Ip0qg17G93pW1KCHc2XyvLzxBEtSEmR/Xn447NIx+3mVpNMkfX5jcJ7sZ13ScvLHK3IfMdIKdY6384/J8w9z7APZBT3HZna2pCOSPuOcy1QbieCCnONkPtCrJX1JUt/MrjCz30nmkXSThAqqEepz/IR8wux8Mztv4wYzO18+e/tlgvNaK+N7PRMuIOFckDw/PGL715Ln80vaD8Ir49xclzz/aY59ILvQ5/iw/HX27XkOCkGFOsf/bMPr704e/6ekD0q6S9KXzewXchwnsgtyjp0vMbhB/jO8amb/2cw+YGZ3yJcj9iW9McDxojrRxlw/WvZf2GBnJs9Pjdg++PmLStoPwiv03JjZb0u6Sr6edSnLPpBbsHNsZtfJT+z+defctwIcG8IIdY7PTp5/TdLfyU8a7En6KUnvky9p+qyZXeyc+4fsh4sMgn2OnXOfMrPHJH1S0sauPN+SL1ej1LTeoo25yKCXx5LnvEX/ofaD8DKfGzN7naRb5esdX++c+8cxb0E1JjrHZjYjfz4/5Zz7rwUfE8Ka9HP8Ixue3+ac+7Rzbs0594ikt8iXvpwv6fXFHCZymPhabWZvlh8R+Zz8xNAXJs89Sb8v6Y8KOkbEobKYiwA9nMFd1pkjtk9vel3R+0F4hZwbM7ta/iL/hKTLmfxbqVDneEm+88M7QhwUggp1jr+TPP9A0p9s3JCURtyZ/PEVaQ8QuQU5x0md+ZJ8Kcs1zrkHnXPPOucelB8hWZX0xmSCIuop2piLAD2ch5LnUXVKgwkmo+qcQu8H4QU/N2b2Rkmfkh8u7TjnHhrzFhQr1Dmeky+B+Ntk8QxnZk5+SFyS3pP87DP5DhcZhL5WP715clliEMCfluLYEEaoc7xHvtXiypAJhOuSjiV/3JXlIBGFaGMuatDDuSd53mNmU0Na9Vwmn1G7b8x+7kted5mZnTGkzeKeTX8fyhPqHA/e8xuS7pD0PyRdQeY8CqHO8R3yQ+GbnSdpt/w8g1VJf577iJFWqHP8Ffna8580s58eMs9gZ/J8Iv8hI6VQ5/jHk+efGrF98HPmGNRX0O/1kMigB5LUHS7L9yi/YdPmmyWdLumOjX00zexCM7tw036+J+m/JK//3U37+e1k/39GMFe+UOc4+flb5M/zX0vazfmMQ8DP8Y3OubdtfuhkBv2zyc8+XNg/BkMFPMc/lF9UTpL+48a2imZ2saS3yrdL/W+B/wkYI+C1+nPJ8xvM7GUbN5jZyyW9Qb42+e5wR48imNkLknN87safZ/ldKQsLFQU0ZLnYByS9Ur5n+cOSfnljv9RkyFvOOdu0n5ck+zlf/oP/RflJKa+Vr1P+5eSXCiULcY7N7Ar5SUdT8vWN3xjyV33XOXdrQf8MbCPU53jEvt8qFiqqXMBr9QvlJwteKj8aclQ+q/p6+dKWdznnbin4n4MhAp7jJUnXymfJPy3pUflg7mpJPybpVufcOwv+52CIZP7W1ckff0bSr8p31RncWP2dc+53ktfOSPorSY8652Y27SfV70ppQi1JyuP5pWF/Xv4L+HH5D/Sjkm6TdNaQ1zol84mGbDsred+jyX4elw/mzqn639j2R95zLJ9Zc2MeJ6r+d7b5EepzPOS1g3N/sOp/Y9sfAa/VL5Qf7XxQfsLoU/I34P+i6n9j2x8hzrF8F4+3yt98fUd+VOTb8jdmb6r639jmR/K5m+h7VP6mauR3a5rflbIeZNABAACAiFCDDgAAAESEAB0AAACICAE6AAAAEBECdAAAACAiBOgAAABARAjQAQAAgIgQoAMAAAARIUAHAAAAIkKADgAAAESEAB0AAACICAE6AAAAEBECdAAAACAiBOgAAABARAjQAQAAgIgQoAMAAAARIUAHAAAAIkKADgAAAETk/wdZU9nIp5MxPAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 248, + "width": 372 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Now, plot both sets of data together\n", + "# We can do this by calling the plot call on each set of data\n", + "# Subsequent plot calls, like this one, will by default plot onto the same figure\n", + "plt.scatter(x, y1, color='blue')\n", + "plt.scatter(x, y2, color='red')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We now have a scatter plot!\n", + "We now have a scatter plot!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Customizing Plots\n", + "\n", + "The plot above shows the data, but aesthetically there is more we could do to make it look nicer. \n", + "\n", + "Next up, we will replot the data, and add some customization to the plot. \n", "\n", - "However, it doesn't look very nice. Let's see if we can improve it. Let's experiment with adding lots of the customization functions to make a nicer graph." + "In the next cell, we will add lots of customization. It's a large set of code, but to explore how it all works, work through bit by bit, and try passing in different values, and see what it does to the resultant plot." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAI+CAYAAAAo3TwyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xl8VPW9//HXJwkJSgIkAkpBNkG0FEFBrOWyKLZFvF5t\nrfWqtaXS9haXayutP7tZtEr13traYqt2cemCt9Va6b2trRVZ3KoVAW2tCEJAEZEt7CQk8/398Z0h\nk8k5s2UmM0nez8djHoEzZ/nOmeWcz3f5fM05h4iIiIiISCZKCl0AERERERHpeBRIiIiIiIhIxhRI\niIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiI\niIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiHRRZjbVzFzQo9Bl\nk+KnQEI6BTNbEvZDGH0cMLOjMtjff6TYnzOzmXl8Se3CzL6T4jW+ZWb6nZAuz8xKzGy6mc03s2fN\nbJOZ7TWzxujfd8xspZn90cy+b2afN7P3m1lFocsuHZOZzUzjOhT/2G9mb5vZcjP7sZldamZHFPp1\nSOemGwTpKroDn81g/f/MV0GKhZmVAZemWG0A8MF2KI5I0TKzc4E3gMeAq4DTgfcAPYDS6N+jgTHA\n2fjfj7uA54DdZnZhAYqdV2Y2JMkN7ZAM9lPbWStqCuAIoD9wCv5690vgbTO7Pvp736EkqSCcW+iy\nSTMFEtKVXGFmpalWMrMPAu9th/IU2nTgmDTWm5nncogULTP7JvB7YEiWuygHeuWsQCKZ6Q18G1hi\nZpWFLox0PgokpCs5FvhIGut1+taIqE+lud75ZqYbIelyzOxiYG6hyyGSAxOB3xW6ENL5dLimLpE2\nuhp4OOxJMxsOzGi/4hSGmdUA56a5enfgIuDH+SuRSHExs27AfydZZSXwPLAZiOBrfgcCY4HhqKJO\n8uthYHnc/yuAEcB5QFjLw1lmdrFz7sF8F066DgUS0tVMNrMxzrlVIc9fTde4AbgYf+FJ10wUSEjX\nMhk/RijRQeB859yfwzY0sz74sRIfBf41P8WTLu4Pzrn7Exea2TH4sTxjQ7abDSiQkJzpCjdMIokC\nuy6ZWRVtGA9gZt8LGRj2f2lsa2a2PmT7TAaJpyusW9OikOWnm9nxyXZoZt3MbF/IaxgWss3XAtat\nD8s0YmY/Cdn/TcnKFt12nJl908yeiJ7rXdFjbY5mOfmemU1LtZ+A/Z4QfR1/MLO1ZlZnZoei+95u\nZn+PPnebmV1sZgMz2LeZ2QfN7L/NZwraGD3HB6PZWV4ysx+a2ceiNejp7PP+kHO4JG6dyWb2gJm9\nYT7j2SYze9LMLjOz8oB99jGz/2dmL5jZNvPZY9aZ2c/NbFK6rzdhn3l5vzLwgZDlv0oWRAA457Y5\n537hnPsIMAhYnMmBzWyU+QGyvzezNdFzeij63m+Ivhe3mdmHwt53Mys3nzXqajO7y8wWmdlrZrYj\n+vlpNLOd0f0tMrPvmtmZZmZJynU4TSiwPslLCPstuz+6n/j0ooND9nFfyD5q0zh/U8xsnpkti76+\nPdHX/Fb0ezTPzCak2k/c/pIOCDez0uh3+7fR78zexO9Ue3HOvUPyJBofMH+tyykzG23+d/BP0e9+\nnZk1mNm7Zvaqmf3KfDbEmhT7OXyugSkhq30z5P1QutpCcM7poUeHfwBLABfw+Cu+20H8sgPAUQH7\n+M+A7Z8N2a8DZiZsPxRoDFivCRicovwfCDnGXqAqx+fqvUle0wTg1ZDnbklj338O2fZTGa5/Rsj6\nr4esPzVJmcbjb+TCXnPi43ngtDReayXwi4DPVzqPn6ax/38D/p7BPt8EPpfGfu8P2X4JPvvQz1Mc\n50XgPQnl3JFimx8CJWl+PvPyfmXxPflhyPF+kOtjxR1zHPCXDD9LPwvZ19IsPpcOWANMC9nn1Cz3\nGXvcH91PW/ZRm+T8fRDf3SfdfT0OjEzjfakN2X4mMBL4W8jzS9r4eZiZpOwzU2wb9lvpgBPTfV/T\nKOMo4E8ZnPO9wHeAIzI812k98vXd1CP8oRYJ6exew1+Y47VKBRuthbsqYPsfpHsg59x64NGAp0qA\n/0ix+cUhy3/tnNuTbhnSNDNk+RvOuReA/wl5/jJLPadEWItGq1pp8xm0wmp9Jwesfwy+D3CiA/g0\nm62Y2RXAM/gLZbomAMvM7PKwFaJl/xPwCSC0BjeJ3kn2bWb2PWAh/iKdroHAPWb2kGWXO74C//m9\nLMV644DFZtbdzC6LlrM6xTZXADemKkC+3q8shb2vF5nZcTk+FmZ2Lf5zfFaGm4ZlokuZoS7EcOAJ\n62DpV83sZnzFxCkZbPZB4AUzy3Zc3FB80Ds+y+3zaWuS51J9X9NiZpcCLwAfzmCzHsAc4HkLaamW\njkWBhHQFQcFAYirYGbS+SX2bJAOzQ3wvZPksC+gSAodvSj8est1PMzx+UtFjfSLk6V9H/4YFEscC\nZ6Y4xJMhy4O6t5xC+KDAVoFEyDKAZ5xz9YkLzexT+FrlwPOeQjnwU/PzBwT5JD4LSj7cCnyhDdt/\nDLg/WReVEO8n/ZvY4/E56jMZN3O9mQ0KezLP71c2Nocs7we8Yma/NLNPmNmILM51C2b2ReB2IK3u\nae3kx2Z2QqELkQ7zKXq/RnZBfU/gt2Y2Lottv46ft6EY9Uvy3M627tzMzsG3Xh6Z5S5GA4+ZWU6C\nGikcDbaWruCP+Ob6+EAhlgo2FihcE7Ddj5xzjZncIzjnnjGzF/C1pPH64QdeBt2kTyP4R/8fzrnA\nmvY2+BDhF77/AXDOvW5mK4CTA9aZCTyRZP8v4S9SiReH483saOfclrhlYYEBwPvNrJtz7lAa67cK\nXsyP50h2k/scvovOHnxXr3NpXYNrwC/MbLhzblvCcx8N2e+7+JaKt/CDcnvh+4CPAk4gxY2OmX0I\nuC7JKs8Cy4BD+FrQ6SH7/Dj+vNyT7HghDgAPARuixzg7ZL0L4v5dCzyC7+Z1Lr67R6Iy/Oen1XiW\ndni/srEsyXNH4Puhx/qi7zKzl/BdKZcBy5xz+9M5iJmdjg8iwjTia71X4l//UfhWodNIL/Coj277\nBrAJ2Bfd55H48Rv/QvAcGd2Ar9ByPNW66DLw3/Gwz+p/EXyz+kr071filv0/glvoErMSxeyK/4+Z\nTSV5it4nosdtwP+mfShgne7Aw2Y20jnXkGRfieIrY1/Gv0878YP0T8N3t2l3ZjYK37IUpAn/+9SW\n/fcBFhBeGf0G8H/4czEcOJ/gSqPjgR/RskX+NprnXfkcvtUn0SKSX4ekPRW6b5UeeuTiQfgYifuj\nzweNf1gWfe5EWvdzPwj0jT6fUR9VfKrUoPWXhqx/X8j6X8zDefp1yLH+nrDel0PW2wf0THGM34Vs\n+7GE9R5Ncm4dcHrC+i+HrDchoAwLQtbdD8wIWH8s/uIatM1tAesHjV14A+id5LzU4G++FwD3hazz\nQkgZmggYZ4JvQdgfss1bQPeAbe5Pcs53AWMS1r8rxfv0F+DIuPWrCB9n80TI687r+5Xld8XwN6DJ\nXnvYYw++tnZ0GsdZlmQ/zwLDQrbrD8wD7gp5/mrgDKA8jdf5zZDj1xEytgUffISVe0gG57k2ZB+B\nv68B24eNY9tK8G/DmcDukG1mZ1hGhw/UPhGy3dFt/AzOTHLcwPODn2R0RZLtlgVsMzVs/ZBj/HeS\n/d8FlCWsPxhYG7J+BDgp5DhLQraZm4vvuB65eRS8AHrokYtHkh+c+6PPV4VcPMYQfKN0X9y+M/0h\nL8PX5gZt896EdSvwF+ugi1OrAeFtPEe98bXNQeX6esK6gwgfRPyZFMe5OmS778etY8C2hOffSPj/\n9XHr14SUpw4oTTh+L3yNfVAZQgcj42/yg7bZCljCuv8IWO8PbXx/Rif5rN2dZLuvJNnu3ID170+y\n/pyA9cMSAcQ+pwMDtgkLRDcFrJv396sN78mphH9n0nlEgO8D3UL2PzLJtv8EeqRRxqSBQpqvsyJJ\nOQKDIYogkMC39IWV4UNJtpsTss2LGZbRAVfk4rMWctyZSY77EHB93OMGfPKHPSk+k5cEHGdq2PoB\n61r0Oxa0/t9J+D2O2+70JGW6PWSbJSHrz83XOdcj84fGSEiX4PyA5fsCnrqB4MGlaQ+yDjhWIzA/\n5OnZCf8/h+Zm3HiPOue2Z1uGEP+Ob8IP0qLLlXNuI76mL8inUhwnnQHXo/BdNGJ2AXcnrB/flWkS\nwV14ljrnmhKWnUFwt80DwK9CygY+g0uQPsBJCcvWB6x3tvmUnO/Pst9vsvEJP0ry3I/xXVUy3Wci\nh78RSbQuyTZPOOeCukm8FrJ+0Hlpj/crK865v+HP4dtZ7sLwraG/ChlHkWyQ6tedc/tSHcCl6Ipj\nZsPN7EvRQfivmNlW8+l541NmHkyyi6C5NIrFB0OWb3TOhX0+IPyzc3KG3923yK77YC58DPh23ONG\n/Pi3sHFnAE865xa08bhj8d+xID8O+D0GwPluuitDtss0wYAUEQUS0pXMx98sxfsoPotEvKeccyva\neKyf4NPcJfqkmcUfLyxbU04HWUfNDFn+onNubcDysEHX/5Isa41z7lXgnYCnxphZz+i/E8c7PIOv\nfYo3MS5LVNrjI/A1+0GOAPZaeP7x3SHbBe0zKDuX4fuMPwfsMJ+v/zkzu8/MrjKzVDe37wtZvpfm\nvuWtRAPO10OeziTr00bn3LsBy5MNzHwxZHnQZx/8e5CoPd6vrDnnnsH35f4avqUxGxfib/wShZWz\nAT+2K2tmNtDMHsaPD/vv6PHfh78JzCSrVzEPhg07f4PCPjfRz87LIduVkNl35k9hN85F6K/4cYFt\nFfY7BeGVT6mef2+WZZEioEBCuozozfJjaayadWtE3LF2AfcGPNUTuAQOT4B3TsA6teR4IFk0+8pp\nIU+HzXL6EL5vfpCZKQ4ZdINfQnOmo8TA4Cn8QO34G9CeNM/OmkkgEVZb1haJ+3wAP39BMtX4TEgz\n8UHsKjNbbWazQ9LohpX7bRdt508irMY8k3MRFPyBv6kNE5bZKFV547XH+9Umzrl9zrl5wDB8F42v\n4QfVZ5L9JrE1EqBvyLpvOecOZFbKZmY2BH/TdkHyNdNSkYN95EuhPzv/zMPxc203PrvUZOdcsuA7\nXcnOz6YU24b9TpWZWWhKbCluCiSkq0kVJLyJHyycC9/H95FOFLuhOJ/gmsF707hxzFSy7kiDzM+i\n2+IBfBqfhSjIZSlSXqZKA5uYDnZZtGYvscZqsplVEpxB6l18n9xEYd232qJF9zPns0lNx483yKRG\nMpal5JGE9MMQXu50ssi0Sn8blUnNc2D3lhSfxWRdYtKV9/crV5xzEefcX51z85xzZ+O7550IfB5f\nSRH0fY/5QMB7Hvb+tPW83oXPTNfZFfqzU5eH47fFQWALfrD1z/Dddvs7525xLTPgtUWyc57qtyrs\ndwoy+62SIqL0r9LVPI7vvx2WH/2HuWqqds6tM7OFtG5OPtnMTiPaMpGgieCxHFmL1n4nm2QsKPVt\nKoPxfdvDAobQQCLaLeo9ccsO0txFZhkt0zNOxtf6BU2utTjkJndHWKHboFXQ5JyrAz5tZt/Ad105\nE9+CMjCN/Z2Hb6n4WdyysHKnc2MTVpuX63E2+dAu71c+RD9/r0Uf95jZqfgUoIndJcHX7NfQcqKw\nsPcnrKUiJTMbig9yg7yFT7/7F2Czi86/Eq0USBYEFatCf3YKec4+7Zy7vwDHTXbOe5H8NydZq0NH\n+K2SAGqRkC4leuEPGwh9AD+2IZe+G7L8GwQPMPtzyODVtvgg+RkwOTPsCedn+Q4akHwqrfO4Px83\nYDQxd/8kwmc5DhvUHdZ8vsE5Z1k+5obsE+fcW8657znnznXOHYvPEDYGP/7m24R3GfpkmuUeGDe2\npJXoTWBYYJztIOH21K7vVz5FB2dnUhEQ1hWkr5mFzQOQSrL5WWY4537inKt1LSdxzDpwKbCwz87S\nNnx27m/PF9ABJftNSTXW4cSQ5dtTJQ2Q4qVAQrqiB0iY1CjqV865nNZwOeeeBv4W8NQ5BLcI5mOQ\ndaosS9n6aLTbUZigVokK4IsJy+KDhxdo2a2jD+HlD2v1WBqyfLCZjQ15LpSZZdRy65zb65x72Tn3\nO+fcVwnPLJM4UDRsAjTDT8AWZiItM2DFeyrJdsWioO9Xkv1MNLNUM7kHCRs3EqF1reuSJPu5Kotj\ng59HIMgO51zYoP2wFoxkknVTCWqRyXQ/6ewj7LNzupkdnUEZgNx9djq5ZwhviTkvbCMzO5Lw7Exh\nv1Nt+WxIO1EgIV1ONKXizwKeavMg6xDfS3O9LcD/5vLAZtYLPxYjH3rgu/SECWsxGJHw/8MXkWgt\n6QsJzwfNxL3ROfdG0M6dcy8Tnl3nnugg95TMbIKZ/Rz4YcBzHzOzM1OME4nZE7I88WK4GD8BW5C5\nQa0SZtYNuDVkG0d6yQUKqj3eryydCCwys7+a2aUJ2dbCytCN8AHOrznnEm/AlhD++bjazJJ+d82s\nt5klBplhqYCrzew9iQujN9w3JztOiGQDd0/PYD9BlTrp7uNJ/CSZicqBn0Tfj6TMrCT6XX6UljNu\nS4BoZdtzIU9/yszGhDw3F59AI8gfQpa35bMh7USBhHRVXwK6xT3KktTWtdVD+L7JqTwQnYMily4i\nfBDb5HSb+/EpJIPMTHLssBaDeI20HmAdVjMfLyxIibklZPkEfPakz5vZsFj2JDOrNLPjzezjZvY9\nM1uPz8p0GcFZa6ZGy7DBzH4cvdE8OXpjVxrdZy8zm0744P0WNdfRjCphN8HDgaVmdpaZlZtZabQ/\n/mM0Z8JK9FvnXFha2GKT7/erLU4DfglsMbNfR1P5jjezvnHvdR8zOw//2T0lZD+t0rlGKzVuD1m/\nBPitmf3EzE43syOix6qKtpbcip8tODFwCZv3w4Dfmdlp0c/QEWb2EfxNYcYDs6NlD/tdu8PMfmpm\nX0tI4hD0W7Q6ZB+XmNmjZvbNhH2MjCvDXnxSiyDnAn8zs0+YT4Ub08vM3hddfje+q84ifG160Fgs\naW1eyPJuwF/MbGb0PFv0e/sD/CSVQd4ieP4aCP9sTDSzRWZ2U8JnY0IGr0FyxRXBrHh66NHWBylm\ntm7jvsNm45yZwT6uS7Kf2GNEHs7LMyHH2kQGs//ib/SC9hMBhibZLmgG6PjHCwHbfDCNc/WJFOUt\nS/LaEx+NKZ5v9RkC7mzjPh3wk4D91uDHlqTaNmzW8dhjJzA85NzcH7LNklx9B8hgptz2eL+y/O58\nJs33IZ33ej8BM4BHj1OJzz6W7Wu/P2F/vfC19Jl8fpoyfY+jx/p5muWOPfoE7OPyDPfxsYDX+3qa\n71Wy1+kImTGZNsy+3cbP4Mxs3pcsjjM17DhJtlmYxjlPdb5bvZ8Jxzgzw8/Gl/L5fugR/FCLhEj7\n+DHhk3SBHxwYVuufFTMbAXwg5OmHXfSXOk0PhR2G5GMwUrUcBPWNfZbw7hkxSVs7nG/ZOY/wGq14\n+aiFTLXP/cB/JS50vtvAv5J6foJkXarqgQtd8CSDRakI3q9sGemV54suJImC87XqZ+NTT6eS8ljO\nz2GTqjtl4ufn22kcO8idtD1z0W8IT0iQUvT1no3vGpqMoV4YuXQpPs1sMqnO9w3OuYeTPL+Y8MkD\npUjoSyXSDpxPFXpfklXacyZrCA8MAjnnVuK7UQT5ZJKxAqm6N7XqxuR8l4mXkmzzmnMuZTYi59w2\nfNeYBanWTaIJCByL0Qa7gY+EBY7OuX8A4wifNTqZ9cBE51xOJzRsD0X4ftWROqBNZS/wOefcPclW\ncs69ie8S9fs2Hi9mLumPj7kfn0UuY865F/Dpo7NOmR0NpC6kDek/nR8vdTI+rW226sl+5vIuJ/q+\nTSK8W1Iy+4FPOue+leIYDt89V+9LEVMgIdJ+7gxZXgckq5XJmCWfO2ITvhtJpsKCj6HAlJDnlhBe\nY+mAp0OeSzZOIp2xF/4Azu12zl2Kn2H6QZK3CsXsxg/++09gQMjFbj7wVfwM5OlOSvU2cAcw0jn3\neIpyr4+W+d/xfdhT1fr+A7gSGOWcW55meYpOHt+vbMryMD4t6iX4WepfJf3a97fwLU4nOufSSint\nnNvmnDsP/136LeED72Mi+HEhrRI0RFt4zgVuIHzA6gbgCufcpzNsnUw81p34dMc/wNdQ15FhYOF8\ndrv34mdgXoafayOjdKDOuc3OuQ/h00v/H+lN6rcNf64/AxztnEtW2SMJnJ/x/ZP4lu9H8CnUk3kH\nnxziOOdcWgGIc+414CTgC/hA8R2SZwyTdmZt+P0QkQyY2QyCs1P80DmXbapHyUB0cOxo/E1LDb5/\ndQM+c85b+K4161yGkxKanwRsOH7QajVwJHAIfyO8CT+p3upsb9ii2bfeH91/Db4SaCf+ovpX51yq\nbh0dUr7erzaUpxL/Pg/Bp1mtxCczOBgt0ybgZedcm2tQo6lITwZG4l97T/xr34pvdVnhnAvL+BS/\nnx74muMTomXdgj9vz7YlgCh2ZlaOb+UZgf9O9sS/T7vxQdRq/FwlnfYctLfoOR8PHE/z7+AufMC2\nwjmXTtdF6WAUSIi0g2gO7WX4LiuJTnL5yxglIiIikheafEUkD8zsHHxNahm+5vJcYFDAqk8oiBAR\nEZGOSIGESH5cSOoZpR2+n72IiIhIh6PB1iKF89/Oub8VuhAiIiIi2VAgIVIYdwNfKXQhRERERLKl\nrk0i7aMen2HnWeDHzrklhS2OiIiISNsoa5OIiIiIiGRMXZtERERERCRjCiRERERERCRjGiNRBMys\nRf8y55wVqiwiIiIiIulQi4SIiIiIiGRMLRLFSSPgRURERCSf2twDRi0SIiIiIiKSMQUSIiIiIiKS\nMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUS\nIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIi\nIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSEigSgVWrYOFC+M1v/N9Vq/zyYvP6669z\n7bXXcsopp1BTU0O3bt2oqanhtNNO40tf+hLLly8vdBHbxcMPP8zVV1/NpEmT6NmzJ2bGJz7xiUIX\nS0RERDopc84Vugxdnpm1eBMK+Z7U18OiRbBsGWzYADt3QlMTlJZCdTUMHgyTJ8O0aVBRUbBiAv48\n3XTTTdx0001EIhFOOeUUJkyYQE1NDXv27OHll1/mueeeo6GhgTvvvJMrr7yysAXOs7Fjx7Jq1Soq\nKysZOHAgr732Gpdeeim//OUvC100ERERKT7W1h2U5aIU0jns2QPz58Py5bBxow8g+vaF8nJobITV\nq2HtWlizBlauhKuvhqqqwpX3pptuYu7cuRx77LE8+OCDTJw4sdU67777LnfccQe7du0qQAnb1/e+\n9z0GDhzI8OHDWbp0KWeccUahiyQiIiKdmLo2CeBbIubPh6efhnXrYOhQGD8ehgyBgQP93/Hj/fJ1\n6/x68+f77Qph3bp13HzzzZSXl/PYY48FBhEA/fr1Y968eVx33XUtls+cORMzY926dcyfP5+TTjqJ\nI444gqlTpx5eJxKJcPfdd3PqqadSWVlJjx49OPXUU7nrrruIJPTxqq2txcyYOXNmYDmmTp2KWcvA\nf8mSJZgZc+fO5bnnnuOss86iV69eVFVV8eEPf5gXX3wxo3NyxhlnMGLEiFbHEREREckHBRIC+O5M\ny5fD5s0wdqzvxpR4P2rml48d69dbvtxvVwj33XcfjY2NfOxjH2PUqFEp1y8rC258u+aaa/jGN77B\n6NGjueaaa1oEJJdddhmzZ89my5YtfOYzn+Fzn/scW7du5YorruCyyy7L2Wt5/vnnmTp1KhUVFVx5\n5ZWcffbZLFq0iEmTJvHUU0/l7DgiIiIiuaSuTUIk4sdEbNwII0b4rkzJlJf79dav99tNnw4l7RyS\nPvPMMwCceeaZbdrPSy+9xIoVKxg6dGiL5Q8++CALFizg5JNPZtmyZVRWVgJw8803M2XKFBYsWMA5\n55zDJZdc0qbjA/zpT39i/vz5XHXVVYeXLVy4kPPPP5/LL7+c1atXU9LeJ1hEREQkBQUSwiuv+IHV\nkQj07p3eNr17+zEUGzb47ceMyW8ZE73zzjsADBgwoNVztbW13H///S2W9e7dmy984Qut1r3uuuta\nBREA9957LwC33nrr4SACoEePHtx2222cddZZ/PSnP81JIDF8+HCuuOKKFsvOO+88pkyZwtKlS3nq\nqaeYMmVKm48jIiIikksKJITaWp+dqU+f1t2Zwpj5gdg7d/pgor0DiWRqa2u58cYbWywbPHhwYCAx\nYcKEwH289NJLlJSUtBgzETNlyhRKS0tZsWJFTso7adKkwBaHqVOnsnTpUlasWKFAQkRERIqO+ksI\n9fW+dSFkGEGosjK/3cGD+SlXMscccwwAb7/9dqvnpk6dinMO5xyHDh1Kaz+Jdu3aRU1NDeUB/bzK\nysro06dPzjJBHX300UnL1hUyTomIiEjHo0BCqKjw80Q0Nma2XWOj36579/yUK5nYoOhFbRztHZbh\nqFevXuzYsSMwEGlsbGTbtm307Nnz8LJYi0JjyEmsq6sLLcOWLVsCl8e6b/Xq1St0WxEREZFCUSAh\nDBniszFt3QrpzoXnnF8/Nklde5s5cyZlZWU8/PDD/POf/8z5/k8++WQikQjLli1r9dyyZctoamri\nlFNOObysuroagDfffLPV+rt37+b1118PPdbTTz/dKp0s+PSwsbKIiIiIFJtOH0iY2cfMbL6ZPWVm\nu83MmVlWU/2a2UAzu9fM3jazejOrNbM7zKw61+VuT6NH+2CgtBSSVJy3UFfn1x882G/f3o477ji+\n/vWv09DQwNlnn82zzz4buF6yloBkLr/8cgC+8pWvsH///sPL9+/fz/XXXw/ArFmzDi+vqqrihBNO\n4JlnnuExEJFOAAAgAElEQVTVV189vLypqYlrr72WAwcOhB5rzZo1/OhHP2qxbOHChSxdupThw4cz\nadKkrF6DiIiISD51hcHWXwfGAHuBt4ATstmJmR0HPAv0AxYCrwETgGuA6WY20Tm3PSclbmclJTB5\nsp+xes0aP09EshSwDQ1+vWHD/HaFykx6ww034JzjW9/6FhMnTmTcuHFMmDCBmpoa6urqqK2t5Ykn\nngBg8uTJGe37kksuYeHChfzmN79h1KhRnH/++ZgZjz76KOvXr+eiiy7i0ksvbbHNl7/8ZWbNmsXE\niRO58MIL6d69O4sXL+bQoUOMGTOGVatWBR5r+vTpzJkzh8cee4wxY8awdu1aHnnkEbp37869996b\ndurXRx99lEcffRRo7hb13HPPHZ4kr0+fPnznO9/J6DyIiIiIhOkKgcQX8QHEWmAKsDjL/fwIH0T8\np3NufmyhmX03eoxbgM+3raiFM20arFwJBw74vyNG+BSv8UMInPMtEWvWQP/+fqbradMKV+bYrNAX\nX3wxd999N4sXL2bBggXs27ePqqoqjjvuOGbPns1ll13WohtSuh588EGmTJnCvffeyz333APAiSee\nyJw5c5g9e3ar9S+//HKcc3z3u9/lgQceoLq6mvPOO4958+ZxwQUXhB7ntNNO44YbbuAb3/gGd955\nJ845zjzzTG655RZOPfXUtMu7cuVKHnjggRbL1q1bx7p16wCfuUqBhIiIiOSKuXQ7xXcCZjYVH0j8\nyjn3iQy2Ow4fiNQCxznnInHPVQGbAQP6Oef2ZVGuFm9Cod6TPXtg/nw/Y/XGjT4jU9++PjtTY6Mf\nE1FaCoMG+SDiqqugqqogRe0UlixZwhlnnME3v/lN5s6dW+jiiIiISNeSZtL/cF2hRSIXzoj+fTw+\niABwzu0xs2eADwHvB9qWRqiAqqpgzhxYtMjPWL1hg58noqHBBxAjR/oxEZMn+5aIiopCl1hERERE\nCkWBRHpGRv+Gpd5Zgw8kjidFIGFmy3NYrpyrqIAZM2D69OYZrw8e9CleYwOrCzUmQjqwSMR/oGpr\n/cQlFRU+XZg+UCIiIh2WAon0xBL5h80MFlveux3K0i5KSvxs1cU0Y7V0QPX1rZu4mpp8E1csd7Ca\nuERERDokBRLtzDk3LnFZ4hgJ6RpiM3B3WmGDbsrL/aCb1ath7Vo/en/lSrj6ag26ERER6UAUSKQn\n1uIQNsVwbHl2kxaIdDb19T6IePpp2Lw5OA3Y4MHNacBi82zMmaOWCRERkQ5CnZPTszr69/iQ50dE\n/4ZPXyzSlSxa5FsiNm/2E5NUV7cMIsD/v7raP795s19/UYfNVSAiItLlKJBIT2zuiQ+ZWYtzFk3/\nOhHYD/y1vQsmUnQiET8mYuNG3xKRbHZD8M+PGOHXX7bMby8iIiJFT12b4phZN+A44JBz7o3Ycufc\nG2b2OD4z05XA/LjNbgR6APdkM4eESKcTS/cVifjuTOno3duPodiwwW+vUf4i0l6UVU4ka50+kDCz\n84Hzo/89Jvr3dDO7P/rvbc65L0X/PQD4J7ABGJKwqyuAZ4EfmNm06Hqn4eeYeB34Wj7KL9Lh1Nb6\n7Ex9+rTuzhTGzA/E3rnTBxMKJEQk35RVTqTNOn0gAYwFPpWwbFj0AT5o+BIpRFslxgM3AdOBGfgZ\nrb8P3Oic25mzEot0ZPX1/mKcqktTorIyP/vhwYP5KZeISIyyyonkRKcPJJxzc4G5aa5bS5Lpwp1z\nbwKfzkW5RDqtigpfo9fYmNl2jY1+u+7d81MuERFQVjmRHFLnPxHJrSFDfLeArVsh3XkynPPrx7oT\niIjki7LKieRMp2+REJF2Nnq0DwbWrvU1etXVqbepq/OtEYMH++1FRGOA8yHbrHLr1/vtpk/XyReJ\no0BCRHKrpMQPUFyzxj/Gjk1+sW5o8OsNG+a300VaujiNAc4jZZUTySkFEhKsA1WFvf7669x9990s\nWbKE2tpa9uzZQ1VVFSNGjGDSpElcfPHFjBs3rtDFzKvt27fzu9/9jj/84Q+88sorbNq0ifLyckaP\nHs2nP/1pPv3pT1PSnu/btGl+gOKBA/5vUB9k55r7IPfvD+PH++1EujCNAc4zZZUTySkFEtJSB6oK\nc85x0003cdNNNxGJRDjllFO46KKLqKmpYc+ePbz88svMnz+f22+/nTvvvJMrr7yyoOXNp4ceeojZ\ns2fTv39/zjjjDAYNGsSWLVt45JFH+MxnPsNjjz3GQw89hKV74Wyrigp/hwP+jmj9+uY7orIyf0e0\ndav/XA0b5oOIq64q+GdKpJA0BrgdKKucSE4pkJBmHawq7KabbmLu3Lkce+yxPPjgg0ycOLHVOu++\n+y533HEHu3btKkAJ28/xxx/P73//e84555wWLQ/z5s1jwoQJ/Pa3v+WRRx7hggsuaL9CVVX5O5zE\nwLShwQcQI0cWVWAqUmiJY4CD7nXjxwCvXNk8BnjGjPYvb4ekrHIiOVVcfVSkcOKrwtatg6FDfS3x\nkCEwcKD/O368X75unV9v/ny/XQGsW7eOm2++mfLych577LHAIAKgX79+zJs3j+uuu67F8pkzZ2Jm\nrFu3jvnz53PSSSdxxBFHMHXq1MPrRCIR7r77bk499VQqKyvp0aMHp556KnfddReRSKTF/mprazEz\nZs6cGViOqVOntmoNWLJkCWbG3Llzee655zjrrLPo1asXVVVVfPjDH+bFF19M+3yceeaZnHvuua26\nLx1zzDF8/vOfP3y8dldR4e9w5s2D66+HK66Az37W/73+er98xgwFEdLlZTsGeONGv13CT5KEUVY5\nkZxSi4R4Hawq7L777qOxsZFLLrmEUaNGpVy/rCz4o37NNdfw1FNPcc455zBjxgxKS0sPP3fZZZex\nYMECjj32WD7zmc9gZvzud7/jiiuu4Omnn+ZXv/pVTl7L888/z7e//W3OOussrrzyStauXcsjjzzC\nsmXLePzxx5k0aVKb9t+tWzcg/By0i5IS369YfYtFAr3yCmysjXDc3leYVFdLtx31NJZWsL1qCJtq\nRuOsdb2fxgBnQVnlRHJKgYR0yHR4zzzzDOBr4tvipZdeYsWKFQwdOrTF8gcffJAFCxZw8skns2zZ\nMiorKwG4+eabmTJlCgsWLOCcc87hkksuadPxAf70pz8xf/58rrrqqsPLFi5cyPnnn8/ll1/O6tWr\nsx4o3djYyM9//nMApk+f3uayikge1Nez/+FFnPfCMvod2EC/vTsx14SzUvZVVLOjcjBr+k/mtQHT\naCxtbr3TGOAsKKucSE4pkJAOmQ7vnXfeAWDAgAGtnqutreX+++9vsax379584QtfaLXudddd1yqI\nALj33nsBuPXWWw8HEQA9evTgtttu46yzzuKnP/1pTgKJ4cOHc8UVV7RYdt555zFlyhSWLl3KU089\nxZQpU7La9/XXX8/f//53ZsyYwYc//OE2l1VEciw6Nm3g48up2baRUmuivqovjSXllEYaObpuNf12\nraXfrjUcu30lT466mvry5rFpGgOcBWWVE8kZBRLS6dLh1dbWcuONN7ZYNnjw4MBAYsKECYH7eOml\nlygpKWkxZiJmypQplJaWsmLFipyUd9KkSYEtDlOnTmXp0qWsWLEiq0DiBz/4AbfffjsnnHACv/jF\nL3JRVBHJpbixaVVbN7PuyBHsLetNVVXz7/D2ysEc0VDH0bvX0K3Jp2n6y0lzDrdMaAxwFpRVTiRn\n1EYnzenwMu1DX1bmtytAVdgxxxwDwNtvv93qualTp+KcwznHoUOH0tpPol27dlFTU0N5QJN3WVkZ\nffr0yVkmqKOPPjpp2bI5zp133sk111zDe9/7XhYvXkxNTU2byigieRA3Ni0yeiyHKqs5eDChMseM\nAxXVvFkzll77NzNo63JO2LQI0BjgNolllZs1y7c0jBzpK8gaGvzfkSP98lmz4NprNVmHSAi1SEiH\nTIc3ceJEFi9ezKJFi7j88suz3k/YvAq9evVix44dHDp06PBg5ZjGxka2bdtGz549Dy+LtSg0hpzD\nurq60DJs2bIlcHms+1avXr3CX0CAO+64gy9+8Yu8733vY9GiRfTr1y+j7UWkHSSMTavuXU7VBti9\nC+oboCKhDqOptJx3e46gz571jNi8jH8cO52ddSUaA9wWsaxy06c3d/E9eNBf02InVWMiRJLSN0Q6\nZDq8mTNnUlZWxsMPP8w///nPnO//5JNPJhKJsGzZslbPLVu2jKamJk455ZTDy6qjmT/efPPNVuvv\n3r2b119/PfRYTz/9dKt0stCcrvXkk09Ou9y33XYbX/ziFxk7diyLFy9WECFSrBLGppn5rviVlbBr\nV3A61/3lvTHXRM3eDfR95xVeftk3DJvB//4vrFqlNLBZiWWV+7d/g49/3P8dM0ZBhEga9C2R5nR4\npaV+cFk6CpwO77jjjuPrX/86DQ0NnH322Tz77LOB6yVrCUgm1srxla98hf379x9evn//fq6//noA\nZs2adXh5VVUVJ5xwAs888wyvvvrq4eVNTU1ce+21HIhNQRtgzZo1/OhHP2qxbOHChSxdupThw4en\nnf71W9/6Ftdffz3jxo1j0aJF9OnTJ63tRKQAAsamDRjgu+kfeSRs2+5bJlowY09FX9z2nWxYtoHd\nu2H7dnjhBbjrLrj1VvjqV+GPfyzYFD8i0sWoa5N02HR4N9xwA845vvWtbzFx4kTGjRvHhAkTqKmp\noa6ujtraWp544gkAJk+enNG+L7nkEhYuXMhvfvMbRo0axfnnn4+Z8eijj7J+/XouuugiLr300hbb\nfPnLX2bWrFlMnDiRCy+8kO7du7N48WIOHTrEmDFjWLVqVeCxpk+fzpw5c3jssccYM2bM4Xkkunfv\nzr333ptW6tcHHniAG264gdLSUiZNmsQPfvCDVusMGTIkdMI8EWlnsbFpcb+1paUw6n3+31u3wp7d\nsNtB9yOgxPzqDdvLKG1qoLTcj0079ljfE6exEVav9tMjrFnjkxFdfbW69otIfimQEK8DpsOLzQp9\n8cUXc/fdd7N48WIWLFjAvn37qKqq4rjjjmP27NlcdtllLbohpevBBx9kypQp3Hvvvdxzzz0AnHji\nicyZM4fZs2e3Wv/yyy/HOcd3v/tdHnjgAaqrqznvvPOYN28eF1xwQehxTjvtNG644Qa+8Y1vcOed\nd+Kc48wzz+SWW27h1FNPTaus69evB3wLyB133BG4zpQpUxRIiBSLkLFp5d3gpJNg0yY/P+ievdAQ\njTn27oVK10ikpJSjB3fn7NNb5sgYPLj5JzrWCDpnjpINiUj+mEu3T7zkjZm1eBMK9p5E85mzfLkf\nABiWDm/QoOZ0eKruytqSJUs444wz+OY3v8ncuXMLXRwRaU+rVvm+SKtX+9/TgMQPzsGOHT6Y2LIF\nNm9yjNj9Inv6j+Qv467nraOC0243NPj6oGHDfNKhGTPy/WJEpINKM+d/OLVISLNYOrxFi3w2kQ0b\nfB/ehgYfQIwc6au8Jk/2LRG5rOaKRPzgw9pa3+RfUeEHgStrhoh0RrGxaWvX+maEaMKGeGZw1FFQ\nUwNb3oEeh+qoOLKUN3sNZlNN+Ni08nLfqLx+vf8pnz5dP6Mikh8KJKSl9k6HV1/fOnBpavKBSywj\nVD4CFxGRQspgbNqOHbB/dwPH1q9h99HDWNN/Ms6S/w737u1/Sjds8D/lRTRnqIh0IgokJFgsHV4+\nrz5hXanKyzVyMIEabEQ6oTTHph3cXMex29awo0d/NvUdz2sDUo9NM/M/pzt3+mBCgYSI5IMCCSmM\n+nofRDz9tB9RGHQB7eQjB2MzcCejBhuRTqyiwleQgK9QWb8+cGxa912lrOs+jDeqx/PSqKtoLE3v\ny15W5numHjyYx9cgIl2aAgkpjEWL/IVz8+bwJn0zf7c8dqyvrVu+3G/XRUYOqsFGpAtIY2zajobB\nPF47mRU10xhQnn6NQWOj30X37nksv4h0aQokpP1FIv6CuXGjb4lINmcFdMmRg2qwEelCUoxN2x8Z\nzdr/KuHt1fCeoYEJnlpxzifai+XIEBHJBwUS0v5iF8pIxN8dp6OLjRxUg41IFxQyNm10JGWCp1bq\n6nxrRCxHhohIPnTual0pTrW1vum+T5/0qtag9cjBTizbBpuNG/12kUj7lFNE2kcswdOgQb4FsqEh\n+foNDX69QYP8dp28AVdECkg/L9L+6qPTtJZl2CBWVua36+QjB3PRYCMincu0aTBuHPTv71sgd+70\n3ZfiOeeXr1zp1xs/3m8nIpIv6tok7a+iwre5NzZmtl0XGTmYiwabTt7zS6TLSTPBE6Wlfkbr8ePh\nqqs0ZkpE8kuBhLS/IUN8J9/Vq30HXo0cbCHWYJOqS1MipXoU6dzSSPCklNAi0q4USEj7Gz1aIweT\nUINNcdPkgFJIKRI86XMoIu1KgYS0v9jIwTVr/CMsLVFMbOTgsGFdYuSgGmyKkyYHlGISkuBJRKRd\nKZCQwpg2zY8IPHDA/w2aKMG55okSutDIQTXYFB9NDigiItKaAgkpDI0cDKUGm+KiyQFFRESCmUvM\nHyftzsxavAld6j1Rf5FA9fVw++3Jb14TG2wmTYJrr+1Sp6ld/PGP8LOfwbp16QV1K1f6oG7WLE0O\nKCIiRS3N3JBJdtClblqLVJcOJGJiI1g1cvCwsO40iQ02gwY1N9ioO01uRSLw1a/6WHfo0PS6me3c\n6RvYpk2DefO67Mc39zTKXUQk19ocSKhrkxQHjRxsRakeCy8XkwPqI91GarUUESlaCiREiphSPRaW\nJgcsMI1yFxEpagokRDoANdgUhiYHLCCNchcRKXqqyxQRCaHJAQto0SLfErF5sx/lXl3dulnIzC8f\nO9avt3y5305ERNqFAgkRkRCxyQG3bvVZstIRmxww1n1fshCJ+DERGzf6lohUTULl5X69jRv9dpFI\n+5RTRKSLU9cmkXQoY0yXpMkBC0Sj3EVEOgQFEiLJKGNMl6bJAQtEo9xFRDoEBRIiYZQxRvAx4sqV\nfizvypXpTQ44frzfTrKkUe4iIh2CAgmRIMoYI1EVFT5GBB9Trl8fPjngsGHNkwPqY9AGGuUuItIh\nqOFdJIgyxkic2OSAs2b5loaRI/3b39Dg/44c6ZfPmgXXXquGqTbTKHcRkQ5BLRIiibLNGLN+vd9u\n+nR1ju+ENDlgO9IodxGRDkGBhEgiZYyRJDQ5YDvQKHcRkQ5Bv7YiiXKRMUZE2mbaNBg3zo9eX7nS\nf7cSuzk555evXKlR7iIiBaAWCZFEyhgjUnga5S4iUvQUSIgkUsYYkeIQG+WeOJdLQ4P/ro0cqblc\nREQKSIGESKJYxpjVq/1NSjrdm2IZY2I3NiKSGxrlLiJStBRIiCRSxhiR4qNR7iIiRUfVOCKJYhlj\nBg3ymWAaGpKvH8sYM2iQMsaIiIhIl6E7HpEgyhgjIiIikpS6NokEUcYYERERkaTMJdaySrszsxZv\ngt6TIlJf3zpjTFOTDyCqq5UxRkRERDqqNCfLSrID3bQWngKJDiASUcYYERER6UwUSHQGCiRERERE\npJ21OZDoElWpZjbQzO41s7fNrN7Mas3sDjNLI69ni/2cY2aPm9lbZnbAzNaZ2UNmdnq+yi4iIiIi\nUow6fYuEmR0HPAv0AxYCrwETgDOA1cBE59z2NPZzG3AdsB14FNgGDAf+DT9o/ZPOuV9mWUa1SIiI\niIhIe1LXplTM7M/Ah4D/dM7Nj1v+XeCLwD3Ouc+n2McxwCZgK3CSc+7duOfOAJ4E1jvnhmVZRgUS\nIiIiItKeFEgkE22NWAvUAsc55yJxz1UBm/EnsZ9zbl+S/ZwG/BX4vXPuvIDnd+PPZVWW5VQgISIi\nIiLtqc2BRFbzSJjZ5LYeOBnn3LIc7eqM6N/H44OI6DH2mNkz+NaK9wOLkuxnDdAATDCzPs65bbEn\noueiCt/dKSUzW55B+UVEREREilK2E9ItAfJVbe7I3UR5I6N/Xw95fg0+kDieJIGEc26Hmf0/4LvA\nq2b2KH6sxHH4MRJ/Af4jR2UWERERESl6bb1hb3OTSJ71iv7dFfJ8bHnvVDtyzt1hZrXAvcBn455a\nC9wfP24ixX7GJS5L7NokIiIiIlLs2pr+1eX4UbTM7DrgYeB+fEtED2AcsA74lZn9V+FKJyIiIiLS\nvjr7PBKxFodeIc/Hltcl24mZTQVuww+2vtY5t845t9859xLwEXxGpzlmllXWJhERERGRjqYtgYTl\n4ZFrq6N/jw95fkT0b9gYiph/jf5dnPiEc24/8AL+XJ6caQFFRERERDqibMdIfDqnpcif2I3/h8ys\nJCD960RgPz61azIV0b99Q56PLW/ItqCSWiQCr7wCtbVQXw8VFTBkCIweDSWdvW0NdAJERESkqHTq\neSQgswnpzKwbfvzDIefcG3Hrfhz4NbAFGOec2xT33NnAH4B6YGA6s2QHlFHzSCRRXw+LFsGyZbBh\nA+zcCU1NUFoK1dUweDBMngzTpvl7606ny58AERERyQNNSJdKdFK6Z4F+wELgn8Bp+DkmXgc+ELv5\nN7MhwHpgg3NuSNw+SoA/A2cBe4DfAe8AJ+K7PRnwBefc97MsowKJEHv2wPz5sHw5bNzo75/79oWy\nMmhshK1b/f30oEEwbhxcfTVUZTUtYJHq8idARERE8qQwE9J1JM65N8xsPHATMB2YgZ/R+vvAjc65\nnWnsI2JmM4ArgX/HD7A+EtgB/BH4gXPu8Ty9hC6rvt7fQz/9NGzeDCNGQO/eYHEf+8GDoa4O1qyB\nAwf8sjlzOknFfI5PgHpGiYiISC61S4uEmQ3CtwIcjZ+zocQ5d1PeD9xBqEUi2B//CD/7GaxbB2PH\nQnl5+LoNDbByJQwbBrNmwYwZ7VfOvMnRCVDPKBEREQlQvC0S0e5AnwS+DJwQ8PzNwEW0nNztXufc\nL/NVJuk4IhF/47txo6+IT3YPDf75ESNg/Xq/3fTpHbyWPUcnIKxnVHm57xm1ejWsXesbNFauVM8o\nERERSV9eAgkz64cfnDyZ4GgnVuX+EjA17v+9AAUSwiuv+NrzSMT35klH797+RnnDBr/9mDH5LWNe\n5eAE1J8wpmt3DRMREZG8ynmdbTSt6pO0DCICZ692zq0GXoltCow1s6G5LpN0PLW1vgtOnz4tb3yT\nMfO17Tt3+nvpDi0HJ2DRIt8SsXmz7xlVXd16V2Z++dixfr3ly303KBEREZFU8tH5427gvdF/xwcP\nYXdDTyQ8d1YeyiQdTH29r1wvy7DNrKzMb3fwYH7K1W7aeAIi+w9m1TNq40bfMyoSSb6+iIiISE67\nNpnZSfisRvEtD6mqU2OTwcW2mQj8JJflko6nosIPBm5szGy7xka/Xffu+SlXu2njCVj/TndWroQd\nO6BnT9i1y499qKkJb+DoVF3DRDo7pWETkSKQ6zESl+ADB0dzAPEY8AtgQcg2/4z7txEwMFu6niFD\nfJeb1at9P/50evc456dVGDnSb9OhZXkCIu9u5Z2eI/nh/w5m1atw6JDfhZm/z6ishP79YcAAH6fE\nS+wapkBCpAgpDZuIFJFcBxJnRv/GgonfOuc+DmBmYYHE5oT/d/RbQMmB0aP99XDtWj8YuLo69TZ1\ndf5aOniw375Dy+IENGyrY9vWUp7fP5jfHxrNvn3+PqKkxFde1tX5loldu2D7dhg1qnWXp7Iyn0m2\nw3cNE+mMlIZNRIpMrgOJQbRsjZiXxjZ7E/7fM6clkg6ppMRXqq1Z4x/pTKOwZo2fRmHy5E7Qsp94\nAsaMgb17/Y1ErPYxrq9S04EGdvx1Desiw3iycTJH9y/hYINvZejRw++ystKfp927/S4ATjqpZctE\np+kalkjdQKSj6/IzdIpIMcp1IJFYbbomjW16Jfy/NHAt6XKmTfOVagcO+L9B103nmq+b/fvD+PF+\nu05h2jR48UXffeGxx/zNgHP+Ed9XqaqKvZt2sykygBUl4zk4cRr998OWLf7cVFb63cU2qanxYye2\nboVNm2DQIP98p+oaFqNuINJZJKZhC6pZiU/DtnJlcxq2TjFDp4gUo1wHEnvxM1fH9APWp9hmYML/\nd+W0RNJhVVT4lnnw18P165tb8svKfO351q3+nnDYMB9EXHVVJ7ofbGjwL/jAAf/vPXv8C4+9wF27\nYPNmXHk5B0rfw/LyCfzttKs44ogKarr7AGLXLr9p/D1HaakfgL1nj78nOfZYf//RqbqGgbqBSOfR\n5WfoFJFiletAYhstA4mzgR+l2Oa8hP9vyWmJpEOrqvIt84mVyg0N/qY3Vnve6SqVY90Y/vY36NYN\n3vc+3ydp3z7/nHOHB0A07qtnX+RImiihsqacJnxg0L9/85iIo45qeR9RXu53sXevb52oqupkXcPU\nDUQ6ky4/Q6eIFKtcBxIvASNoHifxTTN72jn3ctDKZjYEmB23vgP+luMySQdXUeFb5qdPb76eHjzo\n+/HHas87/I1vovhuDCef3Hznv2OHv/tvbPStE5WVvL2jEvfiKkY3raLx7UX8fZDvxjBggB9U3dTk\n//bq1VyRaebPX309vPMOvPFGJ+sapm4gkmMFHWaTixk6FUiISB7kOpBYDFwU/bcD+gJ/NbP/C1j3\nduCT+HEV8fNOPJnjMkknUVLir4Wd/noY1o3BzDctHHVUi9Ub6+CtI0bwnoPrGbF5Gf84djrOSigt\n9Q0Z4LuA7d7tY5EjjvC7qq/3AVl5ub+X7jRdw9QNRBK0JQgoimE2sQkqU32WEykNm4jkWa4DiQXA\nbTRnXnJAd+CC6P8t7u9/0twKEbMdeCjHZRLpWDLsxlBaCvu79cYONFGzdwMDdrzCW0f5aKtbN5+Z\nadMmXzm/d6+/J4lEfFBRWemDiFmzOlHXMHUDkaiMgoBuraONfX2H8P0nR7N8RUlhh9l0+Rk6RaRY\n5TSQcM7tNbNbgP+iOUCITwcbLz6IiP37RudcQy7LJNLhZNiNoaoKyrsb23b3pap+JzV7NhwOJMDf\nR7+fh/YAACAASURBVAwa5AdVx3pGHTrkDzNiBHz96773VKehbiBC+mPt179Wz55fL+L8o5ZRsbk5\n2miyUmrfqWb4vsFsZjIVY6dReVRFYYbZdPkZOkWkWOW6RQLn3HfMbBJwLsmDCZfw/0edcz/MdXlE\nOpwMuzHU1EBVJRzaWkakoYFuTcHdGOJ7Ru3c6bs6jR3bCe+Z1Q2ky0t3rP3BrXs49fn5DIgsZ3vp\nRo7p10RJPx9t7NjcSPeNqxnVsJZhfdfw1psrebLn1dSXNzc5tNswmy4/Q6eIFKt8dQS+APgpPniI\n/XS7hAdxz/8U+HieyiLSsWTYjSGWoalHRSN7DpRywCXvxhCbvG/QoE6SoSmRuoF0eYlj7aurW1fi\nd4vU89FN85lc8jRH7V7Heoby1tHjYcgQ3ICBrIsMYVXZeHYdNZR++9Zx3DtPc+Y/5lPWVN/qeLFh\nNhs3+m5UkUiOX1BsgspBg/yXtyFFw32n/5KLSLHIy6+Lc67ROfc54HTgYfzcEJbw2B197nTn3Oec\nc035KItIhxPrxrB1q++ekIYB73H0L9vKoR7VPLtpMDt3tt7UOd8SsXJlJ8vQlCiL83e4G0is47x0\nWOmOtT9h0yIGbV1O9cHNbD56LFsaqtn8jh1OjrZnLzgzGiurebNmLL32b2bQ1uWcsGlR4P4Sh9nk\n3LRpMG6c//KuXEnX/pKLSLHIedemeM6554GPm1kJMAifxQlgK7DROZfrehuRji+Lbgyle+roe0wp\n66oG03TUaDZ0tcn74qkbSJeWzlh7cxFGbF5Gzd6NbOk5grKKctweHzzs2OHHVzTUNzdONZWW827P\nEfTZ0zIzWot95nuYTVecobOgOXdFJB15DSRiogFDbfQhIsnEujGsWeMfYfMgxES7MZQOG8apn5zM\n5d1KutbkfYmyPH+dZza+ri2dsfYDdrxCzd4NmItwoNxHG92P8MHDnr3+/jzioDTuo7C/vDfmWmdG\ni5f3YTZdZYbOosi5K+1BsWLH1y6BhIhkaNo03z3hwAH/N2i0qHPNKWOi3Ri6TZ/GjIouNnlfkCzP\nn7qBdHzpjLU/ak8tPep3srd7c7RRYtAUgaboUJkS88HEYWbs7d6XHgGZ0WLaZZhNZ5+hM910W3nP\nuSv5pFix88hrIGFmNcAngMnAe4HYTFrbgVeBZcAvnXM78lkOkQ6njd0YuszkfWG6YjcQAdIba1/W\nVI+5JhpLmqONiPPBQ2mZz4JWXgG76vy/Y5pKyiiLBGdGa/dsq53xS55uuq12ybkr+aJYsXPJSyBh\nZt2AG4Fr8BPSQcv0r32BkcBHgG+b2R3AXOfcoXyUR6StCtL82lW6MeSLzl+XlM6UC42lFTgrpTTS\nHG0cPAC9evvAIZZSefcuqG+Aimi8URppxFkph0pbNzlomE0OJKbbCmpWarecu5IPihU7n5wHEmbW\nE/gzMIGWwUNi+pTYc0cA1wNnmtmHnHN7cl0mkWwVvPm1s3djyDedvy4nnbH226uGsK+imqPrVrO9\ncjD1hwyz5iAillJ51y7/6HMUlJij8uBWtvQeyY6qlk0OGmaTA+mm24qJ5dxdv95vN316Xk+8+vLn\nhmLFzicfLRIPA6dF/50s92KL3qf4wONh4MN5KJNIxoqq+bWkhMjoMbzCGH8hOwgVtTAEXcjS0hm7\ngUigdMbab6oZzY7KwfTbtZbuB+t4d281Pat88BCrGR0wALZvh8Ym2LYd3nNEHRErZUflYDbV+CYH\nDbPJoXTSbSVKzLmbh+93wSuTOpEijxVblFNBY/pyGkiY2YXAWSQPIILEZr4+y8wucM79NpflEslU\nMTW/6kImkplUY+2dlfD6MZOp3raGnu+uoWfNWPr2LWfAgOZ9lJbCqPf5f+/Y0sBRW9ewrnwYT5dM\n5s1NJRpmk2vppNtKlOecu0VVmdQJFGmseJiutdnJdYvEJ+P+bTQHCACH8IOswQ+67hb9d2LQMRNQ\nICEFVSzNr7qQiWQunbH2K7dMo5SVvL/nAU6KrKRm4AhKS3oT3yO3vMxx0rF17N2+hs39+7O1cjyr\n+kzTMJt8SCfdVpA85dwtpsqkzqIIY8XDdK3NXq4DiVNo3WXpj8C3geedc40AZlYGvB/4CnB2dJtY\n0DEux2USyUixNL/qQiaSvVRj7YedWMGWY66mcgf03bWc0jfXQ23rzF6lpaX0GjuMqnHjOTT1Kj67\nrULDbPIhnXRbQfKUc7dYKpM6kyKLFVuUS9fa7OU6kIild421RvyPc+7SxJWiAcXTwDlmtgD4d5oD\nkDSmoRXJn2JpftWFTKRtUo+1r6LkUHqZvUqmTWN0RQVKyJQn6aTbSpSnnLvFUpnU2RRZrHiYrrVt\nk+tA4l0grpcpt6Sxzc34QCJme9iKIu2hGJpfdSETyZ2kY+2V2as4pJNuK1Gecu4WS2VSZ1NEseJh\nuta2Xa4DiRXAwLj/r0tjm/h1HPByTkskkqFiaH7VhUyknSmzV2Glk24rXh5z7hZDZVJWijzdUBHF\niofpWtt2uQ4kfgGcG/f/Y4E1KbYZmPD//8lpiUQyVAzNrx32QiYikq1U6bagXXLuFkNlUkY6SLqh\nIooVD9O1tu1yGkg45x42s78AH4wuuga4KsVmX4j+NeAFfDAiUjDF0Pza4S5kIiJtlU66rXbIuVsM\nlUlp62DphookVjxM19q2y8eEdP+Oz9R0GjA7mqHpFufcm/ErmdlA4GvA5/BdmtYAH3XOZToHhUhO\nFUPza4e6kImI5EqqdFvtkHO3GCqT0tIB0w0VSazYojy61rZNVoGEmT2ZYpVYA5QBnwU+a2YbgLej\ny98DDI5bxwENwC/NzDnnNDeoFEwxNL92mAuZiEiuFXgAfDFUJqWlg6YbKoJY8TBda9su2xaJqaQ3\ne3X8hHRDaBk8JK4ziuagQqSgCt382mEuZCIi+VKgAfDFUJmUUgdPN1QsydJ0rW27tnZtShW7JQYG\nsfWDlokUjUI3v3aIC5mISCdV6MqklDpJuqFCJ0vTtbbt2hpIZNp6ELS+WiCkKBW6+bXoL2QiIp1U\noSuTUlK6oZzRtbZt8jHYWqTTKGTza9FfyEREOrFCVyYl1ZZ0Q/X18Npr/u64COebaG+61raNZZMk\nycxqyWNLgnNuaL72XYzMrMW5VOIqiZezFOFFPlmRiEixiv18Fs3E5wsXwl13+WBgyJD0tmlqgpde\n8lXrAwfCkUcW5XwThdJBpuPItTYPL8gqkJDcUiAh6cj6QtZFfx1FRDqtVavg1lt9uqHx41N3b2po\ngL//3ffNKSmBo4+GQYNaV7kPGgTjxhV8volCKrqgMb8USHQGCiQkb8ImK9LFQ0Sk44pE4Ktf9ZVE\nQ4cmTzfU1AQvvwxvvgm7dvnf+0mTWt4VJw4C+Jd/Keh8E9Ju2hxIaIyESGfVAScrEhGRNGSSbmjT\nJtiyxQcRffv6wCOxar0I55uQjqHzNdKIiJc4WVF1devm7/iLx+bNzRcPEREpbtOm+Zbk/v39zf/O\nnb5lIV4k4kcPb90KvXr5Lk0DBoTvMzbfxMaNvjtsJJLf1yAdnlokRDqjDj5ZkYiIpJBOuqENG+Dd\nd/1v/MCB8L73+e6syRThfBNSvPJ2p2BmR5vZN8xskZm9ZWb7zKwpjUdjvsok0mXkYrIiEREpbrEc\ntbNm+RaKkSN9S3NDQ/O8Eb17+7ylY8ZAt26p95k434RIEnlpkTCz2cDtQKyjtWavFmlPmqxIRKRr\nSDbh0WuvweOP+3VStUTEKyvzwcjBg/krt3QKOQ8kzGwm8MOExemmIVLAIZILbZmsSBePzGh+DpGk\n9BVpJyUlvgIovhLIOXjySd/NKRONjT7w6N49t2WUTiengYSZVQLfi/43KHiwhOWWZF3pQnShybFY\n7ZMuHvmj+TlEktJXpAgMGeJP9urV/oSn00LtnB+cHZu6WySJXLdIXAj0IjhYSPy/iz4sYB3pInSh\nyRNdPPIrbH6O8nIfjK1eDWvX+rSMK1dqfg7pcuK/Im9uiDB07yu8/4haKqyeelfBP2uH8OSa0axZ\nU6KvSD6NHu1/z9eu9am+k803EVNX5y/CsVnYRJLIdSAxLe7fBjQB/wucH13mgF8ARwEfAKqjy5qA\nh4CGHJdHipjuxfJIF4/80fwcIknFviJ/XVrP4LWLuKzbMt5zaAM99u3EXBPOStlXXs3bewfz/9m7\n9/i4zvre959nRpqRbcm62LLj2JZ8iePQxIlTG0qaxBC0yXbDKb1CX6ebUvoy9FBIgJJD201bSuhu\noLsNhXq3FNq0cPZuXy09tAROsyHUsGuSkE2jIscNxJYvkhxHsWXdZUkz0sxz/nhmotF4RprLmtua\n7/v10musuaxZ0shrrd/ze57f71jfIZ6Z6QHC+i9SCvn0mwA3tbW/3y3OPnRIUwJkVV4HErexlGWw\nwB9aa/+zMeaVQsTW2ncAGGOagIeADwFBoBv4CWvtqMf7JFVI12IlppNH6aT358j0e1VzJ6ljx47B\n889M88aTR7mjsZeNU0MYG2OmqZPFQIhgfJHNk6fYZM6wbW0/3znZxzPhBzh2rEX/RUqhp8cdh+bm\n3G2mE256Z+uDB93rRFbhdSCxOe37f8j2RGvtPPDrxphW4JeBO4C/Bd7o8T5JFdK1WBno5OE99ecQ\nWVE8Dk99M8KP/ttR7rBPsvHqMJfW72EutPzYM9rczZroBJun+rmzcY7Av8FT33yQw4fD+i/itVz6\nTYyMuIz0rl3uPHD//Rq1k5x4HUisT/v+bA6veQQXSBjgDcaYn7fW/o3H+yVVRNdiZaKTh/e86M+h\nsrriYydPwvp/PcZNV3vZGBzmQsd+YsHMI0Vz4XYudOxn+1gfN831MvOvxzh58j79FymFZL+J9EWJ\n0ag7ByTXxmlRouTJ60AifUXndOI2CoTANaqz1l5Kec5LidvkAu23AQokfEzXYmWkk4e31J9DZEUD\n5+LsuHCcbfEhLrXvyRxEpIgFQ1xev4dto+e5cuE4g+cPc9ttGikqiZX6TSTXxmmUTvLkdSAxB6Qu\nh03+RV4lEUjgpjB9OeU5P5TybwPc4vE+SZXJdi1mbJytYyfZMD1AQyzCYjDMaMsOLnbsAxPQtVih\ndPLwjvpziKyoqf8kLbODBIm76Uw5mA210UaMztlBFk6fxC23lJLJ1G9CpEBeBxJXWB5IrAUiwMtA\nGy5Q+Lgx5oS19rwxZjNLfSeSNnm8T1Jl0q/FGmIRbrp4jD3Dx+mYGWRdJKWyR7idseZu+rcc4mXT\nw2wsrGuxQunkUTz15xBZUdvEAMHFcSYa88vaTTR2sn5xnNjkIAokRGqH14HEBWBXyvdbgHHgFPAq\n3PSlvcAZY8wVXBnY9CZ1Mx7vE8aYbcDHgMOJ9xzGZUUestaO57mtHuB+XGalHRgFTgKfttY+7uV+\n+1XqtVg4Os0bnj9K10gvHTMZKntMnGLT5Bk2TfbT3NDHV7ofoKlJNWBXpQ5/paH+HCIr2twWYboh\nxsRsflm7uWgDbWujtLRqpEiklngdSDwHvC7l+xuA7wPHWeolAS546Ez5PrVk7Akvd8gYsxt4Gpfp\neAx4AXgN8H7gsDHmzlxLzhpj/iuuXO2LwFdwGZhO4ADwekCBRA6S12LnfhDhnrGj7L70JK2zq1f2\n2LMwx8+tgR1bHgQ0lz8jdfgrLfXnEFlR154w/WuDNMwuMhOFcA7xRCQKzSwSWhuk60Zl7URqideB\nRG/iNplhuBt3wf0l4PcT72czvC7VX3u8T3+KCyLeZ609mrzTGPNJ4FeB3wPevdpGjDHvwgURXwB+\n2VobTXu80cud9rPktdimZ49x/VwvrfOrV/Y407Kf6y/10Rrp5eZLxwDVgL2GOvyVnvpziKwosGsH\nLdvbaRg7xcWJbjZuNCv+2cfjMDlh2RUYYc32vQR2KmsnUku8PqslAwmT+HodgLX2AvAnXFvVKd0z\nuAt1TySyEfcCA4n3T/U7uEXgv2CMWbfKdsK4gGOIDEEEgLV2wYt9rgeBABy6K87rA8dpHhvi5eaV\nK3vE4zA2HWK0fQ/b40MEnjzu7pQlqR3+zp2DnTtdOdcdO2DbNnd78KC7/9w597yjR93rJD89PXDg\ngOu70dfnsj42bXzEWnd/X5/6c0h92bePTa/pZs26IJ2hCa6MuoxDJpEoXBmFTaEJ1jQH2fQaZe1E\nao3XGYnv49YOJKWuSPwQsBFX3jWT/wW8xVob83B/7kncPmGtXXblaa2dNsY8hQs0XgscW2E7b8RN\nYfoUEDfGvAlXXWoe+K619jse7nNd+A+bT9IfHiTUGOcH0220BjOnwCNRmJyEtWth7eY21i+qBmxG\n6vBXPurPIZJdIEDDPYfoPNVP4Nl+FtftZ3IqxJSFpjUQMBC3MD+XOCSti3LjQj8bfngXDfcoaydS\nazwNJKy1FvjfWR6LAW83xnwG+Bnc+okwLlvw1RItVN6buD2d5fF+XCBxIysHEq9O3M4D3yOtRK0x\n5jjws9bakdV2yBjTu9pz6kHopQFu3DTOhbmNrF80TE+R9USzvsVdo918iyFwUTVgr6EOf+Wn/hwi\n2fX00NjXR2d0joP9fQxu2MPlhTaiUUMs7o7xra2WTY0TdC/00/yqLQTvUNZOpBZ5nZFYVWL0vlwj\n+K2J28ksjyfvX63YdbIk7YdwWZe7gT5gJ/CHuGDk73ELriUXkQiNJkb3DSEacAPp0zMQjbB0ommD\nlmY3M2TrVnd9pnr8GajDX2WoP4dIZomsXRBoXdfLvsHzzF2NMbO+k0UaaGCR5vkR1jQHMV3K2onU\nsrIHEjUqeTWwCLzZWjuQ+P6kMeancOVtX2eMuWO1aU7W2gPp9xljVluA7j+JGrDB+CJdO2D7dhgb\nc8FEbBGCDS6I6OhIq7CpevzXUrflylJ/DpFrpWTtzPHjrB0cZO34OMQSWbt2Ze0ElSr3gYoHEsaY\nAK6MapK11m7waPPJjENrlseT90+ssp3k499LCSIAsNbOGmO+DhzBlZXVeolcpNXjN8awYQNsWOmT\nVz3+zNRtWUSqkbJ2ko1KlftGxQMJXCWnNpb3kvDKqcTtjVke35O4zbaGIn072QKOZFO7NTnul6ge\nv3fUbdk/NDonfqSsnaRSqXJfqYZAopS+lbi91xgTSK3cZIxpAe4EZnFlZ1dyDBfg/FD6dhKSi6/P\ne7DP9cHDevx1f+2lbsu1T6NzIlIPUkuVDw+7wh9tyxvR0t3tBg77+2Fuzt334IM69lUpXwcS1tqz\nxpgncIuh3wscTXn4IWAd8Flr7VV4pancbmDBWns2ZTuDxpivAm/GdcT+o+Rjxph7gf+Iy1Z8rbQ/\nkc/09LjRhrk5d5vpgGLt0gElrR6/rr0SlN2pqKIDWY3OiUi9UKly3/F1IJHwHuBp4I+NMT3AD4Af\nwfWYOA38ZspztyYeHwR2pG3nvcDtwCcTfSS+h6va9JNADHintTZbdSjJpIh6/Lr2SqFuyxXhSSCr\n0TkRqRcqVe5Lvg8kElmJg8DHgMPAfcAw8GngIWvt+EqvT9nOi8aYA8BHcJmJQ8AU8FXg49ba75Zi\n/32vgHr8uvbKoMjsjuTHs0BWo3MiUi9UqtyXfB9IAFhrLwC/lMPzBnALvrM9PgI8kPgSr+RZ2UPX\nXhmo23LZeBbIanROROqJSpX7Ul0EElIjcqjsoWuvFajbcll4FshqdE5E6olKlfuSAgmpKbr2WoXq\ntpeUZ4FsPA7f+pabA5X842xpydCBMY1G56Ta1H3ZPMmZSpX7kgIJqSnKjOZIddtLothA9t97I9w6\nksgYffvb7k5jXFv3cBiam936la1b3YkzE43OSTVQ2TzJl0qV+1LBgYQx5u0e7YOGLCRnyoxKJRUT\nyM6PTNP4x0dhNrFCe2zMPWjM0kL4yUn3NToKN9+c+Q9do3NSaSqbJ4VQqXJfKiYj8Xm87UItsipl\nRqWSCg1km0yEHx84Stvok0BihXZXF5w44U6ULS0uGxGNwtSUexOAW29dnpnQ6FxhNP3GOyqbJ4VS\nqXJf8mJqU47jciLFU2ZUKqnQQHbf5WPcON3LGjsMhxInT2td8DA56U6YoZB7g44Ol60YGYGLF13A\nkaTRufxo+o33VDZPiqFS5b7jRSDhRVZCwYjkRJlRqaRCAlnicXZfPM6WhSHYnbJC2xh3kkxOZ9qw\nwY24BYOwfr2bPjI8DNu3u+dqdC4/mn7jvXoum6esljdUqtx3qmWxtaZISU6UGZVKKiSQXT94kusX\nBgmH4rR2p63Q3rrVrYeIxdxta6v7g05mLGZm3P3BoEbn8qHpN6VRj2XzlNXynkqV+0qxgYQyCVJ2\nyoxKpRQSyC6eGWBT4zjh6zdiAmmHzGAQbrnF/XtkxK2PsBbWrHH3TUy4P/KODo3O5UPTb0qj3srm\n1VlWq6xJF5Uq941iAokveLYXInlQZlQqKd9A9q2tEdoCMTo2Z4k4GhvdouqLF92F78yMO4snN3Td\ndXD33Rqdy1U9T78ptXoqm1dHWa2KJl1UqrzmFRxIWGt/ycsdEcmHMqNSKfkGsnvWhtk2HCQYX2GF\ndjDoFlVv3+4WWs/MuIuXYBDe+lb3hrq4zU09Tr8pl3oqm1cnWa06S7pICVTLGgmRvCkzKpWSTyD7\nHzp30PjJHFdoG+MWXXd0wOXLbkOvf73+kPNRb9NvyqleyubVSVarjpIuUkIKJKTmKTMqlZBzIBtX\nqbGyKnD6jQ02MDMW5YVvz3N+XkV5MqqXsnl1ktWqk6SLlJgCCRGRIqwayKrUWHnlOf0mFnPLU+Zf\nWGRuPsg/RZt4qk9FeTKql7/lOshq1UnSRcpAfwYiIqXW0wMHDrgSYn197mLDplW9ttbd39enUmPF\nSE6/GRm59necJroAzz0HL/zAEr80wvB8O5eaul+pvnvqlBt9ffRReOQRN5+87tXD33Iyq9WQ51hr\nQ4N7XQ0sKvci6SICykiIiJSeSo2VT47Tb2IxeP7fYfhlCE5N0NAUxHZ1Y2/Zx7bEILTmh2dQqr/l\namr4VgeLyusg6SJlokBCRKQcVGqsPHKcfnPxorvejc5EuT3Yz+j6XZzZcghrli5aNT88Cy//lqux\n4VsdLCqvp0q+UloKJEREykWlxspjlWYf1sLwSxYzMcGt9DPVvIXBzoO8sDXz9BvND8+gyL/leBye\nf2aa4J8epaW/l+bRIcKNMdZs78RUuvZoHSwqLzbpEgrBiRPVkUCSylIgISJSbio1VlqrTL+ZHluk\n88IIzdEgE5t2Mdh5kG/dfD+Lwewj3jVYlKc88vxbTiYgnvpmhH1PHGXX8JM0zg9zbt0eFta10XLZ\nsGULbN0OwUrNLauDReWFJl0uX4b16+ErX3EfSTUkkKSyFEiIiIj/rDD9Zm4+yGB4L5dbu7l80yFe\n2NqzYhABmh/uhdTmZ9ueO0bnSC8d8WHOt+4nakLMT8LUFExOwugo3HyLIVSpuWX5trCvsUXlhSRd\nrlxxs7dmZ+HqVZdVUvM6USAhIiL+lGX6Tf+zTfzt8W4uduxj6/bcR481P7xwqc3PXn4pzi8Ej7O7\ncYiRlj2EwyHCQEszRKIukFiMudfdeisEKzG3zOcFEvJNuszNwTPPuOBhcdH9yGpeJ6BAQkRE/C5t\n+s1oGAafAxvLbzM1VJSn6qQ2P/vx7pNc//wgxsaZCy2vPRoOwcYNcGXUXadfvAhdXVRmbpnPCyTk\nk3Tp7XVBRCAAd94Ja9Zcuz0VJ6hPCiRERKSu1EFRnqqS3vzsuskB1kXGmWnKXHs0EIDWVpiegnPn\nXPwQjxtabCdNQ+M0nx8kUK65ZT4ukJBP0qWhwX29+tWZg4hUKk5QXxRIiIhIXamDojxVJb35WcNY\nBGNjLAYyz6WxFhaiMDMDc/MwMekuYjdFGlgTjPLcX83THipzEsCnBRJySbqsWQNnz7r1K52duW1X\nxQnqhwIJERGpK3VQlKeqpDc/WwyGsSZIMH5t7dF4HMbGYX7OXYguxqAp7KY8Bewi07NB/u37TQw8\nqgW9Xlkt6XLuHHz2s+57Na+TdAokRESk7vi8KE9VSW9+Ntqyg6vhdjZPnGK0uXtZf4+xcZibddNq\nGhrcQ+EwrFtr6Zwd4VLnXgI7uzl3Tgt6vZYt6XLqlJrXSXYlCySMMSHg54DXA3uBdmCVmXUAWGvt\n7lLtl4iIiM+L8lSV9OZnFzv2MdbczabJM6yJTjAXdnPLrl51mYjFRfeaZOWmQADWRiewJshYSzfT\nO/axf6sW9JZLsc3rVJzA30oSSBhj/g/gc8Dm1LtzfLn1fo9ERESW83lRnqqRvrgdE6B/yyE2Tfaz\neaqfCx37iQVDzM7CwiI0hsAEIBaBUBjCwSibpvq50rKL/i2HsCagBb1lpOIEshLPAwljzJuAfwSC\nGR5eLUjINdgQEREpmo+L8lSNTIvbX9jaw/bRPhpjc2wf6+NC0x4WFtrAGoIBiMcALB1mgj0z/Uyu\n3cJg50Fe2Lo0t0wLestDxQlkJZ4GEonpTJ/DBRHKLIiISE3waVGeqpBpcTuhMN+82c0t6xrpZePY\nedbPxxg1ndiFBmx0kU1mhEYb5ErLLgY7D/Ktm+9f1oHcqwW98bgLRAYG3HqOcNiNwiuIdFScQFbi\ndUbiJ4AtLA8iMmUZVntcREREfCLz4vYWvnHrg9x08RidPzhOU3SQ9fFxAtEopiHIxbV7iW/r5sz1\nh3hha8+yICKpmAW9kci109piMTeS3t6uaW2pVJxAsvE6kPixlH8n/7z6gP2Jf1vg28AG4FVAIHFf\nDHgaZTFERER8J/vi9jADDfcx3HaYppGTbDeDdLbOE25tovnmbi5t2oc12Ye0C13QOz0NR4+6fRka\nWlpoHwq5bZ465aby9PfXUZnZFVIz4XBAxQkkI2Otd9fuxphe4PbEtxb4C2vt/2WMiSfvs9YGE8+9\nHvgk8NbEc78EvN1aW3eFwowxyz4ELz8TERGRapEtC3D1Kly86DILt98O27a5i9KVWAvPPusWYs7w\nCwAAIABJREFU9P7Gb+Q+tSkSgUcegSefhOHh3EbX77rLx2Vm80jNRAgri+MvRc8K8jqQuARsxO2Y\nBQ5Za5/KFEikvOZLwE8lnv931tqf92yHaoQCCRERqSfJwe/k4vZQCL7yFXjuOTeincuC3vFxNzLe\n0wMPP5z7XPzHH4dHH3WN1nKZ79/X5/bpyBEflpnNlppJTzN0dcGBA6+kZtI/PxUnqFlFBxJeT21K\nT/ydzuE1D+ECCQP8nDHmb6y1/5/H+yUiIiJVItPi9lAIJidLu6A3Hnej6UNDLhOxWpM1X5eZjURc\nELFSaqa7eyk1k9IBMBAOqziBAG6Ngpca076fTNwuJO8wxmxMe86ZxG1yGP4dHu+TiIiIVLmeHjfo\nvWWLywKMj7spRqmsdff39RW2oDc5ih6Pu2vmXKSXmfWNY8dcJmJ42EVu7e3XNokwxt2/f797XrID\noEiC1xmJOWBdhvuvAsn/svuBf055bGfKvw1wwON9EhERKY5qhJZcObqNDwy4QGTjxtwaq4F3ZWar\nilIz4hGvA4lRlgcSa4AocAVoTdz3u8aY71prp4wxYeDhtG1sRkSKo4seEW/UeY3Qch9KSt1tPBJx\nH99q183piikzW5W8SM34IqKSYnkdSFwEUpuhb8ZNbzoF3ICbvvQa4IIx5gVgF9DB8rKvEY/3SaR+\n1PlFj4in6rhGaCUPJaXsNh4Ou59hcTG/1xVaZrZqKTUjHvE6kDgJ/GjK97twC66fBt6UuM/gFmW/\nOuV5lqVKT9/3eJ9E6kMdX/SIeK6Ihai1HqRXy6GkFN3Gd+xwgdCpU+7jy+Ua2lo3pSqZDfEFpWbE\nI14HEr2J22SG4S7ga7geEf8l7TFD5gZ0/6/H+yTif3V80SM50nS3/KQvRM10wZW6ELWvb2khag3X\nCPX7oWTfPrf/Z864nyGXMrMTEy4bkcyG+IJSM+KRUgUSyUPOIQBr7WljzF8Db2MpeMgURJwC/szj\nfRLxvzq96JEcaLpb/up4IarfDyWBgPtz7+8vbZnZqqfUjHikFFOb/s+U71PXO7wb6CIRXCQkpzSB\nCyLeZK2d83ifRPytji96ZBXVMkel1tTpQtR6OZT09Lg/97k5d5tLZ+t8y8xWPaVmxCOeBhLW2kXg\n77I8NmuMuQcXaPw0bvF1GBgAvgo8aq3VQmuRfNXpRY+swu9zVEqpThei1suhpBxlZqueUjPiEa8z\nEiuy1lrgbxJfIuKFOr3okVX4fY5KKdXpQtR6OpSUusxsTVBqRjxQ1kBCREqgTi96ZAUZ5qhYC2Nj\nbrZTcolESwt0dICp1TkqpVKnC1Hr7VBSyjKzNUGpGfGAp4GEMSaW8q0FQtba+CqvMcBDqfdZaz/i\n5X6J+FqdXvTIClLmqMRa2rg45BIT0zMQjUDcQsBAKAwtzW6gcev1bQRrbY5KqVRwIWoli2vV66Gk\nFGVma4ZSM1IkrzMSOSZDlwkAv8XyKk4KJERypeobki4xR2WhbSP/ftIwMgIzM+5jb1oDwYALJiYn\nYGoSJidhdNRwS3snjbU2R6UUKrAQtRqKa+lQUqfqPjUjxSjF1KbUSkz5ytZbQkSyUfUNSReJEFuI\nMfhiiOE5mJ2F1lYIp01ZaWmGSNQFEosxaJlsYOe2KMFam6PitTIvRK2W4lo6lNS5uk7NSKGqYY1E\nNeyDSO1S9Q1JFw4zNhFkemKR2Rhs3JD9Yw6H3ONXRmF6fpGx5iCdtTpHxUtlWohaTcW1dCgRkXxV\nw0X8jkrvgEjNU/UNSRHv2sHF2XbWTJ+i9bpuAoGVk8SBALSut6x5eYSLs3vZsL2bur8mLNNC1Gor\nrqVDiYjko+BAwhjTxepBwCFjzEqLrTcCD6TdF8v0RBFZgapvSIqT7GPQdHODOUMbE8yx+hyVdiaI\nmSCDphvDPjS5gZIvRK3GBnA6lIhIPorJSPwSmRdFm5TbYzluK3VdxGQR+yRSv1R9QxIGhgI8u+YQ\nG5r76Zrq50LHfmLB7FepwViUTVP9DDXv4tk1hzAXAtx2exl3uJqVcCFqtTaA06FERHJV7NSm1RZV\n57roOrlA2wIvFLVHIvVM1TcEN+++t62HG2b6aJ2bY/tYH5fX72E2dO0clbXRCTZN9TO5dgtn1hyk\nt62HfXW+1jqjEixEreYGcDqUiEguvFgjkZpNSD8UFlKB6Z+K2BcRAVXfqHPhMMQbw/zjtgdonYau\nkV42Tp/H2BgzTZ3EAg0E44s0z49gTZArLbsY7DzIl1vuJ94Yrtl+ALWmFhrA6VAiIiuphsXWqQaB\nP630Tojko5INpEQyWeoH0MITtz/Iq146xp7h43TMDLIuMk5DPIo1QS617WWsuZv+LYf4wfU9DH0v\nrH4AZVSvDeBExD+8CCRWSsjmOrVpEfgK8AFr7VTxuyRSetXQQEokk9R+AFemw/x71308v/0wW8dO\n0jE9SGNsnoVgE2Mt3Vzs2Ic1AcbH1Q+g3NQATkRqXTGBxJeBgZTvDfCXLF/v8E4gW9UmC8wCl4AT\nCiCkllRLAymRTDL3Awjw4obbeHHDtXNU1A+gMtQATkRqXcGBhLX2BHAi9T5jzF+mPe0L1tqVyr+W\nhTFmG/Ax4DCwARjGBUIPWWvHC9zm24D/nvj2Xdbav/BiX6X6VVMDKZFs1A+g+qkBnIjUulKskch1\nOlNZGGN2A08Dm4DHcFWhXgO8HzhsjLnTWjua5za3A/8NmAGavd1jqXbV1kBKJBP1A6gNCvhEpJZ5\nHUjsTP2mGrIRuMXbm4D3WWuPJu80xnwS+FXg94B357oxY4wB/goYBf4B+L893VupatXYQEokG/UD\nqH4K+ESklhlrC6nQWhsS2YgzuLUcu1MDG2NMC26KkwE2WWuv5rjN9wN/BLweeAPwOxQ5tckYs+xD\n8PNnUutOnIBPfAJOn4YDB3JfHPnss+6i7Td+Q2UUpTKS1cXUD6A6qXiDiFRA0bOIqq38q9fuSdw+\nkZ4dsdZOG2OeAu4FXksOXbiNMa8CPgF82lp73Bjzhnx3yBjTm+9rpHpUcwMpkZWoH0B1UwM4EalF\nJQskjDGbgV/GjdzvBdqBXKpeW2utV/u1N3F7Osvj/bhA4kZWCSSMMQ24xdVDwIc92j+pMbXQQEpE\napcCPimUehpJJZQkkDDG/ArwCJBMwFZqAXZr4nYyy+PJ+9ty2NZHgNuBu6y1c4XukLX2QPp96VOb\npHqpgZSIiFQTTYuTSvI8kDDGvAP4k7S7c71QrqqKT0nGmB/BZSEesdZ+p9L741e1MJqiBlIiIlIt\n1NNIKs3TQMIY04xbiAyZgweTdr9Z4bleSGYcWrM8nrx/ItsGElOa/h/c9Kjf9m7XJKmWRlPUQEpq\nIuIVkarl1SFEPY2kGnidkXgL7uI8U7CQ/r1lqQt2qTIRpxK3N2Z5fE/iNtsaCnB9IpKvnzeZh6D/\n3Bjz57hF2B/Iey/rWK2NpqiBVB2rpYhXRKqO14cQ9TSSauB1IJHaIscAMeCrwE8m7rO4BcsbgB/F\nLcC2ief9PRD1eH++lbi91xgTyFD+9U5gFnhmhW1EgEezPPbDuHUTT+KCFk17ykOtjqaogVQdqrWI\nV0SqiteHEPU0kmrhdSBxG0tZBgv8obX2PxtjXrmAt9a+A8AY0wQ8BHwICALdwE/k22V6Jdbas8aY\nJ3CVmd4LHE15+CFgHfDZZA8JY0wjsBtYsNaeTWxjDnhnpu0bYz6KCyS+UEwfiXpVq6MpaiBVZ2o1\n4hWRqlCKQ0iyRHA87raVi7Y2d64aHHSvV2Uw8YLX8ejmtO//IdsTrbXz1tpfBz6HCzzuAP7W4/0B\neA9wGfhjY8yXjTEfN8Z8E9fV+jTwmynP3Qr8gBx6SkhxCh1NGRpyr4tXuGd6smPwkSMu07B3rzsp\nRKPudu9ed/+RI/DBD2pwuqalR7zt7deusk+NeIeHlyJeEal7pTiEeNHTSMQLXmck1qd9fzaH1zyC\n6zdhgDcYY37eWvs3Xu1QIitxEPgYcBi4D9fR+tPAQ9baca/eS3Lnh9EUNZCqA5o/ICJFKNUhpOI9\njVR0QhK8DiTS4+LpxG0UCIFrVGetvZTynJcSt8kF2m8DPAskAKy1F4BfyuF5A+Sx8Nta+1Hgo4Xu\nVz3zU4doNZDyMT9EvCJSMaU6hFSsp5GKTkgar8PG9EZtye1fTbnvjrTn/FDKvw1wi8f7JFUoOZrS\nkGco29DgXqcO0VIWmj8gIkUo1SEk2dNoZMQV98hFsqdR8no/b9PT8Mgj8OijLpg4dcptNBRyt6dO\nufsffdQ9b3p69W1KzfM6I3EFSJ0NvhZX9ehlXPdoA3zcGHPCWnveGLOZpb4TSZs83iepQuoQLTWh\n4vMHRKSWleoQUvaeRio6IVl4nZG4wPKpQVsSt6dYquS0FzhjjLkEXMRlKFLj6RmP90mqUEVGU0Ty\npYhXRIpQqkNIsqdRV5e7bo+uUjw/2dOoq6vAnkYqOiFZeB1IPJf2/Q2J2+Np9xugM/H+JuU+C5zw\neJ+kCiVHU4JBN4CRC3WIlrJTxCsiRch0CDE2zrbRE9w28BgHzn6R2wYeY9voCUyi1VWuh5CeHjhw\nwPUq6utzU6HSD1PWuvv7+oroaVTrZRalpLye2tSbuE3+Kd8NfAX4EvD7ifdb7Wz81x7vk1QhX3WI\nVvUK/yr7/AER8ZPUQ8jMaIQ7Zo+xZ/g4HTODrIuMY2wMa4JcDbcz1txN/5ZDfGdtD8FgeNVDSNl6\nGqnohKygVIFEMsvwOnBVk4wxfwJ8gJUDiWeAL3i8T1Klar5DtKpX+J+vIl4RKbfkIeTC96d57XeO\nckdjLxtnhzA2xkxTJ4uBEMH4IpsnTrFp8gwbx/thoQ9z8AEOHWpZ9RCS7GmUfiqKRt2paO9eD05F\nfiqzKJ7zOpD4PsurMqXOCvwQsBFX3jWT/wW8xVob83ifpErVdIfo6Wm38Ky316VvkzseCrkdP3XK\nDUH197so6YEH1JWuVtV8xCsildRzV4S1nzrKuoUnWTcxzEsb9rC4bvkxZLS5m4arE7SP9PPadXPs\ni8Addz0IrH7CK3lPIxWdkBV4GkhYay3wv7M8FgPeboz5DPAzuPUTYWAA+Kq19nEv90VqQ1lGU7ym\n6hX1paYjXhGptPCTx7izqZfRxmGe79zP5GwIOwdNayBgIG5hfs5gTDtznfu5eaGPDeFeGp885iKE\nHJWsp5GKTsgKvM5IrMpa+x3gO+V+X6leNdchOr16RaZRmtTqFX19S9Ur8jgpSBWpyYhXRCousVC5\ncXiIzh/dw56rIYaHYXoGohGIxV0w0doGLc2wZUuIzrV7CA6t0tq6nJIrxk+dcse5XKY3JVeMJ4+N\n4ltlDyREsqmJDtGFVq84X0UnBSlMzUW8IlJxKQuVgx1tdG2A7dthbMwFE7FFCDa4IKKjI3GNbtvg\nfBUtVFbRCVlBSQMJY8xG3LqINmACGLHWjpbyPUVKStUrpCYiXhGpChkWKhsDGza4r4yqbaGyik7I\nCjz/dI0xh4wxjxpjLgCXgOeBpxK3l40xQ4nHX+f1e4uUnBfVK0REpD4kFyo35Dlu29DgXlctC5XL\n1rRCao1nGQljzA7gz4A3Ju/K8tRtwDuAdxhjvgH8irX2vFf7IVJSql4hIiK58stCZRWdkCw8CSSM\nMa8FvozrVp0MIFbqF5F8zr3AM8aYn7DWPuPFvoiUVOKkYBcWGRt1VWCTrSNaWlLmuKartpOCiIiU\nnp8WKqvohGRQdCBhjNkPfANYl7grNYDI9D/GpjzH4IKPbxhj7rTWPlfs/oh4IVuz6r3X7WBsrh37\nwil+0NxNNGqIW1d1IxROVt2ArVvdcRWo3pOCiIiUlt8WKqvohKQpKpAwxoSBv8MFEanBQfLfq2Ul\nko+vA75ojLnNWhspZp9EirFSs+rmZrhyeR9HznXzwzNniEcmsC3tBAOuDvjkBExNwuQkjI7CzbdA\nqJHqPimIiEjp+HWhsopOSEKxGYn3AXtYHjCkBhTZpGYlkvYktvcHRe6TSEFWalYdjcLTT8PVqwG+\nsniI6xr62Rvs58U1+4kF3UmhpRkiURdILCb6s996U5RgLZwURESkNHp63ALkuTl3m6mJqbVLTUy1\nUFlqSMGBhDHGAO/n2oDAAC/gFl7/CzAETAGtwA7g9cC7cZ2tUzMXBviAMeYPEx2yRcpmtWbVQ0Mu\nozs3B98O9XDQ9rE2Nse20T5GWvcwG3JPDodg4wa4csUye3GCmdF+WvfqpCA+km3en6Y0iGSmhcri\nY6bQa3ZjzF3AcZZnIGLAR4BPrBQMGGMCwEeB30y9O7Gte6y1xwvaqRpljFn2u1IcVX6PPw6PPgrn\nzl2bebYWvvtduHjRrTVrbITIlWneGz/KHaFetsWHMDbGTFMnsUADwfgia66OMBcNEt/Wxc2/eJDA\nA/e7F4vUqpXm/bW3a5GlyGr0f0iqT4517LMrZmrT3Wk7YoGPWms/vtoLrbVx4CMuqcFvsTyrkQxQ\nRMpitWbVY2MwM+MCilDIZSmCbS18avJBBtcd403rj7NhZpB1kXEa4lGsCXKlYy/Pz3Rz+bpD2Df2\ncGuLTgpSw1aa97e46CrSnDnjpmX09bnRVwXOdUEJqjxoobL4UDGBxC1p35+11v5entv4KPDzwM4V\ntitSUqs1q56edifIpqalqU6hEEwS5muB+7i0+zC3mpN0TA/SGJtnIdjEWEs3T025k8KrhuHW8v5I\nIt5Zbd4fuIug5PzuuTl334MPalTVxzS4XgQtVBYfKSaQSF78J7MRn8t3A9bauDHmc8AnWMpKqD6m\nlNVqzapjMZeNSB8oWrPGnUynrwZ4sfs2Xtyw/KQQnFMPOvGBY8dcJmJ4OHvFGWPc1eP+/S4j0dvr\nXnfffeXfXyk5JahEJKmYQKKTpUXSUPh0pH9J+bcBNhWxTyJ5W61ZdTDorpPi8eX3J+/L1rBUPeik\n5q027y9dKOSed/68e93hw5qq4TOeJag0J0rEF4oJJNIngQwUuJ1zad/n0K1FxDuJZtVZA4KWFvec\niQnXSyJ5wrTW/bshw/8i9aATX1ht3l8mbW0uMh8cdK/X9A1fKTpBpTlRIr5STNi/Nu378QK3M7HK\ndkVKascOd/4aGXEBQLqOjqUAIhpdun9uzp3nmpuvfY160IkvrDbvLxNj3DyX8XF3oSi+UWiCamjI\nvS4+OQ2PPOJK5B075uZAJatYWOu+P3bMPf7II24OlYhUtWIyEo1p38cK3E7ahJGim+SJ5GXfPnfB\nf+aMCwDa03Jixrj+QJOTMDXlAotYzN3f3Oy+T1UrjUlFVrXavL9sGhq0QMiHiklQXTwX4dJvHWXL\nWS3aF/GTYi7aG1hetvWQMSY9KMhFcJXvRUoqEHAX/P397itTun7rVhgddSfE5G1bmwswUqc6qTGp\n+Mpq8/6y0QIhXyomQbXj7DHshV6Y16J9ET/xavTfAMc82pZI2fX0uPPW3Jy7TR8sCwbhh37IPT41\n5YKGaBQWFuDFF9WYVPJTM+tMk/P+Tp1yo8W5XD1qgZBvFZqgagzGuXn0OE3BITigRftSgJo5aNYf\nL6cRFd0dT2RFJTyQhMOuRCG4QbDz55dKGjY0LAUKoRDcfLO7r7PTNaqLRl0Akbxu0jpByabm1pmu\nNu8vEy0Q8q1CE1TbJ05yXWSQwFot2pc81dxBs/54GUhkWKaaMwUhkl2ZDiQtLW46bvpbZQoU7rkH\nTp9WY1LJXU3W3s9l3l8qLRDytUITVE0vD9DOOIHNRSzaVyBRf1IOmnZwiLmrMaabOomZEEG7SMvg\nKdb0n8FU1UGz/ngRSBQTQHi5DfGjMl99hcNuOu7hw0sLC7MFClkbkyoFK2lqujn0avP+QAuE6kSh\nCaoNJsLacIyWdi3alxwlDpqx408y0z/MQOMeRhbaiM4Y4hYCBkKhbjrtBDv6+mm+OucW2FbFQbO+\neBFIKJsgpVHBq69AYIVAYaX9VQpWMqjp5tC5zvvTAiHfKzRB9cObwrRFgxgt2pdcHTvGwjO9jD43\nzPON+5mcCrns1hoIBiBuYXLSMGXaubJ2Pzc/18eGUC+NVXHQrC/FBBLHUSZBSqmWrr5qct6KlIMv\nmkPnM+9PgbKvFZKg6rxhBx0vt8MZLdqXHMTjLH7rOCO9Q/TbPYxfDdHaCuG0Y2dLM0SiMD4Z4nTj\nHm7oPc+mbx2noSoOmvWj4EDCWvt6D/dDZLlauvqq6XkrUmq+aQ6dz7w/8a1CElRvfc8+gh/vhvNa\ntC85OHmSy98dZO5qnJFgGxs3Zj+0hEOwcQNcvtLG1liMy98d5PqqOWjWBzV/k+pUS1dftZQ5kbLz\nojl0VZ0TC5r3J36Sf4JKi/Yld/FzA0xfGGcsvpHWDWbVjz8QgNY2w+WRTjoujBM/P0hAx6eyUSAh\n1alWrr5qKXMiFaHm0OJHeSeotGhfcjTUHyE6G2PRhK6ZzpRNOASLNBCdjTJ0ep4dJd1DSaVAQqpT\nrVx91VLmRCpCzaHFz3JOUGnRvuTo0kSY4GKQNY2LzObxujWhRSKLQWYnmxRIlJECCalOtXL1VSuZ\nE6kYNYcWSaizRfuqBF6YibYdNDa00zV3ilmb+0GzbWGEoTV7WWjVQbOcFEhIdaqVq69ayZxIxag5\ntEiKOli0r0rgxZnfs4+Jtd1snTvDmugEc+HVD5proxPECDKytps1N+qgWU4KJKQ61crVV61kTqRi\n1BxaJAOfLtpXJfDi7dgV4GvbD7FxrJ89U/1c6NhPLJj9oBmMRdk01U+/2cXA9kMc3qmDZjkpkJDq\nVCtXX7WSOZGK0jpTEf/zqhJ4vU+J2rcPvvjqHl4420d7bI7tY31cXr+H2dC1B8210Qk2TfVzpXEL\nLzQdZOrVPcrilpkCCaletXD1VSuZE6korTMV8b9iK4FrSpQTCMCdbwjz16cfIP4s3LGul43T5zE2\nxkxTJ7FAA8H4Is3zI1gT5PK6XXxn4SDP/PD9/Kc3hOsi2KomCiSketXC1VeGzIltDDE25lLcyZNA\nSwt0dIBZ0LyVelVn60xF6kqxlcDvvBP+5E80JSrJjSO28I3Ig5w+c4yeDce5fmGQddFxGuJRrAly\nqXUvLzV2c2zhEIM39XDHHWFlcSvAWGsrvQ91zxiz7EPQZ5Km2odpIhF45BFix59kpn+YwcY9XF5o\nIxo1xC0EDIRClk2NE3Qv9NO8ZwvB190NH/ygrhahLvP4yR/Zh+tMRerSiRPwiU/A6dNw4EDus1yf\nfRZuuAE2b4azZ7NPiUpPvt9117VTovwmdb3JhcE4O2dOctOaQZrMPPO2iRfmujnfvI/t3YFXxhH9\nHFyVSI7lJlfYgC5aK0+BRI6q+Opr+qVpet9xlPDzvbRODGFsjKtrO4kHGgjEF1k3O0LcBJlq62L+\nloMc/Kv7abm+zo941R4giojk6LHH4DOfcRf8O3bk/rqBAbhyxWUe5udzWw7Y1+eS2keOuClRfqbT\nRMlVLpAwxtxurf1esTsgCiSKVokR7ZT3XJiJ8OX/Gebb566Hly/xhtCTr6RgjY1hTZCrofalFOwN\nPbz2dWHfjyatKFtpk/Qpa11dbnjP73l8EalpX/wi/PmfuyBg27bcX3fhAnz/++5wd+BAbsvsxsfd\nlKieHnj44YqPo5VFFY8j1rqiA4li1kg8Y4z5OPBfrLV51r4U8UAlhioyvOfEpRg3vBSkJdpObFs3\n57fexffX/Ayts8M0xuZZCDYx1tLNxY59RBYCXOiDxpQFdnXHq9ImIiJVotBK4OPj7pC4dq07DOai\nrc2d6gYH3cV1RSrolnkAz6fVgn2hmECiEfht4CeMMe+w1p7waJ9EVleJYt0Z3tNu7OTKVIj5uUVu\nDJ4i8PIZtsz0M9R5gG/e/ACR0PL3TF9gd/hwHY6mFFvaRESkyhRaCfzyZffvzZtzew2453V2uiBk\ncLDMF9eaayRpvKjadBvwXWPMw7jsRMyDbYpkV4kR7SzvOTZmuGhgMgwLG7pZE51g81Q/jTH3nt+4\n9UEWg8vfsypGkyql2NImdRl5iUi1K7QSOLjTUq7ZiKSGBrdeYn4+/30tmLrtSQZenJEtLjvxEeBf\njTG3erBNkezSR7Tb268dykkd0R4eXhrR9vg9p6chGkk0qDaGuXA7Fzr20zo7TNdILzddvPY900eT\n6kpykms8XngeX0SkyiQrgXd1uevoaHTl5yd7qG7aBBs2uENcPhYXXRKgqanwfc5L6mDauXOwc6cr\nub5jh1sUsmOH+37nTvf4k0+650ciZdpBqRSvhvYsbsHGflww8RFjTNCjbYssKXREe2jIvS4e9/Q9\nYzFeKfH6yn3BEJfX76FjZog9w8cx9tr3bGhwry3raFI1GBhwEdTGjYXn8UVEqlBPj1swvWWLG5Af\nH3fTl1JZ6+7v63PPe/WrYfduV18i1zor1rrnJ2cSlUUlBvCkJng5RyD5X6AR+B3cdCe17RVvVWJE\ne4X3DAZdEBFPOwHMhtowNkbHzCBbx659z7KPJlWLSMR9Fg15zqqs28hLRGpFsofqXXe58qznz7s+\nEQMD8OKL7vbZZ939u3bB3XfD7/6u+3cwuDTVaTUTE+75yapFJVeJATypGcUEEr8CTLO8dJRlKTtx\nOy478dvKTohnKjGivcJ7trRAKAzzc9e+50xTJ+si43RML3/PiowmVYsMpU2shdFR92s+e9bdjo6m\njc7VbeQlIrUk2cH+yBGXodi71502olF3u3evu//IEdeTtLW1sClRXV3udWVZMqYpqbKCghdbW2s/\na4z5KvAZ4MdZykjAUjARAj4K/GSispP+mqQ4yRHt1UZE0hWzMm2F9+zogJZmmJqESBTCKU+JBRpo\niEdpjC1/z7KPJlWTlNImsW3dXHzJMDwM0zNurckrncDD7ve6ZQtsvd4SHBlxZ+C6i7xEpNaEw67A\n3OHDufU+6OlxU53m5txtLp2tDx50rysLLwbw6qqqSH0pqmqTtfYlXPnXnwM+DWxiKaByJ8wiAAAg\nAElEQVRI3qZmJ/4BWO1KzlprjxSzX+JjhRbrLmZEe4X3NMYd1Ccn3dfGDUsniGB8EWuCLASX3jM5\nmrRrVxlHk6pJorRJ7NQZTn13ghdn2pmZcSfJpjUQDLhgYnLCBWeTk3D1xQlubAwSrMvIS0RqVa69\nD5JTosAtKzh/PnuPzl27XBBx//1lrK5aiQE8qRlelH/FWvt3xpgngE8Bv0D27MTPrbIpk3i+AgnJ\nrNBi3cWMaK/ynlu3uqk4izG4MupS1eFGS/P8CJfa9jLW0l3Z0aRqEgiwcMchzn61n9CFfmYb9tPS\nHlqWyQGXjYhE4ep4lMbRfvq372L3HYdorLvIS0TqQXJKVHqLhmjUBRDJ01dFWjRUYgBPaoYngQSA\ntXYc+EVjzN8AfwZ0sxREpGYnRApXaLHuYuYSrfKewSDcfIv798gITE+BXZhg3gYZtN08NbWPy+cq\nOJpUZY7Rwyh9dDPH7aaPEbuHWXttHr/dTnCj6WeILQyagwzQw+HK7baISEnlOyWqbCoxgCc1w7NA\nIsla+3VjzH8Cvomr4JQaTKxW3KwkgYYxZhvwMeAwsAEYBr4MPJQIgFZ7/Qbgp4A3AfuArUAUOAn8\nFfBX1mao8SneSxbr7u93X9k6Iyd5MZcoh/cMNcKtt8LFi3D5xSgbXuznYngXfevde1Z0NKkKxOPu\nxHjuHHz+82EG5h7g/Zth7WIvG6fPY2yMmaZOYoEGgvFFmudHsCbI6PpdXGg+yJ833s8d3wlz74/X\n4XQwEakruU6JKlTyeDww4GYthcMuVsgaqFRiAE9qhqeBhDEm2Zju11K2XdEshDFmN/A0bv3GY8AL\nwGuA9wOHjTF3WmtHV9nMW3CLyoeBbwFDwGbgp4G/AH7MGPMWa3OtAi1FqcTKtBzeMxiwdLVMsL2h\nn+lbtjC38yC3/8cefqSlwqNJFRSJLE/VDw25ykyzsy38wcYH6THHONRynG4zSHN0nIZ4FGuCbkpY\nczf9Ww7xg+t7mP5euD47gYuIeCT9eDw+7pY+BINLVQQzDnZVYgBPaobx6trXGHMH7qL6Jq4tCfvK\n03LYlLXWelYu1hjzdeBe4H3W2qMp938S+FXgs9bad6+yjTcA64B/Ss08GGOuA74LbAd+1lr7pQL3\ncdmHoHgkB9PTrmtmb6+7Os22Mq2ra2kuUUtL7b1nDcv067LW1VNP/okbAy3r4tzRfJLXbB5kjZln\nIdjEWEs3Fzv2YY07AQ0MuOe+5z3w5jdX7mcSEalF+Zy+Dhxwi7+Xnb4iEXjkEdexeng4twG8u+92\nNW7rLQVfW4oe7C86kDDGrAU+AbwnsUOpayJeeRowAPw+q1dtwlr7haJ2amnfdgNnEu+9Oy0IaMFl\nGAywyVp7tcD3+DDwe8B/s9Y+UOA2FEgUouDhlRp7zxqU7Zxz7hy88IIboFq71g1cTU25f193nZse\nFswwjPDii+6573oXvPWt5f95RERqVSExwF13ucXfy05jGkzzo6IDiaKmNhlj7gU+C3Sl7Ex6BsLi\npgX9WqEX60W4J3H7RPoaBmvttDHmKVy24rVAoX3cFxK3eZYzkKJVYmVa1a6Gqy7HjrlzzfDw8ix4\nMOhOXta623DY9eIYG3PnoIsX3TkonYp/iIgUJtvxOJUxbixs/343e7e3173uvvtSnlTVpaWkUgoO\nJIwxn8eVes0UQMBSFuKItfZbhb5PkfYmbk9nebwfF0jcSAGBhDGmAXh74tuv5fia3nzfR1ZR6pVp\n1fKeNSIed+eYoSE38pV60mppceeWiQlobnb3BYOwfr0b7Boehu3brx0pU/EPEZH8rXQ8ziQUcs87\nf9697vDhtLExDaZJmmIyEm8ncyWmZBbiz4APVSALkao1cTuZ5fHk/Tn2fL/GJ4BbgMettV8vcBsi\nvpI8t8TjLn2eqqPDBRCTk24QK3lSC4VcwDAz47ITGzYsvUbFP0RECrPS8TibtjY3a2nFAhcaTJME\nr8u/GmAQl4X4psfbrirGmPcBD+KqQP1Crq+z1h7IsC0tihDfGBhw2e6NG68tN57eCXxDohO4MW5A\nKxJxmYlkIKHiHyIihVvpeJyNMW7pw/i4CyYUK8hKvDotJxdZfxbYV0VBRDLj0Jrl8eT9E/ls1Bhz\nP/Bp4PvAPdbascJ2T8R/IhE3mtWQZZhi61Z3klq71nUEj0bd/YGAy0okqzuNj7u5unXdCVxEpAir\nHY+zaWhwr5tftTyO1DsvMhIG11fhiLW20AXLpXIqcXtjlsf3JG6zraG4hjHmA8AfAf8O9FhrLxe+\neyL+Ew67qUiLWcoPBINwS0on8Kmp5eVgR0fd9CZ1AhcRKc5qx+NsVOBCclVsRsIAnwNuqcIgAlzz\nOIB7jTHLftZE+dc7gVngmVw2Zoz5dVwQ0YfLRCiIEEmzY4er/jEyshQgpGtMdAK/6SaXoWhtXSr8\nsWaNW1jd0wNHjrgy5KogKCKSv1yOx+mSBS6SFc1FVlJMRqJasxCvsNaeNcY8gavM9F7gaMrDD+Ga\nzH02uSA80Zl7N7BgrT2bui1jzG8DHwN6gXs1nUkks3373MnnzBm3ULq9PfPzkuXGt29383gDAbj5\nZnjHO2DnThX/EBEpVq7H41QqcCH5KCaQuMVaO+PZnpTOe4CngT82xvQAPwB+BNdj4jTwmynP3Zp4\nfBDYkbzTGPOLuCAiBnwbeJ+5dtXSgLX28yX5CURqSCDgFkb397uvbHXLkxYW3OjXrbe6DMSyuuUi\nIvUmHnflkgYG3CKHcNilFgoYXcn3eKwCF5KvggOJGgkiklmJg7hA4DBwH66j9aeBh6y14zlsZmfi\nNgh8IMtz/gX4fHF7K+IPPT1uofTcnLvNpZOqFlSLSF2LRK5t9haLufRAcp5RAc3edDyWUjI210lz\nUjLp5V/1mYgfTE/D0aOuQ+rQkDsfdna6aiCLiy4LkZzelFxQrbUQIlKX8jlgHjgADzyQ1wFTx2PJ\nIseiwCtsQBetladAQvyqRANsIiL+EYnAI4/Ak0/C8HBuKYO77oIHH8zrwKnjsWSgQMIPFEiI3yWn\n/A4OurrkTU1LC/k0B1dE6trjj8Ojj8K5c7ktYujrc4sYClxUpuOxpFAg4QcKJEREROpQPA4f/rBL\nFezcmVtZpfFxOH/epQ4eflhX/1KMogMJLxrSiUiV8bDoh4iIlEoyNRCPu+lMuWhrc3OSBgfd62+7\nrbT7KLICBRIiPqI5sCIiNWRgwB2oN25cviZiJca4ldLj4+5Ar0BCKkiBhIhPZKvKEQq5qhynTrmm\nRP39boptnkU/RETEa5GIO1ivtC4ik4YGt15ifr40+yWSIwUSIj4QibggYqWiH93dS0U/5ubcfXkW\n/RARES+Fwy5lvLiY3+sWF93rmppKs18iOdJsaREfOHbMZSKGh13Rj/b2a7Pkxrj79+93z+vtda8T\nEZEK2bHDHZhHRlyJ11xY656fnK8qUkEKJERqXDzu1kQMDblMxGoZ8lDIPW9oyL0uHi/PfoqISJp9\n+1wwEAy6lHEuJibc85M1W0UqSFObRGqcin6IiNSoQMBVwOjvd1+59JHo73d9JA4dUhm+UlDZw7wo\nkBCpcSr6ISJSw3p6XAWMuTl3m0tn64MH3evEOyp7WBAFEiI1TkU/RERqWDjsyuiBW7x2/vxS2b2G\nBrewemTEXdDu2uWCiPvv18Wsl1T2sGAKJERqnIp+iPiDZlTUsZYWV0YvfUQ8GnUH6r17NSJeKip7\nWBQFEiI1Lln049Qpd6zLZXpTsuhH8twkIpWjGRUCuA/3vvvg8OGlxW/z8260J7mwWhGl99LLHmZK\n76eWPezrWyp7eN995d/fKqNAQqTGJYt+nDnjBkza21d/jYp+SKE0au4tzaiQawQCbuGaFq+VXqFl\nD8+fd687fLjuD3wKJERqnIp+SDlo1Nx7mlEhUmEqe1g0BRIiPqCiH1JKGjUvDc2oEKkwlT0smgIJ\nER9Q0Q8pFY2al4ZmVIhUAZU9LJoCCRGfUNEPKQWNmpeGZlSIVAGVPSyaAgkRH1HRD/GSRs1LRzMq\nRKqAyh4WTYGEiA+p6Id4QaPmpaMZFXVAJc6qn8oeFk2BhIiIZKRR89LRjAofU4mz2qGyh0VTICEi\nIhlV06i53wZ3a2ZGhd9+8aWmEme1R2UPi6JAQkREMqqGUXO/Du5W/YwKv/7iS6mOSpz5Kr5U2cOi\nKJAQEZGMKj1q7ufB3aqeUeHnX3wp1UGJM9/Glyp7WDAFEiIiklElR83rYXC3KmdU1MMvvhTqoMSZ\n7+NLlT0siAIJERHJqJKj5nUwuFudMyrq4RdfCj4vcVZX8aXKHuZFgYSIiGRViVHzOhjcfUX6jIqh\ngTitQyfpvDpA2EQIt4Rp3LODPT+9j543Bkp7UVZPv3iv+bzEmeJLyUaBhIiIZFWJUXOfD+5eIxyG\n+3oiHI4f48rl40QbBgmacYLEaIoHaZltxzzZDYESz8+ut1+8l6qpxJnHFF/KShRIiIjIisq9DtHn\ng7vXSkw+D/T2sik5+XxzJzQkJp+fPgVnyzD5vO5+8R6qhhJnJaL4UlaiQEJERFZVznWIPh7cvVY1\nTT6vq1+8xypd4qyEFF/KShRIiIhIzsqxDtHHg7vXqqbJ53X1i/dY1TcGKZziS1mJZq2JZBKPw4kT\n8Nhj8MUvutsTJ9z9IlJSycHdkRE3aJuL5OBuspZ9TSh08vnQkHud18ejuvnFl0CyxFlXl8scRaMr\nPz9Z4qyrqwyNQYqj+FJWooyESCrfdtsRqR0+Htxdrtomn1fwF++LTslV2RikeD6etSUeUCAhkuT7\nbjsitaGquz57abXJ59bC2Jg7NiUHNFpa3PNLMfm8Ar94X43dVGVjkOLVTWAvBVEgIQLVteBRRPw6\nuLtctsnnsRhcvOiORTMz7nnWuh8+HHb/Xr/eBRheK+Mv3pdjN+UucVYGdRPYS0EUSIhAdS14FBG/\nDu4ul2nyeTQKzz/vfriZGXfR3tTkrsbicXcBv7DgHvva1+DNb/b26rpMv3hfj92Us8RZmdRFYC8F\nMTbXBVVSMsaYZR+CPpMyi8fhwx92QcHOnbnlbcfH3Qm2pwcefrjmTgpSnXwxT9xjvpr6ku7ECfjE\nJ9zQ+8GD7g/guefg5ZdhdtZlHUKha6/WXn7Z3XfLLfBjP1a6UrAl/MU//jg8+iicO5fbCHdfn4tb\njhzR2E2lZMsgpceXXV1L8WXVZ5Akx4K+2SkjIVJtCx6l7vj6YrlIPhzcXZI++Xx62l2Nzc5CR4f7\nA0i3sACNjXDddS4rUcpSsCX6xatTcm3y4awt8YACCRF125EK8uU88RIoR/+KskudfH76tPvwZ2Zc\nJiJTEBGPw+Sk+wPYts3dlvrqugS/eI3d1C5fB/ZSEAUSIuq2IxXi63nikpvk5PNLl9zaCMh8LIpG\nXRCxdq2LNLdudVdsNXh1rbGb2ufLwF4KorhRRN12pELS1/i3t197YZW6xn94eGkmi/hEcnHzjh0u\ngIjF4MoVl5m4etXdjozA1JTLQFx3nVsbEQxee3VdI5JjNw15DmU2NLjXaexGpHookBBRN1epgGpr\naiwV1NLiFk1ff70LDJLzfZIfcluby0DcdBPceqtbI5FUg1fXGrsR8Q9NbRJRtx2pAM0Tl2Wam2Hz\nZhdIrF/vMhGLiy5QaG52i68zzQOqwatrdUoW8Q9lJESSCx67utxE9Gh05ecnu+10danbjhTMi3ni\n4iPJq+srV1zQ0N0Nu3e72w0bsne+rsHMaHLsJhh0YzK50NiNSHVSRkIE1G3H56qxP4PW+MsydZQZ\nVadkEf9QICECddJGt/5Uc38GzROXZers6lpjNyL+oEBCJEnddnyl2vszaJ64XKOOrq41diPiDwok\nRFKp244v1EJ/hjqaySK5qrOra43diNQ+Y3MtdyklY4xZ9iHoMxEpzuOPw6OPwrlzuc0Q6etz12VH\njrg4UvspFVXNc/JKJLmOSWM3ImWVY6mPFTagi9bKUyAh4p14HD78YXcdtnNnbiP94+Nu8LenBx5+\nuHwXLpEIPPLIypmT9Jksd98NH/ygb64fZSW6uhaR0io6kNDUJhHxlVrqz1BnM1kkX4GA+2NUwxAR\nqVIKJETEV7zoz1DO6zbNExcRkVqlQEJEfKUW+zNojb+IiNQiBRIi4iu13J9BM1lERKSWaIxLRHwl\n2Z9hZMQtVM5Fsj9DsiCOiIiIrE6BhIj4SrI/QzDoqh3lQv0ZRERE8qdAQkR8JRBwC5O7ulzJ1Gh0\n5edHo+55XV3udVqLICIikpu6OGUaY7YZY/7SGPOSMSZijBkwxnzKGJNDhXnvtyMipdXTAwcOuL4L\nfX2uClL6NCdr3f19fe55Bw+614mIiEhufN+QzhizG3ga2AQ8BrwAvAa4BzgF3GmtHS3XdrJsWw3p\nRDw2PQ1Hj7r+DEND2fszdHUt9Wdoaan0XouIiJSNOluvxhjzdeBe4H3W2qMp938S+FXgs9bad5dr\nO1m2rUBCpAQikWv7M8RiLoBILqxWfwYREalTCiRWksginAEGgN3W2njKYy3AMO6XuMlae7XU21lh\n+wokREooHld/BhERkTRFBxJ+7yNxT+L2idSLfwBr7bQx5ilcluG1wLEybAdjTG8e+y8iHlB/BhER\nEe/5fSxub+L2dJbH+xO3N5ZpOyIiIiIivuD3jERr4nYyy+PJ+9vKtB2stQfS70uf2iQiIiIiUu38\nnpEQEREREZES8HsgkcwUtGZ5PHn/av1vvdqOiIiIiIgv+D2QOJW4zbZ2YU/iNtvaB6+3IyIiIiLi\nCyr/qvKvIiIiIlJ/ii7/6uuMhLX2LPAEsAN4b9rDDwHrgP+evPg3xjQaY25KBA4Fb0dERERExO98\nnZGAV7IJTwObgMeAHwA/gusNcRr4UWvtaOK5O4DzwKC1dkeh2ylgH5WREBEREZFyUmfrXBhjtgMf\nAw4DG3BTkf4ReMhaO57yvB1kCSTy2U4B+6dAQkRERETKSYGEHyiQEBEREZEy0xoJEREREREpPwUS\nIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIi\nIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKS\nNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUS\nIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSt4ZK74BcyxhT6V0QERER\nEX+zANbagi88lZEQEREREZG8KZAQEREREZG8KZAQEREREZG8GWttpfdB6oAxphfAWnug0vsi+dPn\nV7v02dU2fX61S59dbdPnlxtlJEREREREJG8KJEREREREJG8KJEREREREJG8KJEREREREJG9abC0i\nIiIiInlTRkJERERERPKmQEJERERERPKmQEJERERERPKmQEJERERERPKmQEJERERERPKmQEJERERE\nRPKmQEJERERERPKmQEIKYozZZoz5S2PMS8aYiDFmwBjzKWNMeyW2I/kp9vdujNlgjHmnMeYfjTFn\njDFzxphJY8yTxpgjxhgdW0qoFP9vjDFvM8bYxNc7vdxfWeLlZ2eM6Un8H3w5sa2XjDFfN8bcV4p9\nF0/PfW8yxjxhjHkxcfw8Z4z5e2PMHaXa93pmjPlZY8xRY8y3jTFTiePc/yhwW7puSaGGdJI3Y8xu\n4GlgE/AY8ALwGuAe4BRwp7V2tFzbkfx48Xs3xrwb+AwwDHwLGAI2Az8NtAJfAt5idYDxXCn+3xhj\ntgMngSDQDLzLWvsXXu63ePvZGWP+K/Ah4EXgfwJXgE7gAPDP1tpf8/wHqHMenvt+H/g1YBT4Mu6z\nuwF4M9AAvN1aW9BFrmRmjOkDbgNmcP9nbgL+2lr7tjy3o+uWdNZafekrry/g64AFHki7/5OJ+/+s\nnNvRV/k/P+ANwI8DgbT7r8MFFRb4mUr/rH788vr/DWCAfwbOAn+Q2MY7K/1z+vHLw2PnuxLP/zwQ\nyvB4Y6V/Vj9+eXTsvA6IAS8Dm9IeuyexnXOV/ln99pX43e5JHO9en/g9/49K/A347UsZCfn/27v3\naLnK8o7j3ycCIUBA5SIqSIAixHIRLZeC3ARCYVFEWy1VgXApyD3cl3QhgdYKNdwEtQsUElBakQol\nKIKtIhe5WAsrWCBA4YSISgjhEiAhCfn1j3cfGOa8+5zZc/acOTnn91lrr8nsd+93ntk7M2c/s99L\nJUU2/iTQA2wqaXlD2XjSL9RB+oJ8rdP1WDVDcdwj4izgq8Dlkk4YdND2lk6cv4g4CbiY9Mf1k8A5\n+I5E7Wr87hwLzAUWAZtJWtLJuC2p8fztANwH3CzpU5nyV0itRcbX+w6sV0TsTrqTXumOhK9b8tyO\n2arao3i8vfFDBCBpIXAPsBqw4xDVY9UMxXFfWjwuG0Qdllfr+YuIicD5wKWS7qwzUOujrnO3N6kJ\n04+A5UVb+zMj4iS3r++ous7fE8ASYPuIWKexICJ2BcaT7hDa8OPrlgwnElbV5sXj4yXlTxSPHx6i\neqyajh73iFgJOKR4+tN26rB+1Xb+inN1Lakp2lmDD80GUNe52654XAw8CNxCSgYvAX4VEb+MiHUH\nE6hl1XL+JC0AziT1KXskIq6IiK9FxPXA7cDPgKNriNfq5+uWjJW6HYCtcNYqHl8uKe9d/+4hqseq\n6fRxPx/YEviJpNvarMPK1Xn+vgJsC3xC0qLBBmYDquvcrVc8ng48AuwCPARsDEwDJgE/JDVVs/rU\n9tmTdElE9ABXkfq79HoSmC5pXrtBWkf5uiXDdyTMrBYRcSJwKmkUi4O7HI71o2infRZwoaR7ux2P\nVdL7d3sZcICkuyW9Kulh4NOkEWl2czOn4SsizgBuIHWW3xRYnTTa1lPA94sRucxWCE4krKrejHut\nkvLe9S8NUT1WTUeOe0QcD1xK+oV0j+L2vdVv0OevaNJ0Den2/Nn1hWYDqOuz11v+oKSexgJJr5NG\nlYE0JKXVp5bzV3T0vYDU2foUSU9Jel3S/5ASwWeBUyNikxpitnr5uiXDiYRVNbt4LGsDuFnxWNaG\nsO56rJraj3tETAEuA35LSiL+2H54NoA6zt8axf4TgcUNk9CJNGITwJXFuksGHbH1qvu7s+xi5cXi\ncVyLcVlr6jp/+xePv2guKBLBB0jXZttWDdA6ztctGe4jYVX1fvlNiogxmeHPdgZeJw1vNxT1WDW1\nHveIOJPUL+IhYG9J82uO196pjvP3BvDdkrKPkS5g7ib90XSzp/rU9dn7L9J49R9prqewZfH4dA0x\n29vqOn9ji8eyDvG96z2s7/Dj65YM35GwSiT9H2lkiQnAcU3F55Lael7bO4ZyRKwcEVsU4y+3XY/V\no67zV5SdTUoifgPs6SSi8+o4f5IWSToytwA3F5vNKNb9oONvapSo8btzDjAT+BBwUmNZREwC9iHd\nrfCoaTWq8bvzruLxqIj4YGNBROxLuhhdTJo92brA1y3VeEI6qywzRfyjwA6kMZYfB3ZSMUV8REwg\n/TI2R9KEduux+tRx/iLiUFJHwTdJzZpyo1j0SJremXcxetX1+SupeyqekK5javzu3KCoZ0PSHYoH\nSaM2HUi6W3GQpH/v+BsaZWr67hxD6seyF7AQuJE0y/VEUrOnAKZIunQo3tNoEREHkj4fkGYX34fU\nub03sZsv6bRi2wn4uqV1nZgu28vIX0h/wK4mzeS4BJhDGsf8PU3bTSD9YesZTD1ehtf5A6YW6/tb\n7uj2+xypS12fv0y9vef1yG6/x5G61PjduS4piZ9T1DOfdFG6fbff40he6jh/wMrAFFITmFdII3DN\nI80JMqnb73EkLi38zepp2NbXLRUW35EwMzMzM7PK3EfCzMzMzMwqcyJhZmZmZmaVOZEwMzMzM7PK\nnEiYmZmZmVllTiTMzMzMzKwyJxJmZmZmZlaZEwkzMzMzM6vMiYSZmZmZmVXmRMLMzMzMzCpzImFm\nZmZmZpU5kTAzMzMzs8qcSJiZma1gImJqRCizTOh2bGVK4p3e7bjMrH0rdTsAM7NuiIgAbgf2yhRf\nKOm0AfZfE3gY+FCmeLKkGW3GNRm4uqR4ObAUWAK8BCwAngGeAO4Hbpf0UjuvW6eImJpZ/ZCkm4Y6\nlqoiYnfgF5miX0rafWijMTMb3pxImNmoJEkRcRgpGXh3U/HJEXGzpDv7qeIy8knEje0mES0YA4wt\nlvHAhsA2DeVLIuKHwHmSHu9QDK04J7NuBjDsEwkzM2udmzaZ2agl6XfAcZmiMcCMiBif2y8iDgQO\nyRQ9BxxVX4SVrQJ8AZgVEad0MQ4zMxsFnEiY2agm6Trg+kzRBOCS5pURsR5wRUl1fydpfn3RtW0s\ncGFEXNztQMzMbORyImFmBscAf8isPzwiDmhadwWwbmbb70iaWXtkb7sGWLlY3gtsQborMhNQyT5T\nIuKEDsZkZmajmPtImNmoJ2lBRBwO3JopvjIi7pX0fNGn4lOZbZ4GTu5okKlbx7Li3y8Wy2zg2ojY\nCfgBsEFmv2kRMVNST3NBRKwP/BnwMeDjwCbA+sAapITlVVKn7keBB4DrJM3OBRcRdwC79RP/oRFx\naGb9YZKmN9SzURHLx4u4NipiWg14VxHTAuC3wK+KmOb287pdV+dxrvCaE4EvAfuQ/l8sA54i9VO5\nTNKLFeraC/hLYGfgg6REdjEwD7gPuAW4QdKbg4nZzFY8IZX9kGVmNrpExLdJF1/NbgKmALOANZvK\nlgO7S7qrphgmkx+1aYakyf3stwVp5Kbm+Er3jYjHgM0rhvg94ITm0aFaSCTKNCcSi0lNs1q1nNQE\n7SxJb7Tx+u/QiVGb6jzODXVOJd+pfWPgM8DXSH1mcuYBB0nKvc/G19gOuJJ3duVFsD8AAAgsSURB\nVOgvMxs4QtI9/dSXu+Do9/+1mQ1vbtpkZva204AnM+sPBO4if5E+ra4kYjAkPQacX1L8uYhYtaaX\n+iJwS0RUudjvpDHAKaQ7M9HtYGrU7nE+DbiQ8iQCYD3gx8WdrKyI+CJwD60lEZASpZ9HxF+3GqiZ\nrficSJiZFSS9Rup3kGuisWFm3Szg7I4GVc2/kH6hbzYO2LXG19kZOLbG+urwWVLCN5K0c5xzo5Dl\njCMlX6s1F0TEbsBVpGZXVawCXBMRrSYfZraCcyJhZtZA0r2U/7LfaAlwsKQlHQ6pZUW794dLij+a\nWTcXuA44GtiB1P59PKlp0ZqkX5kPA+Zk9j2x6fmevN0ZPKexs3jj0jznxhOki9hDSf0KevsSjCXN\n97ElcALwQgsxDRd1HudWPAzsXdT9fuB44PXMdpsAhzeuiIgxwDfJn8fpwHak87AJcCqpf0ejcaQ5\nVsxsFHBnazOzvs4F9gO27WebsyXNGqJ4qniGfHOUdZpXSNq7n3qWAAuBxyPiRfpOJjchIjaSNKeo\n6627OCUtjBo7i5eStNUAMb0M/G9EvIu+w/PuGBGrDKfkDuo9zi14DthDUm+itRD4ZkQ8T+qQ3+xI\n4PKG538B/Glmu69LOqPh+cvARRHxLPBvTdvuEhE7SLq/xZjNbAXlRMLMrImkpRExk/JEQgzfWZpf\nKVnfPHs3AEUb/P2BfUm/9k8g/Vo+Dhioz8Hm5H9FH5SIWJM0OtYkYCJpBvE1ipj6syop/m7O6p01\nhMf5Ww1JxFskXR8R/wRs2lS0dUSsJenl4vm+mTqXUn6X7gbS3Y7mJlL7kjr/m9kI5kTCzKxJRGwF\nnNnfJsD0iNhlGA55uVbJ+j6j/0TEfqR+Fbn+H614T5v7lSpGrZoGrN1mFbXHNFhDfJzv7KfsLvom\nEkFK1u4rnm+d2W9l4IWKfdl3qLKxma2Y3EfCzKxBRKwCXMvAQ5D+Of0nG90yoWT9841PImIScDPt\nX9zCwHcIKinm8ria9pMIqDmmwerCcf59P2V/LFnfeLxzky2243011WNmw5gTCTOzdzqX1oe8PCci\ncp2YuyIi1iHfvh3goabnl5MmeGu0jDQ3wYeBcZJCUgCfrDXQjGL0oIsyRa8CJ5HmRxjbENPhmW2H\no2F1nIdQtimdmY0sTiTMzArFuPpnZIpeIY3N32wV0hCaw2VOhWPJt7dfRGrWArzVdGuzzHYXSDpP\n0hOSFjesH8wdglbtSb5Z1smSviGpp6kT9VDENChdOs4f6Kds/ZL1jX0qni/ZpipfX5iNAv6gm5kB\nEbE6aYjS3PfiScDpwM8zZVsC/9jB0FpSXLTmkiCA65suWP+kZLt7S9bv1XZgrRuOMQ1WN95Tf/OF\nfCKzTsBjDc9zwwe/QOrInhu+t2xp7othZiOQEwkzs+Qi8hc/N0maLknAZNKwl81OiYg6J3yrJCJ2\nAW4DVs8ULyU112pUdgdly0zdHyW97ypycxb0GX52EDHtB+xTMaZu6PRxzjkmIvp0zo6Iz5FPbGZJ\nauyIf2tmm7WBYyQtG2ghjd50MOWd/s1sBPGoTWY26hUXpkdlip4nTSIGgKS5EXE8qTN2ozHAjIjY\nWtLCzoUZvd/ZawDrkUbGOYg01GbZkDqnSXq6aV1PybZ/HxG/J11MLicNwTqNgTueN3uO1Keh0Z4R\nsS/p1/jeSczUMOpVWUwXRcQi0mhEqwJ/C3y1Yjx1aDz+A3mzSDx7SsrrOs456wN3RMQppOFXVwf+\nCvjnku2/0/T8VuAR4CNN6y+OiB1JEwg+Cswj3Xl4L6mvxzakPh67kjqHbwwsGOybMbPhzYmEmY1q\nEbE28N2S4qMkzWtcIel7EXEA8NmmbSeQJkg7ovYgk0OKpYpLJX0js/7XpBF8mtvMjyc172r2Jn07\nDPfnN/RNJFYFftK07llgg+LfPwMWF9s1+gDwHzXENFi7ku7utOLTpHlGOn2cy2wN/GcL2z1FGiXr\nLZKWR8RxwO30nd36b4rFzAxw0yYzs2+T74Q6Q1LZpHNfAv6QWX94kWR02xvA6ZKm5AqLuwBfbrGu\nxcBZFV8/d5Hcr2IStQta3Hw+3bkrUckQHOecG1vcbhFwiKTXmgsk3UFqZjWsZgg3s+HHiYSZjVoR\n8QX63lkAeAY4sWw/SQsoH370ioioayz+qpYC/wpsI2lafxtKmg58hdTZtswLwIHAA1WCkDQTuKrK\nPoXzgCsG2KaH1JSrubnWsNTJ41ziVNIs1Mv72WYesL+ke8o2kHQdqencryu+/guk5Hx+xf3MbAXk\nRMLMRqWI2IA0xn8zAZMlvdLf/pJ+CnwrU/Q+Br4YbpdIycKrwO+AWcCPSU2qPg+sL+nzkma3VJn0\nD6SLxe8Dc0m/QC8gzTlxHrCVpNvaClQ6AvgMqYnPXNIv7gPts1zS0cAk4Eekuz5LSX1V7idNALit\npP9uJ6Zu6eRxzr+cvgxsT/p/+CSp8/vC4vWmAhMl5UYga67oIUnbAzsBXwfuJk149zppLoyXgNmk\nCfemArsB75d0rKRXs5Wa2YgSqT+YmZmZmZlZ63xHwszMzMzMKnMiYWZmZmZmlTmRMDMzMzOzypxI\nmJmZmZlZZU4kzMzMzMysMicSZmZmZmZWmRMJMzMzMzOrzImEmZmZmZlV5kTCzMzMzMwqcyJhZmZm\nZmaVOZEwMzMzM7PKnEiYmZmZmVllTiTMzMzMzKwyJxJmZmZmZlaZEwkzMzMzM6vMiYSZmZmZmVXm\nRMLMzMzMzCpzImFmZmZmZpU5kTAzMzMzs8qcSJiZmZmZWWX/D9crO8GoOJgrAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw8AAAI+CAYAAAD6jTZqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde3yU1bn3/8+VBAJKgCAeqBgQQbQWRUGsRQ6KrYiP1Vbt3vXQUmn9VdTaonVbWxWtpfq0tm6xaqt46AG7LbWyn7212y0VotZqRYI9KIIh4AEVFRAUEkLW7481QyaT+565ZzKnZL7v12teA/fch5U5rmsdrmXOOURERERERNKpKHYBRERERESke1DwICIiIiIikSh4EBERERGRSBQ8iIiIiIhIJAoeREREREQkEgUPIiIiIiISiYIHERERERGJRMGDiIiIiIhEouBBREREREQiUfAgIiIiIiKRKHgQEREREZFIFDyIiIiIiEgkCh5ERERERCQSBQ8iIiIiZcrMppqZC7oVu2xSmhQ8SI9gZkvDvvxit4/MbK8Mzvf1NOdzZjYzj39SQZjZj9P8ja+bmb4npOyZWYWZTTez+Wb2ZzN7w8y2mVlr7P4tM2sws0fM7N9j3yGfNLPqYpdduiczmxnhdyj5d+5NM1tuZr8ws3PMrG+x/w7peVQpkHLRF/haBvtfkq+ClAozqwTOSbPb/sCnC1AckZJlZqcCrwKPAhcDxwIfA/YEKmP3+wJHACcD3wDuAJ4BPjCzs4pQ7Lwys+EpKrHDMzhPU09tnCmCvsAQ4Cj8792vgTfN7EozqypqybKQolFwbrHLVu4UPEg5mR2rMKdkZp8GPl6A8hTbycB+EfabmedyiJQsM7sW+E9geJan6A0MyFmBRDIzEPghsNTM+hW7MNIzKHiQcnIA8LkI+30j3wUpEV+OuN/pZqbKj5QdM/siMLfY5RDJgYnAH4pdCOkZul03lkgXXQIsCnvQzEYCMwpXnOIws1rg1Ii79wH+BfhF/kokUlrMrBfwoxS7NADPAhuANnwL71BgLDASNc5Jfi0Clif8vxoYBZwGhPUwnGhmX3TOPZDvwknPpuBBys1kMzvCObcy5PFLKI8f/bPxPzZRzUTBg5SXyfg5P8l2AKc75/4n7EAzGwxMB84A/k9+iidl7r+dc/clbzSz/fBzc8aGHHchoOBBuqQcKkkiyQKHJZlZDV0Y329mt4RM7vqvCMdaiomDmUz0jipsyNKSkO3HmtnBqU5oZr3N7MOQv2FEyDHfDdi3OSxDiJndHXL+61OVLXbsODO71sweN7O1ZrYldq0NsewkPzWzaenOE3DeQ2J/x3+b2Roz22xmO2Pnfs/M/h577CYz+6KZDc3g3GZmnzazH5nP8LM+9hzviGVVecHMfmZmZ8ZayqOc876Q53Bpwj6Tzex+M3vVzLabzyz0JzM7z8x6B5xzsJn9m5k9Z2bvms/60mhmvzSzSVH/3qRz5uX1ysCnQrb/JlXgAOCce9c592vn3OeAOuCJTC5sZoeZn+T6n2a2Ovac7oy99utir8VNZvaZsNfdzKrM7HAz+7L57E+Pm9nLZvZ+7P3TamabYudbYmY/MbMTzMxSlGt3Sk9gbYo/YW3Ie+y+2HkSU4EOCznHvSHnaIrw/E0xs3lmVh/7+7bG/ubXY5+jeWY2Id15Es6XclK3mVXGPtu/j31mtiV/pgrFOfcWqRNhfMr8b11OmdkY89+Df4x99jebWYuZvWNm/zSz35jZ/2dmg9KcZ/dzDUwJ2e3akNdDqWULxTmnm27d/gYsBVzA7S/4IQWJ27YDewWc4xsBx/855LwOmJl0/IFAa8B+u4Dhacr/qZBrbANqcvxcfTzF3zQB+GfIYz+IcO7/CTn2yxnuf3zI/q+E7D81RZnG4ytvYX9z8u1Z4JgIf2s/4FcB768ot7sjnP+zwN8zOOdrwAURzntfyPFL8VmDfpnmOs8DH0sq5/tpjrkdqIj4/szL65XF5+RnIde7NdfXSrjmOOB/M3wvLQg517Is3pcOWA1MCznn1CzPGb/dFztPV87RlOL5+zR+KE/Ucz0GjI7wujSFHD8TGA38NeTxpV18P8xMUfaZaY4N+650wKFRX9cIZTwM+GMGz/k24MdA3wyf60i3fH02det4U8+D9HQv43+ME/UhKW1rrLXt4oDjb416IefcWuDhgIcqgAvSHP7FkO3/4ZzbGrUMEc0M2d7onHsO+G3I4+dZ+jUfwnouOrU+m898dWzI/pMD9t8PP6Y32XZ8SsxOzGw28DT+xzGqCUC9mZ0ftkOs7H8EzgVCW2pTGJji3GZmPwUW43+YoxoK/NzMfmfZ5Xavxr9/z0uz3zjgCTPrY2bnxcpZm+aYC4Hr0hUgX69XlsJe138xs4NyfC3MbA7+fXxihoeGZZBLm1kuxEjgcetmqVLN7AZ8Y8RRGRz2aeA5M8t2ntuB+EB3fJbH59PGFI+l+7xGYmbnAM8BJ2Vw2J7AZcCzFtIjLaVPwYOUg6AAIDlt6ww6V0zfBH6f4bV+GrJ9lgUM94DdFdGwPPB3Z3j9lGLXOjfk4XjQEDYe9gDghDSX+FPI9qChK0cBYd3nnYKHkG0ATzvnmpM3mtmX8a3Hgc97Gr2Bu83n9w/yJXz2kny4EfhmF44/E7g/1fCTEJ8kesX1YHwO+UzmwVxpZnVhD+b59crGhpDt+wB/M7Nfm9m5ZjYqi+e6AzP7FnAzEGnoWYH8wswOKXYhojCfTve7ZBfI9wd+b2bjsjj2e/h1FUrRPike29TVk5vZKfheyj2yPMUY4FHzyTukm9GEaSkHj+C74hODg3ja1njmpUsDjrvdObczk3qBc+5pM3sWOCbpoX2AzxPcqj8Nv8BUsn865wJb1LvgM4T/2P0WwDm32sxWAEcG7DMTeDzF+V8ANtO5Zf1gM9vXOfd2wrawYADgk2bWyzm3M8L+nXo7zM/PSFWxfQY//GYrfhjXqXRuqTXgV2Y20jn3btJjnw857zv4HonX8RNrB+DHdB8GHEKayo2ZfQa4IsUufwbqgZ341s7pIec8C/+8/DzV9UJsB34HrItd4+SQ/c5I+HcT8BB+CNep+KEcyarw759O81MK8Hploz7FY33x48rjY8u3mNkL+GGS9UC9c+6jKBcxs2PxgUOYVnzrdgP+798L3/tzDNGCjebYsa8CbwAfxs65B34+xnEEr2HRC/gOHedHNca2gW+9Dnuv/l+CK6h/i91/J2HbvxHcE5ecTShuS+J/zGwqqdPpPh67bgv+O+0zAfv0ARaZ2WjnXEuKcyVLbIB9Ef86bcJPtJ+AH0pTcGZ2GL4HKcgu/PdTV84/GFhIeAP0q8B/4Z+LkcDpBGeAOhg/pDGx5/0m2tdFuQDfu5NsCal/hyTfij1uSjfdcnEjfM7DfbHHg+Yz1MceO5TO49Z3AHvHHs9ozCk+rWnQ/stC9r83ZP9v5eF5+o+Qa/09ab9vh+z3IdA/zTX+EHLsmUn7PZziuXXAsUn7vxiy34SAMiwM2fcjYEbA/mPxP6hBx9wUsH/QXIRXgYEpnpdB+Ar3QuDekH2eCynDLgLmjeB7Cj4KOeZ1oE/AMfeleM63AEck7X9Hmtfpf4E9EvavIXzezOMhf3deX68sPyuGr3Sm+tvDblvxrbJjIlynPsV5/gyMCDluCDAPuCPk8UuA44HeEf7Oa0Ouv5mQuSr4gCOs3MMzeJ6bQs4R+P0acHzYvLSNBH83nAB8EHLMhRmW0eGDs3NDjtu3i+/BmSmuG/j84Bf+XJHiuPqAY6aG7R9yjR+lOP8dQK+k/YcBa0L2bwMOD7nO0pBj5ubiM65bF96bxS6Abrrl4pbiS+a+2OM1IT8YRxBcObo34dyZfnlX4Vttg445LGnfavwPdNAP0uAcP0cD8a3KQeX6XtK+dYRPBJ6V5jqXhBz37wn7GPBu0uOvJv3/yoT9B4WUZzNQmXT9/viW+aAyhE4oxlfsg47ZCFjSvv8I2O+/u/j6jEnxXrszxXHfSXHcqQH735di/8sC9g+bzB9/nw4NOCYs+HwjYN+8v15deE2OJvwzE+XWBvw7SZWphPOPTnHsS8CeEcqYMjiI+HdWpyhHYABECQQP+B69sDJ8JsVxl4Uc83yGZXTA7Fy810KuOzPFdX8HXJlwuwafwGFrmvfkFwOuMzVs/4B9LfYZC9r/7yR9Hyccd2yKMt0ccszSkP3n5us51y3aTXMepCw4P+n4voCHriF4gmjkidIB12oF5oc8/PWk/59CexdtooddboZeJPpXfPd8kA7DqZxz6/EtekFmprlOlEnTh+GHX8RtAe5M2j9xmNIkgofnLHPO7UradgLBQzK3A78JKRv4zCtBBgOHJ21bG7DfyebTZ34yy3G8qeYb3J7isV/gh6Fkes5kDl/5SNaY4pjHnXNBQyBeDtk/6HkpxOuVFefcX/HP4ZtZnsLwvZ6/CZkXkWqi6feccx+mu4BLM8zGzEaa2eWxifR/M7ON5lPpJqa33JHiFEFrXZSKT4dsX++cC3t/QPh758h0qUSTvEF2QwNz4Uzghwm36/Dz2cIWiAP4k+v6AnFj8Z+xIL8I+D4GwPkhuA0hx2WaJECKTMGDlJP5+ApSos/jsz8ketI5t6KL17oLn5Iu2ZfMLPF6YVmWcjpROmZmyPbnnXNrAraHZV06zvxK3IGcc/8E3gp46AgziwdKyfMXnsa3MiWamJDdKWy+Q9AE7TEh+/YFtll4fvAPQo4LOmdQVi3DjwF/BnjffD79Z8zsXjO72MzSVWg/EbJ9G+1jxTtxzr2HT8sYJJNsTeudc+8EbE81ufL5kO1B733wr0GyQrxeWXPOPY0fm/1dfI9iNs6i4xyRuLBytuDnamXNzIaa2SL8fK8f4Subn8BX/DLJxlXKE1rDnr+6sPdN7L3zYshxFfg5NVE9GlZZLkF/wc/z66qw7ykIb3BK93gmz7mUAAUPUjacc6vxK2+mk3WvQ8K1tgD3BDzUH7+6c3xRulMC9mkix5PBzGw0nSdxx4W1RP0OP9Y+yJfTXPKJgG0VtC+8lRwMPImfbJ1Y6exP+yqpkSdLE94q1hXJ57wfv75AKrX4DEYz8YHrSjNbZWYXhqS8DSv3my7Wh59CWMt4Js9FUMAHviIbJiwjUbryJirE69UlzrkPnXPzgBH44RffxU+MzyRrzeyAbXuH7Pu6c257ZqVsZ2bD8RW1oIAlU5msRF9oxX7vvJSH6+faB8DVwGTnXKqAO6pUz88baY4N+56qMrPQ9NVSehQ8SLlJFxi8hp/wmwv/jh/znOzC2P3pBLcA3hOhspipmSkeqzO/mm2HG/AVfPagIF9Kk54y3dCl5NSt9bEWvOSWqclm1o/gzE/v4OceJAsbmtUVHYaWOZ8Fajp+KFwmLY/x7CIPJaUKhvByR8n+0ilVbUwmLcyBQ1fSvBdTDXeJKu+vV64459qcc39xzs1zzp2MH3p3KH444qMEf97jPhXwmoe9Pl19Xu/AZ5Tr6Yr93tmch+t3xQ7gbfyE6QX4IblDnHM3uI6Z67oi1XOe7rsq7HsKMvuukiJTqlYpN4/hW4sODXn8Z7nqhnbONZrZYjp3FR9pZscQ64FIsguffSlnYq3cqRb+CkpTm04dPpNL2LoOocFDbIGtjyVs20H78Jd6OqZSnIx/vYIWvHoipGL7flihu6BToOSc2wx8xcyuxg9LOQHfUzI0wvlOwwd0CxK2hZU7SmUmrNXuvQjHFltBXq98iL3/Xo7dfm5mE/CfieShkOBb8AfRcfGusNcnrEciLTM7EB/YBnkdnyr3f4ENLrY+SqwhIFXgU6qK/d4p5nP2FefcfUW4bqrnfACpv3NS9S50h+8qiVHPg5SV2I/9bSEPb8fPVciln4Rsv5rgSWL/EzIBtSs+TX4mPc4Me8A510TwpOKj6Zxn/dmESZ/JufUnEb7acFiAEtY13uScsyxvc0POiXPudefcT51zpzrnDsBn9joCP5/mh4QPB/pSxHIPNbP+YdePVfzCFvPKdqJvIRX09con51dozyT4DxvmsXeqeUVppFo/ZYZz7i7nXJPruLBi1sFKkYW9d5Z24b1zXyH/gG4o1XdKurkLYY1276Wb+C+lRcGDlKP7Ce5u/o1zLqctWc65p4C/Bjx0CsE9f/mYKJ1ufkK2Ph8bUhQmqFeiGvhW0rbEgOE5Og7ZGEx4+cN6PZaFbB9uZmNDHgtlZhn10DrntjnnXnTO/cE5dxXhGWGSJ3uGLUpm+EXRwkykY+aqRE+mOK5UFPX1SnGeiWY2LYtDw4LFNjq32i5NcZ6Ls7g2+Dz/Qd53zoVNvA/rqUglVWUvqOcl0/NEOUfYe+dTZha08GZKuXrv9HBPE97jclrYQWa2B+FZlcK+p7ry3pA8UvAgZSeW/jBoMnOXJ0qH+GnE/d4G/l8uLxzLbnR6Ls+ZYE/8cJ0wYZX7UUn/3/3DEWsNfS7p8aAVsdc5514NOrlz7kXCs+L8PDZRPS0zm2BmvwR+FvDYmWZ2Qpp5H3FbQ7Yn/wA+gV8ULcjcoN4HM+sF3BhyjCNagoCiKsTrlaVDgcfN7C9mdk5SlrSwMvQifPXxlwOGRC4l/P1xiZmlzI5jZgPNLDmwDEvbW2tmH0veGKtk35DqOiG2pHjs2AzOEzZvIMo5/oRfuDJZb+Cu2OuRkplVxD7LD9Nx5WsJEGtgeybk4S+b2REhj83FJ8EI8t8h27vy3pA8UvAg5epyoFfCrSpFq1xX/Q4/ETud+2NrROTSvxA+EW1S1K58fLrHIDNTXDsseEjUSucforAW+EzO/YOQ7RPwWY++bmYj4lmPzKyfmR1sZl8ws5+a2Vp8NqXzCM42MxU/bGqdmf0iVrk8MlaZq4ydc4CZTSd8An6HTEWxTChhFd+RwDIzO9HMeptZpZkdjQ8OJoYc83vnXFgK11KT79erK44Bfg28bWb/EUu7O97M9k54rQeb2Wn49+5RIefplHo11pBxc8j+FcAiM7vLzI41s76xa9XEekVuxK/am5xRKWxdDgP+YGbHxN5DfWPByTNkMbk6VvawIZa3mNndZvbdpEQMQd9Fq0LOcbaZPWxm1yadY3RCGbbhE1MEORX4q5mdaz5tbVx/M/tEbPud+GE4S/Ct5kFzq6SzeSHbewH/a2YzY99/Fvvc3opfODLI6wSvLwPh742JZrbEzK5Pem9MyOBvkK5wJbBSnW66dfVGmhWmu3jusFUxZ2ZwjitSnCd+G5WH5+XpkGu9QQar8OIrd0HnaQMOTHFc0ErMibfnAo75dITn6tw05a1K8bcn31rTPN7pPYSfN9OVczrgroDzDsLPFUl3bNjq3/HbJmBkyHNzX8gxS3P1GSCDFWsL8Xpl+dn5asTXIcpr/REBK3HHrtMPvzJvtn/7fUnnG4Bvjc/k/bMr09c4dq1fRix3/DY44BznZ3iOMwP+3lcivlap/k5HyMrFdGEV7C6+B2dm87pkcZ2pYddJccziCM95uue70+uZdI0TMnxvXJ7P10O39pt6HkQK4xeEL5wFfqXksNb9rJjZKNrXVUi2yMW+nSP6XdhlSD2nImxSc1zQWNc/Ez70Ii5lz4PzPTinEd5ylSgfrY3pzvkR8H+TNzo/JOD/kH79gFTDpZqBs1zwwn8lqQRer2wZ0crzLReSCMH51vOTidY7mfZazq8xk26oZPL754cRrh3kNrqecehBwueJpBX7e0/GD/tMxdBoi1w6B782Tyrpnu9rnHOLUjz+BOEL+kkR6YMkUgDOp/W8N8UuhVxRGsKDgUDOuQb8EIkgqdZ8SDe8qNMQJeeHQ6T6UXrZOZc2i5Bz7l38sJeF6fZNYRcQOLeiCz4APhcWLDrn/gGMI3z15lTWAhOdczldZLAQSvD12kT6IDadbcAFzrmfp9rJOfcafrjTf3bxenFziT7f5T589reMOZ9d6lIyW+sk+Rzb8HOnsk7V6fz8pyPxKWiz1Uz2K4iXndjrNpnwIUepfAR8yTn3/TTXcPiht3pdSoyCB5HCCUsRuxn4fS4vZKnXdngTP0QkU2EBx4HAlJDHlhJesXDAUyGPpZr3EGUuhb+Acx84587Br/T8AKl7f+I+wE/g+wawf8gP3HzgKvxK4FEXinoTuAUY7Zx7LE2518bK/K/4MenpWnf/AVwEHOacWx6xPCUnj69XNmX5PT6F6dn4BAv/JHor++v4nqVDnXOR0j875951zp2G/yz9nvDJ83Ft+HkenZIsxHpyTgWuIXxi8zpgtnPuKxn2QiZf6zZ8auJb8YuTbSbDYML5rHQfB76H/+xvJNriiInn2OCc+ww+FfR/EW2hvXfxz/VXgf2cc6kaeCSJ8yuvfwnfw/0QPt15Km/hEzwc5JyLFHQ4514GDge+iQ8O3yL1YnNSANaF7wwRyYCZzSA4q8TPnHPZpmWUDMQmuI7BV1QG4cdLt+Az3ryOHzbT6DJcKND8wlwj8RNPa4E9gJ34yu8b+IXuVmVbSYtlzfpk7PyD8A0/m/A/pH9xzqUbstEt5ev16kJ5+uFf5+H4lKj98AkJdsTK9AbwonOuyy2lsbShY/FreAzCZ6ppwVesXwVWOOfCMjUlnmdP/Hoph8TK+jb+eftzV4KGUmdmvfG9OaPwn8n++NfpA3zgtAqfta3HPgeFFnvOxwMH0/49uAUfpK1wzkUZlijdgIIHkQKI5biuxw9HSXa4y1+mJxEREZGc0YIoInlgZqfgW0yr8C2UpwJ1Abs+rsBBREREugsFDyL5cRbpV3Z2+HHzIiIiIt2CJkyLFM+PnHN/LXYhRERERKJS8CBSHHcC3yl2IUREREQyoWFLIoXRjM+M82fgF865pcUtjoiIiEjmlG1JREREREQi0bAlERERERGJRMGDiIiIiIhEojkPJcDMOowdc85ZscoiIiIiIhJGPQ8iIiIiIhKJeh5Kk2axi4iIiEg+ZTXSRT0PIiIiIiISiYIHERERERGJRMGDiIiIiIhEouBBREREREQiUfAgIiIiIiKRKHgQEREREZFIFDyIiIiIiEgkCh5ERERERCQSBQ8iIiIiIhKJggcREREREYlEwYOIiIiIiESi4EFERERERCJR8CAiIiIiIpEoeBARERERkUgUPIiIiIiISCQKHkREREREJBIFDyIiIiIiEomCBxERERERiUTBgwRqa4OVK2HxYnjwQX+/cqXfXmpeeeUV5syZw1FHHcWgQYPo1asXgwYN4phjjuHyyy9n+fLlxS5iQSxatIhLLrmESZMm0b9/f8yMc889t9jFEhERkR7EnHPFLkPZM7MOL0IxX5PmZliyBOrrYd062LQJdu2CykqorYVhw2DyZJg2Daqri1ZMwD9P119/Pddffz1tbW0cddRRTJgwgUGDBrF161ZefPFFnnnmGVpaWrjtttu46KKLilvgPBs7diwrV66kX79+DB06lJdffplzzjmHX//618UumoiIiJQey+agqlyXQrqvrVth/nxYvhzWr/dBw957Q+/e0NoKq1bBmjWwejU0NMAll0BNTfHKe/311zN37lwOOOAAHnjgASZOnNhpn3feeYdbbrmFLVu2FKGEhfXTn/6UoUOHMnLkSJYtW8bxxx9f7CKJiIhID6NhSwL4Hof58+Gpp6CxEQ48EMaPh+HDYehQfz9+vN/e2Oj3mz/fH1cMjY2N3HDDDfTu3ZtHH300MHAA2GeffZg3bx5XXHFFh+0zZ87EzGhsbGT+/Pkcfvjh9O3bl6lTp+7ep62tjTvvvJOjjz6afv36seeee3L00Udzxx130JY0fqupqQkzY+bMmYHlmDp1KmYdA/ylS5diZsydO5dnnnmGE088kQEDBlBTU8NJJ53E888/n9FzcvzxxzNq1KhO1xERERHJFQUPAvihSsuXw4YNMHasH6KUXAc189vHjvX7LV/ujyuGe++9l9bWVs4880wOO+ywtPtXVQV3sl166aVcffXVjBkzhksvvbRDEHLeeedx4YUX8vbbb/PVr36VCy64gI0bNzJ79mzOO++8nP0tzz77LFOnTqW6upqLLrqIk08+mSVLljBp0iSefPLJnF1HREREpKs0bEloa/NzHNavh1Gj/DClVHr39vutXeuPmz4dKgochj799NMAnHDCCV06zwsvvMCKFSs48MADO2x/4IEHWLhwIUceeST19fX069cPgBtuuIEpU6awcOFCTjnlFM4+++wuXR/gj3/8I/Pnz+fiiy/evW3x4sWcfvrpnH/++axatYqKQj/BIiIiIgEUPAh/+5ufHN3WBgMHRjtm4EA/J2LdOn/8EUfkt4zJ3nrrLQD233//To81NTVx3333ddg2cOBAvvnNb3ba94orrugUOADcc889ANx44427AweAPffck5tuuokTTzyRu+++OyfBw8iRI5k9e3aHbaeddhpTpkxh2bJlPPnkk0yZMqXL1xERERHpKgUPQlOTz6o0eHDnoUphzPxk6k2bfABR6OAhnpEqaHx/U1MT1113XYdtw4YNCwweJkyYEHj+F154gYqKig5zIOKmTJlCZWUlK1asyKLknU2aNCmwZ2Hq1KksW7aMFStWKHgQERGRkqCxEEJzs+9FCJkWEKqqyh+3Y0d+ypXKkCFDAHjjjTc6PTZ16lScczjn2LlzZ8rz7LfffoHbt2zZwqBBg+gdMIarqqqKwYMH5yyD07777puybOWQKUpERES6BwUPQnW1X8ehtTWz41pb/XF9+uSnXKnEJzYvSZ6xnby63X/+Z8rzhGUmGjBgAO+//35g8NHa2sq7775L//79d2+L9xy0hjyJmzdvDi3D22+/Hbg9PjRrwIABoceKiIiIFJKCB2H4cJ9FaeNGiLo+nXN+//jCcYU2c+ZMqqqqWLRoES+99JLvPnnkEbjqKrjxRrjjDrjrLrjzTn/Apk3+8Yi5ZY888kja2tqor6/v9Fh9fT27du3iqKOO2r2ttrYWgNdee63T/h988AGvvPJK6LWeeuqpTqlfwadyjZelJ+tOq5mLiIiUux4fPJjZmWY238yeNLMPzMyZWVZL7prZUDO7x8zeNLNmM2sys1vMrDbX5S6kMWN8AFBZCSkayDvYvNnvP2yYP77QDjroIL73ve/R0tLCydOn8+dvfL9kOXQAACAASURBVAMWLPC5Y1et8tFN795sjvcc7NjhH7/5Zr8aXhrnn38+AN/5znf46KOPdm//6KOPuPLKKwGYNWvW7u01NTUccsghPP300/zzn//cvX3Xrl3MmTOH7du3h15r9erV3H777R22LV68mGXLljFy5EgmTZqU/gnphsLivTvu8P+/6qqM4j0REREpgHKYMP094AhgG/A6cEg2JzGzg4A/A/sAi4GXgQnApcB0M5vonHsvJyUusIoKmDzZrxy9erVfxyFVutaWFr/fiBH+uGJlEb3mmmtwO3fy/XnzmPiLXzCub18mfOxjDKqpYfPrr9O0bRuPx+ZETB4yxK9uF6/E79qV8txnn302ixcv5sEHH+Swww7j9NNPx8x4+OGHWbt2LV/4whc455xzOhzz7W9/m1mzZjFx4kTOOuss+vTpwxNPPMHOnTs54ogjWLlyZeC1pk+fzmWXXcajjz7KEUccwZo1a3jooYfo06cPCxYsiJym9eGHH+bhhx8G2oc8PfPMM7sXrhs8eDA//vGPI50r37rbauYiIiLilUPw8C180LAGmAI8keV5bscHDt9wzs2PbzSzn8Su8QPg610ravFMm+Yradu3+/tRo3w61sQpAc75HofVq2HIEL/i9LRpxSuzmTH3U5/iiyeeyJ0NDTzR2srC117jw507qendm4P69+fCQw/lvIMP5qjBg33U09Dga6wRJiE/8MADTJkyhXvuuYef//znABx66KFcdtllXHjhhZ32P//883HO8ZOf/IT777+f2tpaTjvtNObNm8cZZ5wRep1jjjmGa665hquvvprbbrsN5xwnnHACP/jBDzj66KMjPx8NDQ3cf//9HbY1NjbS2NgI+IxTpRA8JK5mvmFD8Htt2LD291o83rvsMj8/R0RERIrHXNRB7j2AmU3FBw+/cc6dm8FxI4BXgSbgIOdcW8JjNcAGwIB9nHMfZlGuDi9CsV6TsNbgqirfGrxxox+qVFfnA4eLLy5ya3Bbmx/bsmQJHHign4CRzqZNfnW7adNg3rzidZvg5zQcf/zxXHvttcydO7do5Si0Rx7xI8gaG6P1cjU0+F6uWbNgxozClVNERKSHi5igv6MeP+chR+LLGD+WGDgAOOe2Ak8DewCfLHTBcqmmxrfuzprl69ajR/vW4JYWfz96tN8+axbMmVMCw0hysbqdFFS2q5mvX++P0yRqERGR4iqHYUu5MDp2H5YyZzXwGeBgYEnIPgCY2fIclivnqqt96+706e118x07fDrW+OToIjbWd9QdV7crcyW1mnlbmz9hU5MfS1Vd7VOPldSbXEREpLQoeIgmnmg/bKB8fHvE6lDpq6jwlbSSrlvHV7dL13ydrKrKd6cUY3W7MlcS8V5zsx/qVl/vT7hpk38fVVa25x6ePNl3s2mShYiISAcKHnIjXg1KO1nBOTeu08FJcx4kou64ul2C+ErY5aTo8Z7SPImIiHSJgodo4j0LYUv99k/aTwohvrrdqlW+tThKU3Z8dbvRo4uzul2ZK2q8pzRPIiIiXaaBvdGsit0fHPL4qNh9+DLCknvdcXW7MlfU1cyXLPE9Dhs2+DRPtbWdA04zv33sWL/f8uX+OBEREQEUPEQVXxviM2bW4TmLpWqdCGwH/lLogpW1+Op2dXW+pbilJfX+8dXt6uqKu7pdGStavKc0TyIiIjmh2lMCM+tlZofEVpPezTn3KvAYMBy4KOmw64A9gV9ms8aDdNG0aTBunF+1rqHBT35NbtJ2zm9vaCiN1e3KWNHiPaX1FRERyYkeP+fBzE4HTo/9d7/Y/bFmdl/s3+865y6P/Xt/4CVgHT5QSDQb+DNwq5lNi+13DHA8frjSd/NRfkmjutpPagU/xGTt2vDV7UaMaF/dTmPYi6Yoq5mXRJonERGR7q/HBw/AWODLSdtGxG7gA4XLScM596qZjQeuB6YDM/ArS98KXOecez9nJZbMxFe3S06/2dLig4b45Gil3ywJRYn3ip7mSUSkG9E6OJKClVuqyFKUnKpVr0kXxL/wSnp1O4ECL7eweDHccYfv0hg+PPpxTU2+B2L2bPjsZ7tYCBGREqd1cMpNxK74jsqh50HKSbdY3U6gwKuZK62viEhqWgdHIlLwICJFVZB4L57mac0aP5mitjb9MUrrKyLlQuvgSAY0jkNEej6l9RURCad1cCQD+kWUYG1tsHKlHyv+4IP+fuXKksx3/8orrzBnzhyOOuooBg0aRK9evRg0aBDHHHMMl19+OcuXLy92EfPuvffe4+677+Zzn/scI0eOpG/fvgwYMIDjjjuOBQsW0FaCr1vBKa2viEhnWgdHMqQJ0yWgpCZMd6PJUs45rr/+eq6//nra2to46qijmDBhAoMGDWLr1q28+OKLPPPMM7S0tHDbbbdx0UXJS3T0HHfeeScXXnghQ4YM4fjjj6euro63336bhx56iC1btnDGGWfwu9/9DouaprSnChvTm5zmqa6uPc2TxvSKSE+2ciXceCO88opvYIk6J+z55/2csCuv1DzD7iurSoGChxJQMsFDJhWrceOKPlnquuuuY+7cuRxwwAE88MADTJw4sdM+77zzDrfccgv9+vXjqquuKkIpC+NPf/oTH374IaeccgoVCUNs3nrrLSZMmMBrr73GokWLOOOMM4pYyhLRjQJkEZG8Uza6cpZV8KBhS+IlTpZqbIQDD/Qtr8OHw9Ch/n78eL+9sdHvN3++P64IGhsbueGGG+jduzePPvpoYOAAsM8++zBv3jyuuOKKDttnzpyJmdHY2Mj8+fM5/PDD6du3L1OnTt29T1tbG3feeSdHH300/fr1Y8899+Too4/mjjvu6DQMqKmpCTNj5syZgeWYOnVqp1b/pUuXYmbMnTuXZ555hhNPPJEBAwZQU1PDSSedxPPPPx/5+TjhhBM49dRTOwQOAPvttx9f//rXd19PaE/zNG+ebzGbPRu+9jV/f+WVfvuMGQocRKQ8xNfBqcowh05VlT9O6+CUHWVbEi95slTQmMfEyVINDe2TpWbMKHhx7733XlpbWzn77LM57LDD0u5fFfKleOmll/Lkk09yyimnMGPGDCorK3c/dt5557Fw4UIOOOAAvvrVr2Jm/OEPf2D27Nk89dRT/OY3v8nJ3/Lss8/ywx/+kBNPPJGLLrqINWvW8NBDD1FfX89jjz3GpEmTunT+Xr16AeHPQdlSWl8REd9QUlnpRxhkorXVH9enT37KJSVLtQnJfrLU2rX+uOnTC56N5umnnwZ8i3tXvPDCC6xYsYIDDzyww/YHHniAhQsXcuSRR1JfX0+/fv0AuOGGG5gyZQoLFy7klFNO4eyzz+7S9QH++Mc/Mn/+fC6++OLd2xYvXszpp5/O+eefz6pVqzr1KETV2trKL3/5SwCmT5/e5bKKiEgPo3VwJEMKHqR9ha62Np/XOYqBA3135bp1/vgCt96+9dZbAOy///6dHmtqauK+++7rsG3gwIF885vf7LTvFVdc0SlwALjnnnsAuPHGG3cHDgB77rknN910EyeeeCJ33313ToKHkSNHMnv27A7bTjvtNKZMmcKyZct48sknmTJlSlbnvvLKK/n73//OjBkzOOmkk7pcVpEeIb4SfVOTH7JRXe0rUFqJXsqR1sGRDCl4EP8DumkTDB4crcUB/H577+2PW7eu4MFDfFJ5UPagpqYmrrvuug7bhg0bFhg8TJgwIfD8L7zwAhUVFR3mQMRNmTKFyspKVqxYkUXJO5s0aVJgz8LUqVNZtmwZK1asyCp4uPXWW7n55ps55JBD+NWvfpWLoop0b5osL9JZfB2c1av9LWzoclx8HZwRI7QOTplS8CDtk6XSDVdKVlXlv0SKMFlqyJAhvPzyy7zxxhudHps6deru4KK1tXX3mP8g++23X+D2LVu2MGjQIHoHPCdVVVUMHjyYd955J8vSd7TvvvumLNuWLVsyPufPfvYzLr30Uj7+8Y+zZMkSBg0a1KUyinR7Ydnkevf2Y7dXrfItr6tX+zldRc4mJ1JQ06b59/327f4+aIVp59pXmNY6OGVNwYN0y8lSEydO5IknnmDJkiWcf/75WZ8nbN2DAQMG8P7777Nz585OwUdrayvvvvsu/fv3370t3nPQGvIcbt68ObQMb7/9duD2+NCsAQMGhP8BAW655Ra+9a1v8YlPfIIlS5awzz77ZHS8SI+TmE1uw4bgitGwYe0Vo+3b/bbLLlMPhJSH6mofMIMPsNeuDU/XPmJE+zo4+nyUJfU1SftkqY0bO6+4GyY+WSre1V9gM2fOpKqqikWLFvHSSy/l/PxHHnkkbW1t1NfXd3qsvr6eXbt2cdRRR+3eVhsbI/raa6912v+DDz7glVdeCb3WU089FbgCdDy16pFHHhm53DfddBPf+ta3GDt2LE888YQCB8mNbrTifKDkbHK1tZ2HaCZmk9uwoT2bnEi5qKnxAfOsWb5HYfRo/7loafH3o0f77bNmwZw56pkrY+p5kG45Weqggw7ie9/7HnPnzuXkk09m4cKFfOpTnwooZniLfyrnn38+S5Ys4Tvf+Q5Lly5ljz32AOCjjz7iyiuvBGDWrFm796+pqeGQQw7h6aef5p///Ccf//jHAdi1axdz5sxhe7wlM8Dq1au5/fbbO2VbWrZsGSNHjoycqvX73/8+11xzDePGjeOxxx7TUCXpup4wR6AbZpMTKZr4OjjTp7cnU9mxw48wiP/e6/NQ9hQ8SLedLHXNNdfgnOP73/8+EydOZNy4cUyYMIFBgwaxefNmmpqaePzxxwGYPHlyRuc+++yzWbx4MQ8++CCHHXYYp59+OmbGww8/zNq1a/nCF77AOeec0+GYb3/728yaNYuJEydy1lln0adPH5544gl27tzJEUccwcqVKwOvNX36dC677DIeffRRjjjiiN3rPPTp04cFCxZEStN6//33c80111BZWcmkSZO49dZbO+0zfPjw0EXsRDrpKXMEumE2OZGi0zo4koKCB/G64WSp+OrMX/ziF7nzzjt54oknWLhwIR9++CE1NTUcdNBBXHjhhZx33nkdhhhF9cADDzBlyhTuuecefv7znwNw6KGHctlll3HhhRd22v/888/HOcdPfvIT7r//fmpraznttNOYN28eZ5xxRuh1jjnmGK655hquvvpqbrvtNpxznHDCCfzgBz/g6KOPjlTWtWvXAr6n45ZbbgncZ8qUKQoeJJqeNEegG2aTExEpZeaijnGXvDGzDi9C0V6TsJbG5MlSdXXtk6VKsaWxm1i6dCnHH3881157LXPnzi12cUTaPfIILFgAjY3ReiIbGnxP5KxZRVlxPqUHH4S77vJ/w9Ch0Y97/XX/t33ta/CFL+SvfCIixROxRaUj9TxIu/hkqeQxzi0tPmiIryRZ6mOcRSR7PW2OQDfMJiciUsoUPEhHmiwlUt562hyBeDa5Vav8d1iUoUvxbHLxBhMREdlNwYME02QpkfLU0+YIdMNsciIipUzBg0iRJK6ELVIyuuGK8yl102xyIiKlSt+KIiLSrifOEZg2DcaN81niGhp8D0ly4O6c397QUBLZ5ERESpV6HkREpF1PnCNQXe3XoQCfTW7t2vBsciNGtGeTU1IIEZFOFDyIiEi7njpHQNnkRERyQsGDiIi068lzBJRNTkSkyxQ8iIhIR91wxfmMKJucSLC2Nh9YNzX55AnV1X4oowJrSaDgQUREOtIcAZHy0tzceUjfrl3+M15bqyF90oEpVWTxmVmHF0GviYiUBFUoRHq+rVth/nzfULB+fXhDQV2dz1p2ySV+DpH0BBEX80k6SBXV4lPwICIlLT6UQXMERHqW5ma4+WZ46inYsCHaEMXjjvPJB9Rg0BMoeOiuFDyIiIhIwT3yCCxYAI2N0ZIjNDT4oYqzZvnkA9LdZRU8aM6DiIiISKnK1yTmtjY/JHH9et/jkG5V+d69/X5r1/rjpk9Xz2OZUvAgIiIiUmryPecoPhSxrc0PVYpi4EBfhnXr/PHKWFaWFDyIiIhIeSrV1KRhk5h79/aTmFet8gs5rl7thxJlM4m5qckHJIMHR1tJHvx+e+/tj1u3TsFDmVLwICIiIuWllDOJNTf7wCHVJOZhw9onMW/f7rdlOom5udn/zemGKyWrqvLzH3bsyOw46TEUPIiIiEj5KESrflcsWeLLtmFD+CRmMx/kjB3ry7h8uT8uk0nM1dU+WGptzax8ra3+uD59MjtOegwFDyIiIlIeCtWqn61CTmIePtwHIKtW+b85ytAl5/y6D6NH+2OkLGmavIiIiJSH5Fb92trOlebEVv0NG9pb9QshF5OYoxozxgcAlZU+WIpi82a/f3ydFylLCh5ERESk58u2VX/9en9cW1v+y5iLScxRVVT4eR11db6XpaUl9f4tLX6/ujp/nNK0li298iIiItLzFbJVP1vxScxVGY4qr6ryx2U6iXnaNBg3zq8c3dDgA5DkhWqd89sbGvx+48f746Rsac6DiIiI9HzdITVpoScxV1f7CeHgh2etXds+gbyqyp9340Z/7hEjfOBw8cWFz0AlJUXBg4iIiPR83SE1aTEmMdfU+AnhyalrW1p80BA/b7FS10rJUfAgIiIiPV93SE0an8S8Zo2fnFxbm/6YXExirq72aV6nT28f3rVjh/+b4+fVHAeJUfAgIiIiPV93SE0an8S8erW/ha3zEBefxDxiRG4mMVdU+KFZWjlaUlDwICIiIj1fsVr1MzVtmp+cvH27vw9ai8K59rUoymESc1ub7xFpavLDz6qrfTCoHpGiUPAgIiIiPV+xW/Wj0iTmds3Nnedi7Nrl//baWs3FKBJzySm5pODMrMOLoNdEREQkD5qb4eabU68wndyqP2kSzJlT+MppuVect271q4EvX+7X2ggLoOrqfLrZSy7xk78lExHTjiUdpIpq8Sl4CKeeShERyalMKqXxVv1iVkrjP4TlNIk5myDvuON81qieGEjlj4KH7krBQ2fl3uAiIiJ5pB+Z0vbII7BgATQ2Rhte1tDgh3DNmuWzRklUCh66KwUPHamnUkRECqIcW/VLXVsbXHWVD+4OPDDaxPZNm/zckGnTYN48vXbRZRU8aMK0lJTmZh84pOqpHDasvady+3a/TT2VIiKSMaUmLT3xYK6tzVcAohg40Lc0rlvnj9frmVcKzaSkLFniexw2bPA9lbW1nVNxm/ntY8f6/ZYv98eJiIhIN9fU5HsSBg+OthYH+P323tsft25dXosnCh6khLS1+eGn69f7HodUQxzBPz5qlN+/vt4fLyIiIt1Yc7PvRajKcHBMVZU/bseO/JRLdtOwJSkZ6qkUKU3KeiYiBVNd7Sc2trZmdlxrqz+uT5/8lEt2U/AgJSMXPZUKHkRyRwlpRKTghg/3XzCrVvkvmSgVAud8NpXRo/0xklcKHqRkxHsq0w1XSlZV5TO1qadSJHfCsp717u0b+FatgjVrfOKChgZlPRORHBkzxgcAa9b47ChRsi1t3uxbNeKZsiSvFDxIyVBPpUhpUNYzESmaigrfpbl6tb9FWedh9Wq/zsPkyRpLWQB6hqVkxHsqN270PZBRxHsq40MoRKTrlPVMRIpq2jS/kNOQIb5rc9OmzhUD5/z2hga/3/jx/jjJu7IIHsxsqJndY2ZvmlmzmTWZ2S1mFqEvrMN5jjOzxbHjd5jZejN7xMym56vs5STeU1lZ6Vs0o1BPpUhuKeuZiBRddbUfC3nccb5HYe1aeP55Pzny9df9/fPP++0jRsCkSXDxxer6LJAeP2zJzA4C/gzsAywGXgYmAJcC081sonPuvQjnuRC4HfgQ+APwOjAU+Dxwspl9zzn3g/z8FeVBPZUixaesZyJSEmpq/FjI5KwNLS2+1TA+OVpZGwrOXNTxId2Umf0P8BngG865+QnbfwJ8C/i5c+7rac7RC9gIVANjnXOrEh47FFgBtAG1zrnmLMrY4UXo6a9JKs3NcPPNqcdaO9c+1nrIEN/gMGeOvjdEcmHxYrjjDv85Gz48+nFNTf5zOns2fPaz+SqdiJSleL7odet8dpQ+fdqHHKjlsCsi5rbsqEf3PJjZCHzg0AT8LOnha4ELgPPM7DLn3IcpTjUIGAC8mBg4ADjnXjKzV4AxQD8g4+BB2sV7KsGPoV67tj3LS1WVnxy9caNvdBgxwg9xVE+lSO4o65mIlJyKCt+lqW7NkpBV8GBmk3NdkETOufocneqE2P1jzrkOI3Gdc1vN7Gl8cPFJINVUv3fwPQ8Hm9ko59zq+ANmdjAwCmiIOPxpeYZ/Q9lRT6VI8SjrmYiIpJJtz8NSIF9jaxy56xEZHbt/JeTx1fjg4WBSBA/OOWdmFwG/Bpab2R+AN4H9gc8B/wD+NUdlFnwFZsYMmD5dPZUihaT1mUSkJ4uPgGpq8j2t1dX+e0/1iui6WknPaqxUAQ2I3W8JeTy+Pe20QOfc78zsTeAB4EsJD70N3As0RimQc25c8rbkOQ/STj2VIoXVI9dnUm1BpOw1N3ce0bBrl//uiqd714iGaLoaPOS60lvoYCR+vbR/h5mdC9wFPAR8H1gHDAOuBm4DpgBfyE8xRUQKo0dlPVNtQUSArVv9wpfLl/u00vG5lL17+yGXq1b5BpPVq/2yEZdc4odQS7AePWGa9p6FASGP90/aL1BsXsM9wIvAeQnzJ142s/Pww6POMrOpzrmlXSuy5JoaHUUyM22a/wHdvt3fR8l6VnLrM6m2ICL43/3581NncRw2rP37bPt2v+2yy9SmEKYrwUOpD1kCiGdGOjjk8VGx+7A5EXGfAXoBywImXreZWT0wLnZbml1RJdfU6CiSnW6f9Uy1BRGJWbLEf49t2BDek2rm6wVjx/q2hOXL/XEzZhS+vN1BtsHDV3Jaivx5Inb/GTOrSKz4m1kNMBHYDvwlzXnivyZ7hzwe396SbUElt9ToKNI13TrrmWoLIoIfeVBf7+sBo0alT0Hdu7ffb+1af9z06RqhECSr4ME5d3+uC5IPzrlXzewxfM/BRcD8hIevA/bELxK3e40HMzskduzLCfs+Gbs/08x+7Jx7MWH/scCZ+HkTf8rLHyIZKXijo8ZFSQ/VLbOeqbYgIjHx7622Nl8PiGLgQN/guG6dP14JWzrr6XMeAGYDfwZuNbNpwEvAMcDx+OFK303a/6XY/e6qpnPuOTO7F9/j8tdYqtZ1wHDgdKA3cItz7h95/DskooI1OmpclJSJbpX1TLUFEYlpavI/zYMHR0s7DX6/vff2x61bp6+DID0+eIj1PowHrgemAzOADcCtwHXOufcjnmoWUA/MBE4CaoAPgKeAu5xzv81x0SULBWt01LgokdKk2oLkm3qbu43mZv/znK4ukKyqyg/R3LEjP+Xq7goSPJhZHb61f1/8mgoVzrnrC3FtAOfca0Scp+GcC/y1cc454L7YTUpUQRodNRlTpHSptiD5ot7mbqe62r88ra2ZHdfa6o/r0yc/5eru8hY8mFkFfjG1bwOHBDx+A/AvwNcSNt/rnPtVvsokPV9BGh01GVOkdKm2IPmg3uZuafhw/1O8apWP7aLUC5zz2eTiSSGks7wED2a2D/AfwGSCU7rGF2V7AZia8P+BgIIHyVreGx01GVOktKm2ILmm3uZua8wY/9KsWeNfntra9Mds3uzbEeJJIaSznNdiYilQ/0THwMEl3HZzzq0C/hY/FDjCzA7MdZmkfOS90TEX46JEJH/itYXKSl8LiEK1BUklube5trZzUJrY27xhQ3tvsxRVRYUfSVZX5+O6ljQJ9Vta/H51df44tfUFy8fTcifw8di/EwOGsOafx5MeOzEPZZIyEW903LjRNyZGEW90jA9ZTSkX46JEJH9UW5Bcyra3ef16f1xbW+r9Je+mTYNx42DIED+ibNOmzvUD5/z2hga/3/jx/jgJltNhS2Z2OPCvdOxhSFfDii/QFj9mInBXLssl5SPvXZSajClS+qZN87WA7dv9fdAwE+fah5motiBhlPq326uu9lNQwHcIrV3bPmWlqsqPPNi40dcDRozwXwUXX6wRZ6nkes7D2fhgwdEeNDyKn8ewMOSYlxL+bQRMrhaJKt7ouHq1v4XNZ46LNzqOGBGx0VGTMUVKn2oLkitK/dsj1NT4KSjJybJaWvzXQHy6k5JlRZPr4OGE2H08gPi9c+4LAGYWFjxsSPq/ZqtJl+S10VGTMUW6B9UWJBfU29xjVFf7hIfTp7d3KO3Y4dv04iMPNGoxmlwHD3V07HWYF+GYbUn/75/TEknZyWujo1I3iHQfqi1IV6m3ucepqPCdQeoQyl6ug4fkmtTqCMcMSPp/ZY7KImUsb42OeR8XJSI5p9qCZEu9zSKd5Dp42IZfqyFuH2BtmmOGJv1/S05LJGUrb42OmowpIlIe1Nss0kmug4d36Rg8nAzcnuaY05L+/3ZOSyRlL+eNjpqMKSJSHtTbLNJJroOHF4BRtM97uNbMnnbOrQza2cyGAxcm7O+Av+a4TCK5p8mYIiLlQb3NIh2Yi7qSVpSTmV2AXyQucWG4HcB/AWfSMUi4FfgSfp5E4vYvOed+k7NCdQNmlrzydrGKItloa9NkTJFCi3/umpp8Rpzqaj8+XZ87yYetW2H+fN/bvH59eG9zXV17b3NNTbFLLZJOxPzDSQflOHjoB6yn4yTo5HUf4hIDhvh+7wJDnXNplgTtWRQ8iIhE1Nzcucdv1y5fcYsvE68eP8kHvfcKSw0EhVD84AHAzC4H/i/RVplODBwc8A3n3M9yWqBuQMGDiEgEmbT+jhvn5yap9VdyTb3N+aUgrZBKI3gAMLPFwKmkDiCSH/uDc+6MnBemG1DwICKSRnMz3HwzPPUUbNgQbdz5ccf5uUmqYIh0D2ogKLSsgodcT5iOOwOfZemrsf87OgYLcfFC342fOC0iItLZkiW+QrFhQ3jGGzPfMjl2rJ/Yuny5P27GjMKXV0Qy09zsA4dUDQTDhrU3Xzn4VgAAIABJREFUEGzf7repgaDg8tK/5pxrdc5dABwLLMKv3WBJtw9ijx3rnLvAObcrH2UREZFurq3ND2FYv95XKFKlygT/+KhRfv/6en+8iJS25AaC2trOi/IlNhBs2NDeQCAFla+eBwCcc88CXzCzCqAO2Dv20EZgvXNO3+giIpJafNLktm2+1fH99/3QhZoaGDQoeNXfgQP9kId16/zxWl1apHQFNBA45z/qW7e2T3nY/ZGPNxCsXeuPmz5d800KKK/BQ1wsSGiK3URERKJpboZFi+C55/wwhW3b/NwGMz9UoV8/P79h//197SLOzI+V3rTJBxAKHiSAEvqUiPgE9LY2dtUM5I31vmNh6zZoaYY2BxUGvauhJv6R/9hAKtVAUBQFCR5EREQyFp88+dhj8O67PiCoqfG1urY23wuxZYu/vfceHHZYxyFNVVV+4cYdO4r3N0hJUkKfEtPUBJs2sXPgYP7+N2PjxvZ2gj59obLCBxBbNsMHuz/yxidq96aXGggKLq/Bg5kNAs4FJgMfB/bCT5x+H/gnUA/82jn3fj7LISIi3Uzi5MmNG2GPPXwwkJhZpV8/Hxx88IGv+QEcfnh7D0Rrq/93nz6FL7+UrLCEPr17+7fMqlWwZo2fk9vQoIQ+BdHczK6du1j3em82bIePPoIBA6A6aXpTTT9obvHBQ+suqNlSxYFDW6hUA0FB5SV4MLNewHXApUD8WztxUOo+wGjgc8CNZvZTYK5zbmc+yiMiIt1M4uTJMWPgH//wPQ2Jtbj40KVBg/zg6I0b4Y03fBpH5/z/R4/2zcgiKKFPyaqu5v3NlWzd3MpHu2DwXuHDxqp7+8fffQ+27mjl/X6V7K0GgoLK+Yg+M+uP71H4N6Av7dmVXNItvr0PcCVQb2aK7UVEyl3y5Ml99/W9DGa+pyFZZSX07+/HOWzY0L7eQ2Vl++JdIiihT6lqqxvOGx/V0nfrRgb0d2nnm1RUwID+jr7bNvLGR7W0HaAGgkLKx3SgRcAxdA4YkiUHEhNix4qISDlLmDy5u1l4yBAfQGzZEpx6tXdvHzRs2wZvv+2bjevq/MB1zXwVlPG3lP2NMayzYeyySgayOdIxtWxml1WyzobxN9RAUEg5/UY1s7OAEwkPGMLEA4gTzawsV5kWEZGY2ORJBg9ubxbef38/MH2PPfzk6OQeCDM/t2HbNh98DBkC48f7Ga8idI5Jo0jO+Cv50bS+guf7TmZTvzr2/WA1lbsCehgTVO5qYZ8PVrOpXx3P953MutfUQFBIuZ7z8KWEf8d7HuIdgjuB92L/3gvoFft3cpAxE/h9jsslIiLdRXOzr7ElNg1XVsInPuH/vXGjnyTtHPTt6wMH5/w28EOVJk2Ciy8OHKiu9JzlKSgmTUcZfwujuRmWD5zGyG0NDNi+nQPeb+Cd/qP4qHfShBTn2KNlM/t8sJotewxhTd/xLB84jTGaL11QuQ4ejqJjMGDAI8APgWedc60AZlYFfBL4DnAyHYcvjctxmUREpDuprvbBQmtrx+29evlsSm+84Qejb9vmax1tbb6CseeePpg46SSYM6dT4KD0nOUtKCaNQhl/86+6Gtp6VfOHoZcwYCvUbVzO4K1rMbeLbX32ZldFFZVtrfTbsRFnlbxbM4J1e4/n4ZqLaetVrYRqBZbr4GGv2H281+G3zrlzkneKBRFPAaeY2ULgX2kPOmpzXCYREelOhg/3tflVq3yNPrHlsbLSz2U44ACfYWnbtvaUrOvX+6bhM87oVPtXek4Ji0nTUcbf/Gv/yNfw2JGXceibSxi1oZ5B29axZ/MmqtpacFbJ2wNH836/YaweMpmXPjaN9SuqlVCtCHIdPLwD7J/w/x9EOOYGfPAQ917YjiIiUgbGjPG1gTVrfNak2oA2JTPYay9/A9+N0K9f+/ijBErPKZA6Jg1Tbhl/izWkL/Ej/+7Wav5eN4N/HDCd/d//G4O2rqPXrh3srOzD+zXDeGPQGJxVsGmTEqoVS66DhxXA0IT/N0Y4JnEfB7yY0xKJiEj3UlHhxw+tXu1vY8emHmvS0uL3GzEiMLtScnrOoFMlpudsaGhPzzljRo7/NimaKDFpsnLJ+FvsIX3BH/kKXt/rCF7fq/NEkzQfecmzXAcPvwJOTfj/AcDqNMcMTfr/b3NaIhER6X6mTfO1+O3b/X1Qd0F8PYfVq0OzK2WbnnPtWn/c9OmqmJSibFrIcxyT9hilMqQvRx95KYCcBg/OuUVm9r/Ap2ObvglclOawb8buDXgOH4CIiEgPl7ICWF3tayngazVr17bXaqqqfK1m40bfNDpihK9FBGRXykV6TmXYKR1dbSFXBbWjUhrSl6OPvBSAOZfJcgwRTmhWi8+wdAx+GNJdwA+cc68l7TcU+C5wQWzTauAE59ybOS1QN2BmHV6EXL8mIiKlJKMKIF2rLS5eDHfc4SuEw4dHL2NTk69AzZ4Nn/1szv703CnDfLNhLeTJFcu6Ohg3LryFPJPzxCuoPXXy/COPwIIF0NgYrSemocFX3GfNyt+QvmIPoSozEZMWd5RVz4OZ/SnNLvFvLgO+BnzNzNYB8cDgY8CwhH0c0AL82sycc66HxvgiIuUt8yES1dTMmOHHD8W7EXbs8Klv4gPRU1SWe1x6zjKtWeWyhbymxm9PfhpbWvzTGJ8c3QOfxg5KdUhfdbUPTLL8yEsBZDtsaSrRVpBOXCRuOB0DhuR9DqM9kBARkR6maxXACj9+KMMxRD0qPWepDE4vglxPelcFtfSH9FVk95GXAujqnId03R3JwUB8/6BtIiLSgxUj61GPSc9ZSoPTCyyfLeTlXEHVituSra7G1S7CLWj/dNtERKQHybYCuH69P66tLbvrxtNzVlb6enUUJZmeMznyqq3tXONLjLw2bGiPvLq5XLSQS2fxIX1VGTYjV1X540puSJ8UTA/vlBMRkVJQrApgPD1nXZ1vkG9pSb1/PD1nXV0JpecsVuRVInLRQi6d9aghfVJQ2Q5bWo96C0REJKJiDpHo9uk5S31wep71uEnvJaLHDOmTgssqeHDODc9xOUREpAcrZgWw2+ePL/PB6Wohzw+tuC3ZyvUK0yIiIp0UuwLYrdNzlnnTu1rI80Mrbku2FDyIiEjelUIFsNum5yx25FVkaiHPn24/pE+KQsGDiIjkXSlVALtdes5SiLyKSC3k+dPth/RJUSh4kJ6vrc03MzY1+e7/6mr/Y1yyzYwiPY8qgF1QSpFXkaiFPH+69ZA+KYq8BQ9mti9wAX416tFALRCl79Q55xTUSNc1N3f+Nty1y38b1tbq21CkwFQBzJIiL7WQ51m3HdInRWHO5T7jqpldCNwMxD+2mawi7ZxzlTkvVAkzsw4vQj5ek7KzdatfjXX5cp/rPOxXpq4Oxo3zv0o1NcUudUGpQ0aKIZOPZrwCWGYfzWDNzXDzzalXmE6OvCZNgjlzelQNWm1CIjmVSf28/aBcV1TNbCZwT9LmqBcxFDwoeOiqbH5kjzvO99uWwa+Nfnyl2Lr8HizXyFeR127xt4BayEW6pPjBg5n1A14DBhAcMFjS9nihXeLjCh4UPHTJI4/AggXQ2Bite7+hwfdzz5rl+217MHXISCnJuAKoyFfPgYjkUkkED18BFhAcICRzIY8reFDwkL22NrjqKv/jeuCB0SYWbtrkB9BOmwbz5vXYZit1yEi3psi3IzW9i0jXZRU85HpicuK0NgN2Af8POD22zQG/AvYCPoWfRO1i+/0OaMlxeaTcxH9M29p8zTiKgQN9RWTdOn98t8nfmJklS3y9a8OG8A4ZMx9vjR3rO2SWL/fH9fAOGSl1zc0+cEgV+Q4b1h75bt/ut/XkyLfb5ZsVkZ4i180TR+CDgfjwpB875z6fuINzbqZz7lRgf+BHsX0rgWHA5c65r+S4TFJOmpp8T8LgwdFyoYPfb++9/XHr1uW1eMXS1uZHOaxf7+td6Raq7d3b77d+vT+ura0w5RQJlBz51tZ2/nwnRr4bNrRHviIiklO5Dh72Tfr/Q2E7Oud2OOf+DfgFPoA4Fvhtjssj5aa52fciVGXYqVZV5Y/bsSM/5SqyXHTIiBSFIl8RkZKS6+Chf9L/X41wzM2xewNOMLOzc1skKSvV1X7cc2trZse1tvrj+kRZiqT7UYeMdFuKfEVESkqug4ddSf/fGrvfPZchtnhcojdj9/FZwufmuExSToYP90MXNm70s3+jcM7vH89U0gOpQ0a6LUW+IpKJtjZYuRIWL4YHH/T3K1eqFzKHcj1h+n3gYwn/rwZ2Ah8C8b7mY4GHE/b5eMK/DfhEjssk5WTMGB8ArFnjJ09Gyba0ebPvdYhnKumB1CEj3VY88k03XClZVZVPxazIV6Q8KI1xweS652FT0v/3it2/RftE6h+a2QjY3Qvx06Rj9slxmaScVFT4L4e6Op91pSVNAq+WFr9fXZ0/roemOFSHjHRbinxFJJ2tW30u8gULfACxapX/Eevd29+vWuW3L1jg99u6Nf05JVSua0rv0jFnbDx4WEV7BqbRwGozext4A98TkVid2ZbjMmFmQ83sHjN708yazazJzG4xswjN0p3ONcbMfmlmr8XO9Y6ZLTOzL+W63JKladN8nvchQ3y+0U2bOteYnfPbGxr8fuPH++N6qHiHTGWl72iJogw6ZKQ7UOQrIqkkpnJubPRrPI0f7787hg719+PH++2NjX6/+fP9cZKVXAcPyTPTDojd1ydtN2Dv2PUtYZsDVuayQGZ2ELAc+ArwHL6noxG4FHjGzPZKcXjyuWYCK/DrVjyJn+y9KFZ2ZcIvFdXVfoGo447zK0evXQvPP+/HTr/+ur9//nm/fcQImDQJLr64R3djqkNGui1FviKSilI5F1yu5zwsj93Hm4eOAxYDvwduil0vXdPRb3JcptvxQ6H+f/buPT6uq777/ec3kjW+SL7IdhJjR3IcbKcNxga7QCAxCTqkbniAHCjQ03IJpBcuCQXSPg8H+iqEAu3TEi71w72hQIFSoCU5lBTSmoAJhAYMMk4gihxbUuIoiWPLtuzIkjWzzh9rJhqPZjR7Zvae2TPzfb9e8xp7ZvbWlvbMnvVbv7V+663OuZ3ZB83sw8DbgQ8Abyy1EzN7DvAPwD3ADufcI3nPzwvzoKVKXV1+gaj88Y9TU75RsXFjy41/7OvziZaJCX8fZIXpJk/IRCK78O/QkO/YSiZ9x5cW/q1QNvIdHPS3YiscZmUj33XrFPmKNLtKSzkfPOi327FD14gKRBU8ZJsjzwdwzj1oZh8H3sbcwcNPgC+EdTCZuRVXAkPAx/Oefg/wx8BrzOwG59ypErv7W/xidq/ODxwAnHNnqj9iCVUy6ZdG3rFjptzj6dN+DHS2R7KFLhrZhAz4TpeDB/1cspUr/dzS6Wk/0qOtzbe7tm1r+oRMqDRXL0KKfEWkkDBKOWuV9rKFHTz8Cj+HISt3htufAysoXor1+8ArnHP55V6r8YLM/e3OubNqdDnnxs3sR/jg4jlA0fyVma0BLgN+BtxrZlcAW/GBUD9wR/7+JUYSCX9x0AVCCZmIjI/7IbR79vgOsGxQ1tHhg7KBAV8AbHDQt32vv96fCwlIka+IFBJGKWe1DcoWavDgnHPAfxd5LgW81sw+CbwceCq+lOsQ8C3n3G1hHkvGxsz9/UWeH8QHDxuYI3gAfivn9d8DLs97fp+Zvcw5t7/UAZnZnlKvEYmSEjLhyp2rNzpauFO8t3emU3xiwj92ww0t3LatZGyXIl8RyadSznURduahJOfcXcBdNfpxSzL3x4s8n328VK4rWz72lfiKUi/DBxsr8cOfXgN828w2OedKTEUViQclZMKRP1ev0HdY7ly9/v6ZuXpXtVqZhWrHdinyFZFcKuVcFzUPHmIm2zdYahJ3W879Hzrn/j3z/xNm9jrgN4Bt+IzKP8+1I+fc1lkHYRaw/qBI42iFicOaq1eGMMd2KfIVEZgp5Tww4DsQggxdypZyzmYrpWx1Dx7MLIHvzc9yzrnA5VNLyGYWlhR5fnHe64rJLn43CZw1vMo558zsVnzw8CxKBA8iza6VJg5rrl5AGtslIlHIlnLev99fP5YFWL5LpZyrVvfgAd/7v5SZFajD7IUfyNxvKPL8+sx9sTkR+fsZLzIxOhtcLCjj2ESaTtNNHC6RPtFcvYA0tktEoqBSznURh+AhSndk7q80s0Ruw9/MuoDnARP4ErFz+SU+O7LCzM51zj2a9/zTMvdD1R+ySGNqqs7lgOmTMyf7SKWSmqs3F43tEpEoqZRzzTV18OCce8DMbsdXVHoLsDPn6RuBRcCnc9d4MLOLMtvel7OfaTP7NPBu4G/N7PXZQMTMNgHX4MvSfiPa30gkvpqmc7mM9MlvLuin013PE9PlpU9aaq6exnaJSJRUyrnmmjp4yHgz8GPg782sD/g18GzgCvxwpXfnvf7Xmfv8QQgfBPqA1wKbzOz7+GpLLwfmAzcEKdUq0oyapnO5zPTJms4JXnUcPpK4Adeb1Fy9QjS2S0SiplLONdX0wUMm+7ANeB+wA7gKGAX+HrjROXc04H6eyAQf/xP4PXwm4zQ+MLnJOfcfURy/SCNoms7lMtMnXf39XDy5h+ekdzF67CrN1StEddhFpBZUyrlmmj54AHDOPQi8PuBri3aNOeeeAN6buYlIRlN0LleQPrH16zn/Fwe5PLGbv7p/B5ufkdBcvXyqwy4itaRSzpFrha8uEYlYtnO5vczuiPZ2v10sOpcrTJ8s7kyxITnMJZ376O/3wZDLqxnnnH+8v78F5+pl67AfPjz7D1NMdmxXdnK6iIjERktkHkQkWk3RuVxh+iRxzko2pMa4fNUwjzyxWXP18qkOu4hIU1HwICJVa4pFPqsYmz8vPcXVO06zaJnm6s2iOuwiIk2l4uDBzF4b0jHom0GkwTVF53KV6ZN5XfM1V68Y1WEXEWka1WQePk+4q0GLSIOqunOZNOwtvpJzTYSUPtFcvQJUh11EpGmEMWwp4OBgEWlmlXQuP3vLJC88swveNfdKzjUZ69MU6ZMYUx12EZGmYC5o9Yv8Dc3ShJd5sMy+DHDOubaQ9tsQzOysv2Ol50Sk3ootzpzfudzTA8/dNM51bifJewK8eOtW33PdVd5KzmW77Ta4+WY4cCBY+qS/3/eUX3ttzJbJjrl0WmO7RETqr6IEQFyChyd3i4IHBQ/S0CYnZ3cu5ycTLr9kkv9r7020/2SOlZzz0xSXXup7rqPskZ6chJtumnuF6fzjuuwyeMc71FMuIiKNpi7BQxQUPCh4kCYwZ+fyd2Lcw19O+iQ7Nj/qjIiIiEj4ah48/GNFGwbgnAu0GnSzUPAgLSWdhne9y6cnLrgg2NyCsTE/ybavDz74weiHtgRJn2hsvoiINLaKgoeKJ0y3WgNfREJS4UrOpFJ+u337oi9llEyiuqsiIiKzaZE4EamtCldyZuVKv93wcO3qoKruqoiIyFnUdSYitZVdybm9zL6L9na/3enT0RyXiIiIlKTgQURqq8qVnJk/P5rjEhERkZI0bElEaqvClZzd4cMcO2cj/Qd6Ofy1+ixCLSIi0uoUPIhIbZW5knMqBY8OHCM12sbPT/fyqf/YxHRahY9ERETqQcGDiNRWIuFb+4OD/jbHOg9TZ+DXe6foemCQIVvHf01uJ02Cjg4/imlgwMcgg4N+KYhyFqHOrkMxNOSnYSiTISIiUpqCBxGpvb4+39qfmID+ftxT13M0vZTxk/bkcgoLFzoeHzzGopFBDrGKR3q3kXpWH2tzrlq9vTOLPU9M+MdKLUKtJRxEREQqV/EicRIeLRInLWl8nOmP7OTwd/cwfWCEM5MpxhIrOUM785im8/RhpqbbONTWw4kN27hzy3VMdhROKwRdhLqcxaO3bi0vkyEiItJgartInIhINcbp4hPcwDS7WMNuznXDLGeMJFNM08a90xs5mOplb+d2HmjrYwNJCg9u8qOe1q/3i1Dv3u3XdssfejQ56QOHO++E0VH/+qVLz56vXUkmQ0SkJI2TlCai4EFEau7JhvxPkow+cRUbLt3Bxel9LD85zLzUaY4+MZ8fjvRy18lNJEiw8DE4cy88/ek+M1BIqUWod+3yGYfR0eLTLMz80KUtW3wmY88ev12xTIaIyJw0TlKakIIHEam52Q35BIfYzKEVvsU/NAS/MljUBQsWwNGjfkjRoUN+SFEhcy1CnU777+6REZ9xKDI/+0lBMhkiInMqNk4yjIoPrUaZm1hR8CAiNRWkIZ9KgXP+O6GtDRYv9t/Do6Nw/vnFl4Zob/fzH/IXod63zwcU6bTPUARRKpMhIlKUxkmGI5O5cT/YzbG9w0w9OoabTmHtbXScu4ylm3ux5ytzU2sKHkSkpoI05Nva/HdstnZAR4f/98mTPguxfHnh7YotQj005DMSK1YEW5MO5s5kiIjMSeMkq1egqMbRxEqm6aCdabqHBzi5dz/tdw6y8mf9tL9dmZtaUfAgIjUVpCHf1eU7kY4dg85O/7r5830n1Ph44eDBOT+0aeNG36GXa3LSZxFKDVfKVyyTISJSlMZJVm9ykskP7eTBr95J4tFRHrD1nEgsZf4CI2GQdjD8RC+LTx/jwnsHGXp8gvNTkHyXMje10OLvThGptWxDvn2Orovu7pmgYWrKP5ZI+AAhlSq8zbFjPuvQ2+uHweZKJv1z09PlHWuxTIaISFFhjJNscWe+s4uD3/CZm18mtkD3MlaeY3R1wqJF0NUJK88x6F7mnx8d5eA39nDmO7vqfegtIbLMg5klgVcClwMbgWXAggCbOufchVEdl4jUV5CGvBmsWgXHj/vb8uX+e9iscLWlqSk/bHjdOl+4JL/Tbu1aPzpgYMAHF0GGLs2VyZD60/xJiS2Nk6xOOs3Il3bT/vAIDyTWs3RlR9HPdLID5q3s4IFH13PhwwcZ+dJuLnyxMjdRiyR4MLP/AXwGODf34YCba4U0kSYWtCG/ejUcOeI74x5/3DcWu7vPHtLq3Mx8w1WrYNs2P28u36ZN/mft3+9fv2xZ6eOcK5Mh9aPKlxJ7GidZlfTefYzfM0xyMk3ivKUl44BEAhLdS5l+JMXpe4ZJ791H4hktHHzVQOjBg5m9CPgmUKgae6nAoKKV7qSJqXuxcRU5d5su3kRvb6JkQ76tDZ72NP/vQ4f8a0+ehBMnfGGS3BWh163zgcN11xVuMCYSvkE5OOhvxeYvZpXKZEh9BKl8+cBgmqmf7uPUV4b4Hy+cZMFSXTOkxjROsirDPxjCjo0x1r6CZDJYszCZNMbaV7Lw2BjDu4e5QMFDpEINHsysA59xaEMZBKlGhd2LijVioMS5S/T28vIF2zm4uo/7B5NzNuTnzYOLLvIZiDVr4Lzz/HmcmvK7yw4pCtLT3NfnC5pMTPj7QpUTg2YypPZKVb5sT03yIttFz9Bu5j8wzIr2MR75SYqedW20LVdKQmpI4ySr8vihSdqmUiSS5WVuEsl2UlNTHDl0mgsiOjbxws48vBRYxdmBQ6FPTannpZVVsLDOZEeXhjLEQcBz98zVg7zpiX52rrye/v6ukg35jRvh0kvhhS/0DcfTp33nXHZIUZDAMJn0azCBP7yDB2cOr729vEyG1N5clS+TU+O84N6d9BzeQ/fJEUikODS5kiMnO+h8fJqVj2sxLqkhjZOsyiRJkrQxj2mmytiu3U2Too1JWjtzUwthBw+/k/PvbDOgH9iS+bcDfggsB34DX+3JASngxyhbIRUsrDM5CR9tu4G79ya1iGc9lXHu2gYHed5KvyjSJ3tv4MDBZKCGfLXnravLr8GUH2hWksmQ2pmr8mV7apIX3LuTCx+5kyVPjPLo4vVMdCxl8ozx6AlIpWHFb/Vix7UYl9SIxklW5czqtUx3LGP1qQFOueCZm8VThzm0aCOsbu3MTS2EHTxkB5kZPhD4B+fcn5hZOvsC59zlAGb2FODD+IpMbcBjwGudc609U6jVlbmwTvoX/Rz8xh5OLdjFgdRVWsSznso8d/P6+7msdw+LnrGLf73oqpo15JNJvwbTjh0zFRUryWRI7cxV+fKiQ7voObyHJU+M8mD3FlJt/n2X7IATDsZPwtExY/lyLcYlNaRxkhXrfv4mhj7Ty8oT+1kwdYyJZOnMzcKpY0yl2ji+rJe121s7c1MLYQcPa/BBQ/bT8cViL3TOPQz8npnNA/5v4OXANPD7IR+TNIoKFtZ5pGs97fcc5IKO3Tzjd3YwLzm71adFPGugwkWR2g4e5Lcu2s3W9+9g372JmjbkEwlfDbGVKyI2imKVL82lWT+6m+6TIzy6eP2TgUPW/AUwNekDiOXL0WJcUjsaJ1mxTZsT/Pzi7Tw6OsjasUFGV26Z9dnO1ZaaYvnYIAc71nH04u28eLM+01ELO3jIH1Rwf4BtbsQHDwa8ysy+4pz795CPSxpBmQvrOAcPnljKkskU67uGeejkPh5KFm8Jqt0QoSoXRUrcu4/NmzerIS8FFat8ufroPrpPDmMuzUTH7PddwvywpVRu0Zv8xbj0ppOoaJxkRRIJWPXqPkZ/1U/HgxOcf6Sfw0vW80TH7MzNwqljrDw+yEhqFQ/3bGPVq/v0vV4DYQcP+QPTjmfuzwDzAMxshXPu8ZzX7M/cZ+c7XAMoeGhFZS6sc/QojJ8y0u0rWerG6B4f5qHlczcE1G6IiBZFkggVq3y5fHyIRZNjnJxf+H2Xdj6AaMv9ptP7TmpJ4yQrcsWOJDt/fj1nvgqnH93DBccOsjKR4uT8laQS7bSlp+k8fZgz6TYG0+t4aNU2jvzudbxihwKwWgg7eBjj7IXh2oEp4BSQ7RbaAvxXzmtyK2oZsDXkY5JGUebCOuPjfkhCV7KdhJtiXqr0dBm1GyKiRZEkQsUqX7anJjGXYjpR+H13egKWLIWuzrwn9L6TWtM4ybIkk/Anf9bFJ9pu4NB3d3HowG7OPT3M8tNjtDPFJG08mNo+BLy7AAAgAElEQVTIo/N7eWjddubt6ONNb0sqeVMjYQcPRzk7eFgOPAE8DizJPPZXZna3c+6EmSWBD+bt41ykNZW5sE4q5XsW2900zto40xasPJvaDRHQokgSoWKVL6fbkjhroy09+303OeWDjK5O//ojR3yHQyoFXUemmb+wjc6O+ajPVySeurrgbf8rya5tV/HDH+zgV3v3seCxYdqmT5Nqn8/EOb0kNm/isucnNOqrxsIOHo5w9tCl5cCDwADwVPzQpGcBD5rZfcA6oJuzS7ROhnxM0ijKXFinrQ0S+PJsY0s3crQrWHk2tVcjoEWRJELFKl8e6VrLqeQyzj02wJHOmfddOg3Hj/vAob0dfvpTP2l6ahLSacfG8cMMLtvIz/6/XtZ3aLi5SFzNjPpKsG/fZoaHN2vUVwyEHTz8Crgs5/+r8Os8/Bh4UeYxw0+s/q2c12UrNLnMPqQVlbmwTlcXLEv48mxHOns51F26PJvaqxHRokgSsUKVL1m2iaOdvZxzfKak4+SUDxwWzIfpFDz+OJw65T/78xfAkvQx0tbG/ad7+fIvN3H+ca3/IhJ3GvUVL2HHa3sy99lMwvMy9/+a85gr8u+sb4R8TNIost2LPT2+e3Fq7rUluzun6Jkc5NGOHvq7tuOs9NtZ7dWIlHnunlwUqadHiyJJINnKl5de6itbHjwIP92T4M7Edg619bDs8UHGHp1i/ERmjkOmO2r8JHQt9nOdli6YovfMIKe6exh/xnbWrktw4IBf13DnTj91R0RE5hZV8GCZ23YA59z9wJc5e0hTodWkB4BPhXxM0kj6+mDrVr9gTn+/n9ns8t4qzsHYGLa3n3k9q3h49Ta+eaJP7dV6K+Pc0d+vRZGkbNnKl9de6982GzfC3hV9DHRu5WhyFU93/Tx1+Rgrljva22DiNKxYDsl5joWTY5x/tJ/jC1cxvHIbA2v6nlz/ZXR0Zv0XERGZW9jDlvYB/0/O/3P7cd4I9JAJKDJyF5QbAF7knJsI+ZikkZS5sE73lm08Mn0dK36a1CKe9aZFkaQGZle+TDI9dj1d/wXLRvfQe+wgow+mmJpYyYpF7cw/5Us6Omvj8a51DK/cxh0XX8d0m3/faf0XEZHymMvvGYzyh5kZPrh4GX4CdRIYAr4F3Oyca8mksZmddRJqeU5ia3Jy9sI6qZRveC5bdtbCOuNTSXbu9O3VkZHi7dWenpn2qsY2R6iMc6fAQUKTed899o3dDO4axsbGWNqVwiXaOJVcxtHOXgZXbee+1X1PBg5ZzsHPfuYzGe98p8ZVi0jLCLgwU95GaqjWn4KHOaTTgRbWUXs1hgKeO5Ew3frNNN/5u32cMzHM6uWnOdM2n6NdvqDCXPOihoZ8xvLNb4aXvKR2xysiUkcKHhqVgofwqL0q0tq+9jX47Gf9cKQ1a4Jv99BDfl7UH/0RvPKV0R2fiEiMVBQ8hDrnwcxSOf91QIdzLl1iGwNuzH3MOfeXYR6XtA6VcxNpbVqvUEQkWmFPmK4kgkkAf8HZ1ZcUPIiISNm0XqGISLSiGMhRzZibitInIiIiMLNeYVubr7IWhNZ/EREJLg6jwMPOfoiISIvSeoUiItGKw2Vybb0PQEREmofWKxQRiU7Fvf5m1kPphv92M5trwvQK4Pq8x1KFXijS6rKVpIaGfGnaZNKP71YlKZGzab1CEZHoVFyq1czew+yJzflzFsrduQFHnHMrKzqoBqVSrTIXrWEhUhl9dkRE5lTbdR4ywcN7Ktp4Nof/BRzwY+fcZSHttyEoeJBixscJvHr21q2+t1WrZ4ucTeu/iIgUVLd1HnJbutVmHgC+XcWxiDSNyUkfONx5J4yOwvr1sHTp2aUne3t9pZjBQZiY8I/dcIN6UUVyaf0XEZHwxK3PZRj4RL0PQiQOdu3yGYfRUdiyxQ+zyK9Zb+Yf37LFv27PHr+diIiISBTCCB4s5zbXc3PdUsC/AdudcydCOCaRhpZO+3HaIyM+49DRMffrOzr860ZG/HbpOdd1FxEREalMNcOWbgGGcv5vwOc4e/7CHwLFmjEOeAJ4FNiroEFkRnZ8djrthyoFsXSpnxMxPOy31xANERERCVvFwYNzbi+wN/cxM/tc3su+4Jyrex+oma0B3gfsAJYDo/jg50bn3FiF+9wO3IHP3nzAOfcXIR2uCENDvjLMihWzhyoVY+YnU4+N+QBCwYOIiIiELYo5DxXN3I6KmV0I7AFeD9wNfAQ4APwpcJeZLa9gn13AF/CZE5HQTU76LEJ7meF9e7vf7vTpaI5LREREWlvYwcMFObd1ccg64CdgnwO81Tl3tXPunc65F+CDiI3AByrY58eAJcBfh3eYIjOSSV+CdXq6vO2mp/128+dHc1wiIiLS2sIo1fok59xwmPurlpmtA67Ez834eN7T7wH+GHiNmd3gnDsVcJ8vxWcxXkPIfz+RrLVrfRWlgQFfjjXI0CXn/LoPGzf6bUSkDFrCXUQkkGZv/L4gc397fhbEOTduZj/CBxfPAUoWuDSzc4DPArc4575kZteUe0BmtqfcbaT1bNrkA4D9+/06DsuWld7m2DGfdcgufiUSN7Fsn2sZapHAYvkZlpqLLHgws3PxPfuX44cHLQOCDKZwzrmwjmtj5v7+Is8P4oOHDQQIHoDP4Id6vbH6QxMpLpHw7ZXBQX/bsmXucq1TU/5169b57XQRlziJbfu82BLuHR1+DODAgI/gBwehv19LuEvLiu1nWOoikuDBzN4E3ARk30L1mkS9JHN/vMjz2cdLFsM0szcALwVe5Zx7tNIDcs5tLbDvSlbilibX1+fbKxMT/r7QCtPOzawwvWoVbNvmt5Ng1IsWvdi2z7WEu0ggsf0MS92EHjxkhvLkzy8I2jiudZCR/XlzHp+ZrQU+CnzdOfe1iI9JBPDtk+uv9//eswcOHpy5aLe3+4v24cO+52fdOh84XHed2jVBqBetNmLdPs9fwr1Qai93Cff+/pkl3K+6KuKDE4mHWH+GpW5CDR7MrBNfxQgKN8gt7/FAjfcqZDMLS4o8vzjvdcV8DpgA3hzGQYkE1dXlL8L5Dd2pKd/QzU6OVkM3uHJ60X7xC7jiCh+kKTNRvti2zytdwv3gQb/djh16A0hLiO1nWOoq7MzDK/AN9UIBQv7/HTOrUUeVcRjI3G8o8vz6zH2xORFZz8T/XoetcNmbd5vZu4FbnXNXl32UInNIJv1FeMeOmZWnT5/25Vizk6PVjgkmaC/a0aM+cOjvh3/5FzjvPD9ETJmJ4GLdPtcS7iIlxfozLHUVdvCQO9ragBTwLSDboHbAP+FXeX4ufhK1y7zu68BUyMdzR+b+SjNL5FZcyiz09jx8RuEnJfbzRWBhgcfXA9uBfvxCdL+o+ohFikgkfHtFbZbKBelFm572X5bZYWEdHX6Y2KpVGt9bjli3z7WEu0hJsf4MS12FHTxsZiab4IAPOef+XzN7stHunLsGwMzmAzcCfw60Ab3AS51zR8I6GOfcA2Z2O76i0luAnTlP3wgsAj6du8aDmV2U2fa+nP28tdD+M/M7tgPfds79RVjH3VQ0I1ViIkgvWioF99wDjzwCTzwBy5f7LE86DatX+/ajxvcGE+v2eXYJ91Jdqfna2/2YQS3hLi0g1p9hqauwg4dz8/7/b8Ve6Jw7DfwvM1uCL+l6CfBV4IUhH9ObgR8Df29mfcCvgWcDV+CHK7077/W/ztzXq0JUc9CMVImZIL1ohw75bEM2cDDzAcLJk34oU/Yxje8tLdbtcy3hLlJSrD/DUldhd/0uzvv/AwG2uSlzb8ALzOz3wzwg59wDwDbg8/ig4QbgQuDvgUvCzHRIxvg43HQT3Hyzb1UNDPgB4x0d/n5gwD9+883+dePj9T5iaQGletGc88OZTp6EJUt8YszMtxMnJ2e/TbPje0dGfIycTs/eZyuLdfs8u4T74cP+xAeRXcI92/kh0uRi/RmWugo785AC5uX8P/t1OwV0gF88Lm+dhIcz99kr+KuBr4R5UM65B4HXB3xt4IyDc+7z+KBEslTXbTYN3YqFUr1oR4/6wAHOfk0i4U9hKjV7G43vLS7bPh8Y8B/5IMMesu3zbBWxYqr+SGkJd5GSovwMS2MLO3g4Cjwl5/9J4AxwikzwgB+edEvOa34z598GPC3kY5JaUl23GRq6FSuletHGx/0py+8tS6f9W7atbfY2Gt9bXBTt89A+UlrCXaQkxdhSTNhXwLG8/y/P3D/CzETqvzazdeCzEMysC5F1TsjHJLVSaV23Zhz3oaFbsVNqpEoq5R/PX8H79GnfEC1WUam93W+r8b1ny7bPe3p8u3uqRC29bPu8p6dw+zz0j1RfH2zd6sto9ff7SCT/jeGcf7y/X0u4S8sJ+zMszSPszMPjnD3ReDkwjF9v4TfwAcRGYNDMHs88n79w3MmQj0lqRXXdPA3diqVSvWhtbf4U5bYfp6b8Y52d0N1deL8a31tcX59vd09M+PtCHwXnZj4KxdrnkXyktIS7SElhfYaluYQdPOwDLs/5//nAz4HdzKz1AD5gWJnz/9zyrntDPiapFdV18zR0K5ZKjVTp6vLtwmPHfLCQSsGJE/7xVauKT7LW+N7iwmqfR/aR0hLuInNSjC2FhB087MncZ/vuLgVuBf4V+N+Zn1eqtMWXQz4mqRXVddOSnDE3Vy9ad7cPGo4d8xOnJyZg4UL/Jbl6deH9aXxvadW2zyP/SGkJd5E5KcaWfFEFD9k+uueDr3ZkZh8H3sbcwcNPgC+EfExSK6rrpqFbMVeqFy2R8G/HI0f8Y+eeCxdfXHiytObQBldN+7xmHykt4S5SlGJsyRV28PArfDWlrNxW5J8DK/ClWAv5PvAK51yBgojSEFTXTUO3GsBcvWgrVvhGZ7Zk6/nnw7x5Z2+v8b2Vq6R9ro+USHwoxhYIOXhwzjngv4s8lwJea2afBF4OPBVfynUI+JZz7rYwj0XqQHXdNHSrQczVi7ZiBXzve/CLX/ihMgcPanxvPekjJSISL2FnHkpyzt0F3FXrnys1oNrpGrpViTouolesF23rVo3vjQt9pOpDa1uKSDE1Dx6kybV6XTcN3QouxovoaXxvfOgjVVsx/liKSExEGjyY2Qr8PIelwDHgsHPuSJQ/U+osZnXdat57pqFbwYyP+8L9e/b4sUHZ90hHh3+PDAz4v+HgoA9Cr7+++CptEdL43vrTR6p2GuRjKSJ1FnrwYGbbgdcBVwJPKfD8IeA/gS86534Q9s+XGIhBXbe69Z5p6FZpWkRPyqCPVG3oYykiQZnLXU61mh2ZrQU+Bbww+9AcL8/+0P8E3uScOxjKQTQoMzvrJIR1TmIh2/Vfw3EfxXrP8hMfPT1+bHvovWeTk3DTTXN/C+cP3brsMnjHO1rjW/i22+Dmm+HAgWAtwf5+3xK89lototei9JGKnj6W0dIcEompgDXszhZK5sHMngPcgl81Onsgc7WAs6+5EviJmb3UOfeTMI5FYqbG4z5i0XsWs6FbsaJF9KQC+khFSx/L6GgOiTSjqoMHM9uCzyAsyjyUGzQUimhczmsMH3D8p5k9zzn3y2qPR1rbrl2+cTE6Wrz3zMxftLds8b1ne/b47ULtPYvB0K1YitsieuoObBj6SEUnbh/LZqE5JDGl637VqgoezCwJ/As+cMgNCLL/LpV9yD6/CPiamW12zk1Wc0zSumLXe6aSPbPFZcUvdQc2JH2kohGXj2UziUUWXM6m635oqs08vBVYz9lBQm4QUUxu9iFrfWZ/f1flMUmLim3vmUr2zIjDil/qDmx4+kiFKw4fy2YTmyy4eLruh6ri4MHMDPhTZgcBBvwa+DTwA2AEOAEsAdYClwNvxK8wnZuhMOBtZvYh11QzhqVW1HvWAOq94pe6A0VmqffHstnELgve6nTdD101b8/ncXYpVgPSwLudcxc75/7eObfXOTfmnEs55446537unPswsBF4f4F9ngdcVsUxSQvL9p61lxkSt7f77dR7VgPZFb8OH/blcYLIrviVTStXI787cNmy2ZFmbnfg6OhMd6BIk6r3x7LZhJEFlxDpuh+6aoKH3EZ+dv7Ce51zf11qQ+f9JfABZg9vurSKY5IWpt6zBpBd8autzffyBBHWil+VdgeOjPjt0unKf7ZIjNXzY9mMwsiCS0h03Y9ENcHD0/L+/4Bz7gNl7uO9wIES+xUJRL1nDSC74ldPj08PT03N/frsil89PdWv+KXuQJGC6vmxbEbKgseIrvuRqOYjf0HmPpt1+Ey5O3DOpTPb5VZeUhNOKqLeswbR1+dX51u1yk9MGxubHe055x/v7/ev27bNb1cNdQeKFFWvj2UzUhY8fOk07N0Lt94KX/uav9+7N0BiQNf9SFRTbWklMxOdAXZXuJ8f5PzbgHOqOCZpYdnes8FBfwuySurgoF9USr1nNVSvFb9UUkakKC3EF55sFnxgwHdMBWmzZrPg2fVKxKu6uqqu+5GoJnjIz/8MVbif/GFLyyrcjwh9fb5XbGLC3xcqquDcTFEF9Z7VST1W/FJ3oMictBBfOLJZ8P37/XfNsgCtGmXBZwuluqqu+5GoJnhYmPf/sQr3kz/AJH+/IoGp96yB1HrFL3UHipSkhfiqpyx49UKrrqrrfiSqCR7m5f0/VeF+8kesVbtwnbQ49Z41mFqt+KXuQJHAtBBfdZQFr05oi+zpuh+Jahrq7Zy9QNx2M6ukplVbif+LlE29ZzKLugNFpEaUBa9cqIvs6bofibB6+Q3QahoSO+o9k7OoO1BEakRZ8MqEUV31rO98XfdDF+YQoYA1sERE6kTdgSJSQ8qCly+M6qpnBQ+67ocuzOAh4LJcBSnwEJHaUHdg3aXTviE1NOQnRiaTfl6jGlLSrJQFDy6S6qq67ocqjOChmqAhzH2IiASj7sC6qLpme4QU0IjEQ2TVVXXdD00YwYOyBiLSmNQdWDOh1GyPQJwDGlFQVy/1/LtHXl1V1/2qVRM87EYZA5HWo29zKVNoNdtDFteARhTU1Usc/u6qrhp/FQcPzrnLQzwOEYm7OHyrSEMKrWZ7iOIa0IiCunqJy99d1VXjTwuyiUhpcflWkYYTas32EMUxoBEFdfUSt7+7qqvGm4IHEZlb3L5VpKGEXrM9BHENaERBXb3E7e+u6qrxpsufiMwt/1tl2bLZM9hyv1VGR2e+VaTlhVGzPWxhBDQSvkqDupERv106XZvjbDZx/btnq6tee63PKGzc6K8NU1P+fuNG//i118I73qFkdy0p8yAixamLVqoUSc32KoW+CJWEIo5ZqlYQ57+7qqvGk4IHESkuzt8q0hAiq9lehTgGNKKgrl4a4e+u6qrxonhNRIqL45gTaSjZmu2HD/sJjkFka7Zni3iFLY4BjcwEde1ldmu2t/vtFNRVRn93KZcyDyJSnLpopUq1rtkeZBmSyBehkoooqKsP/d2lXAoeRKQ4fatIlWpVs72cZUiaYRGqZlyrUUFdfejvLuVS8CAixelbRUIQdc32SpYhadRFqJp5rcZmCOoakf7uUi4FDyJSnL5VJARR1myvdBmS665rvEWomn2tRq0sXB/6u0u5FDyISHH6VpGQZGu25/eaT035oCGbqCq317zSxa3uvLOxFqFqlbUatbJwfejvLuUwF7T8Rf6GZlucc/0hH09LMrOzTkKl50QkEpOTcNNNc7da8r9VLrvMr9rTSK0WqZnseP1qa7an0/Cud/kA4oILgiXGxsZ8oNDXBx/8IJw50xjDgG67DW6+GQ4cCBbD9/f7oOfaaxtv5eViGZb8oK6nZyaoa6QMS1zp796SApZRzNuoiuBhEvhr4P3OuTJnU0ouBQ8Se/pWkRjauxf+5m/g/vth69bgU3J+9jOf6XjnO2fqxocV0EQhjCCp3r9DuZp5bkec6e/ecmoePKQBB/wSuMY5t7eiHYmCB2kM+laRmLn1VvjkJ31AsHZt8O2Ghnyg8eY3w0teEtXRhSfMIKnRxDmoa2b6u7eMioKHMOY8bAbuNrMP4rMQqRD2KVIfzVj/MCzJpB//sGOHvlUkFlplGZJGWAE4KlpZuD70d5e5hBE8OGAe8JfAS83sGufcL0PYr0jtqFc9OH2rSEy0yjIkrRIkiUhjCKvaksOnPrYAPzWzDwAfUBZCGkKz1z8UaVKtsgxJqwRJ9abEs0gwYZZqzQYQ84D3AFeb2eucc/tC/Bki4WqV+ociTahVliFplSCpXpR4FilPNcHDm4C/AZbgAwdy7vOzEB9UFqI1xb4np9Ii8bt2NV79Q5F6C/mC0CrLkLRKkFQPSjyLlK/i4ME592kz+xbwSeDFzAQOMJOF6ADei89CXKMsROtoiJ6cdNof4MiIzziUGlDc0eFfd/Cg327HjsZpfYjUU4QXhFZY3KpVgqRaU+K5ArHvEZRaqGrYknPuYfwk6VcBHwPOoXAW4hn4LMS/AaWmbjnn3LXVHJfUV8P05GQrBqXT/hsjiKVL/S80POy316RhkblFfEFIJhtrpehKtUKQVGtKPJehIXoEpVZCmfPgnPsXM7sd+CjwGopnIV5VYleWeb2ChwbVUD05rVz/UKQWanRB6Orym+S3baamfNsmO+6/kds2rRIk1YoSz2VomB5BqZXQJkw758aA15nZV4BPAb3MBA65WQhpYg3Vk6P6hyLRquEFoRWWIWmFIKlWlHgOqKF6BKVWwqy2BIBz7rtm9gfA9/CVl3IDiFJLJ0cSXJjZGuB9wA5gOTAK3ALcmAl6Sm2/CLgaeBHwTOB8IA0MAP8M7HTOTUVx7I2k4XpyVP9QJDp1uiA0+zIkrRAk1YISzwE1VI+g1Eqolxgzm2dmfwXcgQ8coM7ZBjO7ENgDvB64G/gIcAD4U+AuM1seYDeXAV8Cfhu4B9iJDxpWAx8C7jCzlm9JhtGTU1PZ+oeHD/vBwkFk6x9mx3iKSGENd0FoLNkg6SUvgVe+0t9v3qzAIahs4rm9zC7U9na/XUsknivtABgZ8dul07U5Tqm50C4zZnYJ0A+8Cx84GLMzDlbiFoVP4Cdyv9U5d7Vz7p3OuRfgg4iNwAcC7OMR4NXAKufc72b28cfABuDnwHOBt0Rz+I0jjJ6cmsrWP2xr8ynXIFT/UCSYhrsgSCtR4jkAdQBIEVUPWzKzhfj1Ht7M2QHDWS8DhoD/TelqS6Exs3XAlZmf/fG8p98D/DHwGjO7wTl3qth+nHP9+MAo//FxM7sJ+DJwOXBTOEfemBpuCoHqH4pEp+EuCNJKtPBeABrbJUVUFTyY2ZXAp4EeZjIHuYFDNpD4JPA/52qgR+QFmfvbnXNn5c8yDf8f4YOL5wC7KvwZZzL3ZfZfNJ+G7MlR/UORaDTkBUFahRbeC0AdAFJExcGDmX0eX5a1UNAAM9mGa51zd1T6c6q0MXN/f5HnB/HBwwYqDx7ekLn/TpAXm9meCn9O7DVkT47qH4pEoyEvCNIqlHgOQB0AUkQ1b//XZu7zqyhlvyE+BWyqY+AAsCRzf7zI89nHAw7mO5uZXYev4NQPfK6SfTSThp1CkK1/eO21PqOwcaNv6ExN+fuNG/3j114L73iH6leLBNGwFwRpFX19sHWrTyj39/uRNvm1M5zzj/f3t2DiWUVFpIiwS7UaMIzPNnwv5H1HoVjWpPSGZi/DL4r3CPBy59yZEpv4H+Tc1gL7Kvvnx1FD9+So/qFIuBr6giCtQInnEjS2S4oIK3jINsI/Dfy5c+5kSPutVjazsKTI84vzXheImV0NfBV4DLjCOXegssNrPg0/haDZi8SL1FLDXxCk2eUuvPfDH6RJ793HgseGaJueJNWeZOKctSQ2b+Ky5ydab+E9dQBIEWEED9lswx865yqdNxCVgcz9hiLPr8/cF5sTMYuZvQL4Cj7j8ALn3GDlh9d81JMjIk/SBUEaQJJJrmIXv8NujjHMFGM4l8Joo4NlLKUXYzvQB7TYe1MdAFKAuaDj2PI3NMtWL/oM8GcxyjY8KbNA3H78xO0LcysumVkXfqXpBLAySCUoM/t94IvAIULMOOQPW6r0nMTJ5KTvydm9248AGhvzbYa2tpmhkNu303o9OSKtSBcEiavxcdi50we3IyPFg9ueHj9B4vrrW2/eWzl/o2wHQKv9jRpXRWusVRM8DOHnNsQt23AWM/suvqLSW51zO3Me/zDwduDTzrk35jx+EYBz7r68/bwOPyl6GB84hLaCUTMGD1nptKYQxFb25AwN+cZdMuknyOnkSFR0QZA4mZyEm26CO++E0dFgveqXXurHObVakKsOgGZV8+ChM47ZhnyZ7MOP8atM3wr8Gng2cAV+uNJznXNHcl7vAJxzlvPYFcB/4bMUnwMeLPCjjjnnPlrhMTZt8CAxpC8BERG47Ta4+WY4cCDYeP7+fj+87tprfYGNVqQOgGZT2+ChkZjZ+cD78GVVl+OHK90C3OicO5r32kLBwzXAP5b4McPOubUVHp+CB6kNpehFRHwj+F3v8h0pF1wQrJLQ2Jift9PXBx/8oBrL0gwqCh7CLtUaS865B4HXB3ztrD+kc+7zwOfDPSqRGpuc9IHDXCn63t6ZFP3EhH+sFVP0ItLcsr3n6bS/DgaxdKnvcBke9turKp+0qJYIHkQE38O2Z48PHIql6M18D9yWLT5Fv2eP365VU/QSG5qiI6EaGvKZhBUrgq1+Dv51K1f67YaHFTxIy1LwINIK0mk/x2FkxGcc5hrbC/759et9in73br94nlpoUgeaoiORmJz0b6RS18J87e1+/sPp09Ecl0gDUPAg0gqUopcGVGyKTkeHn6IzMOAXvx0c9IkyTdGRwJJJH4FOT5e33fS0327+/GiOS6QBKHgQaQVK0UuD0RQdidTatT51NTDg30hBrovO+aISGzf6bURalMYhiLSCbIq+vcz+gvZ2v51S9FJj+VN0li2b3b7LnaIzOjozRUekpE2bfADQ1uYj0CCOHfOvz5YmFWlRCghC88MAACAASURBVB5EWoFS9NJAKp2iMzLit0una3Oc0sASCT9ZpqfHp66mpuZ+/dSUf11Pj99Oc8CkhendL9IKsin6w4d96j2IbIo+OytVpEbCmKIjUlJfn1/PZtUqP2lmbGz29dE5/3h/v3/dtm1+O5EWpjkPIq0gm6Lfv9+n3oMsiKQUvdSJpuhITSSTfpY9+DFvBw8WXzhz3TofOFx3nSbVSMtT8CDSCrIp+sFBfyu2zkNWNkW/bp1S9FJzqqIpNdPV5WfZ59cDnpryQUN2crTqAYs8ScGDSKvo6/Op94kJf1+ofI1zM+VrlKKXOtEUHampZNIvhLljx8yYudOn/Rspm3lVB4rIkxQ8iLQKpeilQaiKptRFIuHHu7XYmDet3i7lUvAg0kqUopcGoCk68iS1bCOj1dulUuaCVl6RyJjZWSdB5yRE+uIpLvu3UYpeYui22+Dmm+HAgWBTdPr7fcLs2mv9CBRpcGrZRqrY6u35SeieHl+QSqu3N62AJSnOpsyDNCd98ZTWoil6aQyaotPCirVsOzp8y3ZgwKelBgf9m0Mt27Jo9XaploIHaT764hFpeJqi06LUso1c/urthbJ6uau39/fPrN6urJ6AggdpNvriEWkamqLTgtSyjVSlq7cfPOi327FDo1pFwYM0G33xiDQVVdFsIWrZRi6M1ds10lUUPEjzCOGLJ01C86tFYkhTdFqAWraR0+rtEgYFD9I8qvjiSR0Y5sef2Me3H9qs+dUiIvWglm3ktHq7hEHBgzSPCr94zixbycgvxrjzwWF2TW/W/GoRkXpo9JZtDUqDV/sjtHq7hEHBgzSPCr54UikYfqid8bEpxs6c5oJnaX61iEhdNGrLtgalwcP6EVq9XcKg4EGaRwVfPIcOwfjYNE9MtbH6wvkcL7CSreZXi4jUQCO2bGtQGjzMH6HV2yUMCh6keZT5xeMcjD7sWHLyMKdWbOTEsrm/eFTYQ0QkQuW0bJ2Do0d9Zb3jx/2wpXTa32p1Ya5BafCwf0Qi4TMUg4P+FmT19sFBv5bK9u36zhNPbwNpHtkvnrY2fyUt4ehRSI8dI2VtjHf3cqi7dJdKfmEPEREJSbZl29PjW6xTU7Nfk0r57ve774af/9xfiMfH/SSAv/1beNe74LbbfKs7avmlwZctm91plZu6Hh2dSV3X8Uf09cHWrX5V9v5+PwTKubNf45x/vL9fq7fLbMo8SPMos0vl5NgUK48N8kjnOvav2o6z0rG0CnuIiESor8+3WCcm/H1uV/uZM3DPPfDYYz7bMDkJixb5lnN3d22rW9RgTYrsjxge9t87Dz88M8+hq8v/yrmBRNAfodXbpVoKHqS5zPXFk+UcHDvG4gOD3N+xiv1Lt3Hf6uBdKnEp7CExVYOKKyJNq1jLtrsbHnwQjhyBJ57wk6PPPde3eC++2LecL7igdtUtarAmxZ49cNdd8NBDMyurO+e/zpJJ6Oz0WYHVq31Dv5wfodXbpRoKHqS5lNGlMnHeOn41bxu3rrmOc9uCXxnrXdhDYqoGFVdEWkKhlu3998+0bs87DxYvnt1yrmV1i4jXpBgfh499DO67z8dB09OwYIHvf8j0f3H8uL8dOQJPexrMm1dedlyrt0ulFDxI8wnYpXJ6zXa+t7uPkf1JznGNUdhDYqoGFVdEWkpuy3bvXnj/+32LecMGHzzkj9nJVYvqFhGuSZGdJH3vvT7J0tk5O7nR2el3c/y4PwyApz/df8WVmx3X6u1SLgUP0pwCdKmsJcHqh+C+gypZJ1WoQcUVkZaVSPhbR4f/XP3mbwbr6SlziFDZCpQGzxaAGh+fY25CgNR1dpL08eM+wTJXjLR8uc88HD7sS4/39Cg7LtFT8CDNbY4ulQQqWSchyC+HUuhNpMVCRCoX8RChiuSUBk+t6eXQw8boKIyfhKlJSDtIGHQkoSs7N+EpjrYSqevcedhPfSocOOD7HTo7C//qiQQsWQInTvhL0Jo1yo5L9NT8kZamknVSlUorroyM+O3S6docp0gjyw4Rai+zv7O93W8XRXWLTGnwFG0M3H2M++7zPf/Hj4ED2hL+/vgx//h998H9dx8jxdyp69x52L29M0FDoaq1WR0d/nvq5Em/rbLjEjVlHqSlqWSdVKUGFVdEWl6BIUKBRDl+J5HgzCXbeeBbg3Q8OMgT7VvoWtZBMq//oKsTJqfg1NgU844MMnj+Oi68ZDvziqSuc5MsiYTvsDp+3GcWurtn5obnW7DAj4jcvx+e8QxlxyVaCh6k5alkXYOIYwnUOA6nEGk2OUOE6O2NTXWLXfRxhH56meAZ1s9ht54n3OzS4MvcMTbYICOsYti2MUQfO4rsM38e9urVfk5DKuXnUyxe7J/Lrz4+Pe0zD099qrLjEj0FDyKoZF2sxbkEaoQVV0QkIzNEiP37Y1PdIp2G79+V5K7k9byxFxae3MOK8YOYS3Fy/kpSiXba0tN0nj6MszaOLF7Hg53b+Oy867jkriRXvrj4Am65SZa2Nr+MBfhYaHzcBwvz5/vt02l/GTlzBhYu9L+qsuMSNQUPIjlUsi5m4l4CNY7DKUSaTSIRu+oW2U6mk9bFD591A48/vIv1o7vpPjnMoskx2tNTOGvj0aUbOdrZy+Cq7fz6KX2M/yI554jFQkmWjg5fhvXQIT8p+uRJ32+RTvvnlyzxj110kapAS20oeBCReGqEEqgxHU4h0nT6+nwHwcSEvy90PciunjY4GHl1i9wRi6n2JPf0XMW95+9g9dF9dI8PMy91mjNt8zna1cuh7k048wFMqRGLxZIsbW2+DOv5588uB5stEXvJJb4AiEjUFDyISDw1QgnUGA6nEGlKMatuUWjEorMEDy3fzEPLi6euS41YLJVkMfNrOyxf7v8/NeUvfSohLrWk4EFE4qfSEqhRrihbSAyHU4iEIo4FCmJU3SLKEYtzJVnMpX1248QQU+OTjDya5LlPWcuaZ26ir0/XE6kNBQ8iEj+NVAI1ZsMpRKoS5wIFEJvqFlGOWCyUZEmcmeSFiV1sPr6bFU8Mkzw1RhspLl/QRsf4Mp56pJfkLpUElNpQ8CAi8dNIJVBjNpyiocSxd7uVxb1AQa46V7eIesRibpLlJ/85zm/u2sma0T2snBghQYonFq2kY2EHK5ZMs9wNkPjhfhiOwXmRlqDgQUTip9FKoMZoOEVDiHvvditqhAIFMVKLEYvJJFzVN8mOX+zk5OI7SZ8a5cS69aQXL2VNl9HdnTk9TudFakvBg4jETyOWQI3JcIrYa6Te7VbSCAUKYqYmIxZ37SLx8z0sPjUK27ewVOdFYkDBg4iUpSYjTRq5BKoWCylOvdvx1CgFCmIm8hGLOi8SUwoeRCSQmo40UQnU5qTe7XhqpAIFMRPpiMVanRfNPZIyKXgQkZJqPtJEJVCbj3pR46uRChTEUGQjFqM+L5p7JBVS8CAic6rbSBOVQG0u6t2Or0YrUFBnc3XUhzpiMcrz0sRzj5RIiZ6CBxGZU91GmqgEanNR73Z8NWKBgjqoeUd9VOelSeceKZFSOwoeRKSouo80UQnU5qHe7fhq5AIFNVKXjvqozksTzj1q4kRKLCl4EJGiYjHSRCVQm4N6t+NLBQrmVLeO+ijOS917hMLXpImUWIvXO0BEYiWMkSahyZZAfclL4JWv9PebN8fui0yKyPaiHj7se0eDyPaiZsccSDSyBQp6enzrampq7tdnCxT09LREgYL8jvply2ZfD3M76kdHZzrqqxLFeQmjRyhm6nZ+Wlhzf+JFmkk6DXv3wq23wte+5u/37vWPRyQ70qS9zBxle7vfTiNN5EnZXtS2Nt8FGEQL9W7XXV8fbN3qCw/09/voPz/Ic84/3t/fMgUKKu2oHxnx21V9eQ77vMSqR6h6dT8/LUrDlkTiro6zwDTSREKj8rvxpgIFBdV96GbY56XJ5h7V/fy0KAUPInFW51lgmkcpoVL53XhTgYJZYlEkLMzz0mQ9QrE4Py1IwYNIxCquOR2DWWCaRymhUu92/KlAwVli01Ef1nlpsh6h2JyfFqPgQSQiVY82ikE5PY00kdCpd7sxZAsUtHi3bOw66qs9L03WIxS789MiFDyIVKlQZmHlSrjjDvj5zyscbRSjcnoaaSKhU++2NIgm66hvuh6hpjs/DULBg0iFimUWzOCRR+DUKf+6ZzwDurvLHG0Uo1lgGmkikVHvtsRck3XUe03UI9SU56cBKHgQqcBc85hHR/1jU1P+sZERWLwY5s2b2b7kaKOYzQLTSBMRaUVN1lHvNVGPUFOenwbQEsGDma0B3gfsAJYDo8AtwI3OubEy9tMN/CVwNbAKOAJ8B/hL59xDYR+3xNNc85idg0OHfKDQ1eWzD4884rd7+tP9tThX0dFGMZwFppEmItKKmqijfkYT9Qg15fmJuaYPHszsQuDHwDnArcB9wLOAPwV2mNnznHNHAuxneWY/G4DvAV8FLgJeD7zIzC5xzh2I5reQOJlrHvPRo3DypL9QLVoECxfCkSO+E+fQIb/wZ76Co41iPAtMI01EpJU0UUf92ZqkR6hpz0+MNX3wAHwCHzi81Tm3M/ugmX0YeDvwAeCNAfbzQXzg8BHn3Dty9vNW4GOZn7MjxOOWGCo1j3l83CcN5s/3vR5msGQJnDjhg43zz589CqngaCPNAhMRiY0m6qifrQl6hJr6/MRQUwcPZrYOuBIYAj6e9/R7gD8GXmNmNzjnTs2xn0XAa4BTme1y/R98EPLbZrZO2YfmVmoecyrl2/C5nTUdHf6xkyd9ZmL58tnbzRptpFlgIiKx0iQd9U1L56d2mjp4AF6Qub/dOZfOfcI5N25mP8IHF88Bds2xn0uABZn9jOftJ21mt+MDkSuAOYMHM9tT3q8gcVJqHnNbm388nT778QULfEbi5MnCwcOs0UaaBSYiEktN0FHf1HR+otfsLYyNmfv7izw/mLnfUKP9SIPLzmNuLxJ2d3X53o/Tp322ISs7mbrQFIbsaKPswnFP6uuDrVv97K7+fh+15O40u/HYmH9es8BEREQkYs2eeViSuT9e5Pns46UK6Ye1H5xzW/MfMzNX6LUSP6XmMXd3Q2cnHD/ukwHZcZXO+QCiUNBRdLSRZoGJiIhIzDR78FBKduBJtY33sPYjMVdqHrOZTwAcP+4nSXd3+7b9xISfI9HZefbrS4420iwwERERiZFmDx6yGYElRZ5fnPe6qPcjDS7IPObVq3151lTKT5BesMA/3tnpgwkos+a0ZoGJiIhITDR78DCQuS82F2F95r7YXIaw9yMNLsg85rY2uPhi/+9HH/Ujizo6/LaHDlUx2kizwERERKTOzOVPwGwimQXi9uNLtV6YW3HJzLrwK00ngJUlSrV2Ao8BaWBVbsUlM0sADwBrMz+j7FKt+XMemvmcNIPJSbjppsIrTGc557MP/f3+/52dcO65/vG2tpnJ0RptJCIiInUSYBGp2Zo68+CceyBTRvVK4C3AzpynbwQWAZ/ODRzM7KLMtvfl7Oekmf0Tvhzre4EbcvZzHT5w+K7WeGgN5cxj3rIFnvlMuOIKePxxjTYSERGRxtbUmQd4MvvwY/wq07cCvwaejV+T4X7guc65IzmvdwDOOcvbz/LMfjYA3wPuBn4DeCk+K/Fc59wDFR6jMg8NaHJy9jzmVEqZBREREWkIFWUemj54ADCz84H3ATuA5fjhSrcANzrnjua9tmDwkHmuG7/C9NXAKuAI8B/AXzrnHqri+BQ8NLB0WvOYRUREpOEoeGhUCh5EREREpMYqCh7ULyoiIiIiIoEoeBARERERkUAUPIiIiIiISCAKHkREREREJBAFDyIiIiIiEoiCBxERERERCUTBg4iIiIiIBKLgQUREREREAlHwICIiIiIigSh4EBERERGRQBQ8iIiIiIhIIAoeREREREQkEAUPIiIiIiISiIIHEREREREJRMGDiIiIiIgEouBBREREREQCUfAgIiIiIiKBKHgQEREREZFAFDyIiIiIiEggCh5ERERERCQQBQ8iIiIiIhKIggcREREREQlEwYOIiIiIiASi4EFERERERAJR8CAiIiIiIoG01/sAZDYzq/chiIiIiEhzcwDOubIanso8iIiIiIhIIAoeREREREQkEAUPIiIiIiISiDnn6n0M0gLMbA+Ac25rvY9Fyqfz17h07hqbzl9j0/lrXDp3xSnzICIiIiIigSh4EBERERGRQBQ8iIiIiIhIIAoeREREREQkEE2YFhERERGRQJR5EBERERGRQBQ8iIiIiIhIIAoeREREREQkEAUPIiIiIiISiIIHEREREREJRMGDiIiIiIgEouBBREREREQCUfAgFTOzNWb2OTN72MwmzWzIzD5qZsvK3E93ZruhzH4ezux3TVTH3uqqPXdmtsjM/sDMvmJm95nZKTMbN7OfmdkNZtYR9e/QysL67OXtc7uZpczMmdn7wzxemRHmuTOzTWb2RTN7MLOvx8zsB2b22iiOXUL93rvUzG7NbH/azEbM7DYz2xHVsbcyM/tdM9tpZj80sxOZ69yXKtxX6NffRqNF4qQiZnYh8GPgHOBW4D7gWcAVwADwPOfckQD7WZ7Zzwbge8BPgYuAlwKPAZc45w5E8Tu0qjDOXeYL7j+Ao8AdwH6gG3gxcF5m/33OudMR/RotK6zPXt4+u4BfAiuATuADzrm/CPO4JdxzZ2bXAP8APAH8OzAELAWeBjzsnPu9kA+/5YX4vfcm4BPAKeCbwEPAGuBlwELgL5xzH4jid2hVZtYPbAZO4v/eFwFfds69usz9hH79bUjOOd10K/sGfBdwwPV5j3848/inAu7n05nXfzjv8bdmHv9OvX/XZruFce6ALcAfAB15j3cBezL7uaHev2sz3sL67OVt+zl8IPiuzD7eX+/fsxlvIV43nwNMA/3AeQWen1fv37UZbyFdO+cBx4AJYGPec78BnMYHhMl6/77NdMM37tcDBlyeOV9fqsd7oBluyjxI2cxsHfAAvqfrQudcOue5LmAU/wE9xzl3ao79LAIOA2lglXNuPOe5ROZnrM38DGUfQhDWuSvxM34f+DLw7865F1d90PKkKM6fmb0UuAV4DdAO/CPKPIQuzHNnZruBy4BNzrl7IjtoeVKI33vnAo8Av3TObS7w/C+BTcAK1wo92HVgZpfjM+ZlZR5q8f3ZKDTnQSrxgsz97bkfHoBMAPAjfOr1OSX2cwmwAPhRbuCQ2U8auD3z3yuqPmLJCuvczeVM5n66in1IYaGePzM7B/gscItzrqLxvxJYKOcuMxfsMuBnwL1mdoWZ/VlmrlFfpuNFwhfWZ+8xfKfZBjNbn/uEmW3A9473K3CIpVp8fzYEXWSkEhsz9/cXeX4wc7+hRvuR4GrxN39D5v47VexDCgv7/H0G/z3wxmoOSgIJ69z9Vs7rv5e5/R3wIeC/gH4ze2oVxymFhXL+nB/u8Rb8526PmX3BzP7azL6IH/J5L/CKEI5Xwqc2S0Z7vQ9AGtKSzP3xIs9nH19ao/1IcJH+zc3sOmAHfiz25yrZh8wptPNnZm/AFyZ4lXPu0RCOTeYW1rk7J3P/SuBx/CTbXcBK4D344WffNrNNzrmpyg9X8oT22XPOfd3MHgb+GcitjPUoftighunGk9osGco8SBQsc1/thJqw9iPBVfw3N7OXAR/Fj+d9uXPuTIlNJHyBzp+ZrcWfq687574W8TFJMEE/e20593/onPumc+6Ec+4B4HX44UwbgJdHc5hSROBrp5m9Gp8l+iF+kvTCzP0u4P8AX43oGCVaLdNmUfAglchG10uKPL8473VR70eCi+RvbmZX47/wHgMu1wT3yIR1/j6Hr/by5jAOSgIJ69yNZe4ngdtyn8gMibk1899nlXuAMqdQzl9mXsPn8MOTXuOcu885N+Gcuw+fNdoDvCIzqVfiRW2WDAUPUomBzH2xcX3ZSWDFxgWGvR8JLvS/uZm9Avg6PuX+fOfcQIlNpHJhnb9n4oe/HM4sluTMzOGHTAC8O/PYLdUdruQI+7o5nj9pMyMbXCwo49iktLDO35X4cq0/KDDpNg3szvx3ayUHKZFSmyVDcx6kEndk7q80s0SBcmXPw/dq/qTEfn6Sed3zzKyrQKnWK/N+nlQvrHOX3eb3gS8Ch4ArlHGIXFjn74v4oRL51gPb8XNW9gC/qPqIJSusc/dL/FyHFWZ2boH5Kk/L3A9Vf8iSI6zzl8zcryzyfPZxzVeJn1C/PxuZMg9StszY2tvxazC8Je/pG4FFwBdz6xyb2UVmdlHefk4C/5R5/Xvz9nNdZv/fVYM0PGGdu8zjr8OfvxFgu85T9EL87L3VOfeH+TdmMg/fzjz28ch+mRYT4rmbxi+uCfC3uaVZzWwTcA2+TPI3Qv4VWlqI184fZu5/18yenvuEmW0Bfhc/Zv574R29lMPM5mXO3YW5j1fyHmhWWiROKlJgifZfA8/Gr8lwP/Dc3DrVmSEROOcsbz/LM/vZgL9Y3o2fOPZS/Pj552Y+sBKSMM6dmV2Bn/CXwI/ffbDAjzrmnPtoRL9Gywrrs1dk39egReIiE+J1cyF+cu1z8Nmh7+N7rF+OH650g3PuwxH/Oi0nxPP3OeD1+OzCN4FhfIP0aqAD+Khz7u0R/zotJTMv7+rMf88Dfhtf1SobzD3unPuzzGvXAgeBYefc2rz9lPUeaFphLVWtW+vdgPPxDY1R/EVwGPgY0F3gtY7MfL4Cz3VnthvO7GcU3yBdU+/fsVlv1Z47fO+mK3Ebqvfv2ay3sD57BV6bPa/vr/fv2Ky3EK+bC/EZ2/vwk6eP4wP636n379jMtzDOH74qzzX4oG8Mnyk6ig8If6/ev2Mz3jKflUDfV/hAruh3WDnvgWa9KfMgIiIiIiKBaM6DiIiIiIgEouBBREREREQCUfAgIiIiIiKBKHgQEREREZFAFDyIiIiIiEggCh5ERERERCQQBQ8iIiIiIhKIggcREREREQlEwYOIiIiIiASi4EFERERERAJR8CAiIiIiIoEoeBAREWlAZvZeM3MFbmvrfWzFFDnez9f7uEQkuPZ6H4CISL2YmQHfBV5Y4OkPOef+vMT2i4F9QE+Bp69xzn2hwuO6BvjHIk+ngTPAFHAMOAqMAIPAfwO3O+eOVfJzw2Rm7y3wcL9z7pZaH0u5zOxy4I4CT/3AOXd5bY9GRCReFDyISMtyzjkzewM+AFia9/Q7zOxbzrndc+xiJ4UDh29WGjgEkACSmVsXcD6wOef5KTP7OvA+59z9ER1DEO8p8NgXgNgHDyIiUpyGLYlIS3POPQS8pcBTCeALZtZVaDszuxp4bYGnHgX+JLwjLFsH8AfAL83sHXU8DhERaUIKHkSk5TnnvgJ8rcBTa4GP5j9oZucAnymyuz9yzh0O7+gqlgRuMrOP1PtARESkeSh4EBHx3gQ8XODxN5jZS/Ie+wywssBr/8E5963Qj2zGF4F5mVs3cBE++/EtwBXZ5m1mdn2ExyQiIi1Ecx5ERADn3FEzuxb4jwJPf9bM7nLOHTaz1wMvLfCag8DbIz1IP01jOvPvscxtAPgnM3su8C/AmgLbfSgzf2Mo/wkzOw/YBjwT2Aqsxgcmy4BO4BR+YvavgbuBrzjnBgodnJl9H3j+HMf/OjN7XYHHX++c+3zOfnozx7IV/v/27j7YqqqM4/j3wVG4UWTCGDiWaC/EBEh/KPkCVjgYjDZmKWVoBI0F41v4Ntowg4y9mESj+dJk40CZvYxTmZpjNY4TUZQ140BOkI6BZCWIJKAiL/fpj7UvbvZZ+5y9z9mHc+69v8/MmeGstfbe6y4uzH72XutZfAAYnfTpKKAH2EVYKP434A9JnzbXuW7HVTnOJa45HvgicBbh92If8Cxh3cm33X17iXOdCZwDnJbq+25gC7AGeAi43933t9JnEel+5p73sEpEZPAxs7sIN1xZvwCuBNYCIzJ1vcCH3H1VRX2YSzzb0kp3n1vnuPcRMi5l+5d7rJmtB8aV7OK9wGXZrE4Fgoc82eBhN2HaVVG9hOllN7j7601c/yDtyLZU5TinzrmE+ML044HzgK8R1sDEbAE+5e6xnzN9jZOAuzl4UX6eDcB8d19d53yxm466v9ci0l00bUlE5GBXA89Eys8FVhG/MV9WVeDQCndfD3w9p3q2mQ2r6FJzgIfMrMwNfjsNARYR3sBYpztToWbH+Srgm+QHDgBHAw8nb6yizGwOsJpigQOE4OgxM/tk0Y6KSP+j4EFEJMXdXwEuAmLTL94RKVsHLG5rp8r5DuFJfNYwYFqF1zkNWFjh+apwPiHIG0iaGedLC7brIQRcb8pWmNkZwD2E9TVlHAF838yKBhwi0s8oeBARyXD3NeQ/wU/bA8xx9z1t7lJhyTz2dTnVkyNlm4H7COllTwfGE55KDyW8ZRkHfA7YFDn28sz36byxoDsmveA7/cnuifE04cb1s8CpSR9GJX06EpgAXAZsK9CnblHlOBexjrD54QhgDCGgeDXS7gRgXrrAzIYAdxD/e1wBnET4eziB8JZjV6ZND2EPFBEZgLRgWkQk7kZgFmHBbp7F7r72EPWnjOeITzUZlS1w99ju2n32ADuBf5jZdmo3eBtrZse5+6bkXAfe1uTMHkov+M7l7hMb9Oll4CkzO4zaVLqnmNnQKtY+VKnKcS7gBeDD7t4XXO0E7jCzrYRF9VmfB25Pff8o8P5Iu1vc/drU95eB5Wb2PPDjTNupZjbF3f9UsM8i0k8oeBARiXD3vWb2IPnBg9O9uyXvyCnP7qINQDKn/mxgJuGp/ljC7tU9QKM1BOOIPy1viZmNIGS1mkF4Sv9OQlaingaHDgWOAzq5u3bUIRznO1OBwwHu/lMz+yrwrkzVJDM7MrUwe2bknHvJfxt3P+GtRnb600zCAn4RGUAUPIiIRJjZROC6ek2AFWY2tQvTU741p7wma4+ZzSKsk4it5yjibU0elyvJNrUMQvSPagAABYtJREFUGNnkKSrvU6sO8Tj/rk7dKmqDByPsGbIm+T4pctzhwLaS69GnlGksIv2D1jyIiGSY2RHAD2icLvQU6gcYnTI2p/ygna/NbAbwAM3f0ELjNwGlmNk8QpraZgMHqLhPrerAOMc2O+zz35zy9HjHNkBsxtsrOo+IdBEFDyIitW6keHrKJWYWW4jcEWY2ivh8dYAnM99vp/YN9D7C3gHvBXrc3dzdgI9U2tGIJOvP8kjVLuAKwv4FQ1N9mhdp2426apxztGPTp+g0ORHp3xQ8iIikJHnvr41U7SDkzs86nJDuslv2PFhIfP78bsKUFeDAtKz3RNrd7O5L3f1pd9+dKm/lTUBR04lPufqSu9/m7hszma0ORZ9a0qFxPqZO3eic8pdSf96a06Ys3WOIDED6hy0ikjCz4YR0orH/G68ArgEei9RNAG5qY9cKSW5UY4EPwE8yN6nvzmn3x5zyM5vuWHHd2KdWdeJnqrefx+mRMgfWp77HUv1uI+wVEku1m/fJrq0QkQFAwYOIyBuWE7/hecDdV7i7A3MJKSqzFplZlZuwlWJmU4FHgeGR6r2EqVhpeW9KJkTOPZnwc5cR21OgJlVsC32aBZxVsk+d0O5xjllgZjULrM3sAuLBzNpUpiWARyJtRgIL3H1fow8h69JF5C/cF5F+TNmWREQ4cDN6SaRqa7rc3Teb2aWEBdVpQ4CVZjbJ3Xe2r5vW9//2mwmbjE0BZhP2pMhLhXO1u/8zU7Yxp+2XzezfhBvIXkK61GU0Xjye9QJhjULadDObSXjq3rexmKeyVeX1abmZvUbIIjQM+DTwlZL9qUJ6/BvZnwSbG3PqqxrnmNHA42a2iJAqdTjwCeAbOe2/l/n+CPAUtWtnvmVmHyRs6vd3YAvhDcNRhLUbJxLWbEwjLPA+noOnQ4nIAKDgQUQGPTMbSe0NVJ9L3H1LusDd7zWzc4ALMm3HEjYtm195J4OLk08Zt7r7bZHyJwiZd7Jz4N9CmLqVtR84rMR1/0pt8DAM+FWm7Hng2OTPvyGszRiWaXMMIVtRq31q1TTCW5wiPk7YB6Td45xnEvDbAu2eJWS3OsDde5MA+dfU7jI9O/mIyCClaUsiInAXMCZSvtLd8zaCW0A8JeY8M/tYZT1r3uvANe5+Zawyedp/fcFz7QZuKHn92I1xXcnGZjcXbP4inXn7UMohGOeYnxds9xpwsbu/kq1w98cJU6j2ZOtEZHBT8CAig5qZfQY4P1L1HHB53nHu/hL5qULvNrOqcuWXtRf4EXCiuy+r19DdVwCLqZ+mcxtwLvDnMp1w9weBe8ock1gKfLdBm02E3YuzU7G6UjvHOcdVhN2ge+u02QKc7e6r8xq4+32EaXFPlLz+NkJA/mLJ40SkH1DwICKDlpkdS8jBn+XAXHffUe94d38UuDNSdTSNb4Cb5YQAYRfwL2At8DBhutSFwGh3v9DdNxQ6mftNhBvEHwKbCU+atxP2hFgKTEx+zvIddZ8PnEeYvrOZ8GS90TG97v4FYAbwM+A/hJ93K2H+/nXAZHf/SzN96pR2jnP8cn49cDLh9/AZwgL2ncn1lgDj3T2WOSx7oifd/WTgVOAW4PeEN26vEvaq+B+wAfhlct4zgDHuvtDdd0VPKiL9moX1XCIiIiIiIvXpzYOIiIiIiBSi4EFERERERApR8CAiIiIiIoUoeBARERERkUIUPIiIiIiISCEKHkREREREpBAFDyIiIiIiUoiCBxERERERKUTBg4iIiIiIFKLgQUREREREClHwICIiIiIihSh4EBERERGRQhQ8iIiIiIhIIQoeRERERESkEAUPIiIiIiJSiIIHEREREREpRMGDiIiIiIgUouBBREREREQKUfAgIiIiIiKFKHgQEREREZFC/g8NTuDrM/3VqAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": { "image/png": { "height": 287, - "width": 393 - } + "width": 391 + }, + "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Create a new figure\n", + "# In this case we are explicitly creating the figure that we will plot to \n", "fig = plt.figure()\n", "# Add an axes to our figure\n", + "# Figures can have multiple axes. This adds a single new axes to our figure\n", "ax = plt.axes()\n", "\n", "# Plot the data again\n", - "ax.scatter(x, y1, c='blue', alpha=0.6, label='Group 1', s=50)\n", - "plt.hold\n", - "ax.scatter(x, y2, c='red', alpha=0.6, label='Group 2', s=50)\n", - "# Here we've added some more optional arguments. \n", - "# alpha - sets the transparency of the data points\n", - "# label - makes a label for the data we've plotted, which can be used in the legend\n", - "# s - size. Changes the size of the dots we plot\n", + "ax.scatter(x, y1, color='blue', alpha=0.6, label='Group 1', s=50)\n", + "ax.scatter(x, y2, color='red', alpha=0.6, label='Group 2', s=50)\n", + "# Here we've added some more optional arguments:\n", + "# alpha - sets the transparency of the data points\n", + "# label - makes a label for the data we've plotted, which can be used in the legend\n", + "# s (size) - changes the size of the dots we plot\n", "\n", "# Add a title to our graph\n", "plt.title('My Awesome Scatter Plot', fontsize=18, fontweight='bold')\n", "\n", "# Add data labels\n", - "plt.xlabel('X Data Label', fontsize=16, fontweight='bold')\n", - "plt.ylabel('Y Data Label', fontsize=16, fontweight='bold')\n", + "ax.set_xlabel('X Data Label', fontsize=16, fontweight='bold')\n", + "ax.set_ylabel('Y Data Label', fontsize=16, fontweight='bold')\n", "\n", "# Set the ranges to plot of the x and y variables\n", - "plt.xlim([-0.1, 1.1])\n", - "plt.ylim([-0.1, 1.1])\n", + "ax.set_xlim([-0.1, 1.1])\n", + "ax.set_ylim([-0.1, 1.1])\n", "\n", "# Set the tick labels\n", "ax.set_xticks(np.array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0]))\n", @@ -301,10 +319,12 @@ "ax.spines['bottom'].set_linewidth(2)\n", "\n", "# Add a legend. This will use the labels you defined when you set the data.\n", - "plt.legend(loc='upper left', scatterpoints=1, frameon=False)\n", - "# Legend doesn't require any arguments. \n", - "# Here we optionally specify where to put the legend ('loc'), how many points to use \n", - "# in the legend ('scatterpoints'), and wether to have a box around the legend ('frameon')" + "ax.legend(loc='upper left', scatterpoints=1, frameon=False)\n", + "# Note that legend doesn't require any arguments\n", + "# Here we optionally specifing:\n", + "# 'loc' - where to put the legend\n", + "# 'scatterpoints' - how many points to show in the legend \n", + "# 'frameon' - whether to have a box around the legend" ] }, { @@ -312,21 +332,27 @@ "metadata": {}, "source": [ "### Figures and Axes\n", - "Note above that sometimes we are calling these functions on 'ax' and sometimes we are calling with 'plt'\n", "\n", - "We also created a thing called fig. What's all this?\n", + "Note that in the above example, we defined a figure object, `fig`, and an axes object, `ax`. \n", + "\n", + "You might also notice that sometimes we used called function from `plt`, and sometimes called methods directly on the `ax` object. \n", "\n", - "- 'plt' is just our nickname for the matplotlib module\n", - " - Here, whenver we are using 'plt' we are implicitly calling a function from matplotlib on the current figure\n", - "- 'fig' is just an arbitrary variable name we have been using to assign to a figure object. \n", - " - We can use 'fig' (or whatever we call our figure) to update it after we have created it\n", - "- 'ax' is also just an arbitrary variable name for the current axis.\n", - " - We can us 'ax (or whatever we call our axes) to update a particular axis after we have created it" + "So, what are these different things?\n", + "\n", + "- `plt` is then name we have given the imported matplotlib module\n", + " - Here, whenever we are using 'plt' we are calling a function from matplotlib \n", + " - By default, this gets applied to the current figure (the most recent one created)\n", + "- `fig` is a variable name we have given to the figure object\n", + " - A figure object is the whole figure that we are creating\n", + " - We can use 'fig' (or whatever we call our figure) to access or update our figure after we have created it\n", + "- `ax` is also a variable name, for the current axis\n", + " - A figure can have multiple axes (though our figure above only has one)\n", + " - To update a value on an axes object, you can call a `set_` method on the axes object, like we do above" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -342,7 +368,7 @@ { "data": { "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -359,7 +385,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -367,7 +393,7 @@ "output_type": "stream", "text": [ "\n", - "Axes(0.125,0.125;0.775x0.755)\n" + "AxesSubplot(0.125,0.125;0.775x0.755)\n" ] } ], @@ -375,43 +401,38 @@ "# 'ax' is a name for the current axes. A figure can have many axes (figures can have subplots)\n", "print(type(ax)) # Axes is a class of variable in matplotlib\n", "print(ax) # This is the axes handle 'ax' that we made before\n", - "#print(plt.gca(), '\\n') # gca grabs the current axes. \n", "\n", - "# In this case, current axis is 'ax'. Turned off as it plots an axis. \n", - "# Note that here gca is drawing an empty axis" + "# Note that if you need to grab the current axes, you can do so with `plt.gca()`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Keeping track of figures and axes, and knowing what to call on what can be a bit confusing at first. \n", + "Keeping track of figures and axes, can be a bit confusing at first. Note that typically a lot of managing matplotlib objects objects can happen automatically. In many cases, many figures in different cells, for example, matplotlib will make new figures and axes when it needs to, without you having to explicitly specify this. \n", "\n", - "Note that a lot of it gets managed behind the scenes - you don't have a to explicitly create new figures or axes. Matplotlib will make new figures and axes when it needs to, without explicitly being told to.\n", - "\n", - "If you're wondering why we would bother using fig and ax then:\n", - " - We often don't need to, but it can be very useful to have a label to grab our figure (and manipulate it) when we need to. \n", + "Defining or accessing figure and axes objects can be useful when customizing plots, replotting things later, or for more custom or complex plotting tasks. That is, it can be useful to have a label to grab our figure, and manipulate it, if and when we need to. \n", " \n", - "For example, we can get our figure back just by calling it's name. " + "For example, we can get our figure back just by calling the figure object name. " ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAI+CAYAAAAo3TwyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xl8VPW9//HXJwkJSgIkAkpBNkG0FEFBrOWyKLZFvF5t\nrfWqtaXS9haXayutP7tZtEr13traYqt2cemCt9Va6b2trRVZ3KoVAW2tCEJAEZEt7CQk8/398Z0h\nk8k5s2UmM0nez8djHoEzZ/nOmeWcz3f5fM05h4iIiIiISCZKCl0AERERERHpeBRIiIiIiIhIxhRI\niIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiI\niIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiIhIxhRIiIiIiHRRZjbVzFzQo9Bl\nk+KnQEI6BTNbEvZDGH0cMLOjMtjff6TYnzOzmXl8Se3CzL6T4jW+ZWb6nZAuz8xKzGy6mc03s2fN\nbJOZ7TWzxujfd8xspZn90cy+b2afN7P3m1lFocsuHZOZzUzjOhT/2G9mb5vZcjP7sZldamZHFPp1\nSOemGwTpKroDn81g/f/MV0GKhZmVAZemWG0A8MF2KI5I0TKzc4E3gMeAq4DTgfcAPYDS6N+jgTHA\n2fjfj7uA54DdZnZhAYqdV2Y2JMkN7ZAM9lPbWStqCuAIoD9wCv5690vgbTO7Pvp736EkqSCcW+iy\nSTMFEtKVXGFmpalWMrMPAu9th/IU2nTgmDTWm5nncogULTP7JvB7YEiWuygHeuWsQCKZ6Q18G1hi\nZpWFLox0PgokpCs5FvhIGut1+taIqE+lud75ZqYbIelyzOxiYG6hyyGSAxOB3xW6ENL5dLimLpE2\nuhp4OOxJMxsOzGi/4hSGmdUA56a5enfgIuDH+SuRSHExs27AfydZZSXwPLAZiOBrfgcCY4HhqKJO\n8uthYHnc/yuAEcB5QFjLw1lmdrFz7sF8F066DgUS0tVMNrMxzrlVIc9fTde4AbgYf+FJ10wUSEjX\nMhk/RijRQeB859yfwzY0sz74sRIfBf41P8WTLu4Pzrn7Exea2TH4sTxjQ7abDSiQkJzpCjdMIokC\nuy6ZWRVtGA9gZt8LGRj2f2lsa2a2PmT7TAaJpyusW9OikOWnm9nxyXZoZt3MbF/IaxgWss3XAtat\nD8s0YmY/Cdn/TcnKFt12nJl908yeiJ7rXdFjbY5mOfmemU1LtZ+A/Z4QfR1/MLO1ZlZnZoei+95u\nZn+PPnebmV1sZgMz2LeZ2QfN7L/NZwraGD3HB6PZWV4ysx+a2ceiNejp7PP+kHO4JG6dyWb2gJm9\nYT7j2SYze9LMLjOz8oB99jGz/2dmL5jZNvPZY9aZ2c/NbFK6rzdhn3l5vzLwgZDlv0oWRAA457Y5\n537hnPsIMAhYnMmBzWyU+QGyvzezNdFzeij63m+Ivhe3mdmHwt53Mys3nzXqajO7y8wWmdlrZrYj\n+vlpNLOd0f0tMrPvmtmZZmZJynU4TSiwPslLCPstuz+6n/j0ooND9nFfyD5q0zh/U8xsnpkti76+\nPdHX/Fb0ezTPzCak2k/c/pIOCDez0uh3+7fR78zexO9Ue3HOvUPyJBofMH+tyykzG23+d/BP0e9+\nnZk1mNm7Zvaqmf3KfDbEmhT7OXyugSkhq30z5P1QutpCcM7poUeHfwBLABfw+Cu+20H8sgPAUQH7\n+M+A7Z8N2a8DZiZsPxRoDFivCRicovwfCDnGXqAqx+fqvUle0wTg1ZDnbklj338O2fZTGa5/Rsj6\nr4esPzVJmcbjb+TCXnPi43ngtDReayXwi4DPVzqPn6ax/38D/p7BPt8EPpfGfu8P2X4JPvvQz1Mc\n50XgPQnl3JFimx8CJWl+PvPyfmXxPflhyPF+kOtjxR1zHPCXDD9LPwvZ19IsPpcOWANMC9nn1Cz3\nGXvcH91PW/ZRm+T8fRDf3SfdfT0OjEzjfakN2X4mMBL4W8jzS9r4eZiZpOwzU2wb9lvpgBPTfV/T\nKOMo4E8ZnPO9wHeAIzI812k98vXd1CP8oRYJ6exew1+Y47VKBRuthbsqYPsfpHsg59x64NGAp0qA\n/0ix+cUhy3/tnNuTbhnSNDNk+RvOuReA/wl5/jJLPadEWItGq1pp8xm0wmp9Jwesfwy+D3CiA/g0\nm62Y2RXAM/gLZbomAMvM7PKwFaJl/xPwCSC0BjeJ3kn2bWb2PWAh/iKdroHAPWb2kGWXO74C//m9\nLMV644DFZtbdzC6LlrM6xTZXADemKkC+3q8shb2vF5nZcTk+FmZ2Lf5zfFaGm4ZlokuZoS7EcOAJ\n62DpV83sZnzFxCkZbPZB4AUzy3Zc3FB80Ds+y+3zaWuS51J9X9NiZpcCLwAfzmCzHsAc4HkLaamW\njkWBhHQFQcFAYirYGbS+SX2bJAOzQ3wvZPksC+gSAodvSj8est1PMzx+UtFjfSLk6V9H/4YFEscC\nZ6Y4xJMhy4O6t5xC+KDAVoFEyDKAZ5xz9YkLzexT+FrlwPOeQjnwU/PzBwT5JD4LSj7cCnyhDdt/\nDLg/WReVEO8n/ZvY4/E56jMZN3O9mQ0KezLP71c2Nocs7we8Yma/NLNPmNmILM51C2b2ReB2IK3u\nae3kx2Z2QqELkQ7zKXq/RnZBfU/gt2Y2Lottv46ft6EY9Uvy3M627tzMzsG3Xh6Z5S5GA4+ZWU6C\nGikcDbaWruCP+Ob6+EAhlgo2FihcE7Ddj5xzjZncIzjnnjGzF/C1pPH64QdeBt2kTyP4R/8fzrnA\nmvY2+BDhF77/AXDOvW5mK4CTA9aZCTyRZP8v4S9SiReH483saOfclrhlYYEBwPvNrJtz7lAa67cK\nXsyP50h2k/scvovOHnxXr3NpXYNrwC/MbLhzblvCcx8N2e+7+JaKt/CDcnvh+4CPAk4gxY2OmX0I\nuC7JKs8Cy4BD+FrQ6SH7/Dj+vNyT7HghDgAPARuixzg7ZL0L4v5dCzyC7+Z1Lr67R6Iy/Oen1XiW\ndni/srEsyXNH4Puhx/qi7zKzl/BdKZcBy5xz+9M5iJmdjg8iwjTia71X4l//UfhWodNIL/Coj277\nBrAJ2Bfd55H48Rv/QvAcGd2Ar9ByPNW66DLw3/Gwz+p/EXyz+kr071filv0/glvoErMSxeyK/4+Z\nTSV5it4nosdtwP+mfShgne7Aw2Y20jnXkGRfieIrY1/Gv0878YP0T8N3t2l3ZjYK37IUpAn/+9SW\n/fcBFhBeGf0G8H/4czEcOJ/gSqPjgR/RskX+NprnXfkcvtUn0SKSX4ekPRW6b5UeeuTiQfgYifuj\nzweNf1gWfe5EWvdzPwj0jT6fUR9VfKrUoPWXhqx/X8j6X8zDefp1yLH+nrDel0PW2wf0THGM34Vs\n+7GE9R5Ncm4dcHrC+i+HrDchoAwLQtbdD8wIWH8s/uIatM1tAesHjV14A+id5LzU4G++FwD3hazz\nQkgZmggYZ4JvQdgfss1bQPeAbe5Pcs53AWMS1r8rxfv0F+DIuPWrCB9n80TI687r+5Xld8XwN6DJ\nXnvYYw++tnZ0GsdZlmQ/zwLDQrbrD8wD7gp5/mrgDKA8jdf5zZDj1xEytgUffISVe0gG57k2ZB+B\nv68B24eNY9tK8G/DmcDukG1mZ1hGhw/UPhGy3dFt/AzOTHLcwPODn2R0RZLtlgVsMzVs/ZBj/HeS\n/d8FlCWsPxhYG7J+BDgp5DhLQraZm4vvuB65eRS8AHrokYtHkh+c+6PPV4VcPMYQfKN0X9y+M/0h\nL8PX5gZt896EdSvwF+ugi1OrAeFtPEe98bXNQeX6esK6gwgfRPyZFMe5OmS778etY8C2hOffSPj/\n9XHr14SUpw4oTTh+L3yNfVAZQgcj42/yg7bZCljCuv8IWO8PbXx/Rif5rN2dZLuvJNnu3ID170+y\n/pyA9cMSAcQ+pwMDtgkLRDcFrJv396sN78mphH9n0nlEgO8D3UL2PzLJtv8EeqRRxqSBQpqvsyJJ\nOQKDIYogkMC39IWV4UNJtpsTss2LGZbRAVfk4rMWctyZSY77EHB93OMGfPKHPSk+k5cEHGdq2PoB\n61r0Oxa0/t9J+D2O2+70JGW6PWSbJSHrz83XOdcj84fGSEiX4PyA5fsCnrqB4MGlaQ+yDjhWIzA/\n5OnZCf8/h+Zm3HiPOue2Z1uGEP+Ob8IP0qLLlXNuI76mL8inUhwnnQHXo/BdNGJ2AXcnrB/flWkS\nwV14ljrnmhKWnUFwt80DwK9CygY+g0uQPsBJCcvWB6x3tvmUnO/Pst9vsvEJP0ry3I/xXVUy3Wci\nh78RSbQuyTZPOOeCukm8FrJ+0Hlpj/crK865v+HP4dtZ7sLwraG/ChlHkWyQ6tedc/tSHcCl6Ipj\nZsPN7EvRQfivmNlW8+l541NmHkyyi6C5NIrFB0OWb3TOhX0+IPyzc3KG3923yK77YC58DPh23ONG\n/Pi3sHFnAE865xa08bhj8d+xID8O+D0GwPluuitDtss0wYAUEQUS0pXMx98sxfsoPotEvKeccyva\neKyf4NPcJfqkmcUfLyxbU04HWUfNDFn+onNubcDysEHX/5Isa41z7lXgnYCnxphZz+i/E8c7PIOv\nfYo3MS5LVNrjI/A1+0GOAPZaeP7x3SHbBe0zKDuX4fuMPwfsMJ+v/zkzu8/MrjKzVDe37wtZvpfm\nvuWtRAPO10OeziTr00bn3LsBy5MNzHwxZHnQZx/8e5CoPd6vrDnnnsH35f4avqUxGxfib/wShZWz\nAT+2K2tmNtDMHsaPD/vv6PHfh78JzCSrVzEPhg07f4PCPjfRz87LIduVkNl35k9hN85F6K/4cYFt\nFfY7BeGVT6mef2+WZZEioEBCuozozfJjaayadWtE3LF2AfcGPNUTuAQOT4B3TsA6teR4IFk0+8pp\nIU+HzXL6EL5vfpCZKQ4ZdINfQnOmo8TA4Cn8QO34G9CeNM/OmkkgEVZb1haJ+3wAP39BMtX4TEgz\n8UHsKjNbbWazQ9LohpX7bRdt508irMY8k3MRFPyBv6kNE5bZKFV547XH+9Umzrl9zrl5wDB8F42v\n4QfVZ5L9JrE1EqBvyLpvOecOZFbKZmY2BH/TdkHyNdNSkYN95EuhPzv/zMPxc203PrvUZOdcsuA7\nXcnOz6YU24b9TpWZWWhKbCluCiSkq0kVJLyJHyycC9/H95FOFLuhOJ/gmsF707hxzFSy7kiDzM+i\n2+IBfBqfhSjIZSlSXqZKA5uYDnZZtGYvscZqsplVEpxB6l18n9xEYd232qJF9zPns0lNx483yKRG\nMpal5JGE9MMQXu50ssi0Sn8blUnNc2D3lhSfxWRdYtKV9/crV5xzEefcX51z85xzZ+O7550IfB5f\nSRH0fY/5QMB7Hvb+tPW83oXPTNfZFfqzU5eH47fFQWALfrD1z/Dddvs7525xLTPgtUWyc57qtyrs\ndwoy+62SIqL0r9LVPI7vvx2WH/2HuWqqds6tM7OFtG5OPtnMTiPaMpGgieCxHFmL1n4nm2QsKPVt\nKoPxfdvDAobQQCLaLeo9ccsO0txFZhkt0zNOxtf6BU2utTjkJndHWKHboFXQ5JyrAz5tZt/Ad105\nE9+CMjCN/Z2Hb6n4WdyysHKnc2MTVpuX63E2+dAu71c+RD9/r0Uf95jZqfgUoIndJcHX7NfQcqKw\nsPcnrKUiJTMbig9yg7yFT7/7F2Czi86/Eq0USBYEFatCf3YKec4+7Zy7vwDHTXbOe5H8NydZq0NH\n+K2SAGqRkC4leuEPGwh9AD+2IZe+G7L8GwQPMPtzyODVtvgg+RkwOTPsCedn+Q4akHwqrfO4Px83\nYDQxd/8kwmc5DhvUHdZ8vsE5Z1k+5obsE+fcW8657znnznXOHYvPEDYGP/7m24R3GfpkmuUeGDe2\npJXoTWBYYJztIOH21K7vVz5FB2dnUhEQ1hWkr5mFzQOQSrL5WWY4537inKt1LSdxzDpwKbCwz87S\nNnx27m/PF9ABJftNSTXW4cSQ5dtTJQ2Q4qVAQrqiB0iY1CjqV865nNZwOeeeBv4W8NQ5BLcI5mOQ\ndaosS9n6aLTbUZigVokK4IsJy+KDhxdo2a2jD+HlD2v1WBqyfLCZjQ15LpSZZdRy65zb65x72Tn3\nO+fcVwnPLJM4UDRsAjTDT8AWZiItM2DFeyrJdsWioO9Xkv1MNLNUM7kHCRs3EqF1reuSJPu5Kotj\ng59HIMgO51zYoP2wFoxkknVTCWqRyXQ/6ewj7LNzupkdnUEZgNx9djq5ZwhviTkvbCMzO5Lw7Exh\nv1Nt+WxIO1EgIV1ONKXizwKeavMg6xDfS3O9LcD/5vLAZtYLPxYjH3rgu/SECWsxGJHw/8MXkWgt\n6QsJzwfNxL3ROfdG0M6dcy8Tnl3nnugg95TMbIKZ/Rz4YcBzHzOzM1OME4nZE7I88WK4GD8BW5C5\nQa0SZtYNuDVkG0d6yQUKqj3eryydCCwys7+a2aUJ2dbCytCN8AHOrznnEm/AlhD++bjazJJ+d82s\nt5klBplhqYCrzew9iQujN9w3JztOiGQDd0/PYD9BlTrp7uNJ/CSZicqBn0Tfj6TMrCT6XX6UljNu\nS4BoZdtzIU9/yszGhDw3F59AI8gfQpa35bMh7USBhHRVXwK6xT3KktTWtdVD+L7JqTwQnYMily4i\nfBDb5HSb+/EpJIPMTHLssBaDeI20HmAdVjMfLyxIibklZPkEfPakz5vZsFj2JDOrNLPjzezjZvY9\nM1uPz8p0GcFZa6ZGy7DBzH4cvdE8OXpjVxrdZy8zm0744P0WNdfRjCphN8HDgaVmdpaZlZtZabQ/\n/mM0Z8JK9FvnXFha2GKT7/erLU4DfglsMbNfR1P5jjezvnHvdR8zOw//2T0lZD+t0rlGKzVuD1m/\nBPitmf3EzE43syOix6qKtpbcip8tODFwCZv3w4Dfmdlp0c/QEWb2EfxNYcYDs6NlD/tdu8PMfmpm\nX0tI4hD0W7Q6ZB+XmNmjZvbNhH2MjCvDXnxSiyDnAn8zs0+YT4Ub08vM3hddfje+q84ifG160Fgs\naW1eyPJuwF/MbGb0PFv0e/sD/CSVQd4ieP4aCP9sTDSzRWZ2U8JnY0IGr0FyxRXBrHh66NHWBylm\ntm7jvsNm45yZwT6uS7Kf2GNEHs7LMyHH2kQGs//ib/SC9hMBhibZLmgG6PjHCwHbfDCNc/WJFOUt\nS/LaEx+NKZ5v9RkC7mzjPh3wk4D91uDHlqTaNmzW8dhjJzA85NzcH7LNklx9B8hgptz2eL+y/O58\nJs33IZ33ej8BM4BHj1OJzz6W7Wu/P2F/vfC19Jl8fpoyfY+jx/p5muWOPfoE7OPyDPfxsYDX+3qa\n71Wy1+kImTGZNsy+3cbP4Mxs3pcsjjM17DhJtlmYxjlPdb5bvZ8Jxzgzw8/Gl/L5fugR/FCLhEj7\n+DHhk3SBHxwYVuufFTMbAXwg5OmHXfSXOk0PhR2G5GMwUrUcBPWNfZbw7hkxSVs7nG/ZOY/wGq14\n+aiFTLXP/cB/JS50vtvAv5J6foJkXarqgQtd8CSDRakI3q9sGemV54suJImC87XqZ+NTT6eS8ljO\nz2GTqjtl4ufn22kcO8idtD1z0W8IT0iQUvT1no3vGpqMoV4YuXQpPs1sMqnO9w3OuYeTPL+Y8MkD\npUjoSyXSDpxPFXpfklXacyZrCA8MAjnnVuK7UQT5ZJKxAqm6N7XqxuR8l4mXkmzzmnMuZTYi59w2\nfNeYBanWTaIJCByL0Qa7gY+EBY7OuX8A4wifNTqZ9cBE51xOJzRsD0X4ftWROqBNZS/wOefcPclW\ncs69ie8S9fs2Hi9mLumPj7kfn0UuY865F/Dpo7NOmR0NpC6kDek/nR8vdTI+rW226sl+5vIuJ/q+\nTSK8W1Iy+4FPOue+leIYDt89V+9LEVMgIdJ+7gxZXgckq5XJmCWfO2ITvhtJpsKCj6HAlJDnlhBe\nY+mAp0OeSzZOIp2xF/4Azu12zl2Kn2H6QZK3CsXsxg/++09gQMjFbj7wVfwM5OlOSvU2cAcw0jn3\neIpyr4+W+d/xfdhT1fr+A7gSGOWcW55meYpOHt+vbMryMD4t6iX4WepfJf3a97fwLU4nOufSSint\nnNvmnDsP/136LeED72Mi+HEhrRI0RFt4zgVuIHzA6gbgCufcpzNsnUw81p34dMc/wNdQ15FhYOF8\ndrv34mdgXoafayOjdKDOuc3OuQ/h00v/H+lN6rcNf64/AxztnEtW2SMJnJ/x/ZP4lu9H8CnUk3kH\nnxziOOdcWgGIc+414CTgC/hA8R2SZwyTdmZt+P0QkQyY2QyCs1P80DmXbapHyUB0cOxo/E1LDb5/\ndQM+c85b+K4161yGkxKanwRsOH7QajVwJHAIfyO8CT+p3upsb9ii2bfeH91/Db4SaCf+ovpX51yq\nbh0dUr7erzaUpxL/Pg/Bp1mtxCczOBgt0ybgZedcm2tQo6lITwZG4l97T/xr34pvdVnhnAvL+BS/\nnx74muMTomXdgj9vz7YlgCh2ZlaOb+UZgf9O9sS/T7vxQdRq/FwlnfYctLfoOR8PHE/z7+AufMC2\nwjmXTtdF6WAUSIi0g2gO7WX4LiuJTnL5yxglIiIikheafEUkD8zsHHxNahm+5vJcYFDAqk8oiBAR\nEZGOSIGESH5cSOoZpR2+n72IiIhIh6PB1iKF89/Oub8VuhAiIiIi2VAgIVIYdwNfKXQhRERERLKl\nrk0i7aMen2HnWeDHzrklhS2OiIiISNsoa5OIiIiIiGRMXZtERERERCRjCiRERERERCRjGiNRBMys\nRf8y55wVqiwiIiIiIulQi4SIiIiIiGRMLRLFSSPgRURERCSf2twDRi0SIiIiIiKSMQUSIiIiIiKS\nMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUS\nIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIi\nIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSIiIiIiKSMQUSEigSgVWrYOFC+M1v/N9Vq/zyYvP6669z\n7bXXcsopp1BTU0O3bt2oqanhtNNO40tf+hLLly8vdBHbxcMPP8zVV1/NpEmT6NmzJ2bGJz7xiUIX\nS0RERDopc84Vugxdnpm1eBMK+Z7U18OiRbBsGWzYADt3QlMTlJZCdTUMHgyTJ8O0aVBRUbBiAv48\n3XTTTdx0001EIhFOOeUUJkyYQE1NDXv27OHll1/mueeeo6GhgTvvvJMrr7yysAXOs7Fjx7Jq1Soq\nKysZOHAgr732Gpdeeim//OUvC100ERERKT7W1h2U5aIU0jns2QPz58Py5bBxow8g+vaF8nJobITV\nq2HtWlizBlauhKuvhqqqwpX3pptuYu7cuRx77LE8+OCDTJw4sdU67777LnfccQe7du0qQAnb1/e+\n9z0GDhzI8OHDWbp0KWeccUahiyQiIiKdmLo2CeBbIubPh6efhnXrYOhQGD8ehgyBgQP93/Hj/fJ1\n6/x68+f77Qph3bp13HzzzZSXl/PYY48FBhEA/fr1Y968eVx33XUtls+cORMzY926dcyfP5+TTjqJ\nI444gqlTpx5eJxKJcPfdd3PqqadSWVlJjx49OPXUU7nrrruIJPTxqq2txcyYOXNmYDmmTp2KWcvA\nf8mSJZgZc+fO5bnnnuOss86iV69eVFVV8eEPf5gXX3wxo3NyxhlnMGLEiFbHEREREckHBRIC+O5M\ny5fD5s0wdqzvxpR4P2rml48d69dbvtxvVwj33XcfjY2NfOxjH2PUqFEp1y8rC258u+aaa/jGN77B\n6NGjueaaa1oEJJdddhmzZ89my5YtfOYzn+Fzn/scW7du5YorruCyyy7L2Wt5/vnnmTp1KhUVFVx5\n5ZWcffbZLFq0iEmTJvHUU0/l7DgiIiIiuaSuTUIk4sdEbNwII0b4rkzJlJf79dav99tNnw4l7RyS\nPvPMMwCceeaZbdrPSy+9xIoVKxg6dGiL5Q8++CALFizg5JNPZtmyZVRWVgJw8803M2XKFBYsWMA5\n55zDJZdc0qbjA/zpT39i/vz5XHXVVYeXLVy4kPPPP5/LL7+c1atXU9LeJ1hEREQkBQUSwiuv+IHV\nkQj07p3eNr17+zEUGzb47ceMyW8ZE73zzjsADBgwoNVztbW13H///S2W9e7dmy984Qut1r3uuuta\nBREA9957LwC33nrr4SACoEePHtx2222cddZZ/PSnP81JIDF8+HCuuOKKFsvOO+88pkyZwtKlS3nq\nqaeYMmVKm48jIiIikksKJITaWp+dqU+f1t2Zwpj5gdg7d/pgor0DiWRqa2u58cYbWywbPHhwYCAx\nYcKEwH289NJLlJSUtBgzETNlyhRKS0tZsWJFTso7adKkwBaHqVOnsnTpUlasWKFAQkRERIqO+ksI\n9fW+dSFkGEGosjK/3cGD+SlXMscccwwAb7/9dqvnpk6dinMO5xyHDh1Kaz+Jdu3aRU1NDeUB/bzK\nysro06dPzjJBHX300UnL1hUyTomIiEjHo0BCqKjw80Q0Nma2XWOj36579/yUK5nYoOhFbRztHZbh\nqFevXuzYsSMwEGlsbGTbtm307Nnz8LJYi0JjyEmsq6sLLcOWLVsCl8e6b/Xq1St0WxEREZFCUSAh\nDBniszFt3QrpzoXnnF8/Nklde5s5cyZlZWU8/PDD/POf/8z5/k8++WQikQjLli1r9dyyZctoamri\nlFNOObysuroagDfffLPV+rt37+b1118PPdbTTz/dKp0s+PSwsbKIiIiIFJtOH0iY2cfMbL6ZPWVm\nu83MmVlWU/2a2UAzu9fM3jazejOrNbM7zKw61+VuT6NH+2CgtBSSVJy3UFfn1x882G/f3o477ji+\n/vWv09DQwNlnn82zzz4buF6yloBkLr/8cgC+8pWvsH///sPL9+/fz/XXXw/ArFmzDi+vqqrihBNO\n4JlnnuExEJFOAAAgAElEQVTVV189vLypqYlrr72WAwcOhB5rzZo1/OhHP2qxbOHChSxdupThw4cz\nadKkrF6DiIiISD51hcHWXwfGAHuBt4ATstmJmR0HPAv0AxYCrwETgGuA6WY20Tm3PSclbmclJTB5\nsp+xes0aP09EshSwDQ1+vWHD/HaFykx6ww034JzjW9/6FhMnTmTcuHFMmDCBmpoa6urqqK2t5Ykn\nngBg8uTJGe37kksuYeHChfzmN79h1KhRnH/++ZgZjz76KOvXr+eiiy7i0ksvbbHNl7/8ZWbNmsXE\niRO58MIL6d69O4sXL+bQoUOMGTOGVatWBR5r+vTpzJkzh8cee4wxY8awdu1aHnnkEbp37869996b\ndurXRx99lEcffRRo7hb13HPPHZ4kr0+fPnznO9/J6DyIiIiIhOkKgcQX8QHEWmAKsDjL/fwIH0T8\np3NufmyhmX03eoxbgM+3raiFM20arFwJBw74vyNG+BSv8UMInPMtEWvWQP/+fqbradMKV+bYrNAX\nX3wxd999N4sXL2bBggXs27ePqqoqjjvuOGbPns1ll13WohtSuh588EGmTJnCvffeyz333APAiSee\nyJw5c5g9e3ar9S+//HKcc3z3u9/lgQceoLq6mvPOO4958+ZxwQUXhB7ntNNO44YbbuAb3/gGd955\nJ845zjzzTG655RZOPfXUtMu7cuVKHnjggRbL1q1bx7p16wCfuUqBhIiIiOSKuXQ7xXcCZjYVH0j8\nyjn3iQy2Ow4fiNQCxznnInHPVQGbAQP6Oef2ZVGuFm9Cod6TPXtg/nw/Y/XGjT4jU9++PjtTY6Mf\nE1FaCoMG+SDiqqugqqogRe0UlixZwhlnnME3v/lN5s6dW+jiiIiISNeSZtL/cF2hRSIXzoj+fTw+\niABwzu0xs2eADwHvB9qWRqiAqqpgzhxYtMjPWL1hg58noqHBBxAjR/oxEZMn+5aIiopCl1hERERE\nCkWBRHpGRv+Gpd5Zgw8kjidFIGFmy3NYrpyrqIAZM2D69OYZrw8e9CleYwOrCzUmQjqwSMR/oGpr\n/cQlFRU+XZg+UCIiIh2WAon0xBL5h80MFlveux3K0i5KSvxs1cU0Y7V0QPX1rZu4mpp8E1csd7Ca\nuERERDokBRLtzDk3LnFZ4hgJ6RpiM3B3WmGDbsrL/aCb1ath7Vo/en/lSrj6ag26ERER6UAUSKQn\n1uIQNsVwbHl2kxaIdDb19T6IePpp2Lw5OA3Y4MHNacBi82zMmaOWCRERkQ5CnZPTszr69/iQ50dE\n/4ZPXyzSlSxa5FsiNm/2E5NUV7cMIsD/v7raP795s19/UYfNVSAiItLlKJBIT2zuiQ+ZWYtzFk3/\nOhHYD/y1vQsmUnQiET8mYuNG3xKRbHZD8M+PGOHXX7bMby8iIiJFT12b4phZN+A44JBz7o3Ycufc\nG2b2OD4z05XA/LjNbgR6APdkM4eESKcTS/cVifjuTOno3duPodiwwW+vUf4i0l6UVU4ka50+kDCz\n84Hzo/89Jvr3dDO7P/rvbc65L0X/PQD4J7ABGJKwqyuAZ4EfmNm06Hqn4eeYeB34Wj7KL9Lh1Nb6\n7Ex9+rTuzhTGzA/E3rnTBxMKJEQk35RVTqTNOn0gAYwFPpWwbFj0AT5o+BIpRFslxgM3AdOBGfgZ\nrb8P3Oic25mzEot0ZPX1/mKcqktTorIyP/vhwYP5KZeISIyyyonkRKcPJJxzc4G5aa5bS5Lpwp1z\nbwKfzkW5RDqtigpfo9fYmNl2jY1+u+7d81MuERFQVjmRHFLnPxHJrSFDfLeArVsh3XkynPPrx7oT\niIjki7LKieRMp2+REJF2Nnq0DwbWrvU1etXVqbepq/OtEYMH++1FRGOA8yHbrHLr1/vtpk/XyReJ\no0BCRHKrpMQPUFyzxj/Gjk1+sW5o8OsNG+a300VaujiNAc4jZZUTySkFEhKsA1WFvf7669x9990s\nWbKE2tpa9uzZQ1VVFSNGjGDSpElcfPHFjBs3rtDFzKvt27fzu9/9jj/84Q+88sorbNq0ifLyckaP\nHs2nP/1pPv3pT1PSnu/btGl+gOKBA/5vUB9k55r7IPfvD+PH++1EujCNAc4zZZUTySkFEtJSB6oK\nc85x0003cdNNNxGJRDjllFO46KKLqKmpYc+ePbz88svMnz+f22+/nTvvvJMrr7yyoOXNp4ceeojZ\ns2fTv39/zjjjDAYNGsSWLVt45JFH+MxnPsNjjz3GQw89hKV74Wyrigp/hwP+jmj9+uY7orIyf0e0\ndav/XA0b5oOIq64q+GdKpJA0BrgdKKucSE4pkJBmHawq7KabbmLu3Lkce+yxPPjgg0ycOLHVOu++\n+y533HEHu3btKkAJ28/xxx/P73//e84555wWLQ/z5s1jwoQJ/Pa3v+WRRx7hggsuaL9CVVX5O5zE\nwLShwQcQI0cWVWAqUmiJY4CD7nXjxwCvXNk8BnjGjPYvb4ekrHIiOVVcfVSkcOKrwtatg6FDfS3x\nkCEwcKD/O368X75unV9v/ny/XQGsW7eOm2++mfLych577LHAIAKgX79+zJs3j+uuu67F8pkzZ2Jm\nrFu3jvnz53PSSSdxxBFHMHXq1MPrRCIR7r77bk499VQqKyvp0aMHp556KnfddReRSKTF/mprazEz\nZs6cGViOqVOntmoNWLJkCWbG3Llzee655zjrrLPo1asXVVVVfPjDH+bFF19M+3yceeaZnHvuua26\nLx1zzDF8/vOfP3y8dldR4e9w5s2D66+HK66Az37W/73+er98xgwFEdLlZTsGeONGv13CT5KEUVY5\nkZxSi4R4Hawq7L777qOxsZFLLrmEUaNGpVy/rCz4o37NNdfw1FNPcc455zBjxgxKS0sPP3fZZZex\nYMECjj32WD7zmc9gZvzud7/jiiuu4Omnn+ZXv/pVTl7L888/z7e//W3OOussrrzyStauXcsjjzzC\nsmXLePzxx5k0aVKb9t+tWzcg/By0i5IS369YfYtFAr3yCmysjXDc3leYVFdLtx31NJZWsL1qCJtq\nRuOsdb2fxgBnQVnlRHJKgYR0yHR4zzzzDOBr4tvipZdeYsWKFQwdOrTF8gcffJAFCxZw8skns2zZ\nMiorKwG4+eabmTJlCgsWLOCcc87hkksuadPxAf70pz8xf/58rrrqqsPLFi5cyPnnn8/ll1/O6tWr\nsx4o3djYyM9//nMApk+f3uayikge1Nez/+FFnPfCMvod2EC/vTsx14SzUvZVVLOjcjBr+k/mtQHT\naCxtbr3TGOAsKKucSE4pkJAOmQ7vnXfeAWDAgAGtnqutreX+++9vsax379584QtfaLXudddd1yqI\nALj33nsBuPXWWw8HEQA9evTgtttu46yzzuKnP/1pTgKJ4cOHc8UVV7RYdt555zFlyhSWLl3KU089\nxZQpU7La9/XXX8/f//53ZsyYwYc//OE2l1VEciw6Nm3g48up2baRUmuivqovjSXllEYaObpuNf12\nraXfrjUcu30lT466mvry5rFpGgOcBWWVE8kZBRLS6dLh1dbWcuONN7ZYNnjw4MBAYsKECYH7eOml\nlygpKWkxZiJmypQplJaWsmLFipyUd9KkSYEtDlOnTmXp0qWsWLEiq0DiBz/4AbfffjsnnHACv/jF\nL3JRVBHJpbixaVVbN7PuyBHsLetNVVXz7/D2ysEc0VDH0bvX0K3Jp2n6y0lzDrdMaAxwFpRVTiRn\n1EYnzenwMu1DX1bmtytAVdgxxxwDwNtvv93qualTp+KcwznHoUOH0tpPol27dlFTU0N5QJN3WVkZ\nffr0yVkmqKOPPjpp2bI5zp133sk111zDe9/7XhYvXkxNTU2byigieRA3Ni0yeiyHKqs5eDChMseM\nAxXVvFkzll77NzNo63JO2LQI0BjgNolllZs1y7c0jBzpK8gaGvzfkSP98lmz4NprNVmHSAi1SEiH\nTIc3ceJEFi9ezKJFi7j88suz3k/YvAq9evVix44dHDp06PBg5ZjGxka2bdtGz549Dy+LtSg0hpzD\nurq60DJs2bIlcHms+1avXr3CX0CAO+64gy9+8Yu8733vY9GiRfTr1y+j7UWkHSSMTavuXU7VBti9\nC+oboCKhDqOptJx3e46gz571jNi8jH8cO52ddSUaA9wWsaxy06c3d/E9eNBf02InVWMiRJLSN0Q6\nZDq8mTNnUlZWxsMPP8w///nPnO//5JNPJhKJsGzZslbPLVu2jKamJk455ZTDy6qjmT/efPPNVuvv\n3r2b119/PfRYTz/9dKt0stCcrvXkk09Ou9y33XYbX/ziFxk7diyLFy9WECFSrBLGppn5rviVlbBr\nV3A61/3lvTHXRM3eDfR95xVeftk3DJvB//4vrFqlNLBZiWWV+7d/g49/3P8dM0ZBhEga9C2R5nR4\npaV+cFk6CpwO77jjjuPrX/86DQ0NnH322Tz77LOB6yVrCUgm1srxla98hf379x9evn//fq6//noA\nZs2adXh5VVUVJ5xwAs888wyvvvrq4eVNTU1ce+21HIhNQRtgzZo1/OhHP2qxbOHChSxdupThw4en\nnf71W9/6Ftdffz3jxo1j0aJF9OnTJ63tRKQAAsamDRjgu+kfeSRs2+5bJlowY09FX9z2nWxYtoHd\nu2H7dnjhBbjrLrj1VvjqV+GPfyzYFD8i0sWoa5N02HR4N9xwA845vvWtbzFx4kTGjRvHhAkTqKmp\noa6ujtraWp544gkAJk+enNG+L7nkEhYuXMhvfvMbRo0axfnnn4+Z8eijj7J+/XouuugiLr300hbb\nfPnLX2bWrFlMnDiRCy+8kO7du7N48WIOHTrEmDFjWLVqVeCxpk+fzpw5c3jssccYM2bM4Xkkunfv\nzr333ptW6tcHHniAG264gdLSUiZNmsQPfvCDVusMGTIkdMI8EWlnsbFpcb+1paUw6n3+31u3wp7d\nsNtB9yOgxPzqDdvLKG1qoLTcj0079ljfE6exEVav9tMjrFnjkxFdfbW69otIfimQEK8DpsOLzQp9\n8cUXc/fdd7N48WIWLFjAvn37qKqq4rjjjmP27NlcdtllLbohpevBBx9kypQp3Hvvvdxzzz0AnHji\nicyZM4fZs2e3Wv/yyy/HOcd3v/tdHnjgAaqrqznvvPOYN28eF1xwQehxTjvtNG644Qa+8Y1vcOed\nd+Kc48wzz+SWW27h1FNPTaus69evB3wLyB133BG4zpQpUxRIiBSLkLFp5d3gpJNg0yY/P+ievdAQ\njTn27oVK10ikpJSjB3fn7NNb5sgYPLj5JzrWCDpnjpINiUj+mEu3T7zkjZm1eBMK9p5E85mzfLkf\nABiWDm/QoOZ0eKruytqSJUs444wz+OY3v8ncuXMLXRwRaU+rVvm+SKtX+9/TgMQPzsGOHT6Y2LIF\nNm9yjNj9Inv6j+Qv467nraOC0243NPj6oGHDfNKhGTPy/WJEpINKM+d/OLVISLNYOrxFi3w2kQ0b\nfB/ehgYfQIwc6au8Jk/2LRG5rOaKRPzgw9pa3+RfUeEHgStrhoh0RrGxaWvX+maEaMKGeGZw1FFQ\nUwNb3oEeh+qoOLKUN3sNZlNN+Ni08nLfqLx+vf8pnz5dP6Mikh8KJKSl9k6HV1/fOnBpavKBSywj\nVD4CFxGRQspgbNqOHbB/dwPH1q9h99HDWNN/Ms6S/w737u1/Sjds8D/lRTRnqIh0IgokJFgsHV4+\nrz5hXanKyzVyMIEabEQ6oTTHph3cXMex29awo0d/NvUdz2sDUo9NM/M/pzt3+mBCgYSI5IMCCSmM\n+nofRDz9tB9RGHQB7eQjB2MzcCejBhuRTqyiwleQgK9QWb8+cGxa912lrOs+jDeqx/PSqKtoLE3v\ny15W5numHjyYx9cgIl2aAgkpjEWL/IVz8+bwJn0zf7c8dqyvrVu+3G/XRUYOqsFGpAtIY2zajobB\nPF47mRU10xhQnn6NQWOj30X37nksv4h0aQokpP1FIv6CuXGjb4lINmcFdMmRg2qwEelCUoxN2x8Z\nzdr/KuHt1fCeoYEJnlpxzifai+XIEBHJBwUS0v5iF8pIxN8dp6OLjRxUg41IFxQyNm10JGWCp1bq\n6nxrRCxHhohIPnTual0pTrW1vum+T5/0qtag9cjBTizbBpuNG/12kUj7lFNE2kcswdOgQb4FsqEh\n+foNDX69QYP8dp28AVdECkg/L9L+6qPTtJZl2CBWVua36+QjB3PRYCMincu0aTBuHPTv71sgd+70\n3ZfiOeeXr1zp1xs/3m8nIpIv6tok7a+iwre5NzZmtl0XGTmYiwabTt7zS6TLSTPBE6Wlfkbr8ePh\nqqs0ZkpE8kuBhLS/IUN8J9/Vq30HXo0cbCHWYJOqS1MipXoU6dzSSPCklNAi0q4USEj7Gz1aIweT\nUINNcdPkgFJIKRI86XMoIu1KgYS0v9jIwTVr/CMsLVFMbOTgsGFdYuSgGmyKkyYHlGISkuBJRKRd\nKZCQwpg2zY8IPHDA/w2aKMG55okSutDIQTXYFB9NDigiItKaAgkpDI0cDKUGm+KiyQFFRESCmUvM\nHyftzsxavAld6j1Rf5FA9fVw++3Jb14TG2wmTYJrr+1Sp6ld/PGP8LOfwbp16QV1K1f6oG7WLE0O\nKCIiRS3N3JBJdtClblqLVJcOJGJiI1g1cvCwsO40iQ02gwY1N9ioO01uRSLw1a/6WHfo0PS6me3c\n6RvYpk2DefO67Mc39zTKXUQk19ocSKhrkxQHjRxsRakeCy8XkwPqI91GarUUESlaCiREiphSPRaW\nJgcsMI1yFxEpagokRDoANdgUhiYHLCCNchcRKXqqyxQRCaHJAQto0SLfErF5sx/lXl3dulnIzC8f\nO9avt3y5305ERNqFAgkRkRCxyQG3bvVZstIRmxww1n1fshCJ+DERGzf6lohUTULl5X69jRv9dpFI\n+5RTRKSLU9cmkXQoY0yXpMkBC0Sj3EVEOgQFEiLJKGNMl6bJAQtEo9xFRDoEBRIiYZQxRvAx4sqV\nfizvypXpTQ44frzfTrKkUe4iIh2CAgmRIMoYI1EVFT5GBB9Trl8fPjngsGHNkwPqY9AGGuUuItIh\nqOFdJIgyxkic2OSAs2b5loaRI/3b39Dg/44c6ZfPmgXXXquGqTbTKHcRkQ5BLRIiibLNGLN+vd9u\n+nR1ju+ENDlgO9IodxGRDkGBhEgiZYyRJDQ5YDvQKHcRkQ5Bv7YiiXKRMUZE2mbaNBg3zo9eX7nS\nf7cSuzk555evXKlR7iIiBaAWCZFEyhgjUnga5S4iUvQUSIgkUsYYkeIQG+WeOJdLQ4P/ro0cqblc\nREQKSIGESKJYxpjVq/1NSjrdm2IZY2I3NiKSGxrlLiJStBRIiCRSxhiR4qNR7iIiRUfVOCKJYhlj\nBg3ymWAaGpKvH8sYM2iQMsaIiIhIl6E7HpEgyhgjIiIikpS6NokEUcYYERERkaTMJdaySrszsxZv\ngt6TIlJf3zpjTFOTDyCqq5UxRkRERDqqNCfLSrID3bQWngKJDiASUcYYERER6UwUSHQGCiRERERE\npJ21OZDoElWpZjbQzO41s7fNrN7Mas3sDjNLI69ni/2cY2aPm9lbZnbAzNaZ2UNmdnq+yi4iIiIi\nUow6fYuEmR0HPAv0AxYCrwETgDOA1cBE59z2NPZzG3AdsB14FNgGDAf+DT9o/ZPOuV9mWUa1SIiI\niIhIe1LXplTM7M/Ah4D/dM7Nj1v+XeCLwD3Ouc+n2McxwCZgK3CSc+7duOfOAJ4E1jvnhmVZRgUS\nIiIiItKeFEgkE22NWAvUAsc55yJxz1UBm/EnsZ9zbl+S/ZwG/BX4vXPuvIDnd+PPZVWW5VQgISIi\nIiLtqc2BRFbzSJjZ5LYeOBnn3LIc7eqM6N/H44OI6DH2mNkz+NaK9wOLkuxnDdAATDCzPs65bbEn\noueiCt/dKSUzW55B+UVEREREilK2E9ItAfJVbe7I3UR5I6N/Xw95fg0+kDieJIGEc26Hmf0/4LvA\nq2b2KH6sxHH4MRJ/Af4jR2UWERERESl6bb1hb3OTSJ71iv7dFfJ8bHnvVDtyzt1hZrXAvcBn455a\nC9wfP24ixX7GJS5L7NokIiIiIlLs2pr+1eX4UbTM7DrgYeB+fEtED2AcsA74lZn9V+FKJyIiIiLS\nvjr7PBKxFodeIc/Hltcl24mZTQVuww+2vtY5t845t9859xLwEXxGpzlmllXWJhERERGRjqYtgYTl\n4ZFrq6N/jw95fkT0b9gYiph/jf5dnPiEc24/8AL+XJ6caQFFRERERDqibMdIfDqnpcif2I3/h8ys\nJCD960RgPz61azIV0b99Q56PLW/ItqCSWiQCr7wCtbVQXw8VFTBkCIweDSWdvW0NdAJERESkqHTq\neSQgswnpzKwbfvzDIefcG3Hrfhz4NbAFGOec2xT33NnAH4B6YGA6s2QHlFHzSCRRXw+LFsGyZbBh\nA+zcCU1NUFoK1dUweDBMngzTpvl7606ny58AERERyQNNSJdKdFK6Z4F+wELgn8Bp+DkmXgc+ELv5\nN7MhwHpgg3NuSNw+SoA/A2cBe4DfAe8AJ+K7PRnwBefc97MsowKJEHv2wPz5sHw5bNzo75/79oWy\nMmhshK1b/f30oEEwbhxcfTVUZTUtYJHq8idARERE8qQwE9J1JM65N8xsPHATMB2YgZ/R+vvAjc65\nnWnsI2JmM4ArgX/HD7A+EtgB/BH4gXPu8Ty9hC6rvt7fQz/9NGzeDCNGQO/eYHEf+8GDoa4O1qyB\nAwf8sjlzOknFfI5PgHpGiYiISC61S4uEmQ3CtwIcjZ+zocQ5d1PeD9xBqEUi2B//CD/7GaxbB2PH\nQnl5+LoNDbByJQwbBrNmwYwZ7VfOvMnRCVDPKBEREQlQvC0S0e5AnwS+DJwQ8PzNwEW0nNztXufc\nL/NVJuk4IhF/47txo6+IT3YPDf75ESNg/Xq/3fTpHbyWPUcnIKxnVHm57xm1ejWsXesbNFauVM8o\nERERSV9eAgkz64cfnDyZ4GgnVuX+EjA17v+9AAUSwiuv+NrzSMT35klH797+RnnDBr/9mDH5LWNe\n5eAE1J8wpmt3DRMREZG8ynmdbTSt6pO0DCICZ692zq0GXoltCow1s6G5LpN0PLW1vgtOnz4tb3yT\nMfO17Tt3+nvpDi0HJ2DRIt8SsXmz7xlVXd16V2Z++dixfr3ly303KBEREZFU8tH5427gvdF/xwcP\nYXdDTyQ8d1YeyiQdTH29r1wvy7DNrKzMb3fwYH7K1W7aeAIi+w9m1TNq40bfMyoSSb6+iIiISE67\nNpnZSfisRvEtD6mqU2OTwcW2mQj8JJflko6nosIPBm5szGy7xka/Xffu+SlXu2njCVj/TndWroQd\nO6BnT9i1y499qKkJb+DoVF3DRDo7pWETkSKQ6zESl+ADB0dzAPEY8AtgQcg2/4z7txEwMFu6niFD\nfJeb1at9P/50evc456dVGDnSb9OhZXkCIu9u5Z2eI/nh/w5m1atw6JDfhZm/z6ishP79YcAAH6fE\nS+wapkBCpAgpDZuIFJFcBxJnRv/GgonfOuc+DmBmYYHE5oT/d/RbQMmB0aP99XDtWj8YuLo69TZ1\ndf5aOniw375Dy+IENGyrY9vWUp7fP5jfHxrNvn3+PqKkxFde1tX5loldu2D7dhg1qnWXp7Iyn0m2\nw3cNE+mMlIZNRIpMrgOJQbRsjZiXxjZ7E/7fM6clkg6ppMRXqq1Z4x/pTKOwZo2fRmHy5E7Qsp94\nAsaMgb17/Y1ErPYxrq9S04EGdvx1Desiw3iycTJH9y/hYINvZejRw++ystKfp927/S4ATjqpZctE\np+kalkjdQKSj6/IzdIpIMcp1IJFYbbomjW16Jfy/NHAt6XKmTfOVagcO+L9B103nmq+b/fvD+PF+\nu05h2jR48UXffeGxx/zNgHP+Ed9XqaqKvZt2sykygBUl4zk4cRr998OWLf7cVFb63cU2qanxYye2\nboVNm2DQIP98p+oaFqNuINJZJKZhC6pZiU/DtnJlcxq2TjFDp4gUo1wHEnvxM1fH9APWp9hmYML/\nd+W0RNJhVVT4lnnw18P165tb8svKfO351q3+nnDYMB9EXHVVJ7ofbGjwL/jAAf/vPXv8C4+9wF27\nYPNmXHk5B0rfw/LyCfzttKs44ogKarr7AGLXLr9p/D1HaakfgL1nj78nOfZYf//RqbqGgbqBSOfR\n5WfoFJFiletAYhstA4mzgR+l2Oa8hP9vyWmJpEOrqvIt84mVyg0N/qY3Vnve6SqVY90Y/vY36NYN\n3vc+3ydp3z7/nHOHB0A07qtnX+RImiihsqacJnxg0L9/85iIo45qeR9RXu53sXevb52oqupkXcPU\nDUQ6ky4/Q6eIFKtcBxIvASNoHifxTTN72jn3ctDKZjYEmB23vgP+luMySQdXUeFb5qdPb76eHjzo\n+/HHas87/I1vovhuDCef3Hznv2OHv/tvbPStE5WVvL2jEvfiKkY3raLx7UX8fZDvxjBggB9U3dTk\n//bq1VyRaebPX309vPMOvPFGJ+sapm4gkmMFHWaTixk6FUiISB7kOpBYDFwU/bcD+gJ/NbP/C1j3\nduCT+HEV8fNOPJnjMkknUVLir4Wd/noY1o3BzDctHHVUi9Ub6+CtI0bwnoPrGbF5Gf84djrOSigt\n9Q0Z4LuA7d7tY5EjjvC7qq/3AVl5ub+X7jRdw9QNRBK0JQgoimE2sQkqU32WEykNm4jkWa4DiQXA\nbTRnXnJAd+CC6P8t7u9/0twKEbMdeCjHZRLpWDLsxlBaCvu79cYONFGzdwMDdrzCW0f5aKtbN5+Z\nadMmXzm/d6+/J4lEfFBRWemDiFmzOlHXMHUDkaiMgoBuraONfX2H8P0nR7N8RUlhh9l0+Rk6RaRY\n5TSQcM7tNbNbgP+iOUCITwcbLz6IiP37RudcQy7LJNLhZNiNoaoKyrsb23b3pap+JzV7NhwOJMDf\nR7+fh/YAACAASURBVAwa5AdVx3pGHTrkDzNiBHz96773VKehbiBC+mPt179Wz55fL+L8o5ZRsbk5\n2miyUmrfqWb4vsFsZjIVY6dReVRFYYbZdPkZOkWkWOW6RQLn3HfMbBJwLsmDCZfw/0edcz/MdXlE\nOpwMuzHU1EBVJRzaWkakoYFuTcHdGOJ7Ru3c6bs6jR3bCe+Z1Q2ky0t3rP3BrXs49fn5DIgsZ3vp\nRo7p10RJPx9t7NjcSPeNqxnVsJZhfdfw1psrebLn1dSXNzc5tNswmy4/Q6eIFKt8dQS+APgpPniI\n/XS7hAdxz/8U+HieyiLSsWTYjSGWoalHRSN7DpRywCXvxhCbvG/QoE6SoSmRuoF0eYlj7aurW1fi\nd4vU89FN85lc8jRH7V7Heoby1tHjYcgQ3ICBrIsMYVXZeHYdNZR++9Zx3DtPc+Y/5lPWVN/qeLFh\nNhs3+m5UkUiOX1BsgspBg/yXtyFFw32n/5KLSLHIy6+Lc67ROfc54HTgYfzcEJbw2B197nTn3Oec\nc035KItIhxPrxrB1q++ekIYB73H0L9vKoR7VPLtpMDt3tt7UOd8SsXJlJ8vQlCiL83e4G0is47x0\nWOmOtT9h0yIGbV1O9cHNbD56LFsaqtn8jh1OjrZnLzgzGiurebNmLL32b2bQ1uWcsGlR4P4Sh9nk\n3LRpMG6c//KuXEnX/pKLSLHIedemeM6554GPm1kJMAifxQlgK7DROZfrehuRji+Lbgyle+roe0wp\n66oG03TUaDZ0tcn74qkbSJeWzlh7cxFGbF5Gzd6NbOk5grKKctweHzzs2OHHVzTUNzdONZWW827P\nEfTZ0zIzWot95nuYTVecobOgOXdFJB15DSRiogFDbfQhIsnEujGsWeMfYfMgxES7MZQOG8apn5zM\n5d1KutbkfYmyPH+dZza+ri2dsfYDdrxCzd4NmItwoNxHG92P8MHDnr3+/jzioDTuo7C/vDfmWmdG\ni5f3YTZdZYbOosi5K+1BsWLH1y6BhIhkaNo03z3hwAH/N2i0qHPNKWOi3Ri6TZ/GjIouNnlfkCzP\nn7qBdHzpjLU/ak8tPep3srd7c7RRYtAUgaboUJkS88HEYWbs7d6XHgGZ0WLaZZhNZ5+hM910W3nP\nuSv5pFix88hrIGFmNcAngMnAe4HYTFrbgVeBZcAvnXM78lkOkQ6njd0YuszkfWG6YjcQAdIba1/W\nVI+5JhpLmqONiPPBQ2mZz4JWXgG76vy/Y5pKyiiLBGdGa/dsq53xS55uuq12ybkr+aJYsXPJSyBh\nZt2AG4Fr8BPSQcv0r32BkcBHgG+b2R3AXOfcoXyUR6StCtL82lW6MeSLzl+XlM6UC42lFTgrpTTS\nHG0cPAC9evvAIZZSefcuqG+Aimi8URppxFkph0pbNzlomE0OJKbbCmpWarecu5IPihU7n5wHEmbW\nE/gzMIGWwUNi+pTYc0cA1wNnmtmHnHN7cl0mkWwVvPm1s3djyDedvy4nnbH226uGsK+imqPrVrO9\ncjD1hwyz5iAillJ51y7/6HMUlJij8uBWtvQeyY6qlk0OGmaTA+mm24qJ5dxdv95vN316Xk+8+vLn\nhmLFzicfLRIPA6dF/50s92KL3qf4wONh4MN5KJNIxoqq+bWkhMjoMbzCGH8hOwgVtTAEXcjS0hm7\ngUigdMbab6oZzY7KwfTbtZbuB+t4d281Pat88BCrGR0wALZvh8Ym2LYd3nNEHRErZUflYDbV+CYH\nDbPJoXTSbSVKzLmbh+93wSuTOpEijxVblFNBY/pyGkiY2YXAWSQPIILEZr4+y8wucM79NpflEslU\nMTW/6kImkplUY+2dlfD6MZOp3raGnu+uoWfNWPr2LWfAgOZ9lJbCqPf5f+/Y0sBRW9ewrnwYT5dM\n5s1NJRpmk2vppNtKlOecu0VVmdQJFGmseJiutdnJdYvEJ+P+bTQHCACH8IOswQ+67hb9d2LQMRNQ\nICEFVSzNr7qQiWQunbH2K7dMo5SVvL/nAU6KrKRm4AhKS3oT3yO3vMxx0rF17N2+hs39+7O1cjyr\n+kzTMJt8SCfdVpA85dwtpsqkzqIIY8XDdK3NXq4DiVNo3WXpj8C3geedc40AZlYGvB/4CnB2dJtY\n0DEux2USyUixNL/qQiaSvVRj7YedWMGWY66mcgf03bWc0jfXQ23rzF6lpaX0GjuMqnHjOTT1Kj67\nrULDbPIhnXRbQfKUc7dYKpM6kyKLFVuUS9fa7OU6kIild421RvyPc+7SxJWiAcXTwDlmtgD4d5oD\nkDSmoRXJn2JpftWFTKRtUo+1r6LkUHqZvUqmTWN0RQVKyJQn6aTbSpSnnLvFUpnU2RRZrHiYrrVt\nk+tA4l0grpcpt6Sxzc34QCJme9iKIu2hGJpfdSETyZ2kY+2V2as4pJNuK1Gecu4WS2VSZ1NEseJh\nuta2Xa4DiRXAwLj/r0tjm/h1HPByTkskkqFiaH7VhUyknSmzV2Glk24rXh5z7hZDZVJWijzdUBHF\niofpWtt2uQ4kfgGcG/f/Y4E1KbYZmPD//8lpiUQyVAzNrx32QiYikq1U6bagXXLuFkNlUkY6SLqh\nIooVD9O1tu1yGkg45x42s78AH4wuuga4KsVmX4j+NeAFfDAiUjDF0Pza4S5kIiJtlU66rXbIuVsM\nlUlp62DphookVjxM19q2y8eEdP+Oz9R0GjA7mqHpFufcm/ErmdlA4GvA5/BdmtYAH3XOZToHhUhO\nFUPza4e6kImI5EqqdFvtkHO3GCqT0tIB0w0VSazYojy61rZNVoGEmT2ZYpVYA5QBnwU+a2YbgLej\ny98DDI5bxwENwC/NzDnnNDeoFEwxNL92mAuZiEiuFXgAfDFUJqWlg6YbKoJY8TBda9su2xaJqaQ3\ne3X8hHRDaBk8JK4ziuagQqSgCt382mEuZCIi+VKgAfDFUJmUUgdPN1QsydJ0rW27tnZtShW7JQYG\nsfWDlokUjUI3v3aIC5mISCdV6MqklDpJuqFCJ0vTtbbt2hpIZNp6ELS+WiCkKBW6+bXoL2QiIp1U\noSuTUlK6oZzRtbZt8jHYWqTTKGTza9FfyEREOrFCVyYl1ZZ0Q/X18Npr/u64COebaG+61raNZZMk\nycxqyWNLgnNuaL72XYzMrMW5VOIqiZezFOFFPlmRiEixiv18Fs3E5wsXwl13+WBgyJD0tmlqgpde\n8lXrAwfCkUcW5XwThdJBpuPItTYPL8gqkJDcUiAh6cj6QtZFfx1FRDqtVavg1lt9uqHx41N3b2po\ngL//3ffNKSmBo4+GQYNaV7kPGgTjxhV8volCKrqgMb8USHQGCiQkb8ImK9LFQ0Sk44pE4Ktf9ZVE\nQ4cmTzfU1AQvvwxvvgm7dvnf+0mTWt4VJw4C+Jd/Keh8E9Ju2hxIaIyESGfVAScrEhGRNGSSbmjT\nJtiyxQcRffv6wCOxar0I55uQjqHzNdKIiJc4WVF1devm7/iLx+bNzRcPEREpbtOm+Zbk/v39zf/O\nnb5lIV4k4kcPb90KvXr5Lk0DBoTvMzbfxMaNvjtsJJLf1yAdnlokRDqjDj5ZkYiIpJBOuqENG+Dd\nd/1v/MCB8L73+e6syRThfBNSvPJ2p2BmR5vZN8xskZm9ZWb7zKwpjUdjvsok0mXkYrIiEREpbrEc\ntbNm+RaKkSN9S3NDQ/O8Eb17+7ylY8ZAt26p95k434RIEnlpkTCz2cDtQKyjtWavFmlPmqxIRKRr\nSDbh0WuvweOP+3VStUTEKyvzwcjBg/krt3QKOQ8kzGwm8MOExemmIVLAIZILbZmsSBePzGh+DpGk\n9BVpJyUlvgIovhLIOXjySd/NKRONjT7w6N49t2WUTiengYSZVQLfi/43KHiwhOWWZF3pQnShybFY\n7ZMuHvmj+TlEktJXpAgMGeJP9urV/oSn00LtnB+cHZu6WySJXLdIXAj0IjhYSPy/iz4sYB3pInSh\nyRNdPPIrbH6O8nIfjK1eDWvX+rSMK1dqfg7pcuK/Im9uiDB07yu8/4haKqyeelfBP2uH8OSa0axZ\nU6KvSD6NHu1/z9eu9am+k803EVNX5y/CsVnYRJLIdSAxLe7fBjQB/wucH13mgF8ARwEfAKqjy5qA\nh4CGHJdHipjuxfJIF4/80fwcIknFviJ/XVrP4LWLuKzbMt5zaAM99u3EXBPOStlXXs3bewfz/9m7\n9/i4zvre959nRpqRbcm62LLj2JZ8iePQxIlTG0qaxBC0yXbDKb1CX6ebUvoy9FBIgJJD201bSuhu\noLsNhXq3FNq0cPZuXy09tAROsyHUsGuSkE2jIscNxJYvkhxHsWXdZUkz0sxz/nhmotF4RprLmtua\n7/v10musuaxZ0shrrd/ze57f71jfIZ6Z6QHC+i9SCvn0mwA3tbW/3y3OPnRIUwJkVV4HErexlGWw\nwB9aa/+zMeaVQsTW2ncAGGOagIeADwFBoBv4CWvtqMf7JFVI12IlppNH6aT358j0e1VzJ6ljx47B\n889M88aTR7mjsZeNU0MYG2OmqZPFQIhgfJHNk6fYZM6wbW0/3znZxzPhBzh2rEX/RUqhp8cdh+bm\n3G2mE256Z+uDB93rRFbhdSCxOe37f8j2RGvtPPDrxphW4JeBO4C/Bd7o8T5JFdK1WBno5OE99ecQ\nWVE8Dk99M8KP/ttR7rBPsvHqMJfW72EutPzYM9rczZroBJun+rmzcY7Av8FT33yQw4fD+i/itVz6\nTYyMuIz0rl3uPHD//Rq1k5x4HUisT/v+bA6veQQXSBjgDcaYn7fW/o3H+yVVRNdiZaKTh/e86M+h\nsrriYydPwvp/PcZNV3vZGBzmQsd+YsHMI0Vz4XYudOxn+1gfN831MvOvxzh58j79FymFZL+J9EWJ\n0ag7ByTXxmlRouTJ60AifUXndOI2CoTANaqz1l5Kec5LidvkAu23AQokfEzXYmWkk4e31J9DZEUD\n5+LsuHCcbfEhLrXvyRxEpIgFQ1xev4dto+e5cuE4g+cPc9ttGikqiZX6TSTXxmmUTvLkdSAxB6Qu\nh03+RV4lEUjgpjB9OeU5P5TybwPc4vE+SZXJdi1mbJytYyfZMD1AQyzCYjDMaMsOLnbsAxPQtVih\ndPLwjvpziKyoqf8kLbODBIm76Uw5mA210UaMztlBFk6fxC23lJLJ1G9CpEBeBxJXWB5IrAUiwMtA\nGy5Q+Lgx5oS19rwxZjNLfSeSNnm8T1Jl0q/FGmIRbrp4jD3Dx+mYGWRdJKWyR7idseZu+rcc4mXT\nw2wsrGuxQunkUTz15xBZUdvEAMHFcSYa88vaTTR2sn5xnNjkIAokRGqH14HEBWBXyvdbgHHgFPAq\n3PSlvcAZY8wVXBnY9CZ1Mx7vE8aYbcDHgMOJ9xzGZUUestaO57mtHuB+XGalHRgFTgKfttY+7uV+\n+1XqtVg4Os0bnj9K10gvHTMZKntMnGLT5Bk2TfbT3NDHV7ofoKlJNWBXpQ5/paH+HCIr2twWYboh\nxsRsflm7uWgDbWujtLRqpEiklngdSDwHvC7l+xuA7wPHWeolAS546Ez5PrVk7Akvd8gYsxt4Gpfp\neAx4AXgN8H7gsDHmzlxLzhpj/iuuXO2LwFdwGZhO4ADwekCBRA6S12LnfhDhnrGj7L70JK2zq1f2\n2LMwx8+tgR1bHgQ0lz8jdfgrLfXnEFlR154w/WuDNMwuMhOFcA7xRCQKzSwSWhuk60Zl7URqideB\nRG/iNplhuBt3wf0l4PcT72czvC7VX3u8T3+KCyLeZ609mrzTGPNJ4FeB3wPevdpGjDHvwgURXwB+\n2VobTXu80cud9rPktdimZ49x/VwvrfOrV/Y407Kf6y/10Rrp5eZLxwDVgL2GOvyVnvpziKwosGsH\nLdvbaRg7xcWJbjZuNCv+2cfjMDlh2RUYYc32vQR2KmsnUku8PqslAwmT+HodgLX2AvAnXFvVKd0z\nuAt1TySyEfcCA4n3T/U7uEXgv2CMWbfKdsK4gGOIDEEEgLV2wYt9rgeBABy6K87rA8dpHhvi5eaV\nK3vE4zA2HWK0fQ/b40MEnjzu7pQlqR3+zp2DnTtdOdcdO2DbNnd78KC7/9w597yjR93rJD89PXDg\ngOu70dfnsj42bXzEWnd/X5/6c0h92bePTa/pZs26IJ2hCa6MuoxDJpEoXBmFTaEJ1jQH2fQaZe1E\nao3XGYnv49YOJKWuSPwQsBFX3jWT/wW8xVob83B/7kncPmGtXXblaa2dNsY8hQs0XgscW2E7b8RN\nYfoUEDfGvAlXXWoe+K619jse7nNd+A+bT9IfHiTUGOcH0220BjOnwCNRmJyEtWth7eY21i+qBmxG\n6vBXPurPIZJdIEDDPYfoPNVP4Nl+FtftZ3IqxJSFpjUQMBC3MD+XOCSti3LjQj8bfngXDfcoaydS\nazwNJKy1FvjfWR6LAW83xnwG+Bnc+okwLlvw1RItVN6buD2d5fF+XCBxIysHEq9O3M4D3yOtRK0x\n5jjws9bakdV2yBjTu9pz6kHopQFu3DTOhbmNrF80TE+R9USzvsVdo918iyFwUTVgr6EOf+Wn/hwi\n2fX00NjXR2d0joP9fQxu2MPlhTaiUUMs7o7xra2WTY0TdC/00/yqLQTvUNZOpBZ5nZFYVWL0vlwj\n+K2J28ksjyfvX63YdbIk7YdwWZe7gT5gJ/CHuGDk73ELriUXkQiNJkb3DSEacAPp0zMQjbB0ommD\nlmY3M2TrVnd9pnr8GajDX2WoP4dIZomsXRBoXdfLvsHzzF2NMbO+k0UaaGCR5vkR1jQHMV3K2onU\nsrIHEjUqeTWwCLzZWjuQ+P6kMeancOVtX2eMuWO1aU7W2gPp9xljVluA7j+JGrDB+CJdO2D7dhgb\nc8FEbBGCDS6I6OhIq7CpevzXUrflylJ/DpFrpWTtzPHjrB0cZO34OMQSWbt2Ze0ElSr3gYoHEsaY\nAK6MapK11m7waPPJjENrlseT90+ssp3k499LCSIAsNbOGmO+DhzBlZXVeolcpNXjN8awYQNsWOmT\nVz3+zNRtWUSqkbJ2ko1KlftGxQMJXCWnNpb3kvDKqcTtjVke35O4zbaGIn072QKOZFO7NTnul6ge\nv3fUbdk/NDonfqSsnaRSqXJfqYZAopS+lbi91xgTSK3cZIxpAe4EZnFlZ1dyDBfg/FD6dhKSi6/P\ne7DP9cHDevx1f+2lbsu1T6NzIlIPUkuVDw+7wh9tyxvR0t3tBg77+2Fuzt334IM69lUpXwcS1tqz\nxpgncIuh3wscTXn4IWAd8Flr7VV4pancbmDBWns2ZTuDxpivAm/GdcT+o+Rjxph7gf+Iy1Z8rbQ/\nkc/09LjRhrk5d5vpgGLt0gElrR6/rr0SlN2pqKIDWY3OiUi9UKly3/F1IJHwHuBp4I+NMT3AD4Af\nwfWYOA38ZspztyYeHwR2pG3nvcDtwCcTfSS+h6va9JNADHintTZbdSjJpIh6/Lr2SqFuyxXhSSCr\n0TkRqRcqVe5Lvg8kElmJg8DHgMPAfcAw8GngIWvt+EqvT9nOi8aYA8BHcJmJQ8AU8FXg49ba75Zi\n/32vgHr8uvbKoMjsjuTHs0BWo3MiUi9UqtyXfB9IAFhrLwC/lMPzBnALvrM9PgI8kPgSr+RZ2UPX\nXhmo23LZeBbIanROROqJSpX7Ul0EElIjcqjsoWuvFajbcll4FshqdE5E6olKlfuSAgmpKbr2WoXq\ntpeUZ4FsPA7f+pabA5X842xpydCBMY1G56Ta1H3ZPMmZSpX7kgIJqSnKjOZIddtLothA9t97I9w6\nksgYffvb7k5jXFv3cBiam936la1b3YkzE43OSTVQ2TzJl0qV+1LBgYQx5u0e7YOGLCRnyoxKJRUT\nyM6PTNP4x0dhNrFCe2zMPWjM0kL4yUn3NToKN9+c+Q9do3NSaSqbJ4VQqXJfKiYj8Xm87UItsipl\nRqWSCg1km0yEHx84Stvok0BihXZXF5w44U6ULS0uGxGNwtSUexOAW29dnpnQ6FxhNP3GOyqbJ4VS\nqXJf8mJqU47jciLFU2ZUKqnQQHbf5WPcON3LGjsMhxInT2td8DA56U6YoZB7g44Ol60YGYGLF13A\nkaTRufxo+o33VDZPiqFS5b7jRSDhRVZCwYjkRJlRqaRCAlnicXZfPM6WhSHYnbJC2xh3kkxOZ9qw\nwY24BYOwfr2bPjI8DNu3u+dqdC4/mn7jvXoum6esljdUqtx3qmWxtaZISU6UGZVKKiSQXT94kusX\nBgmH4rR2p63Q3rrVrYeIxdxta6v7g05mLGZm3P3BoEbn8qHpN6VRj2XzlNXynkqV+0qxgYQyCVJ2\nyoxKpRQSyC6eGWBT4zjh6zdiAmmHzGAQbrnF/XtkxK2PsBbWrHH3TUy4P/KODo3O5UPTb0qj3srm\n1VlWq6xJF5Uq941iAokveLYXInlQZlQqKd9A9q2tEdoCMTo2Z4k4GhvdouqLF92F78yMO4snN3Td\ndXD33Rqdy1U9T78ptXoqm1dHWa2KJl1UqrzmFRxIWGt/ycsdEcmHMqNSKfkGsnvWhtk2HCQYX2GF\ndjDoFlVv3+4WWs/MuIuXYBDe+lb3hrq4zU09Tr8pl3oqm1cnWa06S7pICVTLGgmRvCkzKpWSTyD7\nHzp30PjJHFdoG+MWXXd0wOXLbkOvf73+kPNRb9NvyqleyubVSVarjpIuUkIKJKTmKTMqlZBzIBtX\nqbGyKnD6jQ02MDMW5YVvz3N+XkV5MqqXsnl1ktWqk6SLlJgCCRGRIqwayKrUWHnlOf0mFnPLU+Zf\nWGRuPsg/RZt4qk9FeTKql7/lOshq1UnSRcpAfwYiIqXW0wMHDrgSYn197mLDplW9ttbd39enUmPF\nSE6/GRm59necJroAzz0HL/zAEr80wvB8O5eaul+pvnvqlBt9ffRReOQRN5+87tXD33Iyq9WQ51hr\nQ4N7XQ0sKvci6SICykiIiJSeSo2VT47Tb2IxeP7fYfhlCE5N0NAUxHZ1Y2/Zx7bEILTmh2dQqr/l\namr4VgeLyusg6SJlokBCRKQcVGqsPHKcfnPxorvejc5EuT3Yz+j6XZzZcghrli5aNT88Cy//lqux\n4VsdLCqvp0q+UloKJEREykWlxspjlWYf1sLwSxYzMcGt9DPVvIXBzoO8sDXz9BvND8+gyL/leBye\nf2aa4J8epaW/l+bRIcKNMdZs78RUuvZoHSwqLzbpEgrBiRPVkUCSylIgISJSbio1VlqrTL+ZHluk\n88IIzdEgE5t2Mdh5kG/dfD+Lwewj3jVYlKc88vxbTiYgnvpmhH1PHGXX8JM0zg9zbt0eFta10XLZ\nsGULbN0OwUrNLauDReWFJl0uX4b16+ErX3EfSTUkkKSyFEiIiIj/rDD9Zm4+yGB4L5dbu7l80yFe\n2NqzYhABmh/uhdTmZ9ueO0bnSC8d8WHOt+4nakLMT8LUFExOwugo3HyLIVSpuWX5trCvsUXlhSRd\nrlxxs7dmZ+HqVZdVUvM6USAhIiL+lGX6Tf+zTfzt8W4uduxj6/bcR481P7xwqc3PXn4pzi8Ej7O7\ncYiRlj2EwyHCQEszRKIukFiMudfdeisEKzG3zOcFEvJNuszNwTPPuOBhcdH9yGpeJ6BAQkRE/C5t\n+s1oGAafAxvLbzM1VJSn6qQ2P/vx7pNc//wgxsaZCy2vPRoOwcYNcGXUXadfvAhdXVRmbpnPCyTk\nk3Tp7XVBRCAAd94Ja9Zcuz0VJ6hPCiRERKSu1EFRnqqS3vzsuskB1kXGmWnKXHs0EIDWVpiegnPn\nXPwQjxtabCdNQ+M0nx8kUK65ZT4ukJBP0qWhwX29+tWZg4hUKk5QXxRIiIhIXamDojxVJb35WcNY\nBGNjLAYyz6WxFhaiMDMDc/MwMekuYjdFGlgTjPLcX83THipzEsCnBRJySbqsWQNnz7r1K52duW1X\nxQnqhwIJERGpK3VQlKeqpDc/WwyGsSZIMH5t7dF4HMbGYX7OXYguxqAp7KY8Bewi07NB/u37TQw8\nqgW9Xlkt6XLuHHz2s+57Na+TdAokRESk7vi8KE9VSW9+Ntqyg6vhdjZPnGK0uXtZf4+xcZibddNq\nGhrcQ+EwrFtr6Zwd4VLnXgI7uzl3Tgt6vZYt6XLqlJrXSXYlCySMMSHg54DXA3uBdmCVmXUAWGvt\n7lLtl4iIiM+L8lSV9OZnFzv2MdbczabJM6yJTjAXdnPLrl51mYjFRfeaZOWmQADWRiewJshYSzfT\nO/axf6sW9JZLsc3rVJzA30oSSBhj/g/gc8Dm1LtzfLn1fo9ERESW83lRnqqRvrgdE6B/yyE2Tfaz\neaqfCx37iQVDzM7CwiI0hsAEIBaBUBjCwSibpvq50rKL/i2HsCagBb1lpOIEshLPAwljzJuAfwSC\nGR5eLUjINdgQEREpmo+L8lSNTIvbX9jaw/bRPhpjc2wf6+NC0x4WFtrAGoIBiMcALB1mgj0z/Uyu\n3cJg50Fe2Lo0t0wLestDxQlkJZ4GEonpTJ/DBRHKLIiISE3waVGeqpBpcTuhMN+82c0t6xrpZePY\nedbPxxg1ndiFBmx0kU1mhEYb5ErLLgY7D/Ktm+9f1oHcqwW98bgLRAYG3HqOcNiNwiuIdFScQFbi\ndUbiJ4AtLA8iMmUZVntcREREfCLz4vYWvnHrg9x08RidPzhOU3SQ9fFxAtEopiHIxbV7iW/r5sz1\nh3hha8+yICKpmAW9kci109piMTeS3t6uaW2pVJxAsvE6kPixlH8n/7z6gP2Jf1vg28AG4FVAIHFf\nDHgaZTFERER8J/vi9jADDfcx3HaYppGTbDeDdLbOE25tovnmbi5t2oc12Ye0C13QOz0NR4+6fRka\nWlpoHwq5bZ465aby9PfXUZnZFVIz4XBAxQkkI2Otd9fuxphe4PbEtxb4C2vt/2WMiSfvs9YGE8+9\nHvgk8NbEc78EvN1aW3eFwowxyz4ELz8TERGRapEtC3D1Kly86DILt98O27a5i9KVWAvPPusWYs7w\nCwAAIABJREFU9P7Gb+Q+tSkSgUcegSefhOHh3EbX77rLx2Vm80jNRAgri+MvRc8K8jqQuARsxO2Y\nBQ5Za5/KFEikvOZLwE8lnv931tqf92yHaoQCCRERqSfJwe/k4vZQCL7yFXjuOTeincuC3vFxNzLe\n0wMPP5z7XPzHH4dHH3WN1nKZ79/X5/bpyBEflpnNlppJTzN0dcGBA6+kZtI/PxUnqFlFBxJeT21K\nT/ydzuE1D+ECCQP8nDHmb6y1/5/H+yUiIiJVItPi9lAIJidLu6A3Hnej6UNDLhOxWpM1X5eZjURc\nELFSaqa7eyk1k9IBMBAOqziBAG6Ngpca076fTNwuJO8wxmxMe86ZxG1yGP4dHu+TiIiIVLmeHjfo\nvWWLywKMj7spRqmsdff39RW2oDc5ih6Pu2vmXKSXmfWNY8dcJmJ42EVu7e3XNokwxt2/f797XrID\noEiC1xmJOWBdhvuvAsn/svuBf055bGfKvw1wwON9EhERKY5qhJZcObqNDwy4QGTjxtwaq4F3ZWar\nilIz4hGvA4lRlgcSa4AocAVoTdz3u8aY71prp4wxYeDhtG1sRkSKo4seEW/UeY3Qch9KSt1tPBJx\nH99q183piikzW5W8SM34IqKSYnkdSFwEUpuhb8ZNbzoF3ICbvvQa4IIx5gVgF9DB8rKvEY/3SaR+\n1PlFj4in6rhGaCUPJaXsNh4Ou59hcTG/1xVaZrZqKTUjHvE6kDgJ/GjK97twC66fBt6UuM/gFmW/\nOuV5lqVKT9/3eJ9E6kMdX/SIeK6Ihai1HqRXy6GkFN3Gd+xwgdCpU+7jy+Ua2lo3pSqZDfEFpWbE\nI14HEr2J22SG4S7ga7geEf8l7TFD5gZ0/6/H+yTif3V80SM50nS3/KQvRM10wZW6ELWvb2khag3X\nCPX7oWTfPrf/Z864nyGXMrMTEy4bkcyG+IJSM+KRUgUSyUPOIQBr7WljzF8Db2MpeMgURJwC/szj\nfRLxvzq96JEcaLpb/up4IarfDyWBgPtz7+8vbZnZqqfUjHikFFOb/s+U71PXO7wb6CIRXCQkpzSB\nCyLeZK2d83ifRPytji96ZBXVMkel1tTpQtR6OZT09Lg/97k5d5tLZ+t8y8xWPaVmxCOeBhLW2kXg\n77I8NmuMuQcXaPw0bvF1GBgAvgo8aq3VQmuRfNXpRY+swu9zVEqpThei1suhpBxlZqueUjPiEa8z\nEiuy1lrgbxJfIuKFOr3okVX4fY5KKdXpQtR6OpSUusxsTVBqRjxQ1kBCREqgTi96ZAUZ5qhYC2Nj\nbrZTcolESwt0dICp1TkqpVKnC1Hr7VBSyjKzNUGpGfGAp4GEMSaW8q0FQtba+CqvMcBDqfdZaz/i\n5X6J+FqdXvTIClLmqMRa2rg45BIT0zMQjUDcQsBAKAwtzW6gcev1bQRrbY5KqVRwIWoli2vV66Gk\nFGVma4ZSM1IkrzMSOSZDlwkAv8XyKk4KJERypeobki4xR2WhbSP/ftIwMgIzM+5jb1oDwYALJiYn\nYGoSJidhdNRwS3snjbU2R6UUKrAQtRqKa+lQUqfqPjUjxSjF1KbUSkz5ytZbQkSyUfUNSReJEFuI\nMfhiiOE5mJ2F1lYIp01ZaWmGSNQFEosxaJlsYOe2KMFam6PitTIvRK2W4lo6lNS5uk7NSKGqYY1E\nNeyDSO1S9Q1JFw4zNhFkemKR2Rhs3JD9Yw6H3ONXRmF6fpGx5iCdtTpHxUtlWohaTcW1dCgRkXxV\nw0X8jkrvgEjNU/UNSRHv2sHF2XbWTJ+i9bpuAoGVk8SBALSut6x5eYSLs3vZsL2bur8mLNNC1Gor\nrqVDiYjko+BAwhjTxepBwCFjzEqLrTcCD6TdF8v0RBFZgapvSIqT7GPQdHODOUMbE8yx+hyVdiaI\nmSCDphvDPjS5gZIvRK3GBnA6lIhIPorJSPwSmRdFm5TbYzluK3VdxGQR+yRSv1R9QxIGhgI8u+YQ\nG5r76Zrq50LHfmLB7FepwViUTVP9DDXv4tk1hzAXAtx2exl3uJqVcCFqtTaA06FERHJV7NSm1RZV\n57roOrlA2wIvFLVHIvVM1TcEN+++t62HG2b6aJ2bY/tYH5fX72E2dO0clbXRCTZN9TO5dgtn1hyk\nt62HfXW+1jqjEixEreYGcDqUiEguvFgjkZpNSD8UFlKB6Z+K2BcRAVXfqHPhMMQbw/zjtgdonYau\nkV42Tp/H2BgzTZ3EAg0E44s0z49gTZArLbsY7DzIl1vuJ94Yrtl+ALWmFhrA6VAiIiuphsXWqQaB\nP630Tojko5INpEQyWeoH0MITtz/Iq146xp7h43TMDLIuMk5DPIo1QS617WWsuZv+LYf4wfU9DH0v\nrH4AZVSvDeBExD+8CCRWSsjmOrVpEfgK8AFr7VTxuyRSetXQQEokk9R+AFemw/x71308v/0wW8dO\n0jE9SGNsnoVgE2Mt3Vzs2Ic1AcbH1Q+g3NQATkRqXTGBxJeBgZTvDfCXLF/v8E4gW9UmC8wCl4AT\nCiCkllRLAymRTDL3Awjw4obbeHHDtXNU1A+gMtQATkRqXcGBhLX2BHAi9T5jzF+mPe0L1tqVyr+W\nhTFmG/Ax4DCwARjGBUIPWWvHC9zm24D/nvj2Xdbav/BiX6X6VVMDKZFs1A+g+qkBnIjUulKskch1\nOlNZGGN2A08Dm4DHcFWhXgO8HzhsjLnTWjua5za3A/8NmAGavd1jqXbV1kBKJBP1A6gNCvhEpJZ5\nHUjsTP2mGrIRuMXbm4D3WWuPJu80xnwS+FXg94B357oxY4wB/goYBf4B+L893VupatXYQEokG/UD\nqH4K+ESklhlrC6nQWhsS2YgzuLUcu1MDG2NMC26KkwE2WWuv5rjN9wN/BLweeAPwOxQ5tckYs+xD\n8PNnUutOnIBPfAJOn4YDB3JfHPnss+6i7Td+Q2UUpTKS1cXUD6A6qXiDiFRA0bOIqq38q9fuSdw+\nkZ4dsdZOG2OeAu4FXksOXbiNMa8CPgF82lp73Bjzhnx3yBjTm+9rpHpUcwMpkZWoH0B1UwM4EalF\nJQskjDGbgV/GjdzvBdqBXKpeW2utV/u1N3F7Osvj/bhA4kZWCSSMMQ24xdVDwIc92j+pMbXQQEpE\napcCPimUehpJJZQkkDDG/ArwCJBMwFZqAXZr4nYyy+PJ+9ty2NZHgNuBu6y1c4XukLX2QPp96VOb\npHqpgZSIiFQTTYuTSvI8kDDGvAP4k7S7c71QrqqKT0nGmB/BZSEesdZ+p9L741e1MJqiBlIiIlIt\n1NNIKs3TQMIY04xbiAyZgweTdr9Z4bleSGYcWrM8nrx/ItsGElOa/h/c9Kjf9m7XJKmWRlPUQEpq\nIuIVkarl1SFEPY2kGnidkXgL7uI8U7CQ/r1lqQt2qTIRpxK3N2Z5fE/iNtsaCnB9IpKvnzeZh6D/\n3Bjz57hF2B/Iey/rWK2NpqiBVB2rpYhXRKqO14cQ9TSSauB1IJHaIscAMeCrwE8m7rO4BcsbgB/F\nLcC2ief9PRD1eH++lbi91xgTyFD+9U5gFnhmhW1EgEezPPbDuHUTT+KCFk17ykOtjqaogVQdqrWI\nV0SqiteHEPU0kmrhdSBxG0tZBgv8obX2PxtjXrmAt9a+A8AY0wQ8BHwICALdwE/k22V6Jdbas8aY\nJ3CVmd4LHE15+CFgHfDZZA8JY0wjsBtYsNaeTWxjDnhnpu0bYz6KCyS+UEwfiXpVq6MpaiBVZ2o1\n4hWRqlCKQ0iyRHA87raVi7Y2d64aHHSvV2Uw8YLX8ejmtO//IdsTrbXz1tpfBz6HCzzuAP7W4/0B\neA9wGfhjY8yXjTEfN8Z8E9fV+jTwmynP3Qr8gBx6SkhxCh1NGRpyr4tXuGd6smPwkSMu07B3rzsp\nRKPudu9ed/+RI/DBD2pwuqalR7zt7deusk+NeIeHlyJeEal7pTiEeNHTSMQLXmck1qd9fzaH1zyC\n6zdhgDcYY37eWvs3Xu1QIitxEPgYcBi4D9fR+tPAQ9baca/eS3Lnh9EUNZCqA5o/ICJFKNUhpOI9\njVR0QhK8DiTS4+LpxG0UCIFrVGetvZTynJcSt8kF2m8DPAskAKy1F4BfyuF5A+Sx8Nta+1Hgo4Xu\nVz3zU4doNZDyMT9EvCJSMaU6hFSsp5GKTkgar8PG9EZtye1fTbnvjrTn/FDKvw1wi8f7JFUoOZrS\nkGco29DgXqcO0VIWmj8gIkUo1SEk2dNoZMQV98hFsqdR8no/b9PT8Mgj8OijLpg4dcptNBRyt6dO\nufsffdQ9b3p69W1KzfM6I3EFSJ0NvhZX9ehlXPdoA3zcGHPCWnveGLOZpb4TSZs83iepQuoQLTWh\n4vMHRKSWleoQUvaeRio6IVl4nZG4wPKpQVsSt6dYquS0FzhjjLkEXMRlKFLj6RmP90mqUEVGU0Ty\npYhXRIpQqkNIsqdRV5e7bo+uUjw/2dOoq6vAnkYqOiFZeB1IPJf2/Q2J2+Np9xugM/H+JuU+C5zw\neJ+kCiVHU4JBN4CRC3WIlrJTxCsiRch0CDE2zrbRE9w28BgHzn6R2wYeY9voCUyi1VWuh5CeHjhw\nwPUq6utzU6HSD1PWuvv7+oroaVTrZRalpLye2tSbuE3+Kd8NfAX4EvD7ifdb7Wz81x7vk1QhX3WI\nVvUK/yr7/AER8ZPUQ8jMaIQ7Zo+xZ/g4HTODrIuMY2wMa4JcDbcz1txN/5ZDfGdtD8FgeNVDSNl6\nGqnohKygVIFEMsvwOnBVk4wxfwJ8gJUDiWeAL3i8T1Klar5DtKpX+J+vIl4RKbfkIeTC96d57XeO\nckdjLxtnhzA2xkxTJ4uBEMH4IpsnTrFp8gwbx/thoQ9z8AEOHWpZ9RCS7GmUfiqKRt2paO9eD05F\nfiqzKJ7zOpD4PsurMqXOCvwQsBFX3jWT/wW8xVob83ifpErVdIfo6Wm38Ky316VvkzseCrkdP3XK\nDUH197so6YEH1JWuVtV8xCsildRzV4S1nzrKuoUnWTcxzEsb9rC4bvkxZLS5m4arE7SP9PPadXPs\ni8Addz0IrH7CK3lPIxWdkBV4GkhYay3wv7M8FgPeboz5DPAzuPUTYWAA+Kq19nEv90VqQ1lGU7ym\n6hX1paYjXhGptPCTx7izqZfRxmGe79zP5GwIOwdNayBgIG5hfs5gTDtznfu5eaGPDeFeGp885iKE\nHJWsp5GKTsgKvM5IrMpa+x3gO+V+X6leNdchOr16RaZRmtTqFX19S9Ur8jgpSBWpyYhXRCousVC5\ncXiIzh/dw56rIYaHYXoGohGIxV0w0doGLc2wZUuIzrV7CA6t0tq6nJIrxk+dcse5XKY3JVeMJ4+N\n4ltlDyREsqmJDtGFVq84X0UnBSlMzUW8IlJxKQuVgx1tdG2A7dthbMwFE7FFCDa4IKKjI3GNbtvg\nfBUtVFbRCVlBSQMJY8xG3LqINmACGLHWjpbyPUVKStUrpCYiXhGpChkWKhsDGza4r4yqbaGyik7I\nCjz/dI0xh4wxjxpjLgCXgOeBpxK3l40xQ4nHX+f1e4uUnBfVK0REpD4kFyo35Dlu29DgXlctC5XL\n1rRCao1nGQljzA7gz4A3Ju/K8tRtwDuAdxhjvgH8irX2vFf7IVJSql4hIiK58stCZRWdkCw8CSSM\nMa8FvozrVp0MIFbqF5F8zr3AM8aYn7DWPuPFvoiUVOKkYBcWGRt1VWCTrSNaWlLmuKartpOCiIiU\nnp8WKqvohGRQdCBhjNkPfANYl7grNYDI9D/GpjzH4IKPbxhj7rTWPlfs/oh4IVuz6r3X7WBsrh37\nwil+0NxNNGqIW1d1IxROVt2ArVvdcRWo3pOCiIiUlt8WKqvohKQpKpAwxoSBv8MFEanBQfLfq2Ul\nko+vA75ojLnNWhspZp9EirFSs+rmZrhyeR9HznXzwzNniEcmsC3tBAOuDvjkBExNwuQkjI7CzbdA\nqJHqPimIiEjp+HWhsopOSEKxGYn3AXtYHjCkBhTZpGYlkvYktvcHRe6TSEFWalYdjcLTT8PVqwG+\nsniI6xr62Rvs58U1+4kF3UmhpRkiURdILCb6s996U5RgLZwURESkNHp63ALkuTl3m6mJqbVLTUy1\nUFlqSMGBhDHGAO/n2oDAAC/gFl7/CzAETAGtwA7g9cC7cZ2tUzMXBviAMeYPEx2yRcpmtWbVQ0Mu\nozs3B98O9XDQ9rE2Nse20T5GWvcwG3JPDodg4wa4csUye3GCmdF+WvfqpCA+km3en6Y0iGSmhcri\nY6bQa3ZjzF3AcZZnIGLAR4BPrBQMGGMCwEeB30y9O7Gte6y1xwvaqRpljFn2u1IcVX6PPw6PPgrn\nzl2bebYWvvtduHjRrTVrbITIlWneGz/KHaFetsWHMDbGTFMnsUADwfgia66OMBcNEt/Wxc2/eJDA\nA/e7F4vUqpXm/bW3a5GlyGr0f0iqT4517LMrZmrT3Wk7YoGPWms/vtoLrbVx4CMuqcFvsTyrkQxQ\nRMpitWbVY2MwM+MCilDIZSmCbS18avJBBtcd403rj7NhZpB1kXEa4lGsCXKlYy/Pz3Rz+bpD2Df2\ncGuLTgpSw1aa97e46CrSnDnjpmX09bnRVwXOdUEJqjxoobL4UDGBxC1p35+11v5entv4KPDzwM4V\ntitSUqs1q56edifIpqalqU6hEEwS5muB+7i0+zC3mpN0TA/SGJtnIdjEWEs3T025k8KrhuHW8v5I\nIt5Zbd4fuIug5PzuuTl334MPalTVxzS4XgQtVBYfKSaQSF78J7MRn8t3A9bauDHmc8AnWMpKqD6m\nlNVqzapjMZeNSB8oWrPGnUynrwZ4sfs2Xtyw/KQQnFMPOvGBY8dcJmJ4OHvFGWPc1eP+/S4j0dvr\nXnfffeXfXyk5JahEJKmYQKKTpUXSUPh0pH9J+bcBNhWxTyJ5W61ZdTDorpPi8eX3J+/L1rBUPeik\n5q027y9dKOSed/68e93hw5qq4TOeJag0J0rEF4oJJNIngQwUuJ1zad/n0K1FxDuJZtVZA4KWFvec\niQnXSyJ5wrTW/bshw/8i9aATX1ht3l8mbW0uMh8cdK/X9A1fKTpBpTlRIr5STNi/Nu378QK3M7HK\ndkVKascOd/4aGXEBQLqOjqUAIhpdun9uzp3nmpuvfY160IkvrDbvLxNj3DyX8XF3oSi+UWiCamjI\nvS4+OQ2PPOJK5B075uZAJatYWOu+P3bMPf7II24OlYhUtWIyEo1p38cK3E7ahJGim+SJ5GXfPnfB\nf+aMCwDa03Jixrj+QJOTMDXlAotYzN3f3Oy+T1UrjUlFVrXavL9sGhq0QMiHiklQXTwX4dJvHWXL\nWS3aF/GTYi7aG1hetvWQMSY9KMhFcJXvRUoqEHAX/P397itTun7rVhgddSfE5G1bmwswUqc6qTGp\n+Mpq8/6y0QIhXyomQbXj7DHshV6Y16J9ET/xavTfAMc82pZI2fX0uPPW3Jy7TR8sCwbhh37IPT41\n5YKGaBQWFuDFF9WYVPJTM+tMk/P+Tp1yo8W5XD1qgZBvFZqgagzGuXn0OE3BITigRftSgJo5aNYf\nL6cRFd0dT2RFJTyQhMOuRCG4QbDz55dKGjY0LAUKoRDcfLO7r7PTNaqLRl0Akbxu0jpByabm1pmu\nNu8vEy0Q8q1CE1TbJ05yXWSQwFot2pc81dxBs/54GUhkWKaaMwUhkl2ZDiQtLW46bvpbZQoU7rkH\nTp9WY1LJXU3W3s9l3l8qLRDytUITVE0vD9DOOIHNRSzaVyBRf1IOmnZwiLmrMaabOomZEEG7SMvg\nKdb0n8FU1UGz/ngRSBQTQHi5DfGjMl99hcNuOu7hw0sLC7MFClkbkyoFK2lqujn0avP+QAuE6kSh\nCaoNJsLacIyWdi3alxwlDpqx408y0z/MQOMeRhbaiM4Y4hYCBkKhbjrtBDv6+mm+OucW2FbFQbO+\neBFIKJsgpVHBq69AYIVAYaX9VQpWMqjp5tC5zvvTAiHfKzRB9cObwrRFgxgt2pdcHTvGwjO9jD43\nzPON+5mcCrns1hoIBiBuYXLSMGXaubJ2Pzc/18eGUC+NVXHQrC/FBBLHUSZBSqmWrr5qct6KlIMv\nmkPnM+9PgbKvFZKg6rxhBx0vt8MZLdqXHMTjLH7rOCO9Q/TbPYxfDdHaCuG0Y2dLM0SiMD4Z4nTj\nHm7oPc+mbx2noSoOmvWj4EDCWvt6D/dDZLlauvqq6XkrUmq+aQ6dz7w/8a1CElRvfc8+gh/vhvNa\ntC85OHmSy98dZO5qnJFgGxs3Zj+0hEOwcQNcvtLG1liMy98d5PqqOWjWBzV/k+pUS1dftZQ5kbLz\nojl0VZ0TC5r3J36Sf4JKi/Yld/FzA0xfGGcsvpHWDWbVjz8QgNY2w+WRTjoujBM/P0hAx6eyUSAh\n1alWrr5qKXMiFaHm0OJHeSeotGhfcjTUHyE6G2PRhK6ZzpRNOASLNBCdjTJ0ep4dJd1DSaVAQqpT\nrVx91VLmRCpCzaHFz3JOUGnRvuTo0kSY4GKQNY2LzObxujWhRSKLQWYnmxRIlJECCalOtXL1VSuZ\nE6kYNYcWSaizRfuqBF6YibYdNDa00zV3ilmb+0GzbWGEoTV7WWjVQbOcFEhIdaqVq69ayZxIxag5\ntEiKOli0r0rgxZnfs4+Jtd1snTvDmugEc+HVD5proxPECDKytps1N+qgWU4KJKQ61crVV61kTqRi\n1BxaJAOfLtpXJfDi7dgV4GvbD7FxrJ89U/1c6NhPLJj9oBmMRdk01U+/2cXA9kMc3qmDZjkpkJDq\nVCtXX7WSOZGK0jpTEf/zqhJ4vU+J2rcPvvjqHl4420d7bI7tY31cXr+H2dC1B8210Qk2TfVzpXEL\nLzQdZOrVPcrilpkCCaletXD1VSuZE6korTMV8b9iK4FrSpQTCMCdbwjz16cfIP4s3LGul43T5zE2\nxkxTJ7FAA8H4Is3zI1gT5PK6XXxn4SDP/PD9/Kc3hOsi2KomCiSketXC1VeGzIltDDE25lLcyZNA\nSwt0dIBZ0LyVelVn60xF6kqxlcDvvBP+5E80JSrJjSO28I3Ig5w+c4yeDce5fmGQddFxGuJRrAly\nqXUvLzV2c2zhEIM39XDHHWFlcSvAWGsrvQ91zxiz7EPQZ5Km2odpIhF45BFix59kpn+YwcY9XF5o\nIxo1xC0EDIRClk2NE3Qv9NO8ZwvB190NH/ygrhahLvP4yR/Zh+tMRerSiRPwiU/A6dNw4EDus1yf\nfRZuuAE2b4azZ7NPiUpPvt9117VTovwmdb3JhcE4O2dOctOaQZrMPPO2iRfmujnfvI/t3YFXxhH9\nHFyVSI7lJlfYgC5aK0+BRI6q+Opr+qVpet9xlPDzvbRODGFsjKtrO4kHGgjEF1k3O0LcBJlq62L+\nloMc/Kv7abm+zo941R4giojk6LHH4DOfcRf8O3bk/rqBAbhyxWUe5udzWw7Y1+eS2keOuClRfqbT\nRMlVLpAwxtxurf1esTsgCiSKVokR7ZT3XJiJ8OX/Gebb566Hly/xhtCTr6RgjY1hTZCrofalFOwN\nPbz2dWHfjyatKFtpk/Qpa11dbnjP73l8EalpX/wi/PmfuyBg27bcX3fhAnz/++5wd+BAbsvsxsfd\nlKieHnj44YqPo5VFFY8j1rqiA4li1kg8Y4z5OPBfrLV51r4U8UAlhioyvOfEpRg3vBSkJdpObFs3\n57fexffX/Ayts8M0xuZZCDYx1tLNxY59RBYCXOiDxpQFdnXHq9ImIiJVotBK4OPj7pC4dq07DOai\nrc2d6gYH3cV1RSrolnkAz6fVgn2hmECiEfht4CeMMe+w1p7waJ9EVleJYt0Z3tNu7OTKVIj5uUVu\nDJ4i8PIZtsz0M9R5gG/e/ACR0PL3TF9gd/hwHY6mFFvaRESkyhRaCfzyZffvzZtzew2453V2uiBk\ncLDMF9eaayRpvKjadBvwXWPMw7jsRMyDbYpkV4kR7SzvOTZmuGhgMgwLG7pZE51g81Q/jTH3nt+4\n9UEWg8vfsypGkyql2NImdRl5iUi1K7QSOLjTUq7ZiKSGBrdeYn4+/30tmLrtSQZenJEtLjvxEeBf\njTG3erBNkezSR7Tb268dykkd0R4eXhrR9vg9p6chGkk0qDaGuXA7Fzr20zo7TNdILzddvPY900eT\n6kpykms8XngeX0SkyiQrgXd1uevoaHTl5yd7qG7aBBs2uENcPhYXXRKgqanwfc5L6mDauXOwc6cr\nub5jh1sUsmOH+37nTvf4k0+650ciZdpBqRSvhvYsbsHGflww8RFjTNCjbYssKXREe2jIvS4e9/Q9\nYzFeKfH6yn3BEJfX76FjZog9w8cx9tr3bGhwry3raFI1GBhwEdTGjYXn8UVEqlBPj1swvWWLG5Af\nH3fTl1JZ6+7v63PPe/WrYfduV18i1zor1rrnJ2cSlUUlBvCkJng5RyD5X6AR+B3cdCe17RVvVWJE\ne4X3DAZdEBFPOwHMhtowNkbHzCBbx659z7KPJlWLSMR9Fg15zqqs28hLRGpFsofqXXe58qznz7s+\nEQMD8OKL7vbZZ939u3bB3XfD7/6u+3cwuDTVaTUTE+75yapFJVeJATypGcUEEr8CTLO8dJRlKTtx\nOy478dvKTohnKjGivcJ7trRAKAzzc9e+50xTJ+si43RML3/PiowmVYsMpU2shdFR92s+e9bdjo6m\njc7VbeQlIrUk2cH+yBGXodi71502olF3u3evu//IEdeTtLW1sClRXV3udWVZMqYpqbKCghdbW2s/\na4z5KvAZ4MdZykjAUjARAj4K/GSispP+mqQ4yRHt1UZE0hWzMm2F9+zogJZmmJqESBTCKU+JBRpo\niEdpjC1/z7KPJlWTlNImsW3dXHzJMDwM0zNurckrncDD7ve6ZQtsvd4SHBlxZ+C6i7xEpNaEw67A\n3OHDufU+6OlxU53m5txtLp2tDx50rysLLwbw6qqqSH0pqmqTtfYlXPnXnwM+DWxiKaByJ8wiAAAg\nAElEQVRI3qZmJ/4BWO1KzlprjxSzX+JjhRbrLmZEe4X3NMYd1Ccn3dfGDUsniGB8EWuCLASX3jM5\nmrRrVxlHk6pJorRJ7NQZTn13ghdn2pmZcSfJpjUQDLhgYnLCBWeTk3D1xQlubAwSrMvIS0RqVa69\nD5JTosAtKzh/PnuPzl27XBBx//1lrK5aiQE8qRlelH/FWvt3xpgngE8Bv0D27MTPrbIpk3i+AgnJ\nrNBi3cWMaK/ynlu3uqk4izG4MupS1eFGS/P8CJfa9jLW0l3Z0aRqEgiwcMchzn61n9CFfmYb9tPS\nHlqWyQGXjYhE4ep4lMbRfvq372L3HYdorLvIS0TqQXJKVHqLhmjUBRDJ01dFWjRUYgBPaoYngQSA\ntXYc+EVjzN8AfwZ0sxREpGYnRApXaLHuYuYSrfKewSDcfIv798gITE+BXZhg3gYZtN08NbWPy+cq\nOJpUZY7Rwyh9dDPH7aaPEbuHWXttHr/dTnCj6WeILQyagwzQw+HK7baISEnlOyWqbCoxgCc1w7NA\nIsla+3VjzH8Cvomr4JQaTKxW3KwkgYYxZhvwMeAwsAEYBr4MPJQIgFZ7/Qbgp4A3AfuArUAUOAn8\nFfBX1mao8SneSxbr7u93X9k6Iyd5MZcoh/cMNcKtt8LFi3D5xSgbXuznYngXfevde1Z0NKkKxOPu\nxHjuHHz+82EG5h7g/Zth7WIvG6fPY2yMmaZOYoEGgvFFmudHsCbI6PpdXGg+yJ833s8d3wlz74/X\n4XQwEakruU6JKlTyeDww4GYthcMuVsgaqFRiAE9qhqeBhDEm2Zju11K2XdEshDFmN/A0bv3GY8AL\nwGuA9wOHjTF3WmtHV9nMW3CLyoeBbwFDwGbgp4G/AH7MGPMWa3OtAi1FqcTKtBzeMxiwdLVMsL2h\nn+lbtjC38yC3/8cefqSlwqNJFRSJLE/VDw25ykyzsy38wcYH6THHONRynG4zSHN0nIZ4FGuCbkpY\nczf9Ww7xg+t7mP5euD47gYuIeCT9eDw+7pY+BINLVQQzDnZVYgBPaobx6trXGHMH7qL6Jq4tCfvK\n03LYlLXWelYu1hjzdeBe4H3W2qMp938S+FXgs9bad6+yjTcA64B/Ss08GGOuA74LbAd+1lr7pQL3\ncdmHoHgkB9PTrmtmb6+7Os22Mq2ra2kuUUtL7b1nDcv067LW1VNP/okbAy3r4tzRfJLXbB5kjZln\nIdjEWEs3Fzv2YY07AQ0MuOe+5z3w5jdX7mcSEalF+Zy+Dhxwi7+Xnb4iEXjkEdexeng4twG8u+92\nNW7rLQVfW4oe7C86kDDGrAU+AbwnsUOpayJeeRowAPw+q1dtwlr7haJ2amnfdgNnEu+9Oy0IaMFl\nGAywyVp7tcD3+DDwe8B/s9Y+UOA2FEgUouDhlRp7zxqU7Zxz7hy88IIboFq71g1cTU25f193nZse\nFswwjPDii+6573oXvPWt5f95RERqVSExwF13ucXfy05jGkzzo6IDiaKmNhlj7gU+C3Sl7Ex6BsLi\npgX9WqEX60W4J3H7RPoaBmvttDHmKVy24rVAoX3cFxK3eZYzkKJVYmVa1a6Gqy7HjrlzzfDw8ix4\nMOhOXta623DY9eIYG3PnoIsX3TkonYp/iIgUJtvxOJUxbixs/343e7e3173uvvtSnlTVpaWkUgoO\nJIwxn8eVes0UQMBSFuKItfZbhb5PkfYmbk9nebwfF0jcSAGBhDGmAXh74tuv5fia3nzfR1ZR6pVp\n1fKeNSIed+eYoSE38pV60mppceeWiQlobnb3BYOwfr0b7Boehu3brx0pU/EPEZH8rXQ8ziQUcs87\nf9697vDhtLExDaZJmmIyEm8ncyWmZBbiz4APVSALkao1cTuZ5fHk/Tn2fL/GJ4BbgMettV8vcBsi\nvpI8t8TjLn2eqqPDBRCTk24QK3lSC4VcwDAz47ITGzYsvUbFP0RECrPS8TibtjY3a2nFAhcaTJME\nr8u/GmAQl4X4psfbrirGmPcBD+KqQP1Crq+z1h7IsC0tihDfGBhw2e6NG68tN57eCXxDohO4MW5A\nKxJxmYlkIKHiHyIihVvpeJyNMW7pw/i4CyYUK8hKvDotJxdZfxbYV0VBRDLj0Jrl8eT9E/ls1Bhz\nP/Bp4PvAPdbascJ2T8R/IhE3mtWQZZhi61Z3klq71nUEj0bd/YGAy0okqzuNj7u5unXdCVxEpAir\nHY+zaWhwr5tftTyO1DsvMhIG11fhiLW20AXLpXIqcXtjlsf3JG6zraG4hjHmA8AfAf8O9FhrLxe+\neyL+Ew67qUiLWcoPBINwS0on8Kmp5eVgR0fd9CZ1AhcRKc5qx+NsVOBCclVsRsIAnwNuqcIgAlzz\nOIB7jTHLftZE+dc7gVngmVw2Zoz5dVwQ0YfLRCiIEEmzY4er/jEyshQgpGtMdAK/6SaXoWhtXSr8\nsWaNW1jd0wNHjrgy5KogKCKSv1yOx+mSBS6SFc1FVlJMRqJasxCvsNaeNcY8gavM9F7gaMrDD+Ga\nzH02uSA80Zl7N7BgrT2bui1jzG8DHwN6gXs1nUkks3373MnnzBm3ULq9PfPzkuXGt29383gDAbj5\nZnjHO2DnThX/EBEpVq7H41QqcCH5KCaQuMVaO+PZnpTOe4CngT82xvQAPwB+BNdj4jTwmynP3Zp4\nfBDYkbzTGPOLuCAiBnwbeJ+5dtXSgLX28yX5CURqSCDgFkb397uvbHXLkxYW3OjXrbe6DMSyuuUi\nIvUmHnflkgYG3CKHcNilFgoYXcn3eKwCF5KvggOJGgkiklmJg7hA4DBwH66j9aeBh6y14zlsZmfi\nNgh8IMtz/gX4fHF7K+IPPT1uofTcnLvNpZOqFlSLSF2LRK5t9haLufRAcp5RAc3edDyWUjI210lz\nUjLp5V/1mYgfTE/D0aOuQ+rQkDsfdna6aiCLiy4LkZzelFxQrbUQIlKX8jlgHjgADzyQ1wFTx2PJ\nIseiwCtsQBetladAQvyqRANsIiL+EYnAI4/Ak0/C8HBuKYO77oIHH8zrwKnjsWSgQMIPFEiI3yWn\n/A4OurrkTU1LC/k0B1dE6trjj8Ojj8K5c7ktYujrc4sYClxUpuOxpFAg4QcKJEREROpQPA4f/rBL\nFezcmVtZpfFxOH/epQ4eflhX/1KMogMJLxrSiUiV8bDoh4iIlEoyNRCPu+lMuWhrc3OSBgfd62+7\nrbT7KLICBRIiPqI5sCIiNWRgwB2oN25cviZiJca4ldLj4+5Ar0BCKkiBhIhPZKvKEQq5qhynTrmm\nRP39boptnkU/RETEa5GIO1ivtC4ik4YGt15ifr40+yWSIwUSIj4QibggYqWiH93dS0U/5ubcfXkW\n/RARES+Fwy5lvLiY3+sWF93rmppKs18iOdJsaREfOHbMZSKGh13Rj/b2a7Pkxrj79+93z+vtda8T\nEZEK2bHDHZhHRlyJ11xY656fnK8qUkEKJERqXDzu1kQMDblMxGoZ8lDIPW9oyL0uHi/PfoqISJp9\n+1wwEAy6lHEuJibc85M1W0UqSFObRGqcin6IiNSoQMBVwOjvd1+59JHo73d9JA4dUhm+UlDZw7wo\nkBCpcSr6ISJSw3p6XAWMuTl3m0tn64MH3evEOyp7WBAFEiI1TkU/RERqWDjsyuiBW7x2/vxS2b2G\nBrewemTEXdDu2uWCiPvv18Wsl1T2sGAKJERqnIp+iPiDZlTUsZYWV0YvfUQ8GnUH6r17NSJeKip7\nWBQFEiI1Lln049Qpd6zLZXpTsuhH8twkIpWjGRUCuA/3vvvg8OGlxW/z8260J7mwWhGl99LLHmZK\n76eWPezrWyp7eN995d/fKqNAQqTGJYt+nDnjBkza21d/jYp+SKE0au4tzaiQawQCbuGaFq+VXqFl\nD8+fd687fLjuD3wKJERqnIp+SDlo1Nx7mlEhUmEqe1g0BRIiPqCiH1JKGjUvDc2oEKkwlT0smgIJ\nER9Q0Q8pFY2al4ZmVIhUAZU9LJoCCRGfUNEPKQWNmpeGZlSIVAGVPSyaAgkRH1HRD/GSRs1LRzMq\nRKqAyh4WTYGEiA+p6Id4QaPmpaMZFXVAJc6qn8oeFk2BhIiIZKRR89LRjAofU4mz2qGyh0VTICEi\nIhlV06i53wZ3a2ZGhd9+8aWmEme1R2UPi6JAQkREMqqGUXO/Du5W/YwKv/7iS6mOSpz5Kr5U2cOi\nKJAQEZGMKj1q7ufB3aqeUeHnX3wp1UGJM9/Glyp7WDAFEiIiklElR83rYXC3KmdU1MMvvhTqoMSZ\n7+NLlT0siAIJERHJqJKj5nUwuFudMyrq4RdfCj4vcVZX8aXKHuZFgYSIiGRViVHzOhjcfUX6jIqh\ngTitQyfpvDpA2EQIt4Rp3LODPT+9j543Bkp7UVZPv3iv+bzEmeJLyUaBhIiIZFWJUXOfD+5eIxyG\n+3oiHI4f48rl40QbBgmacYLEaIoHaZltxzzZDYESz8+ut1+8l6qpxJnHFF/KShRIiIjIisq9DtHn\ng7vXSkw+D/T2sik5+XxzJzQkJp+fPgVnyzD5vO5+8R6qhhJnJaL4UlaiQEJERFZVznWIPh7cvVY1\nTT6vq1+8xypd4qyEFF/KShRIiIhIzsqxDtHHg7vXqqbJ53X1i/dY1TcGKZziS1mJZq2JZBKPw4kT\n8Nhj8MUvutsTJ9z9IlJSycHdkRE3aJuL5OBuspZ9TSh08vnQkHud18ejuvnFl0CyxFlXl8scRaMr\nPz9Z4qyrqwyNQYqj+FJWooyESCrfdtsRqR0+Htxdrtomn1fwF++LTslV2RikeD6etSUeUCAhkuT7\nbjsitaGquz57abXJ59bC2Jg7NiUHNFpa3PNLMfm8Ar94X43dVGVjkOLVTWAvBVEgIQLVteBRRPw6\nuLtctsnnsRhcvOiORTMz7nnWuh8+HHb/Xr/eBRheK+Mv3pdjN+UucVYGdRPYS0EUSIhAdS14FBG/\nDu4ul2nyeTQKzz/vfriZGXfR3tTkrsbicXcBv7DgHvva1+DNb/b26rpMv3hfj92Us8RZmdRFYC8F\nMTbXBVVSMsaYZR+CPpMyi8fhwx92QcHOnbnlbcfH3Qm2pwcefrjmTgpSnXwxT9xjvpr6ku7ECfjE\nJ9zQ+8GD7g/guefg5ZdhdtZlHUKha6/WXn7Z3XfLLfBjP1a6UrAl/MU//jg8+iicO5fbCHdfn4tb\njhzR2E2lZMsgpceXXV1L8WXVZ5Akx4K+2SkjIVJtCx6l7vj6YrlIPhzcXZI++Xx62l2Nzc5CR4f7\nA0i3sACNjXDddS4rUcpSsCX6xatTcm3y4awt8YACCRF125EK8uU88RIoR/+KskudfH76tPvwZ2Zc\nJiJTEBGPw+Sk+wPYts3dlvrqugS/eI3d1C5fB/ZSEAUSIuq2IxXi63nikpvk5PNLl9zaCMh8LIpG\nXRCxdq2LNLdudVdsNXh1rbGb2ufLwF4KorhRRN12pELS1/i3t197YZW6xn94eGkmi/hEcnHzjh0u\ngIjF4MoVl5m4etXdjozA1JTLQFx3nVsbEQxee3VdI5JjNw15DmU2NLjXaexGpHookBBRN1epgGpr\naiwV1NLiFk1ff70LDJLzfZIfcluby0DcdBPceqtbI5FUg1fXGrsR8Q9NbRJRtx2pAM0Tl2Wam2Hz\nZhdIrF/vMhGLiy5QaG52i68zzQOqwatrdUoW8Q9lJESSCx67utxE9Gh05ecnu+10danbjhTMi3ni\n4iPJq+srV1zQ0N0Nu3e72w0bsne+rsHMaHLsJhh0YzK50NiNSHVSRkIE1G3H56qxP4PW+MsydZQZ\nVadkEf9QICECddJGt/5Uc38GzROXZers6lpjNyL+oEBCJEnddnyl2vszaJ64XKOOrq41diPiDwok\nRFKp244v1EJ/hjqaySK5qrOra43diNQ+Y3MtdyklY4xZ9iHoMxEpzuOPw6OPwrlzuc0Q6etz12VH\njrg4UvspFVXNc/JKJLmOSWM3ImWVY6mPFTagi9bKUyAh4p14HD78YXcdtnNnbiP94+Nu8LenBx5+\nuHwXLpEIPPLIypmT9Jksd98NH/ygb64fZSW6uhaR0io6kNDUJhHxlVrqz1BnM1kkX4GA+2NUwxAR\nqVIKJETEV7zoz1DO6zbNExcRkVqlQEJEfKUW+zNojb+IiNQiBRIi4iu13J9BM1lERKSWaIxLRHwl\n2Z9hZMQtVM5Fsj9DsiCOiIiIrE6BhIj4SrI/QzDoqh3lQv0ZRERE8qdAQkR8JRBwC5O7ulzJ1Gh0\n5edHo+55XV3udVqLICIikpu6OGUaY7YZY/7SGPOSMSZijBkwxnzKGJNDhXnvtyMipdXTAwcOuL4L\nfX2uClL6NCdr3f19fe55Bw+614mIiEhufN+QzhizG3ga2AQ8BrwAvAa4BzgF3GmtHS3XdrJsWw3p\nRDw2PQ1Hj7r+DEND2fszdHUt9Wdoaan0XouIiJSNOluvxhjzdeBe4H3W2qMp938S+FXgs9bad5dr\nO1m2rUBCpAQikWv7M8RiLoBILqxWfwYREalTCiRWksginAEGgN3W2njKYy3AMO6XuMlae7XU21lh\n+wokREooHld/BhERkTRFBxJ+7yNxT+L2idSLfwBr7bQx5ilcluG1wLEybAdjTG8e+y8iHlB/BhER\nEe/5fSxub+L2dJbH+xO3N5ZpOyIiIiIivuD3jERr4nYyy+PJ+9vKtB2stQfS70uf2iQiIiIiUu38\nnpEQEREREZES8HsgkcwUtGZ5PHn/av1vvdqOiIiIiIgv+D2QOJW4zbZ2YU/iNtvaB6+3IyIiIiLi\nCyr/qvKvIiIiIlJ/ii7/6uuMhLX2LPAEsAN4b9rDDwHrgP+evPg3xjQaY25KBA4Fb0dERERExO98\nnZGAV7IJTwObgMeAHwA/gusNcRr4UWvtaOK5O4DzwKC1dkeh2ylgH5WREBEREZFyUmfrXBhjtgMf\nAw4DG3BTkf4ReMhaO57yvB1kCSTy2U4B+6dAQkRERETKSYGEHyiQEBEREZEy0xoJEREREREpPwUS\nIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIi\nIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKS\nNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUS\nIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSNwUSIiIiIiKSt4ZK74BcyxhT6V0QERER\nEX+zANbagi88lZEQEREREZG8KZAQEREREZG8KZAQEREREZG8GWttpfdB6oAxphfAWnug0vsi+dPn\nV7v02dU2fX61S59dbdPnlxtlJEREREREJG8KJEREREREJG8KJEREREREJG8KJEREREREJG9abC0i\nIiIiInlTRkJERERERPKmQEJERERERPKmQEJERERERPKmQEJERERERPKmQEJERERERPKmQEJERERE\nRPKmQEJERERERPKmQEIKYozZZoz5S2PMS8aYiDFmwBjzKWNMeyW2I/kp9vdujNlgjHmnMeYfjTFn\njDFzxphJY8yTxpgjxhgdW0qoFP9vjDFvM8bYxNc7vdxfWeLlZ2eM6Un8H3w5sa2XjDFfN8bcV4p9\nF0/PfW8yxjxhjHkxcfw8Z4z5e2PMHaXa93pmjPlZY8xRY8y3jTFTiePc/yhwW7puSaGGdJI3Y8xu\n4GlgE/AY8ALwGuAe4BRwp7V2tFzbkfx48Xs3xrwb+AwwDHwLGAI2Az8NtAJfAt5idYDxXCn+3xhj\ntgMngSDQDLzLWvsXXu63ePvZGWP+K/Ah4EXgfwJXgE7gAPDP1tpf8/wHqHMenvt+H/g1YBT4Mu6z\nuwF4M9AAvN1aW9BFrmRmjOkDbgNmcP9nbgL+2lr7tjy3o+uWdNZafekrry/g64AFHki7/5OJ+/+s\nnNvRV/k/P+ANwI8DgbT7r8MFFRb4mUr/rH788vr/DWCAfwbOAn+Q2MY7K/1z+vHLw2PnuxLP/zwQ\nyvB4Y6V/Vj9+eXTsvA6IAS8Dm9IeuyexnXOV/ln99pX43e5JHO9en/g9/49K/A347UsZCfn/27v3\naLnK8o7j3ycCIUBA5SIqSIAixHIRLZeC3ARCYVFEWy1VgXApyD3cl3QhgdYKNdwEtQsUElBakQol\nKIKtIhe5WAsrWCBA4YSISgjhEiAhCfn1j3cfGOa8+5zZc/acOTnn91lrr8nsd+93ntk7M2c/s99L\nJUU2/iTQA2wqaXlD2XjSL9RB+oJ8rdP1WDVDcdwj4izgq8Dlkk4YdND2lk6cv4g4CbiY9Mf1k8A5\n+I5E7Wr87hwLzAUWAZtJWtLJuC2p8fztANwH3CzpU5nyV0itRcbX+w6sV0TsTrqTXumOhK9b8tyO\n2arao3i8vfFDBCBpIXAPsBqw4xDVY9UMxXFfWjwuG0Qdllfr+YuIicD5wKWS7qwzUOujrnO3N6kJ\n04+A5UVb+zMj4iS3r++ous7fE8ASYPuIWKexICJ2BcaT7hDa8OPrlgwnElbV5sXj4yXlTxSPHx6i\neqyajh73iFgJOKR4+tN26rB+1Xb+inN1Lakp2lmDD80GUNe52654XAw8CNxCSgYvAX4VEb+MiHUH\nE6hl1XL+JC0AziT1KXskIq6IiK9FxPXA7cDPgKNriNfq5+uWjJW6HYCtcNYqHl8uKe9d/+4hqseq\n6fRxPx/YEviJpNvarMPK1Xn+vgJsC3xC0qLBBmYDquvcrVc8ng48AuwCPARsDEwDJgE/JDVVs/rU\n9tmTdElE9ABXkfq79HoSmC5pXrtBWkf5uiXDdyTMrBYRcSJwKmkUi4O7HI71o2infRZwoaR7ux2P\nVdL7d3sZcICkuyW9Kulh4NOkEWl2czOn4SsizgBuIHWW3xRYnTTa1lPA94sRucxWCE4krKrejHut\nkvLe9S8NUT1WTUeOe0QcD1xK+oV0j+L2vdVv0OevaNJ0Den2/Nn1hWYDqOuz11v+oKSexgJJr5NG\nlYE0JKXVp5bzV3T0vYDU2foUSU9Jel3S/5ASwWeBUyNikxpitnr5uiXDiYRVNbt4LGsDuFnxWNaG\nsO56rJraj3tETAEuA35LSiL+2H54NoA6zt8axf4TgcUNk9CJNGITwJXFuksGHbH1qvu7s+xi5cXi\ncVyLcVlr6jp/+xePv2guKBLBB0jXZttWDdA6ztctGe4jYVX1fvlNiogxmeHPdgZeJw1vNxT1WDW1\nHveIOJPUL+IhYG9J82uO196pjvP3BvDdkrKPkS5g7ib90XSzp/rU9dn7L9J49R9prqewZfH4dA0x\n29vqOn9ji8eyDvG96z2s7/Dj65YM35GwSiT9H2lkiQnAcU3F55Lael7bO4ZyRKwcEVsU4y+3XY/V\no67zV5SdTUoifgPs6SSi8+o4f5IWSToytwA3F5vNKNb9oONvapSo8btzDjAT+BBwUmNZREwC9iHd\nrfCoaTWq8bvzruLxqIj4YGNBROxLuhhdTJo92brA1y3VeEI6qywzRfyjwA6kMZYfB3ZSMUV8REwg\n/TI2R9KEduux+tRx/iLiUFJHwTdJzZpyo1j0SJremXcxetX1+SupeyqekK5javzu3KCoZ0PSHYoH\nSaM2HUi6W3GQpH/v+BsaZWr67hxD6seyF7AQuJE0y/VEUrOnAKZIunQo3tNoEREHkj4fkGYX34fU\nub03sZsv6bRi2wn4uqV1nZgu28vIX0h/wK4mzeS4BJhDGsf8PU3bTSD9YesZTD1ehtf5A6YW6/tb\n7uj2+xypS12fv0y9vef1yG6/x5G61PjduS4piZ9T1DOfdFG6fbff40he6jh/wMrAFFITmFdII3DN\nI80JMqnb73EkLi38zepp2NbXLRUW35EwMzMzM7PK3EfCzMzMzMwqcyJhZmZmZmaVOZEwMzMzM7PK\nnEiYmZmZmVllTiTMzMzMzKwyJxJmZmZmZlaZEwkzMzMzM6vMiYSZmZmZmVXmRMLMzMzMzCpzImFm\nZmZmZpU5kTAzMzMzs8qcSJiZma1gImJqRCizTOh2bGVK4p3e7bjMrH0rdTsAM7NuiIgAbgf2yhRf\nKOm0AfZfE3gY+FCmeLKkGW3GNRm4uqR4ObAUWAK8BCwAngGeAO4Hbpf0UjuvW6eImJpZ/ZCkm4Y6\nlqoiYnfgF5miX0rafWijMTMb3pxImNmoJEkRcRgpGXh3U/HJEXGzpDv7qeIy8knEje0mES0YA4wt\nlvHAhsA2DeVLIuKHwHmSHu9QDK04J7NuBjDsEwkzM2udmzaZ2agl6XfAcZmiMcCMiBif2y8iDgQO\nyRQ9BxxVX4SVrQJ8AZgVEad0MQ4zMxsFnEiY2agm6Trg+kzRBOCS5pURsR5wRUl1fydpfn3RtW0s\ncGFEXNztQMzMbORyImFmBscAf8isPzwiDmhadwWwbmbb70iaWXtkb7sGWLlY3gtsQborMhNQyT5T\nIuKEDsZkZmajmPtImNmoJ2lBRBwO3JopvjIi7pX0fNGn4lOZbZ4GTu5okKlbx7Li3y8Wy2zg2ojY\nCfgBsEFmv2kRMVNST3NBRKwP/BnwMeDjwCbA+sAapITlVVKn7keBB4DrJM3OBRcRdwC79RP/oRFx\naGb9YZKmN9SzURHLx4u4NipiWg14VxHTAuC3wK+KmOb287pdV+dxrvCaE4EvAfuQ/l8sA54i9VO5\nTNKLFeraC/hLYGfgg6REdjEwD7gPuAW4QdKbg4nZzFY8IZX9kGVmNrpExLdJF1/NbgKmALOANZvK\nlgO7S7qrphgmkx+1aYakyf3stwVp5Kbm+Er3jYjHgM0rhvg94ITm0aFaSCTKNCcSi0lNs1q1nNQE\n7SxJb7Tx+u/QiVGb6jzODXVOJd+pfWPgM8DXSH1mcuYBB0nKvc/G19gOuJJ3duVFsD8AAAgsSURB\nVOgvMxs4QtI9/dSXu+Do9/+1mQ1vbtpkZva204AnM+sPBO4if5E+ra4kYjAkPQacX1L8uYhYtaaX\n+iJwS0RUudjvpDHAKaQ7M9HtYGrU7nE+DbiQ8iQCYD3gx8WdrKyI+CJwD60lEZASpZ9HxF+3GqiZ\nrficSJiZFSS9Rup3kGuisWFm3Szg7I4GVc2/kH6hbzYO2LXG19kZOLbG+urwWVLCN5K0c5xzo5Dl\njCMlX6s1F0TEbsBVpGZXVawCXBMRrSYfZraCcyJhZtZA0r2U/7LfaAlwsKQlHQ6pZUW794dLij+a\nWTcXuA44GtiB1P59PKlp0ZqkX5kPA+Zk9j2x6fmevN0ZPKexs3jj0jznxhOki9hDSf0KevsSjCXN\n97ElcALwQgsxDRd1HudWPAzsXdT9fuB44PXMdpsAhzeuiIgxwDfJn8fpwHak87AJcCqpf0ejcaQ5\nVsxsFHBnazOzvs4F9gO27WebsyXNGqJ4qniGfHOUdZpXSNq7n3qWAAuBxyPiRfpOJjchIjaSNKeo\n6627OCUtjBo7i5eStNUAMb0M/G9EvIu+w/PuGBGrDKfkDuo9zi14DthDUm+itRD4ZkQ8T+qQ3+xI\n4PKG538B/Glmu69LOqPh+cvARRHxLPBvTdvuEhE7SLq/xZjNbAXlRMLMrImkpRExk/JEQgzfWZpf\nKVnfPHs3AEUb/P2BfUm/9k8g/Vo+Dhioz8Hm5H9FH5SIWJM0OtYkYCJpBvE1ipj6syop/m7O6p01\nhMf5Ww1JxFskXR8R/wRs2lS0dUSsJenl4vm+mTqXUn6X7gbS3Y7mJlL7kjr/m9kI5kTCzKxJRGwF\nnNnfJsD0iNhlGA55uVbJ+j6j/0TEfqR+Fbn+H614T5v7lSpGrZoGrN1mFbXHNFhDfJzv7KfsLvom\nEkFK1u4rnm+d2W9l4IWKfdl3qLKxma2Y3EfCzKxBRKwCXMvAQ5D+Of0nG90yoWT9841PImIScDPt\nX9zCwHcIKinm8ria9pMIqDmmwerCcf59P2V/LFnfeLxzky2243011WNmw5gTCTOzdzqX1oe8PCci\ncp2YuyIi1iHfvh3goabnl5MmeGu0jDQ3wYeBcZJCUgCfrDXQjGL0oIsyRa8CJ5HmRxjbENPhmW2H\no2F1nIdQtimdmY0sTiTMzArFuPpnZIpeIY3N32wV0hCaw2VOhWPJt7dfRGrWArzVdGuzzHYXSDpP\n0hOSFjesH8wdglbtSb5Z1smSviGpp6kT9VDENChdOs4f6Kds/ZL1jX0qni/ZpipfX5iNAv6gm5kB\nEbE6aYjS3PfiScDpwM8zZVsC/9jB0FpSXLTmkiCA65suWP+kZLt7S9bv1XZgrRuOMQ1WN95Tf/OF\nfCKzTsBjDc9zwwe/QOrInhu+t2xp7othZiOQEwkzs+Qi8hc/N0maLknAZNKwl81OiYg6J3yrJCJ2\nAW4DVs8ULyU112pUdgdly0zdHyW97ypycxb0GX52EDHtB+xTMaZu6PRxzjkmIvp0zo6Iz5FPbGZJ\nauyIf2tmm7WBYyQtG2ghjd50MOWd/s1sBPGoTWY26hUXpkdlip4nTSIGgKS5EXE8qTN2ozHAjIjY\nWtLCzoUZvd/ZawDrkUbGOYg01GbZkDqnSXq6aV1PybZ/HxG/J11MLicNwTqNgTueN3uO1Keh0Z4R\nsS/p1/jeSczUMOpVWUwXRcQi0mhEqwJ/C3y1Yjx1aDz+A3mzSDx7SsrrOs456wN3RMQppOFXVwf+\nCvjnku2/0/T8VuAR4CNN6y+OiB1JEwg+Cswj3Xl4L6mvxzakPh67kjqHbwwsGOybMbPhzYmEmY1q\nEbE28N2S4qMkzWtcIel7EXEA8NmmbSeQJkg7ovYgk0OKpYpLJX0js/7XpBF8mtvMjyc172r2Jn07\nDPfnN/RNJFYFftK07llgg+LfPwMWF9s1+gDwHzXENFi7ku7utOLTpHlGOn2cy2wN/GcL2z1FGiXr\nLZKWR8RxwO30nd36b4rFzAxw0yYzs2+T74Q6Q1LZpHNfAv6QWX94kWR02xvA6ZKm5AqLuwBfbrGu\nxcBZFV8/d5Hcr2IStQta3Hw+3bkrUckQHOecG1vcbhFwiKTXmgsk3UFqZjWsZgg3s+HHiYSZjVoR\n8QX63lkAeAY4sWw/SQsoH370ioioayz+qpYC/wpsI2lafxtKmg58hdTZtswLwIHAA1WCkDQTuKrK\nPoXzgCsG2KaH1JSrubnWsNTJ41ziVNIs1Mv72WYesL+ke8o2kHQdqencryu+/guk5Hx+xf3MbAXk\nRMLMRqWI2IA0xn8zAZMlvdLf/pJ+CnwrU/Q+Br4YbpdIycKrwO+AWcCPSU2qPg+sL+nzkma3VJn0\nD6SLxe8Dc0m/QC8gzTlxHrCVpNvaClQ6AvgMqYnPXNIv7gPts1zS0cAk4Eekuz5LSX1V7idNALit\npP9uJ6Zu6eRxzr+cvgxsT/p/+CSp8/vC4vWmAhMl5UYga67oIUnbAzsBXwfuJk149zppLoyXgNmk\nCfemArsB75d0rKRXs5Wa2YgSqT+YmZmZmZlZ63xHwszMzMzMKnMiYWZmZmZmlTmRMDMzMzOzypxI\nmJmZmZlZZU4kzMzMzMysMicSZmZmZmZWmRMJMzMzMzOrzImEmZmZmZlV5kTCzMzMzMwqcyJhZmZm\nZmaVOZEwMzMzM7PKnEiYmZmZmVllTiTMzMzMzKwyJxJmZmZmZlaZEwkzMzMzM6vMiYSZmZmZmVXm\nRMLMzMzMzCpzImFmZmZmZpU5kTAzMzMzs8qcSJiZmZmZWWX/D9crO8GoOJgrAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw8AAAI+CAYAAAD6jTZqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde3yU1bn3/8+VBAJKgCAeqBgQQbQWRUGsRQ6KrYiP1Vbt3vXQUmn9VdTaonVbWxWtpfq0tm6xaqt46AG7LbWyn7212y0VotZqRYI9KIIh4AEVFRAUEkLW7481QyaT+565ZzKnZL7v12teA/fch5U5rmsdrmXOOURERERERNKpKHYBRERERESke1DwICIiIiIikSh4EBERERGRSBQ8iIiIiIhIJAoeREREREQkEgUPIiIiIiISiYIHERERERGJRMGDiIiIiIhEouBBREREREQiUfAgIiIiIiKRKHgQEREREZFIFDyIiIiIiEgkCh5ERERERCQSBQ8iIiIiZcrMppqZC7oVu2xSmhQ8SI9gZkvDvvxit4/MbK8Mzvf1NOdzZjYzj39SQZjZj9P8ja+bmb4npOyZWYWZTTez+Wb2ZzN7w8y2mVlr7P4tM2sws0fM7N9j3yGfNLPqYpdduiczmxnhdyj5d+5NM1tuZr8ws3PMrG+x/w7peVQpkHLRF/haBvtfkq+ClAozqwTOSbPb/sCnC1AckZJlZqcCrwKPAhcDxwIfA/YEKmP3+wJHACcD3wDuAJ4BPjCzs4pQ7Lwys+EpKrHDMzhPU09tnCmCvsAQ4Cj8792vgTfN7EozqypqybKQolFwbrHLVu4UPEg5mR2rMKdkZp8GPl6A8hTbycB+EfabmedyiJQsM7sW+E9geJan6A0MyFmBRDIzEPghsNTM+hW7MNIzKHiQcnIA8LkI+30j3wUpEV+OuN/pZqbKj5QdM/siMLfY5RDJgYnAH4pdCOkZul03lkgXXQIsCnvQzEYCMwpXnOIws1rg1Ii79wH+BfhF/kokUlrMrBfwoxS7NADPAhuANnwL71BgLDASNc5Jfi0Clif8vxoYBZwGhPUwnGhmX3TOPZDvwknPpuBBys1kMzvCObcy5PFLKI8f/bPxPzZRzUTBg5SXyfg5P8l2AKc75/4n7EAzGwxMB84A/k9+iidl7r+dc/clbzSz/fBzc8aGHHchoOBBuqQcKkkiyQKHJZlZDV0Y329mt4RM7vqvCMdaiomDmUz0jipsyNKSkO3HmtnBqU5oZr3N7MOQv2FEyDHfDdi3OSxDiJndHXL+61OVLXbsODO71sweN7O1ZrYldq0NsewkPzWzaenOE3DeQ2J/x3+b2Roz22xmO2Pnfs/M/h577CYz+6KZDc3g3GZmnzazH5nP8LM+9hzviGVVecHMfmZmZ8ZayqOc876Q53Bpwj6Tzex+M3vVzLabzyz0JzM7z8x6B5xzsJn9m5k9Z2bvms/60mhmvzSzSVH/3qRz5uX1ysCnQrb/JlXgAOCce9c592vn3OeAOuCJTC5sZoeZn+T6n2a2Ovac7oy99utir8VNZvaZsNfdzKrM7HAz+7L57E+Pm9nLZvZ+7P3TamabYudbYmY/MbMTzMxSlGt3Sk9gbYo/YW3Ie+y+2HkSU4EOCznHvSHnaIrw/E0xs3lmVh/7+7bG/ubXY5+jeWY2Id15Es6XclK3mVXGPtu/j31mtiV/pgrFOfcWqRNhfMr8b11OmdkY89+Df4x99jebWYuZvWNm/zSz35jZ/2dmg9KcZ/dzDUwJ2e3akNdDqWULxTmnm27d/gYsBVzA7S/4IQWJ27YDewWc4xsBx/855LwOmJl0/IFAa8B+u4Dhacr/qZBrbANqcvxcfTzF3zQB+GfIYz+IcO7/CTn2yxnuf3zI/q+E7D81RZnG4ytvYX9z8u1Z4JgIf2s/4FcB768ot7sjnP+zwN8zOOdrwAURzntfyPFL8VmDfpnmOs8DH0sq5/tpjrkdqIj4/szL65XF5+RnIde7NdfXSrjmOOB/M3wvLQg517Is3pcOWA1MCznn1CzPGb/dFztPV87RlOL5+zR+KE/Ucz0GjI7wujSFHD8TGA38NeTxpV18P8xMUfaZaY4N+650wKFRX9cIZTwM+GMGz/k24MdA3wyf60i3fH02det4U8+D9HQv43+ME/UhKW1rrLXt4oDjb416IefcWuDhgIcqgAvSHP7FkO3/4ZzbGrUMEc0M2d7onHsO+G3I4+dZ+jUfwnouOrU+m898dWzI/pMD9t8PP6Y32XZ8SsxOzGw28DT+xzGqCUC9mZ0ftkOs7H8EzgVCW2pTGJji3GZmPwUW43+YoxoK/NzMfmfZ5Xavxr9/z0uz3zjgCTPrY2bnxcpZm+aYC4Hr0hUgX69XlsJe138xs4NyfC3MbA7+fXxihoeGZZBLm1kuxEjgcetmqVLN7AZ8Y8RRGRz2aeA5M8t2ntuB+EB3fJbH59PGFI+l+7xGYmbnAM8BJ2Vw2J7AZcCzFtIjLaVPwYOUg6AAIDlt6ww6V0zfBH6f4bV+GrJ9lgUM94DdFdGwPPB3Z3j9lGLXOjfk4XjQEDYe9gDghDSX+FPI9qChK0cBYd3nnYKHkG0ATzvnmpM3mtmX8a3Hgc97Gr2Bu83n9w/yJXz2kny4EfhmF44/E7g/1fCTEJ8kesX1YHwO+UzmwVxpZnVhD+b59crGhpDt+wB/M7Nfm9m5ZjYqi+e6AzP7FnAzEGnoWYH8wswOKXYhojCfTve7ZBfI9wd+b2bjsjj2e/h1FUrRPike29TVk5vZKfheyj2yPMUY4FHzyTukm9GEaSkHj+C74hODg3ja1njmpUsDjrvdObczk3qBc+5pM3sWOCbpoX2AzxPcqj8Nv8BUsn865wJb1LvgM4T/2P0WwDm32sxWAEcG7DMTeDzF+V8ANtO5Zf1gM9vXOfd2wrawYADgk2bWyzm3M8L+nXo7zM/PSFWxfQY//GYrfhjXqXRuqTXgV2Y20jn3btJjnw857zv4HonX8RNrB+DHdB8GHEKayo2ZfQa4IsUufwbqgZ341s7pIec8C/+8/DzV9UJsB34HrItd4+SQ/c5I+HcT8BB+CNep+KEcyarw759O81MK8Hploz7FY33x48rjY8u3mNkL+GGS9UC9c+6jKBcxs2PxgUOYVnzrdgP+798L3/tzDNGCjebYsa8CbwAfxs65B34+xnEEr2HRC/gOHedHNca2gW+9Dnuv/l+CK6h/i91/J2HbvxHcE5ecTShuS+J/zGwqqdPpPh67bgv+O+0zAfv0ARaZ2WjnXEuKcyVLbIB9Ef86bcJPtJ+AH0pTcGZ2GL4HKcgu/PdTV84/GFhIeAP0q8B/4Z+LkcDpBGeAOhg/pDGx5/0m2tdFuQDfu5NsCal/hyTfij1uSjfdcnEjfM7DfbHHg+Yz1MceO5TO49Z3AHvHHs9ozCk+rWnQ/stC9r83ZP9v5eF5+o+Qa/09ab9vh+z3IdA/zTX+EHLsmUn7PZziuXXAsUn7vxiy34SAMiwM2fcjYEbA/mPxP6hBx9wUsH/QXIRXgYEpnpdB+Ar3QuDekH2eCynDLgLmjeB7Cj4KOeZ1oE/AMfeleM63AEck7X9Hmtfpf4E9EvavIXzezOMhf3deX68sPyuGr3Sm+tvDblvxrbJjIlynPsV5/gyMCDluCDAPuCPk8UuA44HeEf7Oa0Ouv5mQuSr4gCOs3MMzeJ6bQs4R+P0acHzYvLSNBH83nAB8EHLMhRmW0eGDs3NDjtu3i+/BmSmuG/j84Bf+XJHiuPqAY6aG7R9yjR+lOP8dQK+k/YcBa0L2bwMOD7nO0pBj5ubiM65bF96bxS6Abrrl4pbiS+a+2OM1IT8YRxBcObo34dyZfnlX4Vttg445LGnfavwPdNAP0uAcP0cD8a3KQeX6XtK+dYRPBJ6V5jqXhBz37wn7GPBu0uOvJv3/yoT9B4WUZzNQmXT9/viW+aAyhE4oxlfsg47ZCFjSvv8I2O+/u/j6jEnxXrszxXHfSXHcqQH735di/8sC9g+bzB9/nw4NOCYs+HwjYN+8v15deE2OJvwzE+XWBvw7SZWphPOPTnHsS8CeEcqYMjiI+HdWpyhHYABECQQP+B69sDJ8JsVxl4Uc83yGZXTA7Fy810KuOzPFdX8HXJlwuwafwGFrmvfkFwOuMzVs/4B9LfYZC9r/7yR9Hyccd2yKMt0ccszSkP3n5us51y3aTXMepCw4P+n4voCHriF4gmjkidIB12oF5oc8/PWk/59CexdtooddboZeJPpXfPd8kA7DqZxz6/EtekFmprlOlEnTh+GHX8RtAe5M2j9xmNIkgofnLHPO7UradgLBQzK3A78JKRv4zCtBBgOHJ21bG7DfyebTZ34yy3G8qeYb3J7isV/gh6Fkes5kDl/5SNaY4pjHnXNBQyBeDtk/6HkpxOuVFefcX/HP4ZtZnsLwvZ6/CZkXkWqi6feccx+mu4BLM8zGzEaa2eWxifR/M7ON5lPpJqa33JHiFEFrXZSKT4dsX++cC3t/QPh758h0qUSTvEF2QwNz4Uzghwm36/Dz2cIWiAP4k+v6AnFj8Z+xIL8I+D4GwPkhuA0hx2WaJECKTMGDlJP5+ApSos/jsz8ketI5t6KL17oLn5Iu2ZfMLPF6YVmWcjpROmZmyPbnnXNrAraHZV06zvxK3IGcc/8E3gp46AgziwdKyfMXnsa3MiWamJDdKWy+Q9AE7TEh+/YFtll4fvAPQo4LOmdQVi3DjwF/BnjffD79Z8zsXjO72MzSVWg/EbJ9G+1jxTtxzr2HT8sYJJNsTeudc+8EbE81ufL5kO1B733wr0GyQrxeWXPOPY0fm/1dfI9iNs6i4xyRuLBytuDnamXNzIaa2SL8fK8f4Subn8BX/DLJxlXKE1rDnr+6sPdN7L3zYshxFfg5NVE9GlZZLkF/wc/z66qw7ykIb3BK93gmz7mUAAUPUjacc6vxK2+mk3WvQ8K1tgD3BDzUH7+6c3xRulMC9mkix5PBzGw0nSdxx4W1RP0OP9Y+yJfTXPKJgG0VtC+8lRwMPImfbJ1Y6exP+yqpkSdLE94q1hXJ57wfv75AKrX4DEYz8YHrSjNbZWYXhqS8DSv3my7Wh59CWMt4Js9FUMAHviIbJiwjUbryJirE69UlzrkPnXPzgBH44RffxU+MzyRrzeyAbXuH7Pu6c257ZqVsZ2bD8RW1oIAlU5msRF9oxX7vvJSH6+faB8DVwGTnXKqAO6pUz88baY4N+56qMrPQ9NVSehQ8SLlJFxi8hp/wmwv/jh/znOzC2P3pBLcA3hOhspipmSkeqzO/mm2HG/AVfPagIF9Kk54y3dCl5NSt9bEWvOSWqclm1o/gzE/v4OceJAsbmtUVHYaWOZ8Fajp+KFwmLY/x7CIPJaUKhvByR8n+0ilVbUwmLcyBQ1fSvBdTDXeJKu+vV64459qcc39xzs1zzp2MH3p3KH444qMEf97jPhXwmoe9Pl19Xu/AZ5Tr6Yr93tmch+t3xQ7gbfyE6QX4IblDnHM3uI6Z67oi1XOe7rsq7HsKMvuukiJTqlYpN4/hW4sODXn8Z7nqhnbONZrZYjp3FR9pZscQ64FIsguffSlnYq3cqRb+CkpTm04dPpNL2LoOocFDbIGtjyVs20H78Jd6OqZSnIx/vYIWvHoipGL7flihu6BToOSc2wx8xcyuxg9LOQHfUzI0wvlOwwd0CxK2hZU7SmUmrNXuvQjHFltBXq98iL3/Xo7dfm5mE/CfieShkOBb8AfRcfGusNcnrEciLTM7EB/YBnkdnyr3f4ENLrY+SqwhIFXgU6qK/d4p5nP2FefcfUW4bqrnfACpv3NS9S50h+8qiVHPg5SV2I/9bSEPb8fPVciln4Rsv5rgSWL/EzIBtSs+TX4mPc4Me8A510TwpOKj6Zxn/dmESZ/JufUnEb7acFiAEtY13uScsyxvc0POiXPudefcT51zpzrnDsBn9joCP5/mh4QPB/pSxHIPNbP+YdePVfzCFvPKdqJvIRX09con51dozyT4DxvmsXeqeUVppFo/ZYZz7i7nXJPruLBi1sFKkYW9d5Z24b1zXyH/gG4o1XdKurkLYY1276Wb+C+lRcGDlKP7Ce5u/o1zLqctWc65p4C/Bjx0CsE9f/mYKJ1ufkK2Ph8bUhQmqFeiGvhW0rbEgOE5Og7ZGEx4+cN6PZaFbB9uZmNDHgtlZhn10DrntjnnXnTO/cE5dxXhGWGSJ3uGLUpm+EXRwkykY+aqRE+mOK5UFPX1SnGeiWY2LYtDw4LFNjq32i5NcZ6Ls7g2+Dz/Qd53zoVNvA/rqUglVWUvqOcl0/NEOUfYe+dTZha08GZKuXrv9HBPE97jclrYQWa2B+FZlcK+p7ry3pA8UvAgZSeW/jBoMnOXJ0qH+GnE/d4G/l8uLxzLbnR6Ls+ZYE/8cJ0wYZX7UUn/3/3DEWsNfS7p8aAVsdc5514NOrlz7kXCs+L8PDZRPS0zm2BmvwR+FvDYmWZ2Qpp5H3FbQ7Yn/wA+gV8ULcjcoN4HM+sF3BhyjCNagoCiKsTrlaVDgcfN7C9mdk5SlrSwMvQifPXxlwOGRC4l/P1xiZmlzI5jZgPNLDmwDEvbW2tmH0veGKtk35DqOiG2pHjs2AzOEzZvIMo5/oRfuDJZb+Cu2OuRkplVxD7LD9Nx5WsJEGtgeybk4S+b2REhj83FJ8EI8t8h27vy3pA8UvAg5epyoFfCrSpFq1xX/Q4/ETud+2NrROTSvxA+EW1S1K58fLrHIDNTXDsseEjUSucforAW+EzO/YOQ7RPwWY++bmYj4lmPzKyfmR1sZl8ws5+a2Vp8NqXzCM42MxU/bGqdmf0iVrk8MlaZq4ydc4CZTSd8An6HTEWxTChhFd+RwDIzO9HMeptZpZkdjQ8OJoYc83vnXFgK11KT79erK44Bfg28bWb/EUu7O97M9k54rQeb2Wn49+5RIefplHo11pBxc8j+FcAiM7vLzI41s76xa9XEekVuxK/am5xRKWxdDgP+YGbHxN5DfWPByTNkMbk6VvawIZa3mNndZvbdpEQMQd9Fq0LOcbaZPWxm1yadY3RCGbbhE1MEORX4q5mdaz5tbVx/M/tEbPud+GE4S/Ct5kFzq6SzeSHbewH/a2YzY99/Fvvc3opfODLI6wSvLwPh742JZrbEzK5Pem9MyOBvkK5wJbBSnW66dfVGmhWmu3jusFUxZ2ZwjitSnCd+G5WH5+XpkGu9QQar8OIrd0HnaQMOTHFc0ErMibfnAo75dITn6tw05a1K8bcn31rTPN7pPYSfN9OVczrgroDzDsLPFUl3bNjq3/HbJmBkyHNzX8gxS3P1GSCDFWsL8Xpl+dn5asTXIcpr/REBK3HHrtMPvzJvtn/7fUnnG4Bvjc/k/bMr09c4dq1fRix3/DY44BznZ3iOMwP+3lcivlap/k5HyMrFdGEV7C6+B2dm87pkcZ2pYddJccziCM95uue70+uZdI0TMnxvXJ7P10O39pt6HkQK4xeEL5wFfqXksNb9rJjZKNrXVUi2yMW+nSP6XdhlSD2nImxSc1zQWNc/Ez70Ii5lz4PzPTinEd5ylSgfrY3pzvkR8H+TNzo/JOD/kH79gFTDpZqBs1zwwn8lqQRer2wZ0crzLReSCMH51vOTidY7mfZazq8xk26oZPL754cRrh3kNrqecehBwueJpBX7e0/GD/tMxdBoi1w6B782Tyrpnu9rnHOLUjz+BOEL+kkR6YMkUgDOp/W8N8UuhVxRGsKDgUDOuQb8EIkgqdZ8SDe8qNMQJeeHQ6T6UXrZOZc2i5Bz7l38sJeF6fZNYRcQOLeiCz4APhcWLDrn/gGMI3z15lTWAhOdczldZLAQSvD12kT6IDadbcAFzrmfp9rJOfcafrjTf3bxenFziT7f5T589reMOZ9d6lIyW+sk+Rzb8HOnsk7V6fz8pyPxKWiz1Uz2K4iXndjrNpnwIUepfAR8yTn3/TTXcPiht3pdSoyCB5HCCUsRuxn4fS4vZKnXdngTP0QkU2EBx4HAlJDHlhJesXDAUyGPpZr3EGUuhb+Acx84587Br/T8AKl7f+I+wE/g+wawf8gP3HzgKvxK4FEXinoTuAUY7Zx7LE2518bK/K/4MenpWnf/AVwEHOacWx6xPCUnj69XNmX5PT6F6dn4BAv/JHor++v4nqVDnXOR0j875951zp2G/yz9nvDJ83Ft+HkenZIsxHpyTgWuIXxi8zpgtnPuKxn2QiZf6zZ8auJb8YuTbSbDYML5rHQfB76H/+xvJNriiInn2OCc+ww+FfR/EW2hvXfxz/VXgf2cc6kaeCSJ8yuvfwnfw/0QPt15Km/hEzwc5JyLFHQ4514GDge+iQ8O3yL1YnNSANaF7wwRyYCZzSA4q8TPnHPZpmWUDMQmuI7BV1QG4cdLt+Az3ryOHzbT6DJcKND8wlwj8RNPa4E9gJ34yu8b+IXuVmVbSYtlzfpk7PyD8A0/m/A/pH9xzqUbstEt5ev16kJ5+uFf5+H4lKj98AkJdsTK9AbwonOuyy2lsbShY/FreAzCZ6ppwVesXwVWOOfCMjUlnmdP/Hoph8TK+jb+eftzV4KGUmdmvfG9OaPwn8n++NfpA3zgtAqfta3HPgeFFnvOxwMH0/49uAUfpK1wzkUZlijdgIIHkQKI5biuxw9HSXa4y1+mJxEREZGc0YIoInlgZqfgW0yr8C2UpwJ1Abs+rsBBREREugsFDyL5cRbpV3Z2+HHzIiIiIt2CJkyLFM+PnHN/LXYhRERERKJS8CBSHHcC3yl2IUREREQyoWFLIoXRjM+M82fgF865pcUtjoiIiEjmlG1JREREREQi0bAlERERERGJRMGDiIiIiIhEojkPJcDMOowdc85ZscoiIiIiIhJGPQ8iIiIiIhKJeh5Kk2axi4iIiEg+ZTXSRT0PIiIiIiISiYIHERERERGJRMGDiIiIiIhEouBBREREREQiUfAgIiIiIiKRKHgQEREREZFIFDyIiIiIiEgkCh5ERERERCQSBQ8iIiIiIhKJggcREREREYlEwYOIiIiIiESi4EFERERERCJR8CAiIiIiIpEoeBARERERkUgUPIiIiIiISCQKHkREREREJBIFDyIiIiIiEomCBxERERERiUTBgwRqa4OVK2HxYnjwQX+/cqXfXmpeeeUV5syZw1FHHcWgQYPo1asXgwYN4phjjuHyyy9n+fLlxS5iQSxatIhLLrmESZMm0b9/f8yMc889t9jFEhERkR7EnHPFLkPZM7MOL0IxX5PmZliyBOrrYd062LQJdu2CykqorYVhw2DyZJg2Daqri1ZMwD9P119/Pddffz1tbW0cddRRTJgwgUGDBrF161ZefPFFnnnmGVpaWrjtttu46KKLilvgPBs7diwrV66kX79+DB06lJdffplzzjmHX//618UumoiIiJQey+agqlyXQrqvrVth/nxYvhzWr/dBw957Q+/e0NoKq1bBmjWwejU0NMAll0BNTfHKe/311zN37lwOOOAAHnjgASZOnNhpn3feeYdbbrmFLVu2FKGEhfXTn/6UoUOHMnLkSJYtW8bxxx9f7CKJiIhID6NhSwL4Hof58+Gpp6CxEQ48EMaPh+HDYehQfz9+vN/e2Oj3mz/fH1cMjY2N3HDDDfTu3ZtHH300MHAA2GeffZg3bx5XXHFFh+0zZ87EzGhsbGT+/Pkcfvjh9O3bl6lTp+7ep62tjTvvvJOjjz6afv36seeee3L00Udzxx130JY0fqupqQkzY+bMmYHlmDp1KmYdA/ylS5diZsydO5dnnnmGE088kQEDBlBTU8NJJ53E888/n9FzcvzxxzNq1KhO1xERERHJFQUPAvihSsuXw4YNMHasH6KUXAc189vHjvX7LV/ujyuGe++9l9bWVs4880wOO+ywtPtXVQV3sl166aVcffXVjBkzhksvvbRDEHLeeedx4YUX8vbbb/PVr36VCy64gI0bNzJ79mzOO++8nP0tzz77LFOnTqW6upqLLrqIk08+mSVLljBp0iSefPLJnF1HREREpKs0bEloa/NzHNavh1Gj/DClVHr39vutXeuPmz4dKgochj799NMAnHDCCV06zwsvvMCKFSs48MADO2x/4IEHWLhwIUceeST19fX069cPgBtuuIEpU6awcOFCTjnlFM4+++wuXR/gj3/8I/Pnz+fiiy/evW3x4sWcfvrpnH/++axatYqKQj/BIiIiIgEUPAh/+5ufHN3WBgMHRjtm4EA/J2LdOn/8EUfkt4zJ3nrrLQD233//To81NTVx3333ddg2cOBAvvnNb3ba94orrugUOADcc889ANx44427AweAPffck5tuuokTTzyRu+++OyfBw8iRI5k9e3aHbaeddhpTpkxh2bJlPPnkk0yZMqXL1xERERHpKgUPQlOTz6o0eHDnoUphzPxk6k2bfABR6OAhnpEqaHx/U1MT1113XYdtw4YNCwweJkyYEHj+F154gYqKig5zIOKmTJlCZWUlK1asyKLknU2aNCmwZ2Hq1KksW7aMFStWKHgQERGRkqCxEEJzs+9FCJkWEKqqyh+3Y0d+ypXKkCFDAHjjjTc6PTZ16lScczjn2LlzZ8rz7LfffoHbt2zZwqBBg+gdMIarqqqKwYMH5yyD07777puybOWQKUpERES6BwUPQnW1X8ehtTWz41pb/XF9+uSnXKnEJzYvSZ6xnby63X/+Z8rzhGUmGjBgAO+//35g8NHa2sq7775L//79d2+L9xy0hjyJmzdvDi3D22+/Hbg9PjRrwIABoceKiIiIFJKCB2H4cJ9FaeNGiLo+nXN+//jCcYU2c+ZMqqqqWLRoES+99JLvPnnkEbjqKrjxRrjjDrjrLrjzTn/Apk3+8Yi5ZY888kja2tqor6/v9Fh9fT27du3iqKOO2r2ttrYWgNdee63T/h988AGvvPJK6LWeeuqpTqlfwadyjZelJ+tOq5mLiIiUux4fPJjZmWY238yeNLMPzMyZWVZL7prZUDO7x8zeNLNmM2sys1vMrDbX5S6kMWN8AFBZCSkayDvYvNnvP2yYP77QDjroIL73ve/R0tLCydOn8+dvfL9kOXQAACAASURBVAMWLPC5Y1et8tFN795sjvcc7NjhH7/5Zr8aXhrnn38+AN/5znf46KOPdm//6KOPuPLKKwGYNWvW7u01NTUccsghPP300/zzn//cvX3Xrl3MmTOH7du3h15r9erV3H777R22LV68mGXLljFy5EgmTZqU/gnphsLivTvu8P+/6qqM4j0REREpgHKYMP094AhgG/A6cEg2JzGzg4A/A/sAi4GXgQnApcB0M5vonHsvJyUusIoKmDzZrxy9erVfxyFVutaWFr/fiBH+uGJlEb3mmmtwO3fy/XnzmPiLXzCub18mfOxjDKqpYfPrr9O0bRuPx+ZETB4yxK9uF6/E79qV8txnn302ixcv5sEHH+Swww7j9NNPx8x4+OGHWbt2LV/4whc455xzOhzz7W9/m1mzZjFx4kTOOuss+vTpwxNPPMHOnTs54ogjWLlyZeC1pk+fzmWXXcajjz7KEUccwZo1a3jooYfo06cPCxYsiJym9eGHH+bhhx8G2oc8PfPMM7sXrhs8eDA//vGPI50r37rbauYiIiLilUPw8C180LAGmAI8keV5bscHDt9wzs2PbzSzn8Su8QPg610ravFMm+Yradu3+/tRo3w61sQpAc75HofVq2HIEL/i9LRpxSuzmTH3U5/iiyeeyJ0NDTzR2srC117jw507qendm4P69+fCQw/lvIMP5qjBg33U09Dga6wRJiE/8MADTJkyhXvuuYef//znABx66KFcdtllXHjhhZ32P//883HO8ZOf/IT777+f2tpaTjvtNObNm8cZZ5wRep1jjjmGa665hquvvprbbrsN5xwnnHACP/jBDzj66KMjPx8NDQ3cf//9HbY1NjbS2NgI+IxTpRA8JK5mvmFD8Htt2LD291o83rvsMj8/R0RERIrHXNRB7j2AmU3FBw+/cc6dm8FxI4BXgSbgIOdcW8JjNcAGwIB9nHMfZlGuDi9CsV6TsNbgqirfGrxxox+qVFfnA4eLLy5ya3Bbmx/bsmQJHHign4CRzqZNfnW7adNg3rzidZvg5zQcf/zxXHvttcydO7do5Si0Rx7xI8gaG6P1cjU0+F6uWbNgxozClVNERKSHi5igv6MeP+chR+LLGD+WGDgAOOe2Ak8DewCfLHTBcqmmxrfuzprl69ajR/vW4JYWfz96tN8+axbMmVMCw0hysbqdFFS2q5mvX++P0yRqERGR4iqHYUu5MDp2H5YyZzXwGeBgYEnIPgCY2fIclivnqqt96+706e118x07fDrW+OToIjbWd9QdV7crcyW1mnlbmz9hU5MfS1Vd7VOPldSbXEREpLQoeIgmnmg/bKB8fHvE6lDpq6jwlbSSrlvHV7dL13ydrKrKd6cUY3W7MlcS8V5zsx/qVl/vT7hpk38fVVa25x6ePNl3s2mShYiISAcKHnIjXg1KO1nBOTeu08FJcx4kou64ul2C+ErY5aTo8Z7SPImIiHSJgodo4j0LYUv99k/aTwohvrrdqlW+tThKU3Z8dbvRo4uzul2ZK2q8pzRPIiIiXaaBvdGsit0fHPL4qNh9+DLCknvdcXW7MlfU1cyXLPE9Dhs2+DRPtbWdA04zv33sWL/f8uX+OBEREQEUPEQVXxviM2bW4TmLpWqdCGwH/lLogpW1+Op2dXW+pbilJfX+8dXt6uqKu7pdGStavKc0TyIiIjmh2lMCM+tlZofEVpPezTn3KvAYMBy4KOmw64A9gV9ms8aDdNG0aTBunF+1rqHBT35NbtJ2zm9vaCiN1e3KWNHiPaX1FRERyYkeP+fBzE4HTo/9d7/Y/bFmdl/s3+865y6P/Xt/4CVgHT5QSDQb+DNwq5lNi+13DHA8frjSd/NRfkmjutpPagU/xGTt2vDV7UaMaF/dTmPYi6Yoq5mXRJonERGR7q/HBw/AWODLSdtGxG7gA4XLScM596qZjQeuB6YDM/ArS98KXOecez9nJZbMxFe3S06/2dLig4b45Gil3ywJRYn3ip7mSUSkG9E6OJKClVuqyFKUnKpVr0kXxL/wSnp1O4ECL7eweDHccYfv0hg+PPpxTU2+B2L2bPjsZ7tYCBGREqd1cMpNxK74jsqh50HKSbdY3U6gwKuZK62viEhqWgdHIlLwICJFVZB4L57mac0aP5mitjb9MUrrKyLlQuvgSAY0jkNEej6l9RURCad1cCQD+kWUYG1tsHKlHyv+4IP+fuXKksx3/8orrzBnzhyOOuooBg0aRK9evRg0aBDHHHMMl19+OcuXLy92EfPuvffe4+677+Zzn/scI0eOpG/fvgwYMIDjjjuOBQsW0FaCr1vBKa2viEhnWgdHMqQJ0yWgpCZMd6PJUs45rr/+eq6//nra2to46qijmDBhAoMGDWLr1q28+OKLPPPMM7S0tHDbbbdx0UXJS3T0HHfeeScXXnghQ4YM4fjjj6euro63336bhx56iC1btnDGGWfwu9/9DouaprSnChvTm5zmqa6uPc2TxvSKSE+2ciXceCO88opvYIk6J+z55/2csCuv1DzD7iurSoGChxJQMsFDJhWrceOKPlnquuuuY+7cuRxwwAE88MADTJw4sdM+77zzDrfccgv9+vXjqquuKkIpC+NPf/oTH374IaeccgoVCUNs3nrrLSZMmMBrr73GokWLOOOMM4pYyhLRjQJkEZG8Uza6cpZV8KBhS+IlTpZqbIQDD/Qtr8OHw9Ch/n78eL+9sdHvN3++P64IGhsbueGGG+jduzePPvpoYOAAsM8++zBv3jyuuOKKDttnzpyJmdHY2Mj8+fM5/PDD6du3L1OnTt29T1tbG3feeSdHH300/fr1Y8899+Too4/mjjvu6DQMqKmpCTNj5syZgeWYOnVqp1b/pUuXYmbMnTuXZ555hhNPPJEBAwZQU1PDSSedxPPPPx/5+TjhhBM49dRTOwQOAPvttx9f//rXd19PaE/zNG+ebzGbPRu+9jV/f+WVfvuMGQocRKQ8xNfBqcowh05VlT9O6+CUHWVbEi95slTQmMfEyVINDe2TpWbMKHhx7733XlpbWzn77LM57LDD0u5fFfKleOmll/Lkk09yyimnMGPGDCorK3c/dt5557Fw4UIOOOAAvvrVr2Jm/OEPf2D27Nk89dRT/OY3v8nJ3/Lss8/ywx/+kBNPPJGLLrqINWvW8NBDD1FfX89jjz3GpEmTunT+Xr16AeHPQdlSWl8REd9QUlnpRxhkorXVH9enT37KJSVLtQnJfrLU2rX+uOnTC56N5umnnwZ8i3tXvPDCC6xYsYIDDzyww/YHHniAhQsXcuSRR1JfX0+/fv0AuOGGG5gyZQoLFy7klFNO4eyzz+7S9QH++Mc/Mn/+fC6++OLd2xYvXszpp5/O+eefz6pVqzr1KETV2trKL3/5SwCmT5/e5bKKiEgPo3VwJEMKHqR9ha62Np/XOYqBA3135bp1/vgCt96+9dZbAOy///6dHmtqauK+++7rsG3gwIF885vf7LTvFVdc0SlwALjnnnsAuPHGG3cHDgB77rknN910EyeeeCJ33313ToKHkSNHMnv27A7bTjvtNKZMmcKyZct48sknmTJlSlbnvvLKK/n73//OjBkzOOmkk7pcVpEeIb4SfVOTH7JRXe0rUFqJXsqR1sGRDCl4EP8DumkTDB4crcUB/H577+2PW7eu4MFDfFJ5UPagpqYmrrvuug7bhg0bFhg8TJgwIfD8L7zwAhUVFR3mQMRNmTKFyspKVqxYkUXJO5s0aVJgz8LUqVNZtmwZK1asyCp4uPXWW7n55ps55JBD+NWvfpWLoop0b5osL9JZfB2c1av9LWzoclx8HZwRI7QOTplS8CDtk6XSDVdKVlXlv0SKMFlqyJAhvPzyy7zxxhudHps6deru4KK1tXX3mP8g++23X+D2LVu2MGjQIHoHPCdVVVUMHjyYd955J8vSd7TvvvumLNuWLVsyPufPfvYzLr30Uj7+8Y+zZMkSBg0a1KUyinR7Ydnkevf2Y7dXrfItr6tX+zldRc4mJ1JQ06b59/327f4+aIVp59pXmNY6OGVNwYN0y8lSEydO5IknnmDJkiWcf/75WZ8nbN2DAQMG8P7777Nz585OwUdrayvvvvsu/fv3370t3nPQGvIcbt68ObQMb7/9duD2+NCsAQMGhP8BAW655Ra+9a1v8YlPfIIlS5awzz77ZHS8SI+TmE1uw4bgitGwYe0Vo+3b/bbLLlMPhJSH6mofMIMPsNeuDU/XPmJE+zo4+nyUJfU1SftkqY0bO6+4GyY+WSre1V9gM2fOpKqqikWLFvHSSy/l/PxHHnkkbW1t1NfXd3qsvr6eXbt2cdRRR+3eVhsbI/raa6912v+DDz7glVdeCb3WU089FbgCdDy16pFHHhm53DfddBPf+ta3GDt2LE888YQCB8mNbrTifKDkbHK1tZ2HaCZmk9uwoT2bnEi5qKnxAfOsWb5HYfRo/7loafH3o0f77bNmwZw56pkrY+p5kG45Weqggw7ie9/7HnPnzuXkk09m4cKFfOpTnwooZniLfyrnn38+S5Ys4Tvf+Q5Lly5ljz32AOCjjz7iyiuvBGDWrFm796+pqeGQQw7h6aef5p///Ccf//jHAdi1axdz5sxhe7wlM8Dq1au5/fbbO2VbWrZsGSNHjoycqvX73/8+11xzDePGjeOxxx7TUCXpup4wR6AbZpMTKZr4OjjTp7cnU9mxw48wiP/e6/NQ9hQ8SLedLHXNNdfgnOP73/8+EydOZNy4cUyYMIFBgwaxefNmmpqaePzxxwGYPHlyRuc+++yzWbx4MQ8++CCHHXYYp59+OmbGww8/zNq1a/nCF77AOeec0+GYb3/728yaNYuJEydy1lln0adPH5544gl27tzJEUccwcqVKwOvNX36dC677DIeffRRjjjiiN3rPPTp04cFCxZEStN6//33c80111BZWcmkSZO49dZbO+0zfPjw0EXsRDrpKXMEumE2OZGi0zo4koKCB/G64WSp+OrMX/ziF7nzzjt54oknWLhwIR9++CE1NTUcdNBBXHjhhZx33nkdhhhF9cADDzBlyhTuuecefv7znwNw6KGHctlll3HhhRd22v/888/HOcdPfvIT7r//fmpraznttNOYN28eZ5xxRuh1jjnmGK655hquvvpqbrvtNpxznHDCCfzgBz/g6KOPjlTWtWvXAr6n45ZbbgncZ8qUKQoeJJqeNEegG2aTExEpZeaijnGXvDGzDi9C0V6TsJbG5MlSdXXtk6VKsaWxm1i6dCnHH3881157LXPnzi12cUTaPfIILFgAjY3ReiIbGnxP5KxZRVlxPqUHH4S77vJ/w9Ch0Y97/XX/t33ta/CFL+SvfCIixROxRaUj9TxIu/hkqeQxzi0tPmiIryRZ6mOcRSR7PW2OQDfMJiciUsoUPEhHmiwlUt562hyBeDa5Vav8d1iUoUvxbHLxBhMREdlNwYME02QpkfLU0+YIdMNsciIipUzBg0iRJK6ELVIyuuGK8yl102xyIiKlSt+KIiLSrifOEZg2DcaN81niGhp8D0ly4O6c397QUBLZ5ERESpV6HkREpF1PnCNQXe3XoQCfTW7t2vBsciNGtGeTU1IIEZFOFDyIiEi7njpHQNnkRERyQsGDiIi068lzBJRNTkSkyxQ8iIhIR91wxfmMKJucSLC2Nh9YNzX55AnV1X4oowJrSaDgQUREOtIcAZHy0tzceUjfrl3+M15bqyF90oEpVWTxmVmHF0GviYiUBFUoRHq+rVth/nzfULB+fXhDQV2dz1p2ySV+DpH0BBEX80k6SBXV4lPwICIlLT6UQXMERHqW5ma4+WZ46inYsCHaEMXjjvPJB9Rg0BMoeOiuFDyIiIhIwT3yCCxYAI2N0ZIjNDT4oYqzZvnkA9LdZRU8aM6DiIiISKnK1yTmtjY/JHH9et/jkG5V+d69/X5r1/rjpk9Xz2OZUvAgIiIiUmryPecoPhSxrc0PVYpi4EBfhnXr/PHKWFaWFDyIiIhIeSrV1KRhk5h79/aTmFet8gs5rl7thxJlM4m5qckHJIMHR1tJHvx+e+/tj1u3TsFDmVLwICIiIuWllDOJNTf7wCHVJOZhw9onMW/f7rdlOom5udn/zemGKyWrqvLzH3bsyOw46TEUPIiIiEj5KESrflcsWeLLtmFD+CRmMx/kjB3ry7h8uT8uk0nM1dU+WGptzax8ra3+uD59MjtOegwFDyIiIlIeCtWqn61CTmIePtwHIKtW+b85ytAl5/y6D6NH+2OkLGmavIiIiJSH5Fb92trOlebEVv0NG9pb9QshF5OYoxozxgcAlZU+WIpi82a/f3ydFylLCh5ERESk58u2VX/9en9cW1v+y5iLScxRVVT4eR11db6XpaUl9f4tLX6/ujp/nNK0li298iIiItLzFbJVP1vxScxVGY4qr6ryx2U6iXnaNBg3zq8c3dDgA5DkhWqd89sbGvx+48f746Rsac6DiIiI9HzdITVpoScxV1f7CeHgh2etXds+gbyqyp9340Z/7hEjfOBw8cWFz0AlJUXBg4iIiPR83SE1aTEmMdfU+AnhyalrW1p80BA/b7FS10rJUfAgIiIiPV93SE0an8S8Zo2fnFxbm/6YXExirq72aV6nT28f3rVjh/+b4+fVHAeJUfAgIiIiPV93SE0an8S8erW/ha3zEBefxDxiRG4mMVdU+KFZWjlaUlDwICIiIj1fsVr1MzVtmp+cvH27vw9ai8K59rUoymESc1ub7xFpavLDz6qrfTCoHpGiUPAgIiIiPV+xW/Wj0iTmds3Nnedi7Nrl//baWs3FKBJzySm5pODMrMOLoNdEREQkD5qb4eabU68wndyqP2kSzJlT+MppuVect271q4EvX+7X2ggLoOrqfLrZSy7xk78lExHTjiUdpIpq8Sl4CKeeShERyalMKqXxVv1iVkrjP4TlNIk5myDvuON81qieGEjlj4KH7krBQ2fl3uAiIiJ5pB+Z0vbII7BgATQ2Rhte1tDgh3DNmuWzRklUCh66KwUPHamnUkRECqIcW/VLXVsbXHWVD+4OPDDaxPZNm/zckGnTYN48vXbRZRU8aMK0lJTmZh84pOqpHDasvady+3a/TT2VIiKSMaUmLT3xYK6tzVcAohg40Lc0rlvnj9frmVcKzaSkLFniexw2bPA9lbW1nVNxm/ntY8f6/ZYv98eJiIhIN9fU5HsSBg+OthYH+P323tsft25dXosnCh6khLS1+eGn69f7HodUQxzBPz5qlN+/vt4fLyIiIt1Yc7PvRajKcHBMVZU/bseO/JRLdtOwJSkZ6qkUKU3KeiYiBVNd7Sc2trZmdlxrqz+uT5/8lEt2U/AgJSMXPZUKHkRyRwlpRKTghg/3XzCrVvkvmSgVAud8NpXRo/0xklcKHqRkxHsq0w1XSlZV5TO1qadSJHfCsp717u0b+FatgjVrfOKChgZlPRORHBkzxgcAa9b47ChRsi1t3uxbNeKZsiSvFDxIyVBPpUhpUNYzESmaigrfpbl6tb9FWedh9Wq/zsPkyRpLWQB6hqVkxHsqN270PZBRxHsq40MoRKTrlPVMRIpq2jS/kNOQIb5rc9OmzhUD5/z2hga/3/jx/jjJu7IIHsxsqJndY2ZvmlmzmTWZ2S1mFqEvrMN5jjOzxbHjd5jZejN7xMym56vs5STeU1lZ6Vs0o1BPpUhuKeuZiBRddbUfC3nccb5HYe1aeP55Pzny9df9/fPP++0jRsCkSXDxxer6LJAeP2zJzA4C/gzsAywGXgYmAJcC081sonPuvQjnuRC4HfgQ+APwOjAU+Dxwspl9zzn3g/z8FeVBPZUixaesZyJSEmpq/FjI5KwNLS2+1TA+OVpZGwrOXNTxId2Umf0P8BngG865+QnbfwJ8C/i5c+7rac7RC9gIVANjnXOrEh47FFgBtAG1zrnmLMrY4UXo6a9JKs3NcPPNqcdaO9c+1nrIEN/gMGeOvjdEcmHxYrjjDv85Gz48+nFNTf5zOns2fPaz+SqdiJSleL7odet8dpQ+fdqHHKjlsCsi5rbsqEf3PJjZCHzg0AT8LOnha4ELgPPM7DLn3IcpTjUIGAC8mBg4ADjnXjKzV4AxQD8g4+BB2sV7KsGPoV67tj3LS1WVnxy9caNvdBgxwg9xVE+lSO4o65mIlJyKCt+lqW7NkpBV8GBmk3NdkETOufocneqE2P1jzrkOI3Gdc1vN7Gl8cPFJINVUv3fwPQ8Hm9ko59zq+ANmdjAwCmiIOPxpeYZ/Q9lRT6VI8SjrmYiIpJJtz8NSIF9jaxy56xEZHbt/JeTx1fjg4WBSBA/OOWdmFwG/Bpab2R+AN4H9gc8B/wD+NUdlFnwFZsYMmD5dPZUihaT1mUSkJ4uPgGpq8j2t1dX+e0/1iui6WknPaqxUAQ2I3W8JeTy+Pe20QOfc78zsTeAB4EsJD70N3As0RimQc25c8rbkOQ/STj2VIoXVI9dnUm1BpOw1N3ce0bBrl//uiqd714iGaLoaPOS60lvoYCR+vbR/h5mdC9wFPAR8H1gHDAOuBm4DpgBfyE8xRUQKo0dlPVNtQUSArVv9wpfLl/u00vG5lL17+yGXq1b5BpPVq/2yEZdc4odQS7AePWGa9p6FASGP90/aL1BsXsM9wIvAeQnzJ142s/Pww6POMrOpzrmlXSuy5JoaHUUyM22a/wHdvt3fR8l6VnLrM6m2ICL43/3581NncRw2rP37bPt2v+2yy9SmEKYrwUOpD1kCiGdGOjjk8VGx+7A5EXGfAXoBywImXreZWT0wLnZbml1RJdfU6CiSnW6f9Uy1BRGJWbLEf49t2BDek2rm6wVjx/q2hOXL/XEzZhS+vN1BtsHDV3Jaivx5Inb/GTOrSKz4m1kNMBHYDvwlzXnivyZ7hzwe396SbUElt9ToKNI13TrrmWoLIoIfeVBf7+sBo0alT0Hdu7ffb+1af9z06RqhECSr4ME5d3+uC5IPzrlXzewxfM/BRcD8hIevA/bELxK3e40HMzskduzLCfs+Gbs/08x+7Jx7MWH/scCZ+HkTf8rLHyIZKXijo8ZFSQ/VLbOeqbYgIjHx7622Nl8PiGLgQN/guG6dP14JWzrr6XMeAGYDfwZuNbNpwEvAMcDx+OFK303a/6XY/e6qpnPuOTO7F9/j8tdYqtZ1wHDgdKA3cItz7h95/DskooI1OmpclJSJbpX1TLUFEYlpavI/zYMHR0s7DX6/vff2x61bp6+DID0+eIj1PowHrgemAzOADcCtwHXOufcjnmoWUA/MBE4CaoAPgKeAu5xzv81x0SULBWt01LgokdKk2oLkm3qbu43mZv/znK4ukKyqyg/R3LEjP+Xq7goSPJhZHb61f1/8mgoVzrnrC3FtAOfca0Scp+GcC/y1cc454L7YTUpUQRodNRlTpHSptiD5ot7mbqe62r88ra2ZHdfa6o/r0yc/5eru8hY8mFkFfjG1bwOHBDx+A/AvwNcSNt/rnPtVvsokPV9BGh01GVOkdKm2IPmg3uZuafhw/1O8apWP7aLUC5zz2eTiSSGks7wED2a2D/AfwGSCU7rGF2V7AZia8P+BgIIHyVreGx01GVOktKm2ILmm3uZua8wY/9KsWeNfntra9Mds3uzbEeJJIaSznNdiYilQ/0THwMEl3HZzzq0C/hY/FDjCzA7MdZmkfOS90TEX46JEJH/itYXKSl8LiEK1BUklube5trZzUJrY27xhQ3tvsxRVRYUfSVZX5+O6ljQJ9Vta/H51df44tfUFy8fTcifw8di/EwOGsOafx5MeOzEPZZIyEW903LjRNyZGEW90jA9ZTSkX46JEJH9UW5Bcyra3ef16f1xbW+r9Je+mTYNx42DIED+ibNOmzvUD5/z2hga/3/jx/jgJltNhS2Z2OPCvdOxhSFfDii/QFj9mInBXLssl5SPvXZSajClS+qZN87WA7dv9fdAwE+fah5motiBhlPq326uu9lNQwHcIrV3bPmWlqsqPPNi40dcDRozwXwUXX6wRZ6nkes7D2fhgwdEeNDyKn8ewMOSYlxL+bQRMrhaJKt7ouHq1v4XNZ46LNzqOGBGx0VGTMUVKn2oLkitK/dsj1NT4KSjJybJaWvzXQHy6k5JlRZPr4OGE2H08gPi9c+4LAGYWFjxsSPq/ZqtJl+S10VGTMUW6B9UWJBfU29xjVFf7hIfTp7d3KO3Y4dv04iMPNGoxmlwHD3V07HWYF+GYbUn/75/TEknZyWujo1I3iHQfqi1IV6m3ucepqPCdQeoQyl6ug4fkmtTqCMcMSPp/ZY7KImUsb42OeR8XJSI5p9qCZEu9zSKd5Dp42IZfqyFuH2BtmmOGJv1/S05LJGUrb42OmowpIlIe1Nss0kmug4d36Rg8nAzcnuaY05L+/3ZOSyRlL+eNjpqMKSJSHtTbLNJJroOHF4BRtM97uNbMnnbOrQza2cyGAxcm7O+Av+a4TCK5p8mYIiLlQb3NIh2Yi7qSVpSTmV2AXyQucWG4HcB/AWfSMUi4FfgSfp5E4vYvOed+k7NCdQNmlrzydrGKItloa9NkTJFCi3/umpp8Rpzqaj8+XZ87yYetW2H+fN/bvH59eG9zXV17b3NNTbFLLZJOxPzDSQflOHjoB6yn4yTo5HUf4hIDhvh+7wJDnXNplgTtWRQ8iIhE1Nzcucdv1y5fcYsvE68eP8kHvfcKSw0EhVD84AHAzC4H/i/RVplODBwc8A3n3M9yWqBuQMGDiEgEmbT+jhvn5yap9VdyTb3N+aUgrZBKI3gAMLPFwKmkDiCSH/uDc+6MnBemG1DwICKSRnMz3HwzPPUUbNgQbdz5ccf5uUmqYIh0D2ogKLSsgodcT5iOOwOfZemrsf87OgYLcfFC342fOC0iItLZkiW+QrFhQ3jGGzPfMjl2rJ/Yuny5P27GjMKXV0Qy09zsA4dUDQTDhrU3Xzn4VgAAIABJREFUEGzf7repgaDg8tK/5pxrdc5dABwLLMKv3WBJtw9ijx3rnLvAObcrH2UREZFurq3ND2FYv95XKFKlygT/+KhRfv/6en+8iJS25AaC2trOi/IlNhBs2NDeQCAFla+eBwCcc88CXzCzCqAO2Dv20EZgvXNO3+giIpJafNLktm2+1fH99/3QhZoaGDQoeNXfgQP9kId16/zxWl1apHQFNBA45z/qW7e2T3nY/ZGPNxCsXeuPmz5d800KKK/BQ1wsSGiK3URERKJpboZFi+C55/wwhW3b/NwGMz9UoV8/P79h//197SLOzI+V3rTJBxAKHiSAEvqUiPgE9LY2dtUM5I31vmNh6zZoaYY2BxUGvauhJv6R/9hAKtVAUBQFCR5EREQyFp88+dhj8O67PiCoqfG1urY23wuxZYu/vfceHHZYxyFNVVV+4cYdO4r3N0hJUkKfEtPUBJs2sXPgYP7+N2PjxvZ2gj59obLCBxBbNsMHuz/yxidq96aXGggKLq/Bg5kNAs4FJgMfB/bCT5x+H/gnUA/82jn3fj7LISIi3Uzi5MmNG2GPPXwwkJhZpV8/Hxx88IGv+QEcfnh7D0Rrq/93nz6FL7+UrLCEPr17+7fMqlWwZo2fk9vQoIQ+BdHczK6du1j3em82bIePPoIBA6A6aXpTTT9obvHBQ+suqNlSxYFDW6hUA0FB5SV4MLNewHXApUD8WztxUOo+wGjgc8CNZvZTYK5zbmc+yiMiIt1M4uTJMWPgH//wPQ2Jtbj40KVBg/zg6I0b4Y03fBpH5/z/R4/2zcgiKKFPyaqu5v3NlWzd3MpHu2DwXuHDxqp7+8fffQ+27mjl/X6V7K0GgoLK+Yg+M+uP71H4N6Av7dmVXNItvr0PcCVQb2aK7UVEyl3y5Ml99/W9DGa+pyFZZSX07+/HOWzY0L7eQ2Vl++JdIiihT6lqqxvOGx/V0nfrRgb0d2nnm1RUwID+jr7bNvLGR7W0HaAGgkLKx3SgRcAxdA4YkiUHEhNix4qISDlLmDy5u1l4yBAfQGzZEpx6tXdvHzRs2wZvv+2bjevq/MB1zXwVlPG3lP2NMayzYeyySgayOdIxtWxml1WyzobxN9RAUEg5/UY1s7OAEwkPGMLEA4gTzawsV5kWEZGY2ORJBg9ubxbef38/MH2PPfzk6OQeCDM/t2HbNh98DBkC48f7Ga8idI5Jo0jO+Cv50bS+guf7TmZTvzr2/WA1lbsCehgTVO5qYZ8PVrOpXx3P953MutfUQFBIuZ7z8KWEf8d7HuIdgjuB92L/3gvoFft3cpAxE/h9jsslIiLdRXOzr7ElNg1XVsInPuH/vXGjnyTtHPTt6wMH5/w28EOVJk2Ciy8OHKiu9JzlKSgmTUcZfwujuRmWD5zGyG0NDNi+nQPeb+Cd/qP4qHfShBTn2KNlM/t8sJotewxhTd/xLB84jTGaL11QuQ4ejqJjMGDAI8APgWedc60AZlYFfBL4DnAyHYcvjctxmUREpDuprvbBQmtrx+29evlsSm+84Qejb9vmax1tbb6CseeePpg46SSYM6dT4KD0nOUtKCaNQhl/86+6Gtp6VfOHoZcwYCvUbVzO4K1rMbeLbX32ZldFFZVtrfTbsRFnlbxbM4J1e4/n4ZqLaetVrYRqBZbr4GGv2H281+G3zrlzkneKBRFPAaeY2ULgX2kPOmpzXCYREelOhg/3tflVq3yNPrHlsbLSz2U44ACfYWnbtvaUrOvX+6bhM87oVPtXek4Ji0nTUcbf/Gv/yNfw2JGXceibSxi1oZ5B29axZ/MmqtpacFbJ2wNH836/YaweMpmXPjaN9SuqlVCtCHIdPLwD7J/w/x9EOOYGfPAQ917YjiIiUgbGjPG1gTVrfNak2oA2JTPYay9/A9+N0K9f+/ijBErPKZA6Jg1Tbhl/izWkL/Ej/+7Wav5eN4N/HDCd/d//G4O2rqPXrh3srOzD+zXDeGPQGJxVsGmTEqoVS66DhxXA0IT/N0Y4JnEfB7yY0xKJiEj3UlHhxw+tXu1vY8emHmvS0uL3GzEiMLtScnrOoFMlpudsaGhPzzljRo7/NimaKDFpsnLJ+FvsIX3BH/kKXt/rCF7fq/NEkzQfecmzXAcPvwJOTfj/AcDqNMcMTfr/b3NaIhER6X6mTfO1+O3b/X1Qd0F8PYfVq0OzK2WbnnPtWn/c9OmqmJSibFrIcxyT9hilMqQvRx95KYCcBg/OuUVm9r/Ap2ObvglclOawb8buDXgOH4CIiEgPl7ICWF3tayngazVr17bXaqqqfK1m40bfNDpihK9FBGRXykV6TmXYKR1dbSFXBbWjUhrSl6OPvBSAOZfJcgwRTmhWi8+wdAx+GNJdwA+cc68l7TcU+C5wQWzTauAE59ybOS1QN2BmHV6EXL8mIiKlJKMKIF2rLS5eDHfc4SuEw4dHL2NTk69AzZ4Nn/1szv703CnDfLNhLeTJFcu6Ohg3LryFPJPzxCuoPXXy/COPwIIF0NgYrSemocFX3GfNyt+QvmIPoSozEZMWd5RVz4OZ/SnNLvFvLgO+BnzNzNYB8cDgY8CwhH0c0AL82sycc66HxvgiIuUt8yES1dTMmOHHD8W7EXbs8Klv4gPRU1SWe1x6zjKtWeWyhbymxm9PfhpbWvzTGJ8c3QOfxg5KdUhfdbUPTLL8yEsBZDtsaSrRVpBOXCRuOB0DhuR9DqM9kBARkR6maxXACj9+KMMxRD0qPWepDE4vglxPelcFtfSH9FVk95GXAujqnId03R3JwUB8/6BtIiLSgxUj61GPSc9ZSoPTCyyfLeTlXEHVituSra7G1S7CLWj/dNtERKQHybYCuH69P66tLbvrxtNzVlb6enUUJZmeMznyqq3tXONLjLw2bGiPvLq5XLSQS2fxIX1VGTYjV1X540puSJ8UTA/vlBMRkVJQrApgPD1nXZ1vkG9pSb1/PD1nXV0JpecsVuRVInLRQi6d9aghfVJQ2Q5bWo96C0REJKJiDpHo9uk5S31wep71uEnvJaLHDOmTgssqeHDODc9xOUREpAcrZgWw2+ePL/PB6Wohzw+tuC3ZyvUK0yIiIp0UuwLYrdNzlnnTu1rI80Mrbku2FDyIiEjelUIFsNum5yx25FVkaiHPn24/pE+KQsGDiIjkXSlVALtdes5SiLyKSC3k+dPth/RJUSh4kJ6vrc03MzY1+e7/6mr/Y1yyzYwiPY8qgF1QSpFXkaiFPH+69ZA+KYq8BQ9mti9wAX416tFALRCl79Q55xTUSNc1N3f+Nty1y38b1tbq21CkwFQBzJIiL7WQ51m3HdInRWHO5T7jqpldCNwMxD+2mawi7ZxzlTkvVAkzsw4vQj5ek7KzdatfjXX5cp/rPOxXpq4Oxo3zv0o1NcUudUGpQ0aKIZOPZrwCWGYfzWDNzXDzzalXmE6OvCZNgjlzelQNWm1CIjmVSf28/aBcV1TNbCZwT9LmqBcxFDwoeOiqbH5kjzvO99uWwa+Nfnyl2Lr8HizXyFeR127xt4BayEW6pPjBg5n1A14DBhAcMFjS9nihXeLjCh4UPHTJI4/AggXQ2Bite7+hwfdzz5rl+217MHXISCnJuAKoyFfPgYjkUkkED18BFhAcICRzIY8reFDwkL22NrjqKv/jeuCB0SYWbtrkB9BOmwbz5vXYZit1yEi3psi3IzW9i0jXZRU85HpicuK0NgN2Af8POD22zQG/AvYCPoWfRO1i+/0OaMlxeaTcxH9M29p8zTiKgQN9RWTdOn98t8nfmJklS3y9a8OG8A4ZMx9vjR3rO2SWL/fH9fAOGSl1zc0+cEgV+Q4b1h75bt/ut/XkyLfb5ZsVkZ4i180TR+CDgfjwpB875z6fuINzbqZz7lRgf+BHsX0rgWHA5c65r+S4TFJOmpp8T8LgwdFyoYPfb++9/XHr1uW1eMXS1uZHOaxf7+td6Raq7d3b77d+vT+ura0w5RQJlBz51tZ2/nwnRr4bNrRHviIiklO5Dh72Tfr/Q2E7Oud2OOf+DfgFPoA4Fvhtjssj5aa52fciVGXYqVZV5Y/bsSM/5SqyXHTIiBSFIl8RkZKS6+Chf9L/X41wzM2xewNOMLOzc1skKSvV1X7cc2trZse1tvrj+kRZiqT7UYeMdFuKfEVESkqug4ddSf/fGrvfPZchtnhcojdj9/FZwufmuExSToYP90MXNm70s3+jcM7vH89U0gOpQ0a6LUW+IpKJtjZYuRIWL4YHH/T3K1eqFzKHcj1h+n3gYwn/rwZ2Ah8C8b7mY4GHE/b5eMK/DfhEjssk5WTMGB8ArFnjJ09Gyba0ebPvdYhnKumB1CEj3VY88k03XClZVZVPxazIV6Q8KI1xweS652FT0v/3it2/RftE6h+a2QjY3Qvx06Rj9slxmaScVFT4L4e6Op91pSVNAq+WFr9fXZ0/roemOFSHjHRbinxFJJ2tW30u8gULfACxapX/Eevd29+vWuW3L1jg99u6Nf05JVSua0rv0jFnbDx4WEV7BqbRwGozext4A98TkVid2ZbjMmFmQ83sHjN708yazazJzG4xswjN0p3ONcbMfmlmr8XO9Y6ZLTOzL+W63JKladN8nvchQ3y+0U2bOteYnfPbGxr8fuPH++N6qHiHTGWl72iJogw6ZKQ7UOQrIqkkpnJubPRrPI0f7787hg719+PH++2NjX6/+fP9cZKVXAcPyTPTDojd1ydtN2Dv2PUtYZsDVuayQGZ2ELAc+ArwHL6noxG4FHjGzPZKcXjyuWYCK/DrVjyJn+y9KFZ2ZcIvFdXVfoGo447zK0evXQvPP+/HTr/+ur9//nm/fcQImDQJLr64R3djqkNGui1FviKSilI5F1yu5zwsj93Hm4eOAxYDvwduil0vXdPRb3JcptvxQ6H+f/buPT6uq777/ec3kjW+SL7IdhJjR3IcbKcNxga7QCAxCTqkbniAHCjQ03IJpBcuCQXSPg8H+iqEAu3TEi71w72hQIFSoCU5lBTSmoAJhAYMMk4gihxbUuIoiWPLtuzIkjWzzh9rJhqPZjR7Zvae2TPzfb9e8xp7ZvbWlvbMnvVbv7V+663OuZ3ZB83sw8DbgQ8Abyy1EzN7DvAPwD3ADufcI3nPzwvzoKVKXV1+gaj88Y9TU75RsXFjy41/7OvziZaJCX8fZIXpJk/IRCK78O/QkO/YSiZ9x5cW/q1QNvIdHPS3YiscZmUj33XrFPmKNLtKSzkfPOi327FD14gKRBU8ZJsjzwdwzj1oZh8H3sbcwcNPgC+EdTCZuRVXAkPAx/Oefg/wx8BrzOwG59ypErv7W/xidq/ODxwAnHNnqj9iCVUy6ZdG3rFjptzj6dN+DHS2R7KFLhrZhAz4TpeDB/1cspUr/dzS6Wk/0qOtzbe7tm1r+oRMqDRXL0KKfEWkkDBKOWuV9rKFHTz8Cj+HISt3htufAysoXor1+8ArnHP55V6r8YLM/e3OubNqdDnnxs3sR/jg4jlA0fyVma0BLgN+BtxrZlcAW/GBUD9wR/7+JUYSCX9x0AVCCZmIjI/7IbR79vgOsGxQ1tHhg7KBAV8AbHDQt32vv96fCwlIka+IFBJGKWe1DcoWavDgnHPAfxd5LgW81sw+CbwceCq+lOsQ8C3n3G1hHkvGxsz9/UWeH8QHDxuYI3gAfivn9d8DLs97fp+Zvcw5t7/UAZnZnlKvEYmSEjLhyp2rNzpauFO8t3emU3xiwj92ww0t3LatZGyXIl8RyadSznURduahJOfcXcBdNfpxSzL3x4s8n328VK4rWz72lfiKUi/DBxsr8cOfXgN828w2OedKTEUViQclZMKRP1ev0HdY7ly9/v6ZuXpXtVqZhWrHdinyFZFcKuVcFzUPHmIm2zdYahJ3W879Hzrn/j3z/xNm9jrgN4Bt+IzKP8+1I+fc1lkHYRaw/qBI42iFicOaq1eGMMd2KfIVEZgp5Tww4DsQggxdypZyzmYrpWx1Dx7MLIHvzc9yzrnA5VNLyGYWlhR5fnHe64rJLn43CZw1vMo558zsVnzw8CxKBA8iza6VJg5rrl5AGtslIlHIlnLev99fP5YFWL5LpZyrVvfgAd/7v5SZFajD7IUfyNxvKPL8+sx9sTkR+fsZLzIxOhtcLCjj2ESaTtNNHC6RPtFcvYA0tktEoqBSznURh+AhSndk7q80s0Ruw9/MuoDnARP4ErFz+SU+O7LCzM51zj2a9/zTMvdD1R+ySGNqqs7lgOmTMyf7SKWSmqs3F43tEpEoqZRzzTV18OCce8DMbsdXVHoLsDPn6RuBRcCnc9d4MLOLMtvel7OfaTP7NPBu4G/N7PXZQMTMNgHX4MvSfiPa30gkvpqmc7mM9MlvLuin013PE9PlpU9aaq6exnaJSJRUyrnmmjp4yHgz8GPg782sD/g18GzgCvxwpXfnvf7Xmfv8QQgfBPqA1wKbzOz7+GpLLwfmAzcEKdUq0oyapnO5zPTJms4JXnUcPpK4Adeb1Fy9QjS2S0SiplLONdX0wUMm+7ANeB+wA7gKGAX+HrjROXc04H6eyAQf/xP4PXwm4zQ+MLnJOfcfURy/SCNoms7lMtMnXf39XDy5h+ekdzF67CrN1StEddhFpBZUyrlmmj54AHDOPQi8PuBri3aNOeeeAN6buYlIRlN0LleQPrH16zn/Fwe5PLGbv7p/B5ufkdBcvXyqwy4itaRSzpFrha8uEYlYtnO5vczuiPZ2v10sOpcrTJ8s7kyxITnMJZ376O/3wZDLqxnnnH+8v78F5+pl67AfPjz7D1NMdmxXdnK6iIjERktkHkQkWk3RuVxh+iRxzko2pMa4fNUwjzyxWXP18qkOu4hIU1HwICJVa4pFPqsYmz8vPcXVO06zaJnm6s2iOuwiIk2l4uDBzF4b0jHom0GkwTVF53KV6ZN5XfM1V68Y1WEXEWka1WQePk+4q0GLSIOqunOZNOwtvpJzTYSUPtFcvQJUh11EpGmEMWwp4OBgEWlmlXQuP3vLJC88swveNfdKzjUZ69MU6ZMYUx12EZGmYC5o9Yv8Dc3ShJd5sMy+DHDOubaQ9tsQzOysv2Ol50Sk3ootzpzfudzTA8/dNM51bifJewK8eOtW33PdVd5KzmW77Ta4+WY4cCBY+qS/3/eUX3ttzJbJjrl0WmO7RETqr6IEQFyChyd3i4IHBQ/S0CYnZ3cu5ycTLr9kkv9r7020/2SOlZzz0xSXXup7rqPskZ6chJtumnuF6fzjuuwyeMc71FMuIiKNpi7BQxQUPCh4kCYwZ+fyd2Lcw19O+iQ7Nj/qjIiIiEj4ah48/GNFGwbgnAu0GnSzUPAgLSWdhne9y6cnLrgg2NyCsTE/ybavDz74weiHtgRJn2hsvoiINLaKgoeKJ0y3WgNfREJS4UrOpFJ+u337oi9llEyiuqsiIiKzaZE4EamtCldyZuVKv93wcO3qoKruqoiIyFnUdSYitZVdybm9zL6L9na/3enT0RyXiIiIlKTgQURqq8qVnJk/P5rjEhERkZI0bElEaqvClZzd4cMcO2cj/Qd6Ofy1+ixCLSIi0uoUPIhIbZW5knMqBY8OHCM12sbPT/fyqf/YxHRahY9ERETqQcGDiNRWIuFb+4OD/jbHOg9TZ+DXe6foemCQIVvHf01uJ02Cjg4/imlgwMcgg4N+KYhyFqHOrkMxNOSnYSiTISIiUpqCBxGpvb4+39qfmID+ftxT13M0vZTxk/bkcgoLFzoeHzzGopFBDrGKR3q3kXpWH2tzrlq9vTOLPU9M+MdKLUKtJRxEREQqV/EicRIeLRInLWl8nOmP7OTwd/cwfWCEM5MpxhIrOUM785im8/RhpqbbONTWw4kN27hzy3VMdhROKwRdhLqcxaO3bi0vkyEiItJgartInIhINcbp4hPcwDS7WMNuznXDLGeMJFNM08a90xs5mOplb+d2HmjrYwNJCg9u8qOe1q/3i1Dv3u3XdssfejQ56QOHO++E0VH/+qVLz56vXUkmQ0SkJI2TlCai4EFEau7JhvxPkow+cRUbLt3Bxel9LD85zLzUaY4+MZ8fjvRy18lNJEiw8DE4cy88/ek+M1BIqUWod+3yGYfR0eLTLMz80KUtW3wmY88ev12xTIaIyJw0TlKakIIHEam52Q35BIfYzKEVvsU/NAS/MljUBQsWwNGjfkjRoUN+SFEhcy1CnU777+6REZ9xKDI/+0lBMhkiInMqNk4yjIoPrUaZm1hR8CAiNRWkIZ9KgXP+O6GtDRYv9t/Do6Nw/vnFl4Zob/fzH/IXod63zwcU6bTPUARRKpMhIlKUxkmGI5O5cT/YzbG9w0w9OoabTmHtbXScu4ylm3ux5ytzU2sKHkSkpoI05Nva/HdstnZAR4f/98mTPguxfHnh7YotQj005DMSK1YEW5MO5s5kiIjMSeMkq1egqMbRxEqm6aCdabqHBzi5dz/tdw6y8mf9tL9dmZtaUfAgIjUVpCHf1eU7kY4dg85O/7r5830n1Ph44eDBOT+0aeNG36GXa3LSZxFKDVfKVyyTISJSlMZJVm9ykskP7eTBr95J4tFRHrD1nEgsZf4CI2GQdjD8RC+LTx/jwnsHGXp8gvNTkHyXMje10OLvThGptWxDvn2Orovu7pmgYWrKP5ZI+AAhlSq8zbFjPuvQ2+uHweZKJv1z09PlHWuxTIaISFFhjJNscWe+s4uD3/CZm18mtkD3MlaeY3R1wqJF0NUJK88x6F7mnx8d5eA39nDmO7vqfegtIbLMg5klgVcClwMbgWXAggCbOufchVEdl4jUV5CGvBmsWgXHj/vb8uX+e9iscLWlqSk/bHjdOl+4JL/Tbu1aPzpgYMAHF0GGLs2VyZD60/xJiS2Nk6xOOs3Il3bT/vAIDyTWs3RlR9HPdLID5q3s4IFH13PhwwcZ+dJuLnyxMjdRiyR4MLP/AXwGODf34YCba4U0kSYWtCG/ejUcOeI74x5/3DcWu7vPHtLq3Mx8w1WrYNs2P28u36ZN/mft3+9fv2xZ6eOcK5Mh9aPKlxJ7GidZlfTefYzfM0xyMk3ivKUl44BEAhLdS5l+JMXpe4ZJ791H4hktHHzVQOjBg5m9CPgmUKgae6nAoKKV7qSJqXuxcRU5d5su3kRvb6JkQ76tDZ72NP/vQ4f8a0+ehBMnfGGS3BWh163zgcN11xVuMCYSvkE5OOhvxeYvZpXKZEh9BKl8+cBgmqmf7uPUV4b4Hy+cZMFSXTOkxjROsirDPxjCjo0x1r6CZDJYszCZNMbaV7Lw2BjDu4e5QMFDpEINHsysA59xaEMZBKlGhd2LijVioMS5S/T28vIF2zm4uo/7B5NzNuTnzYOLLvIZiDVr4Lzz/HmcmvK7yw4pCtLT3NfnC5pMTPj7QpUTg2YypPZKVb5sT03yIttFz9Bu5j8wzIr2MR75SYqedW20LVdKQmpI4ySr8vihSdqmUiSS5WVuEsl2UlNTHDl0mgsiOjbxws48vBRYxdmBQ6FPTannpZVVsLDOZEeXhjLEQcBz98zVg7zpiX52rrye/v6ukg35jRvh0kvhhS/0DcfTp33nXHZIUZDAMJn0azCBP7yDB2cOr729vEyG1N5clS+TU+O84N6d9BzeQ/fJEUikODS5kiMnO+h8fJqVj2sxLqkhjZOsyiRJkrQxj2mmytiu3U2Too1JWjtzUwthBw+/k/PvbDOgH9iS+bcDfggsB34DX+3JASngxyhbIRUsrDM5CR9tu4G79ya1iGc9lXHu2gYHed5KvyjSJ3tv4MDBZKCGfLXnravLr8GUH2hWksmQ2pmr8mV7apIX3LuTCx+5kyVPjPLo4vVMdCxl8ozx6AlIpWHFb/Vix7UYl9SIxklW5czqtUx3LGP1qQFOueCZm8VThzm0aCOsbu3MTS2EHTxkB5kZPhD4B+fcn5hZOvsC59zlAGb2FODD+IpMbcBjwGudc609U6jVlbmwTvoX/Rz8xh5OLdjFgdRVWsSznso8d/P6+7msdw+LnrGLf73oqpo15JNJvwbTjh0zFRUryWRI7cxV+fKiQ7voObyHJU+M8mD3FlJt/n2X7IATDsZPwtExY/lyLcYlNaRxkhXrfv4mhj7Ty8oT+1kwdYyJZOnMzcKpY0yl2ji+rJe121s7c1MLYQcPa/BBQ/bT8cViL3TOPQz8npnNA/5v4OXANPD7IR+TNIoKFtZ5pGs97fcc5IKO3Tzjd3YwLzm71adFPGugwkWR2g4e5Lcu2s3W9+9g372JmjbkEwlfDbGVKyI2imKVL82lWT+6m+6TIzy6eP2TgUPW/AUwNekDiOXL0WJcUjsaJ1mxTZsT/Pzi7Tw6OsjasUFGV26Z9dnO1ZaaYvnYIAc71nH04u28eLM+01ELO3jIH1Rwf4BtbsQHDwa8ysy+4pz795CPSxpBmQvrOAcPnljKkskU67uGeejkPh5KFm8Jqt0QoSoXRUrcu4/NmzerIS8FFat8ufroPrpPDmMuzUTH7PddwvywpVRu0Zv8xbj0ppOoaJxkRRIJWPXqPkZ/1U/HgxOcf6Sfw0vW80TH7MzNwqljrDw+yEhqFQ/3bGPVq/v0vV4DYQcP+QPTjmfuzwDzAMxshXPu8ZzX7M/cZ+c7XAMoeGhFZS6sc/QojJ8y0u0rWerG6B4f5qHlczcE1G6IiBZFkggVq3y5fHyIRZNjnJxf+H2Xdj6AaMv9ptP7TmpJ4yQrcsWOJDt/fj1nvgqnH93DBccOsjKR4uT8laQS7bSlp+k8fZgz6TYG0+t4aNU2jvzudbxihwKwWgg7eBjj7IXh2oEp4BSQ7RbaAvxXzmtyK2oZsDXkY5JGUebCOuPjfkhCV7KdhJtiXqr0dBm1GyKiRZEkQsUqX7anJjGXYjpR+H13egKWLIWuzrwn9L6TWtM4ybIkk/Anf9bFJ9pu4NB3d3HowG7OPT3M8tNjtDPFJG08mNo+BLy7AAAgAElEQVTIo/N7eWjddubt6ONNb0sqeVMjYQcPRzk7eFgOPAE8DizJPPZXZna3c+6EmSWBD+bt41ykNZW5sE4q5XsW2900zto40xasPJvaDRHQokgSoWKVL6fbkjhroy09+303OeWDjK5O//ojR3yHQyoFXUemmb+wjc6O+ajPVySeurrgbf8rya5tV/HDH+zgV3v3seCxYdqmT5Nqn8/EOb0kNm/isucnNOqrxsIOHo5w9tCl5cCDwADwVPzQpGcBD5rZfcA6oJuzS7ROhnxM0ijKXFinrQ0S+PJsY0s3crQrWHk2tVcjoEWRJELFKl8e6VrLqeQyzj02wJHOmfddOg3Hj/vAob0dfvpTP2l6ahLSacfG8cMMLtvIz/6/XtZ3aLi5SFzNjPpKsG/fZoaHN2vUVwyEHTz8Crgs5/+r8Os8/Bh4UeYxw0+s/q2c12UrNLnMPqQVlbmwTlcXLEv48mxHOns51F26PJvaqxHRokgSsUKVL1m2iaOdvZxzfKak4+SUDxwWzIfpFDz+OJw65T/78xfAkvQx0tbG/ad7+fIvN3H+ca3/IhJ3GvUVL2HHa3sy99lMwvMy9/+a85gr8u+sb4R8TNIost2LPT2+e3Fq7rUluzun6Jkc5NGOHvq7tuOs9NtZ7dWIlHnunlwUqadHiyJJINnKl5de6itbHjwIP92T4M7Edg619bDs8UHGHp1i/ERmjkOmO2r8JHQt9nOdli6YovfMIKe6exh/xnbWrktw4IBf13DnTj91R0RE5hZV8GCZ23YA59z9wJc5e0hTodWkB4BPhXxM0kj6+mDrVr9gTn+/n9ns8t4qzsHYGLa3n3k9q3h49Ta+eaJP7dV6K+Pc0d+vRZGkbNnKl9de6982GzfC3hV9DHRu5WhyFU93/Tx1+Rgrljva22DiNKxYDsl5joWTY5x/tJ/jC1cxvHIbA2v6nlz/ZXR0Zv0XERGZW9jDlvYB/0/O/3P7cd4I9JAJKDJyF5QbAF7knJsI+ZikkZS5sE73lm08Mn0dK36a1CKe9aZFkaQGZle+TDI9dj1d/wXLRvfQe+wgow+mmJpYyYpF7cw/5Us6Omvj8a51DK/cxh0XX8d0m3/faf0XEZHymMvvGYzyh5kZPrh4GX4CdRIYAr4F3Oyca8mksZmddRJqeU5ia3Jy9sI6qZRveC5bdtbCOuNTSXbu9O3VkZHi7dWenpn2qsY2R6iMc6fAQUKTed899o3dDO4axsbGWNqVwiXaOJVcxtHOXgZXbee+1X1PBg5ZzsHPfuYzGe98p8ZVi0jLCLgwU95GaqjWn4KHOaTTgRbWUXs1hgKeO5Ew3frNNN/5u32cMzHM6uWnOdM2n6NdvqDCXPOihoZ8xvLNb4aXvKR2xysiUkcKHhqVgofwqL0q0tq+9jX47Gf9cKQ1a4Jv99BDfl7UH/0RvPKV0R2fiEiMVBQ8hDrnwcxSOf91QIdzLl1iGwNuzH3MOfeXYR6XtA6VcxNpbVqvUEQkWmFPmK4kgkkAf8HZ1ZcUPIiISNm0XqGISLSiGMhRzZibitInIiIiMLNeYVubr7IWhNZ/EREJLg6jwMPOfoiISIvSeoUiItGKw2Vybb0PQEREmofWKxQRiU7Fvf5m1kPphv92M5trwvQK4Pq8x1KFXijS6rKVpIaGfGnaZNKP71YlKZGzab1CEZHoVFyq1czew+yJzflzFsrduQFHnHMrKzqoBqVSrTIXrWEhUhl9dkRE5lTbdR4ywcN7Ktp4Nof/BRzwY+fcZSHttyEoeJBixscJvHr21q2+t1WrZ4ucTeu/iIgUVLd1HnJbutVmHgC+XcWxiDSNyUkfONx5J4yOwvr1sHTp2aUne3t9pZjBQZiY8I/dcIN6UUVyaf0XEZHwxK3PZRj4RL0PQiQOdu3yGYfRUdiyxQ+zyK9Zb+Yf37LFv27PHr+diIiISBTCCB4s5zbXc3PdUsC/AdudcydCOCaRhpZO+3HaIyM+49DRMffrOzr860ZG/HbpOdd1FxEREalMNcOWbgGGcv5vwOc4e/7CHwLFmjEOeAJ4FNiroEFkRnZ8djrthyoFsXSpnxMxPOy31xANERERCVvFwYNzbi+wN/cxM/tc3su+4Jyrex+oma0B3gfsAJYDo/jg50bn3FiF+9wO3IHP3nzAOfcXIR2uCENDvjLMihWzhyoVY+YnU4+N+QBCwYOIiIiELYo5DxXN3I6KmV0I7AFeD9wNfAQ4APwpcJeZLa9gn13AF/CZE5HQTU76LEJ7meF9e7vf7vTpaI5LREREWlvYwcMFObd1ccg64CdgnwO81Tl3tXPunc65F+CDiI3AByrY58eAJcBfh3eYIjOSSV+CdXq6vO2mp/128+dHc1wiIiLS2sIo1fok59xwmPurlpmtA67Ez834eN7T7wH+GHiNmd3gnDsVcJ8vxWcxXkPIfz+RrLVrfRWlgQFfjjXI0CXn/LoPGzf6bUSkDFrCXUQkkGZv/L4gc397fhbEOTduZj/CBxfPAUoWuDSzc4DPArc4575kZteUe0BmtqfcbaT1bNrkA4D9+/06DsuWld7m2DGfdcgufiUSN7Fsn2sZapHAYvkZlpqLLHgws3PxPfuX44cHLQOCDKZwzrmwjmtj5v7+Is8P4oOHDQQIHoDP4Id6vbH6QxMpLpHw7ZXBQX/bsmXucq1TU/5169b57XQRlziJbfu82BLuHR1+DODAgI/gBwehv19LuEvLiu1nWOoikuDBzN4E3ARk30L1mkS9JHN/vMjz2cdLFsM0szcALwVe5Zx7tNIDcs5tLbDvSlbilibX1+fbKxMT/r7QCtPOzawwvWoVbNvmt5Ng1IsWvdi2z7WEu0ggsf0MS92EHjxkhvLkzy8I2jiudZCR/XlzHp+ZrQU+CnzdOfe1iI9JBPDtk+uv9//eswcOHpy5aLe3+4v24cO+52fdOh84XHed2jVBqBetNmLdPs9fwr1Qai93Cff+/pkl3K+6KuKDE4mHWH+GpW5CDR7MrBNfxQgKN8gt7/FAjfcqZDMLS4o8vzjvdcV8DpgA3hzGQYkE1dXlL8L5Dd2pKd/QzU6OVkM3uHJ60X7xC7jiCh+kKTNRvti2zytdwv3gQb/djh16A0hLiO1nWOoq7MzDK/AN9UIBQv7/HTOrUUeVcRjI3G8o8vz6zH2xORFZz8T/XoetcNmbd5vZu4FbnXNXl32UInNIJv1FeMeOmZWnT5/25Vizk6PVjgkmaC/a0aM+cOjvh3/5FzjvPD9ETJmJ4GLdPtcS7iIlxfozLHUVdvCQO9ragBTwLSDboHbAP+FXeX4ufhK1y7zu68BUyMdzR+b+SjNL5FZcyiz09jx8RuEnJfbzRWBhgcfXA9uBfvxCdL+o+ohFikgkfHtFbZbKBelFm572X5bZYWEdHX6Y2KpVGt9bjli3z7WEu0hJsf4MS12FHTxsZiab4IAPOef+XzN7stHunLsGwMzmAzcCfw60Ab3AS51zR8I6GOfcA2Z2O76i0luAnTlP3wgsAj6du8aDmV2U2fa+nP28tdD+M/M7tgPfds79RVjH3VQ0I1ViIkgvWioF99wDjzwCTzwBy5f7LE86DatX+/ajxvcGE+v2eXYJ91Jdqfna2/2YQS3hLi0g1p9hqauwg4dz8/7/b8Ve6Jw7DfwvM1uCL+l6CfBV4IUhH9ObgR8Df29mfcCvgWcDV+CHK7077/W/ztzXq0JUc9CMVImZIL1ohw75bEM2cDDzAcLJk34oU/Yxje8tLdbtcy3hLlJSrD/DUldhd/0uzvv/AwG2uSlzb8ALzOz3wzwg59wDwDbg8/ig4QbgQuDvgUvCzHRIxvg43HQT3Hyzb1UNDPgB4x0d/n5gwD9+883+dePj9T5iaQGletGc88OZTp6EJUt8YszMtxMnJ2e/TbPje0dGfIycTs/eZyuLdfs8u4T74cP+xAeRXcI92/kh0uRi/RmWugo785AC5uX8P/t1OwV0gF88Lm+dhIcz99kr+KuBr4R5UM65B4HXB3xt4IyDc+7z+KBEslTXbTYN3YqFUr1oR4/6wAHOfk0i4U9hKjV7G43vLS7bPh8Y8B/5IMMesu3zbBWxYqr+SGkJd5GSovwMS2MLO3g4Cjwl5/9J4AxwikzwgB+edEvOa34z598GPC3kY5JaUl23GRq6FSuletHGx/0py+8tS6f9W7atbfY2Gt9bXBTt89A+UlrCXaQkxdhSTNhXwLG8/y/P3D/CzETqvzazdeCzEMysC5F1TsjHJLVSaV23Zhz3oaFbsVNqpEoq5R/PX8H79GnfEC1WUam93W+r8b1ny7bPe3p8u3uqRC29bPu8p6dw+zz0j1RfH2zd6sto9ff7SCT/jeGcf7y/X0u4S8sJ+zMszSPszMPjnD3ReDkwjF9v4TfwAcRGYNDMHs88n79w3MmQj0lqRXXdPA3diqVSvWhtbf4U5bYfp6b8Y52d0N1deL8a31tcX59vd09M+PtCHwXnZj4KxdrnkXyktIS7SElhfYaluYQdPOwDLs/5//nAz4HdzKz1AD5gWJnz/9zyrntDPiapFdV18zR0K5ZKjVTp6vLtwmPHfLCQSsGJE/7xVauKT7LW+N7iwmqfR/aR0hLuInNSjC2FhB087MncZ/vuLgVuBf4V+N+Zn1eqtMWXQz4mqRXVddOSnDE3Vy9ad7cPGo4d8xOnJyZg4UL/Jbl6deH9aXxvadW2zyP/SGkJd5E5KcaWfFEFD9k+uueDr3ZkZh8H3sbcwcNPgC+EfExSK6rrpqFbMVeqFy2R8G/HI0f8Y+eeCxdfXHiytObQBldN+7xmHykt4S5SlGJsyRV28PArfDWlrNxW5J8DK/ClWAv5PvAK51yBgojSEFTXTUO3GsBcvWgrVvhGZ7Zk6/nnw7x5Z2+v8b2Vq6R9ro+USHwoxhYIOXhwzjngv4s8lwJea2afBF4OPBVfynUI+JZz7rYwj0XqQHXdNHSrQczVi7ZiBXzve/CLX/ihMgcPanxvPekjJSISL2FnHkpyzt0F3FXrnys1oNrpGrpViTouolesF23rVo3vjQt9pOpDa1uKSDE1Dx6kybV6XTcN3QouxovoaXxvfOgjVVsx/liKSExEGjyY2Qr8PIelwDHgsHPuSJQ/U+osZnXdat57pqFbwYyP+8L9e/b4sUHZ90hHh3+PDAz4v+HgoA9Cr7+++CptEdL43vrTR6p2GuRjKSJ1FnrwYGbbgdcBVwJPKfD8IeA/gS86534Q9s+XGIhBXbe69Z5p6FZpWkRPyqCPVG3oYykiQZnLXU61mh2ZrQU+Bbww+9AcL8/+0P8E3uScOxjKQTQoMzvrJIR1TmIh2/Vfw3EfxXrP8hMfPT1+bHvovWeTk3DTTXN/C+cP3brsMnjHO1rjW/i22+Dmm+HAgWAtwf5+3xK89lototei9JGKnj6W0dIcEompgDXszhZK5sHMngPcgl81Onsgc7WAs6+5EviJmb3UOfeTMI5FYqbG4z5i0XsWs6FbsaJF9KQC+khFSx/L6GgOiTSjqoMHM9uCzyAsyjyUGzQUimhczmsMH3D8p5k9zzn3y2qPR1rbrl2+cTE6Wrz3zMxftLds8b1ne/b47ULtPYvB0K1YitsieuoObBj6SEUnbh/LZqE5JDGl637VqgoezCwJ/As+cMgNCLL/LpV9yD6/CPiamW12zk1Wc0zSumLXe6aSPbPFZcUvdQc2JH2kohGXj2UziUUWXM6m635oqs08vBVYz9lBQm4QUUxu9iFrfWZ/f1flMUmLim3vmUr2zIjDil/qDmx4+kiFKw4fy2YTmyy4eLruh6ri4MHMDPhTZgcBBvwa+DTwA2AEOAEsAdYClwNvxK8wnZuhMOBtZvYh11QzhqVW1HvWAOq94pe6A0VmqffHstnELgve6nTdD101b8/ncXYpVgPSwLudcxc75/7eObfXOTfmnEs55446537unPswsBF4f4F9ngdcVsUxSQvL9p61lxkSt7f77dR7VgPZFb8OH/blcYLIrviVTStXI787cNmy2ZFmbnfg6OhMd6BIk6r3x7LZhJEFlxDpuh+6aoKH3EZ+dv7Ce51zf11qQ+f9JfABZg9vurSKY5IWpt6zBpBd8autzffyBBHWil+VdgeOjPjt0unKf7ZIjNXzY9mMwsiCS0h03Y9ENcHD0/L+/4Bz7gNl7uO9wIES+xUJRL1nDSC74ldPj08PT03N/frsil89PdWv+KXuQJGC6vmxbEbKgseIrvuRqOYjf0HmPpt1+Ey5O3DOpTPb5VZeUhNOKqLeswbR1+dX51u1yk9MGxubHe055x/v7/ev27bNb1cNdQeKFFWvj2UzUhY8fOk07N0Lt94KX/uav9+7N0BiQNf9SFRTbWklMxOdAXZXuJ8f5PzbgHOqOCZpYdnes8FBfwuySurgoF9USr1nNVSvFb9UUkakKC3EF55sFnxgwHdMBWmzZrPg2fVKxKu6uqqu+5GoJnjIz/8MVbif/GFLyyrcjwh9fb5XbGLC3xcqquDcTFEF9Z7VST1W/FJ3oMictBBfOLJZ8P37/XfNsgCtGmXBZwuluqqu+5GoJnhYmPf/sQr3kz/AJH+/IoGp96yB1HrFL3UHipSkhfiqpyx49UKrrqrrfiSqCR7m5f0/VeF+8kesVbtwnbQ49Z41mFqt+KXuQJHAtBBfdZQFr05oi+zpuh+Jahrq7Zy9QNx2M6ukplVbif+LlE29ZzKLugNFpEaUBa9cqIvs6bofibB6+Q3QahoSO+o9k7OoO1BEakRZ8MqEUV31rO98XfdDF+YQoYA1sERE6kTdgSJSQ8qCly+M6qpnBQ+67ocuzOAh4LJcBSnwEJHaUHdg3aXTviE1NOQnRiaTfl6jGlLSrJQFDy6S6qq67ocqjOChmqAhzH2IiASj7sC6qLpme4QU0IjEQ2TVVXXdD00YwYOyBiLSmNQdWDOh1GyPQJwDGlFQVy/1/LtHXl1V1/2qVRM87EYZA5HWo29zKVNoNdtDFteARhTU1Usc/u6qrhp/FQcPzrnLQzwOEYm7OHyrSEMKrWZ7iOIa0IiCunqJy99d1VXjTwuyiUhpcflWkYYTas32EMUxoBEFdfUSt7+7qqvGm4IHEZlb3L5VpKGEXrM9BHENaERBXb3E7e+u6qrxpsufiMwt/1tl2bLZM9hyv1VGR2e+VaTlhVGzPWxhBDQSvkqDupERv106XZvjbDZx/btnq6tee63PKGzc6K8NU1P+fuNG//i118I73qFkdy0p8yAixamLVqoUSc32KoW+CJWEIo5ZqlYQ57+7qqvGk4IHESkuzt8q0hAiq9lehTgGNKKgrl4a4e+u6qrxonhNRIqL45gTaSjZmu2HD/sJjkFka7Zni3iFLY4BjcwEde1ldmu2t/vtFNRVRn93KZcyDyJSnLpopUq1rtkeZBmSyBehkoooqKsP/d2lXAoeRKQ4fatIlWpVs72cZUiaYRGqZlyrUUFdfejvLuVS8CAixelbRUIQdc32SpYhadRFqJp5rcZmCOoakf7uUi4FDyJSnL5VJARR1myvdBmS665rvEWomn2tRq0sXB/6u0u5FDyISHH6VpGQZGu25/eaT035oCGbqCq317zSxa3uvLOxFqFqlbUatbJwfejvLuUwF7T8Rf6GZlucc/0hH09LMrOzTkKl50QkEpOTcNNNc7da8r9VLrvMr9rTSK0WqZnseP1qa7an0/Cud/kA4oILgiXGxsZ8oNDXBx/8IJw50xjDgG67DW6+GQ4cCBbD9/f7oOfaaxtv5eViGZb8oK6nZyaoa6QMS1zp796SApZRzNuoiuBhEvhr4P3OuTJnU0ouBQ8Se/pWkRjauxf+5m/g/vth69bgU3J+9jOf6XjnO2fqxocV0EQhjCCp3r9DuZp5bkec6e/ecmoePKQBB/wSuMY5t7eiHYmCB2kM+laRmLn1VvjkJ31AsHZt8O2Ghnyg8eY3w0teEtXRhSfMIKnRxDmoa2b6u7eMioKHMOY8bAbuNrMP4rMQqRD2KVIfzVj/MCzJpB//sGOHvlUkFlplGZJGWAE4KlpZuD70d5e5hBE8OGAe8JfAS83sGufcL0PYr0jtqFc9OH2rSEy0yjIkrRIkiUhjCKvaksOnPrYAPzWzDwAfUBZCGkKz1z8UaVKtsgxJqwRJ9abEs0gwYZZqzQYQ84D3AFeb2eucc/tC/Bki4WqV+ociTahVliFplSCpXpR4FilPNcHDm4C/AZbgAwdy7vOzEB9UFqI1xb4np9Ii8bt2NV79Q5F6C/mC0CrLkLRKkFQPSjyLlK/i4ME592kz+xbwSeDFzAQOMJOF6ADei89CXKMsROtoiJ6cdNof4MiIzziUGlDc0eFfd/Cg327HjsZpfYjUU4QXhFZY3KpVgqRaU+K5ArHvEZRaqGrYknPuYfwk6VcBHwPOoXAW4hn4LMS/AaWmbjnn3LXVHJfUV8P05GQrBqXT/hsjiKVL/S80POy316RhkblFfEFIJhtrpehKtUKQVGtKPJehIXoEpVZCmfPgnPsXM7sd+CjwGopnIV5VYleWeb2ChwbVUD05rVz/UKQWanRB6Orym+S3baamfNsmO+6/kds2rRIk1YoSz2VomB5BqZXQJkw758aA15nZV4BPAb3MBA65WQhpYg3Vk6P6hyLRquEFoRWWIWmFIKlWlHgOqKF6BKVWwqy2BIBz7rtm9gfA9/CVl3IDiFJLJ0cSXJjZGuB9wA5gOTAK3ALcmAl6Sm2/CLgaeBHwTOB8IA0MAP8M7HTOTUVx7I2k4XpyVP9QJDp1uiA0+zIkrRAk1YISzwE1VI+g1Eqolxgzm2dmfwXcgQ8coM7ZBjO7ENgDvB64G/gIcAD4U+AuM1seYDeXAV8Cfhu4B9iJDxpWAx8C7jCzlm9JhtGTU1PZ+oeHD/vBwkFk6x9mx3iKSGENd0FoLNkg6SUvgVe+0t9v3qzAIahs4rm9zC7U9na/XUsknivtABgZ8dul07U5Tqm50C4zZnYJ0A+8Cx84GLMzDlbiFoVP4Cdyv9U5d7Vz7p3OuRfgg4iNwAcC7OMR4NXAKufc72b28cfABuDnwHOBt0Rz+I0jjJ6cmsrWP2xr8ynXIFT/UCSYhrsgSCtR4jkAdQBIEVUPWzKzhfj1Ht7M2QHDWS8DhoD/TelqS6Exs3XAlZmf/fG8p98D/DHwGjO7wTl3qth+nHP9+MAo//FxM7sJ+DJwOXBTOEfemBpuCoHqH4pEp+EuCNJKtPBeABrbJUVUFTyY2ZXAp4EeZjIHuYFDNpD4JPA/52qgR+QFmfvbnXNn5c8yDf8f4YOL5wC7KvwZZzL3ZfZfNJ+G7MlR/UORaDTkBUFahRbeC0AdAFJExcGDmX0eX5a1UNAAM9mGa51zd1T6c6q0MXN/f5HnB/HBwwYqDx7ekLn/TpAXm9meCn9O7DVkT47qH4pEoyEvCNIqlHgOQB0AUkQ1b//XZu7zqyhlvyE+BWyqY+AAsCRzf7zI89nHAw7mO5uZXYev4NQPfK6SfTSThp1CkK1/eO21PqOwcaNv6ExN+fuNG/3j114L73iH6leLBNGwFwRpFX19sHWrTyj39/uRNvm1M5zzj/f3t2DiWUVFpIiwS7UaMIzPNnwv5H1HoVjWpPSGZi/DL4r3CPBy59yZEpv4H+Tc1gL7Kvvnx1FD9+So/qFIuBr6giCtQInnEjS2S4oIK3jINsI/Dfy5c+5kSPutVjazsKTI84vzXheImV0NfBV4DLjCOXegssNrPg0/haDZi8SL1FLDXxCk2eUuvPfDH6RJ793HgseGaJueJNWeZOKctSQ2b+Ky5ydab+E9dQBIEWEED9lswx865yqdNxCVgcz9hiLPr8/cF5sTMYuZvQL4Cj7j8ALn3GDlh9d81JMjIk/SBUEaQJJJrmIXv8NujjHMFGM4l8Joo4NlLKUXYzvQB7TYe1MdAFKAuaDj2PI3NMtWL/oM8GcxyjY8KbNA3H78xO0LcysumVkXfqXpBLAySCUoM/t94IvAIULMOOQPW6r0nMTJ5KTvydm9248AGhvzbYa2tpmhkNu303o9OSKtSBcEiavxcdi50we3IyPFg9ueHj9B4vrrW2/eWzl/o2wHQKv9jRpXRWusVRM8DOHnNsQt23AWM/suvqLSW51zO3Me/zDwduDTzrk35jx+EYBz7r68/bwOPyl6GB84hLaCUTMGD1nptKYQxFb25AwN+cZdMuknyOnkSFR0QZA4mZyEm26CO++E0dFgveqXXurHObVakKsOgGZV8+ChM47ZhnyZ7MOP8atM3wr8Gng2cAV+uNJznXNHcl7vAJxzlvPYFcB/4bMUnwMeLPCjjjnnPlrhMTZt8CAxpC8BERG47Ta4+WY4cCDYeP7+fj+87tprfYGNVqQOgGZT2+ChkZjZ+cD78GVVl+OHK90C3OicO5r32kLBwzXAP5b4McPOubUVHp+CB6kNpehFRHwj+F3v8h0pF1wQrJLQ2Jift9PXBx/8oBrL0gwqCh7CLtUaS865B4HXB3ztrD+kc+7zwOfDPSqRGpuc9IHDXCn63t6ZFP3EhH+sFVP0ItLcsr3n6bS/DgaxdKnvcBke9turKp+0qJYIHkQE38O2Z48PHIql6M18D9yWLT5Fv2eP365VU/QSG5qiI6EaGvKZhBUrgq1+Dv51K1f67YaHFTxIy1LwINIK0mk/x2FkxGcc5hrbC/759et9in73br94nlpoUgeaoiORmJz0b6RS18J87e1+/sPp09Ecl0gDUPAg0gqUopcGVGyKTkeHn6IzMOAXvx0c9IkyTdGRwJJJH4FOT5e33fS0327+/GiOS6QBKHgQaQVK0UuD0RQdidTatT51NTDg30hBrovO+aISGzf6bURalMYhiLSCbIq+vcz+gvZ2v51S9FJj+VN0li2b3b7LnaIzOjozRUekpE2bfADQ1uYj0CCOHfOvz5YmFWlRCghC88MAACAASURBVB5EWoFS9NJAKp2iMzLit0una3Oc0sASCT9ZpqfHp66mpuZ+/dSUf11Pj99Oc8CkhendL9IKsin6w4d96j2IbIo+OytVpEbCmKIjUlJfn1/PZtUqP2lmbGz29dE5/3h/v3/dtm1+O5EWpjkPIq0gm6Lfv9+n3oMsiKQUvdSJpuhITSSTfpY9+DFvBw8WXzhz3TofOFx3nSbVSMtT8CDSCrIp+sFBfyu2zkNWNkW/bp1S9FJzqqIpNdPV5WfZ59cDnpryQUN2crTqAYs8ScGDSKvo6/Op94kJf1+ofI1zM+VrlKKXOtEUHampZNIvhLljx8yYudOn/Rspm3lVB4rIkxQ8iLQKpeilQaiKptRFIuHHu7XYmDet3i7lUvAg0kqUopcGoCk68iS1bCOj1dulUuaCVl6RyJjZWSdB5yRE+uIpLvu3UYpeYui22+Dmm+HAgWBTdPr7fcLs2mv9CBRpcGrZRqrY6u35SeieHl+QSqu3N62AJSnOpsyDNCd98ZTWoil6aQyaotPCirVsOzp8y3ZgwKelBgf9m0Mt27Jo9XaploIHaT764hFpeJqi06LUso1c/urthbJ6uau39/fPrN6urJ6AggdpNvriEWkamqLTgtSyjVSlq7cfPOi327FDo1pFwYM0G33xiDQVVdFsIWrZRi6M1ds10lUUPEjzCOGLJ01C86tFYkhTdFqAWraR0+rtEgYFD9I8qvjiSR0Y5sef2Me3H9qs+dUiIvWglm3ktHq7hEHBgzSPCr94zixbycgvxrjzwWF2TW/W/GoRkXpo9JZtDUqDV/sjtHq7hEHBgzSPCr54UikYfqid8bEpxs6c5oJnaX61iEhdNGrLtgalwcP6EVq9XcKg4EGaRwVfPIcOwfjYNE9MtbH6wvkcL7CSreZXi4jUQCO2bGtQGjzMH6HV2yUMCh6keZT5xeMcjD7sWHLyMKdWbOTEsrm/eFTYQ0QkQuW0bJ2Do0d9Zb3jx/2wpXTa32p1Ya5BafCwf0Qi4TMUg4P+FmT19sFBv5bK9u36zhNPbwNpHtkvnrY2fyUt4ehRSI8dI2VtjHf3cqi7dJdKfmEPEREJSbZl29PjW6xTU7Nfk0r57ve774af/9xfiMfH/SSAv/1beNe74LbbfKs7avmlwZctm91plZu6Hh2dSV3X8Uf09cHWrX5V9v5+PwTKubNf45x/vL9fq7fLbMo8SPMos0vl5NgUK48N8kjnOvav2o6z0rG0CnuIiESor8+3WCcm/H1uV/uZM3DPPfDYYz7bMDkJixb5lnN3d22rW9RgTYrsjxge9t87Dz88M8+hq8v/yrmBRNAfodXbpVoKHqS5zPXFk+UcHDvG4gOD3N+xiv1Lt3Hf6uBdKnEp7CExVYOKKyJNq1jLtrsbHnwQjhyBJ57wk6PPPde3eC++2LecL7igdtUtarAmxZ49cNdd8NBDMyurO+e/zpJJ6Oz0WYHVq31Dv5wfodXbpRoKHqS5lNGlMnHeOn41bxu3rrmOc9uCXxnrXdhDYqoGFVdEWkKhlu3998+0bs87DxYvnt1yrmV1i4jXpBgfh499DO67z8dB09OwYIHvf8j0f3H8uL8dOQJPexrMm1dedlyrt0ulFDxI8wnYpXJ6zXa+t7uPkf1JznGNUdhDYqoGFVdEWkpuy3bvXnj/+32LecMGHzzkj9nJVYvqFhGuSZGdJH3vvT7J0tk5O7nR2el3c/y4PwyApz/df8WVmx3X6u1SLgUP0pwCdKmsJcHqh+C+gypZJ1WoQcUVkZaVSPhbR4f/XP3mbwbr6SlziFDZCpQGzxaAGh+fY25CgNR1dpL08eM+wTJXjLR8uc88HD7sS4/39Cg7LtFT8CDNbY4ulQQqWSchyC+HUuhNpMVCRCoX8RChiuSUBk+t6eXQw8boKIyfhKlJSDtIGHQkoSs7N+EpjrYSqevcedhPfSocOOD7HTo7C//qiQQsWQInTvhL0Jo1yo5L9NT8kZamknVSlUorroyM+O3S6docp0gjyw4Rai+zv7O93W8XRXWLTGnwFG0M3H2M++7zPf/Hj4ED2hL+/vgx//h998H9dx8jxdyp69x52L29M0FDoaq1WR0d/nvq5Em/rbLjEjVlHqSlqWSdVKUGFVdEWl6BIUKBRDl+J5HgzCXbeeBbg3Q8OMgT7VvoWtZBMq//oKsTJqfg1NgU844MMnj+Oi68ZDvziqSuc5MsiYTvsDp+3GcWurtn5obnW7DAj4jcvx+e8QxlxyVaCh6k5alkXYOIYwnUOA6nEGk2OUOE6O2NTXWLXfRxhH56meAZ1s9ht54n3OzS4MvcMTbYICOsYti2MUQfO4rsM38e9urVfk5DKuXnUyxe7J/Lrz4+Pe0zD099qrLjEj0FDyKoZF2sxbkEaoQVV0QkIzNEiP37Y1PdIp2G79+V5K7k9byxFxae3MOK8YOYS3Fy/kpSiXba0tN0nj6MszaOLF7Hg53b+Oy867jkriRXvrj4Am65SZa2Nr+MBfhYaHzcBwvz5/vt02l/GTlzBhYu9L+qsuMSNQUPIjlUsi5m4l4CNY7DKUSaTSIRu+oW2U6mk9bFD591A48/vIv1o7vpPjnMoskx2tNTOGvj0aUbOdrZy+Cq7fz6KX2M/yI554jFQkmWjg5fhvXQIT8p+uRJ32+RTvvnlyzxj110kapAS20oeBCReGqEEqgxHU4h0nT6+nwHwcSEvy90PciunjY4GHl1i9wRi6n2JPf0XMW95+9g9dF9dI8PMy91mjNt8zna1cuh7k048wFMqRGLxZIsbW2+DOv5588uB5stEXvJJb4AiEjUFDyISDw1QgnUGA6nEGlKMatuUWjEorMEDy3fzEPLi6euS41YLJVkMfNrOyxf7v8/NeUvfSohLrWk4EFE4qfSEqhRrihbSAyHU4iEIo4FCmJU3SLKEYtzJVnMpX1248QQU+OTjDya5LlPWcuaZ26ir0/XE6kNBQ8iEj+NVAI1ZsMpRKoS5wIFEJvqFlGOWCyUZEmcmeSFiV1sPr6bFU8Mkzw1RhspLl/QRsf4Mp56pJfkLpUElNpQ8CAi8dNIJVBjNpyiocSxd7uVxb1AQa46V7eIesRibpLlJ/85zm/u2sma0T2snBghQYonFq2kY2EHK5ZMs9wNkPjhfhiOwXmRlqDgQUTip9FKoMZoOEVDiHvvditqhAIFMVKLEYvJJFzVN8mOX+zk5OI7SZ8a5cS69aQXL2VNl9HdnTk9TudFakvBg4jETyOWQI3JcIrYa6Te7VbSCAUKYqYmIxZ37SLx8z0sPjUK27ewVOdFYkDBg4iUpSYjTRq5BKoWCylOvdvx1CgFCmIm8hGLOi8SUwoeRCSQmo40UQnU5qTe7XhqpAIFMRPpiMVanRfNPZIyKXgQkZJqPtJEJVCbj3pR46uRChTEUGQjFqM+L5p7JBVS8CAic6rbSBOVQG0u6t2Or0YrUFBnc3XUhzpiMcrz0sRzj5RIiZ6CBxGZU91GmqgEanNR73Z8NWKBgjqoeUd9VOelSeceKZFSOwoeRKSouo80UQnU5qHe7fhq5AIFNVKXjvqozksTzj1q4kRKLCl4EJGiYjHSRCVQm4N6t+NLBQrmVLeO+ijOS917hMLXpImUWIvXO0BEYiWMkSahyZZAfclL4JWv9PebN8fui0yKyPaiHj7se0eDyPaiZsccSDSyBQp6enzrampq7tdnCxT09LREgYL8jvply2ZfD3M76kdHZzrqqxLFeQmjRyhm6nZ+Wlhzf+JFmkk6DXv3wq23wte+5u/37vWPRyQ70qS9zBxle7vfTiNN5EnZXtS2Nt8FGEQL9W7XXV8fbN3qCw/09/voPz/Ic84/3t/fMgUKKu2oHxnx21V9eQ77vMSqR6h6dT8/LUrDlkTiro6zwDTSREKj8rvxpgIFBdV96GbY56XJ5h7V/fy0KAUPInFW51lgmkcpoVL53XhTgYJZYlEkLMzz0mQ9QrE4Py1IwYNIxCquOR2DWWCaRymhUu92/KlAwVli01Ef1nlpsh6h2JyfFqPgQSQiVY82ikE5PY00kdCpd7sxZAsUtHi3bOw66qs9L03WIxS789MiFDyIVKlQZmHlSrjjDvj5zyscbRSjcnoaaSKhU++2NIgm66hvuh6hpjs/DULBg0iFimUWzOCRR+DUKf+6ZzwDurvLHG0Uo1lgGmkikVHvtsRck3XUe03UI9SU56cBKHgQqcBc85hHR/1jU1P+sZERWLwY5s2b2b7kaKOYzQLTSBMRaUVN1lHvNVGPUFOenwbQEsGDma0B3gfsAJYDo8AtwI3OubEy9tMN/CVwNbAKOAJ8B/hL59xDYR+3xNNc85idg0OHfKDQ1eWzD4884rd7+tP9tThX0dFGMZwFppEmItKKmqijfkYT9Qg15fmJuaYPHszsQuDHwDnArcB9wLOAPwV2mNnznHNHAuxneWY/G4DvAV8FLgJeD7zIzC5xzh2I5reQOJlrHvPRo3DypL9QLVoECxfCkSO+E+fQIb/wZ76Co41iPAtMI01EpJU0UUf92ZqkR6hpz0+MNX3wAHwCHzi81Tm3M/ugmX0YeDvwAeCNAfbzQXzg8BHn3Dty9vNW4GOZn7MjxOOWGCo1j3l83CcN5s/3vR5msGQJnDjhg43zz589CqngaCPNAhMRiY0m6qifrQl6hJr6/MRQUwcPZrYOuBIYAj6e9/R7gD8GXmNmNzjnTs2xn0XAa4BTme1y/R98EPLbZrZO2YfmVmoecyrl2/C5nTUdHf6xkyd9ZmL58tnbzRptpFlgIiKx0iQd9U1L56d2mjp4AF6Qub/dOZfOfcI5N25mP8IHF88Bds2xn0uABZn9jOftJ21mt+MDkSuAOYMHM9tT3q8gcVJqHnNbm388nT778QULfEbi5MnCwcOs0UaaBSYiEktN0FHf1HR+otfsLYyNmfv7izw/mLnfUKP9SIPLzmNuLxJ2d3X53o/Tp322ISs7mbrQFIbsaKPswnFP6uuDrVv97K7+fh+15O40u/HYmH9es8BEREQkYs2eeViSuT9e5Pns46UK6Ye1H5xzW/MfMzNX6LUSP6XmMXd3Q2cnHD/ukwHZcZXO+QCiUNBRdLSRZoGJiIhIzDR78FBKduBJtY33sPYjMVdqHrOZTwAcP+4nSXd3+7b9xISfI9HZefbrS4420iwwERERiZFmDx6yGYElRZ5fnPe6qPcjDS7IPObVq3151lTKT5BesMA/3tnpgwkos+a0ZoGJiIhITDR78DCQuS82F2F95r7YXIaw9yMNLsg85rY2uPhi/+9HH/Ujizo6/LaHDlUx2kizwERERKTOzOVPwGwimQXi9uNLtV6YW3HJzLrwK00ngJUlSrV2Ao8BaWBVbsUlM0sADwBrMz+j7FKt+XMemvmcNIPJSbjppsIrTGc557MP/f3+/52dcO65/vG2tpnJ0RptJCIiInUSYBGp2Zo68+CceyBTRvVK4C3AzpynbwQWAZ/ODRzM7KLMtvfl7Oekmf0Tvhzre4EbcvZzHT5w+K7WeGgN5cxj3rIFnvlMuOIKePxxjTYSERGRxtbUmQd4MvvwY/wq07cCvwaejV+T4X7guc65IzmvdwDOOcvbz/LMfjYA3wPuBn4DeCk+K/Fc59wDFR6jMg8NaHJy9jzmVEqZBREREWkIFWUemj54ADCz84H3ATuA5fjhSrcANzrnjua9tmDwkHmuG7/C9NXAKuAI8B/AXzrnHqri+BQ8NLB0WvOYRUREpOEoeGhUCh5EREREpMYqCh7ULyoiIiIiIoEoeBARERERkUAUPIiIiIiISCAKHkREREREJBAFDyIiIiIiEoiCBxERERERCUTBg4iIiIiIBKLgQUREREREAlHwICIiIiIigSh4EBERERGRQBQ8iIiIiIhIIAoeREREREQkEAUPIiIiIiISiIIHEREREREJRMGDiIiIiIgEouBBREREREQCUfAgIiIiIiKBKHgQEREREZFAFDyIiIiIiEggCh5ERERERCQQBQ8iIiIiIhKIggcREREREQlEwYOIiIiIiASi4EFERERERAJR8CAiIiIiIoG01/sAZDYzq/chiIiIiEhzcwDOubIanso8iIiIiIhIIAoeREREREQkEAUPIiIiIiISiDnn6n0M0gLMbA+Ac25rvY9Fyqfz17h07hqbzl9j0/lrXDp3xSnzICIiIiIigSh4EBERERGRQBQ8iIiIiIhIIAoeREREREQkEE2YFhERERGRQJR5EBERERGRQBQ8iIiIiIhIIAoeREREREQkEAUPIiIiIiISiIIHEREREREJRMGDiIiIiIgEouBBREREREQCUfAgFTOzNWb2OTN72MwmzWzIzD5qZsvK3E93ZruhzH4ezux3TVTH3uqqPXdmtsjM/sDMvmJm95nZKTMbN7OfmdkNZtYR9e/QysL67OXtc7uZpczMmdn7wzxemRHmuTOzTWb2RTN7MLOvx8zsB2b22iiOXUL93rvUzG7NbH/azEbM7DYz2xHVsbcyM/tdM9tpZj80sxOZ69yXKtxX6NffRqNF4qQiZnYh8GPgHOBW4D7gWcAVwADwPOfckQD7WZ7Zzwbge8BPgYuAlwKPAZc45w5E8Tu0qjDOXeYL7j+Ao8AdwH6gG3gxcF5m/33OudMR/RotK6zPXt4+u4BfAiuATuADzrm/CPO4JdxzZ2bXAP8APAH8OzAELAWeBjzsnPu9kA+/5YX4vfcm4BPAKeCbwEPAGuBlwELgL5xzH4jid2hVZtYPbAZO4v/eFwFfds69usz9hH79bUjOOd10K/sGfBdwwPV5j3848/inAu7n05nXfzjv8bdmHv9OvX/XZruFce6ALcAfAB15j3cBezL7uaHev2sz3sL67OVt+zl8IPiuzD7eX+/fsxlvIV43nwNMA/3AeQWen1fv37UZbyFdO+cBx4AJYGPec78BnMYHhMl6/77NdMM37tcDBlyeOV9fqsd7oBluyjxI2cxsHfAAvqfrQudcOue5LmAU/wE9xzl3ao79LAIOA2lglXNuPOe5ROZnrM38DGUfQhDWuSvxM34f+DLw7865F1d90PKkKM6fmb0UuAV4DdAO/CPKPIQuzHNnZruBy4BNzrl7IjtoeVKI33vnAo8Av3TObS7w/C+BTcAK1wo92HVgZpfjM+ZlZR5q8f3ZKDTnQSrxgsz97bkfHoBMAPAjfOr1OSX2cwmwAPhRbuCQ2U8auD3z3yuqPmLJCuvczeVM5n66in1IYaGePzM7B/gscItzrqLxvxJYKOcuMxfsMuBnwL1mdoWZ/VlmrlFfpuNFwhfWZ+8xfKfZBjNbn/uEmW3A9473K3CIpVp8fzYEXWSkEhsz9/cXeX4wc7+hRvuR4GrxN39D5v47VexDCgv7/H0G/z3wxmoOSgIJ69z9Vs7rv5e5/R3wIeC/gH4ze2oVxymFhXL+nB/u8Rb8526PmX3BzP7azL6IH/J5L/CKEI5Xwqc2S0Z7vQ9AGtKSzP3xIs9nH19ao/1IcJH+zc3sOmAHfiz25yrZh8wptPNnZm/AFyZ4lXPu0RCOTeYW1rk7J3P/SuBx/CTbXcBK4D344WffNrNNzrmpyg9X8oT22XPOfd3MHgb+GcitjPUoftighunGk9osGco8SBQsc1/thJqw9iPBVfw3N7OXAR/Fj+d9uXPuTIlNJHyBzp+ZrcWfq687574W8TFJMEE/e20593/onPumc+6Ec+4B4HX44UwbgJdHc5hSROBrp5m9Gp8l+iF+kvTCzP0u4P8AX43oGCVaLdNmUfAglchG10uKPL8473VR70eCi+RvbmZX47/wHgMu1wT3yIR1/j6Hr/by5jAOSgIJ69yNZe4ngdtyn8gMibk1899nlXuAMqdQzl9mXsPn8MOTXuOcu885N+Gcuw+fNdoDvCIzqVfiRW2WDAUPUomBzH2xcX3ZSWDFxgWGvR8JLvS/uZm9Avg6PuX+fOfcQIlNpHJhnb9n4oe/HM4sluTMzOGHTAC8O/PYLdUdruQI+7o5nj9pMyMbXCwo49iktLDO35X4cq0/KDDpNg3szvx3ayUHKZFSmyVDcx6kEndk7q80s0SBcmXPw/dq/qTEfn6Sed3zzKyrQKnWK/N+nlQvrHOX3eb3gS8Ch4ArlHGIXFjn74v4oRL51gPb8XNW9gC/qPqIJSusc/dL/FyHFWZ2boH5Kk/L3A9Vf8iSI6zzl8zcryzyfPZxzVeJn1C/PxuZMg9StszY2tvxazC8Je/pG4FFwBdz6xyb2UVmdlHefk4C/5R5/Xvz9nNdZv/fVYM0PGGdu8zjr8OfvxFgu85T9EL87L3VOfeH+TdmMg/fzjz28ch+mRYT4rmbxi+uCfC3uaVZzWwTcA2+TPI3Qv4VWlqI184fZu5/18yenvuEmW0Bfhc/Zv574R29lMPM5mXO3YW5j1fyHmhWWiROKlJgifZfA8/Gr8lwP/Dc3DrVmSEROOcsbz/LM/vZgL9Y3o2fOPZS/Pj552Y+sBKSMM6dmV2Bn/CXwI/ffbDAjzrmnPtoRL9Gywrrs1dk39egReIiE+J1cyF+cu1z8Nmh7+N7rF+OH650g3PuwxH/Oi0nxPP3OeD1+OzCN4FhfIP0aqAD+Khz7u0R/zotJTMv7+rMf88Dfhtf1SobzD3unPuzzGvXAgeBYefc2rz9lPUeaFphLVWtW+vdgPPxDY1R/EVwGPgY0F3gtY7MfL4Cz3VnthvO7GcU3yBdU+/fsVlv1Z47fO+mK3Ebqvfv2ay3sD57BV6bPa/vr/fv2Ky3EK+bC/EZ2/vwk6eP4wP636n379jMtzDOH74qzzX4oG8Mnyk6ig8If6/ev2Mz3jKflUDfV/hAruh3WDnvgWa9KfMgIiIiIiKBaM6DiIiIiIgEouBBREREREQCUfAgIiIiIiKBKHgQEREREZFAFDyIiIiIiEggCh5ERERERCQQBQ8iIiIiIhKIggcREREREQlEwYOIiIiIiASi4EFERERERAJR8CAiIiIiIoEoeBAREWlAZvZeM3MFbmvrfWzFFDnez9f7uEQkuPZ6H4CISL2YmQHfBV5Y4OkPOef+vMT2i4F9QE+Bp69xzn2hwuO6BvjHIk+ngTPAFHAMOAqMAIPAfwO3O+eOVfJzw2Rm7y3wcL9z7pZaH0u5zOxy4I4CT/3AOXd5bY9GRCReFDyISMtyzjkzewM+AFia9/Q7zOxbzrndc+xiJ4UDh29WGjgEkACSmVsXcD6wOef5KTP7OvA+59z9ER1DEO8p8NgXgNgHDyIiUpyGLYlIS3POPQS8pcBTCeALZtZVaDszuxp4bYGnHgX+JLwjLFsH8AfAL83sHXU8DhERaUIKHkSk5TnnvgJ8rcBTa4GP5j9oZucAnymyuz9yzh0O7+gqlgRuMrOP1PtARESkeSh4EBHx3gQ8XODxN5jZS/Ie+wywssBr/8E5963Qj2zGF4F5mVs3cBE++/EtwBXZ5m1mdn2ExyQiIi1Ecx5ERADn3FEzuxb4jwJPf9bM7nLOHTaz1wMvLfCag8DbIz1IP01jOvPvscxtAPgnM3su8C/AmgLbfSgzf2Mo/wkzOw/YBjwT2Aqsxgcmy4BO4BR+YvavgbuBrzjnBgodnJl9H3j+HMf/OjN7XYHHX++c+3zOfnozx7IV/v/27j7YqqqM4/j3wVG4UWTCGDiWaC/EBEh/KPkCVjgYjDZmKWVoBI0F41v4Ntowg4y9mESj+dJk40CZvYxTmZpjNY4TUZQ140BOkI6BZCWIJKAiL/fpj7UvbvZZ+5y9z9mHc+69v8/MmeGstfbe6y4uzH72XutZfAAYnfTpKKAH2EVYKP434A9JnzbXuW7HVTnOJa45HvgicBbh92If8Cxh3cm33X17iXOdCZwDnJbq+25gC7AGeAi43933t9JnEel+5p73sEpEZPAxs7sIN1xZvwCuBNYCIzJ1vcCH3H1VRX2YSzzb0kp3n1vnuPcRMi5l+5d7rJmtB8aV7OK9wGXZrE4Fgoc82eBhN2HaVVG9hOllN7j7601c/yDtyLZU5TinzrmE+ML044HzgK8R1sDEbAE+5e6xnzN9jZOAuzl4UX6eDcB8d19d53yxm466v9ci0l00bUlE5GBXA89Eys8FVhG/MV9WVeDQCndfD3w9p3q2mQ2r6FJzgIfMrMwNfjsNARYR3sBYpztToWbH+Srgm+QHDgBHAw8nb6yizGwOsJpigQOE4OgxM/tk0Y6KSP+j4EFEJMXdXwEuAmLTL94RKVsHLG5rp8r5DuFJfNYwYFqF1zkNWFjh+apwPiHIG0iaGedLC7brIQRcb8pWmNkZwD2E9TVlHAF838yKBhwi0s8oeBARyXD3NeQ/wU/bA8xx9z1t7lJhyTz2dTnVkyNlm4H7COllTwfGE55KDyW8ZRkHfA7YFDn28sz36byxoDsmveA7/cnuifE04cb1s8CpSR9GJX06EpgAXAZsK9CnblHlOBexjrD54QhgDCGgeDXS7gRgXrrAzIYAdxD/e1wBnET4eziB8JZjV6ZND2EPFBEZgLRgWkQk7kZgFmHBbp7F7r72EPWnjOeITzUZlS1w99ju2n32ADuBf5jZdmo3eBtrZse5+6bkXAfe1uTMHkov+M7l7hMb9Oll4CkzO4zaVLqnmNnQKtY+VKnKcS7gBeDD7t4XXO0E7jCzrYRF9VmfB25Pff8o8P5Iu1vc/drU95eB5Wb2PPDjTNupZjbF3f9UsM8i0k8oeBARiXD3vWb2IPnBg9O9uyXvyCnP7qINQDKn/mxgJuGp/ljC7tU9QKM1BOOIPy1viZmNIGS1mkF4Sv9OQlaingaHDgWOAzq5u3bUIRznO1OBwwHu/lMz+yrwrkzVJDM7MrUwe2bknHvJfxt3P+GtRnb600zCAn4RGUAUPIiIRJjZROC6ek2AFWY2tQvTU741p7wma4+ZzSKsk4it5yjibU0elyvJNrUMQvSPagAABYtJREFUGNnkKSrvU6sO8Tj/rk7dKmqDByPsGbIm+T4pctzhwLaS69GnlGksIv2D1jyIiGSY2RHAD2icLvQU6gcYnTI2p/ygna/NbAbwAM3f0ELjNwGlmNk8QpraZgMHqLhPrerAOMc2O+zz35zy9HjHNkBsxtsrOo+IdBEFDyIitW6keHrKJWYWW4jcEWY2ivh8dYAnM99vp/YN9D7C3gHvBXrc3dzdgI9U2tGIJOvP8kjVLuAKwv4FQ1N9mhdp2426apxztGPTp+g0ORHp3xQ8iIikJHnvr41U7SDkzs86nJDuslv2PFhIfP78bsKUFeDAtKz3RNrd7O5L3f1pd9+dKm/lTUBR04lPufqSu9/m7hszma0ORZ9a0qFxPqZO3eic8pdSf96a06Ys3WOIDED6hy0ikjCz4YR0orH/G68ArgEei9RNAG5qY9cKSW5UY4EPwE8yN6nvzmn3x5zyM5vuWHHd2KdWdeJnqrefx+mRMgfWp77HUv1uI+wVEku1m/fJrq0QkQFAwYOIyBuWE7/hecDdV7i7A3MJKSqzFplZlZuwlWJmU4FHgeGR6r2EqVhpeW9KJkTOPZnwc5cR21OgJlVsC32aBZxVsk+d0O5xjllgZjULrM3sAuLBzNpUpiWARyJtRgIL3H1fow8h69JF5C/cF5F+TNmWREQ4cDN6SaRqa7rc3Teb2aWEBdVpQ4CVZjbJ3Xe2r5vW9//2mwmbjE0BZhP2pMhLhXO1u/8zU7Yxp+2XzezfhBvIXkK61GU0Xjye9QJhjULadDObSXjq3rexmKeyVeX1abmZvUbIIjQM+DTwlZL9qUJ6/BvZnwSbG3PqqxrnmNHA42a2iJAqdTjwCeAbOe2/l/n+CPAUtWtnvmVmHyRs6vd3YAvhDcNRhLUbJxLWbEwjLPA+noOnQ4nIAKDgQUQGPTMbSe0NVJ9L3H1LusDd7zWzc4ALMm3HEjYtm195J4OLk08Zt7r7bZHyJwiZd7Jz4N9CmLqVtR84rMR1/0pt8DAM+FWm7Hng2OTPvyGszRiWaXMMIVtRq31q1TTCW5wiPk7YB6Td45xnEvDbAu2eJWS3OsDde5MA+dfU7jI9O/mIyCClaUsiInAXMCZSvtLd8zaCW0A8JeY8M/tYZT1r3uvANe5+Zawyedp/fcFz7QZuKHn92I1xXcnGZjcXbP4inXn7UMohGOeYnxds9xpwsbu/kq1w98cJU6j2ZOtEZHBT8CAig5qZfQY4P1L1HHB53nHu/hL5qULvNrOqcuWXtRf4EXCiuy+r19DdVwCLqZ+mcxtwLvDnMp1w9weBe8ock1gKfLdBm02E3YuzU7G6UjvHOcdVhN2ge+u02QKc7e6r8xq4+32EaXFPlLz+NkJA/mLJ40SkH1DwICKDlpkdS8jBn+XAXHffUe94d38UuDNSdTSNb4Cb5YQAYRfwL2At8DBhutSFwGh3v9DdNxQ6mftNhBvEHwKbCU+atxP2hFgKTEx+zvIddZ8PnEeYvrOZ8GS90TG97v4FYAbwM+A/hJ93K2H+/nXAZHf/SzN96pR2jnP8cn49cDLh9/AZwgL2ncn1lgDj3T2WOSx7oifd/WTgVOAW4PeEN26vEvaq+B+wAfhlct4zgDHuvtDdd0VPKiL9moX1XCIiIiIiIvXpzYOIiIiIiBSi4EFERERERApR8CAiIiIiIoUoeBARERERkUIUPIiIiIiISCEKHkREREREpBAFDyIiIiIiUoiCBxERERERKUTBg4iIiIiIFKLgQUREREREClHwICIiIiIihSh4EBERERGRQhQ8iIiIiIhIIQoeRERERESkEAUPIiIiIiJSiIIHEREREREpRMGDiIiIiIgUouBBREREREQKUfAgIiIiIiKFKHgQEREREZFC/g8NTuDrM/3VqAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 15, + "execution_count": 9, "metadata": { "image/png": { "height": 287, - "width": 393 + "width": 391 } }, "output_type": "execute_result" @@ -426,16 +447,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "
\n", - "As well as the official documentation, another useful tutorial is available\n", - "here.\n", - "
" + "### Conclusion\n", + "\n", + "This is only a brief introduction to the main concepts of matplotlib, that we will use throughout the rest of these materials. For much more in depth explanations and examples, visit the official documentation. " ] } ], "metadata": { "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -449,7 +469,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/10-Distributions.ipynb b/10-Distributions.ipynb index d4ec1eb..692f1c7 100644 --- a/10-Distributions.ipynb +++ b/10-Distributions.ipynb @@ -26,9 +26,7 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", @@ -41,7 +39,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Probability Distributions\n", + "## Probability Distributions\n", "\n", "Typically, given a data source, we want to think about and check what kind of probability distribution our data sample appears to follow. More specifically, we are trying to infer the probability distribution that the data generator follows, asking the question: what function could it be replaced by?\n", "\n", @@ -49,7 +47,7 @@ "\n", "Informally, we can start by visualizing our data, and seeing what 'shape' it takes, and which distribution it appears to follow. More formally, we can statistically test whether a sample of data follows a particular distribution.\n", "\n", - "Here we will start be visualizing some of the most common distributions. Scipy (scipy.stats) has a series of code and functions for working with, and generating different distributions - all with a consistent API. We will generate synthetic data from different underlying distributions, and do a quick survey of how they look, plotting histograms of the generated data. \n", + "Here we will start be visualizing some of the most common distributions. `Scipy` (scipy.stats) has code for working with, and generating different distributions. We will generate synthetic data from different underlying distributions, and do a quick survey of how they look, plotting histograms of the generated data. \n", "\n", "You can use this notebook to explore different parameters to get a feel for these distributions. For further exploration, explore plotting the probability density functions of each distribution. " ] @@ -58,7 +56,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Uniform Distribution" + "### Uniform Distribution" ] }, { @@ -78,9 +76,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from scipy.stats import uniform" @@ -89,12 +85,10 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "dat = uniform.rvs(size=10000)" + "data = uniform.rvs(size=10000)" ] }, { @@ -104,24 +98,26 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAD0pJREFUeJzt3H+MpVddx/H3hy4F+bmluyV1d+uU\nsCgNiaGZ1CIJIkuQFtPtH60pEVmajZtgQaREWfSPGkhM8VexCSmubGFrEForsRuskmbbBjXuhinF\n0h+SjqXujl3Zwbbrjwah8vWPe1bH7ezO7dyZOzs971cyuc9znnOf55ydu/O55zw/UlVIkvrzvJVu\ngCRpZRgAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE6tWekGnMy6detqYmJipZsh\nSavKPffc852qWr9QvVM6ACYmJpiamlrpZkjSqpLkn4ap5xSQJHXKAJCkThkAktQpA0CSOmUASFKn\nDABJ6pQBIEmdMgAkqVMGgCR16pS+E1jSM03s/IsVO/aj175jxY6tpecIQJI6ZQBIUqcMAEnqlAEg\nSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOuWdwM8h3iEq6dlwBCBJnTIAJKlTCwZAkhuTHEly/5yy\nVyS5I8nD7fWMVp4k1yeZTnJfkvPnvGdbq/9wkm3L0x1J0rCGGQF8Fnj7cWU7gX1VtRnY19YBLgI2\nt58dwA0wCAzgGuAngAuAa46FhiRpZSwYAFX1FeDx44q3Anva8h7g0jnlN9XAfmBtkrOBnwHuqKrH\nq+oJ4A6eGSqSpDFa7FVAr6yqwwBVdTjJWa18A3BoTr2ZVnaickmryEpdaeZVZstjqS8DzTxldZLy\nZ+4g2cFg+ohzzjlnpMb4YZWkE1tsAHw7ydnt2//ZwJFWPgNsmlNvI/BYK3/zceV3z7fjqtoF7AKY\nnJycNySkY7z3QVq8xQbAXmAbcG17vW1O+fuSfIHBCd+jLSS+DPzWnBO/bwM+svhmn9pW8o+Sxsff\ns1a7BQMgyecZfHtfl2SGwdU81wK3JNkOHAQub9VvBy4GpoGngCsBqurxJB8DvtrqfbSqjj+xLEmn\nlOf6CHPBAKiqd55g05Z56hZw1Qn2cyNw47NqnSRp2XgnsCR1ygCQpE75NFBJpzxPuC8PRwCS1ClH\nAFoSfkOTVh9HAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBI\nUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1\nygCQpE6NFABJPpjkgST3J/l8khcmOTfJgSQPJ7k5yemt7gva+nTbPrEUHZAkLc6iAyDJBuCXgcmq\neh1wGnAF8HHguqraDDwBbG9v2Q48UVWvBq5r9SRJK2TUKaA1wA8lWQO8CDgMvAW4tW3fA1zalre2\nddr2LUky4vElSYu06ACoqn8Gfhc4yOAP/1HgHuDJqnq6VZsBNrTlDcCh9t6nW/0zF3t8SdJoRpkC\nOoPBt/pzgR8GXgxcNE/VOvaWk2ybu98dSaaSTM3Ozi62eZKkBYwyBfRW4FtVNVtV3we+CPwksLZN\nCQFsBB5ryzPAJoC2/eXA48fvtKp2VdVkVU2uX79+hOZJkk5mlAA4CFyY5EVtLn8L8CBwF3BZq7MN\nuK0t723rtO13VtUzRgCSpPEY5RzAAQYnc78GfKPtaxfwYeDqJNMM5vh3t7fsBs5s5VcDO0dotyRp\nRGsWrnJiVXUNcM1xxY8AF8xT97vA5aMcT5K0dLwTWJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXK\nAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwA\nSeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUyMFQJK1SW5N\n8g9JHkryhiSvSHJHkofb6xmtbpJcn2Q6yX1Jzl+aLkiSFmPUEcAfAH9VVT8G/DjwELAT2FdVm4F9\nbR3gImBz+9kB3DDisSVJI1h0ACR5GfAmYDdAVX2vqp4EtgJ7WrU9wKVteStwUw3sB9YmOXvRLZck\njWSUEcCrgFngM0nuTfLpJC8GXllVhwHa61mt/gbg0Jz3z7QySdIKGCUA1gDnAzdU1euB/+T/pnvm\nk3nK6hmVkh1JppJMzc7OjtA8SdLJjBIAM8BMVR1o67cyCIRvH5vaaa9H5tTfNOf9G4HHjt9pVe2q\nqsmqmly/fv0IzZMkncyiA6Cq/gU4lORHW9EW4EFgL7CtlW0DbmvLe4F3t6uBLgSOHpsqkiSN35oR\n3/9+4HNJTgceAa5kECq3JNkOHAQub3VvBy4GpoGnWl1J0goZKQCq6uvA5DybtsxTt4CrRjmeJGnp\neCewJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjpl\nAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaA\nJHXKAJCkThkAktQpA0CSOmUASFKnRg6AJKcluTfJl9r6uUkOJHk4yc1JTm/lL2jr0237xKjHliQt\n3lKMAD4APDRn/ePAdVW1GXgC2N7KtwNPVNWrgetaPUnSChkpAJJsBN4BfLqtB3gLcGursge4tC1v\nbeu07VtafUnSChh1BPAJ4NeAH7T1M4Enq+rptj4DbGjLG4BDAG370VZfkrQCFh0ASX4WOFJV98wt\nnqdqDbFt7n53JJlKMjU7O7vY5kmSFjDKCOCNwCVJHgW+wGDq5xPA2iRrWp2NwGNteQbYBNC2vxx4\n/PidVtWuqpqsqsn169eP0DxJ0sksOgCq6iNVtbGqJoArgDur6ueBu4DLWrVtwG1teW9bp22/s6qe\nMQKQJI3HctwH8GHg6iTTDOb4d7fy3cCZrfxqYOcyHFuSNKQ1C1dZWFXdDdzdlh8BLpinzneBy5fi\neJKk0XknsCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkD\nQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAk\nqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpxYdAEk2JbkryUNJHkjygVb+iiR3JHm4vZ7RypPk+iTT\nSe5Lcv5SdUKS9OyNMgJ4GvhQVb0WuBC4Ksl5wE5gX1VtBva1dYCLgM3tZwdwwwjHliSNaNEBUFWH\nq+prbfnfgYeADcBWYE+rtge4tC1vBW6qgf3A2iRnL7rlkqSRLMk5gCQTwOuBA8Arq+owDEICOKtV\n2wAcmvO2mVYmSVoBIwdAkpcAfwb8SlX928mqzlNW8+xvR5KpJFOzs7OjNk+SdAIjBUCS5zP44/+5\nqvpiK/72samd9nqklc8Am+a8fSPw2PH7rKpdVTVZVZPr168fpXmSpJMY5SqgALuBh6rq9+ds2gts\na8vbgNvmlL+7XQ10IXD02FSRJGn81ozw3jcCvwB8I8nXW9mvA9cCtyTZDhwELm/bbgcuBqaBp4Ar\nRzi2JGlEiw6Aqvob5p/XB9gyT/0Crlrs8SRJS8s7gSWpUwaAJHXKAJCkThkAktQpA0CSOmUASFKn\nDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoA\nkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOjX2AEjy9iTf\nTDKdZOe4jy9JGhhrACQ5DfgkcBFwHvDOJOeNsw2SpIFxjwAuAKar6pGq+h7wBWDrmNsgSWL8AbAB\nODRnfaaVSZLGbM2Yj5d5yur/VUh2ADva6n8k+eYIx1sHfGeE9682vfUX7HMvuutzPj5Sn39kmErj\nDoAZYNOc9Y3AY3MrVNUuYNdSHCzJVFVNLsW+VoPe+gv2uRf2eXmMewroq8DmJOcmOR24Atg75jZI\nkhjzCKCqnk7yPuDLwGnAjVX1wDjbIEkaGPcUEFV1O3D7mA63JFNJq0hv/QX73Av7vAxSVQvXkiQ9\n5/goCEnq1KoPgIUeLZHkBUlubtsPJJkYfyuX1hB9vjrJg0nuS7IvyVCXhJ3Khn2ESJLLklSSVX/F\nyDB9TvJz7Xf9QJI/GXcbl9oQn+1zktyV5N72+b54Jdq5VJLcmORIkvtPsD1Jrm//HvclOX9JG1BV\nq/aHwYnkfwReBZwO/D1w3nF1fgn4VFu+Arh5pds9hj7/NPCitvzeHvrc6r0U+AqwH5hc6XaP4fe8\nGbgXOKOtn7XS7R5Dn3cB723L5wGPrnS7R+zzm4DzgftPsP1i4C8Z3EN1IXBgKY+/2kcAwzxaYiuw\npy3fCmxJMt8NaavFgn2uqruq6qm2up/B/Rar2bCPEPkY8NvAd8fZuGUyTJ9/EfhkVT0BUFVHxtzG\npTZMnwt4WVt+OcfdR7TaVNVXgMdPUmUrcFMN7AfWJjl7qY6/2gNgmEdL/G+dqnoaOAqcOZbWLY9n\n+ziN7Qy+QaxmC/Y5yeuBTVX1pXE2bBkN83t+DfCaJH+bZH+St4+tdctjmD7/JvCuJDMMriZ8/3ia\ntmKW9fE5Y78MdIkt+GiJIeusJkP3J8m7gEngp5a1RcvvpH1O8jzgOuA942rQGAzze17DYBrozQxG\neX+d5HVV9eQyt225DNPndwKfrarfS/IG4I9bn3+w/M1bEcv692u1jwAWfLTE3DpJ1jAYNp5syHWq\nG6bPJHkr8BvAJVX1X2Nq23JZqM8vBV4H3J3kUQZzpXtX+YngYT/bt1XV96vqW8A3GQTCajVMn7cD\ntwBU1d8BL2TwnKDnqqH+vy/Wag+AYR4tsRfY1pYvA+6sdnZllVqwz2065A8Z/PFf7fPCsECfq+po\nVa2rqomqmmBw3uOSqppameYuiWE+23/O4IQ/SdYxmBJ6ZKytXFrD9PkgsAUgyWsZBMDsWFs5XnuB\nd7ergS4EjlbV4aXa+aqeAqoTPFoiyUeBqaraC+xmMEycZvDN/4qVa/Hohuzz7wAvAf60ne8+WFWX\nrFijRzRkn59Thuzzl4G3JXkQ+G/gV6vqX1eu1aMZss8fAv4oyQcZTIW8ZzV/oUvyeQZTeOvaeY1r\ngOcDVNWnGJznuBiYBp4CrlzS46/ifztJ0ghW+xSQJGmRDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4Z\nAJLUKQNAkjr1P4X5/BTNNnOyAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAPQElEQVR4nO3df4ylVX3H8fdHVrT+XGAHQ3eXLsa1lZg0koliTax1jRVsWP6ABlPrSjbdxKK1YlrX9g8aTRrsL1pSg90W6tJYhVJTNpbWEH7EtukSF7HIjxq2aGEKlbHA9gexSv32j3vQYZnduXufmTsO5/1KJvd5znOee87ZGT733PPc+5CqQpLUh+esdgckSdNj6EtSRwx9SeqIoS9JHTH0Jakj61a7A0ezYcOG2rJly2p3Q5LWlNtvv/2bVTWz2LEf6NDfsmULBw4cWO1uSNKakuRfj3TM5R1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SerID/Q3cqWlbNn916vW9tcvffuqtS1NytCXJrRaLzi+2GgIl3ckqSOGviR1xOUdSWPrbUnr2XjNaMmZfpKrkjyS5K4FZScmuTHJfe3xhFaeJJcnOZjkziRnLDhnR6t/X5IdKzIaSdJRjTPT/yTwh8DVC8p2AzdV1aVJdrf9DwFnAVvbz+uAK4DXJTkRuASYBQq4Pcm+qnpsuQaiZ+esRNLyWnKmX1VfAB49rHg7sLdt7wXOXVB+dY3sB9YnOQX4aeDGqnq0Bf2NwNuWYwCSpPFNuqb/sqp6GKCqHk5ycivfCDy4oN5cKztS+TMk2QXsAjj11FMn7N7qWs0ZtyQdzXJ/eieLlNVRyp9ZWLWnqmaranZmZtH/xaMkaUKTzvS/keSUNss/BXiklc8BmxfU2wQ81MrfdFj5rRO2LakzvntePpOG/j5gB3Bpe7x+Qfl7k3yG0YXcQ+2F4fPAbz71KR/grcCHJ+/2ePxDkaSnWzL0k3ya0Sx9Q5I5Rp/CuRS4NslO4AHg/Fb9BuBs4CDwBHAhQFU9muSjwBdbvY9U1eEXhyVJK2zJ0K+qdxzh0LZF6hZw0RGe5yrgqmPqnaRn8B2shvA2DJLUEUNfkjpi6EtSRwx9SeqIoS9JHfHWyloWfqJEWhuc6UtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjoyKPSTfCDJ3UnuSvLpJM9PclqS25Lcl+SaJMe3us9r+wfb8S3LMQBJ0vgmDv0kG4FfAmar6tXAccAFwMeAy6pqK/AYsLOdshN4rKpeAVzW6kmSpmjo8s464IeSrANeADwMvBm4rh3fC5zbtre3fdrxbUkysH1J0jGYOPSr6t+A3wEeYBT2h4Dbgcer6slWbQ7Y2LY3Ag+2c59s9U+atH1J0rEbsrxzAqPZ+2nADwMvBM5apGo9dcpRji183l1JDiQ5MD8/P2n3JEmLGLK88xbga1U1X1XfAT4L/ASwvi33AGwCHmrbc8BmgHb8pcCjhz9pVe2pqtmqmp2ZmRnQPUnS4YaE/gPAmUle0NbmtwH3ALcA57U6O4Dr2/a+tk87fnNVPWOmL0laOUPW9G9jdEH2S8BX2nPtAT4EXJzkIKM1+yvbKVcCJ7Xyi4HdA/otSZrAuqWrHFlVXQJccljx/cBrF6n7LeD8Ie1JkobxG7mS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHVkUOgnWZ/kuiT/nOTeJK9PcmKSG5Pc1x5PaHWT5PIkB5PcmeSM5RmCJGlcQ2f6fwD8bVX9GPDjwL3AbuCmqtoK3NT2Ac4CtrafXcAVA9uWJB2jiUM/yUuANwJXAlTVt6vqcWA7sLdV2wuc27a3A1fXyH5gfZJTJu65JOmYDZnpvxyYB/40yR1J/iTJC4GXVdXDAO3x5FZ/I/DggvPnWtnTJNmV5ECSA/Pz8wO6J0k63JDQXwecAVxRVa8B/ofvL+UsJouU1TMKqvZU1WxVzc7MzAzoniTpcENCfw6Yq6rb2v51jF4EvvHUsk17fGRB/c0Lzt8EPDSgfUnSMZo49Kvq34EHk/xoK9oG3APsA3a0sh3A9W17H/Cu9imeM4FDTy0DSZKmY93A898HfCrJ8cD9wIWMXkiuTbITeAA4v9W9ATgbOAg80epKkqZoUOhX1ZeB2UUObVukbgEXDWlPkjSM38iVpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjg0M/yXFJ7kjyubZ/WpLbktyX5Jokx7fy57X9g+34lqFtS5KOzXLM9N8P3Ltg/2PAZVW1FXgM2NnKdwKPVdUrgMtaPUnSFA0K/SSbgLcDf9L2A7wZuK5V2Quc27a3t33a8W2tviRpSobO9H8f+FXgu23/JODxqnqy7c8BG9v2RuBBgHb8UKv/NEl2JTmQ5MD8/PzA7kmSFpo49JP8DPBIVd2+sHiRqjXGse8XVO2pqtmqmp2ZmZm0e5KkRawbcO4bgHOSnA08H3gJo5n/+iTr2mx+E/BQqz8HbAbmkqwDXgo8OqB9SdIxmnimX1UfrqpNVbUFuAC4uap+DrgFOK9V2wFc37b3tX3a8Zur6hkzfUnSylmJz+l/CLg4yUFGa/ZXtvIrgZNa+cXA7hVoW5J0FEOWd76nqm4Fbm3b9wOvXaTOt4Dzl6M9SdJk/EauJHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdmTj0k2xOckuSe5PcneT9rfzEJDcmua89ntDKk+TyJAeT3JnkjOUahCRpPENm+k8CH6yqVwFnAhclOR3YDdxUVVuBm9o+wFnA1vazC7hiQNuSpAlMHPpV9XBVfalt/xdwL7AR2A7sbdX2Aue27e3A1TWyH1if5JSJey5JOmbLsqafZAvwGuA24GVV9TCMXhiAk1u1jcCDC06ba2WHP9euJAeSHJifn1+O7kmSmsGhn+RFwF8Cv1xV/3m0qouU1TMKqvZU1WxVzc7MzAztniRpgUGhn+S5jAL/U1X12Vb8jaeWbdrjI618Dti84PRNwEND2pckHZshn94JcCVwb1X93oJD+4AdbXsHcP2C8ne1T/GcCRx6ahlIkjQd6wac+wbg54GvJPlyK/s14FLg2iQ7gQeA89uxG4CzgYPAE8CFA9qWJE1g4tCvqr9n8XV6gG2L1C/goknbkyQN5zdyJakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqyNRDP8nbknw1ycEku6fdviT1bKqhn+Q44OPAWcDpwDuSnD7NPkhSz6Y9038tcLCq7q+qbwOfAbZPuQ+S1K11U25vI/Dggv054HULKyTZBexqu/+d5KsTtrUB+OaE565VjrkPjrkD+digMf/IkQ5MO/SzSFk9badqD7BncEPJgaqaHfo8a4lj7oNj7sNKjXnayztzwOYF+5uAh6bcB0nq1rRD/4vA1iSnJTkeuADYN+U+SFK3prq8U1VPJnkv8HngOOCqqrp7hZobvES0BjnmPjjmPqzImFNVS9eSJD0r+I1cSeqIoS9JHVnzob/UbR2SPC/JNe34bUm2TL+Xy2uMMV+c5J4kdya5KckRP7O7Vox7+44k5yWpJGv+433jjDnJz7bf9d1J/nzafVxuY/xtn5rkliR3tL/vs1ejn8slyVVJHkly1xGOJ8nl7d/jziRnDG60qtbsD6OLwf8CvBw4Hvgn4PTD6vwi8Im2fQFwzWr3ewpj/ingBW37PT2MudV7MfAFYD8wu9r9nsLveStwB3BC2z95tfs9hTHvAd7Ttk8Hvr7a/R445jcCZwB3HeH42cDfMPqO05nAbUPbXOsz/XFu67Ad2Nu2rwO2JVnsS2JrxZJjrqpbquqJtruf0fch1rJxb9/xUeC3gG9Ns3MrZJwx/wLw8ap6DKCqHplyH5fbOGMu4CVt+6Ws8e/5VNUXgEePUmU7cHWN7AfWJzllSJtrPfQXu63DxiPVqaongUPASVPp3coYZ8wL7WQ0U1jLlhxzktcAm6vqc9Ps2Aoa5/f8SuCVSf4hyf4kb5ta71bGOGP+DeCdSeaAG4D3Tadrq+ZY/3tf0rRvw7Dclrytw5h11pKxx5PkncAs8JMr2qOVd9QxJ3kOcBnw7ml1aArG+T2vY7TE8yZG7+b+Lsmrq+rxFe7bShlnzO8APllVv5vk9cCftTF/d+W7tyqWPb/W+kx/nNs6fK9OknWM3hIe7e3UD7qxbmWR5C3ArwPnVNX/TqlvK2WpMb8YeDVwa5KvM1r73LfGL+aO+7d9fVV9p6q+BnyV0YvAWjXOmHcC1wJU1T8Cz2d0M7Znq2W/dc1aD/1xbuuwD9jRts8Dbq52hWSNWnLMbanjjxgF/lpf54UlxlxVh6pqQ1VtqaotjK5jnFNVB1anu8tinL/tv2J00Z4kGxgt99w/1V4ur3HG/ACwDSDJqxiF/vxUezld+4B3tU/xnAkcqqqHhzzhml7eqSPc1iHJR4ADVbUPuJLRW8CDjGb4F6xej4cbc8y/DbwI+It2zfqBqjpn1To90JhjflYZc8yfB96a5B7g/4Bfqar/WL1eDzPmmD8I/HGSDzBa5nj3Wp7EJfk0o+W5De06xSXAcwGq6hOMrlucDRwEngAuHNzmGv73kiQdo7W+vCNJOgaGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SerI/wM+mvwjd40ptgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "plt.hist(dat);" + "plt.hist(data);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Normal Distribution" + "### Normal Distribution" ] }, { @@ -141,9 +137,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from scipy.stats import norm" @@ -152,12 +146,10 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "dat = norm.rvs(size=10000)" + "data = norm.rvs(size=10000)" ] }, { @@ -167,24 +159,26 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAEhNJREFUeJzt3X+s3fV93/HnazgkTfrDEC4ptc0u\nW62sLE0TdEXoIk1VnBIDEaZVkUBVY6WWrKlkS5dWwRRpaI0iOcpUtqgdk1fcgMRIUZoIK9ASlxCh\nSYViKBCIk3JFGb6BxI5MaDvUZu7e++N83JzZx772Odf33Mvn+ZCO7vf7/n6+57yP4Z6XP9/v93yd\nqkKS1J9/Mu0GJEnTYQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOrVm2g2czHnn\nnVezs7PTbkOSVpXHH3/8u1U1s9i4FR0As7Oz7Nu3b9ptSNKqkuR/nco4DwFJUqcMAEnqlAEgSZ0y\nACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnVvQ3gaWVbHbHfWPv+8LOq5awE2k8zgAkqVOLBkCS\n3UkOJnlmxLbfTFJJzmvrSfKZJPNJnk5yydDYrUmea4+tS/s2JEmn61RmAJ8FNh9bTLIB+HngxaHy\nFcDG9tgO3NbGngvcArwHuBS4Jck5kzQuSZrMogFQVQ8Dh0dsuhX4OFBDtS3AnTXwCLA2yQXAB4C9\nVXW4ql4B9jIiVCRJy2escwBJrga+VVVPHbNpHXBgaH2h1U5UlyRNyWlfBZTkzcDNwOWjNo+o1Unq\no55/O4PDR1x44YWn254k6RSNMwP458BFwFNJXgDWA08k+XEGf7PfMDR2PfDSSerHqapdVTVXVXMz\nM4v+gzaSpDGddgBU1deq6vyqmq2qWQYf7pdU1beBPcCH2tVAlwGvVtXLwAPA5UnOaSd/L281SdKU\nnMploHcDfwa8PclCkm0nGX4/8DwwD/x34NcAquow8Angsfb47VaTJE3JoucAqur6RbbPDi0XcMMJ\nxu0Gdp9mf5KkM8RbQahrk9zOQVrtvBWEJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAk\nqVMGgCR1ygCQpE4ZAJLUKe8FJE3BJPcgemHnVUvYiXrmDECSOuUMQKuad/OUxucMQJI6ZQBIUqcM\nAEnqlAEgSZ0yACSpU4sGQJLdSQ4meWao9ukk30jydJIvJlk7tO2mJPNJvpnkA0P1za02n2TH0r8V\nSdLpOJUZwGeBzcfU9gLvqKp3An8J3ASQ5GLgOuBftn3+a5KzkpwF/B5wBXAxcH0bK0makkUDoKoe\nBg4fU/tyVR1pq48A69vyFuBzVfX3VfVXwDxwaXvMV9XzVfV94HNtrCRpSpbiHMCvAn/cltcBB4a2\nLbTaierHSbI9yb4k+w4dOrQE7UmSRpkoAJLcDBwB7jpaGjGsTlI/vli1q6rmqmpuZmZmkvYkSScx\n9q0gkmwFPghsqqqjH+YLwIahYeuBl9ryieqSpCkYawaQZDNwI3B1Vb02tGkPcF2SNya5CNgI/Dnw\nGLAxyUVJzmZwonjPZK1Lkiax6Awgyd3AzwHnJVkAbmFw1c8bgb1JAB6pqn9TVc8muQf4OoNDQzdU\n1T+05/kI8ABwFrC7qp49A+9HknSKFg2Aqrp+RPn2k4z/JPDJEfX7gftPqztJ0hnjN4ElqVMGgCR1\nygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcM\nAEnqlAEgSZ0yACSpUwaAJHXKAJCkTi0aAEl2JzmY5Jmh2rlJ9iZ5rv08p9WT5DNJ5pM8neSSoX22\ntvHPJdl6Zt6OJOlULfqPwgOfBX4XuHOotgN4sKp2JtnR1m8ErgA2tsd7gNuA9yQ5F7gFmAMKeDzJ\nnqp6ZaneiNSL2R33TbT/CzuvWqJOtNotOgOoqoeBw8eUtwB3tOU7gGuG6nfWwCPA2iQXAB8A9lbV\n4fahvxfYvBRvQJI0nnHPAbytql4GaD/Pb/V1wIGhcQutdqK6JGlKlvokcEbU6iT1458g2Z5kX5J9\nhw4dWtLmJEk/MG4AfKcd2qH9PNjqC8CGoXHrgZdOUj9OVe2qqrmqmpuZmRmzPUnSYsYNgD3A0St5\ntgL3DtU/1K4Gugx4tR0iegC4PMk57Yqhy1tNkjQli14FlORu4OeA85IsMLiaZydwT5JtwIvAtW34\n/cCVwDzwGvBhgKo6nOQTwGNt3G9X1bEnliVJy2jRAKiq60+wadOIsQXccILn2Q3sPq3uJElnjN8E\nlqROGQCS1CkDQJI6ZQBIUqcMAEnq1KncDE46oya9uZmk8TgDkKROGQCS1CkDQJI6ZQBIUqcMAEnq\nlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdmigAkvz7JM8meSbJ3Une\nlOSiJI8meS7JHyY5u419Y1ufb9tnl+INSJLGM3YAJFkH/DtgrqreAZwFXAd8Cri1qjYCrwDb2i7b\ngFeq6ieBW9s4SdKUTHoIaA3wQ0nWAG8GXgbeB3y+bb8DuKYtb2nrtO2bkmTC15ckjWnsAKiqbwH/\nCXiRwQf/q8DjwPeq6kgbtgCsa8vrgANt3yNt/FvHfX1J0mQmOQR0DoO/1V8E/ATwFuCKEUPr6C4n\n2Tb8vNuT7Euy79ChQ+O2J0laxCSHgN4P/FVVHaqq/wN8AfhXwNp2SAhgPfBSW14ANgC07T8GHD72\nSatqV1XNVdXczMzMBO1Jkk5mkgB4EbgsyZvbsfxNwNeBh4BfamO2Ave25T1tnbb9K1V13AxAkrQ8\nJjkH8CiDk7lPAF9rz7ULuBH4WJJ5Bsf4b2+73A68tdU/BuyYoG9J0oTWLD7kxKrqFuCWY8rPA5eO\nGPt3wLWTvJ4kaen4TWBJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJ\nnTIAJKlTBoAkdcoAkKROGQCS1KmJbgctafWZ3XHf2Pu+sPOqJexE0+YMQJI6ZQBIUqcMAEnqlAEg\nSZ0yACSpUxMFQJK1ST6f5BtJ9if52STnJtmb5Ln285w2Nkk+k2Q+ydNJLlmatyBJGsekM4D/AvxJ\nVf0L4GeA/cAO4MGq2gg82NYBrgA2tsd24LYJX1uSNIGxAyDJjwL/GrgdoKq+X1XfA7YAd7RhdwDX\ntOUtwJ018AiwNskFY3cuSZrIJDOAfwYcAv4gyV8k+f0kbwHeVlUvA7Sf57fx64ADQ/svtJokaQom\nCYA1wCXAbVX1buB/84PDPaNkRK2OG5RsT7Ivyb5Dhw5N0J4k6WQmCYAFYKGqHm3rn2cQCN85emin\n/Tw4NH7D0P7rgZeOfdKq2lVVc1U1NzMzM0F7kqSTGTsAqurbwIEkb2+lTcDXgT3A1lbbCtzblvcA\nH2pXA10GvHr0UJEkaflNejO4fwvcleRs4HngwwxC5Z4k24AXgWvb2PuBK4F54LU2Vq8Tk9xgTNJ0\nTBQAVfUkMDdi06YRYwu4YZLXkyQtHb8JLEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwA\nSeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCk\nTk0cAEnOSvIXSb7U1i9K8miS55L8YZKzW/2NbX2+bZ+d9LUlSeNbihnAR4H9Q+ufAm6tqo3AK8C2\nVt8GvFJVPwnc2sZJkqZkogBIsh64Cvj9th7gfcDn25A7gGva8pa2Ttu+qY2XJE3Bmgn3/8/Ax4Ef\naetvBb5XVUfa+gKwri2vAw4AVNWRJK+28d8dfsIk24HtABdeeOGE7UlaSrM77ht73xd2XrWEnWgp\njD0DSPJB4GBVPT5cHjG0TmHbDwpVu6pqrqrmZmZmxm1PkrSISWYA7wWuTnIl8CbgRxnMCNYmWdNm\nAeuBl9r4BWADsJBkDfBjwOEJXl+SNIGxZwBVdVNVra+qWeA64CtV9cvAQ8AvtWFbgXvb8p62Ttv+\nlao6bgYgSVoeZ+J7ADcCH0syz+AY/+2tfjvw1lb/GLDjDLy2JOkUTXoSGICq+irw1bb8PHDpiDF/\nB1y7FK8nSZqc3wSWpE4tyQxArw+TXOInafVxBiBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBI\nUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdGjsAkmxI8lCS\n/UmeTfLRVj83yd4kz7Wf57R6knwmyXySp5NcslRvQpJ0+iaZARwBfqOqfgq4DLghycXADuDBqtoI\nPNjWAa4ANrbHduC2CV5bkjShsQOgql6uqifa8t8A+4F1wBbgjjbsDuCatrwFuLMGHgHWJrlg7M4l\nSRNZknMASWaBdwOPAm+rqpdhEBLA+W3YOuDA0G4LrSZJmoI1kz5Bkh8G/gj49ar66yQnHDqiViOe\nbzuDQ0RceOGFk7YnaYWY3XHf2Pu+sPOqJexER00UAEnewODD/66q+kIrfyfJBVX1cjvEc7DVF4AN\nQ7uvB1469jmrahewC2Bubu64gNDJTfJLJqkvk1wFFOB2YH9V/c7Qpj3A1ra8Fbh3qP6hdjXQZcCr\nRw8VSZKW3yQzgPcCvwJ8LcmTrfZbwE7gniTbgBeBa9u2+4ErgXngNeDDE7y2JGlCYwdAVf1PRh/X\nB9g0YnwBN4z7epKkpeU3gSWpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMT\n3w1Uks407yR6ZjgDkKROGQCS1CkPAa0w3s9f0nJxBiBJnTIAJKlTBoAkdcoAkKROGQCS1CmvApL0\nujbplXWv5y+SGQBngJdySloNlv0QUJLNSb6ZZD7JjuV+fUnSwLIGQJKzgN8DrgAuBq5PcvFy9iBJ\nGljuQ0CXAvNV9TxAks8BW4CvL3Mfi/IwjiR4fd+IbrkDYB1wYGh9AXjPmXoxP8QlTdNKD4/lDoCM\nqNX/NyDZDmxvq3+b5JvAecB3z3BvS8E+l5Z9Lp3V0CPY5z/Kpyba/Z+eyqDlDoAFYMPQ+nrgpeEB\nVbUL2DVcS7KvqubOfHuTsc+lZZ9LZzX0CPa53Jb7KqDHgI1JLkpyNnAdsGeZe5AkscwzgKo6kuQj\nwAPAWcDuqnp2OXuQJA0s+xfBqup+4P7T3G3X4kNWBPtcWva5dFZDj2CfyypVtfgoSdLrjjeDk6RO\nrboASPKbSSrJedPuZZQkn0jydJInk3w5yU9Mu6djJfl0km+0Pr+YZO20exolybVJnk3yf5OsuCsu\nVsNtTZLsTnIwyTPT7uVkkmxI8lCS/e2/+Uen3dMoSd6U5M+TPNX6/I/T7mkSqyoAkmwAfh54cdq9\nnMSnq+qdVfUu4EvAf5h2QyPsBd5RVe8E/hK4acr9nMgzwC8CD0+7kWOtotuafBbYPO0mTsER4Deq\n6qeAy4AbVuif598D76uqnwHeBWxOctmUexrbqgoA4Fbg4xzz5bGVpKr+emj1LazAXqvqy1V1pK0+\nwuD7GCtOVe2vqm9Ou48T+MfbmlTV94GjtzVZUarqYeDwtPtYTFW9XFVPtOW/AfYzuHPAilIDf9tW\n39AeK+53/FStmgBIcjXwrap6atq9LCbJJ5McAH6ZlTkDGParwB9Pu4lVaNRtTVbcB9ZqlGQWeDfw\n6HQ7GS3JWUmeBA4Ce6tqRfZ5KlbUvweQ5E+BHx+x6Wbgt4DLl7ej0U7WZ1XdW1U3AzcnuQn4CHDL\nsjbI4j22MTczmHrftZy9DTuVPleoRW9rotOX5IeBPwJ+/ZjZ9IpRVf8AvKudO/tikndU1Yo+x3Ii\nKyoAqur9o+pJfhq4CHgqCQwOWTyR5NKq+vYytgicuM8R/gdwH1MIgMV6TLIV+CCwqaZ4LfBp/Fmu\nNIve1kSnJ8kbGHz431VVX5h2P4upqu8l+SqDcyyrMgBWxSGgqvpaVZ1fVbNVNcvgl++SaXz4LybJ\nxqHVq4FvTKuXE0myGbgRuLqqXpt2P6uUtzVZQhn8ze52YH9V/c60+zmRJDNHr5pL8kPA+1mBv+On\nalUEwCqzM8kzSZ5mcMhqJV7O9rvAjwB72+Wq/23aDY2S5BeSLAA/C9yX5IFp93RUO4l+9LYm+4F7\nVuJtTZLcDfwZ8PYkC0m2TbunE3gv8CvA+9r/k08muXLaTY1wAfBQ+/1+jME5gC9Nuaex+U1gSeqU\nMwBJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSp/4fOSPi1YUJHG8AAAAASUVORK5C\nYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAR80lEQVR4nO3df4xl5X3f8fen4B+xE2exGVtkd92hzcoNsZwYjTCppcryungBi6VVkEBJvHJWWkXFrVOnspdaCmosS2u5ConVlGprtsYqxUGOI1aGFG8wFqoUCIuNMXjtMCKUnUC8Yy0mSVHibvLtH/fZ+mb2zs6POzt3huf9kq7mnO95ztzvwO5nnn3uueemqpAk9eEfTLoBSdL6MfQlqSOGviR1xNCXpI4Y+pLUkfMn3cDZXHjhhTU9PT3pNiRpU3n00Ue/V1VTo45t6NCfnp7m6NGjk25DkjaVJP97sWMu70hSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkc29DtypXNtev89qz73mQNXr2En0vpwpi9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkeWDP0kh5KcSPLEiGP/LkklubDtJ8mnk8wmeTzJpUNj9yR5qj32rO2PIUlajuXM9D8L7FpYTLId+OfAs0PlK4Ed7bEPuLWNfT1wM/AO4DLg5iQXjNO4JGnllgz9qnoQODni0C3AR4Aaqu0GPlcDDwFbklwEvBc4UlUnq+oF4AgjfpFIks6tVa3pJ7kG+LOq+saCQ1uB40P7c622WH3U996X5GiSo/Pz86tpT5K0iBWHfpLXAB8Dfn3U4RG1Okv9zGLVwaqaqaqZqamplbYnSTqL1dxw7R8DFwPfSAKwDfhakssYzOC3D43dBjzX6u9aUP/qKp5b2jC8WZs2oxXP9Kvqm1X1xqqarqppBoF+aVX9OXAYeH+7iudy4MWqeh64D7giyQXtBdwrWk2StI6Wc8nmncAfAW9JMpdk71mG3ws8DcwC/xX4VwBVdRL4OPBIe/xGq0mS1tGSyztVdcMSx6eHtgu4cZFxh4BDK+xPkrSGfEeuJHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6shq3pErbRjjvCtW6pEzfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSPee0eagHHuGfTMgavXsBP1ZjkfjH4oyYkkTwzVPpXk20keT/L7SbYMHbspyWyS7yR571B9V6vNJtm/9j+KJGkpy1ne+Sywa0HtCPDWqnob8CfATQBJLgGuB366nfOfk5yX5Dzgd4ArgUuAG9pYSdI6WjL0q+pB4OSC2per6lTbfQjY1rZ3A5+vqr+pqj8FZoHL2mO2qp6uqh8An29jJUnraC1eyP1l4A/a9lbg+NCxuVZbrH6GJPuSHE1ydH5+fg3akySdNlboJ/kYcAq443RpxLA6S/3MYtXBqpqpqpmpqalx2pMkLbDqq3eS7AHeB+ysqtMBPgdsHxq2DXiubS9WlyStk1XN9JPsAj4KXFNVLw0dOgxcn+RVSS4GdgB/DDwC7EhycZJXMnix9/B4rUuSVmrJmX6SO4F3ARcmmQNuZnC1zquAI0kAHqqqX6mqJ5PcBXyLwbLPjVX1t+37fBC4DzgPOFRVT56Dn0eSdBZLhn5V3TCifNtZxn8C+MSI+r3AvSvqTpK0prwNgyR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI6v+jFxprUzvv2fSLUjdcKYvSR0x9CWpI0uGfpJDSU4keWKo9vokR5I81b5e0OpJ8ukks0keT3Lp0Dl72vinkuw5Nz+OJOlsljPT/yywa0FtP3B/Ve0A7m/7AFcCO9pjH3ArDH5JADcD7wAuA24+/YtCkrR+lgz9qnoQOLmgvBu4vW3fDlw7VP9cDTwEbElyEfBe4EhVnayqF4AjnPmLRJJ0jq12Tf9NVfU8QPv6xlbfChwfGjfXaovVz5BkX5KjSY7Oz8+vsj1J0ihr/UJuRtTqLPUzi1UHq2qmqmampqbWtDlJ6t1qQ/+7bdmG9vVEq88B24fGbQOeO0tdkrSOVhv6h4HTV+DsAe4eqr+/XcVzOfBiW/65D7giyQXtBdwrWk2StI6WfEdukjuBdwEXJpljcBXOAeCuJHuBZ4Hr2vB7gauAWeAl4AMAVXUyyceBR9q436iqhS8OS5LOsSVDv6puWOTQzhFjC7hxke9zCDi0ou4kSWvKd+RKUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRPy5R2mTG/XjJZw5cvUadaDNypi9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHVkrNBP8m+TPJnkiSR3Jnl1kouTPJzkqSS/m+SVbeyr2v5sOz69Fj+AJGn5Vh36SbYC/waYqaq3AucB1wOfBG6pqh3AC8Dedspe4IWq+kngljZOkrSOxl3eOR/4kSTnA68BngfeDXyhHb8duLZt7277tOM7k2TM55ckrcCqQ7+q/gz4j8CzDML+ReBR4PtVdaoNmwO2tu2twPF27qk2/g0Lv2+SfUmOJjk6Pz+/2vYkSSOMs7xzAYPZ+8XATwCvBa4cMbROn3KWYz8sVB2sqpmqmpmamlpte5KkEcZZ3nkP8KdVNV9V/xf4IvBPgS1tuQdgG/Bc254DtgO04z8OnBzj+SVJKzRO6D8LXJ7kNW1tfifwLeAB4OfbmD3A3W37cNunHf9KVZ0x05cknTvjrOk/zOAF2a8B32zf6yDwUeDDSWYZrNnf1k65DXhDq38Y2D9G35KkVRjrM3Kr6mbg5gXlp4HLRoz9a+C6cZ5PkjQe35ErSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdGesdudJp0/vvmXQLkpbBmb4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHVkrNBPsiXJF5J8O8mxJD+X5PVJjiR5qn29oI1Nkk8nmU3yeJJL1+ZHkCQt17gz/d8G/mdV/RPgZ4BjwH7g/qraAdzf9gGuBHa0xz7g1jGfW5K0QqsO/SSvA/4ZcBtAVf2gqr4P7AZub8NuB65t27uBz9XAQ8CWJBetunNJ0oqNM9P/R8A88N+SfD3JZ5K8FnhTVT0P0L6+sY3fChwfOn+u1f6eJPuSHE1ydH5+foz2JEkLjRP65wOXArdW1duB/8MPl3JGyYhanVGoOlhVM1U1MzU1NUZ7kqSFxgn9OWCuqh5u+19g8Evgu6eXbdrXE0Pjtw+dvw14boznlySt0KpDv6r+HDie5C2ttBP4FnAY2NNqe4C72/Zh4P3tKp7LgRdPLwNJktbHuB+i8q+BO5K8Enga+ACDXyR3JdkLPAtc18beC1wFzAIvtbGS1tk4H3jzzIGr17ATTcJYoV9VjwEzIw7tHDG2gBvHeT5J0nh8R64kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUkbFDP8l5Sb6e5Ett/+IkDyd5Ksnvtg9NJ8mr2v5sOz497nNLklZmLWb6HwKODe1/ErilqnYALwB7W30v8EJV/SRwSxsnSVpHY4V+km3A1cBn2n6AdwNfaENuB65t27vbPu34zjZekrROzh/z/N8CPgL8WNt/A/D9qjrV9ueArW17K3AcoKpOJXmxjf/e8DdMsg/YB/DmN795zPa0EtP775l0C5LOsVXP9JO8DzhRVY8Ol0cMrWUc+2Gh6mBVzVTVzNTU1GrbkySNMM5M/53ANUmuAl4NvI7BzH9LkvPbbH8b8FwbPwdsB+aSnA/8OHByjOeXJK3Qqmf6VXVTVW2rqmngeuArVfULwAPAz7dhe4C72/bhtk87/pWqOmOmL0k6d87FdfofBT6cZJbBmv1trX4b8IZW/zCw/xw8tyTpLMZ9IReAqvoq8NW2/TRw2Ygxfw1ctxbPJ0laHd+RK0kdMfQlqSOGviR1ZE3W9CX1YZw38D1z4Oo17ESr5Uxfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjqw69JNsT/JAkmNJnkzyoVZ/fZIjSZ5qXy9o9ST5dJLZJI8nuXStfghJ0vKMM9M/BfxaVf0UcDlwY5JLgP3A/VW1A7i/7QNcCexoj33ArWM8tyRpFVYd+lX1fFV9rW3/JXAM2ArsBm5vw24Hrm3bu4HP1cBDwJYkF626c0nSiq3Jmn6SaeDtwMPAm6rqeRj8YgDe2IZtBY4PnTbXagu/174kR5McnZ+fX4v2JEnN2J+Rm+RHgd8DfrWq/iLJokNH1OqMQtVB4CDAzMzMGcd1duN8hqmkl7+xQj/JKxgE/h1V9cVW/m6Si6rq+bZ8c6LV54DtQ6dvA54b5/klbR5+qPrGMM7VOwFuA45V1W8OHToM7Gnbe4C7h+rvb1fxXA68eHoZSJK0PsaZ6b8T+CXgm0kea7V/DxwA7kqyF3gWuK4duxe4CpgFXgI+MMZzS5JWYdWhX1X/i9Hr9AA7R4wv4MbVPp8kaXy+I1eSOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1ZOzbMGhteRsFSeeSM31J6oihL0kdMfQlqSOGviR1xNCXpI549Y6kDc978a8dZ/qS1BFDX5I6YuhLUkcMfUnqiC/kngPeSkHSRmXoS3pZG3cS9nK7+mfdQz/JLuC3gfOAz1TVgfXuYTmcrUt6OVrXNf0k5wG/A1wJXALckOSS9exBknq23jP9y4DZqnoaIMnngd3At87FkzlblzSuSeXIuVpWWu/Q3wocH9qfA94xPCDJPmBf2/2rJN9Zp95W40Lge5NuYhk2Q5+boUfYHH1uhh5hc/Q5sR7zyRUNX9jnP1xs4HqHfkbU6u/tVB0EDq5PO+NJcrSqZibdx1I2Q5+boUfYHH1uhh5hc/S5GXqElfW53tfpzwHbh/a3Ac+tcw+S1K31Dv1HgB1JLk7ySuB64PA69yBJ3VrX5Z2qOpXkg8B9DC7ZPFRVT65nD2tsUyxDsTn63Aw9wuboczP0CJujz83QI6ygz1TV0qMkSS8L3ntHkjpi6EtSRwz9MSX5eJLHkzyW5MtJfmLSPY2S5FNJvt16/f0kWybd00JJrkvyZJK/S7KhLpNLsivJd5LMJtk/6X5GSXIoyYkkT0y6l8Uk2Z7kgSTH2v/rD026p1GSvDrJHyf5RuvzP0y6p8UkOS/J15N8aTnjDf3xfaqq3lZVPwt8Cfj1STe0iCPAW6vqbcCfADdNuJ9RngD+JfDgpBsZtoluH/JZYNekm1jCKeDXquqngMuBGzfof8u/Ad5dVT8D/CywK8nlE+5pMR8Cji13sKE/pqr6i6Hd17LgzWYbRVV9uapOtd2HGLxHYkOpqmNVtRHfgf3/bx9SVT8ATt8+ZEOpqgeBk5Pu42yq6vmq+lrb/ksGYbV1sl2dqQb+qu2+oj023N/tJNuAq4HPLPccQ38NJPlEkuPAL7BxZ/rDfhn4g0k3sYmMun3IhguqzSbJNPB24OHJdjJaWzZ5DDgBHKmqjdjnbwEfAf5uuScY+suQ5A+TPDHisRugqj5WVduBO4APbtQ+25iPMfgn9h0btccNaMnbh2hlkvwo8HvAry741/KGUVV/25ZttwGXJXnrpHsaluR9wImqenQl5/khKstQVe9Z5tD/AdwD3HwO21nUUn0m2QO8D9hZE3qDxgr+W24k3j5kDSV5BYPAv6OqvjjpfpZSVd9P8lUGr5dspBfJ3wlck+Qq4NXA65L896r6xbOd5Ex/TEl2DO1eA3x7Ur2cTfvwmo8C11TVS5PuZ5Px9iFrJEmA24BjVfWbk+5nMUmmTl/hluRHgPewwf5uV9VNVbWtqqYZ/Jn8ylKBD4b+WjjQliceB65g8Er6RvSfgB8DjrTLS//LpBtaKMm/SDIH/BxwT5L7Jt0TDG4fwmDZ7j4GLzzetRFvH5LkTuCPgLckmUuyd9I9jfBO4JeAd7c/h4+1mepGcxHwQPt7/QiDNf1lXRK50XkbBknqiDN9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I68v8AHOHXVcCwS80AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "plt.hist(dat, bins=20);" + "plt.hist(data, bins=20);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Bernouilli Distribution" + "### Bernouilli Distribution" ] }, { @@ -192,7 +186,7 @@ "metadata": {}, "source": [ "
\n", - "A Bernouilli Distribution is a binary distribution - it takes only two values (0 or 1), with some probably 'p'. \n", + "The Bernouilli Distribution is a binary distribution - it takes only two values (0 or 1), with some probably 'p'. \n", "
\n", "\n", "
\n", @@ -204,9 +198,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from scipy.stats import bernoulli" @@ -215,12 +207,10 @@ { "cell_type": "code", "execution_count": 9, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "r = bernoulli.rvs(0.5, size=1000)" + "data = bernoulli.rvs(0.5, size=1000)" ] }, { @@ -230,24 +220,26 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADsFJREFUeJzt3H+MZWddx/H3hy4FFWRLd9o0u1sH\nw5LQkADNpFlDosAS0hbT7R+tKRG7NBs3wWpQiFr1D/z1B9VoSRMCrpawJQItKHaDVWy2bVDjVqYW\nSkslHWptJ9uwC21XSQNa+PrHfRYnu7M7Z3bunek8+34lk/uc5zz3nu+zM/uZM88996SqkCT160Vr\nXYAkabIMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnNqx1AQCbNm2q6enptS5D\nktaV+++//1tVNbXUuBdE0E9PTzM7O7vWZUjSupLkP4eMc+lGkjpn0EtS5wx6SeqcQS9JnTPoJalz\nBr0kdc6gl6TOGfSS1DmDXpI694L4ZKwkraXpG/52zY79+AffMfFjDDqjT/J4kq8m+XKS2db3yiR3\nJXm0PZ7T+pPk5iRzSR5McvEkJyBJOrXlLN28pareUFUzbfsG4EBVbQMOtG2Ay4Bt7WsP8JFxFStJ\nWr6VrNHvBPa19j7gygX9t9bIQWBjkgtWcBxJ0goMDfoC/iHJ/Un2tL7zq+opgPZ4XuvfDDy54Lnz\nrU+StAaGvhn7pqo6lOQ84K4k/36KsVmkr04YNPqFsQfgwgsvHFiGJGm5Bp3RV9Wh9ngY+BxwCfDN\nY0sy7fFwGz4PbF3w9C3AoUVec29VzVTVzNTUkvfNlySdpiWDPsmPJXn5sTbwduAhYD+wqw3bBdzR\n2vuBa9vVN9uBo8eWeCRJq2/I0s35wOeSHBv/yar6+yRfAm5Psht4Ari6jb8TuByYA54Drht71ZKk\nwZYM+qp6DHj9Iv3fBnYs0l/A9WOpboDeP+ggSSvlLRAkqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS\n5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXO\noJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6\nSerc4KBPclaSB5J8vm2/Ksl9SR5NcluSs1v/S9r2XNs/PZnSJUlDLOeM/r3AIwu2bwRuqqptwDPA\n7ta/G3imql4N3NTGSZLWyKCgT7IFeAfwF207wFuBz7Yh+4ArW3tn26bt39HGS5LWwNAz+g8BvwH8\noG2fCzxbVc+37Xlgc2tvBp4EaPuPtvGSpDWwZNAn+VngcFXdv7B7kaE1YN/C192TZDbJ7JEjRwYV\nK0laviFn9G8CrkjyOPBpRks2HwI2JtnQxmwBDrX2PLAVoO1/BfD08S9aVXuraqaqZqamplY0CUnS\nyS0Z9FX1W1W1paqmgWuAu6vq54F7gKvasF3AHa29v23T9t9dVSec0UuSVsdKrqP/TeB9SeYYrcHf\n0vpvAc5t/e8DblhZiZKkldiw9JD/V1X3Ave29mPAJYuM+S5w9RhqkySNgZ+MlaTOGfSS1DmDXpI6\nZ9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMG\nvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BL\nUucMeknqnEEvSZ0z6CWpcwa9JHVuyaBP8tIk/5rkK0keTvJ7rf9VSe5L8miS25Kc3fpf0rbn2v7p\nyU5BknQqQ87ovwe8tapeD7wBuDTJduBG4Kaq2gY8A+xu43cDz1TVq4Gb2jhJ0hpZMuhr5Dtt88Xt\nq4C3Ap9t/fuAK1t7Z9um7d+RJGOrWJK0LIPW6JOcleTLwGHgLuAbwLNV9XwbMg9sbu3NwJMAbf9R\n4NxFXnNPktkks0eOHFnZLCRJJzUo6Kvq+1X1BmALcAnw2sWGtcfFzt7rhI6qvVU1U1UzU1NTQ+uV\nJC3Tsq66qapngXuB7cDGJBvari3AodaeB7YCtP2vAJ4eR7GSpOUbctXNVJKNrf0jwNuAR4B7gKva\nsF3AHa29v23T9t9dVSec0UuSVseGpYdwAbAvyVmMfjHcXlWfT/I14NNJ/hB4ALiljb8F+ESSOUZn\n8tdMoG5J0kBLBn1VPQi8cZH+xxit1x/f/13g6rFUJ0laMT8ZK0mdM+glqXMGvSR1zqCXpM4Z9JLU\nOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z\n6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNe\nkjpn0EtS55YM+iRbk9yT5JEkDyd5b+t/ZZK7kjzaHs9p/Ulyc5K5JA8muXjSk5AkndyQM/rngfdX\n1WuB7cD1SS4CbgAOVNU24EDbBrgM2Na+9gAfGXvVkqTBlgz6qnqqqv6ttf8beATYDOwE9rVh+4Ar\nW3sncGuNHAQ2Jrlg7JVLkgZZ1hp9kmngjcB9wPlV9RSMfhkA57Vhm4EnFzxtvvVJktbA4KBP8jLg\nr4Bfrar/OtXQRfpqkdfbk2Q2yeyRI0eGliFJWqZBQZ/kxYxC/i+r6q9b9zePLcm0x8Otfx7YuuDp\nW4BDx79mVe2tqpmqmpmamjrd+iVJSxhy1U2AW4BHqupPF+zaD+xq7V3AHQv6r21X32wHjh5b4pEk\nrb4NA8a8CfgF4KtJvtz6fhv4IHB7kt3AE8DVbd+dwOXAHPAccN1YK5YkLcuSQV9V/8Ti6+4AOxYZ\nX8D1K6xLkjQmfjJWkjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucM\neknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCX\npM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1Lklgz7Jx5IcTvLQgr5X\nJrkryaPt8ZzWnyQ3J5lL8mCSiydZvCRpaUPO6D8OXHpc3w3AgaraBhxo2wCXAdva1x7gI+MpU5J0\nupYM+qr6IvD0cd07gX2tvQ+4ckH/rTVyENiY5IJxFStJWr7TXaM/v6qeAmiP57X+zcCTC8bNt74T\nJNmTZDbJ7JEjR06zDEnSUsb9ZmwW6avFBlbV3qqaqaqZqampMZchSTrmdIP+m8eWZNrj4dY/D2xd\nMG4LcOj0y5MkrdTpBv1+YFdr7wLuWNB/bbv6Zjtw9NgSjyRpbWxYakCSTwFvBjYlmQc+AHwQuD3J\nbuAJ4Oo2/E7gcmAOeA64bgI1S5KWYcmgr6p3nmTXjkXGFnD9SouSJI2Pn4yVpM4Z9JLUOYNekjpn\n0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9\nJHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS\n5wx6SeqcQS9JnTPoJalzEwn6JJcm+XqSuSQ3TOIYkqRhxh70Sc4CPgxcBlwEvDPJReM+jiRpmEmc\n0V8CzFXVY1X1P8CngZ0TOI4kaYBJBP1m4MkF2/OtT5K0BjZM4DWzSF+dMCjZA+xpm99J8vXTPN4m\n4Fun+dwVyY1rcVRgDee8hpzzmeGMm3NuXNGcf2LIoEkE/TywdcH2FuDQ8YOqai+wd6UHSzJbVTMr\nfZ31xDmfGZzzmWE15jyJpZsvAduSvCrJ2cA1wP4JHEeSNMDYz+ir6vkkvwx8ATgL+FhVPTzu40iS\nhpnE0g1VdSdw5yReexErXv5Zh5zzmcE5nxkmPudUnfA+qSSpI94CQZI6t26CfqnbKiR5SZLb2v77\nkkyvfpXjNWDO70vytSQPJjmQZNClVi9kQ2+fkeSqJJVk3V+hMWTOSX6ufa8fTvLJ1a5x3Ab8bF+Y\n5J4kD7Sf78vXos5xSfKxJIeTPHSS/Ulyc/v3eDDJxWMtoKpe8F+M3tT9BvCTwNnAV4CLjhvzS8BH\nW/sa4La1rnsV5vwW4Edb+z1nwpzbuJcDXwQOAjNrXfcqfJ+3AQ8A57Tt89a67lWY817gPa19EfD4\nWte9wjn/NHAx8NBJ9l8O/B2jzyFtB+4b5/HXyxn9kNsq7AT2tfZngR1JFvvw1nqx5Jyr6p6qeq5t\nHmT0mYX1bOjtM/4A+CPgu6tZ3IQMmfMvAh+uqmcAqurwKtc4bkPmXMCPt/YrWOSzOOtJVX0RePoU\nQ3YCt9bIQWBjkgvGdfz1EvRDbqvwwzFV9TxwFDh3VaqbjOXeSmI3ozOC9WzJOSd5I7C1qj6/moVN\n0JDv82uA1yT55yQHk1y6atVNxpA5/y7wriTzjK7g+5XVKW3NTPTWMRO5vHIChtxWYdCtF9aRwfNJ\n8i5gBviZiVY0eaecc5IXATcB716tglbBkO/zBkbLN29m9FfbPyZ5XVU9O+HaJmXInN8JfLyq/iTJ\nTwGfaHP+weTLWxMTza/1ckY/5LYKPxyTZAOjP/dO9afSC92gW0kkeRvwO8AVVfW9VaptUpaa88uB\n1wH3Jnmc0Vrm/nX+huzQn+07qup/q+o/gK8zCv71asicdwO3A1TVvwAvZXQfnF4N+v9+utZL0A+5\nrcJ+YFdrXwXcXe1djnVqyTm3ZYw/YxTy633dFpaYc1UdrapNVTVdVdOM3pe4oqpm16bcsRjys/03\njN54J8kmRks5j61qleM1ZM5PADsAkryWUdAfWdUqV9d+4Np29c124GhVPTWuF18XSzd1ktsqJPl9\nYLaq9gO3MPrzbo7Rmfw1a1fxyg2c8x8DLwM+0953fqKqrlizoldo4Jy7MnDOXwDenuRrwPeBX6+q\nb69d1SszcM7vB/48ya8xWsJ493o+cUvyKUZLb5va+w4fAF4MUFUfZfQ+xOXAHPAccN1Yj7+O/+0k\nSQOsl6UbSdJpMuglqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6Serc/wFaA7yBEaU/kAAAAABJ\nRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAOrUlEQVR4nO3ca4xdV3nG8f9DTKAXikM8iSLbrUEYiQgJiEapK6QWMEKJqXA+JFVQaVxk1YKmFRWV2rR86PUDqVRSRUK0VoNwUIGktDQWTS+pk4gWNYFJE3IhpTFpmowcxUOTuEURlJS3H84yndgznu2Zc2Yyy/+fdHTWXnvN7Hf5jJ/Zs84+O1WFJKkvL1nrAiRJ42e4S1KHDHdJ6pDhLkkdMtwlqUMb1roAgE2bNtW2bdvWugxJWlfuueeeb1bV1EL7XhThvm3bNmZmZta6DElaV5L8x2L7XJaRpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOvSg+oSpJa2nbNX+9Zsd+7CPvmsj39cxdkjpkuEtShwx3SerQoHBP8liSB5Lcl2Sm9b0qyW1JHmnP57T+JLk+yeEk9ye5aJITkCSd7HTO3N9WVW+qqum2fQ1wqKq2A4faNsClwPb22Ad8fFzFSpKGWcmyzG7gQGsfAC6b139jjdwFbExywQqOI0k6TUPDvYC/T3JPkn2t7/yqehKgPZ/X+jcDT8z72tnW9wJJ9iWZSTIzNze3vOolSQsaep37W6rqSJLzgNuS/OspxmaBvjqpo2o/sB9genr6pP2SpOUbdOZeVUfa81Hg88DFwFPHl1va89E2fBbYOu/LtwBHxlWwJGlpS4Z7kh9K8orjbeCdwIPAQWBPG7YHuKW1DwJXtatmdgDHji/fSJJWx5BlmfOBzyc5Pv7TVfW3Sb4C3JxkL/A4cEUbfyuwCzgMPAe8b+xVS5JOaclwr6pHgTcu0P+fwM4F+gu4eizVSZKWxU+oSlKH1v1dIXu8m5skrZRn7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHRoc7knOSnJvki+07VcnuTvJI0luSnJ2639Z2z7c9m+bTOmSpMWczpn7B4GH521fC1xXVduBZ4C9rX8v8ExVvRa4ro2TJK2iQeGeZAvwLuBP23aAtwOfa0MOAJe19u62Tdu/s42XJK2SoWfufwT8GvC9tn0u8GxVPd+2Z4HNrb0ZeAKg7T/Wxr9Akn1JZpLMzM3NLbN8SdJClgz3JD8NHK2qe+Z3LzC0Buz7/46q/VU1XVXTU1NTg4qVJA2zYcCYtwDvTrILeDnwI4zO5Dcm2dDOzrcAR9r4WWArMJtkA/BK4OmxVy5JWtSSZ+5V9RtVtaWqtgFXArdX1c8CdwCXt2F7gFta+2Dbpu2/vapOOnOXJE3OSq5z/3XgQ0kOM1pTv6H13wCc2/o/BFyzshIlSadryLLM91XVncCdrf0ocPECY74NXDGG2iRJy+QnVCWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6tCS4Z7k5Um+nOSrSR5K8jut/9VJ7k7ySJKbkpzd+l/Wtg+3/dsmOwVJ0omGnLl/B3h7Vb0ReBNwSZIdwLXAdVW1HXgG2NvG7wWeqarXAte1cZKkVbRkuNfIt9rmS9ujgLcDn2v9B4DLWnt326bt35kkY6tYkrSkQWvuSc5Kch9wFLgN+AbwbFU934bMAptbezPwBEDbfww4d4HvuS/JTJKZubm5lc1CkvQCg8K9qv63qt4EbAEuBl6/0LD2vNBZep3UUbW/qqaranpqampovZKkAU7rapmqeha4E9gBbEyyoe3aAhxp7VlgK0Db/0rg6XEUK0kaZsjVMlNJNrb2DwDvAB4G7gAub8P2ALe09sG2Tdt/e1WddOYuSZqcDUsP4QLgQJKzGP0yuLmqvpDka8Bnk/w+cC9wQxt/A/CpJIcZnbFfOYG6JUmnsGS4V9X9wJsX6H+U0fr7if3fBq4YS3WSpGXxE6qS1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHVoyXBPsjXJHUkeTvJQkg+2/lcluS3JI+35nNafJNcnOZzk/iQXTXoSkqQXGnLm/jzwq1X1emAHcHWSC4FrgENVtR041LYBLgW2t8c+4ONjr1qSdEpLhntVPVlV/9La/w08DGwGdgMH2rADwGWtvRu4sUbuAjYmuWDslUuSFnVaa+5JtgFvBu4Gzq+qJ2H0CwA4rw3bDDwx78tmW9+J32tfkpkkM3Nzc6dfuSRpUYPDPckPA38B/EpV/dephi7QVyd1VO2vqumqmp6amhpahiRpgEHhnuSljIL9z6rqL1v3U8eXW9rz0dY/C2yd9+VbgCPjKVeSNMSQq2UC3AA8XFUfnbfrILCntfcAt8zrv6pdNbMDOHZ8+UaStDo2DBjzFuDngAeS3Nf6fhP4CHBzkr3A48AVbd+twC7gMPAc8L6xVixJWtKS4V5V/8TC6+gAOxcYX8DVK6xLkrQCfkJVkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOLRnuST6R5GiSB+f1vSrJbUkeac/ntP4kuT7J4ST3J7loksVLkhY25Mz9k8AlJ/RdAxyqqu3AobYNcCmwvT32AR8fT5mSpNOxZLhX1ReBp0/o3g0caO0DwGXz+m+skbuAjUkuGFexkqRhlrvmfn5VPQnQns9r/ZuBJ+aNm219J0myL8lMkpm5ubllliFJWsi431DNAn210MCq2l9V01U1PTU1NeYyJOnMttxwf+r4ckt7Ptr6Z4Gt88ZtAY4svzxJ0nIsN9wPAntaew9wy7z+q9pVMzuAY8eXbyRJq2fDUgOSfAZ4K7ApySzwW8BHgJuT7AUeB65ow28FdgGHgeeA902gZknSEpYM96p6zyK7di4wtoCrV1qUJGll/ISqJHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdmki4J7kkydeTHE5yzSSOIUla3NjDPclZwMeAS4ELgfckuXDcx5EkLW4SZ+4XA4er6tGq+h/gs8DuCRxHkrSIDRP4npuBJ+ZtzwI/fuKgJPuAfW3zW0m+vszjbQK+ucyvXZFcuxZHBdZwzmvIOZ8Zzrg559oVzfnHFtsxiXDPAn11UkfVfmD/ig+WzFTV9Eq/z3rinM8MzvnMMKk5T2JZZhbYOm97C3BkAseRJC1iEuH+FWB7klcnORu4Ejg4geNIkhYx9mWZqno+yS8BfwecBXyiqh4a93HmWfHSzjrknM8MzvnMMJE5p+qk5XBJ0jrnJ1QlqUOGuyR1aN2E+1K3NEjysiQ3tf13J9m2+lWO14A5fyjJ15Lcn+RQkkWveV0vht66IsnlSSrJur9sbsick/xMe60fSvLp1a5x3Ab8bP9okjuS3Nt+vnetRZ3jkuQTSY4meXCR/Ulyffv3uD/JRSs+aFW96B+M3pj9BvAa4Gzgq8CFJ4z5ReCPW/tK4Ka1rnsV5vw24Adb+wNnwpzbuFcAXwTuAqbXuu5VeJ23A/cC57Tt89a67lWY837gA619IfDYWte9wjn/JHAR8OAi+3cBf8Poc0I7gLtXesz1cuY+5JYGu4EDrf05YGeShT5QtV4sOeequqOqnmubdzH6TMF6NvTWFb8H/AHw7dUsbkKGzPkXgI9V1TMAVXV0lWsctyFzLuBHWvuVrPPPylTVF4GnTzFkN3BjjdwFbExywUqOuV7CfaFbGmxebExVPQ8cA85dleomY8ic59vL6Df/erbknJO8GdhaVV9YzcImaMjr/DrgdUm+lOSuJJesWnWTMWTOvw28N8kscCvwy6tT2po53f/vS5rE7QcmYcgtDQbd9mAdGTyfJO8FpoGfmmhFk3fKOSd5CXAd8POrVdAqGPI6b2C0NPNWRn+d/WOSN1TVsxOubVKGzPk9wCer6g+T/ATwqTbn702+vDUx9vxaL2fuQ25p8P0xSTYw+lPuVH8GvdgNuo1DkncAHwbeXVXfWaXaJmWpOb8CeANwZ5LHGK1NHlznb6oO/dm+paq+W1X/DnydUdivV0PmvBe4GaCq/hl4OaObivVq7LdtWS/hPuSWBgeBPa19OXB7tXcq1qkl59yWKP6EUbCv93VYWGLOVXWsqjZV1baq2sbofYZ3V9XM2pQ7FkN+tv+K0ZvnJNnEaJnm0VWtcryGzPlxYCdAktczCve5Va1ydR0ErmpXzewAjlXVkyv6jmv9LvJpvNu8C/g3Ru+yf7j1/S6j/9wwevH/HDgMfBl4zVrXvApz/gfgKeC+9ji41jVPes4njL2TdX61zMDXOcBHga8BDwBXrnXNqzDnC4EvMbqS5j7gnWtd8wrn+xngSeC7jM7S9wLvB94/7zX+WPv3eGAcP9fefkCSOrRelmUkSafBcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkd+j+LtQ7VBICcpAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "plt.hist(r);" + "plt.hist(data);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Gamma Distribution" + "### Gamma Distribution" ] }, { @@ -271,9 +263,7 @@ { "cell_type": "code", "execution_count": 11, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from scipy.stats import gamma" @@ -282,12 +272,10 @@ { "cell_type": "code", "execution_count": 12, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "dat = gamma.rvs(a=1, size=100000)" + "data = gamma.rvs(a=1, size=100000)" ] }, { @@ -297,24 +285,26 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAD7hJREFUeJzt3X+s3fVdx/Hna3TT/XABbCHYshRN\nM4fEMdZAlcTM4aDAsmLiEoiOZpLULKCbWeKK/oFhbumiTkecGNwqJSJIGAvN6NY1dcliMibdRvgx\nNtuwBu5aaWcZQ0mc6Ns/zrfJCZ/T3nPPbfs9x/t8JCfnnPf5fL/nfW7a+7qf76+TqkKSpGGv6rsB\nSdL0MRwkSQ3DQZLUMBwkSQ3DQZLUMBwkSQ3DQZLUMBwkSQ3DQZLUWNZ3A5Navnx5rV69uu82JGlm\nLF++nJ07d+6sqvXzjZ3ZcFi9ejV79uzpuw1JmilJlo8zzs1KkqSG4SBJahgOkqSG4SBJahgOkqSG\n4SBJahgOkqSG4SBJahgOkqTGzJ4hvRirNz80sr5/y9WnuBNJmk7OHCRJDcNBktQwHCRJDcNBktQw\nHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJ\nDcNBktQwHCRJDcNBktQwHCRJjXnDIcm5Sb6S5KkkTyb5YFc/M8muJHu7+zO6epLclmRfkseSXDS0\nro3d+L1JNg7V357k8W6Z25LkZHxYSdJ4xpk5vAx8uKreAqwDbkxyPrAZ2F1Va4Dd3XOAK4E13W0T\ncDsMwgS4BbgEuBi45WigdGM2DS23fvEfTZI0qXnDoaoOVtU3u8cvAk8BK4ENwLZu2Dbgmu7xBuCu\nGngYOD3JOcAVwK6qOlJVzwO7gPXda2+sqq9VVQF3Da1LktSDBe1zSLIaeBvwdeDsqjoIgwABzuqG\nrQSeHVpsrqsdrz43oi5J6snY4ZDkDcDngA9V1Y+ON3RErSaoj+phU5I9SfYcPnx4vpYlSRMaKxyS\nvJpBMNxdVQ905ee6TUJ094e6+hxw7tDiq4AD89RXjag3quqOqlpbVWtXrFgxTuuSpAmMc7RSgM8C\nT1XVJ4de2g4cPeJoI/DgUP367qildcAL3WanncDlSc7odkRfDuzsXnsxybruva4fWpckqQfLxhhz\nKfA+4PEkj3a1PwS2APcluQF4Bnhv99oO4CpgH/AS8H6AqjqS5KPAI924W6vqSPf4A8CdwGuBL3Y3\nSVJP5g2HqvpnRu8XALhsxPgCbjzGurYCW0fU9wAXzNeLJOnU8AxpSVLDcJAkNQwHSVLDcJAkNQwH\nSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNcb5Jrgl\nY/Xmh0bW92+5+hR3Ikn9cuYgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoY\nDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkxrzhkGRrkkNJ\nnhiq/XGS7yd5tLtdNfTazUn2JflukiuG6uu72r4km4fq5yX5epK9Sf4xyWtO5AeUJC3cODOHO4H1\nI+p/UVUXdrcdAEnOB64FfqFb5q+TnJbkNODTwJXA+cB13ViAT3TrWgM8D9ywmA8kSVq8ecOhqr4K\nHBlzfRuAe6vqv6rqe8A+4OLutq+qnq6qHwP3AhuSBHgncH+3/DbgmgV+BknSCbaYfQ43JXms2+x0\nRldbCTw7NGauqx2r/tPAD6vq5VfUR0qyKcmeJHsOHz68iNYlScczaTjcDvwccCFwEPjzrp4RY2uC\n+khVdUdVra2qtStWrFhYx5KksS2bZKGqeu7o4yR/C3yhezoHnDs0dBVwoHs8qv4D4PQky7rZw/B4\nSVJPJpo5JDln6OmvA0ePZNoOXJvkJ5KcB6wB/gV4BFjTHZn0GgY7rbdXVQFfAX6jW34j8OAkPUmS\nTpx5Zw5J7gHeASxPMgfcArwjyYUMNgHtB34HoKqeTHIf8G3gZeDGqvqfbj03ATuB04CtVfVk9xYf\nAe5N8ifAt4DPnrBPJ0mayLzhUFXXjSgf8xd4VX0M+NiI+g5gx4j60wyOZpIkTQnPkJYkNQwHSVLD\ncJAkNQwHSVLDcJAkNQwHSVLDcJAkNSa6fMZSs3rzQyPr+7dcfYo7kaRTw5mDJKlhOEiSGoaDJKlh\nOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiS\nGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGsv6bmCWrd780Mj6\n/i1Xn+JOJOnEcuYgSWrMGw5JtiY5lOSJodqZSXYl2dvdn9HVk+S2JPuSPJbkoqFlNnbj9ybZOFR/\ne5LHu2VuS5IT/SElSQszzszhTmD9K2qbgd1VtQbY3T0HuBJY0902AbfDIEyAW4BLgIuBW44GSjdm\n09Byr3wvSdIpNm84VNVXgSOvKG8AtnWPtwHXDNXvqoGHgdOTnANcAeyqqiNV9TywC1jfvfbGqvpa\nVRVw19C6JEk9mXSfw9lVdRCguz+rq68Enh0aN9fVjlefG1EfKcmmJHuS7Dl8+PCErUuS5nOid0iP\n2l9QE9RHqqo7qmptVa1dsWLFhC1KkuYzaTg8120Sors/1NXngHOHxq0CDsxTXzWiLknq0aThsB04\nesTRRuDBofr13VFL64AXus1OO4HLk5zR7Yi+HNjZvfZiknXdUUrXD61LktSTeU+CS3IP8A5geZI5\nBkcdbQHuS3ID8Azw3m74DuAqYB/wEvB+gKo6kuSjwCPduFur6uhO7g8wOCLqtcAXu5skqUfzhkNV\nXXeMly4bMbaAG4+xnq3A1hH1PcAF8/UhSTp1PENaktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNB\nktQwHCRJDcNBktQwHCRJDcNBktSY99pKWrjVmx8aWd+/5epT3IkkTcaZgySpYThIkhqGgySpYThI\nkhqGgySpYThIkhqGgySpYThIkhqGgySpYThIkhqGgySpYThIkhqGgySpYThIkhqGgySpYThIkhp+\n2c8p5JcASZoVzhwkSQ3DQZLUMBwkSQ3DQZLUMBwkSQ3DQZLUMBwkSY1FhUOS/UkeT/Jokj1d7cwk\nu5Ls7e7P6OpJcluSfUkeS3LR0Ho2duP3Jtm4uI8kSVqsEzFz+NWqurCq1nbPNwO7q2oNsLt7DnAl\nsKa7bQJuh0GYALcAlwAXA7ccDRRJUj9OxmalDcC27vE24Jqh+l018DBwepJzgCuAXVV1pKqeB3YB\n609CX5KkMS02HAr4cpJvJNnU1c6uqoMA3f1ZXX0l8OzQsnNd7Vh1SVJPFnttpUur6kCSs4BdSb5z\nnLEZUavj1NsVDAJoE8Cb3vSmhfYqSRrTomYOVXWguz8EfJ7BPoPnus1FdPeHuuFzwLlDi68CDhyn\nPur97qiqtVW1dsWKFYtpXZJ0HBPPHJK8HnhVVb3YPb4cuBXYDmwEtnT3D3aLbAduSnIvg53PL1TV\nwSQ7gY8P7YS+HLh50r5m0bGu1gpesVVSPxazWels4PNJjq7nH6rqS0keAe5LcgPwDPDebvwO4Cpg\nH/AS8H6AqjqS5KPAI924W6vqyCL6kiQt0sThUFVPA28dUf934LIR9QJuPMa6tgJbJ+1FknRieYa0\nJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGou9fIZOsmOdIOfJcZJOJmcOkqSG4SBJahgOkqSG4SBJ\nahgOkqSG4SBJahgOkqSG5znMKM9/kHQyOXOQJDUMB0lSw3CQJDUMB0lSw3CQJDU8Wun/GY9iknQi\nOHOQJDUMB0lSw3CQJDUMB0lSwx3SS4Q7qiUthDMHSVLDcJAkNdystMS5uUnSKM4cJEkNw0GS1HCz\nkkZyc5O0tDlzkCQ1nDloQZxRSEuDMwdJUsOZg06IY80ojsWZhjTdpiYckqwHPgWcBnymqrb03JJO\nIjdPSdNtKsIhyWnAp4F3AXPAI0m2V9W3++1Mp5qhIU2HqQgH4GJgX1U9DZDkXmADYDgIOP5mK4ND\nOvGmJRxWAs8OPZ8DLumpF82Yhe7vmDaGm6bRtIRDRtSqGZRsAjZ1T/8jyXcnfL/lwA8mXLZvs9r7\nrPYNJ7n3fOJkrdmfeU+mufex+5qWcJgDzh16vgo48MpBVXUHcMdi3yzJnqpau9j19GFWe5/VvmF2\ne5/VvsHep8G0nOfwCLAmyXlJXgNcC2zvuSdJWrKmYuZQVS8nuQnYyeBQ1q1V9WTPbUnSkjUV4QBQ\nVTuAHafo7Ra9aapHs9r7rPYNs9v7rPYN9t67VDX7fSVJS9y07HOQJE2RJRUOSdYn+W6SfUk2993P\nuJKcm+QrSZ5K8mSSD/bd00IkOS3Jt5J8oe9eFiLJ6UnuT/Kd7mf/S333NK4kv9/9W3kiyT1JfrLv\nno4lydYkh5I8MVQ7M8muJHu7+zP67HGUY/T9p92/l8eSfD7J6X32uBhLJhyGLtFxJXA+cF2S8/vt\namwvAx+uqrcA64AbZ6h3gA8CT/XdxAQ+BXypqn4eeCsz8hmSrAR+D1hbVRcwOMjj2n67Oq47gfWv\nqG0GdlfVGmB393za3Enb9y7ggqr6ReBfgZtPdVMnypIJB4Yu0VFVPwaOXqJj6lXVwar6Zvf4RQa/\npFb229V4kqwCrgY+03cvC5HkjcCvAJ8FqKofV9UP++1qQZYBr02yDHgdI84bmhZV9VXgyCvKG4Bt\n3eNtwDWntKkxjOq7qr5cVS93Tx9mcM7WTFpK4TDqEh0z8Qt2WJLVwNuAr/fbydj+EvgD4H/7bmSB\nfhY4DPxdt0nsM0le33dT46iq7wN/BjwDHAReqKov99vVgp1dVQdh8McRcFbP/Uzit4Ev9t3EpJZS\nOIx1iY5pluQNwOeAD1XVj/ruZz5J3g0cqqpv9N3LBJYBFwG3V9XbgP9kOjdtNLrt8xuA84CfAV6f\n5Lf67WppSfJHDDYH3913L5NaSuEw1iU6plWSVzMIhrur6oG++xnTpcB7kuxnsBnvnUn+vt+WxjYH\nzFXV0Rna/QzCYhb8GvC9qjpcVf8NPAD8cs89LdRzSc4B6O4P9dzP2JJsBN4N/GbN8LkCSykcZvYS\nHUnCYNv3U1X1yb77GVdV3VxVq6pqNYOf9z9V1Uz8BVtV/wY8m+TNXekyZucS8s8A65K8rvu3cxkz\nsjN9yHZgY/d4I/Bgj72MrfvSso8A76mql/ruZzGWTDh0O4mOXqLjKeC+GbpEx6XA+xj85f1od7uq\n76aWgN8F7k7yGHAh8PGe+xlLN9u5H/gm8DiD/+dTe9ZuknuArwFvTjKX5AZgC/CuJHsZfAnY1H0z\n5DH6/ivgp4Bd3f/Tv+m1yUXwDGlJUmPJzBwkSeMzHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQw\nHCRJjf8D0ysqP7k1suUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD4CAYAAAAO9oqkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAPCUlEQVR4nO3df6zd9V3H8edLuul+hiKFYNt40TRzSBxjDVRJzByuFFhWTCSB6LiZJDULU2aWuKJ/1GzOdFGnI05M3TpKRJCwEZoBKzd1yWIyZi8b4ce62YZVuGulF8sYSiKib/84n5scy7m9557be889u89HcnLOeZ/P93vep2nvq5/P93u+N1WFJGll+7FhNyBJGj7DQJJkGEiSDANJEoaBJAlYNewGBnX22WfX2NjYsNuQpJHy6KOPPl9Va06uj2wYjI2NMTk5Oew2JGmkJPnXXnWXiSRJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CSxAh/A3khxrY/0LN+ZOfVS9yJJC0PzgwkSYaBJMkwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRJ9hEGS9Um+muRgkqeS3NzqZyWZSHKo3a9u9SS5NcnhJI8nubhrX+Nt/KEk4131dyV5om1za5IsxoeVJPXWz8zgVeCjVfV2YBNwU5ILgO3A/qraAOxvzwGuBDa02zbgNuiEB7ADuBS4BNgxEyBtzLau7bYs/KNJkvo1ZxhU1bGq+mZ7/BJwEFgLbAX2tGF7gGva463AHdXxCHBmkvOAK4CJqjpRVS8AE8CW9tpbq+rrVVXAHV37kiQtgXkdM0gyBrwT+AZwblUdg05gAOe0YWuBZ7s2m2q1U9WnetR7vf+2JJNJJqenp+fTuiTpFPoOgyRvBr4IfKSqfniqoT1qNUD9tcWqXVW1sao2rlmzZq6WJUl96isMkryOThDcWVVfauXn2hIP7f54q08B67s2XwccnaO+rkddkrRE+jmbKMDngYNV9emul/YCM2cEjQP3d9VvaGcVbQJebMtI+4DNSVa3A8ebgX3ttZeSbGrvdUPXviRJS2BVH2MuAz4APJHksVb7A2AncE+SG4FngGvbaw8CVwGHgZeBDwJU1YkknwAOtHEfr6oT7fGHgNuBNwAPtZskaYnMGQZV9U/0XtcHuLzH+AJummVfu4HdPeqTwIVz9SJJWhx+A1mSZBhIkgwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEmiv99nsGKMbX+gZ/3IzquXuBNJWlrODCRJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEn0EQZJdic5nuTJrtofJfl+ksfa7aqu125JcjjJd5Nc0VXf0mqHk2zvqp+f5BtJDiX5hySvP50fUJI0t35mBrcDW3rU/6KqLmq3BwGSXABcB/x82+avk5yR5Azgs8CVwAXA9W0swKfavjYALwA3LuQDSZLmb84wqKqvASf63N9W4O6q+q+q+h5wGLik3Q5X1dNV9QpwN7A1SYD3APe27fcA18zzM0iSFmghxww+nOTxtoy0utXWAs92jZlqtdnqPwn8oKpePaneU5JtSSaTTE5PTy+gdUlSt0HD4DbgZ4GLgGPAn7d6eoytAeo9VdWuqtpYVRvXrFkzv44lSbNaNchGVfXczOMkfwt8uT2dAtZ3DV0HHG2Pe9WfB85MsqrNDrrHS5KWyEAzgyTndT39NWDmTKO9wHVJfjzJ+cAG4J+BA8CGdubQ6+kcZN5bVQV8Ffj1tv04cP8gPUmSBjfnzCDJXcC7gbOTTAE7gHcnuYjOks4R4LcBquqpJPcA3wZeBW6qqv9p+/kwsA84A9hdVU+1t/gYcHeSPwa+BXz+tH06SVJf5gyDqrq+R3nWH9hV9Ungkz3qDwIP9qg/TedsI0nSkPgNZEmSYSBJMgwkSRgGkiQMA0kShoEkiQG/gbzSjG1/oGf9yM6rl7gTSVoczgwkSYaBJMkwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgSQJWDbuBUTa2/YGe9SM7r17iTiRpYZwZSJIMA0lSH2GQZHeS40me7KqdlWQiyaF2v7rVk+TWJIeTPJ7k4q5txtv4Q0nGu+rvSvJE2+bWJDndH1KSdGr9zAxuB7acVNsO7K+qDcD+9hzgSmBDu20DboNOeAA7gEuBS4AdMwHSxmzr2u7k95IkLbI5w6CqvgacOKm8FdjTHu8Brumq31EdjwBnJjkPuAKYqKoTVfUCMAFsaa+9taq+XlUF3NG1L0nSEhn0mMG5VXUMoN2f0+prgWe7xk212qnqUz3qPSXZlmQyyeT09PSArUuSTna6DyD3Wu+vAeo9VdWuqtpYVRvXrFkzYIuSpJMNGgbPtSUe2v3xVp8C1neNWwccnaO+rkddkrSEBg2DvcDMGUHjwP1d9RvaWUWbgBfbMtI+YHOS1e3A8WZgX3vtpSSb2llEN3TtS5K0ROb8BnKSu4B3A2cnmaJzVtBO4J4kNwLPANe24Q8CVwGHgZeBDwJU1YkknwAOtHEfr6qZg9IfonPG0huAh9pNkrSE5gyDqrp+lpcu7zG2gJtm2c9uYHeP+iRw4Vx9SJIWj99AliQZBpIkw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEmijwvVaf7Gtj/Qs35k59VL3Ikk9ceZgSTJMJAkGQaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAk4S+3WVL+0htJy5UzA0mSYSBJMgwkSRgGkiQMA0kShoEkiQWGQZIjSZ5I8liSyVY7K8lEkkPtfnWrJ8mtSQ4neTzJxV37GW/jDyUZX9hHkiTN1+mYGfxKVV1UVRvb8+3A/qraAOxvzwGuBDa02zbgNuiEB7ADuBS4BNgxEyCSpKWxGMtEW4E97fEe4Jqu+h3V8QhwZpLzgCuAiao6UVUvABPAlkXoS5I0i4WGQQEPJ3k0ybZWO7eqjgG0+3NafS3wbNe2U602W/01kmxLMplkcnp6eoGtS5JmLPRyFJdV1dEk5wATSb5zirHpUatT1F9brNoF7ALYuHFjzzGjaLbLVICXqpC0NBY0M6iqo+3+OHAfnTX/59ryD+3+eBs+Bazv2nwdcPQUdUnSEhk4DJK8KclbZh4Dm4Engb3AzBlB48D97fFe4IZ2VtEm4MW2jLQP2JxkdTtwvLnVJElLZCHLROcC9yWZ2c/fV9VXkhwA7klyI/AMcG0b/yBwFXAYeBn4IEBVnUjyCeBAG/fxqjqxgL4kSfM0cBhU1dPAO3rU/x24vEe9gJtm2dduYPegvUiSFsZvIEuSDANJkmEgScIwkCRhGEiSMAwkSSz8chRaZLNdqsLLVEg6nZwZSJIMA0mSYSBJwjCQJGEYSJIwDCRJeGrpyPKUU0mnkzMDSZJhIEkyDCRJGAaSJAwDSRKGgSQJTy39keMpp5IG4cxAkmQYSJIMA0kSHjNYMTyWIOlUnBlIkgwDSZLLRCuey0eSwJmBJAnDQJKEy0SahctH0srizECS5MxA8+OMQfrRZBjotDAkpNHmMpEkyZmBFpczBmk0LJswSLIF+AxwBvC5qto55Ja0iGYLidkYHtLiWhZhkOQM4LPAe4Ep4ECSvVX17eF2puVivuEBBog0H8siDIBLgMNV9TRAkruBrYBhoIENEiCngyGkUbRcwmAt8GzX8yng0pMHJdkGbGtP/yPJdwd8v7OB5wfcdphGtW9YQb3nU4vYyfysmD/zZWQU+v7pXsXlEgbpUavXFKp2AbsW/GbJZFVtXOh+ltqo9g32Pgyj2jeMbu+j2jcsn1NLp4D1Xc/XAUeH1IskrTjLJQwOABuSnJ/k9cB1wN4h9yRJK8ayWCaqqleTfBjYR+fU0t1V9dQivuWCl5qGZFT7BnsfhlHtG0a391Htm1S9ZmlekrTCLJdlIknSEBkGkqSVFQZJtiT5bpLDSbYPu59+JVmf5KtJDiZ5KsnNw+5pPpKckeRbSb487F7mI8mZSe5N8p32Z/+Lw+6pX0l+r/1deTLJXUl+Ytg99ZJkd5LjSZ7sqp2VZCLJoXa/epg9zmaW3v+0/X15PMl9Sc4cZo/zsWLCoOuSF1cCFwDXJ7lguF317VXgo1X1dmATcNMI9Q5wM3Bw2E0M4DPAV6rq54B3MCKfIcla4HeBjVV1IZ2TMq4bblezuh3YclJtO7C/qjYA+9vz5eh2Xtv7BHBhVf0C8C/ALUvd1KBWTBjQdcmLqnoFmLnkxbJXVceq6pvt8Ut0fiitHW5X/UmyDrga+Nywe5mPJG8Ffhn4PEBVvVJVPxhuV/OyCnhDklXAG1mm39upqq8BJ04qbwX2tMd7gGuWtKk+9eq9qh6uqlfb00fofGdqJKykMOh1yYuR+IHaLckY8E7gG8PtpG9/Cfw+8L/DbmSefgaYBr7Qlrg+l+RNw26qH1X1feDPgGeAY8CLVfXwcLual3Or6hh0/iMEnDPkfgb1W8BDw26iXyspDPq65MVyluTNwBeBj1TVD4fdz1ySvA84XlWPDruXAawCLgZuq6p3Av/J8l2u+H/aGvtW4Hzgp4A3JfnN4Xa1siT5QzrLu3cOu5d+raQwGOlLXiR5HZ0guLOqvjTsfvp0GfD+JEfoLMu9J8nfDbelvk0BU1U1MwO7l044jIJfBb5XVdNV9d/Al4BfGnJP8/FckvMA2v3xIfczL0nGgfcBv1Ej9EWulRQGI3vJiyShs3Z9sKo+Pex++lVVt1TVuqoao/Pn/Y9VNRL/Q62qfwOeTfK2Vrqc0bmk+jPApiRvbH93LmdEDn43e4Hx9ngcuH+IvcxL+yVdHwPeX1UvD7uf+VgxYdAO6sxc8uIgcM8iX/LidLoM+ACd/1k/1m5XDbupFeB3gDuTPA5cBPzJkPvpS5vN3At8E3iCzr/zZXmZhCR3AV8H3pZkKsmNwE7gvUkO0fmFV8vytx7O0vtfAW8BJtq/078ZapPz4OUoJEkrZ2YgSZqdYSBJMgwkSYaBJAnDQJKEYSBJwjCQJAH/B44YIEWUWvlYAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "plt.hist(dat, 50);" + "plt.hist(data, 50);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Beta Distribution " + "### Beta Distribution " ] }, { @@ -334,9 +324,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from scipy.stats import beta" @@ -345,12 +333,10 @@ { "cell_type": "code", "execution_count": 15, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "dat = beta.rvs(1, 1, size=1000)" + "data = beta.rvs(1, 1, size=1000)" ] }, { @@ -360,24 +346,26 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADiVJREFUeJzt3W+sZHV9x/H3R/7UttKC3QvZALer\nKTYSE4HcEBoSi6IGaSKY0AYSLY2bXrXSaOoTog9KSx9gUyFpQmzXQNg2ilD/lI2lfyzFUI1gF0FY\n2FCQUots2CUIYppagW8fzEG3673MufP3zm/fr2QyZ86cufP9zcz97G/P+c65qSokSYvvFfMuQJI0\nGQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqRFHzvLJtmzZUtu2bZvlU0rSwrv7\n7rufqqqlYdvNNNC3bdvG7t27Z/mUkrTwkvxnn+3c5SJJjTDQJakRBrokNcJAl6RGGOiS1AgDXZIa\nYaBLUiMMdElqhIEuSY2Y6TdFJWmRbLv879Zc/9hVvzHjSvpxhi5JjTDQJakRQwM9ySuTfCPJt5I8\nkOSPuvWvSXJXkoeT3JTk6OmXK0laT58Z+g+Bt1TVG4HTgPOSnAV8HLimqk4Bvgdsn16ZkqRhhgZ6\nDfygu3lUdyngLcDnuvU7gQunUqEkqZdeXS5JjgDuBn4FuBb4NvBMVT3fbfI4cOI6j10FVgGWl5fH\nrVeS5m6zdr/0OihaVS9U1WnAScCZwOvX2mydx+6oqpWqWllaGvoHNyRJI9pQl0tVPQN8BTgLODbJ\nSzP8k4AnJluaJGkj+nS5LCU5tlv+WeCtwF7gduCibrNLgVumVaQkabg++9C3Aju7/eivAG6uqi8l\neRD4bJI/Ae4BrptinZKkIYYGelXdB5y+xvpHGexPlyRtAn5TVJIaYaBLUiMMdElqhIEuSY0w0CWp\nEQa6JDXCQJekRhjoktQI/6aoNGeb9cx9WjzO0CWpEQa6JDXCQJekRhjoktQIA12SGmGXyxjW605Y\nT8tdC3ZqSPPnDF2SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1YmHaFm2L02bjZ1KbjTN0SWqEgS5J\njRga6ElOTnJ7kr1JHkjyoW79FUm+m+Te7nL+9MuVJK2nzz7054GPVNU3kxwD3J3ky91911TVn02v\nPElSX0MDvar2Afu65eeS7AVOnHZhkqSN2dA+9CTbgNOBu7pVlyW5L8n1SY6bcG2SpA3o3baY5FXA\n54EPV9X3k3wSuBKo7voTwHvXeNwqsAqwvLw8iZolTZHtmIur1ww9yVEMwvzTVfUFgKp6sqpeqKoX\ngU8BZ6712KraUVUrVbWytLQ0qbolSYfo0+US4Dpgb1VdfdD6rQdt9i5gz+TLkyT11WeXy9nAe4D7\nk9zbrfsocEmS0xjscnkMeN9UKpQk9dKny+WrQNa469bJlyNJGpXfFJWkRizMybkkHb4m1XnTegeP\nM3RJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCNsWNRett49J8+AMXZIaYaBLUiMMdElqhIEuSY0w\n0CWpEQa6JDXCtkU1adpn59PmYPvr/+cMXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDWi2bbFUdqZ\npt0CNa8WK1u7fmIWr8Vm+xz5/h8+nKFLUiMMdElqxNBAT3JyktuT7E3yQJIPdetfneTLSR7uro+b\nfrmSpPX0maE/D3ykql4PnAV8MMmpwOXAbVV1CnBbd1uSNCdDA72q9lXVN7vl54C9wInABcDObrOd\nwIXTKlKSNNyGulySbANOB+4CTqiqfTAI/STHr/OYVWAVYHl5eZxaNWF2P2xunhhsdlp5rXsfFE3y\nKuDzwIer6vt9H1dVO6pqpapWlpaWRqlRktRDr0BPchSDMP90VX2hW/1kkq3d/VuB/dMpUZLUR58u\nlwDXAXur6uqD7toFXNotXwrcMvnyJEl99dmHfjbwHuD+JPd26z4KXAXcnGQ78B3gN6dToiSpj6GB\nXlVfBbLO3edOthxJ0qj8pqgkNaLZk3OtZ5T2pFZamuZho6+drZTS6JyhS1IjDHRJaoSBLkmNMNAl\nqREGuiQ1wkCXpEYsfNuiLYXS5rXR30/bU8fjDF2SGmGgS1IjDHRJaoSBLkmNMNAlqREL3+WiyXu5\nzoRWuxDslhqdr93m4QxdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcK2xU3MdrDhfI1+YtqvxSK9\n1otU6yQ5Q5ekRhjoktSIoYGe5Pok+5PsOWjdFUm+m+Te7nL+dMuUJA3TZ4Z+A3DeGuuvqarTusut\nky1LkrRRQwO9qu4Anp5BLZKkMYyzD/2yJPd1u2SOm1hFkqSRjNq2+EngSqC6608A711rwySrwCrA\n8vLyiE8nadI2Y2vfZqxpkYw0Q6+qJ6vqhap6EfgUcObLbLujqlaqamVpaWnUOiVJQ4wU6Em2HnTz\nXcCe9baVJM3G0F0uSW4EzgG2JHkc+EPgnCSnMdjl8hjwvinWKEnqYWigV9Ula6y+bgq1SJLG4DdF\nJakRnpxrE/DIvtSGef89XmfoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqRG2LWoh2NopDecMXZIa\nYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCtkVtiO2Do/O107Q5Q5ekRhjoktQIA12SGmGgS1IjDHRJ\naoSBLkmNMNAlqREGuiQ1YmigJ7k+yf4kew5a9+okX07ycHd93HTLlCQN02eGfgNw3iHrLgduq6pT\ngNu625KkORoa6FV1B/D0IasvAHZ2yzuBCydclyRpg0bdh35CVe0D6K6Pn1xJkqRRTP2gaJLVJLuT\n7D5w4MC0n06SDlujBvqTSbYCdNf719uwqnZU1UpVrSwtLY34dJKkYUYN9F3Apd3ypcAtkylHkjSq\nPm2LNwJfB341yeNJtgNXAW9L8jDwtu62JGmOhv6Bi6q6ZJ27zp1wLZKkMfhNUUlqhIEuSY0w0CWp\nEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhph\noEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqxJHjPDjJY8BzwAvA\n81W1MomiJEkbN1agd95cVU9N4OdIksbgLhdJasS4gV7APyW5O8nqWhskWU2yO8nuAwcOjPl0kqT1\njBvoZ1fVGcA7gA8medOhG1TVjqpaqaqVpaWlMZ9OkrSesQK9qp7orvcDXwTOnERRkqSNGznQk/x8\nkmNeWgbeDuyZVGGSpI0Zp8vlBOCLSV76OZ+pqn+YSFWSpA0bOdCr6lHgjROsRZI0BtsWJakRBrok\nNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1Ij\nDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjRgr0JOcl+ShJI8k\nuXxSRUmSNm7kQE9yBHAt8A7gVOCSJKdOqjBJ0saMM0M/E3ikqh6tqv8FPgtcMJmyJEkbNU6gnwj8\n10G3H+/WSZLm4MgxHps11tVPbZSsAqvdzR8keWjE59sCPDXiYxeVYz48OObDQD4+1ph/uc9G4wT6\n48DJB90+CXji0I2qagewY4znASDJ7qpaGffnLBLHfHhwzIeHWYx5nF0u/wackuQ1SY4GLgZ2TaYs\nSdJGjTxDr6rnk1wG/CNwBHB9VT0wscokSRsyzi4XqupW4NYJ1TLM2LttFpBjPjw45sPD1Mecqp86\njilJWkB+9V+SGrHpAn3Y6QSS/EySm7r770qybfZVTlaPMf9BkgeT3JfktiS9Wpg2s76njUhyUZJK\nsvAdEX3GnOS3uvf6gSSfmXWNk9bjs72c5PYk93Sf7/PnUeekJLk+yf4ke9a5P0n+vHs97ktyxkQL\nqKpNc2FwcPXbwGuBo4FvAacess3vAX/RLV8M3DTvumcw5jcDP9ctf+BwGHO33THAHcCdwMq8657B\n+3wKcA9wXHf7+HnXPYMx7wA+0C2fCjw277rHHPObgDOAPevcfz7w9wy+x3MWcNckn3+zzdD7nE7g\nAmBnt/w54Nwka33JaVEMHXNV3V5V/93dvJNBz/8i63vaiCuBPwX+Z5bFTUmfMf8ucG1VfQ+gqvbP\nuMZJ6zPmAn6hW/5F1vguyyKpqjuAp19mkwuAv6qBO4Fjk2yd1PNvtkDvczqBH29TVc8DzwK/NJPq\npmOjp1DYzuBf+EU2dMxJTgdOrqovzbKwKerzPr8OeF2SryW5M8l5M6tuOvqM+Qrg3UkeZ9Ax9/uz\nKW1upnrKlLHaFqegz+kEep1yYIH0Hk+SdwMrwK9PtaLpe9kxJ3kFcA3wO7MqaAb6vM9HMtjtcg6D\n/4X9a5I3VNUzU65tWvqM+RLghqr6RJJfA/66G/OL0y9vLqaaX5ttht7ndAI/3ibJkQz+m/Zy/8XZ\n7HqdQiHJW4GPAe+sqh/OqLZpGTbmY4A3AF9J8hiDfY27FvzAaN/P9i1V9aOq+g/gIQYBv6j6jHk7\ncDNAVX0deCWD87y0qtfv+6g2W6D3OZ3ALuDSbvki4F+qO9qwoIaOudv98JcMwnzR96vCkDFX1bNV\ntaWqtlXVNgbHDd5ZVbvnU+5E9Pls/y2DA+Ak2cJgF8yjM61ysvqM+TvAuQBJXs8g0A/MtMrZ2gX8\ndtftchbwbFXtm9hPn/dR4XWOAv87g6PjH+vW/TGDX2gYvOF/AzwCfAN47bxrnsGY/xl4Eri3u+ya\nd83THvMh236FBe9y6fk+B7gaeBC4H7h43jXPYMynAl9j0AFzL/D2edc85nhvBPYBP2IwG98OvB94\n/0Hv8bXd63H/pD/XflNUkhqx2Xa5SJJGZKBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktSI\n/wMTueZxVYyFVwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD5CAYAAAA+0W6bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAOH0lEQVR4nO3db6xkdX3H8fdHQG0rLdC9kA2wXW2wYWNSIDeEhsSiqEGaCCa0gUTcppuuWmk0+oToA0ntA9oUSJoQ7BoI20ZBilo2FttSCqEYoV1gCwsbCtKtXdmwSxCENFWBbx/MWbNe7t05e+fPnd/e9yuZzJkzZ2a+v3vu/fDbM99zSFUhSWrPm1a6AEnS8hjgktQoA1ySGmWAS1KjDHBJapQBLkmNOnrYBkneCtwHvKXb/vaq+kKStwO3AicADwOXV9VPDvVea9asqfXr149ctCStJg899NDzVTW3cP3QAAd+DLy3ql5Jcgxwf5JvA58BrquqW5N8CdgE3HCoN1q/fj3bt29fRvmStHol+e/F1g89hFIDr3QPj+luBbwXuL1bvxW4eAx1SpJ66nUMPMlRSXYA+4C7gO8BL1bVq90me4CTJ1OiJGkxvQK8ql6rqjOAU4CzgdMX22yx1ybZnGR7ku379+9ffqWSpJ9zWF0oVfUicC9wDnBckgPH0E8Bnl3iNVuqar6q5ufm3nAMXpK0TEMDPMlckuO65V8A3gfsAu4BLuk22wjcMakiJUlv1KcLZS2wNclRDAL/tqr6VpIngFuT/CnwCHDjBOuUJC0wNMCr6lHgzEXWP8PgeLgkaQV4JqYkNcoAl6RG9TkGPhPWX/n3i67fffXvTLkSSZoNzsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSo5ppI5RmzaRbW4/k1tkjeWzT5AxckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNco2QmmVspVvuFn/GTkDl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY2yjVDSzJj1tr1Z4wxckhplgEtSowxwSWrU0ABPcmqSe5LsSvJ4kk91669K8oMkO7rbhZMvV5J0QJ8vMV8FPltVDyc5FngoyV3dc9dV1V9MrjxJ0lKGBnhV7QX2dssvJ9kFnDzpwiRJh3ZYbYRJ1gNnAg8C5wJXJPkosJ3BLP2Hi7xmM7AZYN26dSOWq2lYqpULbOeSZknvLzGTvA34OvDpqvoRcAPw68AZDGbo1yz2uqraUlXzVTU/Nzc3hpIlSdAzwJMcwyC8v1JV3wCoqueq6rWqeh34MnD25MqUJC3UpwslwI3Arqq69qD1aw/a7MPAzvGXJ0laSp9j4OcClwOPJdnRrfsccFmSM4ACdgMfm0iFkqRF9elCuR/IIk/dOf5yJEl9eSamJDXKqxFOgFdUW93c/7Nr0vtm2i24zsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUfeCaKfZQaxwO1Y99JHEGLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplG6HEkd2+uFpa6lYjZ+CS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUc23ER5u+9e0/6/RfT77SGhV08qzXXD1cQYuSY0ywCWpUQa4JDVqaIAnOTXJPUl2JXk8yae69SckuSvJU9398ZMvV5J0QJ8Z+KvAZ6vqdOAc4JNJNgBXAndX1WnA3d1jSdKUDA3wqtpbVQ93yy8Du4CTgYuArd1mW4GLJ1WkJOmNDquNMMl64EzgQeCkqtoLg5BPcuISr9kMbAZYt27dKLVOnG1+kvqYlZbN3l9iJnkb8HXg01X1o76vq6otVTVfVfNzc3PLqVGStIheAZ7kGAbh/ZWq+ka3+rkka7vn1wL7JlOiJGkxfbpQAtwI7Kqqaw96ahuwsVveCNwx/vIkSUvpcwz8XOBy4LEkO7p1nwOuBm5Lsgn4PvC7kylRkrSYoQFeVfcDWeLp88dbjiSpL8/ElKRGNX81wiPZuNoax9keebjtU623YM5Ku9gsWM7PovX9P+ucgUtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RG2UY4AlvMhpu1VshZ3GezWFMrVvvPzhm4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJatQR20bYUnvR4dZ6JLfUjcssjm0Wa1LbnIFLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktSoI7YPfJzs351d7pvVwf28OGfgktQoA1ySGjU0wJPclGRfkp0HrbsqyQ+S7OhuF062TEnSQn1m4DcDFyyy/rqqOqO73TnesiRJwwwN8Kq6D3hhCrVIkg7DKMfAr0jyaHeI5fixVSRJ6mW5bYQ3AF8Eqru/BviDxTZMshnYDLBu3bplfpykA1pqqWup1hYtawZeVc9V1WtV9TrwZeDsQ2y7parmq2p+bm5uuXVKkhZYVoAnWXvQww8DO5faVpI0GUMPoSS5BTgPWJNkD/AF4LwkZzA4hLIb+NgEa5QkLWJogFfVZYusvnECtUiSDoNnYkpSowxwSWqUVyPUirC9TBqdM3BJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKNsIjyC25knL0+rfjjNwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRnk1Qkk/p9Ur861GzsAlqVEGuCQ1ygCXpEYNDfAkNyXZl2TnQetOSHJXkqe6++MnW6YkaaE+M/CbgQsWrLsSuLuqTgPu7h5LkqZoaIBX1X3ACwtWXwRs7Za3AhePuS5J0hDLPQZ+UlXtBejuT1xqwySbk2xPsn3//v3L/DhJ0kIT/xKzqrZU1XxVzc/NzU364yRp1VhugD+XZC1Ad79vfCVJkvpYboBvAzZ2yxuBO8ZTjiSprz5thLcA3wV+I8meJJuAq4H3J3kKeH/3WJI0RUOvhVJVly3x1PljrkWSdBg8E1OSGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJatTRo7w4yW7gZeA14NWqmh9HUZKk4UYK8M57qur5MbyPJOkweAhFkho1aoAX8E9JHkqyebENkmxOsj3J9v3794/4cZKkA0YN8HOr6izgg8Ank7x74QZVtaWq5qtqfm5ubsSPkyQdMFKAV9Wz3f0+4JvA2eMoSpI03LIDPMkvJTn2wDLwAWDnuAqTJB3aKF0oJwHfTHLgfb5aVf8wlqokSUMtO8Cr6hngN8dYiyTpMNhGKEmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEjBXiSC5I8meTpJFeOqyhJ0nDLDvAkRwHXAx8ENgCXJdkwrsIkSYc2ygz8bODpqnqmqn4C3ApcNJ6yJEnDjBLgJwP/c9DjPd06SdIUHD3Ca7PIunrDRslmYHP38JUkTy7z89YAzy/zta1yzKuDY14F8mcjjfnXFls5SoDvAU496PEpwLMLN6qqLcCWET4HgCTbq2p+1PdpiWNeHRzz6jCJMY9yCOXfgdOSvD3Jm4FLgW3jKUuSNMyyZ+BV9WqSK4B/BI4Cbqqqx8dWmSTpkEY5hEJV3QncOaZahhn5MEyDHPPq4JhXh7GPOVVv+N5RktQAT6WXpEbNXIAPOz0/yVuSfK17/sEk66df5Xj1GPNnkjyR5NEkdydZtKWoJX0vw5DkkiSVpPmOhT5jTvJ73b5+PMlXp13juPX43V6X5J4kj3S/3xeuRJ3jkuSmJPuS7Fzi+ST5y+7n8WiSs0b6wKqamRuDL0O/B7wDeDPwH8CGBdv8EfClbvlS4GsrXfcUxvwe4Be75U+shjF32x0L3Ac8AMyvdN1T2M+nAY8Ax3ePT1zpuqcw5i3AJ7rlDcDula57xDG/GzgL2LnE8xcC32ZwHs05wIOjfN6szcD7nJ5/EbC1W74dOD/JYicVtWLomKvqnqr63+7hAwx67lvW9zIMXwT+HPi/aRY3IX3G/IfA9VX1Q4Cq2jflGsetz5gL+OVu+VdY5FySllTVfcALh9jkIuCva+AB4Lgka5f7ebMW4H1Oz//ZNlX1KvAS8KtTqW4yDveSBJsY/Be8ZUPHnORM4NSq+tY0C5ugPvv5ncA7k3wnyQNJLphadZPRZ8xXAR9JsodBR9sfT6e0FTPWS5CM1EY4AX1Oz+91Cn9Deo8nyUeAeeC3J1rR5B1yzEneBFwH/P60CpqCPvv5aAaHUc5j8K+sf03yrqp6ccK1TUqfMV8G3FxV1yT5LeBvujG/PvnyVsRY82vWZuB9Ts//2TZJjmbwz65D/ZNl1vW6JEGS9wGfBz5UVT+eUm2TMmzMxwLvAu5NspvBscJtjX+R2fd3+46q+mlV/RfwJINAb1WfMW8CbgOoqu8Cb2VwnZQjVa+/975mLcD7nJ6/DdjYLV8C/Et13w40auiYu8MJf8UgvFs/LgpDxlxVL1XVmqpaX1XrGRz3/1BVbV+Zcseiz+/23zH4wpokaxgcUnlmqlWOV58xfx84HyDJ6QwCfP9Uq5yubcBHu26Uc4CXqmrvst9tpb+1XeJb2v9k8O3157t1f8LgDxgGO/hvgaeBfwPesdI1T2HM/ww8B+zobttWuuZJj3nBtvfSeBdKz/0c4FrgCeAx4NKVrnkKY94AfIdBh8oO4AMrXfOI470F2Av8lMFsexPwceDjB+3j67ufx2Oj/l57JqYkNWrWDqFIknoywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJatT/A1q13sKbcOdlAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "plt.hist(dat, 50);" + "plt.hist(data, 50);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Poisson Distribution" + "### Poisson Distribution" ] }, { @@ -397,9 +385,7 @@ { "cell_type": "code", "execution_count": 17, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from scipy.stats import poisson" @@ -408,12 +394,10 @@ { "cell_type": "code", "execution_count": 18, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "dat = poisson.rvs(mu=1, size=100000)" + "data = poisson.rvs(mu=1, size=100000)" ] }, { @@ -423,23 +407,25 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAFLxJREFUeJzt3X+s3XWd5/HnyxaU0XGLcjVNW7fs\nbDMrmkzBLnRDMnHBhQKTKZNoAslKY0jqGthodrJr9R/GHyT4x+iGREkY6Vh2HSuDGhqt02kQ45rI\nj4tWoKLLHWTkWpbWLSisWQz43j/upzsn/Zzee3pv23OvfT6Sb8457+/n+/2+z03T1/1+v59zbqoK\nSZIGvWrcDUiSFh/DQZLUMRwkSR3DQZLUMRwkSR3DQZLUMRwkSR3DQZLUMRwkSZ3l425gvs4555xa\nu3btuNuQpCXl4Ycf/kVVTcw1bsmGw9q1a5mcnBx3G5K0pCT5x1HGeVlJktQxHCRJHcNBktQxHCRJ\nHcNBktQxHCRJHcNBktQxHCRJHcNBktRZsp+QXoi1274xluM+dctVYzmuJB0vzxwkSR3DQZLUOS0v\nK43LuC5ngZe0JB0fzxwkSR3DQZLUMRwkSR3DQZLUmTMckrwmyYNJfphkf5KPtfoXkvw0yb62rG/1\nJLk1yVSSR5JcMLCvLUmeaMuWgfo7kjzatrk1SU7Gm5UkjWaU2UovAZdU1YtJzgC+m+Sbbd1/rqq7\njxp/BbCuLRcBtwEXJXkDcBOwASjg4SS7quq5NmYrcD+wG9gEfBNJ0ljMeeZQM15sL89oS82yyWbg\nzrbd/cCKJCuBy4G9VXW4BcJeYFNb9/qq+l5VFXAncPUC3pMkaYFGuueQZFmSfcBBZv6Df6Cturld\nOvpMkle32irg6YHNp1tttvr0kPqwPrYmmUwyeejQoVFalyTNw0jhUFWvVNV6YDVwYZK3Ax8B/hXw\nr4E3AB9uw4fdL6h51If1cXtVbaiqDRMTE6O0Lkmah+OarVRVzwPfBjZV1TPt0tFLwF8DF7Zh08Ca\ngc1WAwfmqK8eUpckjckos5Umkqxoz88C3gX8uN0roM0suhp4rG2yC7iuzVraCPyyqp4B9gCXJTk7\nydnAZcCetu6FJBvbvq4D7jmxb1OSdDxGma20EtiRZBkzYXJXVX09ybeSTDBzWWgf8B/a+N3AlcAU\n8GvgfQBVdTjJJ4CH2riPV9Xh9vwDwBeAs5iZpeRMJUkaoznDoaoeAc4fUr/kGOMLuOEY67YD24fU\nJ4G3z9WLJOnU8BPSkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgO\nkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6swZDklek+TBJD9Msj/Jx1r93CQPJHki\nyZeTnNnqr26vp9r6tQP7+kir/yTJ5QP1Ta02lWTbiX+bkqTjMcqZw0vAJVX1R8B6YFOSjcCngM9U\n1TrgOeD6Nv564Lmq+pfAZ9o4kpwHXAO8DdgEfC7JsiTLgM8CVwDnAde2sZKkMZkzHGrGi+3lGW0p\n4BLg7lbfAVzdnm9ur2nrL02SVt9ZVS9V1U+BKeDCtkxV1ZNV9RtgZxsrSRqTke45tN/w9wEHgb3A\nPwDPV9XLbcg0sKo9XwU8DdDW/xJ442D9qG2OVZckjclI4VBVr1TVemA1M7/pv3XYsPaYY6w73non\nydYkk0kmDx06NHfjkqR5Oa7ZSlX1PPBtYCOwIsnytmo1cKA9nwbWALT1/ww4PFg/aptj1Ycd//aq\n2lBVGyYmJo6ndUnScRhlttJEkhXt+VnAu4DHgfuAd7dhW4B72vNd7TVt/beqqlr9mjab6VxgHfAg\n8BCwrs1+OpOZm9a7TsSbkyTNz/K5h7AS2NFmFb0KuKuqvp7kR8DOJJ8EfgDc0cbfAfy3JFPMnDFc\nA1BV+5PcBfwIeBm4oapeAUhyI7AHWAZsr6r9J+wdSpKO25zhUFWPAOcPqT/JzP2Ho+v/F3jPMfZ1\nM3DzkPpuYPcI/UqSTgE/IS1J6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgO\nkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6swZDknWJLkvyeNJ9if5\nYKv/RZKfJ9nXlisHtvlIkqkkP0ly+UB9U6tNJdk2UD83yQNJnkjy5SRnnug3Kkka3ShnDi8Df15V\nbwU2AjckOa+t+0xVrW/LboC27hrgbcAm4HNJliVZBnwWuAI4D7h2YD+favtaBzwHXH+C3p8kaR7m\nDIeqeqaqvt+evwA8DqyaZZPNwM6qeqmqfgpMARe2Zaqqnqyq3wA7gc1JAlwC3N223wFcPd83JEla\nuOO655BkLXA+8EAr3ZjkkSTbk5zdaquApwc2m261Y9XfCDxfVS8fVZckjcnI4ZDkdcBXgA9V1a+A\n24A/ANYDzwB/eWTokM1rHvVhPWxNMplk8tChQ6O2Lkk6TiOFQ5IzmAmGL1bVVwGq6tmqeqWqfgv8\nFTOXjWDmN/81A5uvBg7MUv8FsCLJ8qPqnaq6vao2VNWGiYmJUVqXJM3DKLOVAtwBPF5Vnx6orxwY\n9mfAY+35LuCaJK9Oci6wDngQeAhY12YmncnMTetdVVXAfcC72/ZbgHsW9rYkSQuxfO4hXAy8F3g0\nyb5W+ygzs43WM3MJ6Cng/QBVtT/JXcCPmJnpdENVvQKQ5EZgD7AM2F5V+9v+PgzsTPJJ4AfMhJEk\naUzmDIeq+i7D7wvsnmWbm4Gbh9R3D9uuqp7kny5LSZLGzE9IS5I6hoMkqWM4SJI6hoMkqWM4SJI6\nhoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMk\nqWM4SJI6c4ZDkjVJ7kvyeJL9ST7Y6m9IsjfJE+3x7FZPkluTTCV5JMkFA/va0sY/kWTLQP0dSR5t\n29yaZNjfrJYknSKjnDm8DPx5Vb0V2AjckOQ8YBtwb1WtA+5trwGuANa1ZStwG8yECXATcBFwIXDT\nkUBpY7YObLdp4W9NkjRfc4ZDVT1TVd9vz18AHgdWAZuBHW3YDuDq9nwzcGfNuB9YkWQlcDmwt6oO\nV9VzwF5gU1v3+qr6XlUVcOfAviRJY3Bc9xySrAXOBx4A3lxVz8BMgABvasNWAU8PbDbdarPVp4fU\nJUljMnI4JHkd8BXgQ1X1q9mGDqnVPOrDetiaZDLJ5KFDh+ZqWZI0TyOFQ5IzmAmGL1bVV1v52XZJ\niPZ4sNWngTUDm68GDsxRXz2k3qmq26tqQ1VtmJiYGKV1SdI8jDJbKcAdwONV9emBVbuAIzOOtgD3\nDNSva7OWNgK/bJed9gCXJTm73Yi+DNjT1r2QZGM71nUD+5IkjcHyEcZcDLwXeDTJvlb7KHALcFeS\n64GfAe9p63YDVwJTwK+B9wFU1eEknwAeauM+XlWH2/MPAF8AzgK+2RZJ0pjMGQ5V9V2G3xcAuHTI\n+AJuOMa+tgPbh9QngbfP1Ysk6dTwE9KSpI7hIEnqGA6SpI7hIEnqjDJbSb8D1m77xliO+9QtV43l\nuJIWxjMHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAk\ndQwHSVLHcJAkdeYMhyTbkxxM8thA7S+S/DzJvrZcObDuI0mmkvwkyeUD9U2tNpVk20D93CQPJHki\nyZeTnHki36Ak6fiNcubwBWDTkPpnqmp9W3YDJDkPuAZ4W9vmc0mWJVkGfBa4AjgPuLaNBfhU29c6\n4Dng+oW8IUnSws0ZDlX1HeDwiPvbDOysqpeq6qfAFHBhW6aq6smq+g2wE9icJMAlwN1t+x3A1cf5\nHiRJJ9hC7jncmOSRdtnp7FZbBTw9MGa61Y5VfyPwfFW9fFRdkjRG8w2H24A/ANYDzwB/2eoZMrbm\nUR8qydYkk0kmDx06dHwdS5JGNq9wqKpnq+qVqvot8FfMXDaCmd/81wwMXQ0cmKX+C2BFkuVH1Y91\n3NurakNVbZiYmJhP65KkEcwrHJKsHHj5Z8CRmUy7gGuSvDrJucA64EHgIWBdm5l0JjM3rXdVVQH3\nAe9u228B7plPT5KkE2f5XAOSfAl4J3BOkmngJuCdSdYzcwnoKeD9AFW1P8ldwI+Al4EbquqVtp8b\ngT3AMmB7Ve1vh/gwsDPJJ4EfAHecsHcnSZqXOcOhqq4dUj7mf+BVdTNw85D6bmD3kPqT/NNlKUnS\nIuAnpCVJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQx\nHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJnTnDIcn2JAeTPDZQe0OSvUmeaI9nt3qS3Jpk\nKskjSS4Y2GZLG/9Eki0D9XckebRtc2uSnOg3KUk6PqOcOXwB2HRUbRtwb1WtA+5trwGuANa1ZStw\nG8yECXATcBFwIXDTkUBpY7YObHf0sSRJp9ic4VBV3wEOH1XeDOxoz3cAVw/U76wZ9wMrkqwELgf2\nVtXhqnoO2AtsauteX1Xfq6oC7hzYlyRpTOZ7z+HNVfUMQHt8U6uvAp4eGDfdarPVp4fUJUljdKJv\nSA+7X1DzqA/febI1yWSSyUOHDs2zRUnSXOYbDs+2S0K0x4OtPg2sGRi3GjgwR331kPpQVXV7VW2o\nqg0TExPzbF2SNJf5hsMu4MiMoy3APQP169qspY3AL9tlpz3AZUnObjeiLwP2tHUvJNnYZildN7Av\nSdKYLJ9rQJIvAe8Ezkkyzcyso1uAu5JcD/wMeE8bvhu4EpgCfg28D6CqDif5BPBQG/fxqjpyk/sD\nzMyIOgv4ZlskSWM0ZzhU1bXHWHXpkLEF3HCM/WwHtg+pTwJvn6sPSdKp4yekJUkdw0GS1DEcJEkd\nw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS\n1DEcJEmdOf8SnLRUrd32jbEc96lbrhrLcaUTyTMHSVJnQeGQ5KkkjybZl2Sy1d6QZG+SJ9rj2a2e\nJLcmmUrySJILBvazpY1/IsmWhb0lSdJCnYgzh39bVeurakN7vQ24t6rWAfe21wBXAOvashW4DWbC\nBLgJuAi4ELjpSKBIksbjZFxW2gzsaM93AFcP1O+sGfcDK5KsBC4H9lbV4ap6DtgLbDoJfUmSRrTQ\ncCjg75M8nGRrq725qp4BaI9vavVVwNMD20632rHqkqQxWehspYur6kCSNwF7k/x4lrEZUqtZ6v0O\nZgJoK8Bb3vKW4+1VkjSiBZ05VNWB9ngQ+Boz9wyebZeLaI8H2/BpYM3A5quBA7PUhx3v9qraUFUb\nJiYmFtK6JGkW8w6HJK9N8vtHngOXAY8Bu4AjM462APe057uA69qspY3AL9tlpz3AZUnObjeiL2s1\nSdKYLOSy0puBryU5sp+/qaq/S/IQcFeS64GfAe9p43cDVwJTwK+B9wFU1eEknwAeauM+XlWHF9CX\nJGmB5h0OVfUk8EdD6v8buHRIvYAbjrGv7cD2+fYiSTqx/IS0JKljOEiSOoaDJKljOEiSOoaDJKlj\nOEiSOoaDJKljOEiSOoaDJKljOEiSOoaDJKljOEiSOoaDJKljOEiSOgv9M6GSjrJ22zfGduynbrlq\nbMfW7xbPHCRJHcNBktQxHCRJHcNBktRZNOGQZFOSnySZSrJt3P1I0ulsUYRDkmXAZ4ErgPOAa5Oc\nN96uJOn0tVimsl4ITFXVkwBJdgKbgR+NtStJIxnX9F2n7p48i+LMAVgFPD3werrVJEljsFjOHDKk\nVt2gZCuwtb18MclP5nm8c4BfzHPbU20p9QpH9ZtPjbGTuS3pn+0wi+jnfUp+tifw/S6lfwsL7fWf\njzJosYTDNLBm4PVq4MDRg6rqduD2hR4syWRVbVjofk6FpdQrLK1+l1KvsLT6XUq9wtLq91T1ulgu\nKz0ErEtybpIzgWuAXWPuSZJOW4vizKGqXk5yI7AHWAZsr6r9Y25Lkk5biyIcAKpqN7D7FB1uwZem\nTqGl1CssrX6XUq+wtPpdSr3C0ur3lPSaqu6+ryTpNLdY7jlIkhaR0yocltJXdCTZnuRgksfG3ctc\nkqxJcl+Sx5PsT/LBcfc0mySvSfJgkh+2fj827p7mkmRZkh8k+fq4e5lLkqeSPJpkX5LJcfczmyQr\nktyd5Mft3++/GXdPx5LkD9vP9MjyqyQfOmnHO10uK7Wv6PifwL9jZursQ8C1VbUoP4Wd5I+BF4E7\nq+rt4+5nNklWAiur6vtJfh94GLh6Ef9sA7y2ql5McgbwXeCDVXX/mFs7piT/CdgAvL6q/mTc/cwm\nyVPAhqpa9J8bSLID+B9V9fk2U/L3qur5cfc1l/b/2c+Bi6rqH0/GMU6nM4f//xUdVfUb4MhXdCxK\nVfUd4PC4+xhFVT1TVd9vz18AHmcRf8K9ZrzYXp7RlkX7W1KS1cBVwOfH3cvvkiSvB/4YuAOgqn6z\nFIKhuRT4h5MVDHB6hYNf0XEKJFkLnA88MN5OZtcu0+wDDgJ7q2ox9/tfgf8C/HbcjYyogL9P8nD7\nVoPF6l8Ah4C/bpfsPp/kteNuakTXAF86mQc4ncJhpK/o0PwleR3wFeBDVfWrcfczm6p6parWM/Np\n/AuTLMpLd0n+BDhYVQ+Pu5fjcHFVXcDMtyzf0C6RLkbLgQuA26rqfOD/AIv6XiRAu/z1p8Dfnszj\nnE7hMNJXdGh+2rX7rwBfrKqvjrufUbXLCN8GNo25lWO5GPjTdh1/J3BJkv8+3pZmV1UH2uNB4GvM\nXNJdjKaB6YGzxruZCYvF7grg+1X17Mk8yOkUDn5Fx0nSbvDeATxeVZ8edz9zSTKRZEV7fhbwLuDH\n4+1quKr6SFWtrqq1zPyb/VZV/fsxt3VMSV7bJiXQLtFcBizKGXdV9b+Ap5P8YStdytL4MwHXcpIv\nKcEi+oT0ybbUvqIjyZeAdwLnJJkGbqqqO8bb1TFdDLwXeLRdxwf4aPvU+2K0EtjRZny8Crirqhb9\nFNEl4s3A12Z+X2A58DdV9XfjbWlW/xH4YvuF8UngfWPuZ1ZJfo+ZGZfvP+nHOl2mskqSRnc6XVaS\nJI3IcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdf4fsndXI3IgTNgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD4CAYAAAAO9oqkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAATgUlEQVR4nO3df4xd5X3n8fendmhIutQmDIja1pqqVhqKFH6MwF2kqht3jQ1VzB9FMtrWI2RpVoh0k1Wl1uk/VqGRiFQ1raUUyQoudjcb6qWJsBIT13IS9R8gHgKFgIM8JRTP2sXTjiG0qGFJv/vHfby9su947ozHc/3j/ZKuzjnf85xznyMQnznPee4hVYUk6dL2U4PugCRp8AwDSZJhIEkyDCRJGAaSJGDxoDswV1dddVWtXLly0N2QpAvGc889949VNdRr3wUbBitXrmRsbGzQ3ZCkC0aSv59un8NEkiTDQJJkGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEniAv4F8tlYueUbA/ne1x++ayDfK0kz8c5AkmQYSJIMA0kShoEkCcNAkkQfYZDko0le6Pr8KMlnklyZZH+Sw225tLVPkm1JxpO8mOTmrnONtPaHk4x01W9J8lI7ZluSnJvLlST1MmMYVNWrVXVjVd0I3AK8C3wN2AIcqKpVwIG2DbAeWNU+o8AjAEmuBLYCtwG3AltPBkhrM9p13Lp5uTpJUl9mO0y0Bvi7qvp7YAOws9V3Ane39Q3Arup4BliS5FrgDmB/VU1V1QlgP7Cu7buiqp6uqgJ2dZ1LkrQAZhsGG4GvtPVrquoYQFte3erLgCNdx0y02pnqEz3qkqQF0ncYJLkM+CTwv2dq2qNWc6j36sNokrEkY5OTkzN0Q5LUr9ncGawHvldVb7btN9sQD215vNUngBVdxy0Hjs5QX96jfpqq2l5Vw1U1PDQ0NIuuS5LOZDZhcC//PkQEsAc4OSNoBHiyq76pzSpaDbzdhpH2AWuTLG0PjtcC+9q+d5KsbrOINnWdS5K0APp6UV2SDwH/BfhvXeWHgd1JNgNvAPe0+l7gTmCczsyj+wCqairJQ8DB1u7Bqppq6/cDjwGXA0+1jyRpgfQVBlX1LvCRU2r/RGd20altC3hgmvPsAHb0qI8BN/TTF0nS/PMXyJIkw0CSZBhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSfQZBkmWJHkiyQ+SHEryy0muTLI/yeG2XNraJsm2JONJXkxyc9d5Rlr7w0lGuuq3JHmpHbMtSeb/UiVJ0+n3zuBPgW9W1S8CHwcOAVuAA1W1CjjQtgHWA6vaZxR4BCDJlcBW4DbgVmDryQBpbUa7jlt3dpclSZqNGcMgyRXArwCPAlTVe1X1FrAB2Nma7QTubusbgF3V8QywJMm1wB3A/qqaqqoTwH5gXdt3RVU9XVUF7Oo6lyRpAfRzZ/DzwCTw50meT/KlJB8GrqmqYwBteXVrvww40nX8RKudqT7Ro36aJKNJxpKMTU5O9tF1SVI/+gmDxcDNwCNVdRPwL/z7kFAvvcb7aw7104tV26tquKqGh4aGztxrSVLf+gmDCWCiqp5t20/QCYc32xAPbXm8q/2KruOXA0dnqC/vUZckLZAZw6Cq/gE4kuSjrbQGeAXYA5ycETQCPNnW9wCb2qyi1cDbbRhpH7A2ydL24HgtsK/teyfJ6jaLaFPXuSRJC2Bxn+1+G/hyksuA14D76ATJ7iSbgTeAe1rbvcCdwDjwbmtLVU0leQg42No9WFVTbf1+4DHgcuCp9pEkLZC+wqCqXgCGe+xa06NtAQ9Mc54dwI4e9THghn76Ikmaf/4CWZJkGEiSDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kSfYZBkteTvJTkhSRjrXZlkv1JDrfl0lZPkm1JxpO8mOTmrvOMtPaHk4x01W9p5x9vx2a+L1SSNL3Z3Bn856q6saqG2/YW4EBVrQIOtG2A9cCq9hkFHoFOeABbgduAW4GtJwOktRntOm7dnK9IkjRrZzNMtAHY2dZ3And31XdVxzPAkiTXAncA+6tqqqpOAPuBdW3fFVX1dFUVsKvrXJKkBdBvGBTw10meSzLaatdU1TGAtry61ZcBR7qOnWi1M9UnetRPk2Q0yViSscnJyT67LkmayeI+291eVUeTXA3sT/KDM7TtNd5fc6ifXqzaDmwHGB4e7tlGkjR7fd0ZVNXRtjwOfI3OmP+bbYiHtjzemk8AK7oOXw4cnaG+vEddkrRAZgyDJB9O8h9OrgNrge8De4CTM4JGgCfb+h5gU5tVtBp4uw0j7QPWJlnaHhyvBfa1fe8kWd1mEW3qOpckaQH0M0x0DfC1NttzMfC/quqbSQ4Cu5NsBt4A7mnt9wJ3AuPAu8B9AFU1leQh4GBr92BVTbX1+4HHgMuBp9pHkrRAZgyDqnoN+HiP+j8Ba3rUC3hgmnPtAHb0qI8BN/TRX0nSOeAvkCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkMYswSLIoyfNJvt62r0vybJLDSf4yyWWt/tNte7ztX9l1js+2+qtJ7uiqr2u18SRb5u/yJEn9mM2dwaeBQ13bnwe+UFWrgBPA5lbfDJyoql8AvtDakeR6YCPwS8A64M9awCwCvgisB64H7m1tJUkLpK8wSLIcuAv4UtsO8AngidZkJ3B3W9/Qtmn717T2G4DHq+rHVfVDYBy4tX3Gq+q1qnoPeLy1lSQtkH7vDP4E+F3g39r2R4C3qur9tj0BLGvry4AjAG3/2639/6+fcsx09dMkGU0ylmRscnKyz65LkmYyYxgk+XXgeFU9113u0bRm2Dfb+unFqu1VNVxVw0NDQ2fotSRpNhb30eZ24JNJ7gQ+CFxB505hSZLF7a//5cDR1n4CWAFMJFkM/Cww1VU/qfuY6eqSpAUw451BVX22qpZX1Uo6D4C/VVX/Ffg28But2QjwZFvf07Zp+79VVdXqG9tso+uAVcB3gYPAqjY76bL2HXvm5eokSX3p585gOr8HPJ7kD4HngUdb/VHgL5KM07kj2AhQVS8n2Q28ArwPPFBVPwFI8ilgH7AI2FFVL59FvyRJszSrMKiq7wDfaeuv0ZkJdGqbfwXumeb4zwGf61HfC+ydTV8kSfPHXyBLkgwDSZJhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgSaKPMEjywSTfTfK3SV5O8getfl2SZ5McTvKXSS5r9Z9u2+Nt/8quc3221V9NckdXfV2rjSfZMv+XKUk6k37uDH4MfKKqPg7cCKxLshr4PPCFqloFnAA2t/abgRNV9QvAF1o7klwPbAR+CVgH/FmSRUkWAV8E1gPXA/e2tpKkBTJjGFTHP7fND7RPAZ8Anmj1ncDdbX1D26btX5Mkrf54Vf24qn4IjAO3ts94Vb1WVe8Bj7e2kqQF0tczg/YX/AvAcWA/8HfAW1X1fmsyASxr68uAIwBt/9vAR7rrpxwzXb1XP0aTjCUZm5yc7KfrkqQ+9BUGVfWTqroRWE7nL/mP9WrWlplm32zrvfqxvaqGq2p4aGho5o5Lkvoyq9lEVfUW8B1gNbAkyeK2azlwtK1PACsA2v6fBaa666ccM11dkrRA+plNNJRkSVu/HPg14BDwbeA3WrMR4Mm2vqdt0/Z/q6qq1Te22UbXAauA7wIHgVVtdtJldB4y75mPi5Mk9WfxzE24FtjZZv38FLC7qr6e5BXg8SR/CDwPPNraPwr8RZJxOncEGwGq6uUku4FXgPeBB6rqJwBJPgXsAxYBO6rq5Xm7QknSjGYMg6p6EbipR/01Os8PTq3/K3DPNOf6HPC5HvW9wN4++itJOgf8BbIkyTCQJBkGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJPoIgyQrknw7yaEkLyf5dKtfmWR/ksNtubTVk2RbkvEkLya5uetcI6394SQjXfVbkrzUjtmWJOfiYiVJvfVzZ/A+8DtV9TFgNfBAkuuBLcCBqloFHGjbAOuBVe0zCjwCnfAAtgK3AbcCW08GSGsz2nXcurO/NElSv2YMg6o6VlXfa+vvAIeAZcAGYGdrthO4u61vAHZVxzPAkiTXAncA+6tqqqpOAPuBdW3fFVX1dFUVsKvrXJKkBTCrZwZJVgI3Ac8C11TVMegEBnB1a7YMONJ12ESrnak+0aPe6/tHk4wlGZucnJxN1yVJZ9B3GCT5GeCvgM9U1Y/O1LRHreZQP71Ytb2qhqtqeGhoaKYuS5L61FcYJPkAnSD4clV9tZXfbEM8tOXxVp8AVnQdvhw4OkN9eY+6JGmB9DObKMCjwKGq+uOuXXuAkzOCRoAnu+qb2qyi1cDbbRhpH7A2ydL24HgtsK/teyfJ6vZdm7rOJUlaAIv7aHM78FvAS0leaLXfBx4GdifZDLwB3NP27QXuBMaBd4H7AKpqKslDwMHW7sGqmmrr9wOPAZcDT7WPJGmBpDOB58IzPDxcY2Njczp25ZZvzHNvzn+vP3zXoLsgacCSPFdVw732+QtkSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEn0EQZJdiQ5nuT7XbUrk+xPcrgtl7Z6kmxLMp7kxSQ3dx0z0tofTjLSVb8lyUvtmG1JMt8XKUk6s37uDB4D1p1S2wIcqKpVwIG2DbAeWNU+o8Aj0AkPYCtwG3ArsPVkgLQ2o13HnfpdkqRzbMYwqKq/AaZOKW8Adrb1ncDdXfVd1fEMsCTJtcAdwP6qmqqqE8B+YF3bd0VVPV1VBezqOpckaYHM9ZnBNVV1DKAtr271ZcCRrnYTrXam+kSPuiRpAc33A+Re4/01h3rvkyejScaSjE1OTs6xi5KkU801DN5sQzy05fFWnwBWdLVbDhydob68R72nqtpeVcNVNTw0NDTHrkuSTjXXMNgDnJwRNAI82VXf1GYVrQbebsNI+4C1SZa2B8drgX1t3ztJVrdZRJu6ziVJWiCLZ2qQ5CvArwJXJZmgMyvoYWB3ks3AG8A9rfle4E5gHHgXuA+gqqaSPAQcbO0erKqTD6XvpzNj6XLgqfaRJC2gGcOgqu6dZteaHm0LeGCa8+wAdvSojwE3zNQPSdK54y+QJUmGgSTJMJAkYRhIkjAMJEkYBpIk+phaqovDyi3fGMj3vv7wXQP5Xkmz452BJMkwkCQZBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJHw3kc6xQb0TCXwvkjQb3hlIks6fMEiyLsmrScaTbBl0fyTpUnJehEGSRcAXgfXA9cC9Sa4fbK8k6dJxvjwzuBUYr6rXAJI8DmwAXhlor3RB8//hIPXvfAmDZcCRru0J4LZTGyUZBUbb5j8neXWO33cV8I9zPPZ857UNWD4/50MviOubI6/t/PAfp9txvoRBetTqtELVdmD7WX9ZMlZVw2d7nvOR13bhupivz2s7/50Xzwzo3Ams6NpeDhwdUF8k6ZJzvoTBQWBVkuuSXAZsBPYMuE+SdMk4L4aJqur9JJ8C9gGLgB1V9fI5/MqzHmo6j3ltF66L+fq8tvNcqk4bmpckXWLOl2EiSdIAGQaSpEsrDC7mV14kWZHk20kOJXk5yacH3af5lmRRkueTfH3QfZlPSZYkeSLJD9o/v18edJ/mU5L/0f6d/H6SryT54KD7NFdJdiQ5nuT7XbUrk+xPcrgtlw6yj3N1yYTBJfDKi/eB36mqjwGrgQcususD+DRwaNCdOAf+FPhmVf0i8HEuomtMsgz478BwVd1AZ4LIxsH26qw8Bqw7pbYFOFBVq4ADbfuCc8mEAV2vvKiq94CTr7y4KFTVsar6Xlt/h85/UJYNtlfzJ8ly4C7gS4Puy3xKcgXwK8CjAFX1XlW9NdhezbvFwOVJFgMf4gL+DVFV/Q0wdUp5A7Czre8E7l7QTs2TSykMer3y4qL5j2W3JCuBm4BnB9uTefUnwO8C/zbojsyznwcmgT9vQ2BfSvLhQXdqvlTV/wH+CHgDOAa8XVV/PdhezbtrquoYdP4oA64ecH/m5FIKg75eeXGhS/IzwF8Bn6mqHw26P/Mhya8Dx6vquUH35RxYDNwMPFJVNwH/wgU6zNBLGz/fAFwH/Bzw4SS/OdheqZdLKQwu+ldeJPkAnSD4clV9ddD9mUe3A59M8jqd4b1PJPmfg+3SvJkAJqrq5F3cE3TC4WLxa8APq2qyqv4v8FXgPw24T/PtzSTXArTl8QH3Z04upTC4qF95kSR0xp0PVdUfD7o/86mqPltVy6tqJZ1/bt+qqovir8uq+gfgSJKPttIaLq5Xt78BrE7yofbv6BouogfkzR5gpK2PAE8OsC9zdl68jmIhDOCVFwvtduC3gJeSvNBqv19VewfYJ/Xnt4Evtz9SXgPuG3B/5k1VPZvkCeB7dGa8Pc8F/PqGJF8BfhW4KskEsBV4GNidZDOd8LtncD2cO19HIUm6pIaJJEnTMAwkSYaBJMkwkCRhGEiSMAwkSRgGkiTg/wHPuwjKXGtJvgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "plt.hist(dat);" + "plt.hist(data);" ] } ], "metadata": { "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -453,7 +439,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/11-TestingDistributions.ipynb b/11-TestingDistributions.ipynb index 4d07f81..bacb9f7 100644 --- a/11-TestingDistributions.ipynb +++ b/11-TestingDistributions.ipynb @@ -4,7 +4,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Testing Distributions " + "# Testing Distributions \n", + "\n", + "Knowing what distribution your data follow is important for knowing which statistical tests to apply to it. If you are using statistical tests that assume data to have a particular distribution, you need to test whether this is indeed the case.\n", + "\n", + "As we saw previously, different statistical distributions have different 'shapes'. But just looking at the shape isn't enough for saying definitively what distribution the data follows. Here, we will explore some statistical tests for checking the distribution of data. " ] }, { @@ -12,23 +16,14 @@ "metadata": {}, "source": [ "
\n", - "Sometimes it may be useful (or necessary) to formally test whether some data you observe follows a particular distribution.\n", + "By 'testing distributions' we mean statistical tests that evaluate whether observed data follow a particular distribution.\n", "
" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Perhaps most commonly, if you are using statistical tests that assume data to have a particular distribution, you need to test whether this is indeed the case. " - ] - }, { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Imports\n", @@ -44,9 +39,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Set up a helper function for checking p-values against an alpha level, and printing result\n", @@ -58,6 +51,13 @@ " print('We do not have evidence to reject the null hypothesis.')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Evaluating a Normal Distribution" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -68,9 +68,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Create a dataset of normally distributed data\n", @@ -84,12 +82,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD8CAYAAACb4nSYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xl4VOXZ+PHvfWYSNtkDWhZLVFBR\nEGwERVxwQXABa1HRuraVn2+l1qWvtbYqxdrXF622Wt9WW7e6gIobIIgioMgelrAHwh6CEMIayDYz\n9++PGSaTkGUSkpyZzP25rlyc55znnLkzwD1nnvMsoqoYY4xJDI7bARhjjGk4lvSNMSaBWNI3xpgE\nYknfGGMSiCV9Y4xJIJb0jTEmgVjSN8aYBGJJ3xhjEoglfWOMSSBetwMoLyUlRbt16+Z2GMYYE1eW\nLFmyR1U7VFcv5pJ+t27dSE9PdzsMY4yJKyKyNZp61rxjjDEJxJK+McYkEEv6xhiTQGKuTd8YE7tK\nSkrIzs6msLDQ7VASVtOmTenSpQtJSUm1Ot+SvjEmatnZ2bRs2ZJu3bohIm6Hk3BUlby8PLKzs0lN\nTa3VNaJq3hGRISKSKSJZIvJoFfVGiIiKSFrEvt+FzssUkatqFaUxJiYUFhbSvn17S/guERHat29/\nXN+0qr3TFxEP8DJwJZANLBaRSaq6ply9lsD9wMKIfT2BkcBZQCdghoj0UFV/rSM2xrjKEr67jvf9\nj6Z5px+QpaqbQi84ARgOrClX7ylgHPCbiH3DgQmqWgRsFpGs0PXmH1fUxrhgydZ9vLtgK7sOFdKl\nTXNObt+c1JQWXNyjAyc0sZZSEx+iad7pDGyPKGeH9oWJSF+gq6pOqem5ofNHiUi6iKTn5uZGFbgx\nDSEQUL5c/T0j/jGPn/xjHh8v28HcrDzeT9/Os9Mz+eW7S7nsudnMy9rjdqgJQ0R4+OGHw+XnnnuO\nMWPGNGgMd911FxMnTqxwf2pqKueccw49evTgjjvuYMeOHeHjV199Nfv376/0un/96185cuRIvcR8\nVDRJv6LvEuHV1EXEAV4AHq6gXpXnhneovqqqaaqa1qFDtaOIjWkQxb4Ao95ewqi3l5C+dV+l9XYf\nKuKnry1k3BfrKPEHGjDCxNSkSRM+/vhj9uyp3Qetz+er44jKevbZZ8nIyCAzM5O+ffsyaNAgiouL\nAZg6dSpt2rSp9NyGSPrRfCfNBrpGlLsAORHllsDZwOxQW9NJwCQRGRbFucbEJN+TbflVyf3MCPQL\n70vCx3DPXK50lvC9tmOLnsgk/wDyaI0q/N/sjcz/5gv+lfwXUuRg8KQxB1z6DRovr9fLqFGjeOGF\nF3j66afLHNu6dSs/+9nPyM3NpUOHDrzxxhucfPLJ3HXXXbRr145ly5Zx7rnn0rJlSzZv3szOnTtZ\nv349zz//PAsWLGDatGl07tyZyZMnk5SUxNixY5k8eTIFBQUMGDCAV155Jeo2dRHhwQcf5JNPPmHa\ntGkMHz48PM1Ms2bNuOmmm8jOzsbv9/P444+za9cucnJyGDRoECkpKcyaNas+3r6okv5ioLuIpAI7\nCD6YvfXoQVU9AKQcLYvIbOA3qpouIgXAeyLyPMEHud2BRXUXvjF1zx9QHir5L6ZHJPxbPF/za+/H\nnCRl7/j/yzuZh0r+i+8CvQBYpt0ZXfIr3kn6H7zSuO/6uz36eb1de8sz11R5/L777qN379488sgj\nZfaPHj2aO+64gzvvvJPXX3+d+++/n08//RSA9evXM2PGDDweD2PGjGHjxo3MmjWLNWvWcMEFF/DR\nRx8xbtw4fvzjH/P5559z/fXXM3r0aJ544gkAbr/9dqZMmcJ1111Xo9/l3HPPZd26dQwfPjy874sv\nvqBTp058/nnwPTxw4ACtW7fm+eefZ9asWaSkpFR2ueNWbfOOqvqA0cB0YC3wgaquFpGxobv5qs5d\nDXxA8KHvF8B91nPHxLJAQPndxyuYFLgwvO8Xns/5s/e1YxI+QEfZz3+SnuFR73sIwSS/IHAWz/lu\narCYE1GrVq244447ePHFF8vsnz9/PrfeGrwnvf322/nuu+/Cx2688UY8Hk+4PHToUJKSkujVqxd+\nv58hQ4YA0KtXL7Zs2QLArFmz6N+/P7169WLmzJmsXr26xrGqHtOiTa9evZgxYwa//e1vmTNnDq1b\nt67xdWsrqn76qjpVVXuo6qmq+nRo3xOqOqmCupeqanpE+enQeaer6rS6C92Yuvfuwq18kJ4dLt/u\n+ZLfe9+lqm/0jij3eqfwoPej8L5/+ofxpf9H9RlqwnvggQd47bXXOHz4cKV1IptiWrRoUeZYkyZN\nAHAch6SkpHBdx3Hw+XwUFhbyy1/+kokTJ7Jy5UruueeeWvWPX7ZsGWeeeWaZfT169GDJkiX06tWL\n3/3ud4wdO7bG160t62dmTMj3Bwr53y8yw+UbPbP5o/etKhN+pNGeT1ka6M7sQB8AHi65l8l7DtMt\npUU1Z8an6ppg6lu7du246aabeO211/jZz34GwIABA5gwYQK333477777LgMHDqz19Y8m+JSUFPLz\n85k4cSIjRoyI+nxV5aWXXmLnzp3hbxFH5eTk0K5dO2677TZOOOEE3nzzTQBatmzJoUOH3G3eMSZR\njJm0mvyiYM+OUySHP3lfx5Fjv5pXxhHlr0kv05lgt+NDtGD0+KX4A9Ffw9TMww8/XKYXz4svvsgb\nb7xB7969efvtt/nb3/5W62u3adOGe+65h169enH99ddz3nnnRXXef//3f4e7bC5evJhZs2aRnJxc\nps7KlSvp168fffr04emnn+YPf/gDAKNGjWLo0KEMGjQIgF/84hd1vr6IVNTe5Ka0tDS1RVRMQ/tq\nzS7u+U/pv7sJyWM531lXq2utCKQyongMxQQnxHp2RG9uTOtazVnxYe3atcc0VZiGV9Hfg4gsUdW0\nSk4Jszt9k/Dyi3w88dmqcPmmtC61TvgAvZ3N/Jen9HHXX75cT2GJ9V8wscGSvkl4z3+5np0Hgu23\n7Vsk89jVx38nO8o7hRSCIy+/P1jI63M3H/c1jakLlvRNQvv+yW68PXdDuPx48Qu0GXf8o8JbSBEP\nekuH6f9j1kby8ouO+7rGHC9L+iahveq7hpJQJ7ZzZT3Dnbl1du2bPbM5tUOw586hIh8vzcyqs2sb\nU1uW9E3CyssvYrz/snB5tPfTqLtnRsMrAR4dWtpU9M6CrWzZU3mfcmMagiV9k7DemLuFApoCcKZs\nYZCzvM5f44r3e9BP1gLgCyivvPAEjGm40ZfGlGeDs0xCOlhYwlvzt4TL93k/q9O7/KNE4OGkD7m5\nODh/y8f+gTzinUDbun8pd9T1B1iUE9R98skn3HDDDaxdu5YzzjijyrpvvvkmgwcPplOnTrUKafbs\n2Tz33HNMmTLlmP3Dhw/nlFNO4ciRI5x44ok88sgjXHvttdVeLzk5mQEDBtQqnuNld/omIb2zYCuH\nCksHYg116m8ewH6yjrMk2HuniGTG+wfV22slivHjxzNw4EAmTJhQbd0333yTnJz6mdz3oosuYtmy\nZWRmZvLiiy8yevRovv766yrPmT17NvPmzauXeKJhSd8knIJiP6/NKe1Cea9nMp4ajLytKRG42/tF\nuPy2b7DNu38c8vPzmTt3Lq+99toxSX/cuHH06tWLc845h0cffZSJEyeSnp7OT3/6U/r06UNBQQHd\nunULj+JNT0/n0ksvBWDRokUMGDCAvn37MmDAADIzM8u/dJX69OnDE088wd///ncAJk+eTP/+/enb\nty9XXHEFu3btYsuWLfzzn//khRdeoE+fPsyZM6fCevXJkr5JOJ8s20He4eCiFp3Yw/We76o54/hd\n58wnhWDTxU7aM3319/X+mo3Vp59+ypAhQ+jRowft2rVj6dKlAEybNo1PP/2UhQsXkpGRwSOPPMKI\nESNIS0vj3XffZfny5TRr1qzS655xxhl8++23LFu2jLFjx/LYY4/VOLaj0ygDDBw4kAULFrBs2TJG\njhzJuHHj6NatG/feey8PPvggy5cv56KLLqqwXn2yNn2TcCYs3hbe/pn3C5Kl/kfLNhEfP/XM4G/+\nnwDw+nebubZ37dqYE9348eN54IEHABg5ciTjx4/n3HPPZcaMGdx99900b94cCE7IVhMHDhzgzjvv\nZMOGDYgIJSUlNY4tclqb7Oxsbr75Znbu3ElxcTGpqakVnhNtvbpid/omoazOOcCK7OAdd7LH4See\nbxvstX/qnUESwecIS7ftJ2N75Wulmorl5eUxc+ZMfvGLX9CtWzeeffZZ3n//fVQVVY1qVSuv10sg\nEGxei5wq+fHHH2fQoEGsWrWKyZMnH/c0yr/61a8YPXo0K1eu5JVXXqn0etHWqyuW9E1CmbBoe3h7\nyNkn0VbyG+y1O8oBrnPmh8tv2NQMNTZx4kTuuOMOtm7dypYtW9i+fTupqal89913DB48mNdffz28\nxuzevXuB0umKj+rWrRtLliwB4KOPStdAOHDgAJ07dwYIT3VcEytWrOCpp57ivvvuO+Z6b731Vrhe\n+Xgqq1dfrHnHJIyCYj+fLt8RLo/s1xVq9qzuuN3t/YKPiy8C4POVO3nyurNo2yK5mrNiWAOvATx+\n/HgeffTRMvt+8pOf8N577/GPf/yD5cuXk5aWRnJyMldffTV//vOfueuuu7j33ntp1qwZ8+fP58kn\nn+TnP/85f/7zn+nfv3/4Oo888gh33nknzz//PJdddln5l67QnDlz6Nu3L0eOHKFjx468+OKLXH75\n5QCMGTOGG2+8kc6dO3P++eezeXPwQ/66665jxIgRfPbZZ7z00kuV1qsvUU2tLCJDgL8BHuDfqvpM\nueP3AvcBfiAfGKWqa0SkG8ElFo/+11qgqvdW9Vo2tbKpLxOXZPObDzMA6Na+ObN+cynyxzYNHsfw\norFk6GkAPDX8LG6/oFuDx1BbNrVybKjXqZVFxAO8DAwFegK3iEjPctXeU9VeqtoHGAc8H3Fso6r2\nCf1UmfCNqU/jF5U+wB3Z7+So2n/rw088c8LbHy3dUUVNY+peNG36/YAsVd2kqsXABGB4ZAVVPRhR\nbAHE1sosJuGt33WIJVuDC5t7HeEn53ZxLZbrPPNJ8gQ/cJZv38/G3IZ7rmBMNEm/M7A9opwd2leG\niNwnIhsJ3unfH3EoVUSWicg3InJRRS8gIqNEJF1E0nNzc2sQvjHRmfBiaTvwlSygw186ujYHTlvJ\n57IzOobLHy/NrqJ27Im11fYSzfG+/9Ek/Yq+Ax/zqqr6sqqeCvwW+ENo907gZFXtCzwEvCcirSo4\n91VVTVPVtA4djn8uc2Mi+fwBPvNfGC6P9MxyMZqgGyK+aXyydAeBOFlHt2nTpuTl5Vnid4mqkpeX\nR9OmTWt9jWh672QDkQt8dgGqmshiAvCPUIBFQFFoe0nom0APwJ7UmgYzb2MeeQTv6k9kLwOdlS5H\nBINO70jb5knsO1JCzoFCFmzOY8CpKW6HVa0uXbqQnZ2NfSN3T9OmTenSpfbNk9Ek/cVAdxFJBXYA\nI4FbIyuISHdVPbr80DXAhtD+DsBeVfWLyClAd2BTraM1phYmZ5Teo1zjWVCv8+xEK9nrMOycTrw1\nfysAHy3ZERdJPykpqd5HjJr6VW3zjqr6gNHAdILdLz9Q1dUiMlZEhoWqjRaR1SKynGAzzp2h/RcD\nK0QkA5gI3Kuqe+v8tzCmEkU+P19EzHNznWd+FbUb0JjW3LDk9nBx2tIsjjzZsYoTjKkbUQ3OUtWp\nwNRy+56I2P51Jed9BHxU0TFjGsK36/eEp1DuIrvpIxtdjqhUb9nEqbKDjdqZIzRleiCNH7sdlGn0\nbBoG06hFNu1c58yvl4VSaksEbojos/+5v38VtY2pG5b0TaN1pNjHV2tK5yaPmaadCNc4C8Pb3wZ6\nc6iw5jM7GlMTlvRNozVz3W4KSoLTJp8qOzhTtlVzRsPr5uziTNkCQDHJzFy3292ATKNnSd80WpFN\nO8M882KqaSfS1Z7SpRqnrbTFVUz9sqRvGqWDhSXMyiztS36ts8DFaKoWuT7v7PW7OVLsczEa09hZ\n0jeN0tdrd1HsCy6UcVanVpzq7HQ5osqd5uTQQ4IznRSWBJidaQOfTP2xpG8apS9Xlz7AvbrXD1yM\nJDqRd/tTV8buB5SJf5b0TaNTWOLnm/Wld8tXnXWii9FE52pPaS+emet2U1hS/+v2msRkSd80OnOz\n9nCkOJg0T0lpwakdTnA5our1kGxOkeCD5yPFZT+0jKlLlvRNoxPZtHPlWSe6tlhKTYiUbeKZZk08\npp5Y0jeNij+gzFhbmvQH9zzJxWhqZmhEE8/Xa3eHH0QbU5cs6ZtGZemY/uQdLgYghf30fT3VtcVS\nauos2UqXts0AOFTkY9Fmm5vQ1D1L+qZR+cr/o/D2lZ4lODEwjXK0ROCKM0sfOkd+YzGmrljSN42G\nqjI9kBYuD3bib62ey88snV7563W7bIUqU+cs6ZtGY8PufLZqsA2/BQUMcFa7HFHN9U9tzwlNgjOe\nb99bwIbdtmi6qVuW9E2j8WXEYimXOhk0kfibziDZ63BJj9J1oiNnCTWmLljSN41GZIIc7Im/ph0A\nxrTm8nWPh4tffzk5bh5Em/gQVdIXkSEikikiWSLyaAXH7xWRlSKyXES+E5GeEcd+FzovU0Suqsvg\njTlq96FCMrIPAODBz6XOcpcjqr1BznIcgt01l+lp7NFWLkdkGpNqk76IeICXgaFAT+CWyKQe8p6q\n9lLVPsA44PnQuT0JLqR+FjAE+L/Q9YypU5GTlKVJJq3liIvRHJ+2kk+aZAKgOMzy93E5ItOYRHOn\n3w/IUtVNqloMTACGR1ZQ1YMRxRbA0S4Hw4EJqlqkqpuBrND1jKlTsyIWH7nME793+Udd7lkW3p4R\nONfFSExjE03S7wxsjyhnh/aVISL3ichGgnf699fw3FEiki4i6bm5NueIqZliX4A5G/aEy5c5y6qo\nHR+ucJaEt+cEetsEbKbORJP0K5q45JjOw6r6sqqeCvwW+EMNz31VVdNUNa1Dhw4VnGJM5dK37iW/\nKNhTp4vs5jTZ4XJEx+9UZyepEpx/5whNWbApz+WITGMRTdLPBrpGlLsAOZXUhWDzz/W1PNeYGots\n2hnkLI/ZZRFr6nJnaXh7lq2da+pINEl/MdBdRFJFJJngg9lJkRVEpHtE8RpgQ2h7EjBSRJqISCrQ\nHViEMXUocjHxy+K41055gyJ+l1mZuTY619QJb3UVVNUnIqOB6YAHeF1VV4vIWCBdVScBo0XkCqAE\n2AfcGTp3tYh8AKwBfMB9qmqNk6bObMs7wsbcwwA0TXK4IA5H4VYmzcmkBQUcphnb9h5h857DnBIH\nawOY2FZt0gdQ1anA1HL7nojY/nUV5z4NPF3bAI2pysx1pQOyBpyaQtMtJS5GU7eaiI8Bzmq+Cs0n\nNDsz15K+OW42ItfEtZkR/fMHndGxiprxKXKQ2WxbTcvUAUv6Jm4dKfaV6dVyWWNM+p6M8PaCTXkU\nFFvrqDk+lvRN3JqXlRdeXer0E1vSuU0zlyOqe50ljx4SHOpS7Aswf9Oeas4wpmqW9E3cilw8/NLT\nG+/4jkud0rv9WeusicccH0v6Ji6pKrPXl3bVvKRRJ/3Idv3d1nXTHJeoeu8YE1PGtGZL4CS2Fz8P\nQHMKSftPD5DG2d6d5mTSItnD4WI/2/cWsGnPYU61XjymluxO38SlbwK9w9sDnFUkN9KED5Asfi48\nLSVcttG55nhY0jdx6ZvAOeHtS5wVLkbSMCK7o35jXTfNcbCkb+JOoSYxP1C6pEMiJP3IB9ULN+3l\nSHH8LQVpYoMlfRN3FgdOp5AmAJwiOZzsNP7mjh+0bkaPE4Pt+MX+AAs37XU5IhOvLOmbuBPZtHNx\nAtzlHxW5YLo18ZjasqRv4k7Z9vyMKmo2LhdHJP1vLembWrKkb+LKjv0FbNAuACRTzPnOWpcjajjn\ndWtH06Tgf9lNew6zfW/8rgNs3GNJ38SVbyImWOvvrKOZFLsYTQMa05qmT7fjfH/pwirfPH+biwGZ\neGVJ38SVbyJH4SZQ085Rkc8wvo0Yq2BMtCzpm7hR4g8wL6t0Vs1E6KpZXmTSnxc4ixJ/wMVoTDyy\npG/ixrJt+zkUWgC9E3saxQLoNXWq5NCZYBNXPs1ZunWfyxGZeBNV0heRISKSKSJZIvJoBccfEpE1\nIrJCRL4WkR9GHPOLyPLQz6Ty5xoTrcgeKxd7VjSaBdBrQiT4ux/17QbrxWNqptqkLyIe4GVgKNAT\nuEVEepartgxIU9XewERgXMSxAlXtE/oZVkdxmwQUmeASqX9+eZHPMqy/vqmpaO70+wFZqrpJVYuB\nCcDwyAqqOktVj/YfWwB0qdswTaLbe7iYlTsOAOAQ4MJGtAB6TQ1wVuMhOMHcqh0H2ZNf5HJEJp5E\nk/Q7A9sjytmhfZX5OTAtotxURNJFZIGIXF/RCSIyKlQnPTfX7lzMseZsyOXoNPJ9JIvWctjdgFzU\nSgo4VzaEy3OsicfUQDRJv6KW0wpXcRCR24A04NmI3SerahpwK/BXETn1mIupvqqqaaqa1qFD410M\nw9Tet+tLlwmMbNNOVJdErJ0b+d4YU51okn420DWi3AXIKV9JRK4Afg8MU9Xw901VzQn9uQmYDfQ9\njnhNAlLVMnezidg/v7zIZxpzNuQSCNhqWiY60ST9xUB3EUkVkWRgJFCmF46I9AVeIZjwd0fsbysi\nTULbKcCFwJq6Ct4khnXfH2L3oeB9RJvmSfSWTS5H5L6zZQvtOAjAnvxi1uw86HJEJl5Um/RV1QeM\nBqYDa4EPVHW1iIwVkaO9cZ4FTgA+LNc180wgXUQygFnAM6pqSd/USGRXzQtPS8EjdlfriDLQWRku\nW9dNE62o1shV1anA1HL7nojYvqKS8+YBvY4nQGMiE9ol3TvAeheDiSEXe1YwKXAhEPxg/OWlp7kc\nkYkHNiLXxLQjxT4Wby4ddXpRj5QqaieWiyPu9Jds3cfhIltNy1TPkr6JaQs37aU4NL9MjxNP4Aet\nm7kcUezoKPs546SWAJT4lfkb86o5wxhL+iaWjWnNN28/FS5evOd9GNPaxYBiT+RqWtaub6JhSd/E\ntMjpg62r5rFsNS1TU5b0TczaHkhhk3YCoClFnOdkuhxR7Enr1pZmSR4AtuQdYVueraZlqmZJ38Ss\nyLv8/s5amkqJi9HEpiZeD+ef0i5ctiYeUx1L+iZmlV0A3aZeqIw18ZiasKRvYlKJP8C8wFnhciJP\npVydyKQ/b2OeraZlqmRJ38SkpVv3kU9zADqTy6lyzHRPBmBMa075e2e6SHD2k/wiH0v/eIHLQZlY\nZknfxKQyC6Yk6CpZ0RIp2/z1jf+cKmqbRGdJ38SkyOmCratm9cqsphXxANyY8izpm5izJ78ovEqW\nBz8DEniVrGgNcFbjJTgNw2pNZfehQpcjMrHKkr6JOd9tKL3LP1c20EoKXIwmPpwghaRFjGOwhVVM\nZSzpm5gTudh35ApRpmpl2vWt66aphCV9E1MCAS3T19y6akYvsl1/zoZc/LaalqmAJX0TU1blHCDv\ncDEAKRzgbNnibkBx5EzZRgeC01DvP1LCiuz9LkdkYlFUSV9EhohIpohkicijFRx/SETWiMgKEfla\nRH4YcexOEdkQ+rmzLoM3jc+sdWXv8h1bJStqInCJx5p4TNWqTfoi4gFeBoYCPYFbRKRnuWrLgDRV\n7Q1MBMaFzm0HPAn0B/oBT4pI27oL3zQ2s9eHl1jmEs9yFyOJT2W6blrSNxWI5k6/H5ClqptUtRiY\nAAyPrKCqs1T16PR+C4Auoe2rgK9Uda+q7gO+AobUTeimsdl3uJjl24NNEo6UXRnKRGegswqH4DQM\nGdv3sy/UVGbMUdEk/c7A9ohydmhfZX4OTKvluSaBfbshFw215pzTtQ1tJd/dgOJQW8nnHNkIQEBh\nTpZ13TRlRZP0KxoAX2FDq4jcBqQBz9bkXBEZJSLpIpKem2tfSRPVN5mlf/eX9ujoYiTx7dKIZrHZ\nmburqGkSUTRJPxvoGlHuAhwz+5WIXAH8HhimqkU1OVdVX1XVNFVN69ChQ/nDJgEEAlqmDXrQGfbv\noLYGOaVJ/5vMXALWddNEiCbpLwa6i0iqiCQDI4FJkRVEpC/wCsGEH3lrMR0YLCJtQw9wB4f2GVNG\nma6aJyRzdidbC7e2zpYtpJzQBIC8w8WsCE1pYQxEkfRV1QeMJpis1wIfqOpqERkrIsNC1Z4FTgA+\nFJHlIjIpdO5e4CmCHxyLgbGhfcaUGtOa2f98IFy8+MjXOGPbuBhQfHNEufT00m9KM9dZE48p5Y2m\nkqpOBaaW2/dExPYVVZz7OvB6bQM0iWF2xHTA1lXz+A06vSMTl2QDwXb9h67s4XJEJlbYiFzjuv3a\nguV6GgAOAeuqWQcGdk/B4wT7UazIPkDuoaJqzjCJwpK+cd03gd4EQv8Uz5GN1lWzDrRulkTaD0vH\nQVovHnOUJX3juq/954a3L/MsczGSxmXQGaXdXmdnWldoE2RJ37jK5w8wO9AnXL7cWepiNI3LoNNL\nk/6363NtwXQDWNI3LluydR8HaQHAD8jjTNnmckSNR48TT6Bzm2YAHCrysWTrPpcjMrHAkr5x1dcR\n3Qkv8yyzBdDrkIiU6bo5y9r1DZb0jcu+XrsrvG1NO3VoTGsY05pBS+8P75r57bfB/SahWdI3rtmy\n5zAbcw8D0JQiWwC9HgxwVtOE4EjnDdqFrQGb0yjRWdI3rokcKTrQWUVTKXExmsapuRQx0FkVLs8I\nnFtFbZMILOkb13y9rrRp5zLHumrWlyucJeHtGYEfuRiJiQWW9I0rDhWWsHBT6TRM1j+//lwe8d4u\nCpzBgSP2jSqRWdI3rpizYQ++0JS/Z8tmThLrTlhfOsp+zpEsAPx4yixJaRKPJX3jihlrI5t2rNdO\nfRvsKW3i+XLNripqmsbOkr5pcD5/oMxD3MutaafeRbbrf5OZS7HPRucmKkv6psEt2rKX/aF25ZNa\nNaWXbHY5osavh2TTVYIftPlFPhZuznM5IuMWS/qmwX25urR5YfBZJ+KILedX30TK9eKxJp6EZUnf\nNJwxrdEnW/PlvPTwrqvSR7m2estMAAAWTklEQVQYUGK5MjLpr92Nqn3YJqKokr6IDBGRTBHJEpFH\nKzh+sYgsFRGfiIwod8wfWkIxvIyiSVyrNJUcUgBoTT79nHUuR5Q4znMyaUVwBPSO/QWs2XnQ5YiM\nG6pN+iLiAV4GhgI9gVtEpGe5atuAu4D3KrhEgar2Cf0Mq+C4SSDT/Wnh7cudpSSJ38VoEkuS+Bnk\nlC5FOX21NfEkomju9PsBWaq6SVWLgQnA8MgKqrpFVVcA1iXAVGl64Lzw9mBPehU1TX24yrM4vP3F\nqp0uRmLcEk3S7wxsjyhnh/ZFq6mIpIvIAhG5vkbRmUZlU+AkNmgXIDjB2iXOCpcjSjyXOhk0TQr+\nt1+/K5+s3bY0ZaKJJulXNMN5TZ4AnayqacCtwF9F5NRjXkBkVOiDIT0315Z1a6y+DJQ27VzsrKCZ\nFLsYTWJqLkVc2qN0pk2720880ST9bKBrRLkLkBPtC6hqTujPTcBsoG8FdV5V1TRVTevQoUP5w6aR\nmO4vbdq5ypp2XDO010nh7WmrvncxEuOGaJL+YqC7iKSKSDIwEoiqF46ItBWRJqHtFOBCYE1tgzXx\na9fBQpZpdwA8+G3BFBdddkZHkj3B//qrcw6yLe+IyxGZhlRt0ldVHzAamA6sBT5Q1dUiMlZEhgGI\nyHkikg3cCLwiIkdXwzgTSBeRDGAW8IyqWtJPQNNWljYj9HfW0kYOuxhNYmv5TAoXaek3rWkv3GMr\naiUQbzSVVHUqMLXcvicithcTbPYpf948oNdxxmgagSkrSpP+Nc4CFyMxAEM9C/k6tKDKNP95/D/v\nFJcjMg3FRuSaepezv4D0rcGpkz34GRrRbdC440pnKV58ACzX7uRoO5cjMg3Fkr6pd1MjmnYGOKtp\nJ4dcjMYAtJbDXOCUtrR+4e/nYjSmIVnSN/VuckTTzrXWtBMzrnYWhren+vu7GIlpSJb0Tb3avvcI\nGdv3A+DFV2ZEqHHXYE86HoLTYKTr6ezYX+ByRKYhWNI39SryAe5FzkrrtRND2sshBjorw+VJy6Me\nfmPimCV9U6+mrChNJNd6rGkn1gz3zAtvf7Z8h4uRmIZiSd/Um817DrM6Jzh9b7LH4UrHRuHGmsFO\nOk0IToex7vtDZH5vD9kbO0v6pt5MySi9y7/k9A60EmszjjUnSGGZFbXsbr/xs6Rv6oWq8llE0r+2\n9w9cjMZU5XrP3PD2Z8tzbEWtRs6SvqkXK7IPhKftbZ7s4YozT3Q5IlOZS5wMWhP8u9qxv4Cl2/a5\nHJGpT5b0Tb34aGl2eHvo2T+gRZOoZvwwLkgWP1d7FoXLny6zXjyNmSV9U+eKfH4mRTTt/ORHNVlz\nx7hhmFPaxPP5yp2U+G0RvMbKkr6pc7P+eBX7j5QA0Jlczv/PaTaLY4zr76zjpFZNAdh7uJhv19ti\nRo2VJX1T5z7yXxTevsHzHY7Yg8FY54gyvE+ncPmD9O1V1DbxzJK+qVN5+UXMCvQJl2/wzHExGlMT\nN6aVLpD39drd5B4qcjEaU18s6Zs6NSkjB19omYYfSSapji3HFy9O+7/OpEkmAL6A8sn/3m3Nco2Q\nJX1TpyJ77dhdfvy5yTM7vP2+/1Ksy37jE1XSF5EhIpIpIlki8mgFxy8WkaUi4hOREeWO3SkiG0I/\nd9ZV4Cb2rN15kFU7QtMuUGxz7cShazwLaEFw5PRG7czS0LrGpvGoNumLiAd4GRgK9ARuEZGe5apt\nA+4C3it3bjvgSaA/0A94UkTaHn/YJha9u3BrePsqJ53WYgtux5sWUsR1nvnh8vv+S90LxtSLaO70\n+wFZqrpJVYuBCcDwyAqqukVVVwDlO/deBXylqntVdR/wFTCkDuI2MSa/yMcnS0vnbfmpd4aL0Zjj\nEdnEM8V/AflFPveCMXUumqTfGYjsv5Ud2heN4znXxJFPl+3gcHFwQY7ukk1/WedyRKa2+koW3SX4\nbOYITctMnGfiXzRJXyrYF+3jnajOFZFRIpIuIum5uTYoJN6oKu8sKG3a+alnBlLR37yJCyJwc8Td\n/vhF29wLxtS5aJJ+NtA1otwFiPajP6pzVfVVVU1T1bQOHTpEeWkTK5Zu28e60DzszZI81munEfix\nZw7JBEdVZ2QfYJlNwtZoRJP0FwPdRSRVRJKBkcCkKK8/HRgsIm1DD3AHh/aZRuSdBaV3gsP7dLJ5\n8xuB9nKI65zSVbXemLvFvWBMnao26auqDxhNMFmvBT5Q1dUiMlZEhgGIyHkikg3cCLwiIqtD5+4F\nniL4wbEYGBvaZxqDMa3Z+2QXPl+2Jbzrtozb3YvH1Km7vV+Et6eu3Mmug4UuRmPqSlTz3arqVGBq\nuX1PRGwvJth0U9G5rwOvH0eMJoZ96L+EYpIAOEeyONvZ4m5Aps6c7Wyln6xlkZ6JL6C8u2ArDw0+\n3e2wzHGyEbmm1krUw1u+weHybR7rptnY3OUtbY19d+E2Ckv8LkZj6oIlfVNrUwLnk0MKACkcKDOo\nxzQOg510OrUOTrmcd7iYKSt2uhyROV6W9E2tqCqv+K4Ll+/yfkFTKXExIlMfvBLg9gu6hctvzN1s\na+jGOUv6pla+WZ/LOj0ZgOYUWtNOI3ZLv640TQqmitU5B1mwyfpixDNL+qZWXvlmU3h7pGcmbeSw\ni9GY+tRmXAd+HPgqXH75tX/ZlMtxzJK+qbEV2fuZvykPAA9+fhbRtc80Tvd6JuMh+BD3u0AvlgZO\nczkiU1uW9E2NvfJt6V3+dc58usgeF6MxDeGHzm6GRwzWesn3YxejMcfDkr6pkU25+UxbWdqDY5R3\niovRmIb0S+9nSGgi3VmBvqzaccDliExtWNI3NfL8V+sJhDpvXOxk0NOxybgSxWlODlc7C8Pll2Zu\ncDEaU1uW9E3UVuccKNNP+yHvRBejMW74lffT8Pb01btY9/1BF6MxtWFJ30TtL1+uD28P7nkifZyN\nLkZj3HCGs53BzuJw+cWv7W4/3ljSN1FJ37KXmet2A8H51h+2OVgSVuTd/tSV37Nkq027HE8s6Ztq\nqSrjpmeGy9f36czpJ7V0MSLjpl7OZq5xShe9f/rzNTZKN45Y0jfVmrNhD4s2B0dheh3hgSu6uxyR\ncdtvvRNI8gSXR1u6bT/TVn3vckQmWpb0TZVK/AH+9MZH4fLN8hU/fKmTjchMcCc7u7kzYk6eZ6at\no8hnM3DGA0v6pkpvzdvCeg2ueNmcQn7l/cTliEys+NVl3WndLLiWwra9R3h7/tZqzjCxwJK+qdSu\ng4W88FVpj51fez/mJLGHdiao9bgU7i95LVx+8fN09j5Z4VpKJoZElfRFZIiIZIpIlog8WsHxJiLy\nfuj4QhHpFtrfTUQKRGR56OefdRu+qU9Pf76Ww8XBr+ynSTZ3e6a5HJGJNbd7vuKHEmzPP0gLniq5\nzeWITHWqTfoi4gFeBoYCPYFbRKRnuWo/B/ap6mnAC8D/RhzbqKp9Qj/31lHcpp7Ny9rDpIyccHms\n902SxdpsTVnJ4udJ73/C5U8CFzE7c7eLEZnqRHOn3w/IUtVNqloMTACGl6szHHgrtD0RuFxEpO7C\nNA2pyOfniUmrw+VhzlwGeNa4GJGJZZd5ljPMmRsu//6TVeQX+VyMyFQlmqTfGdgeUc4O7auwjqr6\ngANA+9CxVBFZJiLfiMhFxxmvaQDPTc8ka3c+AC2SPfw+6V2XIzKx7smk/9CWQwDs2F/As1+sczki\nU5lokn5Fd+zlR2JUVmcncLKq9gUeAt4TkVbHvIDIKBFJF5H03NzcKEIy9WVu1h7+NWdzuPzboWdw\noux3MSITD9rLIZ5MKm3m+c+CraRvsRW2YlE0ST8b6BpR7gLkVFZHRLxAa2Cvqhapah6Aqi4BNgI9\nyr+Aqr6qqmmqmtahQ4ea/xamThw4UsLDH2SEy5f06MDt5//QxYhMPBnuzGWQswwAVXjwg+UcKLB1\nk2NNNEl/MdBdRFJFJBkYCUwqV2cScGdoewQwU1VVRDqEHgQjIqcA3YFNmJijqjz2pz/y/cFCANpx\nkGe3jkD+2MblyEy8EIGnk16jZRMvANv3FvDfH2bYFA0xptqkH2qjHw1MB9YCH6jqahEZKyLDQtVe\nA9qLSBbBZpyj3TovBlaISAbBB7z3qqp954tBHy7J5vPABeHy/yT9m45ii2SYmukkexk3one4/OWa\nXbz23eYqzjANTWLtUzgtLU3T09PdDiOhLNm6j1teXUCxP7gq0kjPTJ5J+rfLUZl4NqbkDt70DwHA\ni48Pksdy7tglLkfVuInIElVNq66ejchNcDv2F/D/3k4PJ/wesp3HvW+7HJWJd4953+UcyQLAh5fR\nxfezO9R0aNxlST+BHSn2cc9b6ezJLwagLYd4Lek5WkiRy5GZeJcsfv6e9CKtOAxADinc9cZiDhXa\ng123WdJPUD5/gAcmLGfNzuByd0ke4Z/JL9DVsS6zpm50dfbwt6S/4yE4knvNzoPc+84Sm43TZZb0\nE5DPH+DBDzL4cs2u8L4/XX82/R0bUGPq1iBPBv/jLX0+NDcrj998uIJAILaeJSYSS/oJxh9QHv4w\ng8kR8+rcc1EqN593sotRmcbsJu83/Lf3/XB5ckYOj32yEr8lfldY0k8g/oDymw8z+Gx5acK/3fMl\njy26wBZFMfXql57PuOOC0oF+ExZv5/7xy6ypxwWW9BNEfpGP//d2Op8s2xHed5vnK8Z638SmxjP1\nTQSeXDqQG5xvw/s+X7mTXzwxjsM2OVuDsqSfALbvPcKIf8xjxtrSKW9v9cywhG8alEeU55JeKbMu\nw5xAb2791wJy9he4GFlisaTfyC3espfrX57Luu8PhfeN8kzhT943cMTaVE3DckR5wvs2D3k/DO/L\nyD7ANS/OsXn4G4gl/Uaq2Bfg2enruPmV+eQdDvbDT/IIz47ozWNJ71nCN64Rgfu9n/CU9/Vwd859\nR0q4+83F/OXLTHyhgYKmfljSb4TW5Bxk2N+/4+VZGznaQaIdB3nPM4Ybp5ztbnDGhNzuncH45D9x\nYqsmQHBmzpdmZnH9/80lY7tN511fLOk3IvsOF/PUlDUMf/m7Ms055zurmdTkD5znZLoYnTHH6udk\n8nnR3Qx0Vob3rdpxkOtfnsOTn63ioI3grXM24VojUFji5615W3h5VhYHC0t7QjShmN96J3CXZ7o1\n55iY5lfhn/7reNF3A0Ukh/e3bZ7EPRefwh0XdOOE0JTNpmLRTrhmST+O5R4q4t2FW3lnRjp7KNvP\n/jxZxzNJ/+JUZ6dL0RlTc1sDHXncdzffBs4ps79N8yTuuegUbul3Mu1aJFdydmKzpN9I+QPKgk15\nfLx0B5MzcsKzYx6VKjv5rXcCVzmLrTumiUuq8HmgP8/4biFbO5Y5lkwJg3ufzC39TuaCU9rjOPaP\n/ChL+o1IYYmfJVv38dWaXUxZsZM9+cfOgvkD8rjXO5lbPV+TJDbK0cS/EvXwsf8iXvJff0zyBzip\nVVOu6NmRK3uexAWntCfZm9iPKC3px7H8Ih8rsw+Qkb2feRvzWLQ5j8KSiruxnSNZ/Nw7jaHOIkv2\nplEqUQ+f+i/kHf8VZOhpFdZpkezh3B+2pV+3dvRLbUevLq1pnpxYzwDqNOmLyBDgb4AH+LeqPlPu\neBPgP8CPgDzgZlXdEjr2O+DngB+4X1WnV/VaiZL0VZUDBSXs2F/A5j2HydqdT9bufDK/P0RWbj5V\n/bWksJ9rPQu43jOXPs7GhgvaGJetDXTlff8gPvVfyH5aVlpPBFLbt+DMTq0448SWdEtpQbf2LTi5\nfXNaN0tqwIgbTp0l/dDC5uuBK4Fsggul36KqayLq/BLorar3ishI4MeqerOI9ATGA/2ATsAMoIeq\nVnpLGm9Jv8QfoLDET2FJ8M/8Ih9Hin3kF/k5UFDCgYISDhaUkJdfzJ78IvbkF5F7qIic/QUcLo7+\nzjxVdjLQWclVTjrnO2vwig1gMYnLpw6LA6fzVeBHfBVIY3sFzT+VOaGJl46tmnBSq6Z0bNmEdi2a\n0K5FEm2aJ9OqWRItm3pp2cTLCU29NE/y0jTZoXmylyZeB68jSIw+LIs26Ufz/acfkKWqm0IXngAM\nB9ZE1BkOjAltTwT+LsF3ZjgwQVWLgM2hhdP7AfOj/UWi9dgnK9mxLzh/x9GPscgPNFVQNPhnaDug\nwcoBVZTgnwGFQEDxH/3R4J8l/kD4z2JfgBK/UhzaV9ccAvSQbM5xNnKubOBCzyq6yJ46fx1j4pVX\nAlzgWcsFnrU8ru+QrSks1jNYFDiD9EAPNmknApUMQ8ov8pGf62NT7uEav64j0MTrIckjJHsdvI5D\nklfwOg4eR/CI4DiCxyG87YjgCAiCSPBbSEXbADemdWXYOZ2O562pVjRJvzOwPaKcDfSvrI6q+kTk\nANA+tH9BuXM71zraKizavJes3fn1cel604xCOsseTpbdnCY5nCY7ONXJ4UzZRnNbstCYqIhAV9lD\nV77jBs93ABRoMuu1C2sDJ7NRO7FFT2KrnshWPbHMOICaCigUlPgpqKcxY+ef0r5+LhwhmqRf0XeZ\n8re3ldWJ5lxEZBQwKlTMFxG3ho6mAA16Sx0Ha1U1+HsSJ+x9qVgMvS97gOVuB3FUVO/L6P+F0bV/\njR9WXyW6pJ8NdI0odwFyKqmTLSJeoDWwN8pzUdVXgVejCbg+iUh6NG1iicTek4rZ+1Ixe18qFkvv\nSzQdWxcD3UUkVUSSgZHApHJ1JgF3hrZHADM12KA+CRgpIk1EJBXoDiyqm9CNMcbUVLV3+qE2+tHA\ndIJdNl9X1dUiMhZIV9VJwGvA26EHtXsJfjAQqvcBwYe+PuC+qnruGGOMqV8xNzjLTSIyKtTUZELs\nPamYvS8Vs/elYrH0vljSN8aYBJLYk1UYY0yCsaRfARH5jYioiKS4HUssEJFnRWSdiKwQkU9EpI3b\nMblJRIaISKaIZInIo27H4zYR6Sois0RkrYisFpFfux1TLBERj4gsE5EpbscClvSPISJdCU45sc3t\nWGLIV8DZqtqb4JQcv3M5HteEpiV5GRgK9ARuCU03ksh8wMOqeiZwPnCfvSdl/BpY63YQR1nSP9YL\nwCNUMIgsUanql6p6dEmuBQTHWySq8LQkqloMHJ2WJGGp6k5VXRraPkQwwdXLyPt4IyJdgGuAf7sd\ny1GW9COIyDBgh6pmuB1LDPsZMM3tIFxU0bQkluBCRKQb0BdY6G4kMeOvBG8iY2aGxMSacBoQkRnA\nSRUc+j3wGDC4YSOKDVW9L6r6WajO7wl+lX+3IWOLMVFNLZKIROQE4CPgAVU96HY8bhORa4HdqrpE\nRC51O56jEi7pq+oVFe0XkV5AKpARmjq1C7BURPqp6vcNGKIrKntfjhKRO4Frgcs1sfv5RjW1SKIR\nkSSCCf9dVf3Y7XhixIXAMBG5GmgKtBKRd1T1NjeDsn76lRCRLUCaqsbI5FHuCS2i8zxwiarmuh2P\nm0JzS60HLgd2EJym5FZVXe1qYC4KTaP+FrBXVR9wO55YFLrT/42qXut2LNamb6Lxd6Al8JWILBeR\nf7odkFtCD7SPTkuyFvggkRN+yIXA7cBloX8fy0N3tyYG2Z2+McYkELvTN8aYBGJJ3xhjEoglfWOM\nSSCW9I0xJoFY0jfGmARiSd8YYxKIJX1jjEkglvSNMSaB/H+sy5OW7b4tlQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxU5dnA/d81kwQQIzsqm4kWRBRkiaCIsogIqGAtKtpWrFoe3kpX+1hsVXixWh/11Yraqq1LaxW0qIgILqyCgBBIANl3CGtIWBOyzMz1/jHDZBJCMglJzizX9/OZD+c+5z4zV4bkmjP3uRdRVYwxxsQul9MBGGOMqV2W6I0xJsZZojfGmBhnid4YY2KcJXpjjIlxCU4HUFbz5s01JSXF6TCMMSaqrFix4pCqtijvWMQl+pSUFNLT050OwxhjooqI7DzTMWu6McaYGGeJ3hhjYpwlemOMiXER10ZvjIlcxcXFZGVlUVBQ4HQocat+/fq0adOGxMTEsM+xRG+MCVtWVhbJycmkpKQgIk6HE3dUlZycHLKyskhNTQ37PGu6McaEraCggGbNmlmSd4iI0KxZsyp/o7JEb4ypEkvyzqrO+x9WoheRwSKyUUS2iMi4CuqNEBEVkbSQfY8GztsoIjdVOUJjjDFnpdJELyJu4FVgCNAJuFtEOpVTLxn4FfBdyL5OwEjgcmAw8LfA8xljTLWICA8//HCw/PzzzzNhwoQ6jeG+++5j6tSp5e5PTU3lyiuvpEOHDtx7773s2bMneHzo0KEcOXLkjM/717/+lfz8/BqPN5wr+p7AFlXdpqpFwBRgeDn1ngSeBUIbj4YDU1S1UFW3A1sCz2dMZJvQqPyHcVy9evX4+OOPOXToULXO93g8NRxRac899xyrVq1i48aNdOvWjf79+1NUVATAzJkzady48RnPra1EH06vm9bA7pByFtArtIKIdAPaquoMEfl9mXOXljm3ddkXEJHRwGiAdu3ahRe5MbUg50QhmbuPkFF8Bxu0LRdKLre5v6W7bMaapiNDQkICo0eP5sUXX+Spp54qdWznzp3cf//9ZGdn06JFC95++23atWvHfffdR9OmTcnIyKB79+4kJyezfft29u3bx6ZNm3jhhRdYunQps2bNonXr1nz22WckJiYyceJEPvvsM06ePEnv3r15/fXXw24jFxF++9vf8sknnzBr1iyGDx8enOKlQYMG3HnnnWRlZeH1enn88cc5cOAAe/fupX///jRv3px58+bV3HsWTrzl7AuuPygiLuBF4L6qnhvcofoG8AZAWlqarW1o6lzOiUIembqaORsOBvb8MHjsXe8gUmUfI9zfcF+hh4b1rFcyQMq4z2vtuXc8c3OFxx966CG6dOnCI488Umr/2LFjuffeexk1ahRvvfUWv/rVr5g2bRoAmzZtYvbs2bjdbiZMmMDWrVuZN28e69at45prruGjjz7i2Wef5Yc//CGff/45t912G2PHjuWJJ54A4Kc//SkzZszg1ltvrdLP0r17dzZs2MDw4SUNIV988QWtWrXi88/97+HRo0dp1KgRL7zwAvPmzaN58+ZVeo3KhNN0kwW0DSm3AfaGlJOBK4D5IrIDuBqYHrghW9m5xjhuTdZRbn15UUiSP912vZDnPHcx8o2l5OYV1WF0pjznnXce9957L5MmTSq1f8mSJdxzzz2APzEvWrQoeOyOO+7A7S65RThkyBASExPp3LkzXq+XwYMHA9C5c2d27NgBwLx58+jVqxedO3dm7ty5rF27tsqxlrcud+fOnZk9ezZ/+MMfWLhwIY0a1W6zYDiJfjnQXkRSRSQJ/83V6acOqupRVW2uqimqmoK/qWaYqqYH6o0UkXoikgq0B5bV+E9hTDX9N303P3ptMXuP+m8tiUD3do15wD2T5xP/zkj3XJIpaTNds+cod72+hAPHbGSo037zm9/w5ptvkpeXd8Y6oc0sDRs2LHWsXr16ALhcLhITE4N1XS4XHo+HgoICfvGLXzB16lTWrFnDz3/+82qNCM7IyOCyyy4rta9Dhw6sWLGCzp078+ijjzJx4sQqP29VVPodVFU9IjIW+BJwA2+p6loRmQikq+r0Cs5dKyIfAusAD/CQqnprKHZjzsq7S3bw+KclV2jJ5PFSwqsMOJgJgdHlI9wLmZDwL/7jHchTnh+juNh88AR3vLaE9x7sRdum5zgTfASorHmltjVt2pQ777yTN998k/vvvx+A3r17M2XKFH7605/y3nvv0adPn2o//6mk3rx5c06cOMHUqVMZMWJE2OerKi+//DL79u0Lfls4Ze/evTRt2pSf/OQnnHvuubzzzjsAJCcnc/z4cUeablDVmaraQVUvUdWnAvueKC/Jq2q/wNX8qfJTgfMuVdVZNRe6MdX3/Z6jPDljfbDcXrKYnvQ4A9yZp9WtL8U8mDCLlxJfJcHlv+rblZvPXa8v4Ui+NeM46eGHHy7V+2bSpEm8/fbbdOnShXfffZeXXnqp2s/duHFjfv7zn9O5c2duu+02rrrqqrDO+9///d9g98rly5czb948kpKSStVZs2YNPXv2pGvXrjz11FM89thjAIwePZohQ4bQv39/AB588MEaWZ9Dyms/clJaWprawiOmNp0o9HDLpIXsyPE3yVwu2/kg6UnOlcq/ls/xduP/Kf41Rfj/cG9zLeKvSX+DCUdrNeZIsX79+tOaIUzdK+//QURWqGpaefVtCgQTV1SVP368JpjkG3KSVxJfDivJA9zgzuDlxFeC5Wm+PnzpLfdvy5iIYYnexJUP03czfVVJx6+nE/9Jqmt/lZ7jJnc6t7sWBst/Kn7AeuKYiGaJ3sSN7OOFTPxsXbB8V1pbhruXVOu5xif+m5YcBuAQjRg/verd7oypK5boTdx4Ze5m8or8nb4ubtGQCcMur/ZzNZI8nkn8R7D82aq9fLm2at8MjKkrluhNXNiVk8/7y3YFy38aehkNks5ufr0B7kxGuBcEy89+sQGvL7I6NxgDluhNnPj/vt5IsdefhK9KacKAji1r5HkfS/hPcEDV1uw8Zqy2gd8m8tikHSbmrd17lE8zSxLwuCEda2zxjMaSx8/cXzDJezsAk+Zs5pYurXC74mQGtJqe0TPMbqqffPIJt99+O+vXr6djx44V1n3nnXcYNGgQrVq1qlZI8+fP5/nnn2fGjBmn7R8+fDgXX3wx+fn5nH/++TzyyCPccsstlT5fUlISvXv3rlY81WFX9CbmPfvFxuD2QFc6Pd5OrdFphx9ImEVyYKIzu6qvG5MnT6ZPnz5MmTKl0rrvvPMOe/fWzv/JddddR0ZGBhs3bmTSpEmMHTuWOXPmVHjO/PnzWbx4ca3EcyaW6E1MW7othwWbsgFw4eORhA9q/DUaSR4/61OyUPOkOZutrb4WnThxgm+//ZY333zztET/7LPP0rlzZ6688krGjRvH1KlTSU9P58c//jFdu3bl5MmTpKSkBEfTpqen069fPwCWLVtG79696datG71792bjxo1lX7pCXbt25YknnuCVV/zjLD777DN69epFt27dGDhwIAcOHGDHjh289tprvPjii3Tt2pWFCxeWW6+mWaI3Me0f32wLbt/uXkgH154KalffA9em2lV9HZk2bRqDBw+mQ4cONG3alJUrVwIwa9Yspk2bxnfffceqVat45JFHGDFiBGlpabz33ntkZmbSoEGDMz5vx44d+eabb8jIyGDixIn88Y9/rHJsp6YkBujTpw9Lly4lIyODkSNH8uyzz5KSksKYMWP47W9/S2ZmJtddd1259WqatdGbmLUzJ4+5G0umHv6F+9Nae61G5yTysz6pTJqzGYCX5mzm1i6tcMVLW30dmjx5Mr/5zW8AGDlyJJMnT6Z79+7Mnj2bn/3sZ5xzjn+iuaZNm1bpeY8ePcqoUaPYvHkzIkJxcXGVYwudUiYrK4u77rqLffv2UVRURGpqarnnhFvvbNgVvYlZ/16yk1N/d/1cmVxcxRGwVTKhEQ8s6ksy/ilzt2XnsXD89bX3enEqJyeHuXPn8uCDD5KSksJzzz3HBx98gKqiqmHdZE9ISMDn8wGUmnb48ccfp3///nz//fd89tlnZz0l8S9/+UvGjh3LmjVreP3118/4fOHWOxuW6E1Myiv08OHykhUw73N/Ueuv2UjyuTOkX/1/vANr/TXjzdSpU7n33nvZuXMnO3bsYPfu3aSmprJo0SIGDRrEW2+9FVxzNTc3FyiZ+veUlJQUVqxYAcBHH30U3H/06FFat/avdHpq2uCqWL16NU8++SQPPfTQac/3r3/9K1ivbDxnqleTrOnGxKSPM/ZwvNC/CPTFzRty/fE1dfK697jn8KZ3KABzfN3Ze+QkrRqfuV046tXxrJ2TJ09m3Lhxpfb96Ec/4v333+fvf/87mZmZpKWlkZSUxNChQ3n66ae57777GDNmDA0aNGDJkiWMHz+eBx54gKeffppevUqWv37kkUcYNWoUL7zwAgMGDAgrnoULF9KtWzfy8/Np2bIlkyZN4oYbbgBgwoQJ3HHHHbRu3Zqrr76a7du3A3DrrbcyYsQIPv30U15++eUz1qtJNk2xiTmqysAXFrA129+MMuHWTtz3ddc6e/17iv7IYt8VAPzqhvb87sYOdfbatc2mKY4MNk2xiXuLthwKJvlz6yXwox5t6vT1f+KeHdyesmwXxV5fnb6+MWWFlehFZLCIbBSRLSIyrpzjY0RkjYhkisgiEekU2J8iIicD+zNF5LWa/gGMKeudb3cEt0f0aENy/cQ6ff0bXStoEZjZ8uDxQmavq/l+0cZURaWJXkTcwKvAEKATcPepRB7ifVXtrKpdgWeBF0KObVXVroHHmJoK3JjyHDxWwLyQLpWjeqfUeQyJ4mWke36w/J/vdtZ5DLUp0pp740113v9wruh7AltUdZuqFgFTgOFlXvhYSLEhYL8JxhGfZu7l1KDUqy9uSmrzho7EMTJhLi78TTbfbslhW/YJR+KoafXr1ycnJ8eSvUNUlZycHOrXr1+l88LpddMa2B1SzgJ6la0kIg8BvwOSgNBb1qkikgEcAx5T1YXlnDsaGA3Qrl27sIM3pqyPVmYFt2/vXrdt86FaSw4DXBnM9vUA4IP03Tw6JPpvYrZp04asrCyys7OdDiVu1a9fnzZtqva7HU6iL28Ewmkf56r6KvCqiNwDPAaMAvYB7VQ1R0R6ANNE5PIy3wBQ1TeAN8Df66ZKP4ExAev2HmPDfn//5HoJLoZccYGj8Yx0zwsm+s8y9/KHmzpG/UjZxMTEWhm5aWpXOIk+C2gbUm4DVDSRxxTg7wCqWggUBrZXiMhWoANg/SdNjfsko+Rq/ibfQpKfGelgNHC9axWNz0nkSH4xe48WsHxHLr0ubuZoTCY+hdNGvxxoLyKpIpIEjASmh1YQkfYhxZuBzYH9LQI3cxGRi4H2wDaMqWEer49pIXPO3+4+rYWwziWJl5s7Xxgsh8ZnTF2qNNGrqgcYC3wJrAc+VNW1IjJRRIYFqo0VkbUikom/nX5UYP/1wGoRWQVMBcaoam6N/xQm7i3acojs44UAtOAwfVzfOxyR323dWge3Z67ZR5HH+tSbuhfWFAiqOhOYWWbfEyHbvz7DeR8BH5V3zJia9PHKkumHh7sXkyCRkVB7tGtC68YN2HPkJEdPFrNgUzY3djrf6bBMnLGRsSbqHS8o5qt1JTNTRkKzzSkulzCsa8kSdp9m1s58+MZUxBK9iXpfrj1AQbH/Cr6j7KSTa5fDEYWY0IjbFv8oWJy9egcnxtsVvalbluhN1Ju1Zl9we7i7btfiDMelriw6iv/Dp4B6fOm7yuGITLyxRG+i2vGCYhZuPhQsD3V952A0Zzbc/W1we5r3WgcjMfHIEr2JanM3HKQoMDvk5a3O4yLXwUrOcMawkG8ai32XczivyMFoTLyxRG+i2syQZhunR8JWpLXk0E3868l6cTN7vc1oaeqOJXoTtfIKPczfWDLnypCQwUmRaLB7eXD7y7W1uH6tMWVYojdRa/7GbAoDA5AuPT+ZS1qc63BEFbvJVZLov9l8iLzAUofG1DZL9CZqzfw+pNmmc+Q225yS4jpAR/HPTV/k8ZX6NmJMbbJEb6JSQbGXeRtKbrwOjfBmm1NCm2++sOYbU0cs0ZvoM6ERCyYOIr/IC8DFspf2f2sDExo5HFjlQptv5q4/QEGx18FoTLywRG+i0ixvz+D2UNd3SJRM895RdnOR+K/k84q8LN56qJIzjDl7luhN1ClWN3N83YLlwe5lDkZTNSIwOOSq/ovvrfnG1D5L9CbqLPddynH8a8G2JpvLJboW374ppJ1+9vqDeLyRMdOmiV2W6E3Ume3rHty+wZ0RNc02p3SVrZx/Xj0AcvOKWLbDlmgwtcsSvYkqqsqckEQ/0LXCwWiqxyXKoE4l3UHnrI/MaRtM7LBEb6LKloMn2Kn+JNmQk/RyrXc4ouoZGLL4yJz1B1BVB6MxsS6sRC8ig0Vko4hsEZFx5RwfIyJrRCRTRBaJSKeQY48GztsoIjfVZPAm/swOufrt61pNPYnO0aW9UptyTpIbgB05+Ww7lOdwRCaWVZroA4t7vwoMAToBd4cm8oD3VbWzqnYFngVeCJzbCf9i4pcDg4G/nVos3JjqCJ0M7Ab3SgcjOTv1E930+UHzYHmuNd+YWhTOFX1PYIuqblPVImAKMDy0gqoeCyk2BE59Dx0OTFHVQlXdDmwJPJ8xVZZzopCVuw4D4MJHf1emwxGdhQmNGLhpYrA4e9ZHUTHgy0SncBJ9a2B3SDkrsK8UEXlIRLbiv6L/VRXPHS0i6SKSnp1t83+Y8s3dcJBTTdk9ZBNN5bizAZ2lfu6SD6p0vZSj2tDBaEwsCyfRl9d57bQ7R6r6qqpeAvwBeKyK576hqmmqmtaiRYswQjLxKLR3ysAobrY5paUc5UrZCvjnqF/g6+JwRCZWhZPos4C2IeU2wN4K6k8BbqvmucaUq6DYyzebS77t3eCK/kQPMCDkA2uOt3sFNY2pvnAS/XKgvYikikgS/pur00MriEj7kOLNwObA9nRgpIjUE5FUoD0QPePVTcT4bntucBKzVNnHJRIb1wuhH1jzfVfaKFlTKxIqq6CqHhEZC3wJuIG3VHWtiEwE0lV1OjBWRAYCxcBhYFTg3LUi8iGwDvAAD6mqTddnqix0SuL+rugbDXsml8tOzieXAzTlKOeyctcReqY2dTosE2MqTfQAqjoTmFlm3xMh27+u4NyngKeqG6AxAPM3liT6AdHc26YMERjgzmCy9wbAP3jKEr2paTYy1kS87Yfy2JGTD8A5SW6ucm1wOKKaNTCk+WbOButPb2qeJXoT8UKv5ntf0jxqR8OeSW/XWpIoAvxTPGQdznc4IhNrLNGbiDcvZG3V/h1jr/ttAyni6pA5e2wtWVPTLNGbiJZf5GHptpxgud+lLR2Mpvb0c60KbluiNzXNEr2JaEu25lDk8Xc57HD+ubRu3MDhiGpHv5AbzIu3HqLQY53TTM2xRG8i14RGzPvPX4LF/ocmx+x8MKmyn3bin7Atv8hL+o7DDkdkYoklehOxVP2DiE7pF0PdKssSKdt8Y71vTM2xRG8i1lZtRZb62+TPJZ801yaHI6pdoR9k1k5vapIlehOx5vm6Brf7uL4nUWK73foa1zqSEvx/kpsPnmDPkZMOR2RihSV6E7HmhyT6qJ57PkwNpIheIaNirfnG1BRL9CYi5RV6WO67NFju615VQe3Y0T+k+6g135iaYoneRKSl23IoIhGAjrKLCyQ+eqH0+2pwcHvxuh0UjW8asz2NTN2xRG8i0oJNJVezfV3xcTUPpbtZ5tGA9JBvNcZUlyV6E5HiNdGX7Wa5IKR7qTHVZYneRJwdh/LYeWq2SgroEePdKsvqWyrR2/KC5uxZojcRJ/RqvrdrbczNVlmZq13rSMT/M2/QizigjR2OyES7sBK9iAwWkY0iskVExpVz/Hcisk5EVovIHBG5KOSYV0QyA4/pZc81pqxv4rTZ5pSGUlhqzv0FXmu+MWen0kQvIm7gVWAI0Am4W0Q6lamWAaSpahdgKvBsyLGTqto18BhWQ3GbGFXo8bJ4a8lslX1dqx2MxjmhP7c135izFc4VfU9gi6puU9UiYAowPLSCqs5T1VOrJSwF2tRsmCZepO84zMli/wjYFNlPO1d8DhoK/SazyNcZr08djMZEu3ASfWtgd0g5K7DvTB4AZoWU64tIuogsFZHbyjtBREYH6qRnZ9sgkXgWr71tyrpUdnM+uQAc5VxWZR1xOCITzcJJ9FLOvnIvL0TkJ0Aa8FzI7naqmgbcA/xVRC457clU31DVNFVNa9Ei9lYQMuFbsNESPfi7WV7vDmm+sVGy5iyEk+izgLYh5TbA3rKVRGQg8CdgmKoWntqvqnsD/24D5gPdziJeE8P2HT3JxgPHAUhyu0otrxePQj/ovtlsid5UXziJfjnQXkRSRSQJGAmU6j0jIt2A1/En+YMh+5uISL3AdnPgWmBdTQVvYktob5urUptwjhRWUDv29XF9jwv/6lqrdh/hcF6RwxGZaFVpoldVDzAW+BJYD3yoqmtFZKKInOpF8xxwLvDfMt0oLwPSRWQVMA94RlUt0ZtyfbPpUHC7X4fYXBu2KhpLHlfKVgB8Cou2HKrkDGPKlxBOJVWdCcwss++JkO2BZzhvMdD5bAI08cHj9bEwpHmi76UtYK6DAUWIvu5VZHjaA/4b1bde2crhiEw0spGxxnkTGrHq/+3JsQL/aNALyKH936yHLpRpp9+Ujap1szRVZ4neRITQ0Z993auR8vp6xaEuso3G+G9QHzxeyIb9xx2OyEQjS/QmIoSO/oznbpVluUW5zrUmWA4dZ2BMuCzRG8flajKr9WIAXPi41rXW4Ygiy/Uu609vzo4leuO4hb4r0MCvYjfZTCPJcziiyNI3ZOBU+s5cThTG12ye5uxZojeO+8Yb0mzjjs9JzCrSUo5w2YXnAVDsVZaETPpmTDgs0RtH+XxaahWl6+N0tsrK9O1QMjXIgk3xOdGbqT5L9MZR6/cf4xD+hTWacJzOss3hiCJT6URv3SxN1ViiN44KHQ17nWs1brEEVp4eFzWhYZIbgN25J9mRk1/JGcaUsERvHDV/Y0kzxPXWPn9GSQkurrmkebC8YKM135jwWaI3jjleUMyKnYeDZes/X4EJjei7+S/B4oLP34MJjRwMyEQTS/TGMd9uOYQnsHLSFbKdFnLM4YgiW+jygkt8nSjQRAejMdHEEr1xzHxbZKRK2rkOcrH4l4IooB7LfB0djshEC0v0xhGqWmo4fz+3JfpwhH4gzg/plmpMRSzRG0dsOnCCfUcLADiPPLrJZocjig79SiX6rg5GYqKJJXrjiNDeNte51pAgPgejiR69XOupj3/lrW3ail3WzdKEwRK9cYS1z1dPfSmmd8ikb/NtlKwJQ1iJXkQGi8hGEdkiIuPKOf47EVknIqtFZI6IXBRybJSIbA48RtVk8CY6nSj0kL4zN1jua+3zVVKq+cZmszRhqDTRi4gbeBUYAnQC7haRTmWqZQBpqtoFmAo8Gzi3KTAe6AX0BMaLSJOaC99Eo8VbDlHs9XervOzC8zhfjjgcUXQJTfSLtx6ioNjrYDQmGoRzRd8T2KKq21S1CJgCDA+toKrzVPVUY+FS4NQ6cDcBX6tqrqoeBr4GBtdM6CZazQ/tbXNpiwpqmvKU6mZZ7OO77bmVnGHiXTiJvjWwO6ScFdh3Jg8As6pyroiMFpF0EUnPzravojFrQiN0fCMWfLciuKvvYmvNq45+rszg9nybDsFUIpxEX97qneXOPCUiPwHSgOeqcq6qvqGqaaqa1qKFXeHFss3amj34/4+TyaeHdausFmunN1URTqLPAtqGlNsAe8tWEpGBwJ+AYapaWJVzTfyY6+sW3L7OtYZEsfbl6ujp2kAD/OMQth/KY2eOrcplziycRL8caC8iqSKSBIwEpodWEJFuwOv4k3zo98gvgUEi0iRwE3ZQYJ+JU3O9JYm+vyvDwUiim7+b5bpg2a7qTUUqTfSq6gHG4k/Q64EPVXWtiEwUkWGBas8B5wL/FZFMEZkeODcXeBL/h8VyYGJgn4lDR7UhK7RDsNzPnVlBbVOZ0Hb6ORusnd6cWUI4lVR1JjCzzL4nQrYHVnDuW8Bb1Q3QxI4Fvi548S+ecaVssdkqz1J/dyYE1glfujWHvEIPDeuF9Sdt4oyNjDV1JrTZZoDbmm3OVhs5RMcLkgEo8vr4dsuhSs4w8coSvakT3jKLgA9wWbNNTRjQsWVwe64135gzsERv6kTm7sMcxn/12YLDXC47nA0oRtxwWelE7/PZmrvmdJboTZ0Ivdoc4M7EZYuA14iubZvQ5Bz/SlMHjxeydq/d9zCns0Rv6sSc9SWJ3rpV1hy3S+h/aclV/ZwNBxyMxkQqS/Sm1u09cpIN+48DkIiHPq7vHY4otgy4zNrpTcUs0ZtaNy9kLpZervWcKwUORhN7ru/QggSXf7aR1VlHOXDM3l9TmiV6U+u+XlfSnDDAmm1q3Hn1E+mZ2jRYnmdX9aYMS/SmVp0o9LB4S06wfKMr3cFoYldoN0sbJWvKskRvatU3m7Ip8vrXg+0oO2nrskE9NWpCI5jQiBu+HhLctWjdTluMxJRiid7Uqq/W7g9uD3KtqKCmORuprv3BxUhOUt9GyZpSLNGbWlPs9ZXqBXKj2xJ9bQptFvtqrXWzNCUs0Ztas3x7LscK/LNuXdioPlfIdocjim03uUsS/ez1B/DaKFkTYIne1JqvQnrb3NjpfKS89cZMjekqW2nJYQBy8opYsfOwwxGZSGGJ3tQKVS3VrfLGTuc7GE18cImWah77MuT+iIlvluhNrVi/7zh7jpwEILleAr1SmzkcUXwYFNpOv24/qtZ8YyzRm1oSejXfr2NLkhLsV60uXONaSzL5AOzOLZl6wsS3sP76RGSwiGwUkS0iMq6c49eLyEoR8YjIiDLHvIHlBYNLDJrY9/X6kmYDa7apO0niLTVpnDXfGAgj0YuIG3gVGAJ0Au4WkU5lqu0C7gPeL+cpTqpq18BjWDnHTYzZ/cQP+H6Pf7rcRDz0+7i7f2CPqROD3NbN0hhm5esAABVDSURBVJQWzhV9T2CLqm5T1SJgCjA8tIKq7lDV1YCvFmI0UWamr1dw+zrXas6Tkw5GE3/6uVaR5Pb/aa/bd4zdufkOR2ScFk6ibw3sDilnBfaFq76IpIvIUhG5rbwKIjI6UCc9Ozu7Ck9tItFMb8/g9hDXMgcjiU/nSgHX/qDk5rc135hwEn15vZ+rciu/naqmAfcAfxWRS057MtU3VDVNVdNatGhRhac2kSbrcD6r9AcAJOCx0bAOuenyC4LbM9fsczASEwnCSfRZQNuQchtgb7gvoKp7A/9uA+YD3aoQn4kyX3xfcvV4ret7Gkueg9HEr5suvwB3YI76lbuOBLu6mvgUTqJfDrQXkVQRSQJGAmH1nhGRJiJSL7DdHLgWWFfdYE3k+zzk6nGoNds4pknDJK79QfNgeZZd1ce1ShO9qnqAscCXwHrgQ1VdKyITRWQYgIhcJSJZwB3A6yKyNnD6ZUC6iKwC5gHPqKol+hi198hJMnYdAcCNt1TvD1PHJjTilm1/DhZnzJwenNLYxJ+EcCqp6kxgZpl9T4RsL8ffpFP2vMVA57OM0USJ0Gab3q61NJETDkZjBrnT+aPnATwkkKnt2e1rbusBxCkbrmhqzMxSzTbfORiJAWgseVznWhMszwrp9mriiyV6UyP2Hy0gPTBbojXbRI6b3UuD2597r3YwEuMkS/SmRoRezV/tWk8zsTlWIsGNrhUk4l8TYJVewm6fdV+OR5boTY2YlrknuH2La4mDkZhQjSSf612rg+UZPruqj0eW6M1Z25p9gtVZRwFIcrsY6rZulZEktPlmhjXfxCVL9OasfZpRcjXfv2MLGtkgqYgy0LWCJIoAWKupbDlozWrxxhK9OSuqyrTMkoHSt3WtyjRIpi6cJycZGDJ18ccr91RQ28QiS/TmrKzcdYRdgdkRk+sn0L9jS4cjMuW53b0wuP1Jxh58tnB4XLFEb87KpyE3YYdecSH1E90ORmPOpK9rFU3xrxGw72gBS7flOByRqUuW6E21FY9vyowlJQNybls12obYR6hE8TLMvThY/jjDmm/iiSV6U20LfZ3J5TwALiSHXq4NDkdkKvJD96Lg9qw1+8gv8jgYjalLluhNtX3i7RPcHub+FpdYu28k6yLbuET8V/J5RV5bZjCOWKI31XIkv4gvfWnB8m3ubx2MxoRDpPRNWWu+iR+W6E21TMvYQxFJAHSWbVzm2l3JGSYShH4gL9qczYFjBQ5GY+qKJXpTZarKlOUliX2ke66D0ZiqaC05XHOxfz1Zn8JHK7McjsjUBUv0psoydx9hw37/6MoGFDDMbXPbRJMRPUqWjpiybLf1qY8DYSV6ERksIhtFZIuIjCvn+PUislJEPCIyosyxUSKyOfAYVVOBG+d8EHI1f4t7Kcli65FGk5u7XEijBokA7MrNZ9EWW4wk1lWa6EXEDbwKDAE6AXeLSKcy1XYB9wHvlzm3KTAe6AX0BMaLSJOzD9s45UShh+mrSqY8GOme52A0pjrqP9WUHxV9Giy/984rNv4hxoVzRd8T2KKq21S1CJgCDA+toKo7VHU14Ctz7k3A16qaq6qHga+BwTUQt3HIjFV7yS/yAtBesugumx2OyFTHPSH3VWb7enBAGzsYjalt4ST61kBol4qswL5whHWuiIwWkXQRSc/Ozg7zqY0TJoc029zlnoeIg8GYavuBay89ZT0AXtx86O3nbECmVoWT6Mv7Uw737k1Y56rqG6qapqppLVrYCjiRat3eY6zafQTwzzt/e8hISxN9fpwwO7g92TMAr92UjVnhJPosoG1IuQ2w9wx1a/JcE2He/nZ7cPumKy6gqS0XGNUGu5YHJzrbS3MWbDrocESmtoST6JcD7UUkVUSSgJHA9DCf/0tgkIg0CdyEHRTYZ6LMoROFfBoy7/x9vVOcC8bUiHriYYT7m2D5vaW7HIzG1KZKE72qeoCx+BP0euBDVV0rIhNFZBiAiFwlIlnAHcDrIrI2cG4u8CT+D4vlwMTAPhNl3lu6iyKv/177lW0b072d3byLBXeH3JSdu/EgW7NPOBiNqS2iGlntcmlpaZqenu50GCZE4fhmXFs4iUP4k/tLiS8z3AZJxYwHin7PHF93AO7p1Y6nf9jZ4YhMdYjIClVNK++YjYw1lZrhuyaY5M8nl6EuW/w7ljzo/jy4/dGKLHJOFDoYjakNluhNhVSVtzwlQx/uTfiKRPE6GJGpaVe71tNZtgFQ6PHx7tKdDkdkapolelOhZdtzWaupANSjqNRAGxMbRODBhJKr+neX7KSg2D7MY4klelOhfyzcFty+3b2QJmI362LRUNcyWjWqD0BOXhEfr7S56mOJJXpzRt/vOcrs9SV9q+93f+FgNKY2JYqX+/ukBsv/XLTNZrWMIZbozRm9PLdkHpuhru9o77KrvFh211VtSa6XAMC27Dy+Wrff4YhMTbFEb8q1ft8xvgxZU/SXCR87GI2pC8nPNOceT8n/84vvTcM33sZLxAJL9KZcoVfzN7mW2VKBcWJ0wuecg395wY3ajs99vRyOyNQES/TmNBv3H2fmmpKv7b9M+MTBaExdaibH+VnIvZi/en5kk53FAEv05jSvzNsS3B542flc4bJ+1fHk5wmfk0w+AFu1NZ9m2r2ZaGeJ3pSY0Ih1T3RmxqqSBaN/tfVBBwMyTmgsedzvnhUsvzRnMx5v2TWFTDSxRG+CVOHPnp+ggV+LAa6VdHFtr+QsE4seSJhJI/xjJnbm5Fu/+ihnid4EzfV1Y7HvCgDceHk0YbLDERmnnCcnGR0yWvb5rzZyotDjYETmbFiiNwAUe3085flxsHyPe471m49zo9xf0oLDABw8XsirIfduTHSxRG8AeG/pTrZpKwCSyeM3CR85HJFx2rlSwKOJJd/q3ly4ne2H8hyMyFSXJXrD0fxi/jqnpN/8LxOm0cyWCTTAba5vg4vMFHl9/HnGOocjMtVhid7w3FcbOJJfDEA7OcAot632aPxcokzY/xCCv9fNnA0Hmfd4X5jQyOHITFWElehFZLCIbBSRLSIyrpzj9UTkg8Dx70QkJbA/RUROikhm4PFazYZvztbSbTn8J2St0EcT3qee2E03U6KLazt3uecHyxM9P6VAE50LyFRZpYleRNzAq8AQoBNwt4h0KlPtAeCwqv4AeBH4v5BjW1W1a+AxpobiNjXgZJGXcR+tDpYHulYw2LXcwYhMpPp9wock42+f364X8qJnhMMRmaoI54q+J7BFVbepahEwBRheps5w4F+B7anADSIiNRemqQ0vzt7Ejhz/CMjkegn8OfEt7H/NlKe5HOMPCVOC5Te8N5O+I9fBiExVhJPoWwOhM1plBfaVW0dVPcBRoFngWKqIZIjIAhG5rrwXEJHRIpIuIunZ2dlV+gFM9WTuPsI/QxYVeeyWy7hADjsYkYl0P3bP4TqX/xug4uLh/64iz/rWR4VwEn1513hlZzk6U519QDtV7Qb8DnhfRM47raLqG6qapqppLVq0CCMkczbyx7fk93/7gFNzVfVxreHOGZ2dDcpEPBH4v8Q3gk04O3PyeWbWBoejMuEIJ9FnAW1Dym2AvWeqIyIJQCMgV1ULVTUHQFVXAFuBDmcbtKk+VeWx4vvZom0AaEABf0n4pzXZmLC0klwmJP47WH536U4WbLJv4ZEunES/HGgvIqkikgSMBKaXqTMdGBXYHgHMVVUVkRaBm7mIyMVAe2AbxjGTl+3mY19JC9qEhH/T1mV/qCZ8t7sWcqMrPVj+9ZQMdufmOxiRqUyliT7Q5j4W+BJYD3yoqmtFZKKIDAtUexNoJiJb8DfRnOqCeT2wWkRW4b9JO0ZV7Q6OQ9ZkHWXC9LXB8h3u+dyVMN+5gExUEoGnE/9Jy+R6ABzJL+Z/3l3BySKvw5GZMxHVyFpUIC0tTdPT0yuvaKrkaH4xt7yykN25JwHoKDv5JGk8DaTI4chMtFrxsx2MfGMJxV5/Dhl2ZSteGtkV63DnDBFZoapp5R2zkbFxoKDYy4P/Xh5M8ueSz98TX7Ikb85Kj7dTmChvBMvTV+3lH4//uIIzjFMs0cc4j9fH2PdXsnxHSdfJ5xJfJ9W1v4KzjAnP3QnzuMc9O1j+i+duPsnIquAM4wRL9DFMVfnjJ2uYvf5gcN9jN1/GELeNfjU1Z0LCv0iTjUCgf/2Hq5i1Zp/DUZlQluhjlKry9GO/4MP0kqurMe7pPDinm4NRmViUJF7+mfQ8HcW/trBP4VdTMpi38WAlZ5q6Yok+Bnm8PsZ9tIZ/eG8J7hvhXlBqCLsxNamx5PFu0l+4WPxDbIq9yph3VzB3wwGHIzNgiT7mFBR7+cV7K/kgvWTWihtd6TyT8A8bFGVqVQs5xntJT9OmSQMACj0+HvxXOu8u3elwZMYSfQzJOVHIqLeW8dW6kquo213f8LfEl0gQn4ORmXhxoeTyft7/0Eb8zTY+hcenfc9f/vQ/+HyR1ZU7nliijxHLd+Ry86RFfLe9ZDzaz90zeD7xdRLFBrKYutPOdZCPk8bTRbYG973uHcb//GcFh/OsS68TLNFHOZ9PeW3BVka+sZT9xwqC+8cN6cifEt/HJXYVZepeSznKlKQ/M9C1Irjv63UHGPLSQhZvOeRgZPHJEn0U23LwOPf8cynPzNqAN/C1uDHHeTvxWcbM6+5wdCbenSOFvJ74Ave7Zwb37T9WwI/f/I6/zFpvUybUIZsCIQqdLPLy8tzN/GPhtuDwc4DusomXk16mteQ4GJ0xp/va250/JP2R3JCmm1aN6vPo0Mu4pcuFNm1CDahoCgRL9FGkoNjLf9N387f5W9l3tKSZxo2Xn7s/5+GE/1p7vIlYB7UxDxePYaGvS6n9PVOa8sjgS0lLaepQZLHBEn2UO1Ho4b9P3sNrnls5QOk/hh6ykT8nvsVlrt1nONuYyOFT4UNvX57z3EUOjUodS7uoCWP6XsKAji1xuewKv6os0UchVSVj9xGmLNvFjNX7yC/Tntmco/w+4QPudC+wG64m6hzTBkzy3M473pvwkFDqWGrzhvyoe2t+2L0NrRs3cCjC6GOJPkp4fcrKXYf5et0Bvlq7P7hwd6gWHGZMwmfc455rs0+aqLfNdwF/7/wh0zL3lLrfdMrVFzdlUKcL6N+xJanNGzoQYfSwRB+hijw+Nuw/xrLtuSzbnsvyHbkczi8ut257yeKn7q+50z2f+lJ+HWOi1T5tyluewUz2DuAE55RbJ6XZOVxzSXN6XNSEHhc1IaXZOXYTN4QleoedLPKyMzePHYfy2ZGTx6b9x1m37xhbs0+UexVzyjkUcLN7KSPd8+gum20KAxPzTmoSX/nS+Mh7HYv0SioaTNv4nEQ6nJ/Mpecn0+GCZFKbNaRt0wa0atyARHf89Rw/60QvIoOBlwA38E9VfabM8XrAv4EeQA5wl6ruCBx7FHgA8AK/UtUvK3qtSE30Xp9S6PFysshLfpGXk8Ve8go9HC/wcKLQw/GCYg7nF5ObV0RuXhHZxws5cKyA/ccKOHKGq/TytOAwA90rGeRawTWutXb1buLWAW3MHG935vq68q3vCk5SP6zzXAIXnFefFufVp2VyPVok16PpOUk0PieRJuckcV6DRBrWc5Ncz/9vgyQ3DRLd1E90Uy/BFbXfEs4q0QcW994E3Ahk4V8s/G5VXRdS5xdAF1UdIyIjgR+q6l0i0gmYDPQEWgGzgQ6qesY+gNVN9OM+Ws2eIydRBcX/M6mCTzWwDwiUvar41D+q1KeK11fy8PgUj9dHkVfx+HwUe3wUenx4ammejrZykB6yiatcG+jl2sAlsteu3I0po1ATWOHrwEptzwpfBzJ8P+AIybXyWkluF0kJ/keCS0h0u0hwC26X4JbAv4GHiOAWcIngEgHxf9AIgoh/fd1T28BpHyKnSqd2/3JAe3pc1KRacVeU6BPK21lGT2CLqm4LPNkUYDiwLqTOcGBCYHsq8Ir4f6LhwBRVLQS2BxYP7wksqc4PUpH0nYfZcvBETT9tjUjAQ1vJ5iI5QIrsJ1X2c5lrJx1lF+fJSafDMybi1RMPvd3r6B1IO6qwh+Zs8rVho7Zls681u7Ulu7UF+2l2Vq9V5PVR5PVBYU1EXjX39GxXK88bTqJvDYR20s4Cep2pjqp6ROQo0Cywf2mZc1uXfQERGQ2MDhRPiASWq6ldzYE6m3Rja+VVnFan70eUsPfkdBH0nhwDtjkdBNTge3LT/53V6Red6UA4ib68hoSy7RhnqhPOuajqG8Ab5dStNSKSfqavOfHI3o/T2XtyOntPThcN70k4t6azgLYh5TbA3jPVEZEEoBGQG+a5xhhjalE4iX450F5EUkUkCRgJTC9TZzowKrA9Apir/ru804GRIlJPRFKB9sCymgndGGNMOCptugm0uY8FvsTfvfItVV0rIhOBdFWdDrwJvBu42ZqL/8OAQL0P8d+49QAPVdTjpo7VaVNRFLD343T2npzO3pPTRfx7EnEDpowxxtSs+Bs+ZowxccYSvTHGxLi4T/Qi8nsRURFp7nQsThOR50Rkg4isFpFPRKSx0zE5RUQGi8hGEdkiIuOcjsdpItJWROaJyHoRWSsiv3Y6pkggIm4RyRCRGU7HUpG4TvQi0hb/1A67nI4lQnwNXKGqXfBPe/Gow/E4IjDtx6vAEKATcHdgOo945gEeVtXLgKuBh+w9AeDXwHqng6hMXCd64EXgEcoZxBWPVPUrVfUEikvxj3uIR8FpP1S1CDg17UfcUtV9qroysH0cf3I7bZR7PBGRNsDNwD+djqUycZvoRWQYsEdVVzkdS4S6H5jldBAOKW/aj7hOaqFEJAXoBnznbCSO+yv+C0Wf04FUJpwpEKKWiMwGLijn0J+APwKD6jYi51X0nqjqp4E6f8L/Vf29uowtgoQ1dUc8EpFzgY+A36jqMafjcYqI3AIcVNUVItLP6XgqE9OJXlUHlrdfRDoDqcCqwLShbYCVItJTVffXYYh17kzvySkiMgq4BbhB43eQhU3dUQ4RScSf5N9T1Y+djsdh1wLDRGQoUB84T0T+o6o/cTiuctmAKUBEdgBpqhohs/I5I7DAzAtAX1XNdjoepwTma9oE3ADswT8NyD2qutbRwBwUmHb8X0Cuqv7G6XgiSeCK/veqeovTsZxJ3LbRm3K9AiQDX4tIpoi85nRATgjckD417cd64MN4TvIB1wI/BQYEfjcyA1ezJgrYFb0xxsQ4u6I3xpgYZ4neGGNinCV6Y4yJcZbojTEmxlmiN8aYGGeJ3hhjYpwlemOMiXH/PxecMgfwNVbIAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -99,32 +99,33 @@ "xs = np.arange(d1.min(), d1.max(), 0.1)\n", "fit = stats.norm.pdf(xs, np.mean(d1), np.std(d1))\n", "plt.plot(xs, fit, label='Normal Dist.', lw=3)\n", - "plt.hist(d1, 50, normed=True, label='Actual Data');\n", + "plt.hist(d1, 50, density=True, label='Actual Data');\n", "plt.legend();" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The plot above shows a histogram (in orange) of 'observed' data, and the expected distribution of the data, under the assumption of it being normally distributed. There seems to be a pretty good alignment! Now, let's asses this statistically. \n", + "\n", + "To do so, we will use the `normaltest` function, from scipy, which tests whether a sample of data differs from a what would be expected under a normal distribution. The null hypothesis is that the data come from a normal distribution. We can use `normaltest` to check this null, and to decide whether we should reject the null (to claim the data are not normal), or accept it. To assess this, the `normaltest` function compares the skew and kurtosis of the observed data to what would be expected if it's normally distributed. " + ] + }, { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "# In scipy, the 'normaltest' function tests whether a sample differs from a normal distribution\n", - "# The null hypothesis is that the data are normally distributed.\n", - "# We can use normaltest to check this null - do we have to reject the null (to claim the data are not normal).\n", - "# It does using a combined statistics comparing the skew and kurtosis of the observed\n", - "# data, as compared to as expected under a normal distribution. \n", + "# Check the documentation for normaltest\n", "normaltest?" ] }, { "cell_type": "code", "execution_count": 6, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Run normal test on the data\n", @@ -141,7 +142,7 @@ "output_type": "stream", "text": [ "\n", - "Normaltest p value is: 1.34e-01 \n", + "Normaltest p-value is: 0.49 \n", "\n", "We do not have evidence to reject the null hypothesis.\n" ] @@ -149,7 +150,7 @@ ], "source": [ "# Check the p-value of the normaltest\n", - "print('\\nNormaltest p value is: {:1.2e} \\n'.format(p_val))\n", + "print('\\nNormaltest p-value is: {:1.2f} \\n'.format(p_val))\n", "\n", "# With alpha value of 0.05, how should we proceed\n", "check_p_val(p_val, alpha=0.05)" @@ -159,23 +160,30 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Different Distributions\n", + "In this case, we do not reject the null, meaning we do not reject that this data is normally distributed. \n", "\n", - "Visually inspecting datasets can give you a quick sense about whether they are normally distributed or not. \n", + "This statistical test is therefore consistent with the data being normally distributed. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Testing a non-Normal distribution\n", + "\n", + "Let's test another dataset for normality.\n", "\n", - "However, visual inspection is not enough, and can be misleading, since non-normally data can 'look normal'.\n", + "For this example, we will explore case when visual inspection can be misleading, to emphasize the point that although visually inspecting datasets can give you a quick sense about whether they are normally distributed or not, this is not enough. Visual inspection can be somewhat misleading, since non-normally data can 'look normal'.\n", "\n", - "As well as visualling checking data when it looks pretty normal, it is important to perform other checks.\n", + "This is why, as well as visually checking data when it looks pretty normal, it is important to perform other checks.\n", "\n", - "For example, under some paramters, the Beta distributed data can look like it is normally distibruted. " + "For example, under some parameters, the Beta distributed data can look like it is normally distributed. " ] }, { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Generate some data from a beta distribution\n", @@ -189,18 +197,20 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAEvdJREFUeJzt3X+MnVWdx/H3V9paSLu6pYNifzgQ\nIaC4tN0JYMUsCJLKIjUCS43Kj4ANBNglq0sqG4GVhKz8jFADdIUUjBTcIqUgxMgCoRB+TaH87BK7\nUpYJRIYWC6RU6PLdP+bSDMPM3Gdm7sydOfN+JTc89z5nnvvNyfCZ03PPc25kJpKksnys2QVIkhrP\ncJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVaEKz3nj69OnZ2trarLeXpDFp7dq1\nr2dmS712TQv31tZW2tvbm/X2kjQmRcRLVdo5LSNJBTLcJalAhrskFahpc+6Sxob33nuPjo4Otm3b\n1uxSxpXJkyczc+ZMJk6cOKifN9wl9aujo4OpU6fS2tpKRDS7nHEhM9m0aRMdHR3sscceg7qG0zKS\n+rVt2zZ23XVXg30ERQS77rrrkP61ZLhLqstgH3lD7XPDXZIK5Jy7pAFpXfLbhl5v47//faV2t912\nG9/61rdYv349++yzT79tly9fzhFHHMFnPvOZQdV0//33c+mll3LnnXd+5PWFCxey5557snXrVj71\nqU9xzjnncNRRR9W93qRJk5g/f/6g6hkMw12j1kBDpGpIaGxasWIFBx98MDfffDMXXHBBv22XL1/O\nfvvtN+hw789XvvKVHaG/bt06vvnNb7Lzzjtz2GGH9fkz999/P1OmTBnRcHdaRsVoXfLbXh8a+95+\n+20eeughrrvuOm6++eYPnbv44ov54he/yP7778+SJUtYuXIl7e3tfOc732HOnDm88847tLa28vrr\nrwPQ3t7OIYccAsBjjz3G/PnzmTt3LvPnz+eFF14YUF1z5szhvPPOY+nSpQDccccdHHjggcydO5fD\nDz+cP/3pT2zcuJFrrrmGK664gjlz5rBmzZpe2zWaI3dJo96qVatYsGABe++9N9OmTeOJJ55g3rx5\n3H333axatYpHH32UXXbZhc2bNzNt2jSWLl3KpZdeSltbW7/X3WeffXjggQeYMGEC99xzD+eeey63\n3nrrgGqbN28el1xyCQAHH3wwjzzyCBHBL37xCy6++GIuu+wyTjvtNKZMmcIPf/hDAN54441e2zWS\n4S5p1FuxYgVnn302AIsWLWLFihXMmzePe+65h5NPPplddtkFgGnTpg3oulu2bOHEE0/kD3/4AxHB\ne++9N+DaMnPHcUdHB8cffzyvvvoq7777bp9r1Ku2GwqnZSSNaps2beLee+/l1FNPpbW1lUsuuYRb\nbrmFzCQzKy0ZnDBhAu+//z7Ah9aO//jHP+bQQw/l2Wef5Y477hjUuvInn3ySfffdF4CzzjqLM888\nk2eeeYZrr722z+tVbTcUhrukUW3lypWccMIJvPTSS2zcuJGXX36ZPfbYgwcffJAjjjiC66+/nq1b\ntwKwefNmAKZOncpbb7214xqtra2sXbsW4EPTLlu2bGHGjBlA14ewA/X0009z4YUXcsYZZ3zkejfc\ncMOOdj3r6atdIzkto6bzQ8+xZaRXJa1YsYIlS5Z86LVjjjmGm266iauvvpp169bR1tbGpEmTOPLI\nI7nooos46aSTOO2009h55515+OGHOf/88znllFO46KKLOPDAA3dc55xzzuHEE0/k8ssv56tf/Wql\netasWcPcuXPZunUru+22G1deeeWOlTIXXHABxx13HDNmzOCggw7ixRdfBOAb3/gGxx57LLfffjtX\nXXVVn+0aKbrPF42ktra29Ms6BMMf7i6RHJr169fvmHbQyOqt7yNibWb2/0kxTstIUpEMd0kqkOEu\nqa5mTd+OZ0Ptcz9Q1Yhp1gen/b2v8/H1TZ48mU2bNrnt7wj6YD/3yZMnD/oahrukfs2cOZOOjg46\nOzubXcq48sE3MQ2W4S6pXxMnThyWOyg1vJxzl6QCGe6SVKC64R4RkyPisYh4KiKei4h/66XNxyPi\nlojYEBGPRkTrcBQrSaqmysj9L8BXM3N/YA6wICIO6tHmFOCNzPwccAXw08aWKUkaiLrhnl3erj2d\nWHv0XIC5EPhg95uVwGHhmilJappKc+4RsVNErANeA36fmY/2aDIDeBkgM7cDW4BdG1moJKm6Sksh\nM/P/gDkR8UngtojYLzOf7dakt1H6R26viojFwGKA2bNnD6JcjQVjaZfHvmr15iaNdQNaLZOZfwbu\nBxb0ONUBzAKIiAnAJ4DNvfz8ssxsy8y2lpaWQRUsSaqvymqZltqInYjYGTgc+O8ezVYDJ9aOjwXu\nTTejkKSmqTItsztwQ0TsRNcfg19n5p0R8ROgPTNXA9cBv4yIDXSN2BcNW8WSpLrqhntmPg3M7eX1\n87odbwOOa2xpkqTB8g5VSSqQ4S5JBTLcJalAhrskFcj93KVeeHOTxjpH7pJUIMNdkgpkuEtSgQx3\nSSqQ4S5JBTLcJalALoXUoI2lfdul8caRuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLc\nJalAhrskFcg7VKUB8Es8NFbUHblHxKyIuC8i1kfEcxHxT720OSQitkTEutrjvOEpV5JURZWR+3bg\nB5n5RERMBdZGxO8z8/ke7dZk5lGNL1GSNFB1wz0zXwVerR2/FRHrgRlAz3BXodwgTBp7BvSBakS0\nAnOBR3s5/aWIeCoi7o6ILzSgNknSIFX+QDUipgC3Amdn5ps9Tj8BfDYz346II4FVwF69XGMxsBhg\n9uzZgy5aktS/SiP3iJhIV7D/KjN/0/N8Zr6ZmW/Xju8CJkbE9F7aLcvMtsxsa2lpGWLpkqS+VFkt\nE8B1wPrMvLyPNp+utSMiDqhdd1MjC5UkVVdlWubLwPeAZyJiXe21c4HZAJl5DXAscHpEbAfeARZl\nZg5DvZKkCqqslnkQiDptlgJLG1WUJGlo3H5AkgpkuEtSgQx3SSqQG4dJDeCGYhptHLlLUoEMd0kq\nkOEuSQUy3CWpQIa7JBXIcJekArkUUjv4pRxSORy5S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ\n7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBaq7t0xEzAJuBD4NvA8sy8yf9WgTwM+AI4GtwEmZ+UTjy5XG\nFr9+T81SZeOw7cAPMvOJiJgKrI2I32fm893afB3Yq/Y4ELi69l9JUhPUnZbJzFc/GIVn5lvAemBG\nj2YLgRuzyyPAJyNi94ZXK0mqZEBz7hHRCswFHu1xagbwcrfnHXz0D4AkaYRUDveImALcCpydmW/2\nPN3Lj2Qv11gcEe0R0d7Z2TmwSiVJlVUK94iYSFew/yozf9NLkw5gVrfnM4FXejbKzGWZ2ZaZbS0t\nLYOpV5JUQd1wr62EuQ5Yn5mX99FsNXBCdDkI2JKZrzawTknSAFRZLfNl4HvAMxGxrvbaucBsgMy8\nBriLrmWQG+haCnly40uVJFVVN9wz80F6n1Pv3iaBMxpVlCRpaLxDVZIKZLhLUoEMd0kqkOEuSQUy\n3CWpQFWWQkpqMHeL1HBz5C5JBXLkPg71NWqUVA5H7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalA\nhrskFchwl6QCGe6SVCDDXZIK5PYD0ijihmJqFEfuklQgw12SCmS4S1KBDHdJKlDdcI+I6yPitYh4\nto/zh0TElohYV3uc1/gyJUkDUWW1zHJgKXBjP23WZOZRDalIDeEXckjjW92Re2Y+AGwegVokSQ3S\nqDn3L0XEUxFxd0R8oa9GEbE4Itojor2zs7NBby1J6qkR4f4E8NnM3B+4CljVV8PMXJaZbZnZ1tLS\n0oC3liT1ZsjhnplvZubbteO7gIkRMX3IlUmSBm3I4R4Rn46IqB0fULvmpqFeV5I0eHVXy0TECuAQ\nYHpEdADnAxMBMvMa4Fjg9IjYDrwDLMrMHLaKJUl11Q33zPx2nfNL6VoqKUkaJbxDVZIKZLhLUoEM\nd0kqkOEuSQUy3CWpQH7NnjQG+PV7GihH7pJUIEfuY5xb+0rqjSN3SSqQ4S5JBTLcJalAhrskFchw\nl6QCGe6SVCDDXZIKZLhLUoG8iUkaw9yWQH1x5C5JBTLcJalAhrskFchwl6QCGe6SVKC64R4R10fE\naxHxbB/nIyKujIgNEfF0RMxrfJmSpIGoMnJfDizo5/zXgb1qj8XA1UMvS5I0FHXXuWfmAxHR2k+T\nhcCNmZnAIxHxyYjYPTNfbVCNwi/lkDQwjZhznwG83O15R+21j4iIxRHRHhHtnZ2dDXhrSVJvGhHu\n0ctr2VvDzFyWmW2Z2dbS0tKAt5Yk9aYR4d4BzOr2fCbwSgOuK0kapEaE+2rghNqqmYOALc63S1Jz\n1f1ANSJWAIcA0yOiAzgfmAiQmdcAdwFHAhuArcDJw1WsJKmaKqtlvl3nfAJnNKwiSdKQeYeqJBXI\n/dylArnPuxy5S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAK5FHKUcWtfSY1guEvjiOvfxw+nZSSp\nQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAK5t4ykfjesc9+Z\nsanSyD0iFkTECxGxISKW9HL+pIjojIh1tcepjS9VklRV3ZF7ROwE/Bz4GtABPB4RqzPz+R5Nb8nM\nM4ehRknSAFWZljkA2JCZfwSIiJuBhUDPcNcAuG+7pOFUZVpmBvByt+cdtdd6OiYino6IlRExqyHV\nSZIGpUq4Ry+vZY/ndwCtmfk3wD3ADb1eKGJxRLRHRHtnZ+fAKpUkVVYl3DuA7iPxmcAr3Rtk5qbM\n/Evt6X8Af9vbhTJzWWa2ZWZbS0vLYOqVJFVQJdwfB/aKiD0iYhKwCFjdvUFE7N7t6dHA+saVKEka\nqLofqGbm9og4E/gdsBNwfWY+FxE/AdozczXwjxFxNLAd2AycNIw1SxpBfu/q2FTpJqbMvAu4q8dr\n53U7/hHwo8aWJkkaLLcfkKQCuf3AMHM9u6RmcOQuSQUy3CWpQE7LSBoUV9GMbo7cJalAhrskFchw\nl6QCGe6SVCDDXZIK5GqZBvFmJUmjieEuqaFcIjk6OC0jSQUy3CWpQIa7JBXIOXdJI8K5+JFluA+Q\nq2IkjQVOy0hSgRy5S2oqp2uGhyN3SSqQ4S5JBXJapg9+cCo1l9M1Q1Np5B4RCyLihYjYEBFLejn/\n8Yi4pXb+0YhobXShkqTq6o7cI2In4OfA14AO4PGIWJ2Zz3drdgrwRmZ+LiIWAT8Fjh+OghvNEbo0\ntjiir6bKtMwBwIbM/CNARNwMLAS6h/tC4ILa8UpgaUREZmYDax0SQ1wqm6H/YVXCfQbwcrfnHcCB\nfbXJzO0RsQXYFXi9EUUOhCEuqbtGZsJY+kNRJdyjl9d6jsirtCEiFgOLa0/fjogXKrz/eDSdJvxh\nHGPso2rsp/oq91H8dJgrqeazVRpVCfcOYFa35zOBV/po0xERE4BPAJt7XigzlwHLqhQ2nkVEe2a2\nNbuO0cw+qsZ+qq/UPqqyWuZxYK+I2CMiJgGLgNU92qwGTqwdHwvcO5rm2yVpvKk7cq/NoZ8J/A7Y\nCbg+M5+LiJ8A7Zm5GrgO+GVEbKBrxL5oOIuWJPWv0k1MmXkXcFeP187rdrwNOK6xpY1rTl3VZx9V\nYz/VV2QfhbMnklQe95aRpAIZ7k1SYUuHf46I5yPi6Yj4r4iotPypNPX6qVu7YyMiI6K4VQ/1VOmj\niPiH2u/TcxFx00jXOBpU+H9udkTcFxFP1v6/O7IZdTZMZvoY4QddH0z/D7AnMAl4Cvh8jzaHArvU\njk8Hbml23aOxn2rtpgIPAI8Abc2ue7T1EbAX8CTw17XnuzW77lHaT8uA02vHnwc2NrvuoTwcuTfH\nji0dMvNd4IMtHXbIzPsyc2vt6SN03V8w3tTtp5oLgYuBbSNZ3ChRpY++D/w8M98AyMzXRrjG0aBK\nPyXwV7XjT/DR+3nGFMO9OXrb0mFGP+1PAe4e1opGp7r9FBFzgVmZeedIFjaKVPld2hvYOyIeiohH\nImLBiFU3elTppwuA70ZEB12rA88amdKGh/u5N0el7RoAIuK7QBvwd8Na0ejUbz9FxMeAK4CTRqqg\nUajK79IEuqZmDqHrX4BrImK/zPzzMNc2mlTpp28DyzPzsoj4El337uyXme8Pf3mN58i9Oaps6UBE\nHA78K3B0Zv5lhGobTer101RgP+D+iNgIHASsHmcfqlbdHuT2zHwvM18EXqAr7MeTKv10CvBrgMx8\nGJhM174zY5Lh3hx1t3SoTTdcS1ewj8c5UqjTT5m5JTOnZ2ZrZrbS9dnE0ZnZ3pxym6LK9iCr6PqA\nnoiYTtc0zR9HtMrmq9JP/wscBhAR+9IV7p0jWmUDGe5NkJnbgQ+2dFgP/DprWzpExNG1ZpcAU4D/\njIh1EdHzF7F4FftpXKvYR78DNkXE88B9wL9k5qbmVNwcFfvpB8D3I+IpYAVwUtaWzoxF3qEqSQVy\n5C5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kq0P8DF++umrTzd8QAAAAASUVORK5C\nYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD6CAYAAACxrrxPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAVOklEQVR4nO3df5CV1Z3n8fd3BAddmWSRTsYApsmOrklMAqRXHcZsGeNYDGUkG3ElkxnF0qFMqRlrk3KNs1FiqtyJGq0xpDRELczUBExhomDJToVRyh8VNA0iBhknTCRlb6jYgkFZRCX57h/3Ytr2dvdz4Xb35fB+Vd3y+XH6uV+fxg/Hc89zbmQmkqSD3x+MdgGSpNYw0CWpEAa6JBXCQJekQhjoklQIA12SCjFkoEfEuIh4MiKejohNEfG1Bm3mR0RvRGyovy4ennIlSQMZU6HN68DpmbkrIsYCj0XEqsxc26/dPZl5WdU3njhxYnZ2djZRqiRp3bp1L2VmR6NzQwZ61p482lXfHVt/HfDTSJ2dnXR3dx/oZSTpkBIRvxzoXKUx9Ig4LCI2AC8CP87MJxo0OyciNkbE8oiYsp+1SpL2U6VAz8zfZuY0YDJwUkSc2K/JSqAzMz8KrAbubnSdiFgQEd0R0d3b23sgdUuS+mlqlktm/gZYA8zqd3x7Zr5e3/0u8PEBfn5xZnZlZldHR8MhIEnSfhpyDD0iOoA3M/M3EXEEcAbwjX5tjsnMbfXds4HNLa9U0qh488036enpYc+ePaNdyiFl3LhxTJ48mbFjx1b+mSqzXI4B7o6Iw6j16H+QmQ9ExHVAd2auAL4YEWcDe4EdwPymq5fUlnp6ehg/fjydnZ1ExGiXc0jITLZv305PTw9Tp06t/HNVZrlsBKY3OH5Nn+2vAF+p/K6SDhp79uwxzEdYRHD00UfT7GeNPikqaUiG+cjbn3tuoEtSIaqMoUvS7y18V4uvt7NSsx/96Ed89rOfZfPmzZxwwgmDtl2yZAlnnnkm73vf+/arpDVr1nDTTTfxwAMPvOP4nDlz+MAHPsDu3bt573vfy5VXXslZZ5015PUOP/xwZs6cuV/1VGWgq30NFBwVA0BlWbp0KaeeeirLli1j4cKFg7ZdsmQJJ5544n4H+mA+8YlPvBX0GzZs4DOf+QxHHHEEn/rUpwb8mTVr1nDUUUcNe6A75CKp7e3atYvHH3+cO++8k2XLlr3t3A033MBHPvIRPvaxj3HVVVexfPlyuru7+fznP8+0adN47bXX6Ozs5KWXXgKgu7ub0047DYAnn3ySmTNnMn36dGbOnMlzzz3XVF3Tpk3jmmuuYdGiRQCsXLmSk08+menTp3PGGWfw61//mq1bt3L77bdzyy23MG3aNB599NGG7VrBHroOPvbcDzn33Xcfs2bN4vjjj2fChAmsX7+eGTNmsGrVKu677z6eeOIJjjzySHbs2MGECRNYtGgRN910E11dXYNe94QTTuCRRx5hzJgxrF69mquvvpp77723qdpmzJjBjTfeCMCpp57K2rVriQjuuOMObrjhBr75zW9yySWXcNRRR/HlL38ZgJdffrlhuwNloEtqe0uXLuWKK64AYN68eSxdupQZM2awevVqLrzwQo488kgAJkyY0NR1d+7cyQUXXMDPf/5zIoI333yz6dpq6xfW9PT0cN5557Ft2zbeeOONAeeQV23XLIdcJLW17du389BDD3HxxRfT2dnJjTfeyD333ENmkpmVpveNGTOG3/3udwBve+L1q1/9Kp/85Cf52c9+xsqVK/fradinnnqKD37wgwBcfvnlXHbZZTzzzDN85zvfGfB6Vds1y0CX1NaWL1/O+eefzy9/+Uu2bt3KCy+8wNSpU3nsscc488wzueuuu9i9ezcAO3bsAGD8+PG8+uqrb12js7OTdevWAbxtSGXnzp1MmjQJqH2Q2qyNGzfy9a9/nUsvvfQd17v77t+vUdi/noHaHSiHXCQ1Z4Q/q1i6dClXXXXV246dc845fP/73+e2225jw4YNdHV1cfjhhzN79myuv/565s+fzyWXXMIRRxzBT37yE6699louuugirr/+ek4++eS3rnPllVdywQUXcPPNN3P66adXqufRRx9l+vTp7N69m/e85z3ceuutb81wWbhwIeeeey6TJk3ilFNO4fnnnwfg05/+NHPnzuX+++/nW9/61oDtDlT0Hf8ZSV1dXekXXGhQzc539kPRYbF58+a3hhQ0shrd+4hYl5kNP+21h65yOPtFhzjH0CWpEAa6pCGN1tDsoWx/7rmBLmlQ48aNY/v27Yb6CNq3Hvq4ceOa+jnH0FW+wT5cdXx9SJMnT6anp6fptbl1YPZ9Y1EzDHSNvlav3qeWGjt2bMueZNTwcshFkgphoEtSIQx0SSqEY+g6tPkwkgpiD12SCjFkoEfEuIh4MiKejohNEfG1Bm3+MCLuiYgtEfFERHQOR7GSpIFVGXJ5HTg9M3dFxFjgsYhYlZlr+7S5CHg5M/8kIuYB3wDOG4Z6dTBzeqI0rIbsoWfNrvru2Pqr/yNjc4B9i/ouBz4VVVadlyS1TKUx9Ig4LCI2AC8CP87MJ/o1mQS8AJCZe4GdwNENrrMgIrojotunziSptSoFemb+NjOnAZOBkyLixH5NGvXG37HwQ2YuzsyuzOzq6OhovlpJ0oCamuWSmb8B1gCz+p3qAaYARMQY4F3AjhbUJ0mqqMosl46IeHd9+wjgDOBf+zVbAVxQ354LPJQuzSZJI6rKLJdjgLsj4jBqfwH8IDMfiIjrgO7MXAHcCfxjRGyh1jOfN2wVS5IaGjLQM3MjML3B8Wv6bO8Bzm1tadIo8glSHYR8UlSSCuFaLmo9HyCSRoU9dEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoRPikrNcI0XtTEDXfvPR/yltuKQiyQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFWLIQI+IKRHxcERsjohNEfG3DdqcFhE7I2JD/XXN8JQrSRpIlUf/9wJfysz1ETEeWBcRP87MZ/u1ezQzz2p9idJBwDVe1AaG7KFn5rbMXF/ffhXYDEwa7sIkSc1pagw9IjqB6cATDU7/aUQ8HRGrIuLDA/z8gojojoju3t7epouVJA2scqBHxFHAvcAVmflKv9Prgfdn5seAbwH3NbpGZi7OzK7M7Oro6NjfmiVJDVQK9IgYSy3M/ykzf9j/fGa+kpm76tsPAmMjYmJLK5UkDarKLJcA7gQ2Z+bNA7T543o7IuKk+nW3t7JQSdLgqsxy+TPgr4FnImJD/djVwLEAmXk7MBf4QkTsBV4D5mVmDkO9Gg1+kYV0UBgy0DPzMSCGaLMIWNSqoiRJzfNJUUkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklSIKvPQJe0vV2HUCLKHLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgrhtEX9nsvkSgc1e+iSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBViyECPiCkR8XBEbI6ITRHxtw3aRETcGhFbImJjRMwYnnIlSQOp8mDRXuBLmbk+IsYD6yLix5n5bJ82fwEcV3+dDNxW/6ckaYQMGeiZuQ3YVt9+NSI2A5OAvoE+B/heZiawNiLeHRHH1H9WUn9+8YWGQVNj6BHRCUwHnuh3ahLwQp/9nvoxSdIIqRzoEXEUcC9wRWa+0v90gx/JBtdYEBHdEdHd29vbXKWSpEFVCvSIGEstzP8pM3/YoEkPMKXP/mTgV/0bZebizOzKzK6Ojo79qVeSNIAqs1wCuBPYnJk3D9BsBXB+fbbLKcBOx88laWRVmeXyZ8BfA89ExIb6sauBYwEy83bgQWA2sAXYDVzY+lIlSYOpMsvlMRqPkfdtk8ClrSpKktQ8v+DiUOQXWUhF8tF/SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIK4Tx0qZ24rK4OgD10SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQgy52mJE3AWcBbyYmSc2OH8acD/wfP3QDzPzulYWqf0w0Kp9kopVZfncJcAi4HuDtHk0M89qSUWSpP0yZKBn5iMR0Tn8pUgakOukq4JWjaH/aUQ8HRGrIuLDLbqmJKkJrfjGovXA+zNzV0TMBu4DjmvUMCIWAAsAjj322Ba8tSRpnwPuoWfmK5m5q779IDA2IiYO0HZxZnZlZldHR8eBvrUkqY8DDvSI+OOIiPr2SfVrbj/Q60qSmlNl2uJS4DRgYkT0ANcCYwEy83ZgLvCFiNgLvAbMy8wctoolSQ1VmeXyuSHOL6I2rVGSNIp8UlSSCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEK0Yi0XjSbXPT+0uQqj+rCHLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhfBJ0YOFT4RKGoI9dEkqhIEuSYUw0CWpEI6hSyVyFcZD0pA99Ii4KyJejIifDXA+IuLWiNgSERsjYkbry5QkDaXKkMsSYNYg5/8COK7+WgDcduBlSZKaNWSgZ+YjwI5BmswBvpc1a4F3R8QxrSpQklRNKz4UnQS80Ge/p37sHSJiQUR0R0R3b29vC95akrRPKwI9GhzLRg0zc3FmdmVmV0dHRwveWpK0TysCvQeY0md/MvCrFlxXktSEVgT6CuD8+myXU4CdmbmtBdeVJDVhyHnoEbEUOA2YGBE9wLXAWIDMvB14EJgNbAF2AxcOV7GSpIENGeiZ+bkhzidwacsqkiTtFx/9l6RC+Oi/dChxSYCi2UOXpELYQ283fpGFpP1kD12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEI4D13S4M8/+BTpQcMeuiQVwkCXpEIY6JJUCANdkgphoEtSIZzlMlpcVVFSi9lDl6RCGOiSVAgDXZIK4Ri6pMH5PaQHjUo99IiYFRHPRcSWiLiqwfn5EdEbERvqr4tbX6okaTBD9tAj4jDg28CfAz3ATyNiRWY+26/pPZl52TDUKEmqoEoP/SRgS2b+IjPfAJYBc4a3LElSs6oE+iTghT77PfVj/Z0TERsjYnlETGl0oYhYEBHdEdHd29u7H+VKkgZSJdCjwbHst78S6MzMjwKrgbsbXSgzF2dmV2Z2dXR0NFepJGlQVQK9B+jb454M/Kpvg8zcnpmv13e/C3y8NeVJkqqqMm3xp8BxETEV+L/APOAv+zaIiGMyc1t992xgc0urPJj5iL9K5XTGtjNkoGfm3oi4DPhn4DDgrszcFBHXAd2ZuQL4YkScDewFdgDzh7FmSVIDlR4syswHgQf7Hbumz/ZXgK+0tjRJUjN89F+SCmGgS1IhDHRJKoSBLkmFcLVFSa3ldMZRY6C3ivPNJY0yh1wkqRAGuiQVwkCXpEI4hi5pZPhh6bCzhy5JhTDQJakQDrk0y+mJktqUgS5pdDm23jIOuUhSIQx0SSqEgS5JhXAMfSB++CmNLsfWm2YPXZIKYQ9d0sHFnvuADHSHViQVolKgR8Qs4B+Aw4A7MvPv+53/Q+B7wMeB7cB5mbm1taVK0iDsuQ8d6BFxGPBt4M+BHuCnEbEiM5/t0+wi4OXM/JOImAd8AzhvOAqWpKYcQkFfpYd+ErAlM38BEBHLgDlA30CfAyysby8HFkVEZGa2sNYD49CKpMJVCfRJwAt99nuAkwdqk5l7I2IncDTwUiuKbIrBLamKVmZFm/T2qwR6NDjWv+ddpQ0RsQBYUN/dFRHPVXj/4TCR0fjLZmjtWhe0b23tWhe0b23tWhe0b22D1/W1RhE4bN4/0Ikqgd4DTOmzPxn41QBteiJiDPAuYEf/C2XmYmBxhfccVhHRnZldo11Hf+1aF7Rvbe1aF7Rvbe1aF7Rvbe1aV39VHiz6KXBcREyNiMOBecCKfm1WABfUt+cCD7XV+LkkHQKG7KHXx8QvA/6Z2rTFuzJzU0RcB3Rn5grgTuAfI2ILtZ75vOEsWpL0TpXmoWfmg8CD/Y5d02d7D3Bua0sbVqM+7DOAdq0L2re2dq0L2re2dq0L2re2dq3rbcKREUkqg4tzSVIhig30iJgVEc9FxJaIuKrB+f8aEesjYm9EzG2z2v5HRDwbERsj4l8iYsBpSiNc1yUR8UxEbIiIxyLiQyNRV5Xa+rSbGxEZESMyI6HCPZsfEb31e7YhIi4eibqq1FZv89/rf9Y2RcT326GuiLilz/36t4j4zUjUVbG2YyPi4Yh4qv7f5+yRqq2SzCzuRe3D238HPgAcDjwNfKhfm07go9TWoJnbZrV9Ejiyvv0F4J42qeuP+myfDfyfdrln9XbjgUeAtUBXO9QFzAcWjdSfryZrOw54CviP9f33tENd/dpfTm0iRrvcs8XAF+rbHwK2jvTvdrBXqT30t5YryMw3gH3LFbwlM7dm5kbgd21Y28OZubu+u5ba3P92qOuVPrv/gQYPj41WbXVfB24A9rRZXaOhSm1/A3w7M18GyMwX26Suvj4HLB2BuqBabQn8UX37XbzzmZxRVWqgN1quYNIo1dJfs7VdBKwa1opqKtUVEZdGxL9TC84vjkBdlWqLiOnAlMx8YIRqqlRX3Tn1/z1fHhFTGpwfDlVqOx44PiIej4i19VVV26EuAOpDjVOBh0agLqhW20LgryKih9rMv8tHprRqSg30SksRjJLKtUXEXwFdwI3DWlH97Roce0ddmfntzPxPwP8E/tewV1UzaG0R8QfALcCXRqiet966wbH+92wl0JmZHwVWA3cPe1U1VWobQ23Y5TRqPeE7IuLdbVDXPvOA5Zn522Gsp68qtX0OWJKZk4HZ1J6/aZscbZtCWqzKcgWjpVJtEXEG8HfA2Zn5ervU1ccy4DPDWtHvDVXbeOBEYE1EbAVOAVaMwAejQ96zzNze5/f3XWrfGTASqi7ZcX9mvpmZzwPPUQv40a5rn3mM3HALVKvtIuAHAJn5E2ActXVe2sNoD+IP04cbY4BfUPvftX0fbnx4gLZLGNkPRYesDZhO7cOZ49qsruP6bH+a2pPCbVFbv/ZrGJkPRavcs2P6bP83YG273DNgFnB3fXsiteGGo0e7rnq7/wxspf6sTBvds1XA/Pr2B6kF/ojVOOS/w2gXMIy/nNnAv9WD8e/qx66j1uMF+C/U/kb+f9S+ZWlTG9W2Gvg1sKH+WtEmdf0DsKle08ODhepI19av7YgEesV79r/r9+zp+j07oV3uGbUhhpupfbfBM8C8dqirvr8Q+PuRuldN3LMPAY/Xf58bgDNHusbBXj4pKkmFKHUMXZIOOQa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmF+P9HSf5nOKSJ6AAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ "# Plot a histogram of the observed data\n", - "plt.hist(d2, 50, normed=True, label='Actual Data');\n", + "plt.hist(d2, 50, density=True, color='C1', label='Actual Data');\n", "plt.legend();" ] }, @@ -220,12 +230,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xl8VNXZwPHfc2eysEMI+2IQWUvY\nREAUBbcCsrigoq24VKmotVbfovatSmltLfV1QVuXVqRuuIDsgoqALLIFCPsqBAhrCBAIEJKZOe8f\nM0yGEMgkTHJneb6fz3y8Z+bMzOMlPNyce85zxBiDUkqp6GLZHYBSSqnQ0+SulFJRSJO7UkpFIU3u\nSikVhTS5K6VUFNLkrpRSUUiTu1JKRSFN7kopFYU0uSulVBRy2vXFycnJJiUlxa6vV0qpiLRixYpD\nxpg6JfWzLbmnpKSQlpZm19crpVREEpGdwfTTYRmllIpCmtyVUioKlZjcRSRRRJaJyGoRWS8ifyqm\nz/0ikiUi6b7HQ+UTrlJKqWAEM+Z+GrjOGJMrInHAQhGZaYxZUqTf58aYx0MfolKqohUUFJCZmUle\nXp7docSsxMREGjduTFxcXJneX2JyN96C77m+ZpzvoUXglYpimZmZVKtWjZSUFETE7nBijjGG7Oxs\nMjMzadasWZk+I6gxdxFxiEg6cBD4zhiztJhut4vIGhGZICJNyhSNUios5OXlUbt2bU3sNhERateu\nfVG/OQWV3I0xbmNMR6Ax0FVE2hXpMg1IMca0B2YD/z1PwMNEJE1E0rKyssoctFKq/Glit9fFnv9S\nzXM3xhwVkXlAH2BdwPPZAd3+Dfz9PO9/D3gPoEuXLjq0o8rMGMP6vceYs+kgy3YcJt5p0ahmJRrV\nqsQlSZW5tlUdKsfbtoxDKdsFM1umjojU9B1XAm4ANhXp0yCgORDYGMoglTrjWF4Bf5m+gR4vz6H/\nmwt59bstLNx2iDmbDvLRkp28PHMTwz9ZyTWj5/Hxkp0UuD12h6zKSER4+umn/e1XXnmFkSNHVmgM\n999/PxMmTCj2+WbNmtGhQwdatmzJ0KFD2bNnj//1fv36cfTo0fN+7uuvv87JkyfLJeYzghmWaQDM\nFZE1wHK8Y+7TRWSUiAz09XnCN01yNfAEcH/5hKti2Yqdh+n3xgL+s3AH+3IuPBZ5KPc0f5y8jpte\nm8/MtfvQjeAjT0JCAl999RWHDh0q0/tdLleIIzrbP/7xD1avXs3mzZvp1KkTvXv3Jj8/H4Cvv/6a\nmjVrnve9FZHcg5ktswboVMzzLwQcPwc8F9rQlPJyuT28OWcbb87ZiicgR9eoFEevVnW4rnVdEpwW\nmUdOkXnkFLPW7Wf/MW/y33HoBMM/WckDV6Xw/M1tsSwdR44UTqeTYcOG8dprr/HSSy+d9drOnTt5\n8MEHycrKok6dOnzwwQc0bdqU+++/n6SkJFatWkXnzp2pVq0aO3bsYN++fWzZsoVXX32VJUuWMHPm\nTBo1asS0adOIi4tj1KhRTJs2jVOnTtGjRw/efffdoMe8RYTf/e53TJo0iZkzZzJo0CB/eZVKlSpx\n5513kpmZidvt5vnnn+fAgQPs3buX3r17k5yczNy5c8vj9NlXW0apYOQVuHlw3HJ+/Knwtk71RCd/\nvqUdN6c2wOk495fPZ/u25oNFGfxr3jaO53mv3j5YlMGJ0y7+dlt7HJrgSyXl2Rnl9tkZL998wdcf\ne+wx2rdvz4gRI856/vHHH2fo0KHcd999jB07lieeeILJkycDsGXLFmbPno3D4WDkyJH89NNPzJ07\nlw0bNnDllVcyceJERo8eza233sqMGTO45ZZbePzxx3nhBe/16r333sv06dMZMGBAqf5fOnfuzKZN\nmxg0aJD/uVmzZtGwYUNmzPCew5ycHGrUqMGrr77K3LlzSU5OLtV3lIaWH1Bhy+X28Pinq85K7F2b\nJTHzyWsY1LFRsYkdIDHOwfBezVkwojd929X3P/9FWiZPfLaKfJeOw0eK6tWrM3ToUMaMGXPW84sX\nL+aee+4BvMl44cKF/tfuuOMOHA6Hv923b1/i4uJITU3F7XbTp08fAFJTU8nIyABg7ty5dOvWjdTU\nVObMmcP69etLHWtxQ3+pqanMnj2bZ555hgULFlCjRo1Sf25ZaXJXYckYw/NT1jN74wH/c09c34Lx\nD3enUc1KQX1GzcrxvHVPZ+64vLH/uRlr9jH84xW49EZrxHjyySd5//33OXHixHn7BA6hVKlS5azX\nEhISALAsi7i4OH9fy7JwuVzk5eXx6KOPMmHCBNauXcvDDz9cpvnlq1atok2bNmc917JlS1asWEFq\nairPPfcco0aNKvXnlpUOy6iw9Mb3Wxm/bJe//etrL+WpG1uW+nMclvD329tTJcHJuB8zAPh+00Fe\nm72F3/+8dajCjWolDZ2Ut6SkJO68807ef/99HnzwQQB69OjBZ599xr333ssnn3zC1VdfXebPP5PI\nk5OTyc3NZcKECQwePDjo9xtjePPNN9m3b5//t4Iz9u7dS1JSEr/85S+pWrUq48aNA6BatWocP35c\nh2VUbPkibTevz97qb9/aqRHPXEQitizhxQFt+fU1l/qf++fcn/hhiy6kixRPP/30WbNmxowZwwcf\nfED79u356KOPeOONN8r82TVr1uThhx8mNTWVW265hSuuuCKo9/3+97/3T4Vcvnw5c+fOJT4+/qw+\na9eupWvXrnTs2JGXXnqJP/7xjwAMGzaMvn370rt3bwAeeuihkO9vIXZNEevSpYvRzTpUUTuzT9Dn\n9QWcKnAD0LNFMu/fdwXxzou/DvF4DPd9sIwFW71JIqlKPDOeuJoGNYIb5oklGzduPGeIQVW84v4c\nRGSFMaZLSe/VYRkVNjwew++/XONP7C0kk7d3PUj8X4Ic/xyZc8GXLUt47a6O3DxmAQeOnebwiXye\nGL+K8Q93P+/NWaUilSZ3FTbG/ZjBsozDgHes/P+cb1NVSnFja+R5ZiIEJP3kqgmMGdKJu/+9BI+B\n5RlHdPxdRSW9XFFhYXtWLqO/Kaxq8Wiv5rS3dpTLd3W7tDZP39TK3373h+1sPXC8XL5LKbtocle2\nc3sM//PlavIKvNMTW9evxm+ua1Gu3zn82uZ0bZYEgMtjGDltvZYoUFFFk7uy3adLd7Jyl7fIktMS\nXrmjQ0huoF6IZQmjBv3Mv1p10bZsZq7bX67fqVRF0uSubJV72nXWtMfHel9Gu0YVs4qvdf3q3Nv9\nEn/7L9M3cCrfXSHfrVR50xuqylbv/fAT2Se8lfQacojhC++DRQUV9v2/u7El01bvJftEPntz8vjX\nvG1njccrn/PdrC7z5114ZtMZkyZN4rbbbmPjxo20bn3hm97jxo3jpptuomHDhmUKad68ebzyyitM\nnz79nOcHDRrEpZdeysmTJ6lXrx4jRoygf//+JX5efHw8PXr0KFM8F0uv3JVtDhzL498LCm+aPh33\nJYlScYkdvJUln+lTmDTenb+dndnnX+auKtb48eO5+uqr+eyzz0rsO27cOPbu3VsucfTs2ZNVq1ax\nefNmxowZw+OPP873339/wffMmzePH3/8sVziCYYmd2Wb12dv8c9pbyMZ3GItLOEd5WPw5Y3p0MRb\nezvf5eGVb7fYEoc6W25uLosWLeL9998/J7mPHj2a1NRUOnTowLPPPsuECRNIS0vjF7/4BR07duTU\nqVOkpKT4V7WmpaXRq1cvAJYtW0aPHj3o1KkTPXr0YPPmzaWKq2PHjrzwwgu89dZbAEybNo1u3brR\nqVMnbrjhBg4cOEBGRgbvvPMOr732Gh07dmTBggXF9itPmtyVLbYeOM7ny3f72885x+MQe2arWJYw\nckBbf3v6mr1sO6hTI+02efJk+vTpQ8uWLUlKSmLlypUAzJw5k8mTJ7N06VJWr17NiBEjGDx4MF26\ndOGTTz4hPT2dSpXOv+q4devWzJ8/n1WrVjFq1Cj+8Ic/lDq2M+V9Aa6++mqWLFnCqlWrGDJkCKNH\njyYlJYVHHnmE3/3ud6Snp9OzZ89i+5UnHXNXtvj7rE3+jTd6Wmu4xrHW1ng6Na1F71Z1mLs5C2Pg\nzTnbeGPIOXvUqAo0fvx4nnzySQCGDBnC+PHj6dy5M7Nnz+aBBx6gcuXKgLewWGnk5ORw3333sXXr\nVkSEgoLSDwUGTpvNzMzkrrvuYt++feTn59OsWbNi3xNsv1DR5K4qju+m3GrPpczO/wsAgodnnOMr\n5HuLf63wxt5vb2jJ3M3eYmJTV+/lN9e14LK6Vcs3NlWs7Oxs5syZw7p16xAR3G43IsLo0aMxxgS1\nS5LT6cTj8a6dCCzh+/zzz9O7d28mTZpERkaGf7imNALL+/7mN7/hqaeeYuDAgcybN++8+7wG2y9U\ndFhGVbh3XIU73AywFtPO2mljNIU6NqlJr1Z1ADAG3pqztYR3qPIyYcIEhg4dys6dO8nIyGD37t00\na9aMhQsXctNNNzF27Fj/HqSHD3tLVpwpo3tGSkoKK1asAGDixIn+53NycmjUqBGAvwRvaaxZs4Y/\n//nPPPbYY+d83n//+19/v6LxnK9fedErd1WhtnkaMstTWFL1UedUG6M512+vb8G8gKv3J65vwaV1\n9Oo92KmLoTJ+/HieffbZs567/fbb+fTTT3n77bdJT0+nS5cuxMfH069fP/76179y//3388gjj1Cp\nUiUWL17Miy++yK9+9Sv++te/0q1bN//njBgxgvvuu49XX32V6667Lqh4FixYQKdOnTh58iR169Zl\nzJgxXH/99QCMHDmSO+64g0aNGtG9e3d27PDOABswYACDBw9mypQpvPnmm+ftV1605K+qOCNrMKLg\nYb5we2tYX2etZGz8KzbHdG7SGjp2GfN9td5v69SIV+/qWNFR2U5L/oaHiyn5W+KwjIgkisgyEVkt\nIutF5E/F9EkQkc9FZJuILBWRlFLEr2LEPpPEJHdPf3u4c5qN0Zzfb68vrGszOX0PGYd03ruKPMGM\nuZ8GrjPGdAA6An1EpHuRPr8CjhhjLgNeA/4e2jBVNHjf1ZcC30hgF9nMFVbp5hdXlMsvqUXPFt7t\nzzwG//Z8SkWSEpO78cr1NeN8j6JjOYOAM3cIJgDXSzC3s1XMOHoyn0/d1/vbw8NsrL2oYQFb8n2Z\ntptjeRW7cjYcaJVMe13s+Q9qtoyIOEQkHTgIfGeMWVqkSyNgty8gF5AD1L6oyFRU+XDxTk6SCEAr\n2UVvK93miC7s6suSaeGbBnki380XAQuuYkFiYiLZ2dma4G1ijCE7O5vExMQyf0ZQs2WMMW6go4jU\nBCaJSDtjzLqALsVdpZ/zUyEiw4BhAE2bNi1DuCoiFJlXnm8cfHj6TcC7xP8R5zQsm1ajnuM8c+Bl\nZA4PXt2M577yLq4a92MGD1zVzF8iONo1btyYzMxMsrJ0E3G7JCYm0rhx4zK/v1RTIY0xR0VkHtAH\nCEzumUATIFNEnEAN4HAx738PeA+8s2XKGLOKMDM9XTnkS+z1OEx/a4nNEQXn1k6NGD1rE0dOFpB5\n5BTfbThAn3b17Q6rQsTFxZX7CkpVvoKZLVPHd8WOiFQCbgA2Fek2FbjPdzwYmGP09znl85HrJv/x\nPc7viZPIqJmeGOfgnm6Fv2GOXVS+85KVCqVgxtwbAHNFZA2wHO+Y+3QRGSUiA3193gdqi8g24Cng\n2fN8looxGzxNSTPe+uhOXNztmGtzRKVzb/cUnL6hmGU7DrNuT8Uu5lGqrEocljHGrAHOqaBkjHkh\n4DgPuCO0oalo8JG78Kq9j7WcunLUxmhKr36NRPqlNmDqam+d8LELd8TkoiYVebS2jCo3OaYyk92F\nu9AMdX5rYzRl9+DVhWPP09fs44hv5yilwpkmd1VuJriv4ZRv+mNr2cUVEp6LlkrSsUlNOjT2zqrJ\nd3uYuDLT5oiUKpkmd1UuPEb42H2jv32v41sieVnb3V0Lb6yOX7ZL53+rsKfJXZWLRZ6fscM0AKAa\nJ7nFscjmiC7OgA4NqRLvAOCnrBOk7Txic0RKXZiW/FXl4jN3YSnV2x3zqSKnbYymDIosbqoCDHQ/\nxHi8/1/jl+7iipTS7QCkVEXSK3cVcodNNb71FFYkvcdx4V3iI8XdAf8fM9buI+dk7NWbUZFDk7sK\nucnuq/zVHzvKVlpae2yOKDRSZQdtG1QH4LTLw6RVemNVhS9N7iqkjDF84e7lb9/p+MG+YEJMBO4O\nWLH62fLdemNVhS1N7iqk1u05xibjTYCJnKa/Y7HNEYXWoI4NqRTnvbG6af9xVu2OrEVZKnZoclch\n9XnaLv9xP2sp1eWUjdGEXvXEOPq3b+Bvf74stkoBq8ihyV2FTF6Bmynpe/3tO53z7AumHA3p2sR/\nPGPtPvIKIqMQmootOhVSlV2R6YLfuHtwvOBxAC6R/XSTosVDo0PnprVIqV2ZjOyT5J528c36/Qzq\n2MjusJQ6i165q5AJvJF6h+OHiF6ReiEiwm2dCzdR+GpldMwGUtFFk7sKid2eZBZ52gEgeLjdscDm\niMrXrZ0Kr9QXbM3iwLE8G6NR6lya3FVITPFc5T/uaa2lgZyzEVdUaZJUme6XeleoegxMXqVX7yq8\naHJXF80YmOS+2t+O9qv2M24PGJqZuDJT57yrsKLJXV20taYZPxnvMEVl8rjRWmFzRBWjb2oD/5z3\nLQdyWb/3mM0RKVVIk7u6aIFX7X2sZVSOtCJhZVQ1wXnWhtla512FE03u6qK4jMW0gN2WbnUstDGa\nihc4NDM1fS8Fbo+N0ShVSJO7uigLPKkcwjvfvS5H6GGttzmiinVl89rUr+7dbSr7RD4/bM6yOSKl\nvDS5q4sSOCQzyLEIh8TWTUWHJdwSMC3yzEbaStmtxBWqItIE+BCoD3iA94wxbxTp0wuYAuzwPfWV\nMWZUaENV4SbXJJ5Vtz0mhmSKrMoFGORpwjv8HYDvNhzgxGkXVRJ08beyVzBX7i7gaWNMG6A78JiI\ntC2m3wJjTEffQxN7DJjluYI8EgDvBthtrV0lvCM6tbF206peNQBOFbj5bsMBmyNSKojkbozZZ4xZ\n6Ts+DmwEtJCGYnLAkMwtsXDVfgEDOzb0H09J1wVNyn6l+t1RRFKATsDSYl6+UkRWA3uB/zHGxNad\ntWhWzFDEQVODHz3/BLzlBgY5fqzoqMLKwA4N+cc3mwGYv/UQ2bmnqV01weaoVCwL+oaqiFQFJgJP\nGmOKrtZYCVxijOkAvAlMPs9nDBORNBFJy8rSWQWRbIa7Ox7fj09X2RT15QZK0iSpMpdfUgsAt8fw\n9br9NkekYl1QyV1E4vAm9k+MMV8Vfd0Yc8wYk+s7/hqIE5HkYvq9Z4zpYozpUqdOnYsMXdlpasDc\n9oExftV+xqCAoZmpOjSjbFZichcRAd4HNhpjXj1Pn/q+fohIV9/nZocyUBU+dnvqsMq0AMCJi36O\nZTZHFB76pTbAYXnrHC/POELmkZM2R6RiWTBX7lcB9wLXiUi679FPRB4RkUd8fQYD63xj7mOAIUar\nKEWtaZ7u/uOe1lpqSa6N0YSP5KoJ9GxR+AurznlXdirxhqoxZiFwwW0XjDFvAW+FKigV3nRI5vwG\ndWzIPN8q1anpe3m012U2R6Rila5QVaWy1dOITeYSABLIj5kKkMG6sW19EuO8f6027T/OlgPHbY5I\nxSpN7qpUAq/ar7dWUVV0B6JAVROcXN+6nr89XYdmlE00uaugGQNTPVf62zokU7wBHRr4j6ev2aeb\neChbaAEMFbQ15lJ2Gm/98mqcpJeVbnNEYSRgoVcvE0cV3uEEldh+6ATr9x6jXaNzF4IpVZ70yl0F\nbZq78Kr9Jms5iVJgYzThK1EKuMlK87enrdGhGVXxNLmroHiMMMNdOAVygGOxjdGEv/6OJf7j6at1\naEZVPE3uKigrTQv2URuAWhznqhjblKO0elprqM4JAPYcPcWq3UdtjkjFGk3uKijTA67a+ziWESdu\nG6MJf/Hipm/Ayt1pOmtGVTBN7qpEbiPMcHfztwdYOiQTjP4B52nGmn24PTo0oyqOJndVomWe1mTh\nrXiYzFG6WRttjigyXGltoHaVeAAOHj/N8ozYrpypKpZOhVSFiqnbDjDd86D/uJ9jWcztk1pWTvHQ\nL7UBHy3ZCXiHZrpfWtvmqFSs0Ct3dUEuYzHLfYW/3V9nyZRK//aFC5pmrduPy+2xMRoVSzS5qwta\n7GlLNt4r+vpk00W22BxRZLkiJYm61bw7MmWfyGfJdh2aURVDk7u6oOkB5Qb6OZZi6ZBMqViW0C81\nsByBzppRFUOTuzqvfOMoMiSz5AK91fkE1pqZtX4/BTo0oyqAJnd1Xos8qeRQFYBGZNFJttkcUWTq\n1KQWDWokAnD0ZAGLth2yOSIVCzS5q/OaHjC3vb9jCXLBLVvU+ViWcHPA0MyMNftsjEbFCk3uqlin\njZNvPV387Zt1SOai9O9QuHn2N+v3k+/SoRlVvjS5q2It8LTnOFUAaCoHSJUdNkcU2To0rkHjWpUA\nOJbnYsHWLJsjUtFOk7sqVmAtmZstHZK5WCLCze11aEZVHE3u6hx5Jo7vPJf72zpLJjQGtC8cmvl2\nwwHyCrT4mio/JSZ3EWkiInNFZKOIrBeR3xbTR0RkjIhsE5E1ItK5fMJVFWGepwMn8A4hNJN9tJWd\nNkcUwUbW8D9+9l5TLpH9AOSedvHDFh2aUeUnmCt3F/C0MaYN0B14TETaFunTF2jhewwD3g5plKpC\nTQ/Ycam/DsmEjIj3fJ6hQzOqPJWY3I0x+4wxK33Hx4GNQKMi3QYBHxqvJUBNEWmAijinTDzfezr5\n2zpLJrQCa/PM3niAU/k6NKPKR6nG3EUkBegELC3yUiNgd0A7k3P/AVARYI6nE6fwLri5TDJpJbtL\neIcqjdaym+ayB4CT+W7mbj5oc0QqWgWd3EWkKjAReNIYc6zoy8W85ZwiJCIyTETSRCQtK0vHG8NR\n4CwZXbgUeiLe2UdnaK0ZVV6CSu4iEoc3sX9ijPmqmC6ZQJOAdmPgnJ9aY8x7xpguxpguderUKUu8\nqhzlmkTmBAzJBI4Pq9AZEDDUNWfTQU6cdtkYjYpWwcyWEeB9YKMx5tXzdJsKDPXNmukO5Bhj9G5R\nhPne05nTeHcOai27uMzSq8ry0MLaQ6t61QDIK/Awe+MBmyNS0SiYK/ergHuB60Qk3ffoJyKPiMgj\nvj5fA9uBbcC/gUfLJ1xVnqadNSSjm3KUp/66oEmVsxK32TPGLKT4MfXAPgZ4LFRBqYqXc6qAHzwd\n/W0dkilf/Ts05P++8258Mm9LFsfzCqiWGGdzVCqa6ApVBcC36/dT4Pu3PlW2k2LpUEF5apZchZ81\nrA5AvsvDdxv0fKvQ0uSuAJgWMDQwQIdkKkT/gHIE03VoRoWYJnfF4RP5Z20goQuXKkZgjfcFW7M4\nejLfxmhUtNHkrpi1bj9uj3dZQmfZQiPJtjmi2NC0dmU6NKkJQIHbMGvdfpsjUtFEk7ti2urCKY86\nJFOxBgZs4jFNFzSpENLkHuMOHs9j6Q7vlbrgoZ+jaGUJVS58lSJv/q43gndXpsXbsjh4PM/mwFS0\n0OQe42au3Y9vRIausol6ctTegGJMfTlCV9kEgAeLr/XGqgoRTe6xKKDG+JRpk/xP66Yc9hjo+NF/\nPE2TuwoRTe4xbLenDitNSwCcuLhZh2Rs0dexHAfe0r8rdh4h88hJmyNS0UCTewyb6inclONqax1J\nctzGaGJXkhznamutv61z3lUoaHKPYdPcPfzHgxyLbIxEDQyYpTQ1XWfNqIunyT1GbfY0ZpNpCkAC\n+dxorbA5oth2k5VGPN5FTBv2HWPbwVybI1KRTpN7jJoacNV+g7WCqqJT8OxUTU5xnZXubweuPVCq\nLDS5xyBjYKqnMLkP1IVLYSFwAdnU1XvxFltVqmw0ucegVeYydpu6AFTjBL0CrhiVfa63VlI1wVuZ\nc8ehE6zOzLE5IhXJNLnHoMAhmb6OZSSIbvMWDhKlgJ//rL6/PXnVHhujUZFOk3uMcbk9Z22CPdDS\nIZlwcuvawk3Mpv+4GteLtbwLzpQqJU3uMebHn7I5hLcSYTJHudJab3NEKtCV1nrqcgSAQ9Rgkaed\nzRGpSKXJPcYE/qo/wLEYh+hNu3DiEHPWjdXJ7qtsjEZFMk3uMeRkvotZ6wtrht/mWGhjNOp8bglY\nUPaN5wpOmgQbo1GRSpN7DPlm/X5O5ntrmFwmmbSTHTZHpIrTTnbQXLy/YZ0kke88nW2OSEWiEpO7\niIwVkYMisu48r/cSkRwRSfc9Xgh9mCoUvlpZOCRzq2MhIjYGo85L5Oyr9yk6NKPKwBlEn3HAW8CH\nF+izwBjTPyQRqdAoMsPioKnJotNvcebf80EBZWZV+Blk/cj/cScAP3g6kJ17mtpVdXhGBa/EK3dj\nzHzgcAXEosrRVHcPPL4/7m6ygcZyqIR3KDs1tQ7SWbYA4Mah5QhUqYVqzP1KEVktIjNF5Gch+kwV\nQl+5r/Yf643UyHBrwJ/TxJW6oEmVTiiS+0rgEmNMB+BNYPL5OorIMBFJE5G0rKysEHy1CsZmT2M2\nmBTAWwGyr27KEREGOhYTTwEAa/fksOWA1ttXwbvo5G6MOWaMyfUdfw3EiUjyefq+Z4zpYozpUqdO\nnYv9ahWkSQFX7TdYK6gup2yMRgWrhpw4qxTzxBWZNkajIs1FJ3cRqS/inXchIl19n5l9sZ+rQsNt\n5KzZFrfqphwR5XbHfP/xpFV7cLk9NkajIkmJs2VEZDzQC0gWkUzgRSAOwBjzDjAYGC4iLuAUMMRo\nrdKwsdCTyj5qA1CbHK61VtsckSqNa6w1JHOUQ9Tk4PHTLNx2iF6t6todlooAJSZ3Y8zdJbz+Ft6p\nkioMfem+1n98i2MRceK2MRpVWk7xcItjEf9x3wx4b6xqclfB0BWqUeyoqcK3ni7+9h2OH2yMRpVV\n4NDMN+v3k3OqwMZoVKTQ5B7Fprp7kO8dQaO9/ERra7fNEamyaGPt5mcNqwOQ7/IwY80+myNSkUCT\nexQLHJLRq/bIdnvnxv7jiSt11owqmSb3KLXR04S15lIA4snXfVIj3KCODXFa3mJAK3YeYdvBXJsj\nUuFOk3uUCrxq/7mVRg05YWOFeBqAAAAVTklEQVQ06mLVrprA9W0Kb6R+vnyXjdGoSKDJPQrluzxM\nDli4pEMyUWBkDYZsecrfnLhgNfkvJtkYkAp3mtyj0JxNBzmM9wZcA7K5yiq2WrOKMNdYa2iIt+Db\nYarzXcBMKKWKCqbkrwpnxWye/Fn+CKAjAIMd83UrvSjhEMMdjh94w307AJ+5e3OzzTGp8KVX7lFm\ntyeZHzztARA8OiQTZe50zkPwliBY4GnP7sMnbY5IhStN7lHmM/d1GN8fa09rLU2tgzZHpEKpkWRz\nrbXG3/4iTdcuqOJpco8iBcbB5+5e/vY9ju/tC0aVmyGOuf7jL9J2azExVSxN7lHkO8/lHKImAPU4\nzPXWKpsjUuXhemslyeQAcODYaX7YonsjqHNpco8in7qv9x/f5ZinRcKiVJy4uT3gXsqnS3XOuzqX\nJvcokeGpx0JPKgAWHu5yzi3hHSqS3R0wNDNn80G9sarOock9Sox3X+c/7m2l00h0v5RolmId4Bpf\nbX5j4OMlO22OSIUbTe5R4LRxnlVuQG+kxob7HN/6jz9P201egQ7DqUKa3KPA155u/hWpDTlELyvd\n5ohURehlpdNYvFNdj54sYOqfbvUuaitmYZuKPZrcI5wx8IGrj799j/N7XZEaIxxiuNcx29/+0H0T\nusGlOkOTe4RbaVqwxjQHvKV973bMsTkiVZHudMwjgXwA1plmrDKX2RyRChea3CPc2ICr9lsci6gt\nx22MRlW0WpLLgIBa/R+5brQxGhVONLlHsL1HTzHL09XffsAxy8ZolF0Cb6zO8HTnkKluYzQqXJSY\n3EVkrIgcFJFi68aK1xgR2SYia0Skc+jDVMX5eMlO3DgA6G6tp43ukRqTUq0ddJStAOQTxycBi9lU\n7Armyn0c0OcCr/cFWvgew4C3Lz4sVZK8AjfjlxWuTHzA8Y2N0Si7PeAs/K3tQ9dNOi1SlZzcjTHz\ngcMX6DII+NB4LQFqikiDUAWoijd51R6OnCwAoLEc5AZrhc0RKTv1s5bRCG+NmWxq6CbaKiSbdTQC\nAscDMn3P7QvBZ6szAuYuGwMf5L8MNAW8Y646/TG2xYmbB5yz+IvrXgD+s2AHd1/RFMu3qbaKPaG4\noVrcT0+xmUZEholImoikZWVpJbuymuPpxGbjTeyVyeNOxzx7A1JhYYhjLtXwboS+49AJZm88YHNE\nyk6hSO6ZQJOAdmNgb3EdjTHvGWO6GGO61KlTJwRfHZvedg30H9/j+J4aokWjFFSVvLNKT/x7wXYb\no1F2C0VynwoM9c2a6Q7kGGN0SKacLPO0Is20AiAOFw85v7Y5IhVOHnB+QxwuAJZnHGHlriM2R6Ts\nEsxUyPHAYqCViGSKyK9E5BERecTX5WtgO7AN+DfwaLlFq866ar/NsYD6on95VaH6coSB1iJ/+z96\n9R6zSryhaoy5u4TXDfBYyCJS57XR04S5nk6Ad/PrYY7pNkekwtHDzq+ZmO+tEjpz3X62HczlsrpV\nbY5KVTRdoRpBAq/a+1rLaW7p6Jc6V2trN71bee9pGQP/nLvN5oiUHTS5R4hdnrpM91zpbw93TrUx\nGhXufrNjuP94yqrdbH+hlZYCjjGa3CPE2+6BeHx/XD2tNaRaO2yOSIWzztY2elprAPBg8ZbrFpsj\nUhVNk3sE2Jl9gi/d1/jbwx161a5K9qRzov94iucqMjz1bIxGVTRN7hHgje+34vLd++5uraeHY4PN\nEalIcLm1lauttQC4cfBP9yCbI1IVSZN7mNt28DiTV+3xt592TrAxGhVpnnB+5T/+yt2TXdm64C1W\naHIPc6/N3orHV8zhWiudK6zN9gakIkpXazNXWusB79X7m3O22hyRqiia3MPYxn3HmLGmcLrj084v\nbYxGRarfBoy9T1yZyeb9ultXLAhFVUgVSgHT1V7NfwroAsCNVhrtdYaMKoPu1iautdL5wdMRj4G/\nj3mdsfGvnN1pZI49walyo1fuYWql5zK+83Txt5/Sq3Z1EZ51jkfwADDH05nF7jY2R6TKmyb3MOQx\nwqiCe/3t/tZi3UJPXZQ21m5udyzwt//mugeP0Vrv0UyTexia6ulBumkBQDwFPOP8zOaIVDR4yvkl\nCeQDsMY0Z4anm80RqfKkyT3MnDQJvFwwxN/+leNrmli6sYm6eA3lMA84CvdaHe0awmmjt92ilSb3\nMPOuqz/7qQ1AMkd5VGvIqBAa7pxKTbyzZXabunzg7mNzRKq8aHIPI3uPnuJdd39/+/fOL6gmp2yM\nSEWbGnKSJ5yT/O03XLex1yTZGJEqL5rcw8jfZ20ijwQAfiY7GOz4weaIVDQa6viW1rILgFMkMqpg\nqM0RqfKgyT1MzN+SxZT0wq1nn4/7CIcUu8+4UhfFKR7+HPeBvz3L05W5mw/aGJEqD5rcw8DJfBf/\nO3mtv93fWkx3a5ONEalod4W1mTsc8/ztF6esJ6/AbV9AKuQ0uYeB12dvZfdh79h6DXJ5Me6/Nkek\nYsGzzvHUIBeAXYdP8va8n2yOSIWSJnebrduTc9Ymxv/r/IQ6cszGiFSsqC3HGRGwhuLteT9p3Zko\nosndRi63h2cmrvFXfezRvDZ36E1UVYHudsylo3grRea7PTz1RTr5Lo/NUalQCCq5i0gfEdksIttE\n5NliXr9fRLJEJN33eCj0oUaf9xZsZ/1e71V6gtPir7emIroiXFUgSwyvxL1LvG/l6vq9x3jzxWHe\nAnZnHioilZjcRcQB/BPoC7QF7haRtsV0/dwY09H3+E+I44w6q3cf5dVvt/jbT97QkpTkKjZGpGLV\nZdZeRjg/97f/5R5Iuqe5jRGpUAjmyr0rsM0Ys90Ykw98Buh+XRch97SLJ/41EZdvPKaTbOXhuV30\nKknZ5kHHLLqJd/tGNw6eKhhOnomzOSp1MYJJ7o2AwJKEmb7nirpdRNaIyAQRaRKS6KLUC1PWsdPU\nB6AqJxkT9xZO0XFOZZ8zwzNV8M7a2m4a8pLrFzZHpS5GMMm9uFHgoqtrpgEpxpj2wGyg2Ll8IjJM\nRNJEJC0rKzaLYU1J38NXKwv3RH0pbqwWBlNhoYmVxR+dH/vbH7lvYrL7KhsjUhcjmOSeCQReiTcG\n9gZ2MMZkG2NO+5r/Bi4v7oOMMe8ZY7oYY7rUqVOnLPFGtO1Zufxx0jp/+zZrPoMcP9oYkVJnG+KY\nS19rqb/9XMGvdHpkhAomuS8HWohIMxGJB4YAZ5UqFJEGAc2BwMbQhRgdjuUV8NCHaRw/7QKgqRxg\nVNw4W2NSqigRGB33HpeK9/rtFIkM/3gFx/MKbI5MlVaJxZyNMS4ReRz4BnAAY40x60VkFJBmjJkK\nPCEiAwEXcBi4vxxjjjhuj+GJ8avYnnUC8E57/Kc1hqqSZ3NkSp2rmpzinbjXGJT/Z06RyPZDJ/j9\nqL/wdtzrZ0/V1X1Xw1pQ89yNMV8bY1oaY5obY17yPfeCL7FjjHnOGPMzY0wHY0xvY4wWRgkwetYm\n5m0uHFf/xx0dSNXNrlUYa2nt4eW4whnNszxdedV1h40RqdLSFarlbOKKTN6dX1he4LHezRnYoaGN\nESkVnEGOH7nP8Y2//ab7Vj5xXWdjRKo0NLmXozmbDvDMlyv87RusFTz9Y3edz64ixh+dH3Otle5v\nP+96kNnuzjZGpIKlyb2cLP4pm+Efr8Tlu63RUnbzWty/sLRGu4ogceLmX3FvkCre3z49WDxe8BtW\nei6zOTJVEk3u5SB991Ee+u9yTvsKMDWRg3wY/7JumaciUhU5zdj40TQR74YeeSTwQP4I1mbqDdVw\nJsbYcyXZpUsXk5aWZst3l6f1e3O4599LyTnlnTpWj8N8GT+KppbudKMi2w5PfW7PH8lhqgNQjRP8\nN/7vdLa2nd1RZ9GUKxFZYYzpUlI/vXIPoSXbsxny7hJ/Yq9VOY6P4/+miV1FhWbWfj6Mf5maeBc1\nHacK9+Y/x3JPK5sjU8XR5B4i36zfz9Cxy/yLlKolOvnwwW60sPaU8E6lIkc7K4NP418iCW+p6hNU\nYmj+M8x3p9ocmSpKk3sIfL58F8M/XuHf5KBOtQS++PWVpDbWWTEq+rS1dvFZ/J9J5ijgXcX6QMEI\nPnTdaHNkKpAm94uQ7/Iwcup6npm41r+bUkrtynw1vAdtGlS3NzilylFLaw9fxI+iAdmAt0zwC64H\neL7gfgrcWuE0HGhyL6P9OXnc/e8ljPsxw/9cu0bVmTC8B02SKtsXmFIV5FJrP5MTnqe9FG6s/ZH7\nJu7/YBlZx09f4J2qIuhsmTJYtO0Qv/1sFYdy8/3P9bGW8UrcO1ovRsWcUyae3xf8mumeK/3PJVeN\nZ/Tg9lzXup6NkUWnYGfLaHIvhdzTLv729UY+WbrL/5wl8Eyf1gyb01n3P1UxyxgY476V14rUn7nX\n8S1/cH5KJcnXKZIholMhQ2z+lix+/tr8sxJ7ctV4PnmoO7++trkmdhXTROC3zkl8GPc36nLE//xH\n7pvom/8yc90dbIwuNmlyL0HGoRM8+skKho5dxp6jhStMb2xbj6+f6MmVzWvbGJ1S4eUax1pmJTzL\nz61l/ucyTH0eKHiGhz9MY/fhkzZGF1tKrOceqw6fyGfM91v5ZOlOCtyFQ1e1Ksfxp0HtGNC+AaKX\n60qdI0mO807c63zh7sVLrl9wjCoAfLfhAPO3ZDH0yksYdk1z6lRLsDnS6KZj7kXsPXqKsQt3MH7Z\nLk7ku896bVDHhjy/cSDJcsym6JSKLIdMdUa77uILd++znk/kNL9wfM+vndOo+6dd53m3Ko7eUC0F\nYwxr9+Qw7scMpqbvxeU5+5x0TUniDze3oWOTmlquV6kyWOVpzosF97PGND/r+XjyublTM37ZvSmd\nm9bS34aDoMk9CFnHTzN51R4mrMhk84FzNwFuWa8q/3NTK25sW6/wh06Tu1JlYgx857mcN1y3sd40\nO+f1NpLBnY4f6OdYSj05qrNrzkOT+3nsPnySbzcc4LsN+1mecQS359z//27Nkvj1tZfSq2VdLKvI\nlYQmd6UuijEw29OZt1y3sNqcWxde8HCFbKb/wMH0blVXFwUWEWxyj/obqtm5p1m64zBLtmez+Kds\nth7MLbZfpTgHfVPrc2/3S+jUtFYFR6lU7BCBGx0rudGxkrWeZnzsvoEp7h7k4b3BarBYZtqwbMp6\nYD2XJlehZ4tkelyWzOWX1CK5qt6IDUbUXLkbY8jKPc22A7ms25vDmswc1u3JISP7wlOvrkipxeDL\nG3Nz+4ZUTQj4t06v0JWqMDmmCtPc3Znh6c5STxs8F5il3SSpEp2b1qJdwxq0blCNVvWrUadqQsyM\n14d0WEZE+gBvAA7gP8aYl4u8ngB8CFwOZAN3GWMyLvSZZUnubo/hwLE8dh8+SeaRU+w+4v3vjkMn\n2HrgOMfyXCV+RrzT4qrmtbmxbX1uaFOXutUTi++oyV0pWxw0NZjl7sr3nk4s9bTxX9FfSFKVeFJq\nVyaldhUuqV2FJkmVaFCjEg1qJFK/RiKJcY4KiLxihCy5i4gD2ALcCGQCy4G7jTEbAvo8CrQ3xjwi\nIkOAW40xd13oc8uS3NftyaH/mwtL9Z44h9ChcU26X1qbK5vXpnPTWlSKD/iD1iSuVNjKM3Gs8LRk\nvieVFZ5WrDHNyCe+1J9TPdFJctUEaleNJ6lKPDUqxfkf1SvFUSXeSZUEJ1UTnFSKd1ApzkGleAeJ\ncRYJTgcJTosEp4XTYf+6z1COuXcFthljtvs++DNgELAhoM8gYKTveALwloiICfGYT+NalS74epV4\nB5fVrUrr+tVJbVyD9o1r0Kp+NRKcDm8SXxzKaJRS5S1RCrjKsZ6rHOsByDcONppLSPdcxibTlE2e\nJmwxjTnBhXPDsTwXx/JcbD904qLiEYE4h0WcJcQ5LZyW4LQsHJbgdAgOESwr4L8WWCKICA6BP/Zv\nS+cKuqcXTHJvBOwOaGcC3c7XxxjjEpEcoDZwKBRBnlGjUhwptStTs3I8jWtVoklSZRrXqkTTpMpc\nVrcq9asnIn+q6f3WdaH8ZqVUOIgXNx1kOx2s7f7nPEbYRxI7PfXYaeqRYeqzxySzzySx3ySxnyTc\nhGZYxhjvPg75AEUWOQYjN4ih41AJJrkXd5ei6BV5MH0QkWHAMF8zV0Q2B/H9sSiZEP/DGIX0HAUn\nRs5TDrCjrG+usHN07d9D8jGXBNMpmOSeCTQJaDcG9p6nT6aIOIEawOGiH2SMeQ94L5jAYpmIpAUz\nphbL9BwFR89TyaL1HAVzd2A50EJEmolIPDAEmFqkz1TgPt/xYGBOqMfblVJKBa/EK3ffGPrjwDd4\np0KONcasF5FRQJoxZirwPvCRiGzDe8U+pDyDVkopdWFBrVA1xnwNfF3kuRcCjvOAO4q+T5WZDl2V\nTM9RcPQ8lSwqz5FtK1SVUkqVH/tn5CullAo5Te42EZE+IrJZRLaJyLPFvP6UiGwQkTUi8r2IBDX9\nKdqUdJ4C+g0WESMiUTfroSTBnCMRudP387ReRD6t6BjDQRB/55qKyFwRWeX7e9fPjjhDxhijjwp+\n4L0x/RNwKRAPrAbaFunTG6jsOx4OfG533OF4nnz9qgHzgSVAF7vjDrdzBLQAVgG1fO26dscdpufp\nPWC477gtkGF33Bfz0Ct3e/hLOhhj8oEzJR38jDFzjTFnSlouwbu+INaUeJ58/gyMBvIqMrgwEcw5\nehj4pzHmCIAx5mAFxxgOgjlPBqjuO67Buet5Ioomd3sUV9Kh0QX6/wqYWa4RhacSz5OIdAKaGGOm\nV2RgYSSYn6WWQEsRWSQiS3xVXmNNMOdpJPBLEcnEOzvwNxUTWvmI+s06wlRQ5RoAROSXQBfg2nKN\nKDxd8DyJiAW8BtxfUQGFoWB+lpx4h2Z64f0NcIGItDPGHC3n2MJJMOfpbmCcMeb/RORKvGt32hlj\nPOUfXujplbs9ginpgIjcAPwvMNAYc7qCYgsnJZ2nakA7YJ6IZADdgakxdlM12PIgU4wxBcaYHcBm\nvMk+lgRznn4FfAFgjFkMJOKtOxORNLnbo8SSDr7hhnfxJvZYHCOFEs6TMSbHGJNsjEkxxqTgvTcx\n0Bhj787rFSuY8iCT8d6gR0SS8Q7TbCe2BHOedgHXA4hIG7zJPatCowwhTe42MMa4gDMlHTYCXxhf\nSQcRGejr9g+gKvCliKSLSNEfxKgX5HmKaUGeo2+AbBHZAMwFfm+MybYnYnsEeZ6eBh4WkdXAeOB+\n45s6E4l0hapSSkUhvXJXSqkopMldKaWikCZ3pZSKQprclVIqCmlyV0qpKKTJXSmlopAmd6WUikKa\n3JVSKgr9P54WV+HHwqonAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhTZdrH8e+dpKUFStm3shQFRGQX2QQVRUVGBBQUFYVxYRh1fHWc13F0VAZfHbfBGcUZNxBUBJUdEXRAUHYo+77IImUtBVpaStskz/tHQpqWlqaQ9qTJ/bmuXnOe5CT9mXZuTp/zLGKMQSmlVPlnszqAUkqp4NCCrpRSYUILulJKhQkt6EopFSa0oCulVJhwWPWNa9asaRITE6369kopVS6tWbPmuDGmVmHPWVbQExMTSUpKsurbK6VUuSQi+4t6TrtclFIqTBRb0EUkRkRWicgGEdkiIn8r5JxhIpIiIuu9X4+UTlyllFJFCaTLJRu40RiTISJRwBIRmWuMWVHgvK+MMU8EP6JSSqlAFFvQjWdtgAxvM8r7pesFKBXGcnNzSU5O5uzZs1ZHiVgxMTE0aNCAqKiogF8T0E1REbEDa4CmwPvGmJWFnHaXiFwH7ASeNsYcCDiFUiqkJCcnExcXR2JiIiJidZyIY4whNTWV5ORkmjRpEvDrAropaoxxGWPaAQ2ATiLSqsAps4FEY0wbYD4wobD3EZHhIpIkIkkpKSkBh1RKla2zZ89So0YNLeYWERFq1KhR4r+QSjTKxRhzClgE9C7weKoxJtvb/Bi4uojXf2SM6WiM6VirVqHDKJVSIUKLubUu5vMvtstFRGoBucaYUyISC/QC3ihwTj1jzGFv8w5gW4mTKHURcl1uth5KZ/W+EyTtO8np7Fya1KzE5bUq07R2ZVonxFO1YrTVMZUqE4H0odcDJnj70W3A18aYb0VkFJBkjJkFPCkidwBO4AQwrLQCKwVw7PRZXp+7nXmbj3Amx5XvuaW7U33H0XYbv702kcd6NiU+NvCbS8p6IsIf//hH/vGPfwDw9ttvk5GRwciRI8ssw7Bhw7j99tsZOHDgeY//9NNPVKlShaysLLp06cLf//53EhISAOjTpw9ffvklVatWLfR9//nPfzJ8+HAqVqwY1LzFdrkYYzYaY9obY9oYY1oZY0Z5H3/JW8wxxvzFGHOVMaatMaanMWZ7UFMq5eV2Gyau3M9N//iJaWsPnlfMC8pxufnw5z1c/9ZCxi3ZS47TXUZJ1aWqUKEC06ZN4/jx4xf1eqfTGeRE+b311lts2LCBHTt20L59e3r27ElOTg4A3333XZHFHDwF/cyZM0HPZNnUf6VKavexDJ6bupGk/SfzPZ5QNZZrEqtxTZPq1ImLYc/xDHYfy2DDgTR2HD0NwKkzuYz6ditfrvqVT4ddQ8Pqwb0yUsHncDgYPnw477zzDq+++mq+5/bv389DDz1ESkoKtWrV4tNPP6VRo0YMGzaM6tWrs27dOjp06EBcXBx79+7l8OHD7Ny5k9GjR7NixQrmzp1LQkICs2fPJioqilGjRjF79myysrLo1q0bH374YcB92CLC008/zfTp05k7dy79+vXzLW0SGxvL3XffTXJyMi6XixdffJGjR49y6NAhevbsSc2aNVm4cGHwPrOgvZNSpWjDgVMMGbuS02fzrroSa1Tk1QGtubZpzQJn1wE8Q7/mbDrMG/O2c+BEFuD5R2HgB8v44uHONKsTV1bxy7XE5+aU2nvve/03F3z+8ccfp02bNjz77LP5Hn/iiSd48MEHGTp0KOPGjePJJ59kxowZAOzcuZP58+djt9sZOXIkv/zyCwsXLmTr1q107dqVqVOn8uabbzJgwADmzJlD//79eeKJJ3jppZcAeOCBB/j222/p27dvif5bOnTowPbt2+nXr5/vsXnz5lG/fn3mzPF8hmlpacTHxzN69GgWLlxIzZoFf3cvja7lokLexuT8xdxhE57o2ZR5T11XSDHPIyLc3qY+8/94PX/9zZVEOzy/7kfTs7n7w+VsOHCqTPKri1elShUefPBB3n333XyPL1++nPvuuw/wFOAlS5b4nhs0aBB2u93Xvu2224iKiqJ169a4XC569/YM0mvdujX79u0DYOHChXTu3JnWrVvz448/smXLlhJnLWx/5tatWzN//nz+/Oc/s3jxYuLj40v8viWhBV2FrpHxbHqpHUPG/OAr5tU4zYzHr+VPt15BTJS9mDfwqOCw80iPy5jw205Uiva85uSZXO77eAXLfrm4/llVdp566inGjh1LZmZmkef4d49UqlQp33MVKlQAwGazERUV5TvXZrPhdDo5e/Ysjz32GFOmTGHTpk08+uijFzVDdt26dVx55ZX5HmvevDlr1qyhdevW/OUvf2HUqFElft+S0C4XFbI2uxszJOcvpOP5P2hVTjMx+lVaJgy+qPfrenkNvny0C0M/XcWpM7lk5rh4aPxqZjx+LS3qVglm9LBSXLdIaatevTp33303Y8eO5aGHHgKgW7duTJ48mQceeICJEyfSvXv3i37/c8W7Zs2aZGRkMGXKlPNGtVyIMYb33nuPw4cP+67+zzl06BDVq1dnyJAhVK5cmfHjxwMQFxfH6dOntctFRYbUjGwezvlf0qgMQDwZTIx+jZa2X2FkfOFfAWjbsCpf/64rteM8V21nc938/ou1nD6bW2r/LerSPfPMM/lGu7z77rt8+umntGnThs8//5x//etfF/3eVatW5dFHH6V169b079+fa665JqDX/e///i9t27alefPmrF69moULFxIdnX/Ow6ZNm+jUqRPt2rXj1Vdf5a9//SsAw4cP57bbbqNnz54APPLII0HZH0IK6/cpCx07djS6wYUqjDGGhyck8eP2YwBUIZMvo1+llW3fhV84Mi3g77Hz6Gn6jVlKVq5n2GPvq+rynyEddHak17Zt287rPlBlr7Cfg4isMcZ0LOx8vUJXIWfc0n2+Yg7wz6j3iy/mJdS8Thyv39Xa15635Qhjl+wN6vdQqqxpQVchZVNyGq/PzVs54hH7HG60ry+V79WvXQJDuzb2tf8+dzur9p4ole+lVFnQgq5CRka2kz9MWkuuy9MN2Fr28Kxjcql+zxd+05J2DT0z+lxuw5OT1pGRXbozDJUqLVrQVcj4v2+3si/VMx26cgUH70W9R7RceGr/pYp22Pj3/R2oVtGzzsuR9LO889+dpfo9lSotOmxRhYR1v55k8uq8PVFeHdCKxBlHS/YmRY10KeZmaf2qsbzc9yqe+srTtTN+2T7u6tCAlvV1KKMqX/QKXVnO7Ta8PCtvZt7NLevQr11CmWbo164+3S6vAXi6Xv46YxNut+60qMoXvUJXlvs66QAbkz1X0dEOGy/d3rLMM4gIo/q14rZ//Uyuy7D211N8lXSAezs1KvMsISnAcf6Bv19gQ0ynT5/OnXfeybZt22jRosUFzx0/fjy33HIL9evXv6hIixYt4u233+bbb7897/F+/fpx2WWXcebMGerUqcOzzz7L7bffXuz7RUdH061bt4vKczH0Cl1ZKu1MLm9+v8PXHnH95ZathNi0dmV+d93lvvbrc7eTmpF9gVeo0jZp0iS6d+/O5MnF3xwfP348hw4dKpUcPXr0YN26dezYsYN3332XJ554ggULFlzwNYsWLWLZsmWlkqcoWtCVpUb/dwcnMj1rSCeQwu+XXFuimZ8BKWpmaSHf44kbm9KweiwAaVm5vDFPl/a3SkZGBkuXLmXs2LHnFfQ333yT1q1b07ZtW5577jmmTJlCUlIS999/P+3atSMrK4vExETf7NKkpCRuuOEGAFatWkW3bt1o37493bp1Y8eOHQW/9QW1a9eOl156iTFjxgAwe/ZsOnfuTPv27enVqxdHjx5l3759fPDBB7zzzju0a9eOxYsXF3pesGlBV5bZdjidz1fs97VfjPqCWMmxMBHERNkZdUfeHuhT1iSz+9hpCxNFrhkzZtC7d2+aN29O9erVWbt2LQBz585lxowZrFy5kg0bNvDss88ycOBAOnbsyMSJE1m/fj2xsbFFvm+LFi34+eefWbduHaNGjeL5558vcbZzS+UCdO/enRUrVrBu3ToGDx7Mm2++SWJiIiNGjODpp59m/fr19OjRo9Dzgk370JVl3pi3nXP3HXvYNnKrbbW1gbx6tqjNdc1r8fPOFNwGRv93J/++v9B9z1UpmjRpEk899RQAgwcPZtKkSXTo0IH58+fz29/+1rd9W/Xq1Uv0vmlpaQwdOpRdu3YhIuTmlnwdH/8lU5KTk7nnnns4fPgwOTk5NGnSpNDXBHrepdArdGWJtb+eZNGOFABsuHnJ8TmhtIzKn25p7jv+btMRNh8MfJ0YdelSU1P58ccfeeSRR0hMTOStt97iq6++whiDMSagNXccDgdut2fLQf/lcF988UV69uzJ5s2bmT179iUvlfuHP/yBJ554gk2bNvHhhx8W+X6BnncptKArS/xz/i7f8R22ZTSzHbQwzfnaNKjKrVfV8bVH62SjMjVlyhQefPBB9u/fz759+zhw4ABNmjRhyZIl3HLLLYwbN863J+eJE57lGs4tSXtOYmIia9asAWDq1Km+x9PS0nybOZ9bzrYkNm7cyCuvvMLjjz9+3vtNmDDBd17BPEWdF0za5aLK3Jr9J/h5p/fqXOBJxzTrwlxgMtIzt1zBD1uPYgz8uP0Ya/af5OrG1co2X6gowUqWwTBp0iSee+65fI/dddddfPnll/znP/9h/fr1dOzYkejoaPr06cNrr73GsGHDGDFiBLGxsSxfvpyXX36Zhx9+mNdee43OnTv73ufZZ59l6NChjB49mhtvvDGgPIsXL6Z9+/acOXOG2rVr8+6773LTTTcBMHLkSAYNGkRCQgJdunRh717PIm99+/Zl4MCBzJw5k/fee6/I84JJl89VZW7IJytZstsz+uDO9gmM3na9xYkK4S1gT01ex4z1nqFwXS+rwaThXaxMVWZ0+dzQEPTlc0UkRkRWicgGEdkiIn8r5JwKIvKViOwWkZUikniR+VU4GxnP6pc6+Yq5HRd/2HKPxaEu7KlezbHbPP21y/eksnS3blmnQlcgfejZwI3GmLZAO6C3iBS8THkYOGmMaQq8A7wR3JgqXLzjvMt33N+2hCa2IxamKV5izUoMurqBr/2vBbsucLZS1iq2oBuPDG8zyvtVsJ+mH3Cul38KcJPo1i+qgFXuK1jm9ozxtuPiScd0ixMF5g83NcPhvUpftfcE6w+csjhR2bCqO1Z5XMznH9AoFxGxi8h64BjwX2PMygKnJAAHvCGcQBpQo5D3GS4iSSKSlJKSUuKwqnz70NnXd3ynfTGNbccucHboSKgaS9+2eeuDfPTzLxamKRsxMTGkpqZqUbeIMYbU1FRiYmJK9LqARrkYY1xAOxGpCkwXkVbGmM1+pxR2NX7eb4Ix5iPgI/DcFC1RUlWu7T6WwQJ3B197hH22hWlK7tEelzF9nWdo5bzNR9ifmknjGpUsTlV6GjRoQHJyMnrhZZ2YmBgaNGhQ/Il+SjRs0RhzSkQWAb0B/4KeDDQEkkXEAcQDupeX8hm3NG+IVi/bGi63HbYwTcm1rF+FHs1qsnjXcdwGPlm8l1f6tyr+heVUVFRUqcxkVKUrkFEutbxX5ohILNALKLhi0SxgqPd4IPCj0b/VlFdqRjZT1yT72o845liY5uL5r8T4zZoDvkXFlAoVgVyh1wMmiIgdzz8AXxtjvhWRUUCSMWYWMBb4XER247kyH1xqiVW5M3Hlr2Q7PVOwW8leOks5WMGwkAlH1xpoWe9bth5O52yum8+W7+OpXs3Pf61SFglklMtGY0x7Y0wbY0wrY8wo7+MveYs5xpizxphBxpimxphOxpg9pR1clQ9nc118tnyfr/2oY05IrdlSEiLwu+sv87U/W76frJzS3fNUqZLQtVxU8PmtNz7rbwM4nuHpmqhHKn1sBQdIlS99WtcjoapnadYTmTlMXZtczCuUKjta0FWpMQY+cfXxtYc5vidKyvcVbZTdxkPd824WfrZ8nw7tUyFDC7oqNUvcrdhpGgJQiSwG23+0OFFwDOrYgIrRdgB2Hs1g1V4d0KVCgxZ0VWo+d93sOx5k/4l4OWNhmuCpEhPFgPYJvvZnfrsuKWUlLeiqVBw21ZnvztvlZ4h9voVpgu+Bro19x99vPsKx9OBvVqBUSWlBV6VisrMnbu+vV1fbFpraSmc3dqu0qFuFTomerc+cbsOkVQcsTqSUFnRVCnKNncmunr52uF2dnzPE7yr9y1X7yXW5LUyjlBZ0VQoWuDtwFM/Va01OcbMtPDcy6X1VXWpWrgDA0fRs5m89anEiFem0oKug+8LVy3c82L6Q6HI+VLEo0Q4b93Zq6Gt/rjdHlcW0oKug2ns8kyXu1gDYcHOvIzyGKhblvs6NfDsaLfslld3HThfzCqVKj24SrYJqot9V6o22dSRIqoVpSkGBNV7qAb14iu/pBMDkVQf46+0tLQimlBZ0dSkKFLezJoop2WOAOADuD9OboQXdZ/+R792egj5t3UGe7d2CaIf+8avKnv7WqaD53n0Np7zFvKEc43rbRosTlY3utk3Uj/fsLHMiM4f52/TmqLKGFnQVNF+7bvAd32NfiE0iY40TuxgGdcy7OTp5tY5JV9bQgq6C4oC7Jku9G0DbcHOXfbHFicrWoI4NfMsCL96VwsFTWdYGUhFJC7oKim9c1/uOr7NtpJ5E1oJVDapVpHvTmoBnlclvkvQqXZU9LejqkrmMMMWvoN9tX2RdGAvdc01et8s3Scm43ZHR5aRChxZ0dcmWultxCM/VaXXS6WVbY3Eia9zcsg7VKkYBcPBUFkt/OW5xIhVptKCrS+Z/M7S/fUnYzgwtTgWHnQHtG/jaenNUlTUt6OqSnDKV+MHd0de+2/6ThWms59/t8t8tRzmRmWNhGhVptKCrSzLDdS05eLoZ2sovtLBF9lXpFXXjaNuwKgA5Ljez1h+0OJGKJMUWdBFpKCILRWSbiGwRkf8p5JwbRCRNRNZ7v14qnbgq1Ph3twyK0JuhBQ26Oq/bZepaLeiq7AQy9d8JPGOMWSsiccAaEfmvMWZrgfMWG2NuD35EFaq2uhux1SQCUIEc+tqXWxvISn7LIPQ1lRjF++QQzaaDaew8eprmdeIsDKciRbFX6MaYw8aYtd7j08A2IOHCr1KRYJqrh+/4VtvqsNkz9FLFSyY329b62lPXJFuYRkWSEvWhi0gi0B5YWcjTXUVkg4jMFZGrinj9cBFJEpGklJSUEodVocPpcjPDda2vfWeEzQwtzl32n33H09cdxKm7GakyEHBBF5HKwFTgKWNMeoGn1wKNjTFtgfeAGYW9hzHmI2NMR2NMx1q1al1sZhUCFu86znE8N/9qcZLuts0WJwot19k2UpNTABw7nc2S3TomXZW+gAq6iEThKeYTjTHTCj5vjEk3xmR4j78DokSkZlCTqpAydW1eN8IA+1Icoleg/hzipr99qa89TW+OqjIQyCgXAcYC24wxo4s4p673PESkk/d9w2xnA3VOWlYuP/jtn6ndLYXz73b5fssR0s/mWphGRYJARrlcCzwAbBKR9d7HngcaARhjPgAGAr8XESeQBQw2xuhCFuGiwEYWc503kOMcDkBL2RfxY8+LcqXtAC3rVWHr4XSynW6+23iYwZ0aWR1LhbFiC7oxZgkgxZwzBhgTrFAqtE11Xec79r8KVee7s0MCW+d4bjlNXZusBV2VKp0pqkpkv7s2q00LAOy4uMO+zOJEoa1fuwTfJtKr951kf2qmxYlUONOCrkpkuru77/h62wZqScEBT8pfrbgK3NA8b0TXzPWHLEyjwp0WdBUwY2C6K6+gR9quRBerf/u8eXjT1x1Eby+p0qIFXQVsrWnGflMXgDgyuclvNqQq2s0t61C5gud21d7jmWxITrM4kQpXWtBVwPxnhv7GvpIY0WF4gYiJsnNbq7q+9ox1OiZdlQ4t6CogOcbOt66uvnZ/+xIL05QjI+NhZDwDNo7wPTR72QZydSkAVQq0oKuA/Oxuy0k8KwbW5zidZIfFicqXzrZt1PXOtUslnsW7dC0jFXxa0FVApvt1t/SzL8UmemOvJOxi6Oe3FMD0dTraRQWfFnRVrHQTy3z31b72AO1uuSgD/Ar6D1uOcFqXAlBBpgVdFWueqxPZRAOeqf7NbXpT72K0sB2ghewHINvpZt7mIxYnUuFGC7oq1gx3XneLXp1fmgH5ul30H0YVXFrQ1QUdTstiubslAIJbp/pfon72pQieES7L96RyJO2sxYlUOAlktUUVKQqsqggwy3k7hvsAuNa2hTpyqqxThZW6cpKutq0sc7fCGJi94RCPXneZ1bFUmNArdHVB+Ua32JZe4EwVqP427XZRpUMLuirSDncDtpvGAFQgh9721RYnCg+97auIdnj+r7f1cDq7jp62OJEKF1rQVZH8p/r3sq0hTrIsTBM+qkgWva6s7WvPWK9X6So4tKCrQrmNMNPlP7pFu1uCqV+7vBUYZ6w7hNutE7XUpdOCrgq12lzBITz7fFflNNfZNlicKLzccEUt4mOjADh4Kos1v560OJEKB1rQVaEKrqwYLS4L04SfCg47fVrX87V1BUYVDFrQ1XmyjYPvXJ197f7a3VIq+rer7zues+kwOU5dgVFdGi3o6jyL3O1IozIADeQYV8tOixOFp2sSq5NQNRaAU2dy+WmnrsCoLk2xBV1EGorIQhHZJiJbROR/CjlHRORdEdktIhtFpEPpxFVlYWa+sefLdGXFUmKzCXf4XaVrt4u6VIFcoTuBZ4wxVwJdgMdFpGWBc24Dmnm/hgP/CWpKVWY8Kyu297W1u6V09fcb7TJ/21FdgVFdkmILujHmsDFmrff4NLANSChwWj/gM+OxAqgqIvVQ5c48Vydy/FZWbKYrK5YO705GV3zQgCtlH6ArMKpLV6I+dBFJBNoDKws8lQAc8Gsnc37RR0SGi0iSiCSlpGh/YSjyX1lRr87Lhv8Yf51kpC5FwAVdRCoDU4GnjDHpBZ8u5CXndbwaYz4yxnQ0xnSsVatWyZKqUnfEVNOVFS1wh32ZbwXGZb/oCozq4gVU0EUkCk8xn2iMmVbIKclAQ792A0D32CpnZrm6Yby/Et1sW6krOtmlLJxbgRHwrcCo1MUIZJSLAGOBbcaY0UWcNgt40DvapQuQZow5HMScqgz4r6zY36YbWZQlXYFRBUMgV+jXAg8AN4rIeu9XHxEZISIjvOd8B+wBdgMfA4+VTlxVWrYfSWebSQR0ZUUr9LavIpocwLMC405dgVFdhGI3uDDGLKHwPnL/cwzweLBCqVJWyEYWM3IHA3cAcLOurFjmqkgWN9vWMsfdBfCMSX+2dwuLU6nyRmeKqkJWVtTuFiv08xvtMnO9rsCoSk4LumKluwWHqQFANU5znW2jxYki0w229VStmLcCY9J+vSmtSkYLumKGu7vvuK99OVG6sqIlosXFb/xWYNSbo6qktKBHuLMmqsDKitrdYqUB7fPm483ZeIizufqPqwqcFvQI96O7PaepCEBjOUJ72W1xosh2deNqNKzuWYEx/ayTH7cfsziRKk+0oEe4aa687pZ+tqXIBcczqdImIgxo38DXnrZWu11U4LSgR7BUE8cidztf+07tbgkJ/t0ui3Yc40RmjoVpVHmiBT2CzXZ1xemdinC17CDRdtTiRIqR8TQZU5/2sgsAp9sw++/3WxxKlRda0CPYNFcP37GOPQ8td9oX+479u8WUuhAt6BFqt7s+G83lAESTy+32FRYnUv5ut68gCicAG0xTfknJsDiRKg+0oEco/6vzm2xrqSqZFqZRBVWTDHra1vna0/XmqAqAFvQI5DbCdL8/4/3/vFehw//nMn3dQV0KQBVLC3oEWuG+Mt9U/+ttGyxOpArT07aeeDxdLQdPZbFq3wmLE6lQpwU9Ak1z53W33GFfRrRO9Q9JFcSZ797GtLXJFqZR5YEW9AhzJsfJXFcnX1u7W0LbXfaffcdzNh7mTI7TwjQq1GlBjzDzNh8hE8/U8svlIG1kj8WJ1IW0l91cJp4t6TJzXMzddMTiRCqUaUGPMN8k5f3Zfqd9sU71D3EiMMj+k689ZY12u6iiaUGPIAdOnGH5nlQAbLi5S7tbyoUB9iXYvP/wLt+TyoETZ6wNpEKWFvQI4n9118O2kbqiGyiUB3XlJD2a1fK1dcEuVRQt6BHC7Tb5Crr/n/Eq9A28Om8FxilrD+iYdFUoLegRYsWeVA6e8mz8HE8GvWxrLU6kSuLmlnWoEuNZSO3ACR2TrgrnKO4EERkH3A4cM8a0KuT5G4CZwF7vQ9OMMaOCGVJdhJHx+Zrf5Pwe8Iw/72dfRozkWhBKXayYKDt3tKvPFyt+BTzdZ10uq2FxKhVqArlCHw/0LuacxcaYdt4vLeYhJt3EMtedN/Zcu1vKp4FXN/Qdf7fpMJnZOiZd5VdsQTfG/Azo33fl2BxXF85SAYAW8iutZG8xr1AhZ2Q8bT9pTFPx3Ac5k+Nizit3WhxKhZpg9aF3FZENIjJXRK4q6iQRGS4iSSKSlJKSEqRvrYrzjet63/FA+0869ryc8oxJz5s5+pXrBuvCqJAUjIK+FmhsjGkLvAfMKOpEY8xHxpiOxpiOtWrVKuo0FUS73fVZa5oD4MCpG1mUc3fZf8bhXSd9jbmCXUdPW5xIhZJLLujGmHRjTIb3+DsgSkRqXnIyFRSTXDf6jm+yraWGaAEoz2pKOjfb1vjak1cfsDCNCjWXXNBFpK6I5494Eenkfc/US31fdenOmqh8G1nca//RwjQqWAbbF/qOp61NJtupq2Uqj2ILuohMApYDV4hIsog8LCIjRGSE95SBwGYR2QC8Cww2xuishxDwvbsjJ4kDIIEUetg2WZxIBUN32yYS8NyDOnkmlx+26ObeyqPYcejGmHuLeX4MMCZoiVTQTPbrbrnHsQi76L+z4cAuhrsdi3jHOQiAr1YfoG/b+hanUqFAZ4qGqb3uuix3ewYc2XDr2PMwM8j+EzbcACzZfZxfU3XBLqUFPWxN9hvSdqNtHfVEpxKEk/pyIt/WgV8n6c1RpQU9LOU43a7EgNQAABcaSURBVEz1G3vufxNNhY97/H6u36w5gNPltjCNCgVa0MPQgm1HOY5nLZe6pHKDbb3FiVRpuMm2jpqVPTOAj6Zns2D7MYsTKatpQQ9DX6761Xd8t/0nHKJXbuEoSlzcc03esrpfrNhvYRoVCrSgh5l9xzNZvOs4AIKbux2LrA2kStW9nRr5djNavOs4e1IyrA2kLKUFPcx87neV1tO2ngZy3MI0qrQ1qFaRG1vU8bUnrvz1AmercFfsOHQV4vzWPc8y0XyT/T5QCYAH7T9YFEqVmZHxPOBqw3yeA+CbJZv50+rrif2bLn4XifQKPYzMdHUj3VvME+UI1+nM0IjQw7aJxnIEgHQqMdvV1eJEyipa0MOEMTDBdYuvPcT+X2w6MzQi2MQwxD7f1/7MdQu6+kZk0oIeJtaY5mwziQDEkJ1v3WwV/gbaf6YCOQBsNk3YkJxmcSJlBS3oYWKCM+/qvL99KfGSaWEaVdaqSQZ97ct97c+X6xDGSKQFPQwcM/HM89sz9AH7fy1Mo6zi/3OfvfEQxzOyLUyjrKAFPQxMdt1IrnfAUkfZwVU2vTqLRG1te2grvwCe5R8mrtAhjJFGC3o5l20cfO7s5Ws/6NChipHsIcd3vuPPV+zjbK5ufhFJtKCXc7Nc3UihGgB1OEFv2yqLEykr9bGtop53w7DjGTnM2nDI4kSqLOnEovLCbwLROcbAWNfrvvZQx/dEi16RRbIocTHU8T2vO+8DYNySvQy6ugHeXSJVmNMr9HJssbs1200jACpylvt1z1AF3GtfSGyUHYDtR06z7Bfd4jdSaEEvxz52/cZ3fLd9kQ5VVADESyZ3d8xbhfGTxXssTKPKkhb0cmq7uyGL3W0AzxZzD9nnWZxIhZLfXtuEc70sC3eksPuYrsIYCbSgl1OfuPr4jm+1raaRTTc3UHkSx9TnJknytT/914uF3odR4aXYgi4i40TkmIhsLuJ5EZF3RWS3iGwUkQ7Bj6n8HTNVmem61td+xG+omlLn+P9eTHFdR4qpYmEaVRYCuUIfD/S+wPO3Ac28X8OB/1x6LHUhE5y3+CYStZddXG3bZXEiFYo6y3bfRKNsohnr7FPMK1R5V2xBN8b8DFxoy/h+wGfGYwVQVUTqBSugyi/NVOQzv1UVH3XMsTCNCmUi8Jhjpq/9hasXaWdyLUykSlsw+tATgAN+7WTvY+cRkeEikiQiSSkpugD/xZjgupXTVATgMjnErbbVFidSoexm2xqaSTIAGVRkwvJ9luZRpSsYBb2wGQuFLsZsjPnIGNPRGNOxVq1aQfjWkSXDxDDOmdf79YRjBnZd81xdgE1Mvqv0cUv3kpnttDCRKk3BKOjJQEO/dgNA5xuXgomuXpwiDoCGcow7bMssTqTKg7625TQUzyioU2dymbRKF+0KV8Eo6LOAB72jXboAacaYw0F4X+Uny0TzsTNvItFj9pk4xG1hIlVeOMTNCPssX/vjxXvIduoSEeEokGGLk4DlwBUikiwiD4vICBEZ4T3lO2APsBv4GHis1NJGsMmunhzHM464HqncpTsSqRK4y76Y2pwE4Gh6NlPWJFucSJWGYhfnMsbcW8zzBng8aInUebKdLj503u5rj3DM1kW4VInESC6POubwqnMIAP9e+AsDr25ABYfd4mQqmHSmaDnwdVIyR6gBQE1OcY99ocWJVHl0n30BNSpFA3DwVBaTVmpferjRgh7isnJcvLsgb+LQ7xzfEiM6lliVXCXJ5rHsT3ztMbOXcebl2rokQBjRgh7iPl22l5TTnr0h63CCIfb5FidS5dn99gV5G2BQlfF+k9RU+acbXIQav6ulNFOJD7L/CVQC4H8c04iVHIuCqXAQI7n8wTGd552PAPChsy/32xeg1+jhQa/QQ9gHzttJ9xbzRDnCIPtPFidS4WCQ/ScayxEA0qjMJ37DYVX5pgU9RB01VfnUlTcr9BnH10TpyBYVBFHi4mnHVF97rOs2jmdkW5hIBYsW9BD1rvNOzlIBgKtkL7+xrbQ4kQonfW3LuEI8o1zOEMOYH3dbnEgFgxb0ELTXXZevXDf42s86vsKma7aoILKL4RnHN7725yv2s+voaQsTqWDQgh6C/s85BKf3fnUX2xaus220OJEKRzfb1tDFtgUAl9vwf3O2WZxIXSot6CFmoasdC9yeTZ8EN887vvTtDalUMInAS47PseFZE+innSks3K5bGZZnWtBDSI7TzSjnA772PfZFtLHttTCRCnctbb/mm3n8ypyt5Lp00bfySgt6CPl06V72Gs9mT3Fk8ifH1xYnUpHgGcc3xHEGgD0pmXz28r2e+RDnvlS5oQU9RBxLP5tviv/TjqnUlHQLE6lIUVPSedIxzdf+p/MuUk2chYnUxdKCHiJen7edzBzPOPNmkswD9v9anEhFkqH272kinm0MTlOJ13LvsziRuhha0EPA8l9Smbb2oK/9suMznUSkylS0uHjJ8bmvPdV9PYtdrSxMpC6GFnSLZeW4eG5a3rDE3rZVdLdvtjCRilQ97eu53bbc137e+QhZJtrCRKqktKBb7B8/7GB/queGVFyMg79Fjbc0j4psL0dNIJ4MAA6Y2rzjHGhxIlUSWtCtMjKedS91YNySX3wPveh8nzpyysJQKtLVknRecEz0tT9x9WFTcpqFiVRJaEG3SLZx8Gzu73B7fwQ9bBt1NUUVEgbZf6KbzdPt58bGn6du1LHp5YQWdIu87+zPLtMAgIqc5TXHJzojVIUEEXjNMZYKeNbe33o4Pd+QWhW6tKBbYM3+E7zv6udr/9kxmYa24xYmUiq/RNvRfIt3jVm4m5V7Ui1MpAIRUEEXkd4iskNEdovIc4U8P0xEUkRkvffrkeBHDQ9pZ3J5ctJ6XHh2W+8k23TMuQpJj9i/83W9GANPf/QtaS/X1xmkIazYgi4iduB94DagJXCviLQs5NSvjDHtvF+fFPJ8xDPG8OepGzl4KguAeDJ4J/rfujSuCkk2MYyO+g9V8Syre4iaPJ/7MEZ/XUNWIFfonYDdxpg9xpgcYDLQr5jXqEJ8sWI/87Yc8bXfjPqIBNE/Y1XoqisneSPqY197jrsL37iutzCRupBACnoCcMCvnex9rKC7RGSjiEwRkYZBSRdGth5K5xW/9aaH2r/nVnuShYmUCsyt9iTus8/3tV92DmWru5GFiVRRAinohY29KPhH12wg0RjTBpgPTCj0jUSGi0iSiCSlpKSULGk5dupMDo9NXEOO0zP068p6VfiL40uLUykVuBcdX9BUkgHIIobhuX/kRGaOxalUQYEU9GTA/4q7AXDI/wRjTKox5twusx8DVxf2RsaYj4wxHY0xHWvVqnUxecudXJeb33+xln3e2aCxUXbG3NeeGMm1OJlSgYuVHP4T9S8qe5fZTTa1eWziGh2fHmICKeirgWYi0kREooHBwCz/E0Sknl/zDkD3ssJzE/Tll55hud9wr3d4m8vfL6zHSqnQ1sx2kH9G/Rvx7nC0Ys8J/u/brRanUv4cxZ1gjHGKyBPA94AdGGeM2SIio4AkY8ws4EkRuQNwAieAYaWYudyYsGwfX7p6+dp/cnxFb/tqCxMpdWl62dfyJ/MNbznvAWDC8v20WP1X7nXk7XrESF0qwCrFFnQAY8x3wHcFHnvJ7/gvwF+CG618W7jjGKP8rl762ZbyuH2mhYmUCo7H7DPZ6m7MHHcXAP7qfIiaksbN9rUWJ1M6U7QUrNiTyu+/WIPbe+u4nezijaiPdGq/Cgsi8FbUh7SUfQC4sPN47pMscxU2PUWVJS3oQbb215M8PH41Z3M9/YwJpPBR9Gi9CarCSkXJZnz0GzQWz7yKHKJ5NPcZNrqbWJwssmlBD6Ith9IYNm6Vbyu52nEVmBj9GrVF+xRV+KktaXwR9XfqcAKATGIZmvMcu46etjhZ5NKCHiTbj6TzwNhVpJ91AlC9UjQTH+lMou2oxcmUKj0NbSl8Hv133/IAJ4njno9WsPmgXsRYQQt6EKzck8qgD5b7JlpUiXHw2UOdaFZHd05X4a+57SATot+gEp41ik5k5jD4vR9Y+VLnvIW8dDGvMqEF/RLN23yEB8at4rT3yrwyZxjvfp5WHzfSX2IVMdra9vBZ9OtUIROADCryYM5zLHC1tzhZZNGCfgkmrtyfb0p/LU7yVfQrdLDttjiZUmXvatsuvo4eRS1OApBNNMNz/8gkZ0+Lk0UOLegXIcfp5uWZm3lh+mbf0MREOcK06JFcZdtvbTilLNTCdoAp0X+joRwDPEMa/+J8lBdyH/Jd+KjSowW9hA6dyuKej5YzYXle4W7TIJ4p0SNpaIucBceUKkpj2zGmRI/kSu84dYCJrl7c+/EKjqWftS5YBBBj0Wr1HTt2NElJ5Wv52CW7jvPk5HX5Vpm7rVVd3h7Ulkp/r2FhMqVCzxlTgT/nPspsdzffY7U5yeio/9DdvjnvRF0qoEREZI0xpmNhz+kVegAys528PHMzQ8au9BVzu014oc+V/Pv+DlSqENAKCkpFlIqSzbtRY3jB8QU274Jex6jGkNzneTF3GJmmgsUJw49WomIs2XWc56ZtJPlklu+xWnEVGHNvezpfplflSl2ICDzq+I4r5VeezH2CE1QB4HPXLfzkbsvbUR/QyeKM4US7XIpwNP0sb3+/g2/WJOd7vKdtHW9EfUxtOWVRMqXKpxRThRdyH+YH9zX5Hh/QPoE/925B3fgYi5KVLxfqctGCXkBmtpMPf97Dxz/vISvX5Xs8PjaKl/u2ZMDMq3SRLaUukjEw3d2dl3OHcppKvsdjOcsIx2yG2+cQK957VNq3XqgLFXTtcvE6k+Pkq9UHeH/hLxzPyM733K1X1eGV/q2oHRdTYGsPpVRJiMCd9iV0tW1lZO6DfO/2dLhkEcM7zkFMdPZiuGMO99kXUNHirOVRxF+hp2ZkM2H5fj5bvo9TZ/KviNiibhwv/OZKejTz2y5PZ38qFTTLXC15xTmEbSYx3+PVOM1vb76aB7s2pmrFaGvChSjtcinAGMPKvSf4JimZOZsO+Za6PadulRieuaU5d3ZogN1WoH9FC7pSQeUywteuG3jHOZBjVMv3XLTDxm9a12PwNQ3p1KQ6ov2dWtDP2X0sg7mbDjNlbTL7vZs2+2tYPZZHe1zGoKsbEvta9TLNplSkO2uimOrqwQeuOzhgap/3/GVyiP72pfR58j2a1o7che8itqA7XW42JKcxf9tRvt9yhD0pmYWe1yqhCr+77nJua1UXh907NF+vxJWyhNPYmOXuxqfO3mwylxV6TtPalbmtVV2ub16Ltg2rEmWPnCk1EVPQs50uth0+zeq9J1j2y3FW7ztJRraz0HPjYhz0a1efuzs2pHVC/Pl/ymlBV8pym92JTHLdyExXNzKKuE1aiSy62LbR9bb7ad+oGlfVr0JMlL2Mk5adsCzoJzNz2Hn0NLuOZbD1cDqbktPYfiSdXFfR/z2xUXaub16L21rX5dar6np+6Fq4lQp5maYCC9wdmOfqxEJ3W7Ioesx6lF24sl4VWifE06JuHM3rxHFF3biwubkaNsMWdx09zYszN7P7WAbHM3KKfwFQPz6Ga5vW5Jar6tK9aU1io8P3X26lwlUlyeYO+3LusC8ny0Tzk7sti9xtWexqzUFq5Ts312XYmJzGxuT849hrVIqmUY2KNK5ekUY1KtGgaix14mOoFx9DnSoxVIlxlPubrgEVdBHpDfwLsAOfGGNeL/B8BeAz4GogFbjHGLMvuFEhJsrOij0nLnhOYo2KtG1Yla6X1aDr5TVoVL1iuf8hKaXyxEoOve2r6W1fjXHAr6Y2i92tWeNuznrTlL2mXqGvS83MITUzh3W/Fj7LO9puo0blaGpUjqZ6pQrEx0YRH+sgPjaKuJgoKlVwULmCnUrRDipVcBATZSc2yk5stJ0KDhsVHDaiHTYqOOxE2cWSulNsQRcRO/A+cDOQDKwWkVnGmK1+pz0MnDTGNBWRwcAbwD3BDptQNZaK0XbO5LiIibLRtHZlmteOo2mdyrRJqErrhHjiK0YV/mLtWlEq7IhAYzlGY9sChrAAgFOmEuvdl7PdNGKnuyE7TAN2mQRyuHCXS47LzeG0sxxOC84Svw6bEGW34bB7/tduE6Jsgt0uRNttLHjmhqB8n3zfM4BzOgG7jTF7AERkMtAP8C/o/YCR3uMpwBgRERPkDnqbTRj/207Ui48hoWostoJjxEELt1IRrqpkcoN9Izew0feYywhHqM5+dx1+NbXZb+pwxFTnCNU9/2uqXbBf/mI43Qan2wW55z8X7SidUTmBFPQE4IBfOxnoXNQ5xhiniKQBNYDj/ieJyHBguLeZISI7LiZ0ENSkQLYQEaq5IHSzhWouCN1soZoLSjVbGrD3Yl8c9Fzy6kW/tHFRTwRS0AvrCCp45R3IORhjPgI+CuB7lioRSSrqLrGVQjUXhG62UM0FoZstVHNB6GYL1VwFBXLdnww09Gs3AA4VdY6IOIB44MJ3L5VSSgVVIAV9NdBMRJqISDQwmPPXHJwFDPUeDwR+DHb/uVJKqQsrtsvF2yf+BPA9nmGL44wxW0RkFJBkjJkFjAU+F5HdeK7MB5dm6CCwvNunCKGaC0I3W6jmgtDNFqq5IHSzhWqufCybKaqUUiq4ImdFG6WUCnNa0JVSKkyEbUEXkd4iskNEdovIc4U8f52IrBURp4gMDLFsfxSRrSKyUUQWiEiR407LONcIEdkkIutFZImItCyLXIFk8ztvoIgYESmTIWYBfGbDRCTF+5mtF5FHyiJXINm859zt/V3bIiJfhkIuEXnH7/PaKVJ2O7IHkK2RiCwUkXXe/3/2KatsATHGhN0Xnpu3vwCXAdHABqBlgXMSgTZ41qAZGGLZegIVvce/B74KkVxV/I7vAOaFymfmPS8O+BlYAXQMhVzAMGBMWf1+lTBbM2AdUM3brh0KuQqc/wc8AzFC5TP7CPi997glsK+sf7YX+grXK3TfcgXGmBzg3HIFPsaYfcaYjYC7sDewONtCY8y5LZVW4Bn7Hwq50v2alShk8phV2bxeAd4EgrMYR/ByWSGQbI8C7xtjTgIYY46FSC5/9wKTyiAXBJbNAFW8x/GcPyfHUuFa0AtbriDBoiwFlTTbw8DcUk3kEVAuEXlcRH7BUzifLINcAWUTkfZAQ2PMt2WUKaBcXnd5/zyfIiINC3m+NASSrTnQXESWisgK76qqoZALAG9XYxPgxzLIBYFlGwkMEZFk4Ds8f0GEjHAt6AEtRWCRgLOJyBCgI/BWqSbyfrtCHits+Yb3jTGXA38G/lrqqTwumE1EbMA7wDNllMf3rQt5rOBnNhtINMa0AeYDE0o9lUcg2Rx4ul1uwHMl/ImIVA2BXOcMBqYYY1ylmMdfINnuBcYbYxoAffDMvwmZOhoyQYIskOUKrBJQNhHpBbwA3GGMyQ6VXH4mA/1LNVGe4rLFAa2ARSKyD+gCzCqDG6PFfmbGmFS/n9/HePYMKAuBLtkx0xiTa4zZC+zAU+CtznXOYMquuwUCy/Yw8DWAMWY5EINn4a7QYHUnfind3HAAe/D8uXbu5sZVRZw7nrK9KVpsNqA9npszzUIsVzO/4754ZgqHRLYC5y+ibG6KBvKZ1fM7HgCsCJXPDOgNTPAe18TT3VDD6lze864A9uGd/BhCn9lcYJj3+Eo8Bb/MMhb732B1gFL84fQBdnoL4wvex0bhueIFuAbPv8iZeHZZ2hJC2eYDR4H13q9ZIZLrX8AWb6aFFyqqZZ2twLllUtAD/Mz+7v3MNng/sxah8pnh6WIYjWdvg03A4FDI5W2PBF4vq8+qBJ9ZS2Cp9+e5HrilrDNe6Eun/iulVJgI1z50pZSKOFrQlVIqTGhBV0qpMKEFXSmlwoQWdKWUChNa0JVSKkxoQVdKqTDx/ypBveekvzbRAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -235,19 +247,25 @@ "xs = np.arange(d2.min(), d2.max(), 0.01)\n", "fit = stats.norm.pdf(xs, np.mean(d2), np.std(d2))\n", "plt.plot(xs, fit, label='Normal Dist.', lw=3)\n", - "plt.hist(d2, 50, normed=True, label='Actual Data');\n", - "plt.legend();\n", + "plt.hist(d2, 50, density=True, label='Actual Data');\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the above plot, we can see _some_ difference from the expected normal distribution. \n", + "\n", + "Overall, though, we might think it looks pretty normal, especially if examined without adding the probability density function. \n", "\n", - "# Note that we can see *some* differences, when plotting the PDF\n", - "# However, if you turn off the PDF plot, we might guess these data look pretty normal" + "Let's check this statistically. " ] }, { "cell_type": "code", "execution_count": 11, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Run normal test on the data\n", @@ -264,7 +282,7 @@ "output_type": "stream", "text": [ "\n", - "Normaltest p value is: 2.17e-184 \n", + "Normaltest p-value is: 1.05e-170 \n", "\n", "We have evidence to reject the null hypothesis.\n" ] @@ -272,7 +290,7 @@ ], "source": [ "# Check the p-value of the normaltest\n", - "print('\\nNormaltest p value is: {:1.2e} \\n'.format(p_val))\n", + "print('\\nNormaltest p-value is: {:1.2e} \\n'.format(p_val))\n", "\n", "# With alpha value of 0.05, how should we proceed\n", "check_p_val(p_val, alpha=0.05)" @@ -282,11 +300,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Non-Normal Data\n", - "\n", "In this example, the plot is ambiguous, but 'normaltest' suggests these data are actually very unlikely to come from a normal distribution. \n", "\n", - "In this case, we happen to know that this is indeed true, as the 'ground truth' of the data is that they were generated from a beta distribution.\n", + "We happen to know that this is indeed true, as the 'ground truth' of the data is that they were generated from a beta distribution.\n", "\n", "Therefore, using this data in statistical tests that expect normally distributed inputs is invalid, since we have violated the assumptions upon which these tests are based. We will have to use different methods to perform statistical comparisons with these data." ] @@ -295,19 +311,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Testing other distributions\n", + "## Evaluating Different Distributions\n", + "\n", + "So far we have examined checking whether a dataset is normally distributed.\n", "\n", - "More generally, you can use the Kolmogorov-Smirnov test to check if a set of data has some other distribution (that you specificy). \n", + "More generally, you can use the Kolmogorov-Smirnov test to check if a set of data has some other distribution (that you specify). \n", "\n", - "This test is implemented in scipy, and you can explore using it. " + "This test is implemented in `scipy`, and you can explore using it. " ] }, { "cell_type": "code", "execution_count": 13, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from scipy.stats import kstest" @@ -316,9 +332,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Check out the documentation for kstest\n", @@ -329,11 +343,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The kstest has a similar form to the normaltest, in this case we are comparing a sample of data, to a specified distribution. \n", + "The `kstest` has a similar form to the `normaltest`, in that we can compare a sample of data to a specified distribution. \n", "\n", "The null hypothesis is that the data comes from the specified distribution. \n", "\n", - "If we reject the null, with some preset alpha value, we can conclude that the data do not conform to the tested distribution." + "If we reject the null, we can conclude that the data do not conform to the tested distribution." ] }, { @@ -370,7 +384,7 @@ "output_type": "stream", "text": [ "Statistic: \t0.00 \n", - "P-Value: \t1.69e-01\n", + "P-Value: \t6.00e-01\n", "\n", "We do not have evidence to reject the null hypothesis.\n" ] @@ -378,16 +392,24 @@ ], "source": [ "# Now compare the data to the beta distribution.\n", - "# Note that in this case, we have to specify some parameters for the beta distribution we are testing against\n", + "# Note that in this case, we have to specify some parameters for the beta \n", + "# distribution we are testing against, so we will use the simulation parameters\n", "stat, p_val = kstest(d2, 'beta', [7, 10])\n", "print('Statistic: \\t{:1.2f} \\nP-Value: \\t{:1.2e}\\n'.format(stat, p_val))\n", "check_p_val(p_val, alpha=0.05)" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this case, the data sample is consistent with being from a beta distribution!" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -401,7 +423,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/13-OrdinaryLeastSquares.ipynb b/13-OrdinaryLeastSquares.ipynb index 32c3877..5b4e6bd 100644 --- a/13-OrdinaryLeastSquares.ipynb +++ b/13-OrdinaryLeastSquares.ipynb @@ -4,7 +4,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Ordinary Least Squares" + "# Ordinary Least Squares\n", + "\n", + "If you recall, in an early notebook, we introduced the notion of fitting a line, or a linear model, to some data. We can then use the definition of that line to predict new data points. However, what we didn't dig into at that point was how we learn and evaluate our linear model, and how to learn the best model.\n", + "\n", + "To do so, we need a way to measure how good our model is, or an error measurement, that we can use to evaluate our model. Together with a procedure to update models, we can try and learn models that minimize error - that is to say, models that best fit the data. \n", + "\n", + "Ordinary least squares is on such approach for learning and evaluating models. OLS seeks to minimize the sum squared errors. Squared errors are calculated as the square of the difference between the model prediction of a data point, and the data point itself. One way to think about this is as an error function - OLS defines how we will calculate the error of a model, given the data. The model with the lowest error, defined in terms of OLS, is the best model. When we talk about fitting a model with OLS, we mean finding the solution that has the lowest OLS error - the lowest value for the sum of squared errors." ] }, { @@ -30,37 +36,34 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Ordinary Least Squares\n", - "\n", - "Ordinary least squares can be thought of as an error function - a formalization of how we will calculate the error of a model, given the data. \n", - "\n", - "Typically, we want to minimize this error term. So the OLS solution to, for example, a linear model, is the model which has the lowest value for the sum of squared errors, calculated as the square of the difference between the model prediction of a data point, and the data point itself.\n", + "For this example, we will create a minimal dataset, and explore fitting a simple linear model fit to it, using OLS.\n", "\n", - "Here, we'll create a minimal dataset, and explore fitting a simple linear model fit to it, using OLS." + "In this case, we will be using `numpy` for measuring least squares. Note that for real datasets, this is unlikely to be how you apply models, since it will usually be more practical to use `scikit-learn` or `statsmodels` to manage all the components of model fitting full datasets, but the underlying math is all the same. " ] }, { "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, + "execution_count": 62, + "metadata": {}, "outputs": [], "source": [ - "# Imports\n", "%matplotlib inline\n", "\n", - "import random\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simulate Data" + ] + }, { "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, + "execution_count": 49, + "metadata": {}, "outputs": [], "source": [ "# Create some data\n", @@ -73,52 +76,62 @@ "y = true_rel * x\n", "\n", "# Add some noise to the y dimension\n", - "noise = np.random.normal(0, 0.5, len(x))\n", + "noise = np.random.normal(0, 1, len(x))\n", "y = y + noise" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 50, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADRtJREFUeJzt3V9sZHd5xvHnsWctyFKEcaawzWZt\nLKGoERcNHtFpV+IiISiFiHDBRaINggrLN/wJUAmFK8RdLyoEFyska0kLwkqEklRFFNFEsBGKxAQ8\nydImLC2raaYsSVljjCBVJe8wby88W62WzXo958wcz+vvR7Ls8Z717x2t9qujn8/McUQIADD5pqoe\nAABQDoIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASCJ2jgXu/HGG2NhYWGcSwLAxGu3\n27+KiPpux4016AsLC1pfXx/nkgAw8Wx3r+c4tlwAIAmCDgBJ7Bp02w/ZvmD7+cu+90bbT9r+2eDz\n7GjHBADs5nrO0P9B0l1XfO9BSd+NiLdK+u7gMQCgQrsGPSK+L+nXV3z7HklfHXz9VUnvL3kuAMAe\nDbuH/qaIeFmSBp//uLyRAADDGPkvRW2v2F63vb6xsTHq5QBgX2l3t3Ty9Dm1u1sjX2vY69B/aftI\nRLxs+4ikC692YESsSlqVpEajwf3uABwY7e6WTpxqabvX10xtSmvLTS3Nj+4akmHP0L8p6UODrz8k\n6Z/KGQcA8mh1NrXd66sf0sVeX63O5kjXu57LFh+W9ANJt9g+b/sjkv5W0p22fybpzsFjAMBlmotz\nmqlNadrSodqUmotzI11v1y2XiLjvVf7ojpJnAYBUluZntbbcVKuzqebi3Ei3W6Qxv5cLABw0S/Oz\nIw/5Jbz0HwCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAk\nQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCS\nIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiiUNBtf8r2C7aft/2w7deUNRgAYG+GDrrtmyR9QlIj\nIt4maVrSvWUNBgDYm6JbLjVJr7Vdk3SDpJeKjwQgs3Z3SydPn1O7u1X1KOnUhv2LEfEL238n6b8k\n/a+kJyLiiSuPs70iaUWSjh07NuxyABJod7d04lRL272+ZmpTWltuaml+tuqx0iiy5TIr6R5Jb5H0\nJ5IO277/yuMiYjUiGhHRqNfrw08KYOK1Opva7vXVD+lir69WZ7PqkVIpsuXyLkn/GREbEXFR0uOS\n/rKcsQBk1Fyc00xtStOWDtWm1Fycq3qkVIbectHOVkvT9g3a2XK5Q9J6KVMBSGlpflZry021Optq\nLs6x3VKyInvoz9h+VNKzknqSnpO0WtZgAHJamp8l5CNS5AxdEfE5SZ8raRYAQAG8UhQAkiDoAJAE\nQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiC\noANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDlSo3d3SydPn1O5uVT0KEqhVPQBwULW7WzpxqqXt\nXl8ztSmtLTe1ND9b9ViYYJyhAxVpdTa13eurH9LFXl+tzmbVI2HCEXSgIs3FOc3UpjRt6VBtSs3F\nuapHwoRjywWoyNL8rNaWm2p1NtVcnGO7BYURdKBCS/OzhBylYcsFAJIg6ACQBEEHgCQIOgAkQdAB\nIIlCQbf9BtuP2v6p7bO2/6KswQAAe1P0ssUvSfpORHzA9oykG0qYCQAwhKGDbvv1kt4p6cOSFBHb\nkrbLGQsAsFdFtlwWJW1I+nvbz9k+ZfvwlQfZXrG9bnt9Y2OjwHIAgGspEvSapLdL+nJE3CbpfyQ9\neOVBEbEaEY2IaNTr9QLLAQCupUjQz0s6HxHPDB4/qp3AAwAqMHTQI+K/Jf3c9i2Db90h6SelTAUA\n2LOiV7l8XNLa4AqXjqS/Lj4SAGAYhYIeEWckNUqaBQBQAK8UBYAkCDoAJEHQASAJgg4ASRB0AEiC\noANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJAEQQeAJAg6ACRB\n0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIo\nHHTb07afs/2tMgYCAAynjDP0BySdLeHnAAAKKBR020clvVfSqXLGAQAMq+gZ+hclfUZSv4RZAAAF\nDB1023dLuhAR7V2OW7G9bnt9Y2Nj2OUAALsocoZ+XNL7bL8o6RFJt9v++pUHRcRqRDQiolGv1wss\nBwC4lqGDHhGfjYijEbEg6V5J34uI+0ubDACwJ1yHDgBJ1Mr4IRHxlKSnyvhZAIDhcIYOAEkQdABI\ngqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEHHvtHubunk\n6XNqd7eqHgWYSKW8fS5QVLu7pROnWtru9TVTm9LaclNL87NVjwVMFM7QsS+0Opva7vXVD+lir69W\nZ7PqkYCJQ9CxLzQX5zRTm9K0pUO1KTUX56oeCZg4bLlgX1ian9XaclOtzqaai3NstwBDIOjYN5bm\nZwk5UABbLgCQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEg\nCYK+T3H3HgB7NfS7Ldq+WdLXJL1ZUl/SakR8qazBDjLu3gNgGEXO0HuS/iYi/lRSU9JHbd9azlgH\nG3fvATCMoYMeES9HxLODr38n6aykm8oa7CDj7j0AhlHKDS5sL0i6TdIzZfy8g4679wAYRuGg236d\npMckfTIifnuVP1+RtCJJx44dK7rcgcHdewDsVaGrXGwf0k7M1yLi8asdExGrEdGIiEa9Xi+yHADg\nGoYOum1L+oqksxHxhfJGAgAMo8gZ+nFJH5R0u+0zg4/3lDQXAGCPht5Dj4inJbnEWQAABfBKUQBI\ngqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAk\nQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCS\nIOgAkARBB4AkCDoAJDERQW93t3Ty9Dm1u1tVjwIA+1at6gF20+5u6cSplrZ7fc3UprS23NTS/GzV\nYwHAvlPoDN32Xbb/3fY52w+WNdTlWp1Nbff66od0sddXq7M5imUAYOINHXTb05JOSvorSbdKus/2\nrWUNdklzcU4ztSlNWzpUm1Jzca7sJQAghSJbLu+QdC4iOpJk+xFJ90j6SRmDXbI0P6u15aZanU01\nF+fYbgGAV1Ek6DdJ+vllj89L+vNi41zd0vwsIQeAXRTZQ/dVvhd/cJC9Ynvd9vrGxkaB5QAA11Ik\n6Ocl3XzZ46OSXrryoIhYjYhGRDTq9XqB5QAA11Ik6D+S9Fbbb7E9I+leSd8sZywAwF4NvYceET3b\nH5P0L5KmJT0UES+UNhkAYE8KvbAoIr4t6dslzQIAKGAiXvoPANidI/7gwpTRLWZvSOoO+ddvlPSr\nEseZBDzng4HnnF/R5zsfEbteVTLWoBdhez0iGlXPMU4854OB55zfuJ4vWy4AkARBB4AkJinoq1UP\nUAGe88HAc85vLM93YvbQAQDXNkln6ACAa5iIoI/jRhr7ie2HbF+w/XzVs4yD7Zttn7Z91vYLth+o\neqZRs/0a2z+0/ePBc/581TONi+1p28/Z/lbVs4yD7Rdt/5vtM7bXR7rWft9yGdxI4z8k3amdNwT7\nkaT7IqLU913fT2y/U9Irkr4WEW+rep5Rs31E0pGIeNb2H0lqS3p/8n9jSzocEa/YPiTpaUkPRESr\n4tFGzvanJTUkvT4i7q56nlGz/aKkRkSM/Lr7SThD//8baUTEtqRLN9JIKyK+L+nXVc8xLhHxckQ8\nO/j6d5LOauf99tOKHa8MHh4afOzvs6sS2D4q6b2STlU9S0aTEPSr3Ugj9X/2g8z2gqTbJD1T7SSj\nN9h6OCPpgqQnIyL9c5b0RUmfkdSvepAxCklP2G7bXhnlQpMQ9Ou6kQYmn+3XSXpM0icj4rdVzzNq\nEfH7iPgz7dxL4B22U2+v2b5b0oWIaFc9y5gdj4i3a+f+yx8dbKmOxCQE/bpupIHJNthHfkzSWkQ8\nXvU84xQRv5H0lKS7Kh5l1I5Let9gT/kRSbfb/nq1I41eRLw0+HxB0j9qZxt5JCYh6NxII7nBLwi/\nIulsRHyh6nnGwXbd9hsGX79W0rsk/bTaqUYrIj4bEUcjYkE7/4+/FxH3VzzWSNk+PPhFv2wflvRu\nSSO7em3fBz0iepIu3UjjrKRvZL+Rhu2HJf1A0i22z9v+SNUzjdhxSR/UzhnbmcHHe6oeasSOSDpt\n+1+1c9LyZEQciMv4Dpg3SXra9o8l/VDSP0fEd0a12L6/bBEAcH32/Rk6AOD6EHQASIKgA0ASBB0A\nkiDoAJAEQQeAJAg6ACRB0AEgif8D1ngsRS+G5UsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAM50lEQVR4nO3dX2isd53H8c9ncyJOj0pcOitNTtm4ILnxwsggux7worWbrhabi72oUFERzs2uW3eXSHMl3glZRC9EONSqi6VlabNniwvGoi1ScKtzTo6mbcwqbtWTdPeMSFYrA03j14szOSRp/s7zzDzzTd4vCEmeM5nn+1D6Zvg9zzzjiBAAIJ8/qXoAAEB3CDgAJEXAASApAg4ASRFwAEjqTD93duutt8b4+Hg/dwkA6V2+fPnXEVHfvb2vAR8fH1ez2eznLgEgPdu/2Gs7SygAkBQBB4CkCDgAJEXAASApAg4ASfX1KhQAOE0uLa5qbmFFa+ttjY7UNDM1oenJsdKen4ADQA9cWlzV7PyS2hubkqTV9bZm55ckqbSIs4QCAD0wt7ByM95b2hubmltYKW0fBBwAemBtvX2s7d0g4ADQA6MjtWNt7wYBB4AemJmaUG14aMe22vCQZqYmStsHJzEBoAe2TlRyFQoAJDQ9OVZqsHdjCQUAkiLgAJAUAQeApAg4ACRFwAEgKQIOAEkRcABIioADQFIEHACSIuAAkBQBB4CkCDgAJEXAASApAg4ASRFwAEjq0IDbftj2ddvPb9v2p7afsv3Tzve39nZMAMBuR3kF/jVJd+/a9qCk70TEOyR9p/M7AKCPDg14RHxP0m92bb5X0tc7P39d0nTJcwEADtHtGvjbIuJlSep8/7P9Hmj7gu2m7War1epydwCA3Xp+EjMiLkZEIyIa9Xq917sDgFOj24D/n+3bJKnz/Xp5IwEAjqLbgD8p6aOdnz8q6T/KGQcAcFRHuYzwUUnflzRh+5rtT0j6nKS7bP9U0l2d3wEAfXTmsAdExIf3+ac7S54FAHAMvBMTAJIi4ACQFAEHgKQIOAAkRcABICkCDgBJEXAASIqAA0BSBBwAkiLgAJAUAQeApAg4ACRFwAEgKQIOAEkRcABI6tD7gQNAWS4trmpuYUVr622NjtQ0MzWh6cmxqsdKi4AD6ItLi6uanV9Se2NTkrS63tbs/JIkEfEusYQCoC/mFlZuxntLe2NTcwsrFU2UHwEH0Bdr6+1jbcfhCDiAvhgdqR1rOw5HwAH0xczUhGrDQzu21YaHNDM1UdFE+XESE0BfbJ2o5CqU8hBwAH0zPTlGsEvEEgoAJEXAASApAg4ASRFwAEiqUMBt/6PtF2w/b/tR228sazAAwMG6DrjtMUn/IKkREe+UNCTpvrIGAwAcrOgSyhlJNdtnJN0iaa34SACAo+g64BGxKulfJP1S0suS/j8ivr37cbYv2G7abrZare4nBQDsUGQJ5a2S7pX0dkmjks7avn/34yLiYkQ0IqJRr9e7nxQAsEORJZT3S/qfiGhFxIakeUnvLWcsAMBhigT8l5L+0vYtti3pTknL5YwFADhMkTXw5yQ9LumKpKXOc10saS4AwCEK3cwqIj4j6TMlzQIAOAbeiQkASRFwAEiKgANAUgQcAJIi4ACQFAEHgKQIOAAkRcABICkCDgBJEXAASIqAA0BSBBwAkiLgAJAUAQeApAg4ACRFwAEgKQIOAEkRcABIioADQFIEHACSIuAAkBQBB4CkCDgAJEXAASApAg4ASRFwAEiKgANAUoUCbnvE9uO2f2J72fZflTUYAOBgZwr+/RclfSsi/tb2GyTdUsJMAIAj6Drgtt8i6X2SPiZJEfGqpFfLGQsAcJgiSyh/Iakl6au2F20/ZPvs7gfZvmC7abvZarUK7A4AsF2RgJ+R9G5JX46ISUm/l/Tg7gdFxMWIaEREo16vF9gdAGC7IgG/JulaRDzX+f1x3Qg6AKAPug54RPyvpF/ZnuhsulPSi6VMBQA4VNGrUD4p6ZHOFSg/l/Tx4iMBAI6iUMAj4qqkRkmzAACOgXdiAkBSBBwAkiLgAJAUAQeApAg4ACRFwAEgKQIOAEkRcABIioADQFJF30oPoEuXFlc1t7CitfW2Rkdqmpma0PTkWNVjIRECDlTg0uKqZueX1N7YlCStrrc1O78kSUQcR8YSClCBuYWVm/He0t7Y1NzCSkUTISMCDlRgbb19rO3AXgg4UIHRkdqxtgN7IeBABWamJlQbHtqxrTY8pJmpiX3+Ang9TmJiIJy2KzK2ju00HTPKR8BRudN6Rcb05NiJPj70HksoqBxXZADdIeCoHFdkAN0h4KgcV2QA3SHgqBxXZADd4SQmKscVGUB3CDgGAldkAMfHEgoAJEXAASApAg4ASRFwAEiqcMBtD9letP3NMgYCABxNGa/AH5C0XMLzAACOoVDAbZ+T9EFJD5UzDgDgqIq+Av+CpE9L+sN+D7B9wXbTdrPVahXcHQBgS9cBt32PpOsRcfmgx0XExYhoRESjXq93uzsAwC5FXoGfl/Qh2y9JekzSHba/UcpUAIBDdR3wiJiNiHMRMS7pPknfjYj7S5sMAHAgrgMHgKRKuZlVRDwj6ZkyngsAcDS8AgeApAg4ACRFwAEgKQIOAEkRcABIioADQFIEHACSIuAAkBQBB4CkCDgAJEXAASApAg4ASRFwAEiKgANAUgQcAJIi4ACQFAEHgKQIOAAkRcABICkCDgBJEXAASIqAA0BSBBwAkiLgAJAUAQeApAg4ACRFwAEgqa4Dbvt220/bXrb9gu0HyhwMAHCwMwX+9jVJ/xwRV2y/WdJl209FxIslzQYAOEDXr8Aj4uWIuNL5+XeSliWNlTUYAOBgpayB2x6XNCnpuT3+7YLtpu1mq9UqY3cAAJUQcNtvkvSEpE9FxG93/3tEXIyIRkQ06vV60d0BADoKBdz2sG7E+5GImC9nJADAURS5CsWSviJpOSI+X95IAICjKPIK/Lykj0i6w/bVztcHSpoLAHCIri8jjIhnJbnEWQAAx8A7MQEgKQIOAEkRcABIioADQFIEHACSKnIzK/TIpcVVzS2saG29rdGRmmamJjQ9yW1mAOxEwAfMpcVVzc4vqb2xKUlaXW9rdn5Jkog4gB1YQhkwcwsrN+O9pb2xqbmFlYomAjCoCPiAWVtvH2s7gNOLgA+Y0ZHasbYDOL0I+ICZmZpQbXhox7ba8JBmpiYqmgjAoOIk5oDZOlHJVSgADkPAB9D05BjBBnAollAAICkCDgBJEXAASIqAA0BSBBwAkiLgAJAUAQeApAg4ACRFwAEgqYF/JyYfbgAAexvogPPhBgCwv4FeQuHDDQBgfwMdcD7cAAD2N9AB58MNAGB/hQJu+27bK7Z/ZvvBsobawocbAMD+uj6JaXtI0pck3SXpmqQf2n4yIl4sazg+3AAA9lfkKpT3SPpZRPxckmw/JuleSaUFXOLDDQBgP0WWUMYk/Wrb79c623awfcF203az1WoV2B0AYLsiAfce2+J1GyIuRkQjIhr1er3A7gAA2xUJ+DVJt2/7/ZyktWLjAACOqkjAfyjpHbbfbvsNku6T9GQ5YwEADtP1ScyIeM3230takDQk6eGIeKG0yQAAB3LE65ate7czuyXpF13++a2Sfl3iOBlwzKcDx3zyFT3eP4+I151E7GvAi7DdjIhG1XP0E8d8OnDMJ1+vjneg30oPANgfAQeApDIF/GLVA1SAYz4dOOaTryfHm2YNHACwU6ZX4ACAbQg4ACSVIuC9vu/4oLH9sO3rtp+vepZ+sH277adtL9t+wfYDVc/Ua7bfaPsHtn/UOebPVj1Tv9gesr1o+5tVz9IPtl+yvWT7qu1mqc896GvgnfuO/7e23Xdc0ofLvO/4oLH9PkmvSPrXiHhn1fP0mu3bJN0WEVdsv1nSZUnTJ/y/sSWdjYhXbA9LelbSAxHxXxWP1nO2/0lSQ9JbIuKequfpNdsvSWpEROlvXMrwCvzmfccj4lVJW/cdP7Ei4nuSflP1HP0SES9HxJXOz7+TtKw9bk18ksQNr3R+He58DfarqRLYPifpg5IeqnqWkyBDwI9033GcDLbHJU1Keq7aSXqvs5RwVdJ1SU9FxIk/ZklfkPRpSX+oepA+Cknftn3Z9oUynzhDwI9033HkZ/tNkp6Q9KmI+G3V8/RaRGxGxLt041bM77F9opfLbN8j6XpEXK56lj47HxHvlvQ3kv6us0RaigwB577jp0BnHfgJSY9ExHzV8/RTRKxLekbS3RWP0mvnJX2osyb8mKQ7bH+j2pF6LyLWOt+vS/p33VgWLkWGgHPf8ROuc0LvK5KWI+LzVc/TD7brtkc6P9ckvV/ST6qdqrciYjYizkXEuG78f/zdiLi/4rF6yvbZzol52T4r6a8llXZ12cAHPCJek7R13/FlSf920u87bvtRSd+XNGH7mu1PVD1Tj52X9BHdeEV2tfP1gaqH6rHbJD1t+8e68SLlqYg4FZfVnTJvk/Ss7R9J+oGk/4yIb5X15AN/GSEAYG8D/wocALA3Ag4ASRFwAEiKgANAUgQcAJIi4ACQFAEHgKT+CP5tfQFxuz9uAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ "# Plot the data\n", - "f = plt.figure()\n", - "plt.plot(x, y, '.');" + "plt.plot(x, y, '.', ms=12);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Observing the data above, we can see that there is some relation between the x and y dimension, but we want a way to measure what that relation is. OLS is a procedure to do so: find the model (in this case, line) that minimizes the squared distances between each observed data point and the model prediction. " + "Observing the data above, we can see that there is some relation between the x and y dimension. \n", + "\n", + "We would like to measure what that relation is. That's where OLS comes in. \n", + "\n", + "OLS is a procedure to find the model (in this case, line) that minimizes the squared distances between each observed data point and the model prediction. " ] }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, + "execution_count": 51, + "metadata": {}, "outputs": [], "source": [ - "# Reshape data to play nice with numpy\n", + "# Reshape that data to play nice with numpy\n", "x = np.reshape(x, [len(x), 1])\n", "y = np.reshape(y, [len(y), 1])" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fit an OLS Model" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -127,20 +140,22 @@ "\n", "$$y = \\theta x $$\n", "\n", - "Note that we are not fitting an intercept here (no 'b' value, if you think of 'y = ax + b'). In this simple model, we are therefore implicitly assuming an intercept value of zero. You can fit intercepts (and linear models with more parameters) with OLS, you just need to add them in. " + "Note that we are not fitting an intercept here (no 'b' value, if you think of 'y = ax + b'). \n", + "\n", + "In this simple model, we are therefore implicitly assuming an intercept value of zero. \n", + "\n", + "You can fit intercepts (and linear models with more parameters) with OLS, you just need to add them in. " ] }, { "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": true - }, + "execution_count": 77, + "metadata": {}, "outputs": [], "source": [ "# Fit the (Ordinary) Least Squares best fit line using numpy\n", - "# This gives us a fit value (theta), and residuals (how much error we have in this fit)\n", - "theta, residuals, _, _ = np.linalg.lstsq(x, y)\n", + "# This gives us a fit value (theta), and residuals (how much error we have in this fit)\n", + "theta, residuals, _, _ = np.linalg.lstsq(x, y, rcond=None)\n", "\n", "# Pull out theta value from array\n", "theta = theta[0][0]" @@ -148,76 +163,82 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 78, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1.98695402961\n" + "Estimated theta value is: 2.1194\n" ] } ], "source": [ "# Check what the OLS derived solution for theta is:\n", - "print(theta)" + "print('Estimated theta value is: {:1.4f}'.format(theta))" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 79, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The true relationship between y & x is: \t 2\n", - "OLS calculated relationship between y & x is: \t 1.98695402961\n" + "The true relationship between y & x is: \t2.0000\n", + "OLS calculated relationship between y & x is: \t2.1194\n" ] } ], "source": [ "# Check how good our OLS solution is\n", - "print('The true relationship between y & x is: \\t', true_rel)\n", - "print('OLS calculated relationship between y & x is: \\t', theta)" + "print('The true relationship between y & x is: \\t{:1.4f}'.format(true_rel))\n", + "print('OLS calculated relationship between y & x is: \\t{:1.4f}'.format(theta))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This looks good! The absolute error between the true value, and our estimate is quite small!" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 80, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "1.3701226131131277" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "The residuals for the model fit are: \t3.2984\n" + ] } ], "source": [ - "# Check what the residuals are\n", - "residuals[0]" + "# Check what the residuals are. Residuals are the error of the model fit\n", + "print('The residuals for the model fit are: \\t{:1.4f}'.format(residuals[0]))" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 81, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XlcVXX+x/HX9wIKoqCxmIkrluW+\nkAtWk0tWZmrLjEu2zTROi2Jlzdi0TM5My1SjLVj+bC/TanLKtMUll1TMRCGXzIXc0FRA2UGB+/39\nATqmgAgXLtz7fj4ePeDe+733fO7x4dvT93zP+RhrLSIiUvc53F2AiIi4hgJdRMRDKNBFRDyEAl1E\nxEMo0EVEPIQCXUTEQyjQRUQ8hAJdRMRDKNBFRDyEb01uLDQ01LZu3bomNykiUuetX78+1VobdrZx\nNRrorVu3Jj4+viY3KSJS5xlj9lRknKZcREQ8hAJdRMRDKNBFRDxEjc6hl6agoIDk5GTy8/PdXUqt\n5e/vT0REBH5+fu4uRURqMbcHenJyMo0aNaJ169YYY9xdTq1jrSUtLY3k5GTatGnj7nJEpBY765SL\nMeYtY8xhY8zmU547zxiz2Bizo+Rnk8oWkJ+fT0hIiMK8DMYYQkJC9H8wInJWFZlDfwe45rTnJgPf\nWGsvBL4peVxpCvPyaf+I1B0zViQRl5Ra7pi4pFRmrEhy+bbPGujW2m+BI6c9PRx4t+T3d4ERLq7r\nV9y5g0REzkWXiGDGz044mVnZ2VBQ8L/X45JSGT87gS4RwS7fdmVXuTS11v4CUPIzvKyBxphxxph4\nY0x8SkpKpTZ2+g46XVV3kI+PD926daNjx4507dqVqVOn4nQ6y33P7t27mT17dqW2JyKeKzoylNgx\n3bnvgwRmfXWU/3zsZMfX3wD/y6rYMd2Jjgx1+barfdmitXamtTbKWhsVFnbWK1dLdWIHlRbqrthB\nAQEBJCYmsmXLFhYvXsyXX37JlClTyn2PAl1EytIhJJRRTXvz9jtxDD44iA7rb2Tjd4urNcyh8oF+\nyBjTDKDk52HXlVS60kK9Ov61Cw8PZ+bMmcTGxmKtZffu3Vx++eX06NGDHj16EBcXB8DkyZNZuXIl\n3bp1Y9q0aWWOExHvkpUFn35ynMF5M1jU4Q4Cj2/jq3ZPcsciW61hDpVftvg5cDvwbMnPeS6rqByn\nhvrY3i2ZtXZvteygtm3b4nQ6OXz4MOHh4SxevBh/f3927NjB6NGjiY+P59lnn+WFF15gwYIFAOTm\n5pY6TkS8Q34++PtDo4z1jM4cj3/mj9DxRj4M+CPPrjpKzIBW1RrmUIFAN8bMAa4EQo0xycDfKA7y\nj40xfwD2Ar+tziJPFR0ZytjeLXl56U5iBrSrth1krQWKL3waP348iYmJ+Pj4sH379lLHV3SciHiW\noiLYsAG2/pDD78Kewj/xNfwbng+j5hDn14uZsxOIGdCOWWv30icyxL1H6Nba0WW8NNDFtVRIXFIq\ns9burdYd9PPPP+Pj40N4eDhTpkyhadOm/PDDDzidTvz9/Ut9z7Rp0yo0TkQ8x6FDsGIFBB5axm9z\nJuKfvAeifg+DniRuf8GvpoT7RIbU2jl0tzh1zvzBwe3LPFFaFSkpKdx9992MHz8eYwwZGRk0a9YM\nh8PB+++/T1FREQCNGjUiKyvr5PvKGicinmnNGvjq06P0TL6P69JGENDAF+74AoZOOyPMofzFHa5S\nZwK9tBOgrtpBeXl5J5ctDho0iMGDB/O3v/0NgHvvvZd3332XPn36sH37dgIDAwHo0qULvr6+dO3a\nlWnTppU5TkQ8kLWEpXzGmCO9aJs1By57AO5ZDa0vK3exRnWHujkxV1wToqKi7OknCrdu3coll1xS\n7vvOtpqlutd21gYV2U8iUn2OHSs+Km9/wS802/AQ/LQAzu8Cw2OhWdeT42asSKJLRHC5WRSXlMrG\n5Azu/k1khbZtjFlvrY062zi335yrIjYmZ5Qb1if+1duYnOGxgS4i7rNrF6xaaWl15D3CVz8O9hgM\nehL6TgCfX8doRUI6OjK0WrKqTgS6O3eQiHiv3FxYvRrSdiRxdc5EwnNWQqvLYNjLEFKxo+uaVCcC\nXUTEHfbsKiR483QGZj2N8asHQ1+EHreDo3aeflSgi4icIisLMjIgwncTF68aj8lIhPZD4Lp/Q9AF\n7i6vXAp0ERHAWtiyBdavzadnznM0T38JE9AEbn4bOt4AdeA21gp0EfF66enFFwiZvXHclBNDw/wd\n0HUMXP0UNDjP3eVVWO2cCKphycnJDB8+nAsvvJDIyEgmTpzI8ePHAVi+fDlDhw494z0LFiyge/fu\ndO3alQ4dOvB///d/Z4x55513CAsLo1u3bnTr1o3bbrsNgCeeeIIlS5YA8OKLL5Kbm1uN305EypOV\nBZ//J5P2OycxLO1aGvofg7H/hRteq1NhDgp0rLXceOONjBgxgh07drB9+3ays7N59NFHy3xPQUEB\n48aNY/78+fzwww8kJCRw5ZVXljp25MiRJCYmkpiYyHvvvQfA3//+dwYNGgQo0EXc5URXx0a/LGT0\nkT60z3oTet8D96yBdm65s0mVef2Uy9KlS/H39+fOO+8EiptdTJs2jTZt2pR5T/SsrCwKCwsJCQkB\noH79+rRv377C27zjjjsYOnQoBw4c4MCBA/Tv35/Q0FCWLVtW9S8kIuUqLCy+mdbOH1K5KfAv1N/+\nCX5hl8CYd6HFpe4ur0pqXaDPn3/mc5GR0KFD8R/EV1+d+Xr79nDRRcX/4i5e/OvXrr++/O1t2bKF\nnj17/uq5oKAgWrZsyc6dO0t9z3nnncewYcNo1aoVAwcOZOjQoYwePRpHKUuZPvroI1atWgXAxIkT\nT/7DARATE8PUqVNZtmwZoaFaQy9S3Q4ehBXLLWEHP+a3OZPxLcqCKx+Byx4E33ruLq/Kal2g1zRr\nbalNmMt6/oQ33niDTZs2sWTJEl544QUWL17MO++8c8a4kSNHEhsb68qSRaQS4uJgV+I++uc8wAU5\niyHiUhj2CoR7zi01al2gl3dE7etb/uv+/mc/Ij9dx44dmTt37q+ey8zMZN++fURGRpKWllbmezt3\n7kznzp259dZbadOmTamBLiK1gNNJ8/1v0DttCg6HE655FnqNA4ePuytzKa8/KTpw4EByc3NPnrAs\nKipi0qRJ3HHHHTRo0KDU92RnZ7N8+fKTjxMTE2nVqlWltn/6bXhFxDXy82HZMji4aRu8fQ2ttjyM\nT+temHu/gz73eFyYQy08Qq9pxhg+/fRT7r33Xv7xj3/gdDoZMmQITz/99Mkx33zzDREREScfz5kz\nh+eee44//elPBAQEEBgYWOmj83HjxnHttdfSrFkznRQVcZGff4a4lce5OO1FwrOfh/qBMGIGdB1V\nJy4Qqqw6cftc0X4SqYjcXFi1CnK2r2dA9gSC87dAxxvh2n9Bw3B3l1dpHnX7XBGRitiblEOzjU/T\nKftVaNQURsyBi4e4u6wao0AXkTotM7P4ZlotCpbT/psYTPYe6HknXDUF/IPdXV6NUqCLSJ1kLWze\nDD+sPUrfzMcgcxbmvMjivp6tL3N3eW6hQBeROufo0eKbaQXumcfN2Q9TvzAV+t0PV04GvwB3l+c2\nCnQRqVMyM+HLjw9yWcYkWuWW9PUc9jFc0M3dpbmdAl1E6oS8PAjwtwTteI9RqY/jONnXczz4+Lm7\nvFrB6wM9LS2NgQOL76x28OBBfHx8CAsLA+D777+nXj3X3N9hyZIl3HTTTbRp0waApk2bsnDhQqZP\nn07jxo255ZZbeOuttxgyZAjnn3++S7Yp4gkKC2H9etiTkMQNvhPxS16JTy3u6+lOXh/oISEhJCYm\nAvDkk0/SsGFDHnrooV+NsdZirS315lvnon///nz22We/eu6+++47+ftbb71Fjx49FOgiJX75Bb5d\nXkirX17lpuyncfj5wdBp0OOOWtvX0520R8qwc+dOOnXqxN13302PHj3Yt28fjRs3Pvn6hx9+yF13\n3QXAoUOHuPHGG4mKiqJXr1589913Fd7OY489xosvvshHH31EYmIiI0eOpFu3bicbbIh4q9WrYfV/\nNzFozyD6ZD6Oz4X9MfethajfK8zLULuO0L+aDAc3ufYzz+8M1z5bqbf++OOPvP3228yYMYPCwsIy\nx8XExPDnP/+ZPn36sHv3boYOHcrmzZvPGLds2TK6dSs+cTNq1CgmT5588rWRI0fyyiuvEBsbe3KM\niNcqyKftrufom/oSpkHd6uvpTrUr0GuZyMhILr307De8X7JkCdu2bTv5+OjRo+Tl5REQ8OvlU6VN\nuYhIsfz84lvcdgpaQ/iaCTRL2wFdR8PVT9e5VnDuUrsCvZJH0tUlMDDw5O8Oh4NT73uTf6J/FcVz\n7K48gSribZKS4PuVmXRNmUJ4zhsQ3BLGzoV2g9xdWp1SpYkoY8wDxpgtxpjNxpg5xhh/VxVW2zgc\nDpo0acKOHTtwOp18+umnJ18bNGgQ06dPP/n4xEnWc6Vb6YonmrEiibik1FJfy8mBhQvh29mfcfXu\nS7kkp6Sv571rFOaVUOlAN8Y0B2KAKGttJ8AHGOWqwmqjf/3rX1xzzTUMHDjwV7fTnT59OqtXr6ZL\nly506NCB119/vVKff+edd3LXXXfppKh4lC4RwYyfnVBqqO/fnkrTtbdzZ9Ht+Ac3wvxhUfH/qddv\n6IZK675K3z63JNC/A7oCmcBnwMvW2kVlvUe3z6087Sepy+KSUhk/O4HYMd3pFBZK+lFLy4z/UPDF\nnyE/i4Nd76XFsMfAt767S62Vqv32udba/caYF4C9QB6wqLwwFxHvFR0Zyiuju/OHqTu4IyKVsb6P\nQ84ifuJCCofNpnvPaHeX6BGqMuXSBBgOtAEuAAKNMWNLGTfOGBNvjIlPSUmpfKUiUmcdOQKHN57H\nM03juS/vSsLyvuV5cydZt3yhMHehqpwUHQTsstamWGsLgP8CZ/zJWGtnWmujrLVRJy6pL2VMFcrw\nfNo/UpdlZsI3H22n37ZrGeF8jNQmXRiQ9yw+fe8h+sKm7i7Po1Ql0PcCfYwxDYwxBhgIbD3XD/H3\n9yctLU2hVQZrLWlpafj7e+wCIvFQublA4XGCEp7nppR+hJmf2BH9HDdmPcSN/aOZtXZvmatfpHKq\nMoe+1hjzCbABKAQSgJnn+jkREREkJyej6Ziy+fv7/2pVjUhtVlgI8fFwaMN6riuagG/aFhwdb2Dd\nJZP506f7iL2lO9GRofSJDDl5ojQ6MtTdZXsEtzeJFhHPceAArF6ey0X7n6JLzqvQsClm6FTi/HqV\nGt6nrn5RqJetoqtcdIcbEXGJVatgw9zlXLurL11zYjE9b8eMX1tmmEPx6pfYMd3LXKcu56Z2Xfov\nInVT3lHab3uMsLRZ2CZtYfj/+npuTE4q9wj8RKhvTM7QUXoVacpFRColL6/4Zlpd631O6NqHICcV\noid4fV/P6lDtFxaJiPfauRMSvj1IVMpDhObNL+7rOUZ9Pd1NgS4iFZadDatWWgJ+ep/h2Y/hh/p6\n1iYKdBGpsENbf6ZL4kQuOPYttlU/zPUvQ2g7d5clJRToIlKujAzIOFpIywOv0XbpU+Ao7utp1Nez\n1lGgi0ipnE7YtAmS4jbzm/TxcCwB034IXPdvCLrA3eVJKRToInKGI0dg5bJ8Wux6nhE5L2IC1Nez\nLlCgi8ivZGbC6jlruDI9huCC7errWYco0EUEKL6ZVgOfLIJWTuH6lNexQS1hpPp61iUKdBEvV1AA\n69ZB1oZFDMp/AJ/s/dD7HsyAx9QKro5RoIt4seRk+H5ZKp0PTCY67z/Y0Ith5CJo0cvdpUklKNBF\nvNSqlZbj6//DkKzJ1LeZ8JvJmMsfVF/POkyBLuKN0vfRedODBKcvwjaPwgyPhXA1Ia/rFOgiXiIv\nD1avctLT+SZN1j9JsHXCNc9ieo0Dh4+7yxMXUKCLeIHt22HLiu30TZlAk+PfQdv+cP2L0KS1u0sT\nF9J1uyI1aMaKpLM2cohLSmXGiiSXbC87G77+ooCM+c8z7EA/ws1PMOI1uPVThbkHUqCL1KAuEcHl\nduc50ZKtS0SwS7aXunEDvRKv5NKsf+LocB2OCeug2xhd7emhFOgiNai8lmuu6q+Zng57k3Jh4aO0\nXjyQxvXTYNQczG/fgYbhVfwGUpsp0EVqWGmh7oowdzohMRHiPlhBkw/7wppY6HE7jvFr4eIhrvwK\nUkvppKiIG5wa6mN7t2TW2r1VCvPUVFiz9CgX7n6cIbnv42zcFkb8r6+neAcFuoibREeGMrZ3S15e\nupOYAe0qHeaZmZA453MGpj9EgDMV+t2PQ309vZKmXETcJC4plVlr9xIzoB2z1u496+qX0+XkAFkH\nCfpqLIPSbsU/tCnmj0vhqikKcy+lI3QRNzh9zrxPZEiF59ALCmDd95bC+FlclvsojqLivp4O9fX0\nejpCF6lhpZ0ALW/1y6mSk+HLD3bRcsVwrjg6Hpp2hnvi4LIHFOaiQBepSeWtZjlbqH+7vJB9H7/C\ndXv6cgEJMHQajjvmQ0hkTZUvtZymXERq0MbkjHKnVU6E+sbkjF+PObiZnonjCcxMwF40BDNUfT3l\nTMZaW2Mbi4qKsvHx8TW2PZG6LDcX4lYe49K85wneOA0CmsC1z6mvpxcyxqy31kadbZyO0EVqoW3b\nIGnZd0SnTiC4UH09pWIU6CK1SFYWxC3PImLrFK7NfQMb1AKGqa+nVEyVAt0Y0xh4A+gEWOD31to1\nrihMxBulr1tEv8QHCCzaD73vxqG+nnIOqnqE/hLwtbX2ZmNMPaCBC2oS8Srp6ZB1KI0WmyfTYtPH\nOEMuxoxQX085d5UOdGNMEHAFcAeAtfY4cNw1ZYl4PqcTfki0pK/6hL4Zf8HaTMxvJuNQX0+ppKoc\nobcFUoC3jTFdgfXARGttzqmDjDHjgHEALVu2rMLmRDxHaip8vziZjrsfpPuxhTibRWFuUF9PqZqq\nXFjkC/QAXrPWdgdygMmnD7LWzrTWRllro8LCwqqwORHPkJnhZNv7r3PV9t60KFoJ1zyL44+LFOZS\nZVU5Qk8Gkq21a0sef0IpgS4ixbKzoWHedoLmx9AvYw3ONgNwDHsRmrRyd2niISod6Nbag8aYfcaY\n9tbabcBA4EfXlSbiGY4fh3XfFVA//kV6Zj+HqdcARryGo+toXSAkLlXVVS4TgA9KVrj8DNxZ9ZJE\nPMfevfDjkg1cemACIYWbcXa4ATPkObWCk2pRpUC31iYCZ70cVcQbrVyaS9D6p7g651WcgU3h5jk4\n1ApOqpGuFBWpDj+voFd8DPVzd+PscSc+g6eAf7C7qxIPp0AXcZHcXPhueTq90h+j4fb3qX9eW/jd\nFzjU11NqiAJdxAV++gkOfPM5fdIeIsAW9/VEfT2lhinQRaogMxO+X3qItj89xID8zykK74IZ8TFc\n0M3dpYkXUqCLVJa15KyaxeUbH8WPfOzAJ/GJVl9PcR8Fusg5OnoUcpJ3EbFhIs12raAooh+OES9D\naDt3lyZeToEuUkFOJyQmFHH829eIyvwntp4fZug0fHrcAQ615xX3U6CLVEBKCiQu3EzXPRMIL9hA\nUbshmGHq6ym1iwJd5Cwyjxxj33vPMzBrGta/MQx/Gx/19ZRaSIEuUobsbGh4ZC1Bn0+gR9Y2ijqP\nxuda9fWU2kuBLnKa48chfnUWwfF/p0PO65jgFjB2Lj7q6ym1nAJd5BR790LS14u59ND9BBbtx/a6\nGzNQfT2lblCgi5RYvSiN8ITJ9M/7mMImF2NuXIRRX0+pQxToItbC5rn0iv8zPgWZ2Csm43uF+npK\n3aNAF6+VkwPx3yTTK+VBAvYtxK95FAx7BZp2cHdpIpWiQBevYy38tNVJ+pI36Xt0Cr6OIrj6Gej9\nJ3D4uLs8kUpToItXycyE9Yt2cPH2CVxyfA2FrfrjGPEiNGnt7tJEqkyBLt6jqIDj37zEFZufg3oB\nMOI1fNXXUzyIAl083pEjkP/zBi5YF0PooU0Uth+B7/XPq6+neBwFunisoiL4IT4X35XP0Ck7Ftuo\nKWbUbHwvvs7dpYlUCwW6eKTDh+HHL7+l+74Ygot2UdjtDnyvngIBjd1dmki1UaCLx8k8nM6Rdx7n\nytz3KAhqCzcswLfN5e4uS6TaKdDFY2RlQaPk+QR98RCN8lIo6jMRv4GPqK+neA0FutR5x4/D+hWH\naLrhYRrlzYPzO2PGfISP+nqKl1GgS522e5flwFcf0CPlUeqZPIr6P4HPZTHq6yleSYEuddaaL3fR\nIvF+oo8v53izaBw3vQyhF7q7LBG3UaBL3eMsgu9eo9f6p8D44BwylXpRd6qvp3g9BbrUGdnZkLho\nC5cemED91PX4XHQNXDcVgpu7uzSRWkGBLrWetfDT5mMcW/IC0RlTcdZvDDe9CZ1u0mX7IqdQoEut\nlpEBm75cS8ekCTQp3EZBh1H4DX1GfT1FSlHlQDfG+ADxwH5r7dCqlyRS4lgWzi/+Tr/tr1PYIAJG\nzsXvQvX1FCmLK47QJwJbgSAXfJYIaWlw/MclNIu/nyYZyRT2/BN+gx9XX0+Rs6hSoBtjIoDrgKeA\nB11SkXitoiLYtDaNwFWPcGHuR9jQ9pg/LMJXfT1FKqSqR+gvAn8GGrmgFvFihw5afp4/l26//IX6\nNoPCfn/Bt/8k9fUUOQeVDnRjzFDgsLV2vTHmynLGjQPGAbRs2bKymxMPlrU/mfz3J9E3/2uOhfXE\ncXMsDvX1FDlnVTlC7wcMM8YMAfyBIGPMLGvt2FMHWWtnAjMBoqKibBW2Jx4mM8NJ0Pa3aLT4SQKL\niii66hnq91VfT5HKqnSgW2sfAR4BKDlCf+j0MBcpzbFj8MPSHbRIiCHoeBy0vRLH9S+pr6dIFWkd\nutSo3T8XcHTBS/Q48hz4BeAc9iqO7mN0gZCIC7gk0K21y4Hlrvgs8Vzr5iXQZtMEWhdu4li7EdQf\n/hw0auruskQ8ho7Qpfodz4XlzxCVEEth/XCcN35A/Q66Bk3E1RToUm2ys2Hzgm/puT8Gv6xdmB63\n43fV39XXU6SaKNDF5ayFnxLTcSx5nD4573G8YVu4fT60ucLdpYl4NAW6uFR6Omz/fAEdd08iwJnC\n8UsnUm+w+nqK1AQFurhO1iF85j5Mr33zyG/cGcfvPqTeBd3dXZWI11CgS5WlplicCR8QvuFRGhXk\nUfCbJ/C/Qn09RWqaAl0qragINq/cRcia+4k4thzbMhoz7GX81NdTxC0U6FIpBw8UcXDeDDoe/ifG\n4UPB1VPx662+niLupECXc5adtAXHhxPoVrCevBbXEHCz+nqK1AY6nJIKy0g7BkufouEHVxDi2EPh\niDcJ+P2HlQ7zGSuSiEtKLXdMXFIqM1YkVerzRbyNAl3O6tgx2DBvLc7XLodvn4NON+MT8z2+3W6u\n0j1YukQEM352QpmhHpeUyvjZCXSJCK70NkS8iQJdyrVrWxa7pj9M94SraeCXS9HouXDj/0FgSJU/\nOzoylNgx3UsN9RNhHjumO9GRoVXelog3UKBLmRI/WULox31pn/k6+V3GUf/+Nfi0d22T5tJCXWEu\nUjk6KSpnykmDhY/QbfNH5Ddqj715IQGtelfb5k4N9bG9WzJr7V6FuUglKNDlpKxMy855c+my/y/4\nHE+HK/6M/xUP1Uhfz+jIUMb2bsnLS3cSM6CdwlykEhTogrWwfV0yAUsn0T3/a/JDeuBz5+fQtGON\n1RCXlMqstXuJGdCOWWv30icyRKEuco4U6F4u/aiTPXPf4pL9T+JjCjl25dP4X3F3jfb1PH3OvE9k\niObQRSpBJ0W9WeoO6s2+jq7Jkyhs2hOf8Wuof+V9bg1zKH/1i4iUTYHuhVIPFXBk3gvwWj8aZG2h\n4LrpNPjTZ3Bemxqto7zVLAp1kXOnKRcvUlgIW5cmcMG6CZxXsAl7yXDMkOfxc1Nfz43JGeVOq5wI\n9Y3JGZp6EakABbqX+GVvLumfPUPHI7EU1Aun4KZZ+HW+3q013f2byLOOiY4MVZiLVJAC3Qtkb/6W\nBp/G0KxoFzntbyNwxD/U11PEAynQPVjGoXSC1z5Oww3vUdCoDUXD5xPYTn09RTyVAt0D5efDjvkL\naLt1EtYexkTH4HflI1CvgbtLE5FqpED3MLs3H4KvHqZzzjxygzrh/O0cfFr0cHdZIlIDFOiewlq2\nzP6AyJ2P4kceuX0fp8GgierrKeJFFOie4MguWHA/HX9eTk5IX+qNfIUG4errKeJtdGFRLVGZ7j2Z\n6UX8+GYszlejITkervs3gfd9iUNhLuKVFOi1xLl077EWtq/awrFXr6LDvkfJa3o53LcWLr1LTZpF\nvJj+9tcSFe3ec0lQI7bNeIp2S64g2Lmb/KFvEnjXRxAc4abKRaS2UKDXImft3uOXRIP3L+fiQ8+R\n3eYm6j2wDv+oqvX1FBHPUemTosaYFsB7wPmAE5hprX3JVYV5q9K69zw98CI6fv8v2PY69YOaU/C7\nTwjqcJW7SxWRWqYqq1wKgUnW2g3GmEbAemPMYmvtjy6qzWud6N7z0pIkHgk/Qr9vHqBhUTL20j9i\nBj2BX/1G7i5RRGqhSge6tfYX4JeS37OMMVuB5oACvYriklL5dPF2PvD/iMuy53O0XiSFtyzEr231\n9fUUkbrPJevQjTGtge7A2lJeGweMA2jZsqUrNufR4namMO+dV/kq8F0akMG2thO4bXc002wk0e4u\nTkRqtSqfFDXGNATmAvdbazNPf91aO9NaG2WtjQoLC6vq5jzairhNFM4ayb98p+IX0grnH1fQ/rZ/\nMu2WXmr0ICJnVaVAN8b4URzmH1hr/+uakrxPfp6TZdNj6fHVYPo5tsDgp6h/3xJ8m3cC1L1HRCqm\nKqtcDPAmsNVaO9V1JXmXPet34L84hv75cRwI7kfgndMh5MxWcOreIyJnU5U59H7ArcAmY0xiyXN/\ntdZ+WfWyvEBRATvfe4nWe57D6eNPzqDpXNDvlnLXlKt7j4iUpyqrXFYBuqKlMg4kwLwJtDu0iYzm\nwwga9QL13NTXU0Q8h+62WIMy03JJ+fgZ2h6OxQSGwchZBF/i3r6eIuI5FOg1wOmEXcu+JWxNDJGF\nu8hsdxtBN6mvp4i4lgK9mh0bfYfFAAAIMElEQVT9JZ30/zxB5JF3ya3fmvybPifokt+4uywR8UAK\n9Oq0dQGNPp9EcN5h0jtMoPGIv6qvp4hUGwV6NUjdfQj/pQ/TcO88fJt2omDUHBq3Ul9PEaleCnQX\nKiyw7J43m4gtf8WPXJz9H8dx2UT81NdTRGqAAt1FDm7djZ1/P+1yl5HRuC+O371MvQsucndZIuJF\nFOhV5Swib8UMQr79JxgHGZe9QPCAP6gVnIjUOAV6FWTs+JHg5eMJ2L+e3IjB1LthKsEhLdxdloh4\nKQV6JeRlHeOXj/9Nq31TcfoH4bjxDRp0Vis4EXEvBfo52hf3PY2WjadtwTaORPyOxqOehYYh7i5L\nRESBXmHHstn7zt9p8ctM8vyakz38E87rrr6eIlJ7KNArYscSWHA/LTKSORL5R8777RMYf/X1FJHa\nRYFejsyDR8j4+BFaHPkQQi/C/P5rQlr2cXdZIiKlUqCXwllk2ff1XMLX/4XmznSOdH6Y84Y9BH7+\n7i5NRKRMCvTTHN2zn/xPHqRV1tdkNOwBN8/jvNad3F2WiMhZKdBPcDph/dsEL/objQoLSYt6ipAh\n94DDx92ViYhUiAIdSN22k8BvYgg4vBpHmysovOYlQpq2dXdZIiLnxKsDvSC/gAOfvEzznf/C6fDH\neX0sjh5jqacLhESkDvLaQD+UmIDfVxNodWwTqeHDCB71PI7zznd3WSIileZ9gV6Qx7GFzxAWH8sx\n31CODn6f0Ohh7q5KRKTKvCrQMzeuJGh5DPWP/EzWhbfSYPg/CGjYxN1liYi4hFcEeu6RdI589AQR\nh96lKKg1Prd9TqO26uspIp7F4wN9/zcLaBI3iQuKDnO43QRCf/tXqK++niLieTw30LMPc/Dth2me\n9hkZAZ0oGjGH8Pbq6ykinqtWttWZsSKJuKTUcsfEJaUyY0XSGc9bp4WEDyD2UsKPfsmhTo8RNGk5\njRTmIuLhamWgd4kIZvzshDJDPS4plfGzE+gSEfyr5zP37CZl2g0w714IuxjHPatpevPDGF81aRYR\nz1crAz06MpTYMd1LDfUTYR47pjvRkaEAOAuLSP5kOgHv9KVJ9jpSe70Ad34FYWrSLCLeo1YGOpQe\n6qWF+dFtP3L034OJ2PxXMhpfRtHd3xE65I9q0iwiXqdWnxQ9NdTH9m7JrLV7/xfmhcdg5b9pvHIq\nxwgi5Yo3COuvvp4i4r2qFOjGmGuAlwAf4A1r7bMuqeoU0ZGhjO3dkpeX7iRmQDuiI0NJS/yehssm\nUD/jJ0zn3+Ez8BnCGoe6etMiInVKpQPdGOMDTAeuApKBdcaYz621P7qqOCieZpm1di8xA9rxSdx2\nrvrpNTodeYc8v+Y4R/8HR/vB6JSniEjVjtB7ATuttT8DGGM+BIYDLgv0U+fMLzycyO/NZILS9rMl\n5Fba//5pHA3V11NE5ISqnDlsDuw75XFyyXMucWqY90z8B2ELb8Lh14A1fT/itoxhrDt0zFWbEhHx\nCFUJ9NLOPtozBhkzzhgTb4yJT0lJqdAHn76apf75bcno8hCBk1bS75qry1zSKCLizaoy5ZIMtDjl\ncQRw4PRB1tqZwEyAqKioMwK/NBuTM361NJF+Ezn1EqITq182Jmf8b4yIiJcz1lYoY898ozG+wHZg\nILAfWAeMsdZuKes9UVFRNj4+vlLbExHxVsaY9dbaqLONq/QRurW20BgzHlhI8bLFt8oLcxERqV5V\nWodurf0S+NJFtYiISBXo+ngREQ+hQBcR8RAKdBERD6FAFxHxEAp0EREPUel16JXamDEpwJ5Kvj0U\n8LZLQ/WdvYO+s+er6vdtZa0NO9ugGg30qjDGxFdkYb0n0Xf2DvrOnq+mvq+mXEREPIQCXUTEQ9Sl\nQJ/p7gLcQN/ZO+g7e74a+b51Zg5dRETKV5eO0EVEpBx1ItCNMdcYY7YZY3YaYya7u57qZox5yxhz\n2Biz2d211ARjTAtjzDJjzFZjzBZjzER311TdjDH+xpjvjTE/lHznKe6uqaYYY3yMMQnGmAXurqUm\nGGN2G2M2GWMSjTHVev/wWj/lUtKMejunNKMGRru6GXVtYoy5AsgG3rPWdnJ3PdXNGNMMaGat3WCM\naQSsB0Z4+J+xAQKttdnGGD9gFTDRWvudm0urdsaYB4EoIMhaO9Td9VQ3Y8xuIMpaW+3r7uvCEfrJ\nZtTW2uPAiWbUHsta+y1wxN111BRr7S/W2g0lv2cBW3Fhf9rayBbLLnnoV/Jf7T66cgFjTARwHfCG\nu2vxRHUh0Ku1GbXULsaY1kB3YK17K6l+JVMPicBhYLG11uO/M/Ai8GfA6e5CapAFFhlj1htjxlXn\nhupCoFeoGbXUfcaYhsBc4H5rbaa766lu1toia203ivvx9jLGePT0mjFmKHDYWrve3bXUsH7W2h7A\ntcB9JVOq1aIuBHqFmlFL3VYyjzwX+MBa+19311OTrLXpwHLgGjeXUt36AcNK5pQ/BAYYY2a5t6Tq\nZ609UPLzMPApxdPI1aIuBPo64EJjTBtjTD1gFPC5m2sSFyo5QfgmsNVaO9Xd9dQEY0yYMaZxye8B\nwCDgJ/dWVb2stY9YayOsta0p/nu81Fo71s1lVStjTGDJiX6MMYHAYKDaVq/V+kC31hYCJ5pRbwU+\n9vRm1MaYOcAaoL0xJtkY8wd311TN+gG3UnzElljy3xB3F1XNmgHLjDEbKT5oWWyt9YplfF6mKbDK\nGPMD8D3whbX26+raWK1ftigiIhVT64/QRUSkYhToIiIeQoEuIuIhFOgiIh5CgS4i4iEU6CIiHkKB\nLiLiIRToIiIe4v8BgwXYOv/rlLgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVzVVf7H8dcBVMBdSE0RF1xwYVNERc21XDNbrCxrrBzHaWwZ22zKrGaabLOZ0snMX1mjZo1pi1vupuKGguYuqClpKqgoArKd3x8HiOWy3nu5XPg8Hw8eci/fe++5qG++nO/5fI7SWiOEEML5uDh6AEIIIcpHAlwIIZyUBLgQQjgpCXAhhHBSEuBCCOGk3Cryxby9vXWrVq0q8iWFEMLp7dmzJ15rfVPB+ys0wFu1akVkZGRFvqQQQjg9pdQvlu6XKRQhhHBSEuBCCOGkJMCFEMJJVegcuCXp6enExcWRmprq6KEIO3J3d8fHx4caNWo4eihC2NWczbEE+tQn3M+7yGMiYuPZH5fIpH5+Vr2WwwM8Li6OunXr0qpVK5RSjh6OsAOtNQkJCcTFxdG6dWtHD0cIuwr0qc/kRVHMeiDEYohHxMbnft1aDp9CSU1NxcvLS8K7ClNK4eXlJb9liWoh3M+bWQ+EMHlRFBGx8fm+lje8iztDLy2HBzgg4V0NyN+xqE4shbitwxsqSYCXZM7m2EI/yQqKiI1nzubYChqREEIUL2+Iz1xz1ObhDU4S4DlzSkWFeM5PtkCf+uV6fldXV4KDg+ncuTNBQUHMnDmTrKysYh9z6tQpFi1aVK7XE0JUD+F+3ozr4csHG2IY18PXpuENThLg9p5T8vDwIDo6moMHD7J27VpWrlzJa6+9VuxjJMCFECWJiI1nwc7TPDmwLQt2ni5xJqHMtNYV9tGtWzdd0KFDhwrdV5RtMRd1yOtr9LaYixZvl1ft2rXz3Y6NjdWNGjXSWVlZ+uTJk7pPnz46JCREh4SE6G3btmmtte7Ro4euV6+eDgoK0jNnzizyOPG7svxdC+HsbJlXQKS2kKlOFeBa//5NeO/HIzYJb60LB7jWWjdo0ED/9ttv+vr16zolJUVrrfWxY8d0znvYuHGjHjFiRO7xRR0nficBLqqLosK6vCFeVIA7fB14WeWdU3pyYFubzynl0Nl7haanpzN58mSio6NxdXXl2LFjFo8v7XFCiKqtuGndvNPBtrig6XQBXnBOqaefl81D/MSJE7i6utK4cWNee+01mjRpwr59+8jKysLd3d3iY95///1SHSeEqNr2xyUWG845Ib4/LrF6BXjBn2w9/bxsvjTn4sWLTJo0icmTJ6OUIjExER8fH1xcXPj888/JzMwEoG7duly7di33cUUdJ4SoXkpTHh/u5111CnlKw9KvJcWtTimLlJSU3GWEgwcP5rbbbmP69OkAPP7443z++ef07NmTY8eOUbt2bQACAwNxc3MjKCiI999/v8jjhBDCXlTOXG9FCA0N1QU3dDh8+DAdO3Ys9nElLRW0R4WTsL3S/F0LIQpTSu3RWocWvN8pzsDLMqckhBDVhVPMgVfknJIQQthcVha42P582SnOwIUQwilpDdGLYHYYXLdxFSYS4EIIYR/nD8Fnw+HbP4NHQ7hx1eYv4RRTKEII4TRuJMHmt2DHf6BWXRj1IQSPs8sUigS4EELYgtZwZDmsmgpX4yDkIRj8GtT2sttLyhQKZlu3O+64g3bt2uHn58dTTz1FWloaAJs2bWLkyJGFHrN8+XJCQkIICgqiU6dOfPzxx4WOmT9/Pkop1q9fn3vfsmXLUEqxZMmSUo+vqDGU5phNmzZRv359goODCQ4OZvDgwQDMmTOHL774InecZ8+eLfV4hBAFXDoJi+6Fr8aBRwN4dA3cMcuu4Q1yBo7Wmrvuuos///nPfPfdd2RmZjJx4kReeukl3nnnHYuPSU9PZ+LEiezatQsfHx9u3LjBqVOnLB4bEBDAl19+yaBBgwBYvHgxQUFB9no7FvXt25fly5fnu2/SpEm5n8+fP58uXbrQrFmzCh2XEE4v4wZs+wC2vAsubjDknxD2J3CtmGit9mfgGzZswN3dnUceeQQwmzu8//77fPrppyQnJ1t8zLVr18jIyMDLy/x0rVWrFh06dLB4bN++fdm1axfp6ekkJSURExNDcHBw7tfXr19PSEgIAQEBPProo9y4cQOA1atX4+/vT58+fVi6dGnu8devX+fRRx+le/fuhISE8N1335Xrfb/66qu8++67LFmyhMjISB588EGCg4NJSUkp1/MJUe3EboSPwmHjP6D9UJi8G3r9pcLCGyrhGfgPPxS+z88POnWCjAxYtarw1zt0gPbtITUV1q7N/7Xbby/+9Q4ePEi3bt3y3VevXj18fX2JiYmx+JhGjRoxatQoWrZsyaBBgxg5ciRjx47FxcJFCqUUgwcP5scffyQxMZFRo0Zx8uRJwGzoPH78eNavX0/79u15+OGH+eijj5g0aRJ//OMf2bBhA23btuW+++7Lfb433niDgQMH8umnn3LlyhXCwsJyp0WKsmXLltwfGmPGjOGll17K/do999zDrFmzePfddwkNLVToJYQo6Npv8OPf4MA30KgNjPsG2hb/f9BeSjwDV0p9qpS6oJQ6kOe+RkqptUqp49l/NrTvMO1Ha21xw92i7s8xb9481q9fT1hYGO+++y6PPvpokcfef//9LF68mMWLFzN27Njc+48ePUrr1q1p3749AH/4wx/46aefOHLkCK1bt6Zdu3YopRg3blzuY9asWcOMGTMIDg6mf//+pKamcvr06WLfY9++fYmOjiY6OjpfeAshyiAzA3bMgQ9D4fBy6P8i/Hm7w8IbSncGPh+YBXyR576pwHqt9Qyl1NTs2y/YYkDFnTG7uRX/dXf3ks+4C+rcuTPffPNNvvuuXr3KmTNn8PPzIyEhocjHBgQEEBAQwEMPPUTr1q2ZP3++xePCwsI4cOAAHh4euWENv/cct6SoHx5aa7755ptCUzbnz58v8rmEEFaKi4Tlf4Xf9oPfIBj+DniVXCFubyWegWutfwIuFbj7DuDz7M8/B0bbeFwVZtCgQSQnJ+euyMjMzOSZZ55h/PjxeHp6WnxMUlISmzZtyr0dHR1Ny5Yti32dN998k3/+85/57vP39+fUqVO5UzX//e9/6devH/7+/pw8eZLY2FgAvvzyy9zHDBkyhA8//DA3/KOiosr2hi0o2BpXCJEt+RL88BTMG2wqKcd8bqZMyhDeGRmmkt4eynsRs4nW+hxA9p+NizpQKTVRKRWplIq8ePFiOV/OfpRSLFu2jP/973+0a9eO9u3b4+7uni9s169fj4+PT+5HVFQUb7/9Nh06dCA4OJjp06cXefadY9iwYQwYMCDffe7u7nz22WeMGTOGgIAAXFxcmDRpEu7u7sydO5cRI0bQp0+ffD8cpk2bRnp6OoGBgXTp0oVp06ZZ/T0YP348kyZNkouYQuTQGqIWwqxQ2Ptfc3Fy8i7oPBqKmVotKDkZvv4aDh60zzBL1U5WKdUKWK617pJ9+4rWukGer1/WWpc4D17edrKiapC/a+EUzh+CFVPg9HZo0QNGzISmXcr0FKmpZkoXYOtWaNsWmjYt/5CKaidb3lUo55VSN2utzymlbgYulH9oQghRCdxIgs0zYPt/wL0+jJoFwQ+WqQQ+JQV274bYWLj3XqhdG/r0sd+Qyxvg3wN/AGZk/1m+xchCCOFoWsPhH2D1VLj6K3R92JTAezYq9VNkZcGBA7BnD2RmQpcuUKOGHcecrcQAV0p9CfQHvJVSccB0THB/rZR6DDgNjLHnIIUQwi4unYRVz8PxNdAkAMbMhxZhZXqKjAxYuhSuXAFfX+jZExo0KPlxtlBigGutxxbxpUE2HosQQlSMjBuw7d+w5b3sEvg3IWximaook5PB09Msb27bFm66CVq0sOOYLah0lZhCCGFXsRthxTNwKRY632n6l9QrfR+gGzfMVMmhQ3DHHSa4u3a143iLIQEuhKgerp4zJfAHl2aXwC+FtqWfSMjKgsOHITIS0tKgY0eoW9eO4y2Fat/MKiEhIbfVatOmTWnevHnu7ZyWsrawbt263Lau/v7+TJ06tVSPGT26+BqpvXv3snr16tzby5YtK7KLYnlkZGTQoIgJvdmzZ7Nw4UKbvZYQdpGZATs+glnd4cgK6P+37BL40oe31vD997BtG3h5wd13m9UlOUsFHaXan4F7eXkRHR0NmA59derU4dlnn813jNYarbXFZlVlMWDAAL799luSk5MJCgrizjvvpEePHlY95969ezlw4ABDhw4F4M4777Tq+criL3/5S4W9lhDlcmY3rPgr/PZzuUrgk5KgTh1Tu9OhAwQHQ6tW9htuWVX7M/CixMTE0KVLFyZNmkTXrl05c+ZMvjPRxYsXM2HCBMD0IbnrrrsIDQ0lLCyMHTt2FPvcnp6eBAUF8euvvwKmNH/8+PGEhYUREhLCDxZaMu7YsYNevXoREhJC7969OX78OCkpKbz++ussXLiQ4OBglixZwrx583j66acBOHnyJAMGDCAwMJBbb72VuLg4AMaNG8dTTz1FeHg4bdq0YdmyZQD8+uuv9OnTh+DgYLp06UJERETu60+dOpWgoCB69erFhQtm2f/LL7/Mv/71LwD69OnD008/Ta9evQgICKBgwZYQFSqnBP7/boXrCXDvF2UqgU9Lg507YfFiyG4eSseOlSu8obKdga+aan5S2lLTABg2o1wPPXToEJ999hlz5swhIyOjyOOefPJJnn/+eXr27MmpU6cYOXIkBw4cKPL4S5cuceLECfpkr/B//fXXGTp0KPPnz+fy5cv06NGDW2+9Nd9jOnbsyNatW3F1dWX16tW8/PLLfPXVV7zyyiscOHAgN0jnzZuX+5jHH3+cCRMm8OCDDzJ37lyefvrp3J2ALly4wLZt2/j555+59957ufPOO1mwYAG33347L7zwApmZmbll9YmJifTr148ZM2YwZcoUPv30U4tTQDdu3GD79u1s2LCBCRMm5P5mI0SFycqCfYtg7SuQcsWUwPefavamLAWt4dgx2LXLFOW0bw9Nmth5zFaoXAFeyfj5+dG9e/cSj1u3bh1Hjx7NvX358mVSUlLw8PDId9zGjRsJDAzkyJEjTJs2jcaNTQuZNWvWsGrVKmbMMD9oLLWIvXLlCg8//HBug6vS2LlzZ+5OPA8//HC+vimjR49GKUVgYGDubwLdu3fnT3/6E6mpqYwePZqgoCAyMjLw8PBg2LBhAHTr1o0tW7ZYfL2cVrkDBw7kwoULJCUlUadOnVKPVwirnD9oVpdYUQK/di2cOmVCe+hQs8KkMqtcAV7OM2V7qV27du7nLi4u+dq/pqam5n6utWbXrl3UrFmz2OfLmQM/cuQIffv2ZfTo0QQEBKC15ttvv8XPL/+vd3lD/KWXXmLIkCE8/vjjxMTE5M55l1etWrXyjR9M8G7atIkVK1bw4IMP8uKLL3Lffffle1+urq5F/jZSsAVucf3UhbAZK0vgk5LAwwNcXc0Zd5s2Zl23M5A58FJycXGhYcOGHD9+nKysrNx5Y4DBgwcze/bs3NslTR34+/vz/PPP8/bbbwOmRewHH3yQ+3VLLWITExNp3rw5QL7Oh8W1gu3Zsydff/01AAsWLOCWW24pdly//PILTZs2ZeLEiYwfP77MrWq/+uorwGyk3KRJk3w/AIWwOa3h0HcwOwwiPoSQB+GJPdD1oVKFd0aGWc+dt1tgq1bOE94gAV4mb731FkOHDmXQoEH4+Pjk3j979my2bdtGYGAgnTp14pNPPinxuR5//HHWr1/P6dOnmT59OsnJyQQEBNC5c2deffXVQse/8MILPPfcc/Tu3Tvf/QMHDmTfvn2EhIQU2ul+1qxZzJ07l8DAQL766ivef//9Yse0fv16goKCcvfafOKJJ0p8H3nVq1eP8PBwnnjiiVJ9D4Qot0snYOEY+Pph8GgEj62FUR+Wun9JTIwJ7j17oGVLc9btjErVTtZWpJ1s1dWnTx9mzZqVb8PmguTvWlitYAn8gJfKXAK/daupovT2hvBw69q8VhRbt5MVQoiKFbsBVjxbrhL45GQzx12rlpnn9vY267qd/TKNBLiwia1btzp6CKKqsqIEPjPTtHndu9cEd+/e0Lix+agKKkWAl7QDvHB+FTlVJyqXOZtjCfSpT7ifd5HHRMTGsz8ukUn98qzEysyA3Z/AhjcgM82UwPd+CmqUrn791CnYsQOuXjXz3F3KtqLQKTj8Iqa7uzsJCQnyH7wK01qTkJCAu6MbRwiHCPSpz+RFUUTExlv8ekRsPJMXRRHoU//3O8/shk/6m00WWoTB49uh/wulDu+9e2HNGjNtMnw4DBkC9euX/Dhn4/AzcB8fH+Li4qiMGx4L23F3d8+3ckdUH+F+3sx6IITJi6KY9UBIvjPxnPDOvT/5Eqx7FfZ+DnWbmRL4jqNKNVmdmmqWBtapY5YC1qwJnTqVaUc0p+PwVShCiOqhYFjnu926Uf4S+J5/LnUJfFaWWVWyZ8/vFZRVjaxCEUI4VN4z8XE9fFmw87QJ7zrn4bMH4cyOMpfAx8VBRITZzqx5c7CyuafTkQAXQlSYcD9vxvXw5YMNMTzT72bCY943vbrd68MdsyHogVLPeRw9Cps3Q716Zo67ZUs7D74SkgAXQlSYiNh4Fuz4hQ+DThO2czJwCbr+AQa/WqoqyrQ0s6a7QQNo3drc7tTJXKysjiTAhRAVIiI2nhkLV7G+6f9oeHQz1xt2ZHziM0zsfD/hJYS31uaMe9cus5HwPfeYi5QBARU0+EpKAlwIYXfbj/3Kvi9f41u1DJf4mjDkTWqHTWTiqSsWV6fkde6cmedOSDBl7+HhFTz4SkwCXAhhVwe3fEuz9VPpxTnodBcMeSO3BL64JYYAZ87AqlVmaeCgQeBX+t3QqgUJcCGEfVw9Bz++SOeDy0ip2xLusFwCnxPi++MSCffzJiMDLl82myk0b27OuP39wU3SqhD5lgghbCszA3bNhY3/zC2B9yihBD7cz5twP29iYsxelFlZMHasCe2qWAJvKxLgQgjbObMLlk+B8z9D28FmF/hGJTfbvnDBzHNfuPB7m1c54y6ZVd8ipdRfgQmABn4GHtFapxb/KCFElZN8CdZNh71flLkE/tIl+PZbs61Zv36ma6D0tiudcge4Uqo58CTQSWudopT6GrgfmG+jsQkhKrusLIheaErgUxOh1+RSlcBnZsL589CsGTRqBLfcYnbFKWFbWVGAtb+kuAEeSql0wBM4a/2QhBBO4bcDZhf4MzugRU8YOROadC7xYSdPmjav16/DAw+Ydd3+/hUw3iqo3AGutf5VKfUucBpIAdZordfYbGRCiMrpxjXYNKPMJfCXLpl57rNnzVn3sGEmvEX5WTOF0hC4A2gNXAH+p5Qap7VeUOC4icBEAF9fXyuGKoRwqJxd4Fe/CNfOlqkEPiUFli6FGjXMrjgdO1btNq8VxZoplMHASa31RQCl1FIgHMgX4FrrucBcMO1krXg9IYSjJMTCquchZh00CTAXKVt0L/YhWVmmW6Cvr7lAOXCgWdddq1YFjbkasCbATwM9lVKemCmUQYA0+xaiKklPhW3/gi0zwbUmDJ0B3f9Y4i7wZ87A9u2mzevdd4OXl7lIKWzLmjnwnUqpJcBeIAOIIvtMWwhRBcSsh5XPwqUT0Pmu7F3gby72IVeumAuUp0+bNq9Dh5rwFvZh1SoUrfV0YLqNxiKEqAyuns3eBX4ZNPKDh5aB38ASH5aRAd9/b6ZOevY0FZQyz21fUuskhDAyM2DXx9kl8Okw4CUIf7LYEnitzbLA1q1N5eTAgeaM28OjAsddjUmACyHg9E5YMQXOH4C2t8Lwt0ssgT971sxzJySYqRJfX5B9qyuWBLgQ1VneEvh6zeHe/0LH24utZb92zcxznzxp2rwOHmzCW1Q8CXAhqqOCJfDhT0C/qVCrTokPXb3ahHhoKAQGStMpR5JvvRDVzW8HzHTJmZ3g2wtGvFdsCbzWcOKE2TTYzc00nKpd23wIx5IAF6K6yFsC79EA7vgPBI0tdqlI3javffuaCsrGjStwzKJYEuBCVHUFS+C7jYdB04stgb9+3WwgfPy46VfSvz+0a1dhIxalJAEuRFWWEAsrn4PY9dC0dCXwAJs3m82EQ0IgONj0MBGVjwS4EFVRoRL4t6D7hGJL4E+cMLu+e3qaHXFcXaFu8W29hYNJgAtR1eQtge9yN9z2RrEl8AkJZp773Dno2tWsLmnQoALHK8pNAlyIquLqWTPPfejbUpXAp6RAZCQcPgzu7uYipWys4FwkwIVwdnlL4LMyYMDL0PtJcCu+b+vu3XDsGAQEQLdusp2ZM5IAF8KZFSqBfwcatS768NOmerJRo98LcWS6xHlJgAvhjJIvmSrKqP+WqgT+yhXTt+TMGbPre//+5mKlbGnm3CTAhXAmWVkQvQDWTocbV023wH4vFFkCf+MG7NkDBw+apYC9ekHnkvcdFk5CAlwIZ1GoBH4mNOlU7EMOHjQfHTuaKRP3ojvDCickAS5EZXfjGmx8E3bOMSXwoz8yJfBFTJecPWv+bNbMzHG3bCm74lRVEuBCVFZamyWBq1+Ea79ll8C/UmQJ/NWrps3rqVOmL3ezZqb5lIR31SUBLkRllK8EPhDuWwA+oRYPTU+HqCjYv9/0pQoLM0sDRdUnAS5EZZKeClvfNx9utWDY2xD6WLEl8CdPQnS0WV0SFiYrS6oTCXAhKouYdbDiWbh8ErrcA0PegLpNLR56/rzpGNimjekS2KgReHtX8HiFw0mAC+Foib/Cjy+alq9ebeHh76BNf4uHXr8OO3dCTAw0bGg2E1ZKwru6kgAXwlEy02Hnx7DpTVMCP/Bls67bQgl8RoaZ446ONtc2u3aFoKBit64U1YAEuBCOcHoHLJ8CFw5Cu9vMXHcxJfAXL5rGU23aQI8e0uZVGBLgQlSk6wmw7hWIWgD1fOC+heA/wuKpdHy82cqsUye4+Wa45x4z1y1EDglwISpCVpbpW7JuuinM6f0U3PK8xRL4lBTTKfDIEbOipH17s55bwlsUZFWAK6UaAPOALoAGHtVab7fFwISoMn772UyXxO0C3/DsXeALl8BnZsKBA7B3r/k8MNDMdbvJaZYogrX/NP4NrNZa36OUqgnIClQhcty4Znp075wDHo1g9BwIur/IK4/Xr5szbx8f03Sqfv0KHq9wOuUOcKVUPeAWYDyA1joNSLPNsIRwYlrDwWXw499MCXzoIzBwmsUS+MuXTSFO165Qrx6MGSPBLUrPmjPwNsBF4DOlVBCwB3hKa33dJiMTwhklxJr9KGM3FFsCf+OGWVVy6JBp8+rvb+a7JbxFWVgT4G5AV+AJrfVOpdS/ganAtLwHKaUmAhMBfH19rXg5ISqxQiXw70D3x8DFNd9hWVlmD8rISEhLkzavwjrWBHgcEKe13pl9ewkmwPPRWs8F5gKEhoZqK15PiMrp+Dpz1n35JASMgdv+UWQJfHq62WDBywvCw2VlibBOuQNca/2bUuqMUqqD1vooMAg4ZLuhCVHJ5SuBb1dkCfzVq2ZThZ49oVYtuOsusy+lENaydhXKE8DC7BUoJ4BHrB+SEJVcKUvg09JMm9effwZXV7Oe28tLwlvYjlUBrrWOBiw3KRaiKspXAj8Ehr8NDVvlO0RrOHYMdu0yRTnS5lXYi5QICFEaZSiB1xr27TPLAocOhZtucsB4RbUgAS5EcSyVwPd7AWrWzndYUpKZLunZ0ywLHDlSzriF/UmAC1GUvCXwLXubEvjGHfMdkpFhWrzu22dut2kDzZtLeIuKIQEuREGpV80FyhJK4GNizOYK16+Dn59p8yoXKEVFkgAXIoelEvhBr4BHQ4uHHz0KHh4waBA0tbzsWwi7kgAXAvKXwN8cZC5S+nTLd0hysqmg7NrVnGkPGmTWdcuuOMJRJMBF9ZaekqcE3t1iCXxmplnLHRVlPm/WDNq2lfJ34XgS4KL6KlQC/wbUbZLvkF9+ge3bTTVly5ZmlYk1DafmbI4l0Kc+4X5F70IcERvP/rhEJvXzK/8LiWrBxdEDEKLCJf4KXz0EC+8GFzd4+Hu4e16h8AYT4K6uMHw4DBlifbfAQJ/6TF4URURsvMWvR8TGM3lRFIE+0pZQlEzOwEX1kZluVpZsfBN0punRHf5EvhL41FQzz92+PTRubDZWcHUFFxud6oT7eTPrgRAmL4pi1gMh+c7Ec8K74P1CFEUCXFQPeUvg2w+FYW/lK4HPyjK9uffsMT1MGjQwAV6jhu2HYinEJbxFeUiAi6rtegKsfQWiF0D9FnD/IugwPN/Skbg4iIiAK1d+386soeWVgzaTN8TH9fBlwc7TEt6izCTARdWUlQVRX8C6V7NL4J+Gfs8XKoEHiI83hw8ZYi5UVpRwP2/G9fDlgw0xPDmwrYS3KDO5iCkcZs7m2CIv5uWIiI1nzubYsj3xuf3w6W3ww1PQuDNM2ga3vpYb3mlpsGMHnDhhDg8IMHtRVmR4g3lvC3ae5smBbVmw83SJ3wshCpIAFw5j8xUZqVdh1VSY2w8unYQ7P4bxy6GxP2AKLY8cgcWLYf9+SEgwD3N1NR8VKe+c95TbOuROp0iIi7KQABcOk3ceuGBwlemintZw4BuY1d2sMun2CDwRma9/yfnzsHQp/PSTuUB5113Qvbu93lnxLL234r4XQhRFAlw4lKXgKlN4x8fAf++EJY+afSj/uB5GzizUvyQpyewEP2gQjBoF3g6abi7uvUmIi7JSWlfcPsOhoaE6MjKywl5POI+cYCv1ioz0FNgyE7b9y5TAD3oFQh/NLYHPafNaq5aZ4865z83Bl+2lElOUh1Jqj9a60O5nsgpFVAplWpFxfG12CfwpCLg3exd4U0WptWnzumuXafPaMU/7bkeHN1CqUA7385YVKaJUKsE/aSEKr8jo6edVOMQS42D1i3D4e/BuD3/4AVrfkvvlhATYsgUuXDDbmA0eDE0KV8cLUWVIgAuHKzgv3NPPK/88cWY67PgINs0AnWWmS3o9AW418z1PZqaZ6+7fH9q1kzavooWldD8AABA3SURBVOqTOXDhUEVd1Mu5//PBmQREvQYXDhUqgc/MNMsBb9wwXQJz7qvoJYFC2JvMgYtKp9gVGU1hVavFNPlxCTdqN6PW/YvMLvDZTp40xTjXrkHr1mbuWykJb1G9SIALh9kfl1g4vLOyYO/nsO5VmqQlEdf5T6z2epgJ/l0A05f7p5/g7Flo1AhGjDCbCAtRHUmAC4cptCLj3H5Y/lf4NRJa9oER7+HT2J8JeQ5xcYHEROjTB/z9bdfmVQhnJAEuHC/1Kmz8J+z62OwCf+fHEHgfKEVWFhw8aCopBw82e1GOHSvBLQRIgAtH0hoOLoXVf4Ok86YQZ9C03CrKM2fMdmY5bV7T001/bglvIQyrA1wp5QpEAr9qrUdaPyRRLcTHwMpn4MQmuDkYxi6C5mYX+ORk2LzZBHj9+jB0KPj6Ona4QlRGtjgDfwo4DNSzwXOJqq5gCfzwd/OVwIM5y752zSwN7NJFzriFKIpVAa6U8gFGAG8AU2wyIlF1FVECrzUcOWxK4EeMMAE+ZowU4ghREmvPwP8FPA/ULeoApdREYCKAr/weXD0lxsHqqXD4h0Il8GfPmnnuhARo2tRsKuzpKeEtRGmUO8CVUiOBC1rrPUqp/kUdp7WeC8wFU4lZ3tcTTqiYEvi0NDPPffKkWVkyeDC0aePoAQvhXKw5A+8NjFJKDQfcgXpKqQVa63G2GZpwar9shxVTLJbAg5kmSU6G0FAIDKwcnQKFcDbl/m+jtX4ReBEg+wz8WQlvwfX47F3gF/6+C7z/CLSG48dM75Lbbzd9ukeNkqkSIawh5z3CNvKUwJOWBH3+Crc8BzVrc/68mee+cAEaNzbNp2rVkvAWwlo2CXCt9SZgky2eSzihc/tg+ZR8JfA09icrCzZtMKtLPD1hwABo21aCWwhbkTNwUX6pV2HjG7BrLnh65ZbAaxQKs347KwtCQiA42Mx7CyFsRwJclF3OLvA/vmRK4Ls/BgNfBo+GnDgBu3fDsGFQr55ZXSKEsA8JcFE2RZTAx8dDxFr47TfT5jUtzdEDFaLqkwAXpZOeAlveg23/BjePfCXwW7fCoUPg7g59+5o2rzLPLYT9SYCLkh1bY0rgr/xi2rze+nd0nSa5Ie3mBgEB0K0b1KxZ/FMJIWxHAlwULTEOVr0AR5bnK4E/fRq2r4RbboGbb/59P0ohRMWSABeFZabDjv/AprfylcBfSapJxEqIi4MGDRw9SCGEBLjI75cIs6b74mFoPyy7BL4lkZEQFWWWAvbqBZ07S5tXIRxNAlwY1+NhzTTYtyi7BP5LstoPRylQgIcHdOxoepe4uzt6sEIIkAAXWVmwdz6sey1fCfyvF2uzfalpNNW+vTnjFkJULhLg1dm5fdm7wO+BVn1h+LtcdfdnxyY4dQrq1pWzbSEqMwnw6ig1ETa8Abs/yS6BnwuB93LgoGLHDjO3HRZmlga6upb8dEIIx5AAr05yS+D/BkkXoPtj6IHT0LUa4KLMGXfbtia8PT0dPVghREkkwKuL+OOw4hk4uTm7BH4x5926ErEaWrQwFydbtjQfQgjnIAFe1VkogU/yf5Rdka65bV4bNnT0IIUQ5SEBXpUd+xFWPvd7Cfxt/+D4ucZsWWJmU7p2haAgafMqhLOSAK+Krpwxu8AfWQ7eHeAPy8lo0Rc3N9Mp0NcXevQwc95CCOclAV6V5JbAzzCn2IOmE99+MhE7a1L3lNkRx8tLenQLUVVIgFcVp7aZi5QXD0OH4aQOmMGuYy058p1Zy92+vaMHKISwNQlwZ5d00ewCv28R1PeF+7/kTO3hrFsFmZmmkrJrV2nzKkRVJAHurPKVwF+HPlNI6/ksNevUxivZLA3s3h3q13f0QIUQ9iIB7ozORsOKKbkl8Il932PrkQ5kboBRo8zSQJnnFqLqkwB3JgVK4NNv/4RdKWM4tEFRo4YpxtFatjMTorqQAHcGhUrgJxAf9DIr1jcgLQ06dTLbmUnjKSGqFwnwyi5vCXyzENLuWUzNVl1pkGHmuYODzdpuIUT1IwFeWaWnwE/vmhL4Gp6kDHyPn5If4fIOV8a0MBsJDxzo6EEKIRyp3AGulGoBfAE0BbKAuVrrf9tqYNVanhL4zC73E93470Qda4yrK4SEyBy3EMKw5gw8A3hGa71XKVUX2KOUWqu1PmSjsVU/BUrgr49ZztK9fUk5Ah06mGWB0uZVCJGj3AGutT4HnMv+/JpS6jDQHJAAL6vMdNg+Gza/BVqT3u9VavT9C56uNWl92YT3TTc5epBCiMrGJnPgSqlWQAiw08LXJgITAXx9fW3xclXLqW1mTffFI2S0HcHOhjM4/osv9/cCdzfo08fRAxRCVFZWB7hSqg7wDfC01vpqwa9rrecCcwFCQ0O1ta9XZSRdhLXTYN+X6Pq+xHRfzE+/DYPfzMoSN7m8LIQogVUxoZSqgQnvhVrrpbYZUhWXlQl75sP61yAtmYxeU1hy4Tmu/uqJn59p81qnjqMHKYRwBtasQlHA/wGHtdYzbTekKixPCXymb19cb38Pt5s60DYSfHygaVNHD1AI4UysOQPvDTwE/KyUis6+729a65XWD6uKSU2EDf+A3fPQnt4c7vgJEVfHcLeboiGmBF4IIcrKmlUoWwFZkVwcreHnJfDj39DXLxLfegJrMl4m5VoDAgKhdm1HD1AI4czkUpm9XDwGK5+Bkz+hm4WwrvHXnLwRQqtW0LMn1Kvn6AEKIZydBLitpSXDlndh2wfoGp6oEe+huj1Cs8OudKxv5rqFEMIWXBw9gCrl6Gr4Tw/Y8h4XGt/NwoaRnGk6AVxc6dy5+PCeszmWiNj4Yp8+IjaeOZtjbTxoIYSzkgC3hStnYPGD8OV9pGZ6sKrpCr5z/ZjWAY1LXUEZ6FOfyYuiigzxiNh4Ji+KItBHttgRQhgS4NbISIOt78PsMIjdwKHmr7Kgzla0bx/uuQd69y59j+5wP29mPRBiMcRzwnvWAyGE+3nb4Y0IIZyRzIGX16mt2bvAH0F3GIEaNgP3S77c6gotW5bvKfOGeE5YS3gLIYoiAV5WeUrgUz18+clrMT5Bw+jUANo0sP7p84b4uB6+LNh5WsJbCGGRBHhpZWXCns/Q61+HtGR+bvAMu92fpV0nT1q3tu1Lhft5M66HLx9siOHJgW0lvIUQFkmAl8bZKFg+Bc7u5Ur9vqypOxOPFu25Ixy87ZCtEbHxLNh5micHtmXBztP09POSEBdCFCIBXpyUK7DxDfTueeDpjbprHqne99A9VdGmjX1esuCcd08/L5kDF0JYJKtQLNEa9n+NntUdvWseh2pPYG/4bggcw83NKi68ofjVKUKI6k0CvKCLx9Cf3w5L/0hChg/LvDdwvus7dAiywRXKYhS32kRCXAhhiUyh5MhTAp/p4sn2+jOJbzme3r1dadLE/i+/Py6x2GmSnBDfH5coUylCCACU1hW3SU5oaKiOjIyssNcrtaOryVr5HC6JpyFoLIlhr3P+emPatZMd4IUQjqeU2qO1LtR4unqfgV85jV45FXVsBYk1/DkRsIJud/ahPiAF60KIyq56BnhGGuyYTdamt83y7rqvcbXz4/QIr+nokQkhRKlVvwDPUwL/i/tIDrd5k+D+vjRr5uiBCSFE2VSfAE+6QOaqabgeXAwNfEm75ytSXYcytAO4yFocIYQTqvoBnpVJVuRnZK19HZWezNEmz9LhsWeoWdOTjo4emxBCWKFSnnvabHODs1Hc+M9gXFY+w3kVxNaACJqMnQY1PW04WiGEcIxKGeBWb26QcgVWPIueO4DMS3FsbzaPzAe/p9/d7Wlg33ocIYSoMJVyCsVSX+wcxfbH1pr0vf/Ddd1LuKTGo7tP5HTzl+gRWF/muYUQVU6ljTVL5ePFhbe+cJTrH91OjR/+yOUsH7Ie24DLiLfxD5bwFkJUTZXyDDxHqTY3SEvm2sp3qL3vQ9zwZL/vTJrfPh6Xm1wdN3AhhKgAlTrAoYTNDY6uIvOH56mbdJoT9R7AZcjrBHYu5S7CQgjh5Cp9gFva3KB7/WQyfngBj19W4nqTP2d6rsS3Z2/cKv27EUII27Eq8pRSQ4F/A67APK31DJuMKluhzQ1a1mXHx38n1HMxbsqFjAGv4dbnL7RwrWHLlxVCCKdQ7gBXSrkCs4FbgThgt1Lqe631IVsMrGB4X9q7hS4/PkO451F+vNYXt1H/ZFC/QFu8lBBCOCVr1meEATFa6xNa6zRgMXCHLQZVMLzTlj5Fo+9H4pKZwtl+X1Hnz/N57qfzsrmBEKJas2YKpTlwJs/tOKBHwYOUUhOBiQC+vr6leuKCmxvUbNyaKwHPUnvYMzTz9KQZyOYGQohqr9wbOiilxgBDtNYTsm8/BIRprZ8o6jGVdkMHIYSoxIra0MGaKZQ4oEWe2z7AWSueTwghRBlYE+C7gXZKqdZKqZrA/cD3thmWEEKIkpR7DlxrnaGUmgz8iFlG+KnW+qDNRiaEEKJYVq0D11qvBFbaaCxCCCHKQNo8CSGEk5IAF0IIJyUBLoQQTkoCXAghnFS5C3nK9WJKXQR+KefDvYHqVjsv77l6kPdc9Vn7fltqrQv1yq7QALeGUirSUiVSVSbvuXqQ91z12ev9yhSKEEI4KQlwIYRwUs4U4HMdPQAHkPdcPch7rvrs8n6dZg5cCCFEfs50Bi6EECIPCXAhhHBSThHgSqmhSqmjSqkYpdRUR4/H3pRSnyqlLiilDjh6LBVBKdVCKbVRKXVYKXVQKfWUo8dkb0opd6XULqXUvuz3/Jqjx1RRlFKuSqkopdRyR4+lIiilTimlflZKRSulbLqjTaWfA8/ePPkYeTZPBsbaavPkykgpdQuQBHyhte7i6PHYm1LqZuBmrfVepVRdYA8wuor/HSugttY6SSlVA9gKPKW13uHgodmdUmoKEArU01qPdPR47E0pdQoI1VrbvHDJGc7A7bZ5cmWltf4JuOTocVQUrfU5rfXe7M+vAYcxe65WWdpIyr5ZI/ujcp9N2YBSygcYAcxz9FiqAmcIcEubJ1fp/9zVmVKqFRAC7HTsSOwveyohGrgArNVaV/n3DPwLeB7IcvRAKpAG1iil9mRv8m4zzhDgysJ9Vf5MpTpSStUBvgGe1lpfdfR47E1rnam1DsbsJxumlKrS02VKqZHABa31HkePpYL11lp3BYYBf8meIrUJZwhw2Ty5GsieB/4GWKi1Xuro8VQkrfUVYBMw1MFDsbfewKjsOeHFwECl1ALHDsn+tNZns/+8ACzDTAvbhDMEuGyeXMVlX9D7P+Cw1nqmo8dTEZRSNymlGmR/7gEMBo44dlT2pbV+UWvto7Vuhfl/vEFrPc7Bw7IrpVTt7AvzKKVqA7cBNltdVukDXGudAeRsnnwY+Lqqb56slPoS2A50UErFKaUec/SY7Kw38BDmjCw6+2O4owdlZzcDG5VS+zEnKWu11tViWV010wTYqpTaB+wCVmitV9vqySv9MkIhhBCWVfozcCGEEJZJgAshhJOSABdCCCclAS6EEE5KAlwIIZyUBLgQQjgpCXAhhHBS/w8yOGXBfvqJQgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -225,21 +246,28 @@ "# Plot the raw data, with the true underlying relationship, and the OLS fit\n", "fig, ax = plt.subplots(1)\n", "ax.plot(x, y, 'x', markersize=10, label='Data')\n", - "ax.plot(x, 2*x, '--b', alpha=0.4, label='OLS Fit')\n", - "ax.plot(x, theta*x, label='True Fit')\n", + "ax.plot(x, 2*x, '--b', alpha=0.4, label='OLS Model Fit')\n", + "ax.plot(x, theta*x, label='True Relationship')\n", "ax.legend();" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Predict New Data" + ] + }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 82, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The prediction for a new x of 2.5 is 4.967\n" + "The prediction for a new x of 2.5 is 5.299\n" ] } ], @@ -252,17 +280,17 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 83, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xd4VFX+x/H3mRBICCRgCqKhBkXp\nJVKCulJERQQsuxSx7bqsBYKKuriW1d21rLqgblB+2JWirqwi2ADpBJFAIkWkRFpASgLpCSSZ8/sj\ngaUkISSTzGTm83oen2Rmzsz9zuXhw/Xcc+/XWGsREZHaz+HuAkRExDUU6CIiXkKBLiLiJRToIiJe\nQoEuIuIlFOgiIl5CgS4i4iUU6CIiXkKBLiLiJerU5MbCwsJsy5Yta3KTIiK13tq1a1OtteFnG1ej\ngd6yZUsSEhJqcpMiIrWeMWZXRcZpykVExEso0EVEvIQCXUTES9ToHHppCgoKSElJIT8/392leKyA\ngAAiIyPx9/d3dyki4sHcHugpKSk0bNiQli1bYoxxdzkex1pLWloaKSkptGrVyt3liIgHO+uUizHm\nHWPMQWPMxpOeO88Ys8AYs63kZ+PKFpCfn09oaKjCvAzGGEJDQ/V/MCJyVhWZQ38PuPa05yYC31lr\nLwK+K3lcaQrz8mn/iNQeU5cmE5+cWu6Y+ORUpi5Ndvm2zxro1tplwOHTnh4KvF/y+/vAMBfXdQp3\n7iARkXPRKTKEsTMTT2RWdjYUFPzv9fjkVMbOTKRTZIjLt13ZVS5NrLW/ApT8jChroDFmjDEmwRiT\ncOjQoUpt7PQddLqq7iA/Pz+6dOlC+/bt6dy5M5MmTcLpdJb7np07dzJz5sxKbU9EvFdMVBhxo7py\n/4xEpn99hP984mTbN98B/8uquFFdiYkKc/m2q33ZorV2mrU22lobHR5+1itXS3V8B5UW6q7YQYGB\ngSQlJbFp0yYWLFjAV199xTPPPFPuexToIlKWdqFhjGjSk3ffi2fg/gG0W3sT679fUK1hDpUP9APG\nmKYAJT8Puq6k0pUW6tXxr11ERATTpk0jLi4Oay07d+7kiiuuoFu3bnTr1o34+HgAJk6cyPLly+nS\npQuTJ08uc5yI+JasLPjs02MMzJvK/HZ3EnRsC1+3eZo759tqDXOo/LLFL4A7gBdKfs5xWUXlODnU\nR/dszvTVu6tlB7Vu3Rqn08nBgweJiIhgwYIFBAQEsG3bNkaOHElCQgIvvPACL7/8MvPmzQMgNze3\n1HEi4hvy8yEgABpmrGVk5lgCMn+C9jfxUeAfeWHFEWL7tajWMIcKBLoxZhZwFRBmjEkB/kpxkH9i\njPkDsBv4bXUWebKYqDBG92zOa4u2E9uvTbXtIGstUHzh09ixY0lKSsLPz4+tW7eWOr6i40TEuxQV\nwbp1sPnHHH4X/iwBSW8Q0OB8GDGLeP8eTJuZSGy/NkxfvZteUaHuPUK31o4s46X+Lq6lQuKTU5m+\nene17qBffvkFPz8/IiIieOaZZ2jSpAk//vgjTqeTgICAUt8zefLkCo0TEe9x4AAsXQpBBxbz25zx\nBKTsgujfw4Cnid9bcMqUcK+oUI+dQ3eLk+fMHxrYtswTpVVx6NAh7rnnHsaOHYsxhoyMDJo2bYrD\n4eDDDz+kqKgIgIYNG5KVlXXifWWNExHvtGoVfP3ZEbqn3M/1acMIrF8H7vwSBk8+I8yh/MUdrlJr\nAr20E6Cu2kF5eXknli0OGDCAgQMH8te//hWA++67j/fff59evXqxdetWgoKCAOjUqRN16tShc+fO\nTJ48ucxxIuKFrCX80OeMOtyD1lmz4PIH4d6V0PLychdrVHeom+NzxTUhOjrann6icPPmzVx66aXl\nvu9sq1mqe22nJ6jIfhKR6nP0aPFRedsLfqXpuofh53lwficYGgdNO58YN3VpMp0iQ8rNovjkVNan\nZHDPb6IqtG1jzFprbfTZxrn95lwVsT4lo9ywPv6v3vqUDK8NdBFxnx07YMVyS4vDHxCx8kmwR2HA\n09B7HPidGqMVCemYqLBqyapaEeju3EEi4rtyc2HlSkjblsw1OeOJyFkOLS6HIa9BaMWOrmtSrQh0\nERF32LWjkJCNU+if9RzGvy4MfgW63QEOzzz9qEAXETlJVhZkZEBknQ1csmIsJiMJ2g6C6/8FwRe4\nu7xyKdBFRABrYdMmWLs6n+45L3Jh+quYwMZwy7vQ/kaoBbexVqCLiM9LTy++QMjsjufmnFga5G+D\nzqPgmmeh/nnuLq/CPHMiqIalpKQwdOhQLrroIqKiohg/fjzHjh0DYMmSJQwePPiM98ybN4+uXbvS\nuXNn2rVrx//93/+dMea9994jPDycLl260KVLF26//XYAnnrqKRYuXAjAK6+8Qm5ubjV+OxEpT1YW\nfPGfTNpun8CQtOtoEHAURv8XbnyjVoU5KNCx1nLTTTcxbNgwtm3bxtatW8nOzubxxx8v8z0FBQWM\nGTOGuXPn8uOPP5KYmMhVV11V6tjhw4eTlJREUlISH3zwAQB/+9vfGDBgAKBAF3GX410dG/76LSMP\n96Jt1tvQ8164dxW0ccudTarM56dcFi1aREBAAHfddRdQ3Oxi8uTJtGrVqsx7omdlZVFYWEhoaCgA\n9erVo23bthXe5p133sngwYPZt28f+/bto2/fvoSFhbF48eKqfyERKVdhYfHNtLb/mMrNQX+m3tZP\n8Q+/FEa9D80uc3d5VeJxgT537pnPRUVBu3bFfxBff33m623bwsUXF/+Lu2DBqa/dcEP529u0aRPd\nu3c/5bng4GCaN2/O9u3bS33Peeedx5AhQ2jRogX9+/dn8ODBjBw5EkcpS5k+/vhjVqxYAcD48eNP\n/MMBEBsby6RJk1i8eDFhYVpDL1Ld9u+HpUss4fs/4bc5E6lTlAVXPQaXPwR16rq7vCrzuECvadba\nUpswl/X8cW+99RYbNmxg4cKFvPzyyyxYsID33nvvjHHDhw8nLi7OlSWLSCXEx8OOpD30zXmQC3IW\nQORlMOTfEOE9t9TwuEAv74i6Tp3yXw8IOPsR+enat2/P7NmzT3kuMzOTPXv2EBUVRVpaWpnv7dix\nIx07duS2226jVatWpQa6iHgAp5ML975Fz7RncDiccO0L0GMMOPzcXZlL+fxJ0f79+5Obm3vihGVR\nURETJkzgzjvvpH79+qW+Jzs7myVLlpx4nJSURIsWLSq1/dNvwysirpGfD4sXw/4NW+Dda2mx6RH8\nWvbA3Pc99LrX68IcPPAIvaYZY/jss8+47777+Pvf/47T6WTQoEE899xzJ8Z89913REZGnng8a9Ys\nXnzxRf70pz8RGBhIUFBQpY/Ox4wZw3XXXUfTpk11UlTERX75BeKXH+OStFeIyH4J6gXBsKnQeUSt\nuECosmrF7XNF+0mkInJzYcUKyNm6ln7Z4wjJ3wTtb4Lr/gkNItxdXqV51e1zRUQqYndyDk3XP0eH\n7NehYRMYNgsuGeTusmqMAl1EarXMzOKbaTUrWELb72Ix2bug+11w9TMQEOLu8mqUAl1EaiVrYeNG\n+HH1EXpnPgGZ0zHnRRX39Wx5ubvLcwsFuojUOkeOFN9MK2jXHG7JfoR6hanQ5wG4aiL4B7q7PLdR\noItIrZKZCV99sp/LMybQIrekr+eQT+CCLu4uze0U6CJSK+TlQWCAJXjbB4xIfRLHib6eY8HP393l\neQSfD/S0tDT69y++s9r+/fvx8/MjPDwcgB9++IG6dV1zf4eFCxdy880306pVKwCaNGnCt99+y5Qp\nU2jUqBG33nor77zzDoMGDeL88893yTZFvEFhIaxdC7sSk7mxznj8U5bj58F9Pd3J5wM9NDSUpKQk\nAJ5++mkaNGjAww8/fMoYay3W2lJvvnUu+vbty+eff37Kc/fff/+J39955x26deumQBcp8euvsGxJ\nIS1+fZ2bs5/D4e8PgydDtzs9tq+nO2mPlGH79u106NCBe+65h27durFnzx4aNWp04vWPPvqIu+++\nG4ADBw5w0003ER0dTY8ePfj+++8rvJ0nnniCV155hY8//pikpCSGDx9Oly5dTjTYEPFVK1fCyv9u\nYMCuAfTKfBK/i/pi7l8N0b9XmJfBs47Qv54I+ze49jPP7wjXvVCpt/7000+8++67TJ06lcLCwjLH\nxcbG8uijj9KrVy927tzJ4MGD2bhx4xnjFi9eTJcuxSduRowYwcSJE0+8Nnz4cP79738TFxd3YoyI\nzyrIp/WOF+md+iqmfu3q6+lOnhXoHiYqKorLLjv7De8XLlzIli1bTjw+cuQIeXl5BAaeunyqtCkX\nESmWn198i9sOwauIWDWOpmnboPNIuOa5WtcKzl08K9AreSRdXYKCgk787nA4OPm+N/nH+1dRPMfu\nyhOoIr4mORl+WJ5J50PPEJHzFoQ0h9Gzoc0Ad5dWq1RpIsoY86AxZpMxZqMxZpYxJsBVhXkah8NB\n48aN2bZtG06nk88+++zEawMGDGDKlCknHh8/yXqudCtd8UZTlyYTn5xa6ms5OfDtt7Bs5udcs/My\nLs0p6et53yqFeSVUOtCNMRcCsUC0tbYD4AeMcFVhnuif//wn1157Lf379z/ldrpTpkxh5cqVdOrU\niXbt2vHmm29W6vPvuusu7r77bp0UFa/SKTKEsTMTSw31vVtTabL6Du4quoOAkIaYP8wv/j/1eg3c\nUGntV+nb55YE+vdAZyAT+Bx4zVo7v6z36Pa5laf9JLVZfHIqY2cmEjeqKx3Cw0g/Ymme8R8KvnwU\n8rPY3/k+mg15AurUc3epHqnab59rrd1rjHkZ2A3kAfPLC3MR8V0xUWH8e2RX/jBpG3dGpjK6zpOQ\nM5+fuYjCITPp2j3G3SV6hapMuTQGhgKtgAuAIGPM6FLGjTHGJBhjEg4dOlT5SkWk1jp8GA6uP4/n\nmyRwf95VhOct4yVzF1m3fqkwd6GqnBQdAOyw1h6y1hYA/wXO+JOx1k6z1kZba6OPX1JfypgqlOH9\ntH+kNsvMhO8+3kqfLdcxzPkEqY070S/vBfx630vMRU3cXZ5XqUqg7wZ6GWPqG2MM0B/YfK4fEhAQ\nQFpamkKrDNZa0tLSCAjw2gVE4qVyc4HCYwQnvsTNh/oQbn5mW8yL3JT1MDf1jWH66t1lrn6RyqnK\nHPpqY8ynwDqgEEgEpp3r50RGRpKSkoKmY8oWEBBwyqoaEU9WWAgJCXBg3VquLxpHnbRNONrfyJpL\nJ/Knz/YQd2tXYqLC6BUVeuJEaUxUmLvL9gpubxItIt5j3z5YuSSXi/c+S6ec16FBE8zgScT79yg1\nvE9e/aJQL1tFV7noDjci4hIrVsC62Uu4bkdvOufEYbrfgRm7uswwh+LVL3Gjupa5Tl3OjWdd+i8i\ntVPeEdpueYLwtOnYxq1h6P/6eq5PSS73CPx4qK9PydBRehVpykVEKiUvr/hmWp3rfkHY6ochJxVi\nxvl8X8/qUO0XFomI79q+HRKX7Sf60MOE5c0t7us5Sn093U2BLiIVlp0NK5ZbAn/+kKHZT+CP+np6\nEgW6iFTYgc2/0ClpPBccXYZt0Qdzw2sQ1sbdZUkJBbqIlCsjAzKOFNJ83xu0XvQsOIr7ehr19fQ4\nCnQRKZXTCRs2QHL8Rn6TPhaOJmLaDoLr/wXBF7i7PCmFAl1EznD4MCxfnE+zHS8xLOcVTKD6etYG\nCnQROUVmJqyctYqr0mMJKdiqvp61iAJdRIDim2nV98siePkz3HDoTWxwcxiuvp61iQJdxMcVFMCa\nNZC1bj4D8h/EL3sv9LwX0+8JtYKrZRToIj4sJQV+WJxKx30Ticn7DzbsEhg+H5r1cHdpUgkKdBEf\ntWK55dja/zAoayL1bCb8ZiLmiofU17MWU6CL+KL0PXTc8BAh6fOxF0ZjhsZBhJqQ13YKdBEfkZcH\nK1c46e58m8ZrnybEOuHaFzA9xoDDz93liQso0EV8wNatsGnpVnofGkfjY99D675wwyvQuKW7SxMX\n0nW7IjVo6tLkszZyiE9OZerSZJdsLzsbvvmygIy5LzFkXx8izM8w7A247TOFuRdSoIvUoE6RIeV2\n5znekq1TZIhLtpe6fh09kq7isqx/4Gh3PY5xa6DLKF3t6aUU6CI1qLyWa67qr5meDruTc+Hbx2m5\noD+N6qXBiFmY374HDSKq+A3EkynQRWpYaaHuijB3OiEpCeJnLKXxR71hVRx0uwPH2NVwySBXfgXx\nUDopKuIGJ4f66J7Nmb56d5XCPDUVVi06wkU7n2RQ7oc4G7WGYf/r6ym+QYEu4iYxUWGM7tmc1xZt\nJ7Zfm0qHeWYmJM36gv7pDxPoTIU+D+BQX0+fpCkXETeJT05l+urdxPZrw/TVu8+6+uV0OTlA1n6C\nvx7NgLTbCAhrgvnjIrj6GYW5j9IRuogbnD5n3isqtMJz6AUFsOYHS2HCdC7PfRxHUXFfT4f6evo8\nHaGL1LDSToCWt/rlZCkp8NWMHTRfOpQrj4yFJh3h3ni4/EGFuSjQRWpSeatZzhbqy5YUsueTf3P9\nrt5cQCIMnozjzrkQGlVT5YuH05SLSA1an5JR7rTK8VBfn5Jx6pj9G+meNJagzETsxYMwg9XXU85k\nrLU1trHo6GibkJBQY9sTqc1ycyF++VEuy3uJkPWTIbAxXPei+nr6IGPMWmtt9NnG6QhdxANt2QLJ\ni78nJnUcIYXq6ykVo0AX8SBZWRC/JIvIzc9wXe5b2OBmMER9PaViqhToxphGwFtAB8ACv7fWrnJF\nYSK+KH3NfPokPUhQ0V7oeQ8O9fWUc1DVI/RXgW+stbcYY+oC9V1Qk4hPSU+HrANpNNs4kWYbPsEZ\neglmmPp6yrmrdKAbY4KBK4E7Aay1x4BjrilLxPs5nfBjkiV9xaf0zvgz1mZifjMRh/p6SiVV5Qi9\nNXAIeNcY0xlYC4y31uacPMgYMwYYA9C8efMqbE7Ee6Smwg8LUmi/8yG6Hv0WZ9NozI3q6ylVU5UL\ni+oA3YA3rLVdgRxg4umDrLXTrLXR1tro8PDwKmxOxDtkZjjZ8uGbXL21J82KlsO1L+D443yFuVRZ\nVY7QU4AUa+3qksefUkqgi0ix7GxokLeV4Lmx9MlYhbNVPxxDXoHGLdxdmniJSge6tXa/MWaPMaat\ntXYL0B/4yXWliXiHY8dgzfcF1Et4he7ZL2Lq1odhb+DoPFIXCIlLVXWVyzhgRskKl1+Au6pekoj3\n2L0bflq4jsv2jSO0cCPOdjdiBr2oVnBSLaoU6NbaJOCsl6OK+KLli3IJXvss1+S8jjOoCdwyC4da\nwUk10pWiItXhl6X0SIilXu5OnN3uwm/gMxAQ4u6qxMsp0EVcJDcXvl+STo/0J2iw9UPqndcafvcl\nDvX1lBqiQBdxgZ9/hn3ffUGvtIcJtMV9PVFfT6lhCnSRKsjMhB8WHaD1zw/TL/8LiiI6YYZ9Ahd0\ncXdp4oMU6CKVZS05K6ZzxfrH8Scf2/9p/GLU11PcR4Euco6OHIGclB1ErhtP0x1LKYrsg2PYaxDW\nxt2liY9ToItUkNMJSYlFHFv2BtGZ/8DW9ccMnoxftzvBofa84n4KdJEKOHQIkr7dSOdd44goWEdR\nm0GYIerrKZ5FgS5yFpmHj7Lng5fonzUZG9AIhr6Ln/p6igdSoIuUITsbGhxeTfAX4+iWtYWijiPx\nu059PcVzKdBFTnPsGCSszCIk4W+0y3kTE9IMRs/GT309xcMp0EVOsns3JH+zgMsOPEBQ0V5sj3sw\n/dXXU2oHnZoX3zZjBrRsCQ4H+U2a4f9oX/ruu4WA4AaYP8zHMegFhbnUGgp08V0zZsCYMbBrF1hL\nwMEUzv/vEuyxa6hz/zI1aZZaR4EuPsv52OPFd9Q6iSkAM/MHNWmWWkmBLj7HWtj8kxOzZ1fpA3bv\nrtmCRFxEgS4+JTMTlszeRqPPB2FCylhH3rx5zRYl4iIKdPEdRQUc++5lrtzYhwg2w6P3Qv36p46p\nXx+efdY99YlUkZYtitc7fBjyf1nHBWtiCTuwgcK2w6hzw0vFfT1bxMDjjxdPszRvXhzmt97q7pJF\nKkWBLl6rqAh+TMilzvLn6ZAdh23YBDNiJnUuuf5/g269VQEuXkOBLl7p4EH46atldN0TS0jRDgq7\n3Emda56BwEbuLk2k2ijQxetkHkzn8HtPclXuBxQEt4Yb51Gn1RXuLkuk2inQxWtkZUHDlLkEf/kw\nDfMOUdRrPP79H1NfT/EZCnSp9Y4dg7VLD9Bk3SM0zJsD53fEjPoYP/X1FB+jQJdabecOy76vZ9Dt\n0OPUNXkU9X0Kv8tj1ddTfJICXWqtVV/toFnSA8QcW8KxpjE4bn4Nwi5yd1kibqNAl9rHWQTfv0GP\ntc+C8cM5aBJ1o+9SX0/xeQp0qTWysyFp/iYu2zeOeqlr8bv4Wrh+EoRc6O7SRDyCAl08nrXw88aj\nHF34MjEZk3DWawQ3vw0dblZfT5GTKNDFo2VkwIavVtM+eRyNC7dQ0G4E/oOfV19PkVJUOdCNMX5A\nArDXWju46iWJlDiahfPLv9Fn65sU1o+E4bPxv0h9PUXK4ooj9PHAZiDYBZ8lQloaHPtpIU0THqBx\nRgqF3f+E/8An1QpO5CyqFOjGmEjgeuBZ4CGXVCQ+q6gINqxOI2jFY1yU+zE2rC3mD/Opo1ZwIhVS\n1SP0V4BHgYYuqEV82IH9ll/mzqbLr3+mns2gsM+fqdN3glrBiZyDSge6MWYwcNBau9YYc1U548YA\nYwCaqxOMlCJrbwr5H06gd/43HA3vjuOWOBxN2rm7LJFapypH6H2AIcaYQUAAEGyMmW6tHX3yIGvt\nNGAaQHR0tK3C9sTLZGY4Cd76Dg0XPE1QURFFVz9Pvd5/Aoefu0sTqZUqHejW2seAxwBKjtAfPj3M\nRUpz9Cj8uGgbzRJjCT4WD62vwnHDq9C4pbtLE6nVtA5datTOXwo4Mu9Vuh1+EfwDcQ55HUfXUbpA\nSMQFXBLo1tolwBJXfJZ4rzVzEmm1YRwtCzdwtM0w6g19ERo2cXdZIl5DR+hS/Y7lwpLniU6Mo7Be\nBM6bZlCvna5BE3E1BbpUm+xs2DhvGd33xuKftQPT7Q78r/6b+nqKVBMFurictfBzUjqOhU/SK+cD\njjVoDXfMhVZXurs0Ea+mQBeXSk+HrV/Mo/3OCQQ6D3HssvHUHai+niI1QYEurpN1AL/Zj9Bjzxzy\nG3XE8buPqHtBV3dXJeIzFOhSZamHLM7EGUSse5yGBXkU/OYpAq5UX0+RmqZAl0orKoKNy3cQuuoB\nIo8uwTaPwQx5DX/19RRxCwW6VMr+fUXsnzOV9gf/gXH4UXDNJPx7qq+niDsp0OWcZSdvwvHROLoU\nrCWv2bUE3qK+niKeQIdTUmEZaUdh0bM0mHEloY5dFA57m8Dff1TpMJ+6NJn45NRyx8QnpzJ1aXKl\nPl/E1yjQ5ayOHoV1c1bjfOMKWPYidLgFv9gfqNPllirdg6VTZAhjZyaWGerxyamMnZlIp8iQSm9D\nxJco0KVcO7ZksWPKI3RNvIb6/rkUjZwNN/0fBIVW+bNjosKIG9W11FA/HuZxo7oSExVW5W2J+AIF\nupQp6dOFhH3Sm7aZb5LfaQz1HliFX1vXNmkuLdQV5iKVo5OicqacNPj2Mbps/Jj8hm2xt3xLYIue\n1ba5k0N9dM/mTF+9W2EuUgkKdDkhK9Oyfc5sOu39M37H0uHKRwm48uEa6esZExXG6J7NeW3RdmL7\ntVGYi1SCAl2wFrauSSFw0QS65n9Dfmg3/O76Apq0r7Ea4pNTmb56N7H92jB99W56RYUq1EXOkQLd\nx6UfcbJr9jtcuvdp/EwhR696joAr76nRvp6nz5n3igrVHLpIJeikqC9L3UbdmdfTOWUChU264zd2\nFfWuut+tYQ7lr34RkbIp0H1Q6oECDs95Gd7oQ/2sTRRcP4X6f/oczmtVo3WUt5pFoS5y7jTl4kMK\nC2HzokQuWDOO8wo2YC8dihn0Ev5u6uu5PiWj3GmV46G+PiVDUy8iFaBA9xG/7s4l/fPnaX84joK6\nERTcPB3/jje4taZ7fhN11jExUWEKc5EKUqD7gOyNy6j/WSxNi3aQ0/Z2gob9XX09RbyQAt2LZRxI\nJ2T1kzRY9wEFDVtRNHQuQW3U11PEWynQvVB+PmybO4/Wmydg7UFMTCz+Vz0Gdeu7uzQRqUYKdC+z\nc+MB+PoROubMITe4A87fzsKvWTd3lyUiNUCB7i2sZdPMGURtfxx/8sjt/ST1B4xXX08RH6JA9waH\nd8C8B2j/yxJyQntTd/i/qR+hvp4ivkYXFnmIynTvyUwv4qe343C+HgMpCXD9vwi6/yscCnMRn6RA\n9xDn0r3HWti6YhNHX7+adnseJ6/JFXD/arjsbjVpFvFh+tvvISravefS4IZsmfosbRZeSYhzJ/mD\n3ybo7o8hJNJNlYuIp1Cge5Czdu/xT6b+h1dwyYEXyW51M3UfXENAdNX6eoqI96j0SVFjTDPgA+B8\nwAlMs9a+6qrCfFVp3Xue638x7X/4J2x5k3rBF1Lwu08Jbne1u0sVEQ9TlVUuhcAEa+06Y0xDYK0x\nZoG19icX1eazjnfveXVhMo9FHKbPdw/SoCgFe9kfMQOewr9eQ3eXKCIeqNKBbq39Ffi15PcsY8xm\n4EJAgV5F8cmpfLZgKzMCPuby7LkcqRtF4a3f4t+6+vp6ikjt55J16MaYlkBXYHUpr40BxgA0b97c\nFZvzavHbDzHnvdf5Ouh96pPBltbjuH1nDJNtFDHuLk5EPFqVT4oaYxoAs4EHrLWZp79urZ1mrY22\n1kaHh4dXdXNebWn8BgqnD+efdSbhH9oC5x+X0vb2fzD51h5q9CAiZ1WlQDfG+FMc5jOstf91TUm+\nJz/PyeIpcXT7eiB9HJtg4LPUu38hdS7sAKh7j4hUTFVWuRjgbWCztXaS60ryLbvWbiNgQSx98+PZ\nF9KHoLumQOiZreDUvUdEzqYqc+h9gNuADcaYpJLn/mKt/arqZfmAogK2f/AqLXe9iNMvgJwBU7ig\nz63lrilX9x4RKU9VVrmsAHRFS2XsS4Q542hzYAMZFw4heMTL1HVTX08R8R6622INykzL5dAnz9P6\nYBwmKByGTyfkUvf29RQR76FeaB7HAAAIT0lEQVRArwFOJ+xYvIzwVbFEFe4gs83tBN+svp4i4loK\n9Gp25Nd00v/zFFGH3ye3Xkvyb/6C4Et/4+6yRMQLKdCr0+Z5NPxiAiF5B0lvN45Gw/6ivp4iUm0U\n6NUgdecBAhY9QoPdc6jTpAMFI2bRqIX6eopI9VKgu1BhgWXnnJlEbvoL/uTi7PskjsvH46++niJS\nAxToLrJ/807s3Adok7uYjEa9cfzuNepecLG7yxIRH6JArypnEXlLpxK67B9gHGRc/jIh/f6gVnAi\nUuMU6FWQse0nQpaMJXDvWnIjB1L3xkmEhDZzd1ki4qMU6JWQl3WUXz/5Fy32TMIZEIzjpreo31Gt\n4ETEvRTo52hP/A80XDyW1gVbOBz5OxqNeAEahLq7LBERBXqFHc1m93t/o9mv08jzv5DsoZ9yXlf1\n9RQRz6FAr4htC2HeAzTLSOFw1B8577dPYQLU11NEPIsCvRyZ+w+T8cljNDv8EYRdjPn9N4Q27+Xu\nskRESqVAL4WzyLLnm9lErP0zFzrTOdzxEc4b8jD4B7i7NBGRMinQT3Nk117yP32IFlnfkNGgG9wy\nh/NadnB3WSIiZ6VAP87phLXvEjL/rzQsLCQt+llCB90LDj93VyYiUiEKdCB1y3aCvosl8OBKHK2u\npPDaVwlt0trdZYmInBOfDvSC/AL2ffoaF27/J05HAM4b4nB0G01dXSAkIrWQzwb6gaRE/L8eR4uj\nG0iNGELIiJdwnHe+u8sSEak03wv0gjyOfvs84QlxHK0TxpGBHxIWM8TdVYmIVJlPBXrm+uUEL4ml\n3uFfyLroNuoP/TuBDRq7uywREZfwiUDPPZzO4Y+fIvLA+xQFt8Tv9i9o2Fp9PUXEu3h9oO/9bh6N\n4ydwQdFBDrYZR9hv/wL11NdTRLyP9wZ69kH2v/sIF6Z9TkZgB4qGzSKirfp6ioj38si2OlOXJhOf\nnFrumPjkVKYuTT7jeeu0kDgD4i4j4shXHOjwBMETltBQYS4iXs4jA71TZAhjZyaWGerxyamMnZlI\np8iQU57P3LWTQ5NvhDn3QfglOO5dSZNbHsHUUZNmEfF+HhnoMVFhxI3qWmqoHw/zuFFdiYkKA8BZ\nWETKp1MIfK83jbPXkNrjZbjrawhXk2YR8R0eGehQeqiXFuZHtvzEkX8NJHLjX8hodDlF93xP2KA/\nqkmziPgcjz4penKoj+7ZnOmrd/8vzAuPwvJ/0Wj5JI4SzKEr3yK8r/p6iojvqlKgG2OuBV4F/IC3\nrLUvuKSqk8REhTG6Z3NeW7Sd2H5tiIkKIy3pBxosHke9jJ8xHX+HX//nCW8U5upNi4jUKpUOdGOM\nHzAFuBpIAdYYY76w1v7kquKgeJpl+urdxPZrw6fxW7n65zfocPg98vwvxDnyPzjaDkSnPEVEqnaE\n3gPYbq39BcAY8xEwFHBZoJ88Z37RwSR+byYSnLaXTaG30fb3z+FooL6eIiLHVeXM4YXAnpMep5Q8\n5xInh3n3pL8T/u3NOPzrs6r3x9yeMYQ1B466alMiIl6hKoFe2tlHe8YgY8YYYxKMMQmHDh2q0Aef\nvpql3vmtyej0MEETltPn2mvKXNIoIuLLqjLlkgI0O+lxJLDv9EHW2mnANIDo6OgzAr8061MyTlma\nSJ/xnHwJ0fHVL+tTMv43RkTExxlrK5SxZ77RmDrAVqA/sBdYA4yy1m4q6z3R0dE2ISGhUtsTEfFV\nxpi11tros42r9BG6tbbQGDMW+JbiZYvvlBfmIiJSvaq0Dt1a+xXwlYtqERGRKtD18SIiXkKBLiLi\nJRToIiJeQoEuIuIlFOgiIl6i0uvQK7UxYw4Buyr59jDA1y4N1Xf2DfrO3q+q37eFtTb8bINqNNCr\nwhiTUJGF9d5E39k36Dt7v5r6vppyERHxEgp0EREvUZsCfZq7C3ADfWffoO/s/Wrk+9aaOXQRESlf\nbTpCFxGRctSKQDfGXGuM2WKM2W6MmejueqqbMeYdY8xBY8xGd9dSE4wxzYwxi40xm40xm4wx491d\nU3UzxgQYY34wxvxY8p2fcXdNNcUY42eMSTTGzHN3LTXBGLPTGLPBGJNkjKnW+4d7/JRLSTPqrZzU\njBoY6epm1J7EGHMlkA18YK3t4O56qpsxpinQ1Fq7zhjTEFgLDPPyP2MDBFlrs40x/sAKYLy19ns3\nl1btjDEPAdFAsLV2sLvrqW7GmJ1AtLW22tfd14Yj9BPNqK21x4Djzai9lrV2GXDY3XXUFGvtr9ba\ndSW/ZwGbcWF/Wk9ki2WXPPQv+c+zj65cwBgTCVwPvOXuWrxRbQj0am1GLZ7FGNMS6Aqsdm8l1a9k\n6iEJOAgssNZ6/XcGXgEeBZzuLqQGWWC+MWatMWZMdW6oNgR6hZpRS+1njGkAzAYesNZmurue6mat\nLbLWdqG4H28PY4xXT68ZYwYDB621a91dSw3rY63tBlwH3F8ypVotakOgV6gZtdRuJfPIs4EZ1tr/\nuruemmStTQeWANe6uZTq1gcYUjKn/BHQzxgz3b0lVT9r7b6SnweBzyieRq4WtSHQ1wAXGWNaGWPq\nAiOAL9xck7hQyQnCt4HN1tpJ7q6nJhhjwo0xjUp+DwQGAD+7t6rqZa19zFobaa1tSfHf40XW2tFu\nLqtaGWOCSk70Y4wJAgYC1bZ6zeMD3VpbCBxvRr0Z+MTbm1EbY2YBq4C2xpgUY8wf3F1TNesD3Ebx\nEVtSyX+D3F1UNWsKLDbGrKf4oGWBtdYnlvH5mCbACmPMj8APwJfW2m+qa2Mev2xRREQqxuOP0EVE\npGIU6CIiXkKBLiLiJRToIiJeQoEuIuIlFOgiIl5CgS4i4iUU6CIiXuL/AdUR2Ci5j4GyAAAAAElF\nTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3iUVdrH8e9JAiShkwgIIZRQQkmDECCAVKWKWFBRdFFZllUsiw0XWdRdV2y4q7Ai8iq6gOgiWGgCoQiEDgHpJJQQQSABQklC2nn/OElMmdSZyWSS+3NduczMPDNzBuSXJ+c5932U1hohhBDOx8XRAxBCCFE2EuBCCOGkJMCFEMJJSYALIYSTkgAXQggn5Vaeb+bt7a1btGhRnm8phBBOb/fu3fFa61vy31+uAd6iRQt27dpVnm8phBBOTyl12tL9MoUihBBOSgJcCCGclAS4EEI4qXKdA7ckLS2NuLg4UlJSHD0UYUfu7u74+PhQrVo1Rw9FCLuavTGGQJ+6hPt5F3pMZEw8++MSmdDHz6r3cniAx8XFUbt2bVq0aIFSytHDEXagtSYhIYG4uDhatmzp6OEIYVeBPnWZuHAvMx8KsRjikTHxOY9by+FTKCkpKXh5eUl4V2JKKby8vOS3LFElhPt5M/OhECYu3EtkTHyex3KHd1Fn6CXl8AAHJLyrAPk7FlWJpRC3dXhDBQnw4szeGFPgJ1l+kTHxzN4YU04jEkKIouUO8Rmrj9o8vMFJAjx7TqmwEM/+yRboU7dMr+/q6kpwcDAdO3YkKCiIGTNmkJmZWeRzTp06xcKFC8v0fkKIqiHcz5sx3Xz5cF00Y7r52jS8wUkC3N5zSh4eHkRFRXHw4EHWrFnDihUreP3114t8jgS4EKI4kTHxzN8eyzP9WzN/e2yxMwmlprUut68uXbro/A4dOlTgvsJsib6oQ95YrbdEX7R4u6xq1qyZ53ZMTIxu0KCBzszM1CdPntS9evXSISEhOiQkRG/ZskVrrXW3bt10nTp1dFBQkJ4xY0ahx4nflebvWghnZ8u8AnZpC5nqVAGu9e9/CO//dMQm4a11wQDXWut69erp3377Td+4cUMnJydrrbU+duyYzv4M69ev18OGDcs5vrDjxO8kwEVVUVhYlzXECwtwh68DL63cc0rP9G9t8zmlbDprr9C0tDQmTpxIVFQUrq6uHDt2zOLxJT1OCFG5FTWtm3s62BYXNJ0uwPPPKXX387J5iJ84cQJXV1caNmzI66+/TqNGjdi3bx+ZmZm4u7tbfM4HH3xQouOEEJXb/rjEIsM5O8T3xyVWrQDP/5Otu5+XzZfmXLx4kQkTJjBx4kSUUiQmJuLj44OLiwtffPEFGRkZANSuXZtr167lPK+w44QQVUtJyuPD/bwrTyFPSVj6taSo1SmlkZycnLOMcODAgdxxxx1MmzYNgCeffJIvvviC7t27c+zYMWrWrAlAYGAgbm5uBAUF8cEHHxR6nBBC2IvKnustD6GhoTr/hg6HDx+mffv2RT6vuKWC9qhwErZXkr9rIURBSqndWuvQ/Pc7xRl4aeaUhBCiqnCKOfDynFMSQgiby8wEF9ufLzvFGbgQQjglrSFqIcwKgxs2rsJEAlwIIezj/CH4fCh892fwqA83r9r8LZxiCkUIIZzGzeuw8W3Y9h+oURtGfATBY+wyhSIBLoQQtqA1HFkGKyfD1TgIeQQGvg41vez2ljKFgtnW7a677qJNmzb4+fnx7LPPkpqaCsCGDRsYPnx4gecsW7aMkJAQgoKC6NChA5988kmBY+bNm4dSioiIiJz7li5dilKKxYsXl3h8hY2hJMds2LCBunXrEhwcTHBwMAMHDgRg9uzZfPnllznjPHv2bInHI4TI59JJWHg/fD0GPOrB46vhrpl2DW+QM3C01txzzz38+c9/5vvvvycjI4Px48czZcoU3n33XYvPSUtLY/z48ezYsQMfHx9u3rzJqVOnLB4bEBDAV199xYABAwBYtGgRQUFB9vo4FvXu3Ztly5bluW/ChAk538+bN49OnTrRpEmTch2XEE4v/SZs+RA2vQcubjDonxD2J3Atn2it8mfg69atw93dncceewwwmzt88MEHfPbZZyQlJVl8zrVr10hPT8fLy/x0rVGjBu3atbN4bO/evdmxYwdpaWlcv36d6OhogoODcx6PiIggJCSEgIAAHn/8cW7evAnAqlWr8Pf3p1evXixZsiTn+Bs3bvD444/TtWtXQkJC+P7778v0uV977TXee+89Fi9ezK5du3j44YcJDg4mOTm5TK8nRJUTsx4+Dof1/4C2g2HiTujxVLmFN1TAM/Affyx4n58fdOgA6emwcmXBx9u1g7ZtISUF1qzJ+9iddxb9fgcPHqRLly557qtTpw6+vr5ER0dbfE6DBg0YMWIEzZs3Z8CAAQwfPpzRo0fjYuEihVKKgQMH8tNPP5GYmMiIESM4efIkYDZ0Hjt2LBEREbRt25ZHH32Ujz/+mAkTJvDHP/6RdevW0bp1ax544IGc13vzzTfp378/n332GVeuXCEsLCxnWqQwmzZtyvmhMWrUKKZMmZLz2H333cfMmTN57733CA0tUOglhMjv2m/w01/hwLfQoBWM+RZaF/1v0F6KPQNXSn2mlLqglDqQ674GSqk1SqnjWf+tb99h2o/W2uKGu4Xdn23u3LlEREQQFhbGe++9x+OPP17osQ8++CCLFi1i0aJFjB49Ouf+o0eP0rJlS9q2bQvAH/7wB37++WeOHDlCy5YtadOmDUopxowZk/Oc1atXM336dIKDg+nbty8pKSnExsYW+Rl79+5NVFQUUVFRecJbCFEKGemwbTZ8FAqHl0HfV+DPWx0W3lCyM/B5wEzgy1z3TQYitNbTlVKTs26/bIsBFXXG7OZW9OPu7sWfcefXsWNHvv322zz3Xb16lTNnzuDn50dCQkKhzw0ICCAgIIBHHnmEli1bMm/ePIvHhYWFceDAATw8PHLCGn7vOW5JYT88tNZ8++23BaZszp8/X+hrCSGsFLcLlv0FftsPfgNg6LvgVXyFuL0Vewautf4ZuJTv7ruAL7K+/wIYaeNxlZsBAwaQlJSUsyIjIyOD559/nrFjx+Lp6WnxOdevX2fDhg05t6OiomjevHmR7/PWW2/xz3/+M899/v7+nDp1Kmeq5r///S99+vTB39+fkydPEhMTA8BXX32V85xBgwbx0Ucf5YT/3r17S/eBLcjfGlcIkSXpEvz4LMwdaCopR31hpkxKEd7p6aaS3h7KehGzkdb6HEDWfxsWdqBSarxSapdSatfFixfL+Hb2o5Ri6dKl/O9//6NNmza0bdsWd3f3PGEbERGBj49PztfevXt55513aNeuHcHBwUybNq3Qs+9sQ4YMoV+/fnnuc3d35/PPP2fUqFEEBATg4uLChAkTcHd3Z86cOQwbNoxevXrl+eEwdepU0tLSCAwMpFOnTkydOtXqP4OxY8cyYcIEuYgpRDatYe8CmBkKe/5rLk5O3AEdR0IRU6v5JSXBN9/AwYP2GWaJ2skqpVoAy7TWnbJuX9Fa18v1+GWtdbHz4GVtJysqB/m7Fk7h/CFYPglit0KzbjBsBjTuVKqXSEkxU7oAmzdD69bQuHHZh1RYO9myrkI5r5S6VWt9Til1K3Ch7EMTQogK4OZ12Dgdtv4H3OvCiJkQ/HCpSuCTk2HnToiJgfvvh5o1oVcv+w25rAH+A/AHYHrWf8u2GFkIIRxNazj8I6yaDFd/hc6PmhJ4zwYlfonMTDhwAHbvhowM6NQJqlWz45izFBvgSqmvgL6At1IqDpiGCe5vlFJPALHAKHsOUggh7OLSSVj5EhxfDY0CYNQ8aBZWqpdIT4clS+DKFfD1he7doV694p9nC8UGuNZ6dCEPDbDxWIQQonyk34Qt/4ZN72eVwL8FYeNLVUWZlASenmZ5c+vWcMst0KyZHcdsQYWrxBRCCLuKWQ/Ln4dLMdDxbtO/pE7J+wDdvGmmSg4dgrvuMsHdubMdx1sECXAhRNVw9ZwpgT+4JKsEfgm0LvlEQmYmHD4Mu3ZBaiq0bw+1a9txvCVQ5ZtZJSQk5LRabdy4MU2bNs25nd1S1hbWrl2b09bV39+fyZMnl+g5I0cWXSO1Z88eVq1alXN76dKlhXZRLIv09HTqFTKhN2vWLBYsWGCz9xLCLjLSYdvHMLMrHFkOff+aVQJf8vDWGn74AbZsAS8vuPdes7oke6mgo1T5M3AvLy+ioqIA06GvVq1avPDCC3mO0VqjtbbYrKo0+vXrx3fffUdSUhJBQUHcfffddOvWzarX3LNnDwcOHGDw4MEA3H333Va9Xmk89dRT5fZeQpTJmZ2w/C/w2y9lKoG/fh1q1TK1O+3aQXAwtGhhv+GWVpU/Ay9MdHQ0nTp1YsKECXTu3JkzZ87kORNdtGgR48aNA0wfknvuuYfQ0FDCwsLYtm1bka/t6elJUFAQv/76K2BK88eOHUtYWBghISH8aKEl47Zt2+jRowchISH07NmT48ePk5yczBtvvMGCBQsIDg5m8eLFzJ07l+eeew6AkydP0q9fPwIDA7n99tuJi4sDYMyYMTz77LOEh4fTqlUrli5dCsCvv/5Kr169CA4OplOnTkRGRua8/+TJkwkKCqJHjx5cuGCW/b/66qv861//AqBXr14899xz9OjRg4CAAPIXbAlRrrJL4P/vdriRAPd/WaoS+NRU2L4dFi2CrOahtG9fscIbKtoZ+MrJ5ielLTUOgCHTy/TUQ4cO8fnnnzN79mzS09MLPe6ZZ57hpZdeonv37pw6dYrhw4dz4MCBQo+/dOkSJ06coFfWCv833niDwYMHM2/ePC5fvky3bt24/fbb8zynffv2bN68GVdXV1atWsWrr77K119/zd/+9jcOHDiQE6Rz587Nec6TTz7JuHHjePjhh5kzZw7PPfdczk5AFy5cYMuWLfzyyy/cf//93H333cyfP58777yTl19+mYyMjJyy+sTERPr06cP06dOZNGkSn332mcUpoJs3b7J161bWrVvHuHHjcn6zEaLcZGbCvoWw5m+QfMWUwPedbPamLAGt4dgx2LHDFOW0bQuNGtl5zFaoWAFewfj5+dG1a9dij1u7di1Hjx7NuX358mWSk5Px8PDIc9z69esJDAzkyJEjTJ06lYYNTQuZ1atXs3LlSqZPNz9oLLWIvXLlCo8++mhOg6uS2L59e85OPI8++mievikjR45EKUVgYGDObwJdu3blT3/6EykpKYwcOZKgoCDS09Px8PBgyJAhAHTp0oVNmzZZfL/sVrn9+/fnwoULXL9+nVq1apV4vEJY5fxBs7rEihL4NWvg1CkT2oMHmxUmFVnFCvAyninbS82aNXO+d3FxydP+NSUlJed7rTU7duygevXqRb5e9hz4kSNH6N27NyNHjiQgIACtNd999x1+fnl/vcsd4lOmTGHQoEE8+eSTREdH58x5l1WNGjXyjB9M8G7YsIHly5fz8MMP88orr/DAAw/k+Vyurq6F/jaSvwVuUf3UhbAZK0vgr18HDw9wdTVn3K1amXXdzkDmwEvIxcWF+vXrc/z4cTIzM3PmjQEGDhzIrFmzcm4XN3Xg7+/PSy+9xDvvvAOYFrEffvhhzuOWWsQmJibStGlTgDydD4tqBdu9e3e++eYbAObPn89tt91W5LhOnz5N48aNGT9+PGPHji11q9qvv/4aMBspN2rUKM8PQCFsTms49D3MCoPIjyDkYXh6N3R+pEThnZ5u1nPn7hbYooXzhDdIgJfK22+/zeDBgxkwYAA+Pj4598+aNYstW7YQGBhIhw4d+PTTT4t9rSeffJKIiAhiY2OZNm0aSUlJBAQE0LFjR1577bUCx7/88su8+OKL9OzZM8/9/fv3Z9++fYSEhBTY6X7mzJnMmTOHwMBAvv76az744IMixxQREUFQUFDOXptPP/10sZ8jtzp16hAeHs7TTz9doj8DIcrs0glYMAq+eRQ8GsATa2DERyXuXxIdbYJ7925o3tycdTujErWTtRVpJ1t59erVi5kzZ+bZsDk/+bsWVstfAt9vSqlL4DdvNlWU3t4QHm5dm9fyYut2skIIUb5i1sHyF8pUAp+UZOa4a9Qw89ze3mZdt7NfppEAFzaxefNmRw9BVFZWlMBnZJg2r3v2mODu2RMaNjRflUGFCPDidoAXzq88p+pExTJ7YwyBPnUJ9/Mu9JjImHj2xyUyoU+ulVgZ6bDzU1j3JmSkmhL4ns9CtZLVr586Bdu2wdWrZp67U+lWFDoFh1/EdHd3JyEhQf6BV2JaaxISEnB3dOMI4RCBPnWZuHAvkTHxFh+PjIln4sK9BPrU/f3OMzvh075mk4VmYfDkVuj7conDe88eWL3aTJsMHQqDBkHdusU/z9k4/Azcx8eHuLg4KuKGx8J23N3d86zcEVVHuJ83Mx8KYeLCvcx8KCTPmXh2eOfcn3QJ1r4Ge76A2k1MCXz7ESWarE5JMUsDa9UySwGrV4cOHUq1I5rTcfgqFCFE1ZA/rPPcbtkgbwl89z+XuAQ+M9OsKtm9+/cKyspGVqEIIRwq95n4mG6+zN8ea8K71nn4/GE4s63UJfBxcRAZabYza9oUrGzu6XQkwIUQ5Sbcz5sx3Xz5cF00z/e5lfDoD0yvbve6cNcsCHqoxHMeR4/Cxo1Qp46Z427e3M6Dr4AkwIUQ5SYyJp75207zUVAsYdsnApeg8x9g4GslqqJMTTVruuvVg5Ytze0OHczFyqpIAlwIUS4iY+KZvmAlEY3/R/2jG7lRvz1jE59nfMcHCS8mvLU2Z9w7dpiNhO+7z1ykDAgop8FXUBLgQgi723rsV/Z99TrfqaW4xFeHQW9RM2w8409dsbg6Jbdz58w8d0KCKXsPDy/nwVdgEuBCCLs6uOk7mkRMpgfnoMM9MOjNnBL4opYYApw5AytXmqWBAwaAX8l3Q6sSJMCFEPZx9Rz89AodDy4luXZzuMtyCXx2iO+PSyTcz5v0dLh82Wym0LSpOeP29wc3SasC5I9ECGFbGemwYw6s/2dOCbxHMSXw4X7ehPt5Ex1t9qLMzITRo01oV8YSeFuRABdC2M6ZHbBsEpz/BVoPNLvANyi+2faFC2ae+8KF39u8yhl38az6I1JK/QUYB2jgF+AxrXVK0c8SQlQ6SZdg7TTY82WpS+AvXYLvvjPbmvXpY7oGSm+7kilzgCulmgLPAB201slKqW+AB4F5NhqbEKKiy8yEqAWmBD4lEXpMLFEJfEYGnD8PTZpAgwZw221mV5xitpUV+Vj7S4ob4KGUSgM8gbPWD0kI4RR+O2B2gT+zDZp1h+EzoFHHYp928qRp83rjBjz0kFnX7e9fDuOthMoc4FrrX5VS7wGxQDKwWmu92mYjE0JUTDevwYbppS6Bv3TJzHOfPWvOuocMMeEtys6aKZT6wF1AS+AK8D+l1Bit9fx8x40HxgP4+vpaMVQhhENl7wK/6hW4drZUJfDJybBkCVSrZnbFad++crd5LS/WTKEMBE5qrS8CKKWWAOFAngDXWs8B5oBpJ2vF+wkhHCUhBla+BNFroVGAuUjZrGuRT8nMNN0CfX3NBcr+/c267ho1ymnMVYA1AR4LdFdKeWKmUAYA0uxbiMokLQW2/As2zQDX6jB4OnT9Y7G7wJ85A1u3mjav994LXl7mIqWwLWvmwLcrpRYDe4B0YC9ZZ9pCiEogOgJWvACXTkDHe7J2gb+1yKdcuWIuUMbGmjavgweb8Bb2YdUqFK31NGCajcYihKgIrp7N2gV+KTTwg0eWgl//Yp+Wng4//GCmTrp3NxWUMs9tX1LrJIQwMtJhxydZJfBp0G8KhD9TZAm81mZZYMuWpnKyf39zxu3hUY7jrsIkwIUQELsdlk+C8weg9e0w9J1iS+DPnjXz3AkJZqrE1xdk3+ryJQEuRFWWuwS+TlO4/7/Q/s4ia9mvXTPz3CdPmjavAwea8BblTwJciKoofwl8+NPQZzLUqFXsU1etMiEeGgqBgdJ0ypHkj16Iqua3A2a65Mx28O0Bw94vsgReazhxwmwa7OZmGk7VrGm+hGNJgAtRVeQugfeoB3f9B4JGF7lUJHeb1969TQVlw4blOGZRJAlwISq7/CXwXcbCgGlFlsDfuGE2ED5+3PQr6dsX2rQptxGLEpIAF6IyS4iBFS9CTAQ0LlkJPMDGjWYz4ZAQCA42PUxExSMBLkRlVKAE/m3oOq7IEvgTJ8yu756eZkccV1eoXXRbb+FgEuBCVDa5S+A73Qt3vFlkCXxCgpnnPncOOnc2q0vq1SvH8YoykwAXorK4etbMcx/6rkQl8MnJsGsXHD4M7u7mIqVsrOBcJMCFcHa5S+Az06Hfq9DzGXArum/rzp1w7BgEBECXLrKdmTOSABfCmRUogX8XGrQs/PBYUz3ZoMHvhTgyXeK8JMCFcEZJl0wV5d7/lqgE/soV07fkzBmz63vfvuZipWxp5twkwIVwJpmZEDUf1kyDm1dNt8A+LxdaAn/zJuzeDQcPmqWAPXpAx+L3HRZOQgJcCGdRoAR+BjTqUORTDh40X+3bmykT98I7wwonJAEuREV38xqsfwu2zzYl8CM/NiXwhUyXnD1r/tukiZnjbt5cdsWprCTAhaiotDZLAle9Atd+yyqB/1uhJfBXr5o2r6dOmb7cTZqY5lMS3pWXBLgQFVGeEvhAeGA++IRaPDQtDfbuhf37TV+qsDCzNFBUfhLgQlQkaSmw+QPz5VYDhrwDoU8UWQJ/8iRERZnVJWFhsrKkKpEAF6KiiF4Ly1+Ayyeh030w6E2o3djioefPm46BrVqZLoENGoC3dzmPVzicBLgQjpb4K/z0imn56tUaHv0eWvW1eOiNG7B9O0RHQ/36ZjNhpSS8qyoJcCEcJSMNtn8CG94yJfD9XzXrui2UwKenmznuqChzbbNzZwgKKnLrSlEFSIAL4Qix22DZJLhwENrcYea6iyiBv3jRNJ5q1Qq6dZM2r8KQABeiPN1IgLV/g73zoY4PPLAA/IdZPJWOjzdbmXXoALfeCvfdZ+a6hcgmAS5EecjMNH1L1k4zhTk9n4XbXrJYAp+cbDoFHjliVpS0bWvWc0t4i/ysCnClVD1gLtAJ0MDjWuutthiYEJXGb7+Y6ZK4HeAbnrULfMES+IwMOHAA9uwx3wcGmrluNznNEoWw9n+NfwOrtNb3KaWqA7ICVYhsN6+ZHt3bZ4NHAxg5G4IeLPTK440b5szbx8c0napbt5zHK5xOmQNcKVUHuA0YC6C1TgVSbTMsIZyY1nBwKfz0V1MCH/oY9J9qsQT+8mVTiNO5M9SpA6NGSXCLkrPmDLwVcBH4XCkVBOwGntVa37DJyIRwRgkxZj/KmHVFlsDfvGlWlRw6ZNq8+vub+W4Jb1Ea1gS4G9AZeFprvV0p9W9gMjA190FKqfHAeABfX18r3k6ICqxACfy70PUJcHHNc1hmptmDctcuSE2VNq/COtYEeBwQp7XennV7MSbA89BazwHmAISGhmor3k+Iiun4WnPWffkkBIyCO/5RaAl8WprZYMHLC8LDZWWJsE6ZA1xr/ZtS6oxSqp3W+igwADhku6EJUcHlKYFvU2gJ/NWrZlOF7t2hRg245x6zL6UQ1rJ2FcrTwIKsFSgngMesH5IQFVwJS+BTU02b119+AVdXs57by0vCW9iOVQGutY4CLDcpFqIyylMCPwiGvgP1W+Q5RGs4dgx27DBFOdLmVdiLlAgIURKlKIHXGvbtM8sCBw+GW25xwHhFlSABLkRRLJXA93kZqtfMc9j162a6pHt3syxw+HA54xb2JwEuRGFyl8A372lK4Bu2z3NIerpp8bpvn7ndqhU0bSrhLcqHBLgQ+aVcNRcoiymBj442myvcuAF+fqbNq1ygFOVJAlxUbQsWwJQpEBsLzZrBk3eD26rfS+AH/A086lt86tGj4OEBAwZAY8vLvoWwKwlwUXUtWADjx0NSkrkdGwtT/w1j2sEbEeDTJc/hSUmmgrJzZ3OmPWCAWdctu+IIR5EAF1XXlCm/h3e2NCAiGT77PbwzMsxa7r17zfdNmkDr1lL+LhxPAlxUXbGxlu8/cybn29OnYetWU03ZvLlZZWJNw6nZG2MI9KlLuF/huxBHxsSzPy6RCX38yv5GokpwcfQAhCh3ib/C149AnUIez9V07fRpU0U5dCgMGmR9t8BAn7pMXLiXyJh4i49HxsQzceFeAn2kLaEongS4qDoy0iDyI5jZFY6vhqcfLLDeT3t6cuTRN7lwwdzu0QPuvddssmAL4X7ezHwoxGKIZ4f3zIdCijxDFyKbBLioGmK3wSd9YPWr0LI3PLUd/r4Q5syB5s3RSpF6a3M2jZnDpmYP5wR4tWrgYuN/JZZCXMJblIXSuvw6vIaGhupdu3aV2/sJwY0EWPM3iJoPdZvBkLeh3dA8S0fi4iAyEq5c+X07s/qWVw7aVHZoj+nmy/ztsRLeolBKqd1a6wJ9p+QipqicMjNh75ew9rWsEvjnoM9LBUrgAeLjzeGDBpkLleUl3M+bMd18+XBdNM/0by3hLUpNplCEw8zeGFPoxbxskTHxzN4YU7oXPrcfPrsDfnwWGnaECVvg9tdzwjs1FbZtgxMnzOEBAWYvyvIMbzCfbf72WJ7p35r522OL/bMQIj8JcOEwNl+RkXIVVk6GOX3g0km4+xMYuwwa+gOmS+CRI7BoEezfDwkJ5mmuruarPOWe8550R7tCL2wKURQJcOEwNluRoTUc+NasLtk+G7o8Bk/vytO/5Px5WLIEfv4Z6tUzu+J07WqvT1Y0S5+tqD8LIQojAS4cyuoVGfHR8N+7YfHjZh/KP0bA8BkF+pdcv252gh8wAEaMAG8HTTcX9dkkxEVpySoUUSGUekVGWjJsmgFb/gVu7qbpVOjjObvAZ7d5rVHDzHFn3+fm4Mv2UokpykJWoYgKrVQrMo6vydoF/hQE3J+1C3wjwMymREeb7cxu3ID2udp3Ozq8gRKFcrift6xIESVSAf6XFqLgiozufl4FQywxDla9Aod/AO+28IcfoeVtOQ8nJMCmTXDhgtnGbOBAaNSonD+IEOVIAlw4XP554e5+XnnniTPSYNvHsPiuiWkAABBWSURBVGE66EwzXdLjaXCrnud1MjLMXHffvtCmjbR5FZWfzIELhyrsol72/V8MzCBg7+tw4RC0HWwqKbN2gc/IMMsBb940XQKz7yvvJYFC2JvMgYsKp8gVGY1hZYtFNPppMTdrNqHGgwvNLvBZTp40xTjXrkHLlmbuWykJb1G1SIALh9kfl1gwvDMzYc8XsPY1GqVeJ67jn1jl9Sjj/DsBpi/3zz/D2bPQoAEMG2Y2ERaiKpIAFw5TYEXGuf2w7C/w6y5o3guGvY9PQ3/G5TrExQUSE6FXL/D3t32nQCGciQS4cLyUq7D+n7DjE7ML/N2fQOADoBSZmXDwoKmkHDjQ7EU5erQEtxAgAS4cSWs4uARW/RWunzeFOAOm5lRRnjljtjPLbvOalmaf/txCOCurA1wp5QrsAn7VWg+3fkiiSoiPhhXPw4kNcGswjF4ITc1GwklJsHGjCfC6dWHw4Dy7nAkhstjiDPxZ4DCF7zAoxO/yl8APfS9PCTyYs+xr18zSwE6d5IxbiMJYFeBKKR9gGPAmMMkmIxKVVyEl8FrDkcOmBH7YMBPgo0ZJIY4QxbH2DPxfwEtA7cIOUEqNB8YD+MrvwVVTYhysmgyHfyxQAn/2rJnnTkiAxo0hJcXsMyzhLUTxyhzgSqnhwAWt9W6lVN/CjtNazwHmgKnELOv7CSdURAl8aqqZ5z550qwsGTgQWrVy9ICFcC7WnIH3BEYopYYC7kAdpdR8rfUY2wxNOLXTW2H5JIsl8GCmSZKSIDQUAgMrRqdAIZxNmf/ZaK1fAV4ByDoDf0HCW3AjPmsX+AVmF/isEnit4fgx07vkzjtNn+4RI2SqRAhryHmPsI1cJfCkXodef4HbXoTqNTl/3sxzX7gADRua5lM1akh4C2EtmwS41noDsMEWryWc0Ll9sGxSnhJ4GvqTmQkb1pnVJZ6e0K8ftG4twS2ErcgZuCi7lKuw/k3YMQc8vXJK4DUKhVm/nZkJISEQHGzmvYUQtiMBLkovexf4n6aYEviuT0D/V8GjPidOwM6dMGQI1KljVpcIIexDAlyUTiEl8PHxELkGfvvNtHlNTXX0QIWo/CTARcmkJcOm92HLv8HNI08J/ObNcOgQuLtD796mzavMcwthfxLgonjHVpsS+CunTZvX2/+OrtUoJ6Td3CAgALp0gerVi34pIYTtSICLwiXGwcqX4ciyPCXwsbGwdQXcdhvceuvv+1EKIcqXBLgoKCMNtv0HNrydpwT+yvXqRK6AuDioV8/RgxRCSICLvE5HmjXdFw9D2yFZJfDN2bUL9u41SwF79ICOHaXNqxCOJgEujBvxsHoq7FuYVQL/FZlth6IUKMDDA9q3N71L3N0dPVghBEiAi8xM2DMP1r6epwT+14s12brENJpq29accQshKhYJ8Krs3L6sXeB3Q4veMPQ9rrr7s20DnDoFtWvL2bYQFZkEeFWUkgjr3oSdn2aVwM+BwPs5cFCxbZuZ2w4LM0sDXV2LfzkhhGNIgFclOSXwf4XrF6DrE+j+U9E16uGizBl369YmvD09HT1YIURxJMCrivjjsPx5OLkxqwR+EefdOhO5Cpo1Mxcnmzc3X0II5yABXtlZKIG/7v84O3a55rR5rV/f0YMUQpSFBHhlduwnWPHi7yXwd/yD4+casmmxmU3p3BmCgqTNqxDOSgK8MrpyxuwCf2QZeLeDPywjvVlv3NxMp0BfX+jWzcx5CyGclwR4ZZJTAj/dnGIPmEZ824lEbq9O7VNmRxwvL+nRLURlIQFeWZzaYi5SXjwM7YaS0m86O44158j3Zi1327aOHqAQwtYkwJ3d9YtmF/h9C6GuLzz4FWdqDmXtSsjIMJWUnTtLm1chKiMJcGeVpwT+BvSaRGr3F6heqyZeSWZpYNeuULeuowcqhLAXCXBndDYKlk/KKYFP7P0+m4+0I2MdjBhhlgbKPLcQlZ8EuDPJVwKfduen7EgexaF1imrVTDGO1rKdmRBVhQS4MyhQAj+O+KBXWR5Rj9RU6NDBbGcmjaeEqFokwCu63CXwTUJIvW8R1Vt0pl66mecODjZru4UQVY8EeEWVlgw/v2dK4Kt5ktz/fX5OeozL21wZ1cxsJNy/v6MHKYRwpDIHuFKqGfAl0BjIBOZorf9tq4FVablK4DM6PUhUw7+z91hDXF0hJETmuIUQhjVn4OnA81rrPUqp2sBupdQarfUhG42t6slXAn9j1DKW7OlN8hFo184sC5Q2r0KIbGUOcK31OeBc1vfXlFKHgaaABHhpZaTB1lmw8W3QmrQ+r1Gt91N4ulan5WUT3rfc4uhBCiEqGpvMgSulWgAhwHYLj40HxgP4+vra4u0ql1NbzJrui0dIbz2M7fWnc/y0Lw/2AHc36NXL0QMUQlRUVge4UqoW8C3wnNb6av7HtdZzgDkAoaGh2tr3qzSuX4Q1U2HfV+i6vkR3XcTPvw2B38zKEje5vCyEKIZVMaGUqoYJ7wVa6yW2GVIll5kBu+dBxOuQmkR6j0ksvvAiV3/1xM/PtHmtVcvRgxRCOANrVqEo4P+Aw1rrGbYbUiWWqwQ+w7c3rne+j9st7Wi9C3x8oHFjRw9QCOFMrDkD7wk8AvyilIrKuu+vWusV1g+rkklJhHX/gJ1z0Z7eHG7/KZFXR3Gvm6I+pgReCCFKy5pVKJsBWZFcFK3hl8Xw01/RNy4S33Icq9NfJflaPQICoWZNRw9QCOHM5FKZvVw8Biueh5M/o5uEsLbhN5y8GUKLFtC9O9Sp4+gBCiGcnQS4raUmwab3YMuH6GqeqGHvo7o8RpPDrrSva+a6hRDCFlwcPYBK5egq+E832PQ+Fxrey4L6uzjTeBy4uNKxY9HhPXtjDJEx8UW+fGRMPLM3xth40EIIZyUBbgtXzsCih+GrB0jJ8GBl4+V87/oJLQMalriCMtCnLhMX7i00xCNj4pm4cC+BPrLFjhDCkAC3RnoqbP4AZoVBzDoONX2N+bU2o317cd990LNnyXt0h/t5M/OhEIshnh3eMx8KIdzP2w4fRAjhjGQOvKxObc7aBf4Iut0w1JDpuF/y5XZXaN68bC+ZO8Szw1rCWwhRGAnw0spVAp/i4cvPXovwCRpCh3rQqp71L587xMd082X+9lgJbyGERRLgJZWZAbs/R0e8AalJ/FLveXa6v0CbDp60bGnbtwr382ZMN18+XBfNM/1bS3gLISySAC+Js3th2SQ4u4crdXuzuvYMPJq15a5w8LZDtkbGxDN/eyzP9G/N/O2xdPfzkhAXQhQgAV6U5Cuw/k30zrng6Y26Zy4p3vfRNUXRqpV93jL/nHd3Py+ZAxdCWCSrUCzRGvZ/g57ZFb1jLodqjmNP+E4IHMWtTcovvKHo1SlCiKpNAjy/i8fQX9wJS/5IQroPS73Xcb7zu7QLssEVyiIUtdpEQlwIYYlMoWTLVQKf4eLJ1roziG8+lp49XWnUyP5vvz8uschpkuwQ3x+XKFMpQggAlNblt0lOaGio3rVrV7m9X4kdXUXmihdxSYyFoNEkhr3B+RsNadNGdoAXQjieUmq31rpA4+mqfQZ+JRa9YjLq2HISq/lzImA5Xe7uRV1ACtaFEBVd1Qzw9FTYNovMDe+Y5d21X+dqxyfpFl7d0SMTQogSq3oBnqsE/rT7cA63eovgvr40aeLogQkhROlUnQC/foGMlVNxPbgI6vmSet/XpLgOZnA7cJG1OEIIJ1T5Azwzg8xdn5O55g1UWhJHG71Auyeep3p1T9o7emxCCGGFCnnuabPNDc7u5eZ/BuKy4nnOqyA2B0TSaPRUqO5pw9EKIYRjVMgAt3pzg+QrsPwF9Jx+ZFyKY2uTuWQ8/AN97m1LPfvW4wghRLmpkFMolvpiZyuyP7bWpO35H65rp+CSEo/uOp7YplPoFlhX5rmFEJVOhY01S+XjRYW3vnCUGx/fSbUf/8jlTB8yn1iHy7B38A+W8BZCVE4V8gw8W4k2N0hN4tqKd6m57yPc8GS/7wya3jkWl1tcHTdwIYQoBxU6wKGYzQ2OriTjx5eofT2WE3UewmXQGwR2LOEuwkII4eQqfIBb2tyga90k0n98GY/TK3C9xZ8z3Vfg270nbhX+0wghhO1YFXlKqcHAvwFXYK7WerpNRpWlwOYGzWuz7ZO/E+q5CDflQnq/13Hr9RTNXKvZ8m2FEMIplDnAlVKuwCzgdiAO2KmU+kFrfcgWA8sf3pf2bKLTT88T7nmUn671xm3EPxnQJ9AWbyWEEE7JmvUZYUC01vqE1joVWATcZYtB5Q/v1CXP0uCH4bhkJHO2z9fU+vM8Xvz5vGxuIISo0qyZQmkKnMl1Ow7olv8gpdR4YDyAr69viV44/+YG1Ru25ErAC9Qc8jxNPD1pArK5gRCiyivzhg5KqVHAIK31uKzbjwBhWuunC3tOhd3QQQghKrDCNnSwZgolDmiW67YPcNaK1xNCCFEK1gT4TqCNUqqlUqo68CDwg22GJYQQojhlngPXWqcrpSYCP2GWEX6mtT5os5EJIYQoklXrwLXWK4AVNhqLEEKIUpA2T0II4aQkwIUQwklJgAshhJOSABdCCCdV5kKeMr2ZUheB02V8ujdQ1Wrn5TNXDfKZKz9rP29zrXWBXtnlGuDWUErtslSJVJnJZ64a5DNXfvb6vDKFIoQQTkoCXAghnJQzBfgcRw/AAeQzVw3ymSs/u3xep5kDF0IIkZcznYELIYTIRQJcCCGclFMEuFJqsFLqqFIqWik12dHjsTel1GdKqQtKqQOOHkt5UEo1U0qtV0odVkodVEo96+gx2ZtSyl0ptUMptS/rM7/u6DGVF6WUq1Jqr1JqmaPHUh6UUqeUUr8opaKUUjbd0abCz4FnbZ58jFybJwOjbbV5ckWklLoNuA58qbXu5Ojx2JtS6lbgVq31HqVUbWA3MLKS/x0roKbW+rpSqhqwGXhWa73NwUOzO6XUJCAUqKO1Hu7o8dibUuoUEKq1tnnhkjOcgdtt8+SKSmv9M3DJ0eMoL1rrc1rrPVnfXwMOY/ZcrbS0cT3rZrWsr4p9NmUDSikfYBgw19FjqQycIcAtbZ5cqf9xV2VKqRZACLDdsSOxv6yphCjgArBGa13pPzPwL+AlINPRAylHGlitlNqdtcm7zThDgCsL91X6M5WqSClVC/gWeE5rfdXR47E3rXWG1joYs59smFKqUk+XKaWGAxe01rsdPZZy1lNr3RkYAjyVNUVqE84Q4LJ5chWQNQ/8LbBAa73E0eMpT1rrK8AGYLCDh2JvPYERWXPCi4D+Sqn5jh2S/Wmtz2b99wKwFDMtbBPOEOCyeXIll3VB7/+Aw1rrGY4eT3lQSt2ilKqX9b0HMBA44thR2ZfW+hWttY/WugXm3/E6rfUYBw/LrpRSNbMuzKOUqgncAdhsdVmFD3CtdTqQvXnyYeCbyr55slLqK2Ar0E4pFaeUesLRY7KznsAjmDOyqKyvoY4elJ3dCqxXSu3HnKSs0VpXiWV1VUwjYLNSah+wA1iutV5lqxev8MsIhRBCWFbhz8CFEEJYJgEuhBBOSgJcCCGclAS4EEI4KQlwIYRwUhLgQgjhpCTAhRDCSf0/n4hzn1UUotYAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 11, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" } @@ -272,49 +300,62 @@ "fig" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Recalculate Model Error\n", + "\n", + "We can use the same procedure as we just used to predict new point to predict the models predictions of the data point we know, and compare these \n", + "\n", + "Note that this is the same as what the fitting procedure does, and, as well see, this should lead to calculating the same error as the model returned to us. " + ] + }, { "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": true - }, + "execution_count": 94, + "metadata": {}, "outputs": [], "source": [ - "# We can also see what the model would predict for all the points we did observe\n", + "# Calculate model predictions for our observed data points\n", "preds = theta * x" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The residuals, as returned by the OLS fit, are the just the sum of squares between the model fit and the observed data points. " + ] + }, { "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": true - }, + "execution_count": 95, + "metadata": {}, "outputs": [], "source": [ - "# Residuals are the just the sum of squares between the model fit and the observed data points\n", "# Re-calculate the residuals 'by hand'\n", "error = np.sum(np.subtract(preds, y) ** 2)" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 96, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Error from : 1.37012261311\n", - "Error from : 1.37012261311\n" + "Error, returned by the model \t\t: 3.2984\n", + "Error, as recalculated residuals \t: 3.2984\n" ] } ], "source": [ "# Check that our residuals calculation matches the scipy implementation\n", - "print('Error from :', residuals[0])\n", - "print('Error from :', error)" + "print('Error, returned by the model \\t\\t: {:1.4f}'.format(residuals[0]))\n", + "print('Error, as recalculated residuals \\t: {:1.4f}'.format(error))" ] }, { @@ -333,7 +374,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -347,7 +388,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/14-LinearModels.ipynb b/14-LinearModels.ipynb index 688ee99..05ed224 100644 --- a/14-LinearModels.ipynb +++ b/14-LinearModels.ipynb @@ -12,7 +12,7 @@ "metadata": {}, "source": [ "
\n", - "Linear (regression) modelling is a method of predicting the value of an output value as a linear combination of weight input values.\n", + "Linear (regression) modelling is a method of predicting the value of an output value as a linear combination of weighted input values.\n", "
" ] }, @@ -20,17 +20,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Linear Models - Overview\n", + "## Linear Models - Overview\n", "\n", - "In the simplest case, we are trying to fit a line, so our model is of the form:\n", + "In the simplest case, we are trying to fit a line. In this case, our model is of the form:\n", "\n", "$$ y = ax + b $$\n", "\n", - "In this equation above, we are trying to predict some data variable $y$, from some other data variable $x$, where $a$ and $b$ are parameters we need to figure out, by fitting the model, and reflect the slope, and y-intercept, of the model (line) respectively. \n", + "In this equation above, we are trying to predict some data variable $y$, from some other data variable $x$, where $a$ and $b$ are parameters we need to figure out (learn), by fitting the model, and reflect the slope, and y-intercept, of the model (line) respectively.\n", "\n", "We need some procedure to go about finding $a$ and $b$. We will use OLS to do so - the values of $a$ and $b$ we want are those that fulfill the OLS solution - meaning the values that lead to the smallest distance between the predictions of the model, and our data. \n", "\n", - "Note that you need data in which you know both $x$ and $y$ already to do so - to train your model).\n", + "Note that to train this kind of model, you need data in which you know both $x$ and $y$ already, to train your model. This kind of model only applies to predicting values you have at least some information about. \n", + "\n", + "Having training data makes it a 'supervised' model, meaning that learning the prediction model is 'supervised' or guided by knowing some 'answers' to our prediction problem already, and the goal is to use this data to learn a model that can generalize to new data. \n", "\n", "This approach can also be generalized, including, for example, more features used to predict our output of interest. \n", "\n", @@ -40,15 +42,17 @@ "\n", "In the equation above $a_0$ is the intercept (the same as $b$ from above), and $a_1$ to $a_n$ are $n$ parameters that we are trying to learn, as weights for data features $x_1$ to $x_n$. Our output variable (what we are trying to predict) is still $y$, and we've introduced $\\epsilon$, which is the error, which basically captures unexplained variance.\n", "\n", - "### Linear Models Pratice\n", + "### Linear Models Practice\n", "\n", - "In the following, we will generate some data, with two features 'D1' and 'D2', that are correlated. \n", + "In the following, we will generate some data, with two features, that we'll call `d1` and `d2`. \n", "\n", - "Given the correlation, we can try and predict values of 'D2' from 'D1', and we will create a linear model to do so. \n", + "We will generate this data such that `d1` and `d2` are correlated. This means that they share some information, and so we can use this to property to try and predict values of `d2` from `d1`, using a linear model to do so. \n", "\n", "This model, using the second notation from above, will be of the form:\n", "\n", - "$$ D2 = a_0 + a_1 * D1 $$" + "$$ d2 = a_0 + a_1 * d1 $$\n", + "\n", + "Where `a_0` and `a_1` are parameters of the model that we are trying to learn, reflecting the intercept and slope, respectively. " ] }, { @@ -69,13 +73,21 @@ "import statsmodels.api as sm" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, lets generate some example data to use." + ] + }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ - "# Generate some correlated data\n", + "# Set random seed, for consistency simulating data\n", + "np.random.seed(21)\n", "\n", "# Settings\n", "corr = 0.75\n", @@ -83,7 +95,7 @@ "means = [0, 0]\n", "\n", "# Generate the data\n", - "dat = np.random.multivariate_normal(means, covs, 1000)" + "data = np.random.multivariate_normal(means, covs, 1000)" ] }, { @@ -93,7 +105,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWmMpdd55/c773r3W2tXV++bmmyyTYkUKYmypJG1WJzIyDgGxo4DC/PBCJNJRpjI0TjjAQIDAWwYA2MUQMgAQ8SDONIgju3Y40U2LUoyTctu0eLOZje72At7qX27+333kw/nvbdvVdfadas3nh/Q6O6qe8971+d93uf8n/8jpJRoNBqN5sHBuNsPQKPRaDT9RQd2jUajecDQgV2j0WgeMHRg12g0mgcMHdg1Go3mAUMHdo1Go3nA0IFdo9FoHjB0YNdoNJoHDB3YNRqN5gHDuhsHHRkZkUeOHLkbh9ZoNJr7lldffXVBSjm62e3uSmA/cuQIr7zyyt04tEaj0dy3CCGubuV2fSvFCCFMIcTrQog/79eaGo1Go9k+/ayx/0vgfB/X02g0Gs1t0JfALoQ4AHwZ+D/7sZ5Go9Fobp9+Zez/O/CrQNKn9TQajUZzm+w4sAshfgaYk1K+usntnhVCvCKEeGV+fn6nh9VoNBrNOvQjY/9J4L8UQrwP/B7wOSHEt1ffSEr5nJTySSnlk6Ojm6p1NBqNRnOb7FjuKKX8NeDXAIQQnwW+LqX8pZ2uq9FoNA8K56erPH92lslKm/0DWZ45Pcap8fKuHU93nmo0Gs0ucn66ynMvXaHaDhkvZ6i2Q5576Qrnp6u7dsy+BnYp5YtSyp/p55oajUZzP/P82VnKWZty1sYQovvv58/O7toxdcau0Wg0u8hkpU0xs7LqXcxYTFbau3ZMHdg1Go1mF9k/kKXuRSt+Vvci9g9kd+2YOrBrNBrNLvLM6TGq7ZBqOySRsvvvZ06P7doxdWDXaDSaXeTUeJlnP3OUctZmuupRzto8+5mju6qKuSvujhqNRvNB4tR4eVcD+Wp0xq7RaDQPGDqwazQazQOGDuwajUbzgKEDu0aj0Txg6MCu0Wg0Dxg6sGs0Gs0Dhg7sGo1G84ChA7tGo9E8YOjArtFoNA8YOrBrNBrNA4a2FNBoNB9I7vRUozuJztg1Gs0Hjrsx1ehOogO7RqP5wHE3phrdSXZcihFCZICXADdd7w+llL++03U1Gs3d5UEuVUxW2oyXMyt+tttTje4k/aix+8DnpJQNIYQN/FAI8ZdSyh/1YW2NRnMX6JQqyll7Ralit33Ed8pWT0b7B7JU2yHlrN392W5PNbqT7LgUIxWN9L92+kfudF2NRnP3uB9LFdupm9+NqUZ3kr7U2IUQphDiDWAOeEFK+XI/1tVoNHeHuzGAeads52R0N6Ya3Un6IneUUsbAR4QQA8AfCyFOSynP9t5GCPEs8CzAoUOH+nFYjUazS9yPpYrt1s3v9FSjO0lfVTFSygrwIvDMGr97Tkr5pJTyydHR0X4eVqPR9Jn7sVSxfyBL3YtW/OxePxntFjsO7EKI0TRTRwiRBb4AvLvTdTUazd3jfitVnJ+uMl/3+MG7c7x4YY65evu+OBntFv0oxYwDvyuEMFEnit+XUv55H9bVaDR3kfulVNGr4Pnk8SHOT9f5u4tLfPrE8D19MtpNdhzYpZRvAY/34bFoNBrNtundNC1nbcZKN/cHPohBHXTnqUajuc+5HxU8u40O7BqN5r5Gb5reig7sGo3mvuZ+VPDsNtq2V6PR3Nd0FDy9VgK/8NSBvtbXd+Kbczc8d4SUd777/8knn5SvvPLKHT+uRqPRbJde1Y0fRZybqrPcCvnUiWG+8vThDYN0732LGYu6F1Fth7et1hFCvCqlfHKz2+lSjEaj0WxAR3UTxjGvX1O+M4NZi3emapt6uN8tzx0d2DUajWYDOqqbi3NNXMsgY5u4tkkYy02D9N1S7Ogau0azyzzIvuYfBDq+OTUvpOiqkOlHCYWMtWmQvlueOzpj12h2kQd9BNsHgY7qxjENvDDGC2P8KOHEaH7TIH23FDs6Y9dodpHeGivQ/fv5s7M6a79LbPcKqqO6+faZq/ztxUUGczYfOVjGsUyq7ZBfeOrAhut/4dQoE7PNXVPsrIUO7BrNLvKgj2C731g9Ger9hQZf+39nODCY5dF95XWD/KnxMr/xc4+tCNrlrH1LkP7OW5N88/uXiBLJUN4mCGOuLbXuuGeNDuwazS5yP/qa30nu9P5D7xXUQsPjwqwa/lZLSySbjf/byBjt/HSVb/7gEggYytv4UcLEXIOTewp3/ApN19g1ml1Ed0Wuz93Yf+hVqXRULqWMRcOPdyxFfP7sLGGcUMpYCCGUesYymKl5d/wKTWfsGs0ucie6Iu9XdnP/Yb0rgd4rqI7KpaNwgZ2VySYrbYbzDn6UkLFNAFzLYKkZ8vTxO3uFpgO7RrPL3C++5neayUob24QfXa5R80JKGZtjozkmK9Hmd96A1XX0zpXAF06NMl/3+GG6AWoAtdQ87NF9JWBnZbL9A1nCKO6Wd1zLoOZFWIa441douhSj0WjuCq4pePnyMl4YU3QtvDDm5cvLuKbY0bprdXsmScI3v38JxzL55PEhAJZaIV4YcXJPgeGCu+My2TOnxzAMg4fGCriWwWIzAOCrnz9+x0/sOmPXaDR3BQmsDuEi/flOWEuJNF31iBJ5yzCOMIoZKWb6UibrLbvZlsnTx0fuWjOaDuwajeauEMSSp44OcnmhRcOLKGQsTo0XCeKdhfa1lEiLzYDhvLPidsWMxXQ14mtfPLmj4/Vyr5TddGDXaDR3xfagE4CfPjbc/dnqgHw7PHN6jOdeugLQdVS0TYO9pZVZ/IMsO91xjV0IcVAI8ddCiPNCiHeEEP+yHw9Mo9HcGW5Xdnh+uso3Xpjg63/wJt94YWLbMsXdkoJ2SiLlrM101aOctfnq545jmkbfj7XT12C32LEfuxBiHBiXUr4mhCgCrwI/K6U8t959tB+7RtNfdpJxf+OFCa7MN5ip+92SyN6iy9HRwrpliq36jG/2uO7klcJ33prkd89cY7bmMVbK8M+ePsSXH9u/rTV6H69jCmZrPgeHcn3xWt8KW/Vj33EpRko5DUyn/64LIc4D+4F1A7tGo+kf68n7thpg3pmqcmOpjWsbFFwTP4yZmG3QCuN177MVDfpWHtdaNendOBmcn67yvfPzPDJe4uNHh6h7Ed87P8+x0cK2JiH1Pp+XJuapexF7yy6GsO8pH6C+1tiFEEeAx4GX1/jds8CzAIcOHernYTWa+5btBKnz01W+deYqr1+vIBA8frDMLz19eN0g+60zVxntUXyst3bNi0DQbarJ2CZ+lHQ13nBrtmsgeero8Ip1Vjf3bLcB6fx0dYXR1qnx4i0ng97gahnw4oU5/vj1ST59Yphf2mCaUT+aoVavEcaSgmtyca7JSCGz5mtwt+ibjl0IUQD+P+B/klLWVv9eSvmclPJJKeWTo6Oj/TqsRnPfsp3a9vnpKv/2+Qu8fHmJKE5YqHv8yRtT/A/ffo0fXVq4ZZiDF0b88OLiltYuZy2klHhhvOLvclat+Z23Jvmtv7xArR2yp+BQa4ecm6rz9vXlFeus3ozczpCJ89NVfvuvJnjh/Cy1dsB0tc2PLi8RRPGKNv9OcA2imDeuq+cykLU4u8k0o34MvFi9RiFjIYCaF677Gtwt+pKxCyFsVFD/T1LKP+rHmhrN3WB1Bn1yLL/CcrWfNeDtZJHPn51lqRlgGoLFZoBlCHKuSd2LqHkRY6UMR0cLPc+jzmBua2s/Ml4mZ5vM1PxuB+iR4RxHRtR6v3vmGnnX6lnLwA9j3p6qc2S0uKK+3Gthux0DtG+fucqVhSZhLMk5JnEClVbIWzeq/NTDe7oBuKNRf/lKrTvNSEpJ3Y+6J4C13p/bMWNb/VlwTEHdi7prnBjN8/LlJQoZi0TKNV+Du0U/VDEC+B3gvJTy3+38IWk0d4fVGfSV+Qa/9ZcXeH+hsSsmVdvJIicrbYIooe6HgKQVRNS9iIYfYpuCidnGCsXHcivkkX3FLa3d6Zg8NV7iC6fGODVewjCMrmJktuZRdM0V9xkpODiWsUJ5srqmv5HqpaMm+W//7x/z8//hDP/5jSkaXohlCOIELFPgmIKZmrciAO8fyKrn7UW4lgpffpRQytgbZuDbVeCsdTU1W/O5utjsruFYJoeGc5zeV1r3Nbhb9CNj/0ngK8DbQog30p/9GynlX/RhbY3mjrE6g56p++Rdi5maz5GRQt83x7aTRe4fyPLebJ2GFxHGEtMQGAIiqTLbKJGcm65Rzlo8Ml7m9L4i56bqvBFXKWVsTuzJY5vmmmtvZlRWdC2uLLRAgGMZDOUcokTe0vDToTfTzdkGQRQzXY266wI899IVkiTh2mILIQRhnOBHIIRASshggoA4kiuy4I5G3TYFfhiDEPhRwun9pQ0z8O2asa15NTWUI0xLQ501fvWZh+6JQL6afqhifsitncEazX3H6lb0hhdRdM0VNdR+bo6t1Uiz3qX8M6fHeOtGhXdnJCCREqIkQUqBawkc0+CR8RLVdsjJsTxv3ago6aJr0g4izlxa4uhInl/40tryxfU6Js9PV8k5Jl4U41oGURRzbbGFZQlOjBZuqeF/4dQo3zs/31WOrCUB/MYLE5SzNuena2Rsk4xtUnAtmkFM0TURQj3HVhBzeDh/i4rm2c8c5VtnrnbNvI4OZzk7WWO5FfKpE8Ocn66uOyyjswH7/NlZfueH769bXltvQEq/O1V3C20CptGkdC7zOxQyFnU/ppS5/SEZGzWwrNVIs96l/KnxMr/6zEMM5SykhESCaRjkHBM39f3uZJi/e+Yah4fzfPzYEK5jESUqKI2V3G5g22pTzfNnZ3lkX5nPfGhEqWViSdYxGcraPLKv3DXaCuOYy/MNfv1Pz3F5vkEYx10DrtUe550SVM0Lu+WUfQMZbENgGMpqYG85y1NHhvjtf/rYLa/HqfEyv/lzj/EfvvIEp/eVeGdauSl+8vgQjmVuWC7b6ob16s8C3Dsbo1tBWwpoNCmrM+i9RZfpSpuHxgq3tTm2U335ak6Nl/n5pw53m4kuzNTIOxZ512Qw73Yf92zN4+NHhzCEzWhRZZ2JlExXvW0/pk7mWs6W+NBYqbvWn7451d0fWGh4vHq1gmOqkoqUklevVvjo4QFGChmKGYt3ptTJZLLS5tpSizBSJ0wvjMnYJqZhcHQ0jyEEQZzw2Yf2bGkW6Ugxw+ce3nOLDcF65bKtblhv52rqXkQHdo0mZXUd9uhogS+dHrvtQcSbBZHbCfwq4LR4ZLwEUna15idG84DKKsdKmRXqjc7P9w9k+daZq2lGLSlkLE6M5tdUk3TKFe9MVXlvts7p/SWkhIvzTZYaAWGccG2xyZGRAhfnmiSJZLLu0fRVc1PONnjruuBzpzJcXWhyca7BfN3Hj2LiRHJtscnDe4tUWgF+lICEk2MFTNPY1olvOzNlz09X+e65GZBQzNqcGM0zWsysefv7fUCKDuwaTQ9r1Zq/fJtrbRZ0bqdppjfgGALm6z45x+TiXIOGF2GaBv/s6UN87/w8Sw2fmZrHUlOpTf6rJ8ZVXTprdTtMX7tW4SMHyzR8dYJY3SR0aDDLxbkmL747j53KC00DTo7mee1ahWor4N2ZGk0/JkkkrgUJ0AhiLs7VOTaa55Wry9Q9pULJ2ibFjIUpBIuNgEPDOartiFLG4uhoYdty0s02oDtNXX9/aYHlVoQpUFOO0uf+xKEBHGv9TeX7JZCvRgd2jWaX2CzobCfb7KUTbK4ttRgrZTg7WeXNGxVeT+DwUJYvnBrlC6dG+eYPLhHGCcN5h/Fyhj9+fRrXEiBEdyYnKM37Zx/a022COjdVI4gT/DCm2go4NV7itWsVWu2QsVKGE3vyjBQySODtqXq3ockyAWGQtQz8KEFKuDzfpOaFmALCOKEdxCy3AkYLDs0g4pHx8oY9Apt15vaWTLww4vx0neVWyKdPDPOdtyb5w1cnubbYoh3EWAYEUcJU1WP/QJasbfDOVI1jo4X7psSyVXRg12h2ic3qtDtpmvmzNyfTLDmh6kU4lkEiJNeW2/zaH53lsQMlPnFseMXaZ6dqZG0VdEGNbpNSUmlHPHN6jG+ducq1xRZBnJCxDBIpqXgR15bbDOUdJJJP9FjstsOEgZxNOWtxY7mNbQokKoBnbZNyziaWYAhBO4yxTQPLFMSJqvc7lnHLJmZvGWajEXe95bEvnBrl7y4u8veXlhjM2fzkiSFsy+SbP7hEnKh5ptV0o9YyDKI4oRFEGIaFIbZX+rlf0IFd84FmN9wFN9Nxd9bf7gZdJ9AlScJ83cexDCrtECGhFcQ4psA0DAwh+PH7FQquxbnpqOvYKJOEyeWAwbxN3VONTeWsw6dPDHNqvMyZy4s0/QgvjAmihJxjpg6G3ponm6VmyHDeQQhBpRXiRwlJkiAMg5GCS9YxCeIExxT4IYAECUKglDqmsWEZaq1S1XLT55vfv8Qnjg93g/33zs+Ts41bNlHDOKHaCnFMAy+MqXsJtqlUOCIShLFkuPBghkAtd9R8YLldH/LtrGlbJu0w4Zc/dYSvffHkipPGduSOcDPQzdR8co6FZRjIREkfDQFxIrEMyNoGcZTwoyvL+GFMwTVZbvrM1HyiOKHgWozkHUxhMJR3+KWnD/OdtyaZqrSptJRm349i1Z3ZCqilf7vWSj9zyxCMl1Vpppy1sU2DvGtRck3iRDKUd3j84AAZ28JNyz6xBCnBFFBapWRZXYZaqzO3d8SdIQRBpGSWf/72DOemqiw0vO5th/MOQZwwWfFwDNG9fdOPCaME2zDYW3T72k18r/Bgnq40H2i2moX3w/Fvp2tuZ4OuU5OveSEjRYeZqo8QKlgaqL8ztkEYS2xb+bnMVD2iJMELY4SAsXKGrKM05IWMxb60xv/NH1wia5u0AmXVq2SHEgGMFGweOzBA3Y8I06sPxxQcG83x+vUqgzmbh/YWuDLfYqbuU8yYfPzYEF95+jAAr12tqPp2LGmHSt9eKJiUcys7V1eXoVxT8NLEPEGcdLtne0fczdc9XrtWwTUFlqFcKntlluPlDBdm6qr93zbIAFUvwTQEjmXwxOEBRovqhH4vWO32Ex3YNQ8U25EQvjNVpdYOafhxV/o3XHBXZI3bLdXc7oboVujU5Dv67/FyhjBW9rqJBMcEKZUOPGebhLGqpQuU/4pjChJ5s07e0bY/f3aWph9imwaSmDBOiBOVVWcdky8+MtYNgOWs3S0h7Sll+cmczbmpOuemG3zqxDBfWcM696ufP843f3AJM044MJhlvJyh4cfdzH+tMtT56SpTVe+W7tlEyu6Iu4vzzW6D03g5S5SooUHvzTawTTP1vylS9yJm6z6maVDqnMyE0dX43ytWu/1EB3bNPcVOa95bzZjPT1e5say+zKWM1ZW/ndxT6Lok3o7O/HY2RLfKM6fH+O2/mqDSDJiqtnEtk6G8w/6yw6WFNoZh4FgGj+4r8saNKoYQxFLi2gaGYdHyY+bqPi+cm10xJencdJWmHyOEYCBr0wpiWkGMaQgOD+dXBMB3pqqcubzIYsNnpOByYk+ezz60p/uc13pdjo0WeOLQAK9fr6iTqGvx33/2ePd9WUsn/vzZWQ4P5xkvZ7g431T2DhmL/eVMd8Rdva32CYJY8tHDA0pnP9dgtu7zdNbmF546wPNnZ1e8Hz+6vJieHG+Gvvupo3Sr6MCuuWfoR6fmVjPm58/O8tBYgQuzDfwowU0lehOzDf75T90MOtst1fSrY3GtExyoLDvjmIwUXVp+TDuM+eTxPfyLzw93lSKOKTg7VSNOVO09jBLqXogfS0wBM9UWRs3g2mKTL50e48zlRcpZm5oXdW0AoiQBBB8+cPN5Xl1ocmO5TRRLhnLqqqFT+hjKu+s2BXXe0y+cGuPqQpNXr1aYa/g8Ml5e98TdeR/X6p795U8dURYFQpmGffRwuTvowrFMns7aK/xcVnQTl1ymKm1O7lm/m/huDPbuNzqwa+4Z+lHz3mrGPFlpc2g4TyFjcXGumfqQW5Rzdrcr9IVzsyQyoZx1utrtzS7b+9GxuPoEd2W+wdd+b4YgVpJB21SNQnuKGfaWXEaLGb782P5uI9U3XpjgwGCOVhDRCmIlbxQCISWObWIIA9MQmIbgO29Nc2OpyWIjQNKZf6wcFg2R0PAihgsqAE7MNnhob4Hpmo+fWgEAXJxrcmp87Saf3vd0vu4xMdcAAdVWuOGJe6P3sbMvcdPp0Vw3SK9+P46MFPjpR9fvJu63DcTdQgd2zT1Db7a90PC4ONek2g4whLHlrGmrGXMncIwUMt1srxNIOl9u2xQgjRWZ6XrWt71sZ0N0rexwvWC42PCJE0mYKOXLkhVwdbHBW5NVtV/gRV1N+aHBLFeXEkYKFq5l8NaNKoYBR0fy5F2Lph8xudziu+fmVJAXkCDwY4ktYLzskrEtJubU7NNH95U5OJzl0HCeME54+UpDXT1YSpu+r8eSd733tFMTdy2jOxgD1j5xr/c+PnVkoOs509Gwb2b5sJ1u4t3YUL8b6MCuuWfoBNswVoHUtQxc0wAhNsyaVgfH3i+7awqytnGLRetGJ4DOl/vRfarjUtniCs5ObtyluN1L+PWyw4Yf8vBeZbjVCYZRklD3YiSqvOIjMYSa6JOxIlzTTDPhIK01Nzk5VmCxFdLwIiRQzNjdoD5d9WhHagMzb5mpWgVcSyAQNIOET58cxDZNymlp4xsvTPD+QoPLCy2G8jZNP6YZRFixwcN782ta4fZm3p2N0M5gjPm6162JAyter7WufJ46MrDCErijYe9nNr2VDfX7Aa1j19wzdKbcnJ2s4ZjK4t+PJY/uK91i/dphLS36987P88zpMX75U0dohQmOZd6iU99IQ97RT48WMzxxaADXNgljSRAnG55ctjO/9BsvTPA///5bnJ2s8Mr7S3z//BznpmvEcUK1HXUtYxteRBQnTC17IFRQ77wurUBJGINEbZCWszYZ2yRJEhabAT+6sgRScmI0z3jJJedYeGHMYtNHAEkClgF516LgKnvfTjWmlLVWlJ7OT1dZqHu8ODGvmqNMg9Giy2DOIecY/PsXr/DihTlskxXPvXdyUcE1qXkRfpQwnLd57VpFjfUrumu+XqfGy3ztiyf57X/6Yb72xZNMzDa72fR6lsA7obOhXuucgNIN9asLzftuc1Vn7Jp7hk6w/ZXffzN14LN4dF+J0WKGRMo1s6aNLp07/1/vsnq9kklvljlazKyQ+m1l4k6njLTQ8PlXf/AWHz5Qxo9ld4ZqJ+ts+SGVdpQeM0OlGXBprgFIaq2Qk2MFCq7J5fkmElTXpJQkUpJIiBJJ0TVphQlxknBj2VebpGHC3rJLw49ZbAbM1X0ODGZ5b77JTNWj6UfkXDXgwjIEXhARJMpuV6ReL3vSDcu6pzTrv/4n7/D+YpN6O8IwoB2oISTL7ZAwVueDi3N1biy3+fjRQfaUsjx/dpavffFkN/MupRu0D40VmK6qRiI/jGkZgpevLOKYBt8+c5Xf+LnH1nyNd1NK2nkPN9tQv1/QgV1zT3FqvMxPP7J3y5LBzb7stxMI1irTXF1ssq+c4et/8OaaZZbO4+h4k6tasuDqYotWEPPxY4NU2yHf/P4lHtqrxuyFicRKNzHn6j6JVN2jynNF8jfvzeOYgmo7ImMbahReIjEMg7Jr0vBjogRytsmNZQ/XMogTiWEIqu2Yg4NZHjtY5sylJep+zOceHuXcVJ0riyrzffJwgTeuVZhvBBiGyt472vfBnEW1HXJ9qcXETI2p1NvFtgRRLGmFCa0wwRLdJJ92mCBEzN9dWuTgQJZ62uz0zOmxrkqlU65640aVomPiAaYhyFkmXhjztxcX152AtJtS0s57uNGG+v1EX0oxQoj/KISYE0Kc7cd6mg822xk8vNGkm9udgrO6TBNEqlvSXqOks/pxXJxTNfGMbbLQCMg5yqb28nwrlREqyd5Cw6Plx1TbAXUvpNIOaQURjdTeVkoYK7qEMbi2gW0ILEMAAtcURIkk55jkXZNCJm3XTyRhrDY0BdAOY/76wjxLTZ/JShtDCD770B5+6uQoUSyZrHg009p6IiHjWBwZznNoMMfVpTZhWoOfbwTqZCMlYXRTOwNq5iqoZiZDgBfEtIOYmZq/ZomlU1752Y/sxzRvlo9E6jg5mFu/tLLZ52I7k6HWovMejhQyfOLYMD/9yF4e2VfmkfssqEP/auz/F/BMn9bSfMDZjofKRl/27U6mX/0YOvXd0WKGg0M5wjjmH64s8fKVRS7PN/j2mau3PI6Fhk8Yx1xZaLDcDImThChOunNTXVtwfrrGn705TRDHZB2zG5CV9a3K4BebAcutECFgXzmLMAyOjRY4Mpwl61iUsg7/+PRe/tefOUUhYzOQtXBspTjx44Qwjrm23KKROj+aQvDq1QoLDY+cqzZLO5SzNiMFh0ODOWzLoJyzOTCYZaSY4fBwPt2wFcqTxrhZ5+9gKCdg4kQF+iCWLLUCbGP9Ovgzp8dYboUg1fP2QiXLPDVeXPeKaqPPRT98f3byebnX6EspRkr5khDiSD/W0mhgbYnaatXJybE8E7NNGn7IZKVNKWPx6L7yCslbP6bgTFba2Ca8fq2KaxkUXWvNskHONlhsBLR8tflWypqA4NpSi4xt8GdvTjJX81PvE4tYGDR8tQHqGKrZJkkkBVfpzCtt5Z44kFMNQ65tEkQJQwWTf/fzH+4GtGLGVj/PmJBIWlGCF0YYKDMvpOTQcB7TEFyca+KFaiyda5vYpkGUKA+XJIHDwzlqXkStHSElnBovUcyY1NsRcaKGaCc9r41I/0TJytdMSnj9eoVS1ubEWLG7Adv7Xjw6XlS2AakC5dF9JRpexEzdX7fktd6+SD9kivf71KRedI1dc1+wVtPOH712gycODfDw3lJXrrjVQLAd9g9kefHCXLfEAqwoG7w0McdzL71PEMVEcYJhQCIEQ1mL+XrQ9SJveBFCKM24EALTFBRdaIYxWceiHcbkHeVxogoekoJr4UcJI8UMJ0bzvDNVI4zIM3ZvAAAgAElEQVQlz5+d5fJ8g++dn2dv0aXWCpmuesRJQjlr0w4israJlNAOIyYr7a7mvFOu8cOYsaLLxfmGCthJwPuLEj+S7Ck6TFc9DgzmeOrwEH8zMU+YSFQ/KulroP4dy1tfM4kaavH3lxeYqnrUvZCzN6qcHCtweCRPtR0SxMoB8vBwnmLG4upCk9evq6lGG/mv977HnZPFf35jkrGiy4k9hR15wNzPU5N6uWOBXQjxLPAswKFDh+7UYTUPCKszspm6jynglavLvDfX7Hqf9M4T3W5b+Hpt/PN1jwuzdQwBtiFwbZOcY/GJY0N8/9wME7MNJBLLNPDTGnQiVZkhY5vYhvJsMRAcHs4yX1ddnsdGCkgpubzQZKTgpnVsuLbcwjEMDgwoY6uGF7G35PLy5SUk3NyI/cGlrrdNIWPx3XOq3NEKYsoZm3YYE6YOjWGc0PAjLEMwnLPJOBYZ26SZqFJIFJPW8yUHBjJYhmC24XN1scnh4Tyf/tAIfzMxhx8prfv+9LFNVtqwRmAHVZaptWPqnjrJxBIm5hoUUikpQznCKKactZmstJmp+zxxaIAjI8qrZz3/9U5PA9A92Y8VXWpe1B13N1rM7LoHzL1sPXDHAruU8jngOYAnn3xynY+C5n7iTn6wO6qT+brHxfkm70xWSaRSlewfyOKHaohyK4xvqy18rfv89l9NkEhJ0bVwTCV9i+IEicALA/76wjyLDR8Q2IZQgybS9YIYZBDjWpK8YzJezFBISzgjBYcbFa87Um4o59D0Ix4/OEAYx0wut6i2Q6JEcnp/kUNDeV6/XqGQsTi9v9TtlA3jhJmax9FRlaUeGy0wU2kxU/NxLYNmEJMaHiJJyNoGw3mXmWqbuh8zVWl3VTBKTim6m5gIwVgxw75yRjUX+Q77BnJqgLYfU/UixssZChmLd6fra2btoOrvTx8f4rVrFWW2FiVcnG92h0hPV6OuYubrf/DmLSqmXv91WF/O+qGxAq9erQDKCMyxzNvy6Nkq97r1gC7FaG6LO/3B3j+Q5cp8g4m5Bq5lqM26NJq0w5ico4JGzYs21bavdTJa6z6vN1RHZDOIUyljQBgnhHGCa5ndLs9EyltqzABRLInjGC+M8SLJT+wrUk1veGBABbDZuk/RtUik5K8vzNEKlPvhh/bkSRBcXWzzix87RBDL1BTr5s7lcN5hqRne/H/O5vVrPoZQFr31nmCbSIlAIIQk7kwxihPiJP05nY1bNSB7MO/w+KEys3WfkWKGajug2lba9WMjefwowY8Smn6kSjJy7cT9yHCOkUKmazXsWqokNV/3umWlb7wwwTOnx9aUM/b6r3dYS846Usjw0cMDvDe70t1xt4LsvW490JfALoT4f4DPAiNCiBvAr0spf6cfa2vuTe70B/uZ02N87fdmQKhZnYZQ8jvXMllsBBhF9f9y1lpX235uusq1pdaaJ6O17uNHMQJVky5nbRzL4MpCkzhJyDkOQRQDcr1KBBJVg847FgJ4e7LGQM6m0g4Zyjs8PJTDtQyVOUcJTT+GHq160VV2wr/xF+9Sztq8N1tfkbGPlzPU2lHX03yq6mEJKGRsGn6Ebaj6d6fLtOFH1LwIyyANyALHVBu1iIRMOkIujCV51+SV95cJY8mBwRxTy22iOGGyErLUDLAtQRirq4ZcOqAjXhXcLQNMw+C752YwhaDpR6qLN4r5i7dniBLJkWF1wn7upRZfODXK987Pd9+vuhdhm0bXf71Db4ml90QwUshgmzfdHTvyx924otztZqmd0i9VzC/2Yx3N/cPtfrBvt3xzalyZUFVbIXVfeXMP5mzCWNIMIg7aOY4M57r12bUaWartiP0Due7PO2PV/sf/9BpelGAA+wdzXSdH11Ibpa6t2stzjkWSKkMWGj5RIrFSDfjq4G4BVnplcXAox0y1TaUd49oG/8VP7KXlx7x4YZ5mEBEnafAFkOoK4cZyiwODudQ7R/KZD43w4yvLnLm0xMePDeJaFg0/5thIjn+4soRE4ocxx0cLmKbBZKWNQLLYCOkKG9MHGSZgG6oxKEwSokSdmHO2yVIrpJgxKbgW15baFFyTuVqb68ttsrYaft0IYqxIUMqYZCwTL5TpHNWIIFJnksGshZM2TGVtQ22mxglBFLPcDsnZFgcGM5iGwcRcg5N7CkzMNm9RpXz1c8f53vl5qu0QL4w4P11nuRXy6RPDfPLE8C0ngo5R2L/5o7f44cVFBnM2j+wr9v2KcrebpXaKLsVobovb+WDvtHzzyHi5e8zOWLQscGAwy6nx0grN8VoGX6WM1Z2h2bl/nA6GHim4LDYCLKNNpRUwXnKptUPaaflguRUSRBFepJpxbEMF4zBZZ+8w7cgsuhZ518IwBMN5m6GCiyEEb16v0Azibgln9Ro1L2Km1iaRyrdlrJTl48cE70zVePN6jccPlkmkpBnEVFoBlXZIEMXkHCWxDNMyyxoVIgQqky5mLOKkMyvVwLVNDBGRdy2yjsVQ3qbgWrxxo0q2O7NU4pgG5awFCEaLLvN1j/lGoDZmCw6PjBeZrQec3KM2dTuDMkYKLlEiyThWdwh2h5mah2Oba6pSjo0W+NaZq/z9pSUGczY/eWII2zL53vn5WxQzHaOwy/MNBrPqvX79WpWPHh7o6un7Edj75bu/W2gTMM1tcTvNHL3lm9sxceo95nDB5eSeAkgo5+wVzSrrNbI8uq/c7UTtuCbW2hE5x2JPKcPecoYgkTT9mLen6jx2oMzjB8tU28qIK4rBRAVh1zLJOqn0ESi6Jq6lukJtQ2XfliHYU3TT5htJKWNhCsGLF+aZSjcF1yORsNAIafpKUTJf9xgtZjg1XkQief16lcvzDX78/jLNdBZpnEDNi2n4EUGYEKZ7EAL1RU991RBCFZDiRDJScJCo92+m5rF/IMMnjw/ziWPDjBQzCFTZZrToEKWNVJapdOpNP2Kp4eNHaoN4IGvTDmKuLrUpZywOj6jpS08fG+aLj4zxmZOjNPyI4byjPOJTXMtgqRmumxScGi8zWszwuYf38NmH9rCnmO1+diZmm2sahYWxxLWVH45rGVyca/a1VLLdQeR3Gp2xa26L22nm2GldcvUxj44W+Oc/dXxbQ6J/+68meL3h8/5iE9c0aIUxR4ZzAAzkbCzToOCaLDYDjowU+NHlRQ6nv393ps5QzsaP1HDoTglGAIeGc0SxZKbqAZ0AKKil6pE9RYeWHxMlaviF2rRcVynYxUCy2Az487emKWWUf4tlCBJUzVxK8MJkRWbee77oPUY5YxEmEi+IsQylfnEsg4JjMVJ01YmuZyD0idE8L19e6u5pjBQcWkGUbsJCzlUSRssQ5F2bA4M5vLSjVaaWwquv6IquRbUVMl3zyNomI0WHOFFrbJQUbPWz07ldIR132AnsNS/se6nkXta868CuuW22+8HuR11yp1+mRKowZxsGiUzrzGlmu9wKqLRCLs6FmIbge+fVkOeO06EhIIwlpiGIpGQw65C0AmIpuTLfxLVMglQ+6Fhq088PY9V9uafAmUuLuLZJNkqotkMMsXZzTy9hAkJK2kFMzYsQqCC4XpllNaahWv0l0ApjLKGC8mDO5VMfGub1qxVqXkgjUFcyAsFg3ua92QaP7CtzaDhH1jY4O1VnMGfzj06OMDHbRAA1L2ChGajXUSj9/P6BDFEi2VNSPjFAtzY+U/MwAcMw2FtyqbRCri60GCm6/Ksvndzwfd3qZ6dzuxOjeV67puSPMi0f3Uulkt1Gl2I0d4y77cXRGZD82Yf28NSRQSRKknh1scn1pSZTlTat1JHQFKkN7VKbi7N1lltKdlfzQhYaAXEs8SM18NlJTw6VdogXJupPaoZlGgZ7ii6/+XOPcWKsQClj0SktJ/JmF+e6CGiGEWGahksgTNZX4qxF18M9Uq6Mx0bzPLa/xD9cWWJirkHDV481jBP8MGKpEXBjuU05a/OrzzzEVz//IT51YpggTri25PHw3gLjZZfFZqj8Y9LjVFshlxeayETthzz7maMEUczfX1oCYLTgUMo5WIbakB4pZji+p8Anjw/z5cf2b/gctvrZ6dzOsUw+clCdKCrtiNP7SvdUqWS30Rm75o6xEy+O25lOtPr2vU1OVxY7U4AElXbEcktl0AXXwrEEszUfIcAyBXU/ouZH6aap8lYRQtD0Y6w0I07kzWDrWgJDCGbrHq5p8Aev3OC752aJYtXu75gGBwezSua4SdqdSNURupqtBvZefb0lwLaUDfBcw8c0BIZQ9fI4kerf6anmwFCOZ06P8a0zV7vqko8cLONaqhy0vNSm4Fq0AlUO6pR8vCDBjxNOjqmJSm9crzKYU9Oo3rhepZQxu9YMnzg23B1QvRlb/ez03q7hR3z2oT33VEfonUJIeeebQJ988kn5yiuv3PHjau5PetU0vQqEzaYZdW5/daHJxGyDII4pZpR1rmUIMrbyAM/YSgu/3PI5PlpgstJWG55hjN/dgJQYwiDvmjS8CMsUeGGCZSobrN7NQMtQXZxeeHPzciBnE0TKwdCxDI6O5JmqeFTb4ablmH5gAo6tcmsnHYYdS0mtHRAlKrjDTafGJw8PMj6Q4/J8Q/1SqOfYmfv6x6/fwDYMQOnv/R47333lDCf3Fjk8nOdHlxdwTQM/LWFZhujOPO313e90n2o2RgjxqpTyyc1upzN2Td9Yz31xpw0i222GWm8YNFJydbFFw48YyFoM5h1Mw+D0/hINP6ThR7w318ALVfdn3rWI2hGmQTolSBKlaoumHxFLiCNl1tWLCpQ3A51Aabgdy8SLEiQwU/MxDDWP1QuTrq95P+ndOE1AOUdm1MxThJrIJLh5I9lzz7of83CqLim4ZleaeHGuyceODmGbBlKClKJ7MAN1YlhuB/z4/SXm6z5hlLDcDFPfmgRDQMa22JvW4NcaUP1BzLD7ja6xa/rCaj/sK/MNfusvL/D+QuO2/bE7dGaQLjQ8fnR5ke+em+HcVJVz66zVuT3clDWaAhZaIWMlF9tUOvGlZsixkRxSQrUZ4nSDlaTaCmj4aj5nnChNeBCpZqjOpudG9fHeLNy1BFGcUGmHRIlSsYRxwt5SRp0cdimoi9UPUNz0Vc+kQ0NkKusxjU6nqDrZtIIIL4yotAPem2twY7nV9ZWvexEfOzKITBLVlJTKgxLZeV0EOcdkqtJmpuZT90O8IErLPQI/jFlsBQRR3O023YmPuuZWdMau6QtruS/mXYuZms+RkcJtWQ50rgDemary1vUKYZxQytoUXavrGb7WGLVeBUUjHUw8U/XIWgYDOQfbFFxbajNadFloBExWPCTqSmC+4adDLyAOVHbdO4QpTujOKV0vHruWwI8kRnobb9XUISTU2xHvhTX8aO01OpjrdLZuhgrUhtLfp3eOY8lyK8C1TA4OZdlXznJ5oQlRTBCrbNsQsKfk0vZjfnxlmYJj0fBCFpsRczWfgmtyfanFzz2xj4nZBo2gRaycENJxgIZSHknwoo7dQIRpqhwy55jsKWX46OGhrg79XvZcuV/RgV3TF85NV7vt/qWMzULd66pIOqylO15vU7S3Tv7hA2Wef2eWOPUw6QTDk2OFNQNAb1dgwTWpeRFepGaAguq6PDyUI+uYzNb9NABLmn5COWODgIYX0QqTbjmj8/dmAdYxVMZqpmZbq+kk0ZYhNmxQ6t4+9cTpHL8zxm4zogRkktC77xpLVS4/XHQ4OVZEoJQqS40AZIIwSA3JUM9dxN29hKgzZENCtR3wR69NIYEPHyhzbamd7jGocX3NICaIJUkisc106HZGdRvnHDWrdTtzae9le9x7FV2K0WyJjeZJnp+ucn2xTS1tQPHCmGo7YqEZUMqsrzveaJxZ7xXAWCnLYNYm6xjKktY2eeLQAIdH8ms2N/V2BZbSDHBvKYMpRHcE22MHyzyyr8zPfmQ/o6UMTV/VgOu+aiDqBF1DQM4xsE1xy0i4tQgSZYwlURuWq+8iUVlrLCVb0y0otUrRMXFMsbk8krTLNO1+NdJhGJahtPXljMVwMYNjmbTChF/82EEQgpyr2vwlgsVGgGsJso7BXF05XLqWgWMKWmHMlYUm15dajBRcglgyWnRBqH0EL0zIWAYDOZtCxqQZqM3i4bxDPh0aUkg3wLcyl7YfI+8+iOiM/T7mTmUym3m8PH92lpNjBSbmGvhRko6PU0qTx/YrT5O1vDQ22hRd3Wk4WspgNTyW2xENL+r6jxwdLdzyWjimoNIKeH+xjUQykrOZrnlcXFa/Gy44vHx5GcsQfPXzx3n5ymJ3CEWUrMy0OzVjxxJYUtIKNm8LctIpRcr7kW5JpqM46cwb7YyV2yy+2yaESYIhBIaphouudTXQKdvYliBrqyuVzpCPMAFbSISAC7MNEIK9RZfvv7uQDtlOCGKJa6sgXPdDFpshGdvEMgQNP8IwwER1lNa9iGYQ4YUJw3mHwazFZCWiGkUMZCwe3lvAMU1ev17h+Gie6apSACGVQdiPLi9yYDDLnqLLbM2Hodyaniv3uj3uvYoO7Pcpd9IPfbMv12SlzeGR/ArDpz2lDGOlDEdGCuvqjjdqE+/UyYMo5uJ8kxuLTeabATnbJO8Y1Noh05U2Xzo9tuK1sAx4aWKBSitgX+p5/sZklYGMzWP7S5yfbTBT9TkynOP4ngLfOz9Pw4vI2SaNIF5RdunghTFmakG7WSAWoCYpxfEKRQqkJ4lV9XITWEOmDqgs++BQTqlqIkm1HdBO7XHXOm7OUZ2vamKSxBRqsHTn5jKR1NsRwoA3ri2r5ipT8NDekhoSIiVLzYDFpk+Q/j/vWjS8iE5ByrEMvHaEbalpTyMFh5maRxAlDOaUh/t01efcdINPnxjmX//jh5iYbWJbVartCAPJTC3ojsirexGJlIRRzHQ1uuVzcq/b496r6MB+n3InM5nNvlydIDxazHTnTW5Fn9wZnjFT99UmZzre7uhogWdOj/Fvn7/AtcUWBdckkhLHFMRJwrszNWKpNNH//sXLHBrMMlX1CGPJfN2j5gWAwfXlNnG6eeilSowDg1ly6Vi4IyMFqu2Qhh9ipGUOI43cvcE2kZDErKh1r0feNbv16LVY/ePV+b8p1IlhtOBgmYKPHh7i3FSNk2MZXrtaoenHaz4GkbpJZm2Tlh8RxXEqUbz5mDt+6UYCrqOuKupRQhzH1NImrU65xzQNCpbAsUyWWyG2Ibr1c8NQUsmFhs9S0yeIlC/OE4cGOLm3xEN7b77/X35sP1/ueZzfeGFihTVAOWtzeDi/7mflXrfHvVfRNfb7lF5JX4fdymQ2q4PerlXAyTE18q3WDrtZ+OvXK5wcy3NqvMy+1MwpSCSJhL0lFyGU4kTKBD+MOT9d4/l3Zrky32C+7rHcDAhjiKKEdpgQJCowd2SGc3W/K9vrvGY5RyltbEv5qHQGNneCnBDgWIJixsIwILtOOpR3DEYKLvEGLf8mN10WYY0AjZquVGtHVNoRk0tNri42+O65OeYaAcka93FMQSljkXdMJKjyiakKQK4lsIxbNe1xoqSPlgHnZhosNHyCOE519oKnjw7xsaPDZG2Lo8PqaixOO1THSxl1wkzS65t0mtW7M3Xm6173dV3rs7jdz+3dtqG4X9GB/T5ls2DbT3q/XHP1Ni9emOMH784xX/e6csPbsTCdmG3yxCHlk90I1FDjJw4NMDHbBMCPJY/sK1LK2IRxwrWldldxkTZDdqWAfpTQDKJ0kPTa5Q0JVNsRN5bb3U3duhfx+MEyhYxN1jZxLKO7SRrFNzdQC67JQE7ZAfixGmrdi4GaXHRkOLdik/WWzVOhNjHXI5YoewNDkLUEr16rkEi5oRImiCWmEBwayjFayPDRI0PsG8hQytrkHCv1WV91nyhBkBAn6t9hnGAisE2Djx0Z5OTeEoeG8xwczvLkkUEMIbBNpXGfb/rEEgYyFsMFh4xt4KTa94vzze7rutZncbuf23vdHvdeRZdi7lPupNF/58v17TNX+buLatjBJ48P4VjmLXX9zgZmx2N9MxvfQ8P57tQjUJ4rk5U256erXJiucWWxhSET2lGywlcljG9ucqrOToklVUkg3qSNs+qpTPhNSzBTCzg4nEXKpKtP79BZJUpguak2bW1L1dnj5KZdgADKWQs7nQY0UnCZqnqYQpldNfybp5lEssJ+YDUSNUFpNK1dd642NiNBDX5OUP42I8UMhwazvD1VJ04kds/r0pnW1I7UFUTWNck7FkGkNkIXW+pqpu5FPDJe5pnTY0zM1rm+1CaWEKRWCYYhiGKJbRqQPq96mgCs91lc/bnt2D0cHM52Z5+u5f+iA/n26EvGLoR4RghxQQhxUQjxr/uxpmZjtprJbCRT3O7xRnqGHYyVbg47eP7s7LZlaefT+aN/+fYMZy4vdi/h616Eawqee+mK6vqMIupBcotZVu8GYmfDMwGiLfbm36j6/O3FRdphRMsPuTzfXFEiWU1CaiuQqDo24qaUUKK02qWsSdY2+dBYUUkHJbT8W68dNtOhx0nCdNUjlYZvSbdebYVEieSpw4M8vLfEeMnl0kILy5Bde4NO1t67XAIMZG32lFwkUGkFK4JzxwhsuRmyt5zhkfESAzml9a+0Q0xTcHAwx1gpo65EBBtm1b2f2/PTNSbmGjy0t8DDe0taythHdpyxCyFM4P8AvgjcAH4shPhTKeW5na6t2ZjNMpl+K2c22kTdzmZu53HlbIOLTZ+5useluQY/sa/IYCFD1jYoZ22COCYRYoNx0TdJAEdARKcsYtIOkq7d7VrEUmW5MzWV6W6kK++cOMJYcmg4y1S1TRTLrpe7F8ZcnGsyUnQpZSxO7inwxo0q7eDWwL7ZBmzHP73zvLZCgppo9PZklZmaz4k9eY6P5nnl6rKSQJoCxzBohyuHThtCZdo5R80gnax43eDcUae8fr1CwVXTiAD2D2YJowQ/ShjNO7SCmPlGQMYxePzgwIqsez1J7qnxMt94YYIDg7k7IgD4oNGPUszHgItSyssAQojfA/4JoAP7XaYfypneL+a1pRZBGHe143CzPjpZaauNuOlaV+FybCRHo6dnvrPWd8/NkMQSP04YKbg0/IiGH/H2VJ3/7Z8c5K8vLDBcsNKgKbANuaIcsV5Q7MTQrAXtIFHmXZtExmALRi29gTjjmCRSYgKtnvuGiZp2ZBuCd2fqzNW8FcMwejtYLSPtDN3kWNtBoJQqyg8+5u8vLpJIyWDOwTQES42ARhBhCaV4kVKStU3aYUzdi5BSvcZjpQz/7uc/vOLzIRArHlPOsRgfyDBXD6j5EUvNgL2lDEeGc7wzVeO/+9ZrK4ZNr5dYaCnj7tGPwL4fuN7z/xvAx/uwrmaHbPWLs5W2/vFyhoW6x4sX5nntWoV9AxnVzWka/MJTB/jWmau8fHmJQsai4Jr4ofIa+fixoe4xOmsh1bSiMJbsH8xyMJ9DSslSM2RittmVuLlpPbsj5dsqjmVxbDDLQiNAeGGq0b7917H3rq0g4tpi1DUBW6FJN9QQjGZdNVIZ66zRyaDjtIlp5WO/6TPT0aVL6F4ZrGb1YwjihIxtcmOpRSuMybsWe0sZ1WS0oB73UMainLVZboVkkQSxeu07DVurT/qPHyxz5vISQijLXT9KiBL48k/sZaSY6fYbvHatgmsZDGQtzk7VePVqhYf2FtZNLLSUcffoR419rcrkLZ9CIcSzQohXhBCvzM/P9+Gwms3YigJhq239S02fmZrPcNEhkWoO58Rcgy+cGuXUeHnNTLOTocLKq4di1iZMZDrQwuPyfIM3b1SYrLT4kzducHIsT7UdYpuqjX315qFg7Q9u51jNIFJa8KJD3rEQOwjqvbimIGcZN/XgYuWH3zIN2kHMUroJa6SOib10G6Ck8ifvfdygGpFMcXNSkmMZDOUcyhkzlTQalLPWTb15T62/7kXIRNL0Q2peSJxIxoqu8kE3DY4OZ8k6JvsGsgzlHUYKDsIwGCu5fPmxcb7xX394zUlGv/T0YY6O5AG6MtGjI3l+6enDXflix0Uzkw6QDlI55OohGr2JhZYy7h79yNhvAAd7/n8AmFp9Iynlc8BzoAZt9OG4mk3YinJmdbkmjGMuzzf4ld9/E4HgwwdLzNdj/mZinlo7VHLCRCKEgx/G/O6ZaxwbLeDHko8fG+TyfIu5uqesBUzB69ernJ+urrh6ODGa59JcAy9MUhtcFaRsS00z+sNXJzk6kmW66tEM4ltq31lLIAxBc1V7/82bCaYqbSpt1VjjWKqtfo1y97YQQskoO7a9UvZsSKYa76xjUklVJfE65ZaOhbtAkncM2mHSfY62KVL/d0mcKA/3REqiRKlPDo7kaXoR7XQgtZNaAgtDYAsDwxDM1Hws0yBrGRR6vHrixGAk7wDqJJCxTR4/OMCvPvPQhqW5U+Nlvv6lk2te1XWy7o6LJqiafSljI9MEoJfexGInE7U0G7PjCUpCCAuYAD4PTAI/Bv4bKeU7691HT1C6c6z2UBEofXjny/k7P3yf8XIGQwgWGh6vXq10vU4cy2Ch7qu/G77yUUkSwhhKGQvLFGRti6eODpGzDWzLJIxjXr2qLsk7YvNjo4Xu7zsnkPdma3z33Cxx0rGYVV2OneC/0AgoZS1mq228VOnSKaeYQvmG99bHO34snYx4MGerckeiMnjHNKh6m3jkbkIns5Y9/7dN5b5oGIKCa/OTx4f587emVyh1toMhlOGWaQiG8w5jpQzvzTWQwNNHhxjMO7x2rcJUpY1tgGWaNPwQyzTZU3S6w7njRJ15yjlHlU/CmOV2xP/yzMm+DD/p0LniW2vSUr0dMTHX4BPHhrc0+UqzOXdsgpKUMhJC/Avgr1Cy2P+4UVDX3Fk6CoTeGvdQweqWXHK2Qd2LKGdtLs6py2mAYtbixGiev3h7Bj+d+pNISZyozFWVO9Rsz3JWjX2rtkMuzzdwUt2gH0ueOFTGsczu70FdPdkVa3gAACAASURBVFiGgWUaCBJMQ6TzN5VNwGzdpx3GeGGEn5YmLNMgSSR+ql8XUv28E9tXB9BKK8SxBEk6j9QLkw19WbZCJ1ivKDulUsKMbTFecpmp+1iGcnncTsrUu+b+coYTYwVeuVphtq5mk340bdcHeOLQALW2GnhxfCzPiVFVJnlnqkYYS4YLypqh17vHNgWfOjF8S4v/Tulk3b2zUR8/VMY2TUwz4aufO77iRKIz8jtDXxqUpJR/AfxFP9bSrM1OnRzXU8j0BtxqO+jOp3x0X4nRYobBvE0t/b1MOyBNoZKzJIF2oAJwlMCznznKr/z+myDViaGzhhpYHK247J6p+xwazLHQ8LsGVGEcc2O5TbvHNlekx/LCZEWgjJNbN3d6PdMldDN9I61Z77ASo14DUltcoRp0TEOwv5zh6z99sqsAma973FhsEW4jsktUPb7oWiw0A5J0E/kzJ0d5aWKei3NNhgtu14/nycODTMw12Ft0uTjXWLH5eWy0wHMvXcGxTD5+dKibKX/l6cN9eAVu5dR4md/8ucdWfEb3FG/KJft5ItFsDd15eh/QDz36egqZ3oBrCAOE4IlD5a6ZVyljU8rYuLbJxdk6dS8ilmoYdMG1sM3/v703D7Lruu87P+eub3+9Nxo7QBAUIIoUJUoyLIVWIkpm7ESONaMpT1kqzcQ1iqYqiccexZ6JquJxHFc5tmY0VZ5MRaxypjSSMxo7jmKPZFGi7MiUJZIyxU0gQIIgQKy9L2+/+5k/zn0XrxvdjUZ3A73wfKpYRAPv3Xfue69/55zf+f2+X4Oz4w0+eN8IJ8aqiwyKu3Tzqr1195/945cYLKiDtDBOsAxBGCW0E6VOmLNVdcjS6pOu0YQhUsPo3uC9QiBdWhHTbUSyzcXuSGslQR2k9hddDAM++uC+RU5Aw+UcjmlwZb6d1bqvJcYXbBPbFNS8CAG8fW8FQwju31fh6TfmeOV6nUeOuzQ85Uj08w+N8bUXxglj1TE6Vs3xnbPTfHq4lH2mr1yvUfciqnlrTd3At8Nyiw1tSr090FoxO4De1XY39dHt+Fwrq1XInBir8isfPs7/+l89wNHhUnZgV+uEafWEy56yS5QkFBwTU6juSyEEjgkXZ1qcSTtcuxUtq1U6dLtO//r8rKr1TmQm2CUEuLYg79gUHXUY1xsUpbyR247SVXtXkdEQa/tCd9M36025C1SnacMLmar7PPPGDE+emcSP1AWPDRcRQrC/L59WiqxukKEEx1RN/UJHaai/50h/NrkOlXK872g/YSwXdRm3A8lPHB3k7z2wl1P3DGUWhN3vxUzD49xkEz+MGSw6m9rZqQ0wtjd6xb4DuLbQwTbhmQt16l5IJWdzdLjAtYW1R6a1VMgsV6Xwa4/dB6jJ5cfXarQDZWumqmMSGkHCWCWXtYT/x+ev45iCVyfqCAQPHagu2llkXaeWoBPGGKhA2600MQA/klRykMvbGIag1qPh0g3yXo90QPeQ0hI3KlVu2ba/wbr2KFGaLq4puDLfwTYF3/zxJP1Fm6JjEcUxs80Qy1AlgIKIIE5uqpTp1um7pkneMbEtA9s0bpIicC2LD59cvCLuHnz3Us5ZvHJdTZwXppv0pVKUL16pZYJrm9HZqQ0wtjc6sO8AXFPw9IU5yjkrs5579sI8p9Lmn7Vwq9Ky7rb6zLgyRBBScnmuzZnxWiYE1Z0cqnmbcs7iqXPTNLyIh48o9b8wVrZpqnJGuSZN1j0ODuYXiYRV8zbXFzpUXIu6H2Uqjd3KFtsUzLdDDg0WKDgm7VTRccVVb5r3tw3wkhuWdJuRU+/S2zmaviTVnEXeNmmkNeNCwEJLMt9SPw8WbR480EfTj3nh8hyuZdAO4kwiwbVU52feMjBMgWUZPLi/im0avDbRZKDkrirwtrTBZ7rh8cr1eo9RScBIOZfqssP56RbvOzKwKZ2dumt0e6MD+w6gN6B0WU/r+UraMt1VdJIkXJ5tE0QJs82AgaJNrW1SsE0ef6rNpx85smhyCNPa9aGS+gU/P9UiimPGaz7VvE3JNemECf/mLy+wv7/Azz6wLwsIdS9krD9Pa6oFSZIGdIMgSig6JmEsmW0GtMOYOFat+kt1X5S3pyo3dG1VD56zhFJQ3MiSPGVpFU134hFCOSEVHCtTeSw4FmEc0/CjTOLWNASHh0q8OdMkkWAZBqYRKzExRKaHfmS4RM428aOECzNtHjpY5cCgElnrlqkWbIM/+Os3cU3V3h/EEtcUXK95lF2LN6abXJ5rYxoGBcegE0RM1n1mmwHlvE1/3s4m283o7NRdo9sbHdh3AEEsec+Rfi7MtDMdlhNj5TXpnKyF7ir67HidnG3S8CMcyyBMJC7wN5fmydsmv/FnZ/jNj57M0gFdNxyAmabHG9NN5loBBir4GanrTtOPskamy3NtXrg8TyeMKTkWlZzFXNrEYhqComviR5IwdT6q5kxqUikeLkUI1dTkmCafPHWYr/7wMnEiaQcxZtpuut63qHsY61qCKLrhXwpgSMg5Bk0/UuNMJFEcEybqHsquRTuMuTzX4S/OTiKlpJyzieKYWIqs47QVKEu+ThiTT12dvDDmL85OUXBMJhY85toBDS9itOIyUnZ45XqTKEk4NFDg2EiJlh9xcabFQjsk75j0F5Tcb8OLsvZ/P0y45nuMlN1Nk3a+m7LRmttHB/YdQHd1dOroYPZ3S1dLG6F3FV12lS63bQrqnYjZZkAiJZWcxXTDzwSePnHqUPbLPd/yeXWiAWk3pmlC048oYWEIQdExuTLX5vGnLrKn7FJvhySWZLym2tHNVIMkQSp3JFTZnxfFzLVCZcVmGUTBjZJHAzVxxLHER3J5toVtGQzmbGaaPl6oOlbbQXzbOxuAoaKjlBDjhIAbB5ymadAJEuXQJFUNPlLixTdkBubaIUbaRDXd8Gn5ESMVh7onEanpqWEIZALVgs1cK0xX/wmTdQ8/VF2lbzbb+FFM3jaZqHlcnG5RylkUHJOZZkAsm0gpqaaGGiVXHWiP1zzaaWdqql9AlCTYlpGdd2y0fFZ3jW5vdFXMDuBOa2p0K2YqORs/SnAsJe/aCaO0vlpQ9yL8SKU6Tl+vZ6u1Tz9yhPG6T5zAnmou7cSEME6YawXUvVClLoQ6bJ1s+HhRpFIurgVCcHy0hJEqE8aJREhJ049opzrsUays13pdgLr2dRKVknj24hxBEHF9oU0nUAJcYbRyUF9Ne13JGxiMlF2CpNsgJcg7yn4u5xj4CVhpkX2vUmOYCsmoxk9JJ4yxLIOFdoQhYKDgMlhyKbt2tqLOWYLpps/rUy0lxWCbxImk4JgYQskhxFIpRUaJKjWNpcS1DGZbAX4UU8pZykXKj/DDWE0spkCg3vwPHBvkxFhlUbPaRitautVUn//4g/zKh4/roL6N0IF9B3Cn7cG6E8eeiosXxrhmesiXKD2TRKqDwaJt0PRjgjhZVF1xcKDA333HHj50YpSTY2XCRDUvIVXwW+iEFGyDVycaeGHMSDnHUMmlmrd5+94KX//lR3jH3nLWWJSQ6tFw4ywhlnKR6JZrphrjlslQycEUAtM0GS276lAySmsne3BNkQX0W2mve2HCbCtACEElb/G2PWX29xdIpCBJ8+pRIgkT1VjU/UWS6QUc0wAEiZT8xJF+/CjBNpQZdyeIqXshBjDXDKh7EcNFh7xtYBmClh8z2wxSHR1l0ZckEkMox6I4UUHdtQyiWOJaJseGi/hRwlTDQ3QnItvi2EiJ/f15xmt+lv/ejPJZzfZGp2J2CHfCHqx3O563DQQGBwcL1DoRtU5AEMu02iWh5Bg4lkUnjDmQK2QVEN2a9BcvLzBQcggTGK04zDYDUjl1ToyUGG8EVHI3zBq6h4W1TsTZ8Ro/vlbHSQ8cg0gSSbko7dKtWTfTaJ93LCzTYE9FHdwWHJX+MU2TAwM2bT/kyrxHdy2tyiolpgFJrFImllA66ktjvETJ85I2YlULDgXH4up8G5AEkZp0DEMdosZysaRBku5Y8o7JcMllT7XA0SEljHZ5rqVs/AxB7xak7is9m04SY5k39F7CVM6hOxElQh0MD5Vs6l5EX95iqOTiWCbvPFDlW6cnMQ0D2xQMFG0KjpnpxHR3eLqiZfejA/tblKXdrN3Dr19Nt9RfePIcF6ebnJtqMt8KkMis9b/lR/z5j8fJ2yaf/9Y5xioutXZAvRNyebaVHoLa7O/PYRoGrSDBS4W45lt+lk7IOxb7+/Np16ug4KiJI1pahJ6WQhoCcrZK2YSJZF+fkqS9ONNitOIyVM5xbLjI+ekWQZTg2irVka36E1XlUnQEYaIOdjtBhBBikWRBt+lpuJKn5JjU0vfGD5WnZ1dWoCtrsJzQVyLBC2Js06DWCfnMB4/yH350jYlaB1AppyCtxbcMQcmxKDoW1+Y7WIZMD2TVAbItQBiCKFFSv4MFCz9S7+E/e+w+jg6XeOL0JE0/4t49ZcYqLkX3Zp2Y7sJAV7TsfnRg3yZs9DDrdq8/0/BWbTBRB6Ntjo+UOH1tgavzyj4uZwnmmj5+LJkKPa7Od/jJewZ4+HA/56daKrecSPoKJpdm2wRxgpHa29W9dioHoA5ULSNhtOxybaHD3r4c12oeedvED5MsWNppjkNlVtRkYBoJXhQz0ww4NFjAMQ2mmwHvOTyQaanUOiFPnZtS3bZSKUiSrqylFBwbKVF0TF64vIBpLG52cm3VJJSzTQo5m//+b9/Dl56+zNX5NmECRVuQIFY08Oiuw2OpzhW6abMfnJ/lRdMgZ6jn5m0TL4rpRDGX5toMlRz29ueYbvgUUfK3QkiEUOM92J/nes0jjCUfPjm66DuytAFsNZ0YXdGy+9GBfRuwmd6ky00QwE3X/975Wd5/bAC4sWrr3Y73qvZFUnB4qMh8y6cTJsy0AkYrSmKg7Ud865VJyjmLff0FBksO0w2Pa/NeZvgcJDfMlHO2UmlsB0oPfK4VMNsOmah71DvhokCpVs6qbtsxVfpFAkXXRKIOFJt+zJ6qy3Qz4Np8m+++ppqmHEspR46UHKaaQSZeZqFSGR99cA8/vLiQBrYwW6131YbbQcz1hTa1js25yRa/+dGTfPnpS/z56Ql1aIqSMF5J490yoORaOLaVfYZ+LLl3pMSl2TauZabqmJK6F+M46sDasUwGii7vOtjHC1cWcAyB61hZRdSx0TLjNW9FTZa1VKvoipbdjw7s24DNas9eaYLomkP3Xr+/YHPmeoOR+25sv5dux0+MKTGwv/O2Eap5m2+fmaDWDgki5avppSqMqmEm4dpCBz+ICWIVRIXo+mWmSo0STKGivZQJcy2fp16foZIzmW+pEkF65AAkNxqNbEMdlgLMt1V1UDl3QyL2/ESdF66oqo6Sa5JzTK7OddhTMTk6VGSy7hHECaYQDBQd2oHkwECBPVWXr788TsuPiJOuF2mSmn8IDvTns/ex6Ye873A/z11aIJHgWAZxolbt3Say7gGvYRgMlZxFRtz7+vKEUcyrEw3ytoGUAjDI2TBadZlrhSDh+GiJwZKLYxo0vYi377vxHej9jFYzil7pe7P0Ob/0gcM6oO9CdGDfBmzWYdZKE8SzF2d59MTi0sgTY2V+8MYctU646na8d2yVnM1EzcNAiVXJNLVhoFa5lhC00moW1zIyudwwUMFNCqjkbYIooelLwlBVd0w3g6yaZGkfUjc/HiYw31Ir7wS1Im50Qr7x8gTHR0t0gpi9fflFeeP5ZsBUM+Rte3KcGKvgRwkNL+LU0YHsvuZaMVF6mJmksgACyNtK6fLYSIkgUq5S3WD4viP9zLRCXpuok7OVNEAiZSayJoGiY5JIwUMH+rLxHB8t8qcvXMULYlp+hCkEOcfk/fcMMlpVY3/s/tFMlTFJJK0g4pXrdU6MSXK2lX1G69nlbWRneKdThZrNRQf2bcBmHWatNEEIRGam0SVnW3zg2GDWtr7Sdrx3bMdGipwdr9NM7epkz8raCxNMocw3uubTCQKZ3Di8lBI6flcMS8k0RumK1zSWN8/tpav7ZadyjqqMXPLaZIMgSugv2FiGUPXxwGDJ5tKcx+W5NoaAoaJL3jZ46WqNK/NtXMugkrMppY8P44QwTlKzZsloxebl9LE5y8A2oOlFvHy1lpUKCiHI2QYl1yZJOvipytdgyWF/fyHLbZ8dr/EffnSNKIFSzlLeoULtLroHrL3v/+W5Nvv7C/hRxJnrDX7wxhwfODaYBeEvPHnutnd5690ZbmaqUHN30IF9G7BZh1krTRAPHahmrf/dQDHfDvnAscFbrrx6xzZQdOkv2HSCCNMQxIlU9dtSHThapkHbi3BMVTFiGyCFyiPHUuXJO1FCEKmUSN42CGLl97mW1n/bUKkS0wSk0pVxbDNTdGx4EfPtEMcycEyDdhBRyala7rlWSMML8eKEkXKOfdUcVxc8ZpstxiouzUCVuBwcKDDd8Gl4EYmEqYaHaxoqTQPcU3U5fb1BrROqks0Q5lsh7SAmSg+Gj42W+DtvW3y4+cTpSeZaAYMlh312nnYQMVVXZxYTDZ/f/OhJQMk0/NlL12j5EUXXYqSc4/59FWxT2Qp2r7eeXd56d4ZboeSodwgbQwf2bcBmHWatNEF8+pEjAHzl6Ut8//wc/QWbn7xnAMcy+d0nXmNvNbfIB3Xp6+Ztg2cvziJQdeaPnhjhyrzHa5MN4kRim8rIueXHOKbAtUyKrslk3c9W4xXXUtZ6cYJlKgu8VqBW8wYrKzH2xvswTdP4oSRnq3r3IFbpj96JIYwTWqgdQn/epuFHDJYc5lp+1pDT8iNcS9D0YaLhc3iwSM42iaWkv+Dgxwk526TpRRjpgepQyeHibJvhks1UM2RvX56mF3JlvkPbj7l3tMQ9wyVM07jpfby20CGIEso59StXcCwODZrUvZCDAwWATIhtthmobt9OhG0E/OhSyEMHq4tkmtezy1vvzvBu173rHcLG0YF9m7AZDUi3miCG0oPQIIo5P91ipuEx1wq5WnZ47P4xLk43+ZWvTnBgMM/JsSrHR4uZ3dujJ0ZpeBHPvDGLY5l86MQorSCi6UXUvZAolmlQNxBCuQvNt9QhZ9G1VDekYZBIk1onIEwPWBN5+/K6EuiEy1WPK7rNTN0GpK7Ucd2LKDoG1+ZajDd81Vkr1O5CSrh/XyXLY/fXHJJEMtP0EQj6Cyp9MtMMsskrZ5vMNH36Cko5ESGYaPjMNYNMMK3bwn95rs14zWOuJRip5Cg4SgLAtUz29eUXCbHlbZPucWwziBguuZy5rlyquqxnl7feneHdrnvXWu8bZ0OBXQjxceB/AU4A75VSPrcZg9Ksn9UmiGsLHSxDmS64qR6MZcBkw+f8ZIOLs20QUGuHXJxu8pVnLmXys7YpGK3k2VNxeG2ySX/RZbik2vdLrsVk3aOcswhjiR/FXJlvk6AabWzTyFI3s00f2xKqXj2KsyadJFVSlAiSJGGVuL0iXUVGgdolWKZBLNVrTjVUY1TNi6l5N6YSI3182w/5ztkpRso5HjpQ5ehQEccyuXe0xPfPzzLbDDANld8PIolppLosUaL8T4Xk6nyHw4MF+gsWs02fx5+6yKMnhvnO2Wn2lF2mah3m2iFX5tqMlF2iBI4MFXns/tHMNKPuhRRdg/Gar6QcUAexfiQXaQOtZ5d3O8/pTYV05YEPDRbvSt277ozdOBtdsZ8GPgZ8cRPGornD7OvL893XplK7NqV5bhiCvCF46VotDdQGUw1PiX6FMU1PpSSCWKUIbNNgX7+q4KgWbOoddWBactUKtB3ElBwThKCeBu26F1JyldJjAiCh4Fo91SQBXqQEtExDpsYQN3IrplhbDr63Bl5KlR7yg4grnTDTd7npOahU0FQzYG9fng+dGKHhRVyZa5NIyaHBIiVHpWSCJGFvNcd0K0AgmGsFmEIQRAlCCFxLZNK7XS2cLz19mZNjFaVPn7N46WqN6/MqwP/0yVE+ceoQJ8aq2arYFIL5VkTeMvDihCSB6UbAqaMDNwXg9ezy1vKc5bqSDSEIopjxWnTH6951Z+zG2VBgl1KeBTKHFs325rH7R/naC9foy1tIKTGF6oAcLFpcXfCzQ81EJlTzTlZT3gkjogQ8CYKYph/ymZ86ymP3j/Llpy/xjR+PI4BOEJOzTRKg3g6z1w2ihLpUln6updQfBwoO4zUPmSQkUmAg00obpVzYG9qXC+qrGY0YQqkzWmkbPqxuldedbCZqHl/94WVKOYtKzmZfX45q3qYRxBwdLnJspMRwOcfrk3WevThPwws5NFBgvhNS70TsqSoRtVo6kTxzYYbxmsfRoUJmcv3oiRyJVN6lv/2xBxZ9No8/dZEwlW2wTYO8YTBQtIkTGCg6a/6cN8qyqZABdQ93w6xad8ZunLuWYxdCfBr4NMDBgwfv1stuO1Y67b+TVQC9167mlB5LmEiGyy5zTZ/pZqjEsRIlvhUlCVGcIKW8ybVIoHLS/+rrZzi5t48DAwXuGy1TT1e53eoUhEpzdCeHgm0iBPTlbRpelJYTOlycaRMnkn39OebbAXECxKqKRpJW1qDy5r2stoBXE4fNWF+e1yaa9OUNJhvBLS2nJEouOElr8k9fb/BPPnQvsFj//t7RCpZhcGGmlTUq5WwjFeUy0gYlgSsMcpbJ31yc531HRWZOvdzqs5sm+dU/eomBkpNp4g8UXY4OFzbFEWqtbHUqRHfGbpxbBnYhxHeAPcv80+eklH+61heSUj4OPA7w8MMP371v6TZiudP+z3/rHI4peGW8QX/B5uTe8m1XAXzj5Wv82+9e4HJqqvyeQ/3800fvXaS93X3NmYbH85cXqOQs9vblaVgGRpjQn3fwooTRssN0w+f8VHNZhyaJag6arAfMtacp52xylpLzDeMEP1TyupapZGVbfoQU4EUJcRpwh0sucx3VZVl0LT54vI/je6r8fy9dwwvjtJEoJG8rs40wlnSPE2+VejcEHBos8H/+4rsA+KUvPUetHawq09t7c0GUEEQBC+2Aat7my09f4pOnDt20gmz4EaOVHAcGlNLlpZkWL1xZWFT54seSdx/q49WJJq9cr/PIcXfV1eeJsSofObnnpjRErRMyUt4cU5W1sB1SIXdCzfStxC0Du5Ty0bsxkLcCS7e4XfPnhXaAZQouz4Vcne/wviP9jFTyK1YBfOPla3zp6ctM1j1MAbOtgCSBnK38P793fobpps9v/YP7F73mTNNjou4zWHTwo4S5VshCO+Qn7xng+J4qM02Pl6/U8NIVvSUgvFlo8YY+iuyaZ4RYAgqOqYywgbwhMpcjUNK/tmnwwP4+Dg0VswDnhxHnp1o8fWGOpq/0x0uucgTa35/nwkwLgaCcUxZyYaxq5ztp/t4UKtgWXQsviGh4MXnb4onTkxwfLXJ0oMAPat6aXJSingcJVJD/i1en+OSpQzetIPdWc9iWmX2WR4ZLAPzgwizDJZdy3uLteysMl3NUCzYvXakzXvNuufrcDmmI7TAGzcbQ5Y53kaVb3PNTLUwhafgR/Xk7rRRJePbiPB95u72obrnLF//qdf7Nf76gjC8ck4mm0k2v5Cwcy0wfJbgy18kCUfc1z0+10m5Li6Yf8+GTo3z3tSmu13yO74GhUo6C2+LgYJHxmqq7jnsUDA1urJi7Dj1h2o5vpPZ2w2UHP1QVI6YpKDrqK9YKJJWcTRgnPHtxjqYXEcYxc03VpBNGSRZY59shtgEXZ1pEsaSSMzGEQRxHaYWOQZgoLXKJyqX7YcxCW+0OOmHEE6fH+eoPAyp5m5Jt0I6Sm9I5K9E1+DBTTYQnTk/e5BD02T9+iYHS4l+fQ0NKMvi9RwYWrXZdy+LDJ0fXlJ/eDmmI7TAGzcbYaLnjzwO/DwwD3xBCvCil/OlNGdkuZOkWt+6F1FO97K59XLcMcWndMnRTOW+m2uWGMmJIRbjaobJHAyWW1Q7j7Jey+5pdT1M/SrLHLtWMmWn62IbBgX7VgRlGsXJNWkYjPY4lERLbEERJQicSvP/oIBdn2lxbaJN30sobIVQ7v2Pwwzfn2d+fp+SaXJr1qHuxanBCpXiS1PMuSkBGkpKrgnonjPBjiSUlJceiUHSo+RF9edV5OtsOiYGSbTDfCmilufKFtEN0JG/jhSrFk9yi09U0SA+WYwZKzrK55bV0+a53tbsd0hDbYQya9bMhazwp5deklPullK6UclQH9dVZ6l2q2t4T9qQ1zVGsDi1tUzDfvtnT9InTkwRRTMFRTUCWaWRWb3FP4A1jSS5tfOl9zbJrZd6lx4aLwGLNmPGax2DJ5fhoiQcPVMnbBokQ5B2DnCUwDJE1/vQV7FToShKkxhkH+wsMlBxiqfRW6p0QKSVj1Rz9RYdaqsqYs5XpchAr4wg/kuRsg7xtUnBNHFNgGGldOuq9aHiq5t4QBmEscR2Lk2NlEALHNjEMKDoGjqXKDVPJFoJI4oUJXhCrFbhQXa9dTJFa2/UUdpmGwLaUJruqjrk5t7ySD+0n0rTNnbIx1GjWgk7F3EWWbnHv31uh1glwbIs9jsVMM8CPY/ZUcrz7UP9NweDaQic1LVYt9QAFx6DmJenBnxLn8qKEt+0pZ5U13dfs1p13ZWEvTjc5N9nkwGCe4XKOX/rAYUC1ttumyaljgzz35jyTdZ+9fXmKjsVg0ebN2TYLqeZ5ITFp+TGGZTDfDvjTF66TpLZ2MvX8DGOlD9PwI8o5VWrpR0m68zBZaCeZ7m0UJ/iRen6EpGIqTZmGH6tuVUNimQLHNDCEwU/eM8TnP/4gD/+rJ5FSqpJNQ2CZyivUEOAYglaYYEQxplCTGUFEnEhM0yBJEiwhCKQyrq7mbBIpiaQqM1zONPxW6QodyDVbiQ7sd5mlW9wv/tXrPP7UmwSp0/xDB/roL7qLHG+67OvLc99omecvLwCqU1MIE9dMGKnk0rSG4G8dG8qqYnqp5h2GD7kI4Ox4navzhhCvvwAAGMRJREFUHe7bU+LgYHFRJc6NgBXxM+/Ym00Qn/3jlxir5tg3UOClKzUm6h7CEDi2wd5qnvF6hzBWFnM5S63I/VAy2/QYKudxLRPXUmWCAP0Fm3p6cBwlagLo7TgVqIqQ7m5EpM8xhGC2FdAOI07dMwRAJWcx2wyynL9pkP354GCeK/MenSCm6JocGMgjJTS8kNlWgJcILFMwXLAAQZgov9H33zO47Pu40mep0WwXdGDfQs6O13h1osX77xlkoq50WyZqPh9/ePmDqsfuH+XyXJt3HezjtclG6hRk8qsfOc4/+ql7V3yN5bxNR8su+/sLy+pxLD0o7NLNKw+VcnzohDqQ/eaPx1noBBjpQWrRtWgHMRJBJWfRCiIafszRYYsotpmqB5Ae/MaJRJgGJ/eUeX26STtYnPhWWjKqpr17mBknkk6kpH/bgcHxUZVSOnV0kL86N03UDgmTBMswyDsGRcfCiyRvG6tw73Axq2SZTss+9zsWlZzFWDXHa5NN9vfnefveqlYT1OxodGDfQnpLEbvlcrVOyLnJFj+7zON7t/9D5dyqjUzdkshXrtUASV/BYV9/gWPDRap5mx9enONDJ24czs40PV6fbDLZ8AGWve7SMrhLMy2uLnTY35ej7FpICS0/wjCEEgXLGwgsEmCsmuON6RaDZYdGJ2S+HSIJ2VNxObmvyn/3U0f55197hZavmpcMAEHWPWoakLcEnTDOfFMrOZPvnJ3m6HCJT5w6xETd58pcm/FaR2nY5CwOD+SZaAQIKXnxao3Zls9oOcfJvWWOj5Q4N9mkWrA5PFTiMx+8Rwdzza5AB/YtZD0dfmvZ/n/j5Wv8zjdfwxRKwlYImKp7qRRsyDsPVJEox58wjnnpilIfdEyDPVWXWidcUc63N6880fA50J/PDkMreYuFtmqnNwyBFybEScJoRa2GC45JwTapdyKqeTURdMKYvz4/C8DhwQLnpxoYsVqpAyqoCzBQ3p9mIik4Snisr+BQzdvZLuOzP32cJ05Pcma8Rq0TYSCZqAeMVhwm052Caxp4Ycz3z8/xt44N8oVfeFAHc82uQwf2LeROdfh96enLFF1l0qx8QgWJkMy2Au4pOJwdb/DQgT6uzLW5ONOi6YU4piCSkqYXMVXvcHm2zVwr4JHjw4vy7700vJDDgwUuzamJaLjk0glU52h/3iaSEtsyefehfqYaPvVOyKXZNlaqvNgN7GNVmxeuLPDOA1Ven2woiV+hUjuJhKKrjDOqeYf+gqVy91HCsZHiTQbcvUH6C0+eo9YJOTNex7WV8FlXAO2+ssvLV2v8j3/0MhLJQwf6+GQqyNWLNnzQ7ER0YN9C1tLht57AMln3GCk5qibdNGj6UdZS3/ZVPfgnTx3iy09fYqbpM9sKKDome4oOpiF46WqNoaJDECeZMQXAl5++RCdMsnz965MNzk+1OD5aYrYdEsaSPdUcrmXytrHKovF+4clzXJxu8tpkAzcN6t3KmJN7yzx7YY4z1xvYlkESxkonxjQo5yxOHR2klLM4P91itukzVHK5f1+FoZKSZVhpIuzuiJpeRMlVzVuuZTBZ7zBZ95hp+BwdLiIQPHthjvGax689dl/2/n7j5Wv8/l++QRgnDBYdwijm8afaunxRs+3RgX0LuVXJ3HqdZEYrOeqdUCkuhjG2qWzkAKabAT95j5KADWLJI8eHcS/O4YdKmVFKJYQ1WHSo5FRA7+bfX5tscHiwyP37KhjC5v59FZ5+Y47rNY9Hjg8vcmxaPj/fZrScY6ET0PQjvDDCtUy+8fIEiUwIwoSRsst03SdOfUMf2FfFNI2sSqj7fpRzVlY7vlLzT3dHVMpZzLd82kGsLOzSCavoWuTTzliEkuHtyjicHa/x+3/xBggyCYbXJpvcN1rShg+abY8O7FvMajnz9TrJfOrUQf7l189S6wREMQihZHD39eexDIO+gpKA7Qa+Y8PFrIRSStXc1PRj3rFf6cf86JL6N9s0kFLyo0sLHB0qMNsKkTLh2kKHH16YRQpBNa90Wrr3Bjd2HU0/xLaUf2iSyKz8sdt9myBxLJOBkkPLjxEoDZbjo8Vs8svbBuEadcG7O6K8JXi15mMYyn9VAk0/Yqh0QwrXtQwaXpSldZ44PUmUSAaKdmpYrVb84zUPO5Nu0Gi2Jzqwb2Nudbi6Uprm6HCJQwMFau0QQ6jDU8s0qORt3r63kqk2dgNfNW/zzgNVzo43WOhEvPtgH34ssU2TM9dr2WvvqeQQQjkcPXtRSQNUcja2aXK95vGug3031cTDjVX22/ZU2NdX4LuvTipJ4DjBi5Q8MKjD1qJr8eiJ0UyzvHeMveWaq+1aet+Xgm3weiukUrBIJOQsI3U9EjT9mKGyeo4fJTiWkaV1ri10GCja+FGSBXXXMphtBVntvEazXdGBfRuz2uHqammaJ05PcnJvFYTIUixe+v+cbWXX600FNf2ID943cpM+/GTDZ7TscmxElWM+f3mBhU5AnKjUjh8r/fZ2EPP9N2YZr/tZSWV35b5012GaRmYmYZtK1SJOVApopuEtus/b3bWcHa/x+W+dY6bp40cxrmUy2wr44H1DjJRV0J5uePzgjVlmGj6dIKITREw3Q3K2wUzD4+x4jX19eYIw5txUE6BnZ2Es24mq0WwndGDfxqx2uLpawOuu9AcLNj98s0kiJXnbwBCCvWn6ostKqaDev++dXN51sI9v/nhC6a3bJnurOX5wYQ5TSFp+zOuTDd6YavKew300fZXq6O46Zpoe56eUTHHDiyi5FnlH3JD7FeCFyaLcedcLtJfVSkK/8vQlLs60KKcuSH6U0Alinn9zgcfeoQL7cDnHA/uqXJxp0fAiZtsBe8o53n24D9syM6/Sy3Ntjo+UsuYxyxD8kw/dA6iKG10po9mubEgETHNn6a6olxOUurbQyQwdunQD3r6+PC9fmeeHb84TRDFBFFPrRHTChEdPDN9WELpJuMwyGa3keP89g5w6OshsO8QyoOnHmIYS8hLAMxfmcU3Bvr48DS/KcvVeGDNYdJSBdBDTCWKQ4Jgqj51Iueg+u8/vZbWS0Beu1Ci5ZlZbn7NNhks2Ew1/kWCXaRr87scf4KPv3MfHHtrP333HGCPlfDZZnpts8elHjnBkWEku/OwDY3zhFx7k6HCJx5+6SK0TLtopnR2vLTsejWYr0Cv2bcRKOfPV2vuXS9McHy3yf33/IoYQ5Owb7kZDJYcfnJ/lZx/Yd1tjWFq58/PvGuNrL4xz+nqdWickiJQ+jGupdYIhVGpFcmPXcWG6iZNKURqGweGhItMNn04YU3QtDg8VOTJY5MhwaZFu+e2aPkgkAkE7iJhrBWlJpVJ+rObtm6qPVtsRLPfef+HJc+s60NZo7iY6sN8B1lN7fjuljWfHa8w0PL53fpb+gs2JsTI527opTeMFEbVOlMrPmnSCmO+dn+XseG3F/PRKY+gG2+5jshRFM8ALY0YrORKU65Ah4OBgniCWi7w8kWTOQgDPX1ogTBJ+5h1jWcBemr++XdOHhw708dS5GZp+pOR/0/TOQMFe9nO43SaxrfYD1WjWgg7sm8x6a8/Xekh4drzG7z7xGnOtANOAiZrHRN3jQ28byV6juwq9NNuiv+BgmeJGl2fBXnF1uZYxLNW3OTZS4s9PT+CFCUeHi/iR0mIfKjpcnmvz2T9+iX19eR460IfTYyUHcHy0xETDv6Vl3O2oKH7y1CF+cH4G0xAkgIlgoGDzwP6+Ze/7dncE28EPVKO5FTqwbzLrrT1f60rwy09f4vJsm1LOYrjk4ucSmmkOunv9bkXHq5MNcpbq8gwi5WR0Yqy86Jq9u4sz1+s8eKAC2CuOYek4h8s5fuJIPz94Y465VshA0aYvb3FhRqlQdie3ybpPIiWHBotZADVNg9/86MmbJq5b7XZWe8yJsSrHRsvUOyFNX0khHxsuMlhyl11V3+6OQPuBanYCOrBvMuvdqq91JfjClYXscBBQ/5eSF64sZI+50eWpBL06oeq0fO/h/qzc8ex4ja88fWlROsc2Bc9emOfUPYKhUm7ZMSw3zj3VAn//AZehco5rC51MWvjwkCqRrOZtGCgQRvGyee4ua9ntrOUxb99bvWmMb840Ga/72Q5i6WSw1h2B9gPV7AQ26nn6e8DfBwLgDeC/lVIurP6s3c16t+qP3T+apViCtFlmoOjwa4/dt+hxAsFSu06Z/n2XbvDpBu6x6uI8/HsO92UHmn159RV48UqNI4MFznlNTl+r88hxd9nV6Eor1t7A2jXk6KWcsxivRasaOt9uKmilxywd4+XZFs9fXuChA323lR5bCW2wodnubLTc8UngfinlA8A54H/e+JB2Nit5Ya6lqcUQKjjLNHR3f+7loQNVmn6MF8ZIKfFCZTb90IHFgebEWJXf/tgDfPGT7+KD940QJWRlhOcmW1TzNkGcpE1LqrV/th3yniP9BHGyol/naiWYXW63RLHL0hLO6YbHmes1/tOL1/jCk+c4O15btcxzpTGO130eOtDHkeFSJmrW20Cl0ew2NrRil1J+u+fHZ4D/cmPD2fmsd6v+xOlJDgwUuH/fjcfVOuFNufmuocRM06fuhbiWyZGhIp9YxkqvO56lr909XK3k7Kwj1bUMml5Ezrb4yMk9y66su7ntZ96Y4cpCByTsHyhwfLS46DXWm4fu3e10HY6ALKX0+FMXlf+pF91yR9R73yvtIHQli2a3spk59n8I/L+beL0dy3q26mvNzZ8Yq2aGEuvtfMzEv0aKmcAXUmKbYkXZ4DPjNa7Mdig6gten2pmg1nTD43e++RpAVh+/3smtd0I4n7byA9w7WsoCeRjF1Dph9v6sZdLQlSyatxpCyqUZ2yUPEOI7wJ5l/ulzUso/TR/zOeBh4GNyhQsKIT4NfBrg4MGD77506dJGxr0utqtpwtnxGr/xZ2cyrfFjI8VMa7yat1fNS6/39boHkH4UceZ6g/l2yAeODS4ym+h93JnrNepexKXZFo5pUMpZRLHEMgXlnE0lb/NH/+jUpoztidOT/KcXrzFadrl3tJQd5HaFwX7pA4dv63PsvY/uZHBptrWsQ5RGs50RQvxISvnwLR93q8C+hhf6FPAZ4ENSyvZanvPwww/L5557bkOve7ss98t9K5XAuzmuOE44N9kEoaRz37anjGEYd2x8a5nkug5E1bzNt89MUHYtXryygG0K+gqOKqOME44MFphqBvzVP/vbmza+3tfuspGJrvd+HVMwWfc5MFDYVt8FjeZWrDWwb7Qq5jHg14GfWmtQ3yrWW19+p/nK05e4MN0kiBMsUyAEdALJeN2/qcZ7M1lLuqg3PdTNxzuWIIjUYiBOpNIx91XnaZfN2Bltdr147/1+4clzi5qltst3QaPZLDZaFfN/AGXgSSHEi0KIf7sJY7ojrKWa4m5zdrzG987PIqWk7FqYhvL5fM+RPg4OFLY8yPRWtxwbUV2lFVcFwZYfE8YxjmXQ8iM+deogcGMHslGRrLVU36yX7fhd0Gg2k41WxRzbrIHcabbjAdoTpyfpL6jx9Lr0nLne4IP3jWzZuLo8dv8on//WOV5Itc1lAo5tcnykxFwnBKk6Tz916mB2cLqZO6M7VS++Hb8LGs1m8pbpPN3KVvCVUhPXFjrsqbg8d2mBREpytkHJtfAjuW3MHJL0DEYgcB2DvcX8IsPnpewEkSwtC6DZ7bxlAvtWtYKv1gLvmILzUy0GijYtP6YTxnSCgFNHB7YsDdM7CV2eazNWcXlgf1/278vV1veyE1bDWhZAs9t5ywR22JpW8NVSEwIlB1BwLPoLDn6U0PAiBorOyhe8gyydhF68vECtHVDKWVnJ4a1W3ztlNaxlATS7mbdUYN8KbpWaeN/Rfi5Mt6l7IZWczcm9Zfx4YyWo62XpJDRQcqh3Qs5PtRaJgrmmWNEaTq+GNZqtRwf2O8zSNvnz0y3mmgEDJYdjw0Ucy+Qnjg5mj691QkbK9ipX3Dir5fx7J6Fjw0Wev7TATFNJ7ja8iCtzbWVEbZkrCmrp1bBGs7Voz9M7TFcU7OJ0k+cvLVDvhJgGjFVcJus+l2Zb6xIMWy+rlSMuFe8aLuc4PlpisORmJYejFZdDg0WqeVsLamk02xQd2O8w3dTERMMnTBKqeZuHD/dzeKjEgYECe6u5O1KrvRK96ZalgXk5ZcquGcbnP/4gv/Lh4wSx1DXgGs02R6di7gInxqocHCjwviMDi6R416JRvtmslvNfS358J1S9aDRvdXRgv0tsl4B4q3HcKj++U6peNJq3MjoVc5fYiAHHdhrHnWz112g0m8OG1R3Xw91Wd9wucr23O447Ne7t8n5oNJrb467J9q6HuxnYt0KudzMC53aVGdZoNFvHWgP7rk/FrFYFcifYLHXDuz1ujUaze9j1gf1uS7RuVkDW0rIajWa97PrAvrTpBu5sNcpmBeS7PW6NRrN72PWB/W5Xo2xWQN4uVTQajWbnsesD+90uz9usgKzLCjUazXrZ9VUxW4EuJ9RoNHeCu2Vm/VvAzwEJMAX8N1LK6xu55m5AqxtqNJqtZKOpmN+TUj4gpXwn8HXgX2zCmDQajUazATZqZl3v+bGIMgTSrIJO02g0mjvNhg9PhRC/LYS4AvwiesW+KpvVvKTRaDSrccvALoT4jhDi9DL//RyAlPJzUsoDwB8C/3iV63xaCPGcEOK56enpzbuDHYTuJtVoNHeDW6ZipJSPrvFa/x74BvAbK1znceBxUFUxax3gbuJW/qcajUazGWy0KuZeKeXr6Y8fBV7d+JC2LxvNj28XTXaNRrO72WiO/XfStMzLwEeAX96EMW1LNiM/rrtJNRrN3WCjVTH/xWYNZLvTmx8Hsv8/cXpyzav2tVjPaTQazUbR1nhrZLPy47p5SaPR3Gl2vVbMZqHVFjUazU5hR63Yt7K5R5s4azSancKOCey9VnG9h5d3S/FQ58e3J7qTV6O5mR0T2Dfj8HKj6Pz49mKrJ3uNZruyY3Ls2ipOsxTdyavRLM+OCez68FKzFD3ZazTLs2MCu27u0SxFT/YazfLsmMCureI0S9GTvUazPDvm8BT04aVmMbpSSaNZnh0V2DWapejJXqO5mR2TitFoNBrN2tCBXaPRaHYZOrBrNBrNLkMHdo1Go9ll6MCu0Wg0uwwh5d23HxVCTAOX7uBLDAEzd/D6dxN9L9uX3XQ/+l62J0vv5ZCUcvhWT9qSwH6nEUI8J6V8eKvHsRnoe9m+7Kb70feyPVnvvehUjEaj0ewydGDXaDSaXcZuDeyPb/UANhF9L9uX3XQ/+l62J+u6l12ZY9doNJq3Mrt1xa7RaDRvWXZtYBdC/JYQ4mUhxItCiG8LIfZu9ZjWixDi94QQr6b38zUhRN9Wj2m9CCE+LoR4RQiRCCF2ZOWCEOIxIcRrQojzQoj/aavHsxGEEP9OCDElhDi91WPZCEKIA0KI/yyEOJt+v355q8e0XoQQOSHED4UQL6X38pu3fY3dmooRQlSklPX0z/8UOCml/MwWD2tdCCE+AvyllDISQvxrACnlr2/xsNaFEOIEkABfBD4rpXxui4d0WwghTOAc8GHgKvA3wH8tpTyzpQNbJ0KIR4Am8H9LKe/f6vGsFyHEGDAmpXxeCFEGfgT8g534uQghBFCUUjaFEDbw18AvSymfWes1du2KvRvUU4rAjp3BpJTfllJ2rYKeAfZv5Xg2gpTyrJTyta0exwZ4L3BeSnlBShkAXwV+bovHtG6klE8Bc1s9jo0ipRyXUj6f/rkBnAX2be2o1odUNNMf7fS/24pfuzawAwghflsIcQX4ReBfbPV4Nol/CHxzqwfxFmYfcKXn56vs0ACyWxFCHAYeAp7d2pGsHyGEKYR4EZgCnpRS3ta97OjALoT4jhDi9DL//RyAlPJzUsoDwB8C/3hrR7s6t7qX9DGfAyLU/Wxb1nIvOxixzN/t2N3gbkMIUQL+BPgfluzadxRSylhK+U7U7vy9QojbSpPtaAclKeWja3zovwe+AfzGHRzOhrjVvQghPgX8PeBDcpsfjNzG57ITuQoc6Pl5P3B9i8ai6SHNR/8J8IdSyv+41ePZDKSUC0KI7wKPAWs+4N7RK/bVEELc2/PjR4FXt2osG0UI8Rjw68BHpZTtrR7PW5y/Ae4VQhwRQjjALwB/tsVjesuTHjj+AXBWSvm/bfV4NoIQYrhb+SaEyAOPcpvxazdXxfwJcB+qAuMS8Bkp5bWtHdX6EEKcB1xgNv2rZ3Zwhc/PA78PDAMLwItSyp/e2lHdHkKInwH+d8AE/p2U8re3eEjrRgjx/wAfRKkITgK/IaX8gy0d1DoQQnwA+B7wY9TvPMA/l1L++daNan0IIR4AvoT6fhnAH0kp/+VtXWO3BnaNRqN5q7JrUzEajUbzVkUHdo1Go9ll6MCu0Wg0uwwd2DUajWaXoQO7RqPR7DJ0YNdoNJpdhg7sGo1Gs8vQgV2j0Wh2Gf8/rBT48b+jtE0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9a4xl13Xn99vncc+573p2dfW7SarJJmlK1JCSaHtkR48xbQ3GGAOGHUCOPxhQ4CQOooxhOJ4PhgdJkDGMIQaKA4QZDeKRB+PYE/kRy6ZMytZoJFGU+Faz2yz2u7u63lX3fd5758M+99at6urualb1k/sHEOyquvecc2/dWnuftf7rv4RSCoPBYDDcu1h3+gIMBoPBsDNMIDcYDIZ7HBPIDQaD4R7HBHKDwWC4xzGB3GAwGO5xnDtx0omJCXXkyJE7cWqDwWC4Z3nttdeWlVKTm79/RwL5kSNHePXVV+/EqQ0Gg+GeRQhxYavvm9SKwWAw3OOYQG4wGAz3OCaQGwwGwz2OCeQGg8Fwj2MCucFgMNzjmEBuMBgM9zh3RH5oMBgMHyROzTV54cQCs42A/SNFnn18iuPT9V07vtmRGwwGwy3k1FyT5791jmaQMF33aQYJz3/rHKfmmrt2DhPIDQaD4RbywokF6kWXetHFEmLw7xdOLOzaOUwgNxgMhlvIbCOg6m/MYld9h9lGsGvnMIHcYDAYbiH7R4q0w3TD99phyv6R4q6dwwRyg8FguIU8+/gUzSChGSRIpQb/fvbxqV07hwnkBoPBcAs5Pl3nC588Sr3oMtcMqRddvvDJo7uqWjHyQ4PBYLjFHJ+u72rg3ozZkRsMBsM9zo4DuRDCF0J8XwjxlhDiHSHE7+zGhRkMBoNhe+xGaiUCPqWU6gghXODbQoi/Vkp9bxeObTAYDIYbsONArpRSQCf/0s3/Uzs9rsFgMBi2x67kyIUQthDiTWAReFEp9coWj/mCEOJVIcSrS0tLu3Fag8FgMLBLgVwplSmlPgIcAD4mhHh8i8c8r5R6Sin11OTkVbNDDQaDwfA+2VX5oVKqIYT4JvAscGI3j20wGHaXW+3IZ7h97DiQCyEmgSQP4kXgM8C/3PGVGQyGW0bfka9edDc48u12o8q1zm0WkN1lN3bk08AfCCFsdKrmj5VSf7kLxzUYDLeIYUc+YPD/F04s7Cio3ihI38kF5H5mxzlypdTbSqknlVJPKKUeV0r9i924MIPBcOu4FY582/Hdvh2Wrh9ETGenwfAB5FY48m0nSN8OS9cPIiaQGwwfQG6FI992gvTtsHT9IGICucHwAeRWOPJtJ0jfDkvXDyLG/dBguE+5UeHxeo5870dZ8uzjUzz/rXOA3om3w5RmkPALTx/YcM4vfPLohmP/wtMHTKFzhwjdYX97eeqpp9Srr756289rMHxQGFaHDAfV7ey6d/rcm10AtvMcI1nUCCFeU0o9tfn7ZkduMNyH7EReuJPn3qzv9nbkiEayeGNMjtxguA/ZiTrkdipLtqN0MZLFG2MCucFwH7ITdcjtVJZsZ9EwksUbYwK5wXAfshN1yO1Ulmxn0TCSxRtjArnBcB+yE3nh7RgW3Gc7i4aRLN4Yo1oxGAx3FKNa2T5GtWIw3AZMwLl5tqN0udVT6O91TGrFYNgltmMaZTDcCkwgNxh2CSOTM9wpTCA3GHYJI5Mz3ClMjtxg2CX2jxRpBsmgExLubpmcyeffP5gducGwS+xEJndqrslzL87w63/yFs+9OHPL8+omn39/YQK5wbBLvF/99Z0Iqrc7n3+7F6oPGia1YjDsIu9HJreb8zO3my6ZbQRM1/0N37sV+fxTc02+8vIFvn16hdGSy6P7qsb06hZgduQGwx1mt4qkN7Ozvx1t7/3reedKi9Gifn1vXGySZJlR8+wyJpAbDHeY3QqqN5Mu2Wnb+3ZSJf3rSTKF59r4ro3nWJxe7Bo1zy5jArnBcIfZLS+Rm9nZ78RPZbs7//71VHyHKJUAeI5FK0zuajXPvYgJ5AbDHWa3TKpuZme/E+nhdnf+/et5aLJMlErCJCNMMgq2ZUyvdpkdFzuFEAeBfwfsBSTwvFLqX+/0uAbDvcBuabF3w0tkOzMz+9e8k4k72y2U9q+nXnT5yME6p+baNIKUf/jQOJ9/5vCGCUBGz74zdmNHngL/TCl1HPgE8N8KIR7dheMaDHc1d5sWe7s7+51KD7e78x++nlTCTz68h//zlz7K//JzT1w1xu1ueQ/vVXa8I1dKzQFz+b/bQohTwH7g5E6PbTDczdyMbPB27Tq3s7PfqfRwuzv/7VzPbkovP8jsao5cCHEEeBJ4ZYuffUEI8aoQ4tWlpaXdPK3BcEfYbnHxbtt1vl+VTF+p8uVvn6fkWsRptuPBE8afZnfYtYYgIUQF+H+B/0Ep1dr8c6XU88DzoAdL7NZ5DYY7xXa9VXZ717nT3f3N7Kj7fO3tWb70t2dIMsl4ucB03ceyrB039dxr/jR3K7sSyIUQLjqI/3ul1Fd345gGw064HamM7QbEnaYyhl+LZwuuNEMOj5ffV6Gyf6xOlDDbCKj5Do/tq/MLTx+45vNPzTX50jfOgIDxcoEolby70OHhqcqOUyDvZ1ExXM1uqFYE8GXglFLqX+38kgyGnbFTVcZ26RfzhoNs0bX48rfPb1g89o8UObfUYb4d0QlTKr7D3qrH0cnKTb+Wb80s0QlTvSMW7obdff//11q8ho/1yN7aIGjeaJF74cQCqVSMlV2EEPiuDcBcM8R17J28hVe9h/tHitddVAxbsxs78h8Dfgn4oRDizfx7v6WU+qtdOLbBcBU32m3fzgJav5g3HCTHK86GxePYVJmvvn6ZsudQ9WxaQcJcI+CntqGj3vxa4kxS8WxOL3WZrOpdftV3ODnX5OJq77qL1wsnFsgyycm51oYF5Ubvy2wjYKzsEqVyEMQ9x2KlG/PMgxM7fQvNGLddYMfFTqXUt5VSQin1hFLqI/l/JogbbgnbKRzeiQLa9SR9MwtdPnpohHrRpRNrn5GPHhphZqF7w+Nufi0130UBnaFipd5ZpzeUFL5zpcnMQocoyah4NlGSMbPQ4Z0r1y+67h8psrfmD5p6lFK0whTXtkxTz12CcT803FNsZ7d9JwpoN8qDHxovc2RiPZUildrWwrL5tTy0p8zLZ1ZxbcHLZ5ZZ6ca4tkXdd264eLXCFASDXbXv2kSp1N+/DjqP3ePYngrzrZDVboJjCX7t0w/eMndGw81hArnhnmI7hcPdKKDdbMC50eLxfheWza/FtW0mKgUWWyGrUhcf99Z8ZhY7XFjubsi7bz5HvejQ7MWESYbnWESpRClFvXj9MHB8us5njk/yBy9fZKEdMVXz+eVnDvG5J/bf8PqH2ZzvP7fU4Yt/NM/B8SKPTtc5NlVmZqFrgvz7wHitGO4ptqOB3ql3yfvRfV/P+GonplhbvZaH9lT4yUem+NwT0zzz4ARHJys8PFVhZqFz1TmOTZX5ra++zU//62/xxsUGYZIhpaIdpfiuzSN7qzy6jcEXL51aYm/VY6rqsdqJ+dI3zvC1t2e39X72Gb6bWulEzCx2QECzl3BuqcP/9tfvcn65c1do7e81zI7ccE+x3d32Tgpo10rf/OHLF5io+lvuGG+kvhj+WS9MmFns8IvPfw/XtvjY4VF+7TMfuub1bn4tv/4nbzFecVhqh5xe6urCpWczUnKoF93B+Z8+MsJ/fG2Wiys9Kp7NaNFhrhWRScU/PDaB5zhbLiib70aW2iFZJplZ7OA5FmNll1aY8qW/PcMDk5Vtv8/Dd1Onl7p4joXnWLSjFNoRZc9hvhVxZKJiOjxvEhPIDfcUt0OutlX6JkpTvnN6lU89sueaqpDrLR79n33t7Vn+xV+eIogyfFeQKcW3Ti+z3I35nZ99bFuvoy9nnFnskElJN8qYbaQ4lsUvPXOYL372GADPvTjDajem4jv4ro1fcEAIWkHKW5dafPbRqaveu62km98+vULV017i/fx6zXdY6cY3FWiH00/9xSdKJTXfpR2mWtETJoPHmw7P7WMCueGOc7P56FstV9sq333ySpvR0s4ljX/w8kWyTFEs2Di2wAUEggsrvW0f69nHp/jiH80TJintKEMAthDUig5f+tszAMwsdPmzN2fphilTNQ/yADxaKmBbgkf31QYBf5it7kZGSy4XV3p8aGo9/x6lusPzZgLt8N1UxbMHRdbH99d4b7FLy3R4vm9MIDfcUW5X8861zr3VArJV+matl/CjD45teH5fv/3cizPbXoQWWiFKKWzLIs7lfEkmUTCQAd5oYTs+XefgeJF3ZlvEaQaAY1tEiaQbJXzpG2f4xIPjTFU9zoYps82QA0JQ9vSAB8+xrxkgt7ob2Vf3+Pv5Nu8utCkXHMqeTZopXNuiHenXv53C5PDdVK2o0zMPT1UYK3vsrabMNQIenqoglTIdnjeJKXYa7ii3e5p7n/4Ccm6pw8WVLl97e44v/tFbfO3t2S0LjD/+0Di+u3Hfc3Gly6WV4KaKolM1HyEEYZLRiVKk0rZDlhBcXgv42tuz2yq0PjpdxxKCgmNTKtgUXb0wtEN93HrRZaJSIMkk3TDh7HKH1U5EO0yZqHjXLLRuLiYvd0LeXeiyt+ZhC0EnSllsR3SihEwqPnygflOFyePTdb742WP8m19+mud+4cMcmagw1ww5OlnhN3/64cHXOzHi+iBiduSGO8rtmua+mX6X4/UKeFvljvvX1w5T3l3ocGyqcsN0y/AOe6LkchpFJ0qxBGRAJmGy4vLwVIU/ePkij07XbnjMZx+f4g+/d4E4zYiANFMIAaCQSrHcCTm73GNv3We+GdCOMs6v9jg8VuLnPrrvmgFy893IidkWAvixhyYQAk4vdplZaGMJi48/MDboLt3qGm/EVimyz2372YZhTCA33FHulPvdbCNgvhVuu4C3VZH1wGiRkmfz8tmVQcv7AxMlOlE6CN4n55pcWgk4NlXh8ESZtufw0GSFU3Mt4kxiITg85vPxB8cZK3u8ebnJx4/qFM5yJ+T0YpdmEGMJa5C+6B87k5JOlOFYAs+xcGxBN9/ln17UqpBMKoSwmKw4TNU8hBC8dGppg9pkcyrnM8cnB3ruOJM8fXR0ELAnKj7NIEYgNgRxU5i8s5hAbrij3Cn3u/0jRd682GCsvL6A9At471zZmPfe3KjyKz9+hOPTdX7rq2/zytlVKr4zaHn/wbk1jk1VBnn/Zi8BATOLHSq+w2TV59F9dRCC6ZrHfCuiFSacXuyyt5YyVfNphylJlvHahYaW6NkWCMHz3zrHZ45P8tKpJepFl1LBIcsUqdK78UwqbEvQDBJmGz2maz4XmgEImKx6+K5NO0+79BerrWoUL51aGqQ1nntxhmaQbHjvvC2Mskxh8s5iArnhjnKn3O+efXyKr5+YpxWm1PIp71EqGS06XF4LODBaYrruc365w1dfv8yTB0c4PFGmGST87gvvUnQsvnt2hV6cUfEcRksOnUjSCmKuNAMmKh7TI0Uur/UAQZBkfHNmiZ88Nsl4xcNC8frFxsBIqxkkXGkEfP4TB/ne2TVOXtE79oJtUXQtfvShCQqOvSH14jkWkWtjZZIozah4LgXHwhaCIJbMtyKkgv11n7LnECYZNd/dsHu+keXBVgvtRMUbNB0Z69m7AxPIDXecO+V+N1F1+cH5BkoqakWHx/fVmG/FPLx3Pe8938obVdoRRycrxGnGe/NtOolWi5QLNu0wYa2XYAsQAhKpuLwWMN8MyBSUXIuq7xLEGa9fbHBsTwWJ4MmDIwNr21rR5dieChdWAiwh8rQLKBR58puq73BxpQtK0YkyokxSKlis9TKkAs+1KBVsRsse0zWPty41sIXgSiOk4MQUCzb7R7QVbpIpnntxhneuNDk+XdvwvgwH+i0X2p/SskVjPXv3YAK54QPHqbkmv/f1Ga40Ig6PFWkECb044/xKj70jRQ6NlwePbYUJVc8euA2eXuqSSIlAS/7aYUoi9WNTBeSzrxSQ5t/vxRLbyih7+s9tZqHDgbEihyfKHJ2sDDo031vssNSJ+LEHxzk2VSVMMnzXJkyyQQdnkqnBXUQ30kqXTIEAVjoxsuTy9JExpFKEmaRWdFhohWRSECUpb19uUXAsPv7AKM0g4fJaQMm1r+vRcq2F1gTuuwcTyA0fOF44scByJ6KadzyOlj3CfIctlQ5k/R15zXdpBgm1/OtOmBJnCltAkkmSTF7zPIpc3yu0j/ioI6j5DvWSy6PTWrYXp3qX7jkWri3IpOLv59s8OFnm7LLOTRdswWonptVL+JH9NeZbEQutkCsNHcT75wpTyUIr4j/NLJFm+i7jZ35k3/pCMd/GdTJ+4uEJJiq6UPnwVIV35zuMVTyTJrmHMYHccE+xUxvUU3NNXjy5wOW1LhXPZbxSoFRwtOdHmDJZ9QbFvarvsLfmcaURcGxPhcV2wEpHp0KE0N2UNxo+KwFLwVTN42c/cmCg0Onnns8udfBsnTqJM8WB0SJJpljpJjwwUeKty01aQUq16HBotMiPHBihtNjm795dGtwJbD7fcjvEtW2KBZuldshk1Wey6tMOEhRqEMRB2+v2kmyDR4tJk9x7mEBuuKvZ7XmVz3/rHK4tBl7cVxoh+0b8vLnG4rF9usDXP+eRiQr/6LEpvnt6hf98eoVa0SGTGSvdlOSGYVwj0UH/m+8ustZL+PGHxgFtpPXP/vhtgjghypSWEFq6KNkJE5o9l6rvUvEcHtlb5d0FbVW70k3ylIvc8goSCcemyiRSbZgkVHCu7v9rhymP5k06hnsXE8gNdy3D0rh2EPPXp5eJUsWJ2SZPHR7l2F5dpBvWfW+1Y+8/5m9OzlOwLaqezflU0YsThIKZKMHNv//eQusqmSFo75JPPbKHetHlpVMLdKIWcaZTMTfCErDQirAsQdW3+f65NV6/0ODXPv0gTx6s8/LZVSYrzsAjPEl1yiZxJRMVj4f2lAe76HfnOyRS4jvWNZcR17Z44mCdV8+vsdqJBy3vY+UClhCcX+4w1wwHQyl+7VMP7uwXZbjjmEBuuGvpS+MWmgEvn10lyRSuBe0o4TtnVgB4aKo6UFhspYn+va/PIJXi8HgZFPSilHPLXUZLLgJdOFSpYqJsI4TN3893BoXA4d3+cAdqEKeDoAv6j2irGTsi/79jCcqehW1ZOJZFuWwNukiPjpcQQBBnLLbDwS67XLD5mR+ZxhJicLx+GqQZpHSja0/1Kbk2ExWfR/ZWOb3U5aVTCwgETx6sc2i8yJ++Pkcq1WAoxeYGIcO9h/FaMdy19OdVvjXbpGBr72phCQSCgm3x1mxzg8JiK9+W5U7EajemXnSpFl2auU3qajcmztMZo0UHJSzGKwWqvsPZpR5JlnF2qcP/+Mdv8dyLM3i2oB2mLHdCmkFKnGlDQQuQQu+6h7EF+K6F7+oiZjfOBl2kQuiiZ5JJzq/2eGhPmZVuTJhIiq7NZFnbul5c2TjTs58G+Z1/8igjpQJFR7DptDhWPgkoSGiFKXtrPh8/Os6nj+/BdWz+9I05jk1VNgyluB3eNoZbi9mRG+5a+u373Sij5FpYlk0zSHEsgWtDO9iosNjaRzxDIFhqh/SilNWunqBj5cVKcr+TVpBwIF8QltohzSChYAtQekzbuwttrqwFrPYSMinJFNhArejQi7XixXcs2lGGQqdc4lQyWS2QZBDk49XWr0t3kXaijPlWxIHR4sAqIEwypoTg3YUOo+Wr1STHp+scGC3SChLa+cJkW3rB6EQJnTjjlXMr2EIwUSlwaq7FYjskSiWNXkwrSAZdpnDt9nozX/PewQRyw23lZoJDX9nhOxZJJrEt3eXo2hbdWFItOhsKnVv5tniOTS9O1yV+FkSpLkC6FhQLjm7ASVPOr3RJMkWU67cVUCrYLLYC5hsh7ShFobCEIJUKlcfletElySSeY9FLMhwLHMtCCEGSwZ6Kw9mVlDcurmlJohCUCjYfOTjCh/ZU+M+nVxgpOiilBh2mTx0ZZakdX1NN8ti+OiXXHph+eY7FUjsiSiU/+sA4hyfK/Nkbs1xY6TKWLxgAWaZohQmvX2zw0UMjTFZ9Lix3mW9H/PqfvLWhrnCn7IUNN48J5IbbxvW8x4EtA/wXPnmUME75T+8tU3IF+0d8MqXNoX7zpx/eYCL1zpUml9e0p/Wh8fKgnfzMUoxt6WBnWRaQYQtACO0FrhQopfPTUgfTJJM6YGeSv3t3CdcWOLZFreiSZookzegmGQXHYqTo0ggSglSyr14kzfSOPVOKNJOcW+lRsCy6GSgFGYowzfj7+TY//5S+mzhxpUU7Sqn5Lo/vr+HaNo/tK15TTbLVZPtWmPLRg/VBc0+UZMSZ1Iofx6LsORQL9iC3f3qxQydMeeOSDurDv5Oia123dd9wd7ErgVwI8W+BfwwsKqUe341jGu4/Nvt69PPQ/82/fx3PtgcOgZsD/LG9NVa7MeeWu5xbCVBKMVp0+e5pXfDsm0gdn66RpBnfPr2Cd36NA2MlfvmZQ/zZm1do9hJm1wKiNMOy+p2XOkculcCxBQdGiyy0QqJMkkqFbSmqvsNyJyZKJWMli7FygSuNEMex8KQO/pejkAMjReI0w7UFK90U37EGjUC610hiCb0bJ0/rVH2HmYUuP/rQOK9dbAwWldnVHvOtmIPjRf75V99mtRtzfrU3KFh+/pnDgG79/+7FtXwBcPBdi6VOzJ+/eZlulLHSiUHoxUNK7Y3iuzZjJZea77DQjkAIPnpohCMTOvj3fzevnFvhM8c3epYbh8O7l93akf/fwP8O/LtdOp7hPmQ4h73cCXntQoNCXkT0KvYGh0CAr7x8gSCR1IsuD+wpc7kRYCUZ03WfYsHh5bOrfOfMCk/sr1Mvuiy1QxbaMZNVD1voHem/fGGGmu8wUSkQppJywSHOJFIpBILRcoHVrh5APFUr8jcn5wHypiABCFxbkGQqT7U47BvxWWxF2LZFsWDz1KFRjk5WePnsCheWuxRdG8+1KLo2a0tdJJClULDAdQRS6dSLbQlOzjW5uLq+s77SCGkFCR89PMJEpcA3Z5b0kImaN3jN7y12AFjrxSy2Q6SCTpggpWK1GyHQXi0SBpYBmQLXFtjAgbEyx6drPJOnbbbygxeIDR2uYBwO72Z2JZArpb4lhDiyG8cy3L8M57D7ftl9+g6E/QaWqu/w0qkVPn50nHrR5XtnW6SZwndseolkrOIghODsUodXL6xxeqlLI4ipFBwyKTnbCCgXHFxbIFBcXO2RSUXNd7BT7UboWIK1bkyYZHzt7XmqRYeiYxEm2SAPvtaLcS1B0RX0opTzyx3iTKEUHJuqUCu6HJ7Q3iwPTZZ5d76FhWKxFZNKNmi9YwlkevBDlEiS1R7zzZDJqofn2EgFEsVY2SVIJGeXelu+5jOLHTKllTKpVLnJlsIRgiBRWGhbW4t+MxKAoujq93hvzRsUTl84sbClH/yTB+sbOlw3t+6bQujdxW2THwohviCEeFUI8erS0tLtOq3hLuLZx6doBkn+Xwx5cW9vzc9nSVoDc6p2mCLQ6QfQ5lWZ1K5Ua72EM0sdrjQCgiSjG+uJ7EGcMd8KuLgaYAtB0bVBQSNIcIQiTiXL3Zh2mOZpDn0e37FxbehFGVeaIZ0oI5USx9Ie32Eqmap6FFyHONOKl6mqR9V32VP1BqPRJqs+kxWPbixJJYNzDBNnilTqACvQi8N8M+TyWoBAEcQZ7Sjl0mqXM0sdGkFMkKR082Kl51i0I20REKYSW2idukAvAv3gLQTYli7oeq6FUgLbspisehyZqAyKlsO/k741bTNI+Pwzh68ad9d/Tr/WcTMj7gy3lttW7FRKPQ88D/DUU09tr7fZcF8xbIlqCSvPz9YRAl670CBKJTVfa6AvrHSxBfzVD+eYqHi5r4nuUHRtrSNf68UDHXWUag32cjshkf0gnWh/biBIFY6ti5eWpdMbrVAHx8mqR7Fgs9qN6cUpjpXnlRUUbAshYLYZ8SP7a9i2PZgGVC7YCNiwc41TiVJ6J96/NksASgdY0Dtk17Y4OlHm3HKHVCptRxskFAs27dyNsea72Ja+M0iyhLNL+rGpVAilUEoh8oYhkefC+39YtmWRZhLXFlQKNokDj+6rsa/uM9sIBrrxG/nBb7XLvpGH+TBm5357MKoVw22lb4n67ONT/N7XZ3jnSosozVASokxyYFQXDS0hODpRZmaho3eJvYhmkJDlQTqIUzIp8V2byXIh12ArEqkDaCoVSZTRjTPKBQtL6MBcKjhkSu/OFVD1LIIkY7ziUSo4hHFGJ045PFamE6fEqQ6GSTfh/ErAgdEiFc+m2Ys5s9jBtQWffmQPcZrx/bNNrjSDQcROc3tZW4DKgzno66h5WkXi2hbdXNYYJ4qxcoHFZohlCcIkJU0lsdS3zqvdeKChD1OJKyCSCiXyRWNoe9R/fTLVBlz76tpPxnVsxirOVXLCzTNGhyckbQ6+252zej2Vkgnmu4vp7DTcMaRS9OKU5XbMYicCFP/0yX1MVn0OjpU4Olnho4dHsC1BJ8qwBNR8re/uxRmlgnYndF2bTzwwzsGxMiXXoh8zLUsH0W4ssS3BWLlA2dPWtROVAr5j4TnrcjwAIXTn6EjJ5eBoiQcnK+yp+ji2lir6rk2QZCx3YrI8P+06NgutiIurXSwhcFxBYegvK1UM7Gb717bYTfnhbJMk03cSAh2NC46FZevCpOvY+PmuX6F33BXPYaLsUfZsHMfGFoJM6kQN1vqdQP//At1haluCimdv6HrdqqNzO2mT/SPFQTqpz1aF0K06bU0X6a1ht+SH/wH4SWBCCHEZ+G2l1Jd349iGm2cnt7O361b4hRMLVD0H27LYP1rEc9b9Rw6OFXkkN8SarPqUvS4PTJSZbYbsHykOhi1kUueUC7aVT46PcByLkhAUbEEsFWmmyFLJaKlA1XdZakeA3rHXfZvVIEUAZxbbpHk+3LZgsRWyJ8/dR6mkXLBJMkWY5LI+QEpJL4bvn1tlvtGjEaQ4NqSZVqUUhCLO1rfJVc8mSjPyRlB6cYZr6TuMatHlU8cmef18A4HAEnqgsiUgTCSOpRU2B0ZLhElGN0poBK406mAAACAASURBVCm+axEkuljcClPKBUGQaA18rnTEtW0c22auGQ5khgBRmvLiydUNv+vtpE22O2d1uzt3w87ZLdXKf7kbxzHsnJ3czt7OW+HrTbFvBtpnpD+YeKkdMVZymc4DK+hhC2tRxqHxEvvqPnPNkPGKR5RI6kWHtSAhi1KU0vnn5U5EkGREicSxdbBLM0nZ1bn6RpBiW4KnDtVxHZvXLzRIJewb8RkpOiy1I1xbsNTR11TMOz89x0KgaEdZXsDUxcdU6ruAQi5d3FsrYFkWy52MoSzL4LUXHYvlTsxcK2RPxaOXSMJE0okSBJBkOu0CkEnJfCvmwcnyYAEEXScoOBZRXg/od5xKBWNll5VuPHj/lzshr5xdo+o7G37XnSgZLKJ9hoNvf6FvhwmzjYB60eHR6fqWHuZbddoaCeOtweTI7zNuphB1s8/dzd369abYbx5MvKjgSiPkk8cmGC0XOL3YZbkTMV7x+I1nH95gYfvFP3qLTMFo0aUVJKRSB9sgTgmTeOCDAlrXjRCUPIc9VR8h4NxqMJjW04kSljoCJRU/sq/KfEs32IRxRpxKbFurQNZ6cX+sJlEGjqVTLplcrz4udRKKrkWS5TlzwLIERybKLLRClroxY4E2uSoWbOpSsdqL6UYCiaTsaSsBpRTzzQjHEjy2r8abl5oD6aZjaxmiZUGS6oUqzhRjJZdGL2G5E/HNdxc5Pl3l1FwbATy2rzZIe4BeYK+lHx9e6I9P1wY78Wt9Dra7czfsHBPI7zN2cjvbf+5yJ+T0YjefV6lHk+32bv1aU+yPjJeYa0UbBhPvrfu6M7MRUiu6eXoj4koj4J/+/ncYq3j88jOH+OSxPTwwWeI7Z1YGNq+2EHTDFMn66DXPEUSpIpbg5emZbqgbgKSCKPf6lgoKlkWKYt9oiZLn8NblJmEqCZOM/XWfUsHm4mqKlAobXeeUEtI8ghddi6pjsRZoCaFkXb1S922uNEKUUri2xUonIsskcaaboA6MFCm7FrPNiI8cHKEXZ6x0Y2IpeeboGJNVn4rfJcoNuaq+i5KKRqAIZEYqoegI4lSBo/jRB8a40oz47plVLKH4xAPjg+ar/uek5jtcWOlqd8h8hz9WLvAbzz58zYX+Ky9fYLLqX7XA30gRY9g9TCC/z9jJ7ez+kSLnlzu8u6CNmKqezru2gpQ/fPnCTe/0N0/3UcBSJ6IZ6OD9wGSJk1daJJneiR8ZL2FZFjXfGQwm7rPQCvjWzBLnV3pEaUqYKByhOyVbvYR/9eJ7/PEPLuVeKuuDj1OUlhPmX0t0mqJPmEj2FF1WuykgsC2Bk4u/XdtipRczVnJ58eSC3vUKndYJE5hthqz1YqSCiu9gW1oXnuQ7cUvAwdFSfhfRys+hKRUsglhSsHWBdV/Np+xpNYltCTxXyxxLnstPfKjKsb01ZhsBzzw4wVI7pODolMxDk2Vev6ilm5MVj+m6z1uXm5TSjDhTBIlkT7XA00dHAVjtpbh2SpBIerk2HXSq5cRsS+v7EXi2hcgLtn1P9K02CWGS8t0zq3zqkT1bLvDXGtxs2F1MIL/P2Mnt7LOPT/HF/0e3qA8PTjg2VeGNS00+fXzPhsf3d/rXmsrT38G7Nrx8dlWnI3LHwVYv4dhUhQf3VJmqeSy2I+ZaEfWiXjwuLHc3BPJelBGlium6z5nFttZm59ppYYGSirPLAfWSq+1pcwSweT7y8FSfRCo8W5BmIJBYCNqRljnWfIcwTrkSp4SpQqDIcn25Tq3rnX0mdVHTtgT76z5rgW44ilLJSMnN30+Hiqe9XVZ7CXGqm4aSTLKn6vHEAa2nf/X8GlGi+NQjY4Pf3WeOTzKzsO5N/mMPjfPSKd1UN17xOLanwsxCh3pJj4U7OlHm8HiZqu/w1z+cRwhY68acXe7hORZjJZf5luSNSw2aQcxKN+bMorYScG2B79jgO/zY0XEmKjo4v3BiYctNwqm5NqMlY651pzHyw/uM/u3sVh1523nugdEijgVnl7vMNgI93ca3B804w7TDFM8WW8rVhnfwZ5d6VH2HJMsGCoylTsiLpxZ47cIa3zu7glLw6HSNR/bWmK55vHGpwbmlzqDbcGahQ6lgU/Md7QUu+kFad4fGeTt8N0zoRsngGhUb2+Q341iw3EvwHT3HM5V6cah6NkpBlCo6scwbcdYXAf04RSIVEq2CUUqx0I6xLXRKqugOFsNOlJLkZlyOpXf7Fvp4jSDh7cta3jdd9+klKX/x1hVOzrV4ZG+Zl04tbXh/Xzq1xGeOTw5+x0cnKzz3ix/m//qvnmai6nN4vDyQ/I1VCgghePNyc1BYjjPF9EiRByfLnLjS5sJKD6kUvmMRp5JMSpq9hLcu6WvqL9hbdYGu9RIe3Vfd8J4aZcrtx+zI7wO22hG/32G6U1WPs0td9o8UB7vyV86u8chUZUvvjWvZnX7/3OpgB9/PtadSkUnJ5bUevTjLBx4LLq8GulW/7mEJdyCRm2tFFFyb/SNFDo4XmWsEXFjpopTWZluir89eD9VbTZa/Hq4lSFKtNynYglrRoRNlNEOd9x7KwmxYENTQuYa78C0BJVcvNh+aLDPf0s6JUZKh1Hpnqu/aA7vbkmuz2A755rtam/6xI2McnihzYbnL8986T6mg9d99LblrC77jWvyvP/fEVa9nc/pjouxyZrFDM4hRUlErugihC6WnFzuMlgo0gphiwca1LVIpiTJJ1XOYb4XAempuq5z3P3xoHDdP8/QxypTbjwnk9zi7XYQcbi3vI4CRcoFfeubwVYWrL3/7POOVjR+jqu8MdvD1okvN1wVKxxKE2tN1kIsWCKw8mJ5e7A6GDB8aL+M6Nr/38x8G4J9/9W1OzraIMkW5YNGJ5YYg+37oy/ocWwdgx7Jo9BIcy0LmzT6Z0ifpe5hc6ziuI5BS0Y0y4izk6cOjLHYSwjQly5TOy/fb6JWilefCS47AdSx6sUSgqBUdjk5WWGqHzCx2SDJJEOd3QwL21316Ucpfvj3HUifi0bxLtq8qurja02qgSoGJssvZ5Z7OwyNY7sY0goR/kA+UeOXcKuNlHcj7q1TRtWmHKWl+69HfgfdTc1t1gRplyp3HBPJ7nJ3IDbcizhRPHx3l7HJv4ClyfLpKnKktC1f9vGmSZQOlS8G2ODpWGuzgH5gs8crZNVzbRsqETClsy0IoPa1GoWiGCYvtcKCY6csLT801OT5dR6E11yXPphtlhGk4KGhuFzfvfOy3+btOvpAInSppBgmWgERKnfoQOocOsEH8vQmZP8C2BImURKnie+dWKRUsiq7DWi/Bc/QOPlVaoghgKUWt5DFZ8fBc7bGi8pN8/9wqV5oBUSJpK6j6NkXHZrEdkUhFwbZo9pLBwv2Z45O8dGqJ6ZpHMx/ndmaxQ8HWna37RnzaYYpUcGq+w1jZw7Ut9tZ8giTj0mqAEDrPXy7YZFJrz+tF97pKE6NMuTswgfweZ7e75/qB+ZkHxgE9v/KdKy2STPHcizNXaYaffXyK3/7zd5hZ6ACKgmMhEDR7MVM1n9mGoF50eGSqwsW1gNVeTBLryTWxBWXXxrYsenHGciviO+8tIyxBK0iJkoxf/cPXOVD3+eFcK+9StKh4DiOlAnGS0ol1w0v/LmI41uq5nOS6agaSwn7ePEoUCkXBFhRdi2a4Hq+l7Ifn9eddCyt/XJxXVS20BLETSdphfM0cfSJ1Tn+tG6OULpoWHJuvvX2Fc8td3aZvC8JU0Ql1I1GUKnzXZu+IRzta13v/wcsXeXS6Rr3oUvEdTi92mV3rEaWwr15ktFyg6qesdmPaYcJ8O+LXPvUgL51a4mg+TakTpkRpxnS9yMGxEr/+U8e2XVsxgfvOYgL5Pc5ud88Nq17CJOUH5/ScyY8/MEozSPjdF95lX90nyhT7R4ocmyqz2AqxLYHIm2CCOKVU8FHoAuaFlS7NKNHj09AFxkSCkNCNdYDyXAvLEqz2ElzbYqzsUnAszi12mV0LBna2/QEPUzWfhWaIncSD4DxMv3jZDlOSvEZrK9112fcT7z8nzVMiGzbdeTFVbRGF+0ZYad8EC21i1f9Z/ylbPXczzTDDt0EhkFIPab640s0XD33n4jva56UT6dFyB0Z9bMuinHeFVn2HhVbIx4+OATBR8Zmo+CilODXXHihnyp6WSB4YLXJorMTnntjPA5MVXjixQC/JaIXpoFNzO81extnw7sEE8nuc3e6eG75VfuXcChXf4fH9NSYqPjPzLd642OBNAR/aUyFOMr7+zjyphAcnywghuLzWAwRhmtGJMupFXWxbaOvCmS0ExYJDGqakALkCRfunaA/w/kT5S2s9HVBzz+1M6Z3yYjvE6VpkUuqfAemm1xGmikxlG4JpomA4sd7fxcvcYrbf0HO9HfggV56f17IYqFk2B/jtEmbgOzBeLRAlklaYYudujdWCjSWgGUikEjwwUSaVkErJ4/t1K307TJmq+RtsDWq+S6lgU8hb+PtNV80gwbMt3omagzus91MYN86GdxdGfniPsxO54fWO+cXPHuOxfXU+eWySiYrPUjvk++fXcHKTpyiVzCx29IixfEAEkA+IEISJDrLfOLXA5UaguwsBhNZO94OonStPVroJ3TijGWa5m5+2Yk0yiZSK5a7WO7fClF6sOysrnh5Jplt59E7ftfoTcfTufas0ej/g+o7Qryf/vuLqQRD9x/fpH09KqBVdasUCx/dW8RyLgiOuWRC93jFB1ybiVFL2dOCuFd2BU6NCUCo4jJQcpvM7rYenKoyVvUEx8tOPTPD6xQbNIKFSsGkGCWeWuvzsR/YCsNKNSTPdtp9KxYcP1Hc0EMI4G95dmB35fcCtylFuGM221EXm0+ZTqZhtBAML1WLB2WBm1Yv1TMxulNKLtbugEFrzLfKiYD/gbaU8Obfc5ehEmTjJrisnnKx6lDyH88s9Roo2xYJLJhWdMKGbbEx1CPTEnP74NYV2HAwTvSgMd3u6/dQP19ahS6DRSxivFHBsi4OjRZY6EXG6+d5g6zrp5q+l0lpzqdYHVHiuzb66TzvK6EYpv/nTD/O5J/ZfldLoj2wbtjWoFV2O7alQ9T2e+4UP88KJBV48ucB4xeOxfbUNrfnvpzBunA3vLkwgN1yT4bRNO0hI04xunv5QShfmwlTvjPvDg23LQqpMd/v56y3n0Jf7SYS4/o1gkiou5trya2EJWOsl7B8pMrsWEKYK29aT6oeD5PDknOHDDeJ2vjBZuRe4VCqf1ymv20gEOph3o4TLa1pV4jsWHbF+bIt8ERHg9O8S8mvof90fPtFX04Rxxo8+NE4v1kMxFju6aPxrn3qQzz2xH9h64f7yt89fZWsglV5w+4/vB19rqPP1/QZf42x4d2EC+Qec6xWshvPlYapb5PtjyiR6B+k5FgfGisy3IxbaEdMjRT7/iYP8+ZvzRJmkmHdjNoKUJMvIlB4+fD2kUnnAv/Zj+h2dUSo5OFZkrhnpol8joDeUpL6e2iRMJH5Be4QrtK49zdQg966UDrhb5bz7QTpMFPtHHMJ8HqhrQ9G2iBK9ENQ8h26eZvrQZIWa73B6qZtbyuqByVLqAq5tQb3k8uGDozddOCzYgm/NLJFkiorv8NBkmYJjDwJrX2P+xsU1JioeD+0pM1Hx33fwNc6GdxcmkH+A2U7Bqr+bW2qH/H/tuVxxosgyPS+y7jtcXA351CN7+PhR7Q/y9/Ndnjyofb2TLOO7p1ewUQSpyqV9UHLEhoA7jIS8eejaO/JEQpxkRKnksek6D++RfPfsCkF+TLe/A950CiffsduWoOI7FGxBM7CoeRbdWBKmarATt9k69WMLGCm5ucOiIJUw34ywhE4boRSOrbtiW1HKZ49P8d9/5kMcn67ztbdn+Z//8qROMwko2CCFwLUtnj4yOgjiX3n5Am9c0kMmnjxY5/PPHL6uOdlCK6Id6iHUUZzyytlVDo2X+I1nHx78nvdWPVq59vzV82s8sreKZVnvK/ga/fjdhQnkH2BuppkozhSHxosstSNsBYWixWjJ5Uoj5FDVv+oYcZppTw6p8+VZnt4oFxySNKNadOi1E7bCtgTFgh6pdj2iTDJVLWDbFr/6XzzI97+8xnjZJVN68PLwxn+4iGlbglLBxnP0vEzHWh/E7Oae3gAZeRFV5Pa0av1YjZ4+fq1oD9Inbn9QcqoYKdqM5O3+fkH/mZ2aa/LSqSVqxQLdKKMTZ8Sp7uYcLReYb0X8/FSZ333hXS6u9Kh4+tgvn11lvhVdU9f9wokFDo6V2Fv3Bk1ZFd9hX93n+HSd516cGfyeK/kdwWonZq4V8Tv/5NH3HXyNfvzuwQTyDzA3U7DaP1IkTjKyfFBDfzJNphTHpzeaJkVpyluXWuwb8Tk518IWgrLvsKfmMVb2eG++RSPIBkXFYVwLDo+VkErRGJposxVK6cHCv/kzxzk+XSfJFBZ6XJtjWWRK3zmAnnUphFbC6Kk+sNZN9ABnx8K1oRmkWxYlJeuyQ8F6IbRgCzpROihSZlINFo9EKkSmC6pSSn77L06y1Arz3HdK1XeYrHp0Ip1uKhd0x+rv/91ZVjoRtaIzWACEEFxc7fLbf3GSQ2Olq1Jg67lvd2BxIJVirhle9XuerPpMVv3Bz00gvj8w8sMPMNsdogs6J2rbFnurBZbaEafm2iy1I56YruG76/uB9xZa/PUPF5hrBsw1AtpBQitI6EUpBVt/3GzbQkqJu+nT5wg4MFriY0fHmKj6FAvX32dYwuLiao+zSx0ADo0W6eYDMR1bULAtXEE+F1NweKzERNklSCTtKMO2YE/VQ6JTG9dKp0ulg6nvDDX7ACgduLPcMTFT6zr0dpSx2o1pdGNeOrXAidkml9d6NEM9sKEXZTSClIlqgarv0IsltaKLVJI4lSy2I84utTmz1GF2rceVRsBKJ9pyIPKNfo8383s23JuYQP4BZitb0gsrXZbbIb/+J2/x3Iszg2BxfLrOZ45PMt+KKRW0/8qPPTiO69pcWu3RDBIWWgHfPbuKlIrRosNsMyTOJEopwjTjvYUOb1xcZbUb6y7GPLa4ltaApwqCJOWNiw3mGj3iLLtKbz2MhS6K/k9/eoJf/cqr1IvaYTHO3QalkhRcm6cOjzJadnVBLsrYW/MoFywyqVjqxHnX5NWyQVhPyUipiDc9JFG5Hzo6teI71mCMG+g0TZhInXuPMyxLm1dJpYc4C2CpFdGN0sHYtXqxgBAQxBm9OKNgC7qxlkcWXXtLzfZWv8f+CLbt/Nxw7yPUdvqId5mnnnpKvfrqq7f9vIarGVatFGzBQivi4FhpgxKhP9jgxZMLuLbYoENuBglxmjFZ9fmbk/PMN0P2jfg0esmg+aQTpoPWepFr7foZldGS7kAM4oxmL0FYOnWTZHqQAwiiLSqOfdVI0YFU6n76UsGhYCnauX/4SNHlqcOjTNWLJGnGe0tdrjR6BLFujEmkJM3WVTSZXA/C/aahvmMh6B13/7x9bXpe28QvWHogs4LVnh6YXHQtekO5I88R+dxNkEoyUtK58j01j48fHWOqVmS5E/KXb8/Ri1Jsy6JWdGj0Egq2YG/NZ6zqazMzz6ZWdPk3v/z0Vb/HrdrlTTv9/YEQ4jWl1FObv29y5Pc515res9Uf9XMvzlBw7A2Fy7VuxJe+cYZPPDiOVBKUxesXG3w0t0Kt+g5zzZQvfvYYJ+eaNHoxVxohYaon1HuOTVMODXpQG28Dw0SnXNphonPQKje2Ugry3WepYHN5LdioIBH6sdpJUKEk9OKUHrroWHS1v7ZrW1xa1YMTVjsxYZxpc6hMDUy1VH5OK2+Lty2tmlH59XqungSE1BN+gqHg3M+hp5mip/TsTCdfABCC/j8lOodeL7t0ohQlBdP1Io/vqzFR9QdOkRMVn/FyAVsIgiRDKhgpuviuxWI3puy7VDxbj+AL04E75I0Kj6YweX9jAvl9xrV22P3c6u99fQapFIfHy1dJDrcqfs41Q7pxyqm5FsudGFsIRkq603Oyuq5DPjXX5NJKoCfQ5GN22lGKm2RkCtzcEzuVCscWyFzmFyWK2M0G49gsofXdCrCFTgPoRp31nwvWFSQDjxNL7/ajVHt/+0rRkIqZxQ5Hx0tM1UsstbUPicwXE6k2eqT4BZtSQV9/J0yxbYunDte5tBYwu6atEePcXqC/K+9rzUsFh8lKgaWOLtBWPYeS50BuX2Dl55JSD3TeM+LzwGSFzz9zGGCDJrvquwgEzz6gBywvtUP+6ofzFCxrwwi+h6cqZqSaAdilHLkQ4lkhxLtCiNNCiN/cjWMabp6+Xrg/FuydKy3OLXdJsmyQW13uRKx24y09MrYqis01A3pxSphkTNU84lQy3wxZaocbcq0vnFjg2FQFz7GZqOgctJTQSyRVT1vVplLh2rrxxu0nnwU0e+tT7ofTG5nSssdGd90KVuZFxeHW+X5gj3INuSVACT0k4dieCudXe3lBMSWTucnV0GtU+blsoZiuFxkrF3hkusZ03eP8co9GL8G2dNDe/Fxt+GUxUSngOjZTNQ/PsciU7mL1nLzAa2mrXNsS+AWbp4+MbhhQPOyX8/i+GofGSxQcG5l30Pquxd6atq71XZt/cHiEQ+Nl0xJvAHZhRy6EsIHfBz4LXAZ+IIT4C6XUyZ0e+17nduclN+vCk0xR8ewNk3eiNENsKiH2JYe/8uNHrurW68V67Jfv2oDN/lHBpdUe882QV86t8OTBEUBL3A5PlAc6ZduymKopLqz2GK8UhgYOK+J8N66DubqqaWcYAQPflGthbeq+zBSITKGk5JsziySZ4o9fvUSjl+DZWzciKaAZSuYaAWEqefJgEYXiyloHBOyt+az2Yrrx+rW4tqDkWuytFxkpFfjEA+NIpfjB+VXmGwGNIMWxLQ6MFhHAh/ZWmax42lc8U7xwYoGzSx1mFrqDz8iv/PiRwbSf4c/Opx/ZgzuU9gJdnzDKEwPsTmrlY8BppdRZACHEHwE/C3ygA/mdsPncnBqp+A5RnNIK13PU3qb5inD9mYwPTZb1+LBLqyTZumvfeNnlwwfqvHOlxX/9ldep+w5xknF0ssJaN+byWo92Lks5PF7m+LTNN/5+cVD0BFAoXNvCthSlgp6kA5s8vbfxuvuFx+HH9ifUR5miVLBZ7UR6WLMlrju2baUbU/EcXr3QIJUZaZ4OudQINzzOsUCgu1vbYYqV32FcWO4ilQ7azUDbxz62rz6oTfQ/E2MVh/PLHb76+mWePDjC4YnyVZ8RM1LNsF12I5DvBy4NfX0Z+PguHPeeZrdHsG2HzUZGD02WeeXsKhXfQeaDfycqHu0w4ZvvLhKl2SAV8gs/pT2pNweQX51v8ealNd24o3S3I8BSJ+E/vjaL5wjGSi5RavHK+VVeObfMcjcZRFXfsfjeuVWmqh6HRkvMN0PCVLsa9n21ATKp0xfDuXJHQHz9zTgw1FW5yba2nT85DdJBMw9SXXdx6Bc9k0wOrmUrMgmWJejFuhnowGiRc0sd3rikC8GH8qk7/dTT5g5LgPlWRNlzmG9HHJ2sXPczcita4o2S5f5hNwL5VlLfq/5WhBBfAL4AcOjQoV047d3NrbL5vN4f32Yjo06YkklJK0z4xqlFnjxY52NHR/gP379EM0ixhWC07CJV4ZrHf2+hrQuL6uop8koppIKFdkzNz/Bdh/lmMlB+gJ6ckym4sBpQKtiEuRJjM8PZEwuoFOzca0VtOcYNtJ+KVoOAZWsVihhabPrIoedfywRrcEwLgkTqwQ75xKOtUOjJQn1/9UtrAeeWuzgWfOfMCt85s8Lems+Dk+VBYN78mWiFCVXPpjNUl7jeZ2Qr5cn7DcZmMMT9xW4UOy8DB4e+PgBc2fwgpdTzSqmnlFJPTU5O7sJp725uRTfd5mLm5g6/4aLZqbkWM4sdPnxwhH/8xD4+dnSM9xY7/B/fPMdqN8F3LcbKBWzLouo5vHBiYcvjzzbDDR7ewyj05HlQrHZ1q3qmtBGUY1mDyTl9evHWQfwqcnWIElApWBTsq/cKjgArL5z2n+S51lVBfNNhb3h+YenJQxKdA78eff+VR/dW+IljE3TjjKV2jJTaJXJ2LeDNSw1OXqMDs+a7tKOMir++n9r8GTk1pyf5bG7Q6v/sep+H62EGQ9xf7EYg/wHwISHEUSFEAfhF4C924bj3NLeim+5m/viuNEI8x6LsOVhCkGQZMwsdelGClIq1bsKltR5BnDLfCpltBBuOv9qNeO38KkEuBeznoYeRqj/FR6tECrlCI8kYSORutt1MoHfj9WJhMF+zWLAputbgwyrQ57KEACGoeFqe2IvXh0lseWyxvjvva8iHsdCvR0pdKEapax6rT8WzsB2Hs8s9lNJpm1aY0Ms7ObtRRjOvFWz+TOyteXSjlL1Vb8vPyI0C9U6C8WxjfQ5qHzMY4t5lx6kVpVQqhPjvgK+jnT//rVLqnR1f2T3Orchp3ihdM3y7vLl554eXm/TilESCSjM9W1LC5bWAtV7CQ3sqnJxr0uwlLHUi1rpxPtHn+oXHKFODIcXNIMF3IExvPoBDf1ybIFOKbpwOPL2jNMN3LITQzTieLQhTmevHBZmEWj7Eoi9N3Irh3Xh/JqYFA2lh3xzLsQV1zyGWkKmE+Drb/EOjJTphSpikJP3FS+nmn3aY4joWtTxgbv5MHJmo8I8em9qgWhn+jNyozrKT9J0ZDHF/sSsNQUqpvwL+ajeOdT+x2910N/rjG/7DrxcLhEmG5wh+ONvkwmqPTCosdE45ZT2YRWnG6cUOi+0Q33WIEt0Qc72gCDqFEmf6MZXcuySTG/UjW405uxb9Fv5erAO4BUxWHDqxpJPLIPfVfd2ckx81lYo0A9eR25pa36efk3cFuI5Fkkpcy6JcsLEswWceneKdKy1mGwGrnfgqlUu/Y3OxHYOAKMly5YpCKZF3dSrSLGO2EQwGHW/1mfjcNa7xRoH6b64+1QAAIABJREFU/QTjfk79nStNLq8FPDxV2VCYvZYKxhRG726MadY9xI3SNcO3yw/tKROl2rBqrhlS+P/be/Mgu87zTu/5znLPuXvvC5bGSkAAN3MTBVujaCSSgkeOXKOKZjwVO66MM4pTM5oJE0UTl6qScqWcctmaKBVNqmIlTuJISrxU7LJLGpEi6XEYOSAlCiRILASItYFGd6O3u9+zf/njO/fidqNXdAPdDZynikV0973nfnd7z3ve731/P11Jt5q6QIvf9TDelOzLWbhBhBnvUM7VXYIlgrgm1GWXKk0r8+K0IdjblyNlGui6+l0q7nLUNXX71dLZnmjogrITkU0Z7O3NcHAghx9JenIW3RmznUlLlMiUrglVO1/F47QCsS/BjR18simdCNUzLoTSfEnpGnnbwDYEtqGhCWJbODUI5AQh3WkDKSVhJIkiyFnK9k1l/GJJo+Pl6t+w8j7LWst3rSu2K1M1Kk2fuhvw44sz/PTKzLKm3eupxSfcH5JAfg9Z6Yu6VhZOAC788nV+8ftyNs/s6UIIgR9GDBaVUbFt6u0gBpCK5VvLTQ9D03h6pGvZtjuArqzJ0eECO7psCrZJhODirSquH6isXEJXJhVn6Uv3bC9GqxbfCv5BGDFb97gx1+TaTJ2aG9KbNTk4kOfwUAEjLnRHUtCVMShmTKxYH1cXS9fLWycLDVWyKKRTCCHospVb/SunJ/lwogqok6KuCUxdkLd0utMmhqazszvNpx7poydnY6cMcpZBzjbQdY2mH5JO6RwYyDNYSN9Rv15NcFwpUK/0eVjIK6cnCcOIC7dquEHEcNGmP29RagbLZtjJxujWJ9FauUe0vqhRFDFednh3dI5Xz0zMM9G9G5Yr1yxsPzR1nf39OR7dUSBl6OzpafL2lTk0IYiQpHTlxJO3DCYrLqm8Tn/extAF3hLtHYYGTT/k6nSNmqfq1LahxKtadxHAdNXDMgS6Fm8irjKapw2BH6qTQRiq7g8hwPMjJn0PXSjD451dGXpzFtmUTsML0IQgbxmMlV1aip6aWNyqrYUQYOnKhEFD9YRLGfHOVRdDE1imTtbSqXsRz+3pphHItrHDmZtljgwX0ITgEVSwf+fqHGEEv/j4ED/8YAJdgyd3336vOssiq5kzWM0+y1rKd2OlJhMVtQmuJnXV3sJM3Vt2vuFetdImbBxJIL9HvHJ6kiiKOD9ZwzI0erMpKk7At964xP7+3IbWFzvrl2lTww9CxstB+4sPaqJwoJDmpUdNXv1ggrITkLUMhos2uqaRs4y2PZvWcZ22sMZt6hpSSuq+2uTUmB/E6bh9M5CYsc74ctOUnQSRMp4I4o1DpYSo/qYJ5coThJJrMw1AtmVhQxkxFnfqGLpGqREQRMvX6COpavzplKA3qwweJsoOfhAhdYGhC+YaProQ6AKO7CjyjS89CcA3X7swrz7dl7P52FCe8YrLeNmhJ5ciYwg+ulXn3dEyOdtgKG+1Xe5XGxw3cp9lZ1ea90ZL9GRv19TdIKI3m1o2KCcbo1ufpLRyjxgrNRkv385+hBAUbGV8sJGXpAsv0VOGTsOP+I1P7uXlFw/dIcrkhzDUleHFowMcHMwTSZV5fvKRXh4ZylNMm1iGroKmBpmUplr/hMq8i5kUeTsVj6jP97LspPUrP+4lX+0+pB9Jgo7aTuf9Igl+ILFMJSZ1aUoZWvgR8aSoJIgkhXSKnz/Yg20u7frTQglzRdimzkDexjZ1UvH9/DAipQskSjOms599sbKHpmn89heO8o0vPcmvHxvh0nSDStMnm9KoNH3evV7i0GAW2BzXnuOPDWJogooTKLOP2Lx6uGgv+7iJMcXWJwnk94idXWlm6l5b/Q5U9tOTNTf0knS19csjw0VefvEQ3/jSk7x4dJChYoZj+3t58eggx/b30oj7ncdKTQ4M5Dk8kEHXNdwgDqwSQCAkOH7YVgFcS0fKRhAAfhC26+CRjDdf4387fkQYRTyzp5dPH+rD0ET77wtpheUglO33KW1q7WlOdT5R7Y2Gps2rt69Un74wWefpkS6KaZOaF1JMmzw90sWFyTqwOcHxyHCRr3z2AED7s3l4MIemacs+7lpr8Qn3n6S0co84/tggr56ZoOIo4SQ3iHCDiD1xjXWjuJv65cJa+rXpelsjxNShXPe4XnIp2DpOPM/uBRHdGRMnfh5C3LY526gg3ULXBDKSS05huiH02gZNz1NZt1SKilpcT79VdQEYLGbY3ZNWG7oSLt6qtcs7LUs2HSXe5QYqK8/bJtM1j7SpE0pJ01cSwMf2d9/hVLRc2WOs1GSkN8vevlz7d5GU7fflXswZrIbPP7GT/f25NbcSJsYUW5sH2upts3tff/D+GN964xJBJOnJmgwVbKpuwI6ijRvKDVnTwlot0P755RcPLXm/ztdmdLbBcMHCDyPevjJHFE80NrwQQxMMFW2Qklt1D01CLdb1Xssnp1WVWGzzMaULwlASojLnjKUzlLe4NN1Y8jEMTdXTW4i47bA12HNoIIcTRMqtPpei6UecvDbblhuA21m6ocOOYlq51ktoegFlN6ArbTBYSHNwIEvNCRivuIu62C/G3b4vCQnLsZTV2wNbWtkKva+ff2In3/yVJ/n8E8OM9Cqtbk0ITEPfsDUtdYl+aDC7aOtjqyXyD398FYDf+OReRnoyZCydt6/MAcqQoTVhmbM0xkpNZho+GuAE4bxguBy6gLylY2pKE6XtgIbqFmkRRZJixqRgqdfll39uB88f6G0LbwlumyC3CKMFH94OoS4NFTR//kAPB/qyXJqqM1Sw2N2djk0tlDiWaYjYNFnHCSJMTbCrJ80nH+njqd1dfPrwIB/f10PNCTg5WmIob636fUvqygn3kwc2I9+KGdG9WtNCe7dS3eP0eJXujMnRHXksw2ibKP/5yZtM19x5ErZDBYvTNyuMzjZImzp+GNHwApp+RCRV9tudSbU3yYhVD5fa6GxhxFOTIGm2ulwE7OiyKaZTjM7WqTlK5Dyb0inYBiEwmLc5uiPPqdE5zk6omnKn6THctnfrzMpb/puWIcjaJp97dJC+nM2VqRoTVZepqsN01cUPlaitHmuT7+3P8syennnvw8Irls6Ok6Xet4VXgIcGs/PG75NpyIT18tCZL2/F3td7taZW/bJ1FTJWduhOq7f23dEy+/syjJUcvv7hJGEoMWPBqSiKuDxVo5g2qTgBulBlhYavxEVaI/xSQs3x4/5zQAiyhraimmEoQcYyti00oXxAx0tOu15t6YKmF9L0Q1K6oOEEXJqqMZC3GMynKDU9/FCtJ6Vr8wKx0pSJ5WxlPASkCaIw4mfXSjyzR5k2pEydkZ4Mpg6vnb2FlBLb1OnOmITRne9DZ034q392asX3bTFZ2NfPTSWbggn3hQc2kG/F3teV1rTemn6rg6Vl8SaECpBvX5ljZ5dNwwvVxmAkSZtKgEpGEaXYF7LqBASRGhTK2wZVN0DEZslKhVAja2jU3CgeljGZrXtkUjpzDX9RmdvOIN7SUonPE+2N0mZLIFyqFkJNhKQMQcbUeXxnkZOjJQCGChaXpupt6YEgPou0pkGtuFQShBJfSG6Vm7x6xmVn13y3+gP9ORw/xDaVPnrG1OeZSC/MqkdnG6r/OpfiYH92nun0wtf+fhqJJCS0eGBr5FuxRrncmloZ3dXpGqMzdb7//k1e/pNT/OD9sVUfv6W1omtwcbLK+zdKXJ6uU3V8mn5IJGWshSKouQFRFBFEKEEq2yBrqdq4cqNXwTJrae2BHCEldS8iiKLY6FiiC0nNCZTI1UqarzBPSXCpZF4AXiC5UWqSsw3Sps50zeXDiWrbxb7V+tipzCiEIGeZpHTlNN8MIsJQre9m2SGTErx1eYabpQbXZxvcqji4fsRQ3qLc9MmkBC//8Sl+8P44ozN13hud5Xd/eJ6MqaFrUGn6nLxW4spU7Y7PUqfOzXTN4a3LM7x1eZrXzk4mmiQJ95wHNpBvxd7X5dbUOQnamrYD+NYbl+7YqFxOZGl0ps501aHqhUhU1uqFksvTdaJI+U+GcQBv1bkFquYbhFH79n4YUbQNDE1vDwRVvQg/jBjpTtOdNig1fEzDaAcwKZcP5qsJ9KCyeKUvHvKzayVsU2Mwb6HrGhoCXb9tH60Rl1w00IRgf3+OdCrerI0kaUvn+f095C2Dv3h3nEMDOYaLabKWQcUJMDSYqLqMlxp8+82ruEFIT9bEDSJO36yqcpMf8ezebnW1E0VMVN07PkutAZ/pmsPPrpWU8qSuYeoiEZhKuOc8sKUV2Jq9r0utaeEkKCgdjNm63x7uWcqa6/JUjT86McroTJ1yU3lf5i2Dph8CSrrW0ARCE/hBRCCY10GSMgR1NySM1GBMJCVuIBGEpAzVS65pgpwuSFsGEWoC09A1LEPjs0cG+OBGmetzTRpegLeEwMmq3IE68EJJ0wuIDB0vkviBSuf9UJJJaWRS6uM71/BUicYPKTU8IqkMlyWCTx/qpz9vc/HWNH4Ysa8/1960PHV9jg/GKnQFEU0vxPHVpGXWMshayufUC5VVXl/Opi9nE8Vqkgvfw1Zv/uWpWnsC1A0lT48USRl6UmJJuKc80IF8K7FS/XtnV5p3R+famTjMnwRdqgb7rTc+4oOxClnLYHd3mqrj03AjSKngnU2pMoMXSFIGpEwN149IG0L1bUvaXSgIyNs6YQRzDR83lGhaxCMDWcZKDpGMqDkelaY6E0gpkVJycrTE/r4MNTeg6alN0+XEqtbCzVITQ9dIG7cnLqVUwbzi+Er2tkOsa7zcREql13JsXzf9ebVJOVv357220zWH92+UCaWkN5vio3ot1lOPmG14ZC0D29SoeyG7e1beZ2ldbf1nf3oKJOTTBo/uKNCft+cNAiUk3Ase2NLKVmK1kqWmrt2hgzFUUDoYS1lz/eTqHFnLUCP6mkZXJoVpaEQQd3WgRJ80ECgp1oylsaM7y8GBPCM9GSIEEqUhrgkNIQS2qSmt8ZRB1jIxdUHdCWkGoGnq2EF4u5Y+Xff5+YO9FDMmpq61dcE7JXOXYim9coFqL/TDCNNQU5dBrFfuh2qas5Xla0DO1pFSMFiweWp3F4PFdHsvwtDEvM6Ti7fqBJEkmzIQQpBJ6fHmp8rOpZTYho6UapN1NfssR4aLvHR0iOf393Jsf2/7JLLZm+wJDz5JIL8PrEYP5chwka985gBIlT1ahsahgRy6rnQwlhJZ8sOIfMd0TXcmhWUIvCDCCyOVxQrIWiYHB3Ls6MqwpzfH47uKPLe3h198fJh9vVkMoYJ+xfHjTVCJHyrDhrrrE8TSsgIlXNWyYZNSMlf3qDZ9ak5ANmUQSWVebOjKyGJhcr4wuGdtY94H0dDANpRBRVufXBNoQtXHU/rt+2tC3T6f1jkyXGR/XwbT0Pja8cPtvQgvCNnfn+Hd62V++ME4r5+d4OzNCn4YtYeIujPKiNrQlGHETN3DMnX+6d/dz96+3Kr3WbbiJnvCg09SWrkPrLZ/fCUdjE59lJY1167uDFU3pJhWESlrGfRkUqSMAKfD+UbJ1SoJ2OGiPU/nYyCvhnNCqUbl5+JasS5UeWZ0ttl2xfGCWKhKF5hxq1/TD3GCkPMTNR7fWaTmqOCl2gzlPAnbVgBuBXdTExwZLvDe9RJuEMX64wJd04ikulYwDQ0vjEgZGmnTIKVDFB9JE2oytOFHXJqqoQnIpm5/rEsNZUoxVLAwNbg6owaM0qZGd8ak3AywTZfuTKp9QnxsZ5Gjw8W7GuDZLA2VhIebJJDfB9bS077UZuhSAeLyVI3f/eF5QI3DV92QUMI/+Tv7eOPDacZLTUIpaXgh/QWTPT0Z9sV66K0hov/kuyexDJ2aG9wxvCOEiIdyfJq+RsaMTYrjKUpdh5Shc2x/LylDxwtC/EguqYyoC6VP3ho2KsaDSwLVeRKhjIuFoTRYvFDGzvYBedtAQ+L4MNKbxvECRmebBFIJZlm6wI3A1EJ+75Xz7OnNUmn6uH7IydESpi7aA0BBFJEydHoNnbobIqWPbRr8F8cPr8v4Y7n3MCHhXpEE8vvAQrXBlYxul2KxANH6+Y9OjDJZcchZBnt60nzv7RukY4/JrGXi+CFzdZeJskPeNvjB+2NcmKzzV6fGGCup0fyFXSV+pEotTT+gL2eRTWlEUpkKu4Eqv6RTOgf7s3ihJJIB710vo6G8KluhvFUeEYBlakj/tlFyFElm6y4pQwMp0DRlTSeAhh9hG2BqOn4UUW54GIaGbWj0ZU2uugESJXYuhLp9b8YkFw8qPbGri5qrrhZMXaPhBXEJRRL6ylEondKZrLp8/onhNWXgmy3IlpDQyQOrtbJa1vuFXO3978cXv7WpevZmmbmGhx9KIikpWAZzDZ+sZfCZI/3UnZC3r87SZZtcna3Ht1v6uAIYLlg8ubuLi1M15ho+oEyK9/dl2+18f3P+FqA6R0oNDy+8LXjV0myxDQ031v8u2galZoBhaBwdyjE606TmhXRnTRpuSKXpkU6pNsBWx0o6pfPsnm6m6z4zNZfJikMUSUIp4w3NNIYuEAheenSIE5dn+GiyStrUmGv4FGwTkOiaRjFj8vy+3jVr3XSO43eemDd7TiHhweeh01pZDYvpY7R6s1fzhVzL/e/l5XbrJPHa2UnCKOLGXINsSk1EukHEdN2jP5ei4Ue8dWmWiYqDH0pqjgrIrTLHUkig1PSpOj660OhKp9qyvLqucWgwy99enOHirRrZlI4XRmgINHG7NbBo6zQDiRtK9vVmeXZfN305m+maw0+vzHHhVp28ZbA7m2Koy+ajySp1T8PQBIauE8buP5mUTsYyGbFMDvRn+OEHE7hRy/JNMlFxGC7aZFKq3n2wP8ulWzUaXkQ2pV4PBPTbGildu6sro2QcP2Gr8UAF8rVmvev9Qm6FL/S58TLfePUC0zWXq9O1uFMFwsgjbyvbtnJTcrPsYGiCqhOoYAZocUF8pZ5vgWoBfO9GmZ3FNHMNl5m6y62qyz/6+C5ePzdFMW2yty/DZNml4alBpN5sCi+IaPohDV8NF9mGzkuPDaEJoXq5r5cZL6te8ef392CbSqkxZ5lUnRARm0UYuiCIVK2/tbfwygfjhJE6Weiaeh6BH1F3Q3Z1Zyg3fXpzFo/tyPPu9TLplEkhbeAFSmLg4zsK/OqxPWt+r86Olyk3fKpuQME2OTiQpSdrJb3iCZvGutoPhRBfEkKcEUJEQog70v37yd3ojy/Vm73aL+R6778RfPfENa5M11XvM2oEH5SmScVRAzoqm1X6JZ1+mGEEOctc1cSlH0HDDSk1fQSirUL4/VMT7ZPZk7u66Mtb7IgNnR0/pOEFpE2dvJ2iL5tCIrg2XW+Pst+qqvp4Std473oZL1C2aA0vIGfpuLFcgB8oCzdNExx/bJDjjw0yEd83Z+mqFTKCrKVjm7fbDz+cqNAMJEeG8gx3pdnRlebvPb6DP/i1p/mdLz6x5iB+brzM9ZkmFScgbxk4vpIRGJ2pJ73iCZvGejPy08AXgT/YgLWsi7vJjterkLiW+9+rGvm718vkLJ3putfWEg+jePoxkJSDYJ6wVOeWiAQsQ2t3hyxF5/39IMROGYSRpB7Xhj/9sQGmaw6Xpuo4vhrRtww1UWoZejzyrqNrGnv7slyYrGGZrceN0ISgP2+ha4KLU3We39eDZeocGshxaarORMUhCCW6ENiGxiunJzn+2CDdGYOmp7p0ujMptZEpwIvPTNNVh/MTNbozJkeG8zTckAuTtXnPba3vwSunJzk0mOPCrVr8/NTzPD9Z4zc/fWBNx0pI2CjWlZFLKc9JKc9v1GLWw91kx+sd3ljt/e+lW5FExmqBynNSaYyooJs2NUTcuN3qIekM1wKYbXiAmq7MLHFa12NtFlNTGitCQCQj3DCi4YV8761r/MXJMa5O18lZBoW0yVAhzZO7uzi6o0AxY9KTtXhmTxeP7+pid28aL4xizRSdnqxJ1jKwDI3pqsObF6ZwvJDzkzUO9Gd58egAPdkUXZkUn9jf2379jgwVyFkmO7vSdKVNpqoul6cb+EHE771yntM3K3TF7Y1vXZrh/bEyCCg3/Lt+D8ZKTfb0ZXl6pAvL1Km5IQXbYFd3OqmPJ2wa961GLoT4MvBlgJGRkQ0//t1k12sZ3lgqo17N/e9lLf2p3V28fXkWTdBWL1TWapAyddwwwhBq1L1tFBHfV8RGDSM9GaZrLlM1D0PM1xEXQE821ZYM8EOJ6wdU3ZAork+XYi3yMHJpuAF9eYvHdxaZqLoc3VG8wxHp6LAauFFDQ2FbLbDhBczWfUDwiQM91B01ZOSFIXnbbGuXTFUdLk/VqDo+UaQmS0tNn5Su0ZM10YVgdKZBKCMG8jZCCCb8CIlkIG9RdYO7fg9an7P+vN0ewV/4uUtIuN+sGMiFEK8DQ4v86etSyr9c7QNJKb8NfBtU++GqV7hK7rZXezXdJCt1p6x0/9VOdnaeLKx4tN1bYNK88ITyCwd7GS87jM01mYxLEGlTMNyVQQiBlNBwfdXHLUB0BPKCZXD88WH68zZvnJtktu5hGqorpdz08IIIU1dTla2yja5B3VPlkFBKzFjpL4rr8Ag1nLOnL0vDDyk3/SXfk9Zr+tRIkbM3q0xWXQbzFh/f10NfzoY89OQs3r4yw6cO9aMJwVTV4eRoCUsXpAyNw4N5fnxxhkLaYGdXhoMDWU6OlsiZGtN1dfKxTZ0wFvhygyhuQby7/YyNmglISNhIVgzkUsoX7sdC1su9HI1eLqNu/X+52vdqnIG+c+IaP744Q3fGZEfR4uRkHQE8t6+7feJ44Uh/u0Ok007s33tmJxcm65y5WebseAVdCIoZ5WbzwViZczd9UgaYut4WnTI0GCym21mlmrI0qbohXhgH8ECZSBRNE9vUqbgBvVmLsuNj6RpzkY9tCJp+PMkpldb5zbLD6EydR3eoMfdXTk+qTo9mQME22jXuL39qH989cY1T1ytIJL2ZFM/uvd2WePFWnXLTY7zs8KMzE+iaRqnpkUsZYGgU0yn29uU4c7NKT9bkE/t7ASjYJk0vaNevgViRUeAGEY/tLNzxHizHwpPnC0f653lxJiP4CZvNA9V+eK96tZfKqM/cLDM621ixj3y5LK6V7V+eqmEZgomyw4fjFXK2QW/W4vJ0g2NxgPqjE6McHS7ccUK5MFlvD7T84P0xvvXXl5ipuSAlvRkTy9TjfmxBNiXIpAyMOKNtkbMNmp6JRLCzK81U1Y2FstT0Zl/eZqQnzWzdp+HHY/ihpBaXV1pZfiRVq+LJ0RIvPXr7pDY622BnV4a8bcw7MTX8iI/v6yFvG7x5YYq3L8/xsSGfy9MNLEMjDCOiSDI212RHl03TC2k4Qbwmi9fOTtLwApzgtqDYwYEsJy7NkreV+fTZm1UQgpytc3gwR0/Wau9nrJRJJ16cCduBdQVyIcTfB74F9AM/EEK8J6X83IasbAvQysTO3qzw0WS1XaMFlc1VnIBd3ZkVa9+LXS08t7erPcRj6oLpqkPTV5kwAupuSN2tc7PcRADdGYOzN8t8OF7GDyWWobO7J82jOwrU3KC93tfPTXFoIMdExWG27lPRBP/wuZ38fxfnCCLZHuSpe2F7g9bxA+bqLpNVl/5ciiCMqDo+lqnz/L5uHhlUGez5iTLXrpcp2CZV129n4Z1EHS5Bf3RitC0CttgVzcIT06M7Crx9eZZ3rs0xVIh1xBsBw0WVNde8AF0T+JGk6avyTtrSaLiC2YbP1ekaI71ZTF1nX1+WwYKFF0o+fXigvQG91BXbUnsgW2FWICFhJdYVyKWUfwH8xQatZUvRmYk9ubvA25fnePvyLM/t624PrRTTxqo7ZTqvFjqPrVzgNWYbarMunRLoQuD4EaahIuJs3eX9GyV8P0LTlbZ40wu4Ol1nru7zqUN9wPwSUGtsvtz0ydsm3/yVJ+8IVAD/w+sf8beXZtA1wXDRQhOCqhuytzfLvo7x+6mqw1tX5uJx+4i6G8zrgNEgNpuATMpgqGAxU3P59ptXqDo+R4YLd7xOkxWHnozBa2cr1NygrRMzPe7ih5J82qCYNujKqOCp64Kndnfx6plJ/PB265+dMni6N8N4xcU0dBWkP3doSfGx5d7rhVdWq93fSEjYTB6o0spGMj8TMzl2QHB6rMKpG2VeOjrEP3xuF6+cnryrPvTOYxfTqiPE0FRPdRBriEcoidgwCrlZauIHahhGCOVNKTTlOF9zg7Y0bGfQ6awxa0KN0S/GlZkGO7rSFGwDN4hwg4if25VTpRY/ik8EBmduVmh4PkKqkwzcbmlsbaRKVEDP2wZeKOnLWRTTyuGo6gR3vE6mgB9fnME2dDKmjutHvD9WYShv8fx+pYFy4vIM5YZHqeETSsmlqTqmLkgZenuy8rGdBXqyFuNlh2986cl1vtfzs+71zhokJNwPEmOJJVjYl96Xs/nUoX4e3VHk5RdVtne3feidxz44kKXc9AkjqfRP3AA/biHUNKUHHsS921IoL05N3DZr6MoYuHGv4FIGwEEY8bs/PM/V6dq8jPO7J67hhxEF24hdgXQsQ2Oi4uCFcp5RdKWpgjixkUNnXVxyW9ZWCvVvN4g4OJAlb6useuHrdG2mzkxdScw2/ZAgkso8AjWT37p9T0Zlv00vZCCfotz0aXghhwfzvHR0iE/s76UvZ68ruC43g5AYRSRsB5KMfBHOjatNzHdH5+jLWRwcyC4aLO62U2ZhlicAU9cIwpC0aRCEPqauYZnKEGK24TFTc9smDqoOLdA1QcMLOXOzzDdfu8ChwSyvn5vi8lSNMAyZqHs4QYhA1a7/5sIUWWsO29DI2yZVx6cvZ7Vb9EBNes7WfY4dSM8rB/2DPzjBrapDJFVPeicaIGORLNNQTkPP7OmiL2e3+8Zb3StjpSYpXbn9BJGkkFaZf8VRHS27emzqXtR+XX9yRYlgWYabnpvYAAAZ9klEQVSS2S2kDQbzKSYqLnvjq4X1tgAul3UnRhEJ24EkkC+gVS8dyltU4gnAd67O8bGhPJqm3REs7qZTprOL5aPJmgrYXWn292WYqft8MFYiiCQ7sikyKR0vMJiKHEIJDS9qbyZKCWkzxZO7iu1uiheO9PP7o7PM1n1sU6Mvm+L6XJNIyng6U8PxQnRNMF3zGOnJUIkt5CxDeYYasZ5JJ8W0EQdTOa8+3tIYL9hK0lXXBGHEsp0hF6fqDBcsCmkD14/ozhhqBF8XRLHnZut1bZWLtNaIKhBJybnxCn4Q8sa5WSSSp3Z3rek9WOr9WOzEkBhFJGx1kkC+gM56ac42uDhVZ7bmMV5x+e0vHN2wL3Ta1Hj7ygw3Sw67u22e2NVFf97mEZQP5njZoTubouIo/07D0BCxvngYqXJGShPkbYPBwu2rhAuTdQYKaWxTGTJfn2tg6ALHl+hCBd0glFSaAYMFi4mKy+FB5Uk5U/cwdY2vfPbAHc/z6HARP4j4YKyizIpN1WcuhODgQI60qWrWg3mLMzcr/G9/ewUvjLB0jZ9cmSGlazy+s8ievizvjZYoNzz29WZ4f6wCgKlDzQnRhVDepTFLZcsDeWte62LVCdYkQdxJknUnbHeSQL6Azg3D1hh2FAfWjfhid3ZIvHBkkDcvTFF1AjoSTjIpnXLTp+oEGLpARhIhBbu7bWXEoKkaskAyVfOYrjn05WwcP+DtKzOUGz5uEBJGEZ4fYRs6TU8ZIt+qum2ThoMDGdIpk719OUxD59iBviXFvI4/NsjobINPHuzlJ1dnqbsh6ZRB1tTQhMDxQ6JQcm6iqjZf4yK6G0TcqjikDI13roZcnq5TanpIqcpJnzzYy6kbZWZrHrou2Nmd5sJknf3j5fY+xGLZcsbUNrQtMMm6E7YzSSBfwM6uNFena0xUXCqOcpQZKljs7cttyPEXdki0eqdPj1X41CGL0Zk658YrpE1NjegHqtXPih1uTF3D0NVwjxdIbEPn4q06UsJPr8yRiwWcpmous3WfIFKB3DY1mn6EjJQZsq4JTl2v8KlDfatyx+nMWht+yPWZJocGc2QsnXPjVUrx1GbBNqg0lfaKGt9XQT6IImYaHoGUDOYtxkoOV2fqPLazwDMj3bx7vcTTI12M9GbvGKxaLFv+wx9fpSe3uRLCCQlbhSSQL+DQYJY/P3mDrGWQt1RmfLPU5KVH19+lcG68zI/OToCEfNrkYH+W/rzNc/u6OXWjzHjZYbziUkynSKf09gbk1ek6jh9SdwOKGVMZKcQpfMHWKTc9ztxUeuSt8fOKE9Cf1zE0VVefqbuYGhi6hpSSrGXgh5Jrs2sPfMV0iv49FgJwOwZu/vDHVzkzViaIJJEU6ELS6o0MQjB0temas00G8pJS0+PUjTJ52+Tpka72yXI1EghJW2BCwm2SQL6AC5N1ntrdxUTVpeYEFNImhwZyXJis8/l1HLdVUknpGg3X59q0x/mJCru7M+zvy/LS0SFefvEQX/2zU1Sbqi7eoi+fYnSmQcpQlsZNP8LQNT6+s0DVDfFD1br4/H6lUwKqa+SjyRqTVZdPHuhlsuKgCyV6a+jqJDGYN5ire3zztQur8hztHJpZzKdyZ1eajyarGFps8wYQl1BasrV1Vw0yZVI6nz0ygB+q4y82dHM27h6KoojxssO7o3O8emaCr3zmQCJelZDQQRLIF9DSm25tdNacgAkpabQizhroHPsenW0wXLDY2WXz44v1tn3ahxMVLkxWOTyUByAVa6B0tgQamsZwMU0q7ioZKioNEcsw2sH0ldOTXJ2u8caNSSYqDgC9mRSfPNDL73zxCT6aqlNZkMHeqjq4QXSHTvpiG4arGVU//tgg798oMVPzEChLuTACYvlcDaWSWG76OEHIeMnhyd3dwJ1SsCowB2RMnfOTNSxDozebouIEfOuNS3zzV55MNigTEmKSQL6AnV1prkzVuHBLBY+cpVOJdVXOxRtwq2FhBtvq1EgZGt0Zk1tVFz+MiKTqYBmba3J1ukbNDTF1wVzdB6my2pobsq8vy1c/p2rZreA1kDfbwevyVI3vvHWVmhPEE5eSUsNjqu4ggc9+rI/vvnUdgLylU3VDZmoeT+0urmrDcDWj6keGi3zt+GG+c+Ia/8+FKSYrjnK0F6Ah8ULa5hdNXwlrfenZXezvzy2aXRdsg/Gyg2Vo7ZNawTaYrfu8cnqyPZiVkPCws60D+b2wTzv+2CAv//EECObJoB4ezK2pI2JhBtuTS1Fp+oyXHVK6RsE22mJXeduk6YdMVFyGCha3KhGRlIyVHQq2wbH9vfNMghdbw/dPjVOp+wQdv9MBpODMzQpNP+JXP7GbNz6cZrLiMFiwKdoGT8QZcYulNgxXW5M+Mlzkv/3iE3zztQvt2//o7ATlhk/dDQilxI+UM5AmVCnr80/sXDS7fuX0JN9//ya92VT7+G4Q0ZM1k03NhIQOtm0gX8ns4W45Mlxkd296nkt6S8tjrNRc9cljYQZ7sD/LyWultn6KqQmCSG1WhpEkbercqjqUGh5hBL/05I52ZtoZxBd7fIA3L04TCRW8Wy5AEVBzffxQxobGkj/9j4+119QZbFsstWG41pp05/Mv2CYTZYdMSsePJAf6c0o+wNDaAXmp9r9Xz0y0pz5bWjB7ejLJpmZCQgfbVmulM+PVhGj/u9XpsB6ODhc5uqN4h5aHpYtVe29auuDNC1P86OwEb12eQQg4NJijJ2tSdwPKToAmYmf7SJKPA5UXRjT9gNfPTXJuvEIURe3n9IP3x3j5T07x/fdvMjpT5+p0jW+/eYXvnLhGEEYIbkvIttrSw0hpjS+Waa9FR6TVBtjSXimmzWVPmi3dF1B6MpoQNP2IlK61beOGi/aKVnxf+cwBkDBbVxvAhwZy6LqWaJ0kJHSwbTPyeykvulT2mV7lEMq58TI3yw41JyBn6TS9gBOXZunLpdjXl2OkJ8P7N8q4gRKM6rNU/TcMI2aaPoNFm7xl4PghH05Uafgh58bLfOPVC1SdAInyqbwwWSUfqxQamlCqiR1iVqD+3Zc1lyyDfPlT+/jOiWu8fm4GgeCp3UtfzaxlaKbzNezJWjy+I8/J62U0TZWs9vZm0LSVA/Lnn9jZ1jTfyBJaQsKDxLYN5Peyj3i5IZTeVQyhvHJ6kj29WYaLdrvzJW8bNLywbUa8szvNxVt1xkoNIgkjvRmqbkBPVqcnawFqY1B1lQR898Q1pmoeGVNDIqi4AWEY4fqhMkqWys6s0zgZVJnlzQvTHN1R4Ld/+dFFn2/Tj3h+X++6R91hfulHjfGHjJcDnhzp4UvP7Z5nkbbagJxMXSYkLM+2DeT3uo94seCx2pPHbaEns8MTU/JXp2625VL7cjZ9OZtI9rR1tP+jP/opN2ab7fqxGyhRlYJtcOLyDFEUUXbCtiuPBNxAKQjW3QA/vK0P3orlKR28MOL6bH3R57mRDjir6TVfTy9+QkLC4mzbGvlaa7br4dy4kok9c7PMW5dnuDpdW7am3FkfblF1AgYL9qK/b50IHt1R5NBgDsvUqbkhlqlzaDDHYN5iuuZhtORfQ4kXqjJKq0c7bxvEHXpKUEsX9OdS9OdtujImji8X3T9YTot7rdzLfYuEhISl2bYZOdyfS+7OLPPIcEENqEyoickozpZbgapzMGaxq4VfPzbC6+em7vh96ypC3a/B0eHCvL9LYLBgMVXzSAtJEEZEbQVESMcRvDenM1v3iaKIlKHdNleWyiZtPW2FqyGxRUtI2By2bUZ+v1iYZe7rz3F4KMdk2cH1Q27MNfib87f4xqsX2t0rS10ttPqll7qKWOp+Xih5Zk83aUPDCaN5m5kRgprr4/ghecukmFZuP34YISU0vZCy4+P6EaOzjTs6bDbSAWepK5GkVTAh4d6yrTPy+8FiWealWzWmah6FtEnBNnGDiCvTdb574hq/88UngKWvFla6imj9rbVh+MrpSVK6oOYEWIZG3jJx9JBaMyACRKxPrgmJF0Y8M9LNydESpaZH1fHxQtXR0pM1GS5Yd2xkbqQW96HBLN964xJBJOnJmgwVbHT9TjOOlbgXg14JCQ8ySSBfhHPjZb5z4hrvXi8xVXXpzaR4dt9tQaqxskMmdXts3DZVi+GrZydxw1OrDj5LDfcsHHSarLhculXFThkMFAyuzTQQaUExrTphVLDWyKZ0Botpju6ISJsaP7k6h65p7OpO8+TuYtt6beFG5kaUqM6Nl3n93BSHh26bVFScgK985k6TipWOcy8GvRISHmSSQL6Ac+Nlfu+V84zONMhZOt1pg7Fyk/r5gL9zqA/LMAilpM++XVNueAG3qi4Csergs1TAWtQwoSfD5ekaBdugGo+592ZNmr4aINrdnQEpqXohxbTJ144f5shwkX/yf/y0PaF68ZbqWmlNqG40nSWolhxtuemvWTVyI7toEhIeFtYVyIUQvw/8u4AHXAL+QyllaSMWtlm8cnqS2bpHzjawTR07ZYAQVJoBp65XePHoIL+wv5cLk7V2m+CtijIl3t2TbndrtI61VPBpBSwvCHn7SoWaE2Dqgqrj8/kndsy7bd42SJtGuwf9rz+c5PpsE10TZFPKJ7PqhHzyQG/bJOLceJnrM00QakPW8UN+dq3E4cHcmk0yVlPq2KiNzmTDNCFh7ax3s/M14DEp5RPABeC31r+kzWWs1MQLonl64N2ZFN1Zk6M7Crz84iH++QuPMNKbAdRmnhtIejImT+66HdxWCj5jpSaOH3BytITrh+QsHaRkuuYxOjO/57vqBDy1u3h7UzJqeXdKujPqpNHZOw7qRHFoUAVst+P5nJ+srWkjs3XlsJIswUZsdJ6L9cf/zQfjvHV5humac1fHSUh42FhXIJdS/khK2fr2vgVse1X/nV3pth54CxUI9XYwacm1fvrwAI/uLHJoKN82T26xUvDZ2ZXm5LUSs3WXsVKTG6UmTT9isGBxfrJ2RxfJrx7b0+5oqXkhu7vT7OpOIxFYps5z+7rxOkY6W7rqT490tfvSC7EN3FpKFKvtDV9v90vrhDGUtzA1jXLT552rc1ydrt11F01CwsPCRtbI/zHwJ0v9UQjxZeDLACMjIxv4sBtLyxxhdKZxhx54ZzDp3CDszFpXO2V6aDDL//z/NrENDdvUcP2ImuPwCwd68CNVG16si6T1/4W93wt/bvWHtwykW7fxgnCeI9ChweyyY/OrLXWst/ul84TRMvWYrXmMV1x++wtHk/p4QsIyrBjIhRCvA0OL/OnrUsq/jG/zdSAAvrfUcaSU3wa+DfDss8/KpW632XSaI7x7vYRAcGx/zzwp2cXus9YgdmGyzu7uNKWGhxdKbFOjL5fiZtnl04cHljVEXo08wWK3uTZTRxOClKEzXLS5Ol3jz0/e4KndXezpu9P0GNY2MLSe7pfOE0br5BNJyXjZSYJ4QsIKrBjIpZQvLPd3IcSvA78EfFZKuWUD9FpomSOs9T5rCThjpSZPjXTx3vUylqEpbRU/ZK6xeBlh4YbjC0f652XSC08ci51cdhRtTENvB+WJikvWMpiouuzrzy1p33Y/vDETM+WEhLtnvV0rx4F/Cfw7UsrGxizp4aAVuJ4e6eLiVJ3pqkPdDUmntDtG/hdrVXz93NSKvdULTy5f/bNT9HSoN1Ycn7ylU+vYpFzMvu1+eGMmZsoJCXfPemvk/xqwgNeEEABvSSl/c92reghoBa5i2uRAf4bpqkvOMnhuX/cdJY6N6q1emPUWbFN5Y67Cvu1elzfu1wkjIeFBZF2BXEp5cKMW8rDRGbheOztL3jZ4dEdhXudLK1Av3HCcqjpcvKWEu4BVj7AvzHqHChY3S00ODeSIpNz0LDjRHU9IuDuSyc77xLnxMt89cY13r5eRSJ7a3cWvHdvDyy8e6tAvF+3bd5Y4OjPpqarDyVE1czWYt9Y0wr4w693bl+OlRweXrbUnJCRsfZJAfh9o2bRdma6Ts3QEgrcvzzJedvja8cMrbvQdf2yQb7x6gXdrLjfmGggEedvgkT1dayqzLDWhmZg9JCRsbxIZ2zXQMpj46p+d4puvXVjUdHkxXjk9yXTNVaP2KQM7ZZCzDWbrHq+cnlzVME0UNwQFkUQT86c4VzPCvtoJzYSEhO3HtgrkdxtIN+qx7zYQjpWauEE4b+zfMjS8IGKs1FzR7ajlAfrpwwMcHiow3JWmmDbbQliradNL3HsSEh5ctk1pZbPlTdfTObKzK81Hk1XcIGpL37qBcvHpHPtf6jidm50H+7OcHC1h6YJy02tn7yttUCZiVAkJDy7bJiPf7IxyPd6Wxx8bpC9nUXUCml6A4wXUnICebGpVGiKdglT9eZunR7pACDShrdqrNHHvSUh4cNk2gXwjTYLvhvUEwiPDRb76uUMc299DEIEXSZ7f39PWDV+JhTX0lKGzvz/Hv/oHT/Dyi4fu6hjrsXRLSEjYWojNmKp/9tln5TvvvLOm+3zztQtLCkUtp0uyUbRKO2EYMVFxmK37GJrgK589wOef2LnmY63Vymwj7M8SC7WEhO2NEOJnUspn7/j9dgnknTXyzhHu+2kB9oP3x/jWX1/CDyN6synV+61pa1rDVngeCQkJ25OlAvm22ezcCiPcFybrfGJ/7x1XBWsZld9KVmZJhp6Q8GCwbQI5bP4I90Z0fmyV7pHN7gJKSEjYOLbNZudWoHPDc7rm8NblGf7NB+OMzjZW3dO+VbpHNrsLKCEhYeN4aAP53QwXtTo/rk7XeOfqHOWmj6lpDOWtVQ8HbZXukc3uAkpISNg4HspAfrdTmq06/XjFJYygkDZ5ek9X25RhNdnsSlOc94utcmWQkJCwfrZVjXyjWO+GY9XxMXUx73dryWY3u9YPiZFDQsKDxEMTyDs7NM7erPDk7gJwu/tkLcJTKV1DSonrh5wcLfH0SBcpQ99W2exW6AJKSEjYGB6KQL6wQ+OjySpvX57j2AFBX051kKxFeOqxnQV+dq2EZQgsXXDmZoX9/bltl81uhSuDhISE9fNQ1MgXdmg8uqOAAE6PVda04djaIOzL2Tyzpwvb1HHDCD+UvHCkn1dOT26KMmNCQsLDzUMRyBd2aPTnbZ7b140XRmvacOzcIOzL2Xxify+f2N/HU7uLvH5uKtH6TkhI2BQeitLKYg48tmnw0tGhNem0LLVBmDa1LTOtmZCQ8PDxUGTkG9W7vVTroBfKpCc7ISFh03goMvKN7NBYbINwJc/NhISEhHvJQxHI4d52aCQ92QkJCZvJukorQoj/RgjxvhDiPSHEj4QQOzZqYduJrTKtmZCQ8HCyLj1yIURBSlmJ//3PgaNSyt9c6X53o0eekJCQ8LCzlB75ujLyVhCPyQL336UiISEh4SFn3TVyIcTvAP8BUAb+7jK3+zLwZYCRkZH1PmxCQkJCQsyKpRUhxOvA0CJ/+rqU8i87bvdbgC2l/K9XetCktJKQkJCwdu7a6k1K+cIqH+P/BH4ArBjIExISEhI2jvV2rTzS8eMXgA/Xt5yEhISEhLWy3hr57wohDgMRcA1YsWMlISEhIWFjWVf74V0/qBBTqMC/VvqA6Q1ezr0kWe+9ZbutF7bfmpP13lvWut49Usr+hb/clEB+twgh3lms0L9VSdZ7b9lu64Xtt+ZkvfeWjVrvQyGalZCQkPAgkwTyhISEhG3Odgvk397sBayRZL33lu22Xth+a07We2/ZkPVuqxp5QkJCQsKdbLeMPCEhISFhAUkgT0hISNjmbLtAvt000IUQvy+E+DBe818IIbo2e03LIYT4khDijBAiEkJs2TYuIcRxIcR5IcRFIcR/udnrWQkhxP8qhLglhDi92WtZCSHEbiHEvxVCnIs/C/9is9e0HEIIWwjxEyHEqXi9v73Za1oNQghdCPGuEOL76z3WtgvkwO9LKZ+QUv4c8H3gv9rsBa3Aa8BjUsongAvAb23yelbiNPBF4M3NXshSCCF04H8EfhE4CvwjIcTRzV3VivzvwPHNXsQqCYD/XEp5BPgE8E+3+OvrAp+RUj4J/BxwXAjxiU1e02r4F8C5jTjQtgvk200DXUr5IyllEP/4FrCl/d+klOeklOc3ex0r8HHgopTyspTSA/4Y+OVNXtOySCnfBGY3ex2rQUo5LqU8Gf+7igo2Ozd3VUsjFbX4RzP+b0vHBSHELuDzwP+yEcfbdoEclAa6EOI68O+z9TPyTv4x8MPNXsQDwE7gesfPN9jCgWY7I4TYCzwFvL25K1meuEzxHnALeE1KuaXXC/z3wNdQOlXrZksGciHE60KI04v898sAUsqvSyl3A98D/tnmrnbl9ca3+TrqkvV7m7fS9lpWXO8WRyzyuy2dgW1HhBA54P8G/tMFV8JbDillGJdbdwEfF0I8ttlrWgohxC8Bt6SUP9uoY67bIehesN000FdarxDi14FfAj4rt0Dj/hpe363KDWB3x8+7gJubtJYHEiGEiQri35NS/vlmr2e1SClLQoi/Qe1HbNWN5V8AviCE+HuADRSEEN+VUv7q3R5wS2bky7HdNNCFEMeBfwl8QUrZ2Oz1PCD8FHhECLFPCJECfgX4q01e0wODEEIAfwick1L+d5u9npUQQvS3usGEEGngBbZwXJBS/paUcpeUci/qs/vX6wnisA0DOUoD/bQQ4n3gJdTO71bmXwN54LW4ZfJ/2uwFLYcQ4u8LIW4Ax4AfCCFe3ew1LSTePP5nwKuojbg/lVKe2dxVLY8Q4v8CTgCHhRA3hBC/sdlrWoZfAH4N+Ez8mX0vzh63KsPAv41jwk9RNfJ1t/RtJ5IR/YSEhIRtznbMyBMSEhISOkgCeUJCQsI2JwnkCQkJCducJJAnJCQkbHOSQJ6QkJCwzUkCeUJCQsI2JwnkCQkJCduc/x/Vz9e6rEBHywAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -106,8 +118,7 @@ ], "source": [ "# Check out the data we generated\n", - "plt.scatter(dat[:, 0], dat[:, 1], alpha=0.5);\n", - "#plt.scatter(dat[:, 0], dat[:, 1], alpha=0.5);" + "plt.scatter(data[:, 0], data[:, 1], alpha=0.5);" ] }, { @@ -116,8 +127,8 @@ "metadata": {}, "outputs": [], "source": [ - "# Put data into a DataFrame\n", - "df = pd.DataFrame(dat, columns=['D1', 'D2'])" + "# Put the data into a DataFrame\n", + "df = pd.DataFrame(data, columns=['d1', 'd2'])" ] }, { @@ -146,47 +157,47 @@ "
\n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", "
001168.020
112155.027
D1D2d1d2
0-1.1482160.33201200.0879220.009294
10.6887431.7641931-0.530187-1.418836
2-0.886799-0.3328162-0.092297-1.302195
3-0.241192-0.40966330.2755020.109635
4-0.6624260.9498134-1.050818-1.059746
\n", "
" ], "text/plain": [ - " D1 D2\n", - "0 -1.148216 0.332012\n", - "1 0.688743 1.764193\n", - "2 -0.886799 -0.332816\n", - "3 -0.241192 -0.409663\n", - "4 -0.662426 0.949813" + " d1 d2\n", + "0 0.087922 0.009294\n", + "1 -0.530187 -1.418836\n", + "2 -0.092297 -1.302195\n", + "3 0.275502 0.109635\n", + "4 -1.050818 -1.059746" ] }, "execution_count": 5, @@ -195,7 +206,7 @@ } ], "source": [ - "# Eye ball the data\n", + "# Have a quick look at the simualed data\n", "df.head()" ] }, @@ -225,19 +236,19 @@ " \n", " \n", " \n", - " D1\n", - " D2\n", + " d1\n", + " d2\n", " \n", " \n", " \n", " \n", - " D1\n", + " d1\n", " 1.000000\n", - " 0.758206\n", + " 0.773245\n", " \n", " \n", - " D2\n", - " 0.758206\n", + " d2\n", + " 0.773245\n", " 1.000000\n", " \n", " \n", @@ -245,9 +256,9 @@ "
" ], "text/plain": [ - " D1 D2\n", - "D1 1.000000 0.758206\n", - "D2 0.758206 1.000000" + " d1 d2\n", + "d1 1.000000 0.773245\n", + "d2 0.773245 1.000000" ] }, "execution_count": 6, @@ -256,7 +267,7 @@ } ], "source": [ - "# Check the correlation between D1 & D2 (that it matches what was synthesized)\n", + "# Check the correlation between d1 & d2 (that it matches what was synthesized)\n", "df.corr()" ] }, @@ -272,7 +283,7 @@ "metadata": {}, "source": [ "
\n", - "Statsmodels is a module for statistical analyses in Python. Patsy is a useful package to work with and describe statistical models.\n", + "Statsmodels is a module for statistical analyses in Python. Patsy is a useful package for describing and applying statistical models.\n", "
\n", "\n", "
\n", @@ -283,15 +294,26 @@ "
" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Patsy gives us an easy way to construct 'design matrices'. \n", + "\n", + "For our purpose, 'design matrices' are just organized matrices of our predictor and output variables. \n", + "\n", + "'Predictors' refers to the features we want to predict from, and 'outputs' refers to the variables we want to predict. " + ] + }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ - "# Patsy gives us an easy way to construct design matrices\n", - "# For our purpose, 'design matrices' are just organized matrices of our predictor and output variables\n", - "outcome, predictors = patsy.dmatrices('D2 ~ D1', df)" + "# Use patsy to organize our data into predictor and outputs\n", + "# The string `d2 ~ d1` indicates to predict d2 as a function of d1\n", + "outcome, predictors = patsy.dmatrices('d2 ~ d1', df)" ] }, { @@ -300,9 +322,11 @@ "source": [ "If you check the type of 'outcome' and 'predictors', you will find they are custom patsy objects, of type 'DesignMatrix'.\n", "\n", - "If you print them out, you will see that they reseble pandas Series or DataFrames. \n", + "If you print them out, you will see that they resemble pandas Series or DataFrames. \n", + "\n", + "You can think of them as customized dataframe-like objects for the specific purpose of being organized into matrices to be used for modeling.\n", "\n", - "You can think of them as customized dataframe-like objects for the specific purpose of being organized into matrices to be used for modelling." + "Next, we can use `statsmodels` to initialize an OLS model object. " ] }, { @@ -311,18 +335,19 @@ "metadata": {}, "outputs": [], "source": [ - "# Now use statsmodels to intialize an OLS linear model\n", - "# This step initializes the model, and provides the data (but does not actually compute the model)\n", - "mod = sm.OLS(outcome, predictors)" + "# Initialize an OLS model object\n", + "# Note: This initializes the model, and provides the data \n", + "# but does not actually compute the model yet\n", + "model = sm.OLS(outcome, predictors)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note that statsmodels, just like scikit-learn that we will encounter a bit later, uses an object-oriented approach. \n", + "Note that `statsmodels`, just like `sklearn` that we will encounter a bit later, uses an object-oriented approach. \n", "\n", - "In this approach you initialize complex objects that store the data and methods together, giving you an organized way to store and check data and parameters, to fit models, and then even to use them to make predictions and so on." + "In this approach you initialize objects that store the data and methods together. This allows for an organized approach to storing and check data and parameters, and applying computations to them, such as fitting models. Outputs parameters of the model are also stored in the object, which can then also be used to make predictions." ] }, { @@ -343,8 +368,8 @@ ], "source": [ "# Check the type of the model object we just created.\n", - "# You can also explore, with tab-complete, what is availabe from this object\n", - "type(mod)" + "# You can also explore, with tab-complete, what is available from this object\n", + "type(model)" ] }, { @@ -354,7 +379,7 @@ "outputs": [], "source": [ "# Finally, fit the model\n", - "res = mod.fit()" + "results = model.fit()" ] }, { @@ -368,25 +393,25 @@ "text": [ " OLS Regression Results \n", "==============================================================================\n", - "Dep. Variable: D2 R-squared: 0.575\n", - "Model: OLS Adj. R-squared: 0.574\n", - "Method: Least Squares F-statistic: 1350.\n", - "Date: Fri, 28 Feb 2020 Prob (F-statistic): 1.42e-187\n", - "Time: 13:29:56 Log-Likelihood: -1006.3\n", - "No. Observations: 1000 AIC: 2017.\n", - "Df Residuals: 998 BIC: 2026.\n", + "Dep. Variable: d2 R-squared: 0.598\n", + "Model: OLS Adj. R-squared: 0.598\n", + "Method: Least Squares F-statistic: 1484.\n", + "Date: Sun, 21 Jun 2020 Prob (F-statistic): 1.18e-199\n", + "Time: 16:14:06 Log-Likelihood: -953.74\n", + "No. Observations: 1000 AIC: 1911.\n", + "Df Residuals: 998 BIC: 1921.\n", "Df Model: 1 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", - "Intercept -0.0029 0.021 -0.140 0.889 -0.044 0.038\n", - "D1 0.7817 0.021 36.736 0.000 0.740 0.823\n", + "Intercept -0.0116 0.020 -0.582 0.561 -0.051 0.027\n", + "d1 0.7396 0.019 38.523 0.000 0.702 0.777\n", "==============================================================================\n", - "Omnibus: 6.935 Durbin-Watson: 1.959\n", - "Prob(Omnibus): 0.031 Jarque-Bera (JB): 9.140\n", - "Skew: 0.037 Prob(JB): 0.0104\n", - "Kurtosis: 3.462 Cond. No. 1.03\n", + "Omnibus: 0.715 Durbin-Watson: 2.008\n", + "Prob(Omnibus): 0.699 Jarque-Bera (JB): 0.787\n", + "Skew: -0.014 Prob(JB): 0.675\n", + "Kurtosis: 2.866 Cond. No. 1.04\n", "==============================================================================\n", "\n", "Warnings:\n", @@ -396,7 +421,7 @@ ], "source": [ "# Check out the results\n", - "print(res.summary())" + "print(results.summary())" ] }, { @@ -405,17 +430,17 @@ "source": [ "### Interpreting Outputs\n", "\n", - "Statsmodels gives us a lot of information!\n", + "`statsmodels` gives us a lot of information!\n", "\n", "The top section is largely meta-data: it includes things like the model type, and time and date of us running it. \n", "\n", - "It also includes the R-squared, which is an overall summary of the amount of variance the model is able to capture. This value ranges from 0-1, and ~0.5, that we see here, is quite a high value, suggesting a good model fit. \n", + "It also includes the `R-squared`, which is an overall summary of the amount of variance the model is able to capture. R-squared values are bound between 0-1. An r-squared of ~0.5, that we have here, is quite a high value, suggesting a good model fit. \n", "\n", - "The middle column is the actual model results. \n", + "The middle section is the actual model results. \n", "\n", "Each row reflects a parameter, and gives us it's value (`coef`), the error (`std err`), the results of a statistical test regarding whether this parameter is a significant predictor of the output variable (`t`, which associated p-value as `P>|t|`), and the confidence interval of the parameters value (`[0.025` - `0.975]`).\n", "\n", - "The last model includes some other tests that are run on the data, that can help you check some descriptors of the input data, and also that they meet the required criteria of such a model fit. " + "The last section includes some other tests that are run on the data. These can be used to check some properties of the input data, and to check assumptions of the model are met. " ] }, { @@ -424,18 +449,27 @@ "source": [ "### Checking our Model\n", "\n", - "In terms of the model itself, the most useful components are in the second row, in which the summary gives the parameter values, and p-values of our predictors, which in this case are 'Intercept', and 'D2'. \n", + "In terms of the model itself, the most useful components are in the second row, in which the summary gives the parameter values, and p-values of our predictors, which in this case are 'Intercept', and 'd2'. \n", "\n", "From the results above, we can grab the values of the parameters, and obtain the following model:\n", "\n", - "$$ D2 = -0.0029 + 0.7817 * D1 $$\n", + "$$ d2 = -0.0116 + 0.7396 * d1 $$\n", "\n", - "However, we should also keep in mind the statistical test that is reported, a test of whether the parameter value is significant (significantly different from zero). Using an alpha value of 0.05, in this case, the 'D2' parameter value is significant, but the 'Intercept' value is not. Since the parameter value for 'Intercept' is not significantly different from zero, we can decide not to include it in our final model. \n", + "However, we should also keep in mind whether each parameter is significant. To check use, let's look at the statistical test that is reported that checks whether the parameter value is significant (as in, significantly different from zero). Using an alpha value of 0.05, in this case, the 'd2' parameter value is significant, but the 'Intercept' value is not. Since the parameter value for 'Intercept' is not significantly different from zero, we can decide not to include it in our final model. \n", "\n", "We therefore finish with the model:\n", - "$$ D2 = 0.7817 * D1 $$\n", + "$$ d2 = 0.7396 * d1 $$\n", + "\n", + "With this model, it is promising that are value of $a_1$, of 0.7396, is very close to the correlation value of the data points, which we set at 0.75! This suggest our model is working well!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing our Model\n", "\n", - "With this model, it is promising that are value of $a_1$, of 0.7817, is very close to the correlation value of the data points, which we set at 0.75! " + "Next, we can visualize our model, with our data." ] }, { @@ -445,7 +479,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl0Hed5p/l8td2qu9+LjSBBEqAkUjupzZKXyI5iO97iyXTcPZYny0lmjpPJuNuTmcyMM3Mmbp/OsTPnZOKZPnH3HKfTE58kVtJxnO60ZStRHCvyIsvauFkSF5EgABLEcvel9vrmjwKuABIgCQIkQKqec3AkXtT9qm7VxVtfvd/v/b1CSklCQkJCws2DstkHkJCQkJCwsSSBPSEhIeEmIwnsCQkJCTcZSWBPSEhIuMlIAntCQkLCTUYS2BMSEhJuMpLAnpCQkHCTkQT2hISEhJuMJLAnJCQk3GRom7HT/v5+OTo6uhm7TkhISLhheemll+allAOX225TAvvo6CgvvvjiZuw6ISEh4YZFCHHmSrbbsFSMEEIVQrwihPjGRo2ZkJCQkLB2NjLH/mngtQ0cLyEhISHhKtiQwC6EGAE+DPy7jRgvISEhIeHq2agc+/8N/C9A7moH8H2fqakpHMfZoEO68TBNk5GREXRd3+xDSUhIuIFZd2AXQnwEmJVSviSEeM8ltvsk8EmAXbt2XfT7qakpcrkco6OjCCHWe1g3HFJKKpUKU1NTjI2NbfbhJCQk3MBsRCrmncBHhRDjwJ8Djwkh/vTCjaSUX5ZSPiilfHBg4GK1juM49PX1vSWDOoAQgr6+vrf0E0tCQsLGsO4Zu5Tyt4DfAliYsf+mlPLnr2ast2pQX+St/vkTEm5Wpus2h6bqVDse5YzB/pEiw0Xrmu0vqTxNSEhIuIZM122efnUG2wvpz6awvZCnX51hum5fs31uaGCXUj4jpfzIRo55PRFC8Au/8Au9fwdBwMDAAB/5yNo+0ujoKPPz8+veJiEh4cbn0FSdnKmRM3UUIciZOjlT49BU/ZrtM5mxLyGTyXD06FFsO76TPv300+zYsWOTjyohIeFGptrxyKSWZ70zKY1qx7tm+9yygV0IcVU/DzzwwLr2+8EPfpAnn3wSgCeeeILHH3+897tqtcrP/uzPcu+99/LII49w+PBhACqVCu9///u57777+NVf/VWklL33/Omf/ilve9vbOHDgAL/6q79KGIbrOr6EhIQbi3LGoOMGy17ruAHljHHN9rllA/tm8fGPf5w///M/x3EcDh8+zMMPP9z73Wc/+1nuu+8+Dh8+zOc//3l+8Rd/EYDPfe5zvOtd7+KVV17hox/9KBMTEwC89tpr/MVf/AXf//73OXjwIKqq8md/9meb8rkSEhI2h/0jRVpOQMvxiaSk5fi0nID9I8Vrts9NMQHbytx7772Mj4/zxBNP8KEPfWjZ7773ve/xV3/1VwA89thjVCoVGo0Gzz77LF//+tcB+PCHP0ypVALg29/+Ni+99BIPPfQQALZtMzg4eB0/TUJCwmYzXLR4351DHJqqM992KWcMHtnTd01VMUlgX4GPfvSj/OZv/ibPPPMMlUql9/rSFMsiixLFlaSKUkp+6Zd+iS984QvX7mATEhK2PMNF65oG8gvZsqkYKeVV/bz00kvr3vev/Mqv8Nu//dvcc889y15/9NFHe6mUZ555hv7+fvL5/LLXv/Wtb1Gr1QD4qZ/6Kb72ta8xOzsLxDn6M2euyHUzISEh4apJZuwrMDIywqc//emLXv+X//Jf8su//Mvce++9pNNpvvKVrwBx7v3xxx/n/vvv593vfnfPMuHOO+/kd37nd3j/+99PFEXous6XvvQldu/efV0/T0JCwlsLsVJ64Vrz4IMPygsbbbz22mvccccd1/1YthrJeUhISFgNIcRLUsoHL7fdlk3FJCQkJCRcHUlgT0hISLjJSAJ7QkJCwk1GEtgTEhISbjKSwJ6QkJBwk5EE9oSEhISbjCSwL0FVVQ4cOMBdd93F/v37+f3f/32iKLrke8bHx/nqV796nY4wISEh4fIkBUpLsCyLgwcPAjA7O8snPvEJGo0Gn/vc51Z9z2Jg/8QnPnG9DjMhIWEDuN5dja4nN+yMfbpu89TRab76/BmeOjq94d1IBgcH+fKXv8wf/MEfIKVkfHycn/iJn+D+++/n/vvv5wc/+AEAn/nMZ/jud7/LgQMH+OIXv7jqdgkJCVuHzehqdD25IWfsixclZ2r0Z1N03ICnX53hfXcObegdd8+ePURRxOzsLIODgzz99NOYpsmJEyd4/PHHefHFF/nd3/1dfu/3fo9vfOMbAHS73RW3S0hI2Dos7WoE9P57aKp+U8za1x3YhRAm8CyQWhjva1LKz6533EtxPS/KouWC7/t86lOf6vmqHz9+fMXtr3S7hIStzs2cqqh2PPqzqWWvZVIa8213k45oY9mIGbsLPCalbAshdOB7QohvSSl/uAFjr8j1uiinTp1CVVUGBwf53Oc+x9DQEIcOHSKKIkzTXPE9X/ziF69ou4SErcz1eireaK70ZrTY1WhxUgjXvqvR9WTdOXYZ0174p77wc02dxa5Hq6m5uTl+7dd+jU996lMIIWg0GgwPD6MoCn/yJ3/Sa3GXy+VotVq99622XULCjcRmNGBeL2vJm29GV6PryYYsngohVCHEQWAWeFpK+fxGjLsa1+qi2Lbdkzu+973v5f3vfz+f/WycVfr1X/91vvKVr/DII49w/PhxMpkMEHdc0jSN/fv388UvfnHV7RISbiQ2owHzelnLzWixq5FlqMy3XSxD3fJPI2thQ217hRBF4K+Bfy6lPHrB7z4JfBJg165dD1zYcGKtdrU3a/4vse1N2Ao8dXQa2wuXpSpajo9lqHzg7uFNPLLV+erzZ+jPplCWdDOLpGS+7fKJh2+OHghXatu7oaoYKWVdCPEM8AHg6AW/+zLwZYj92Ne7r+vdaioh4a3E/pEiT786A8Qz9Y4b0HICHtnTt8lHtjo3e958Law7FSOEGFiYqSOEsID3Aq+vd9yEhITN40ZLVUzXbWodl+8cm+X7J+eYb7s3Xd58LWzEjH0Y+IoQQiW+UfwHKeU3rmYgKeWKTaHfKmxGN6uEhNW4UZ6Klyp43nFLH8fOt/j+yXnecUvflr4ZXUvWHdillIeB+9Y7jmmaVCoV+vr63pLBXUpJpVJJ5JEJCWtk6aJpDp3+W83eesBbMajDFqo8HRkZYWpqirm5uc0+lE3DNE1GRkY2+zASEm4obvZio6thywR2XdcZGxvb7MNISEi4wUgWTS/mhjUBS0hISICbv9joatgyM/aEhISEq2FRwXNoqs5826WcMXhkT9+G5tfXUzezGTU3SWBPSEi44bmWCp6lqhtFCJ4/VeGbR6Z5+54y79l3adXNZnnuJKmYhISEhEuwqLrxQ8nhqQaKIujPpDg+076sh/tmee4kgT0hISHhEiz65oxX2liGgqVrWIZKEMnLBunN8txJUjEJCdeYm9XX6K3Couqm5QTkF5Q3jh+RS+mXlVVulmInmbEnJFxDbvYWbG8FFlU3miKw/QDbC7H9kNH+9GWD9GYpdpIZe0LCNeRmb8F2I7LWJ6hF1c0zxwQ/eKNCf9bg3pE8uqqsaIx28fgFppvONVPsrEQS2BMSriFJVeTW4kKVytmazTPHjrOrnGbPQHbVID9ctHj84d28Z99gL2hbhnpRkD40UeOJFyYJI0lfxsDxQ2ab7nX3rEkCe0LCNSSpirw013v9YekTVLXjcWK2jaoImnbQS5NdKghfSlY5Xbd54oUJVEXQl0nh+BEnZzvcOpi57k9oSY49IeEaklRFrs5mrD8sVaksqlyKlkHHC9YtRTw0VSeMJEXLQAiBZahYusps073unaeSwJ6QcA250XzNryfXUuM9Xbd56ug0X33+DE8dne7dLJb2S245Aaam9hQusD4pYpx2M3CCN/scm7pCZeFp5HqSpGISEq4xN4qv+fWm2vFQhODERJWWE5AzNXaVM9j++hrAr1btuX+kQK3j8typKn0ZA6SkbntIKdi3LQusL01Wzhi4fsSJ2TYQ3zTqtoeqiOv+hJbM2BMSEjYFAfzodBU3iMibOm4Q8aPTVdbbjWGlJ4EwkjzxwiSmHjfjAJhuurRsn1sHMxTTxrrTZPtHiqiK4LbBLIYqmG05hJHk8Yd2XvcbezJjT0hI2CQkQgByIZRLEf+b9XUSW0mJNNuyCSN5UTMOxw8pZYwNkSIuNSNL6Qr7d5Y2rRgtCewJCQmbgkTw0GiJiYpN0/HJpXQeGi0RrbND5EpKpPm2R1/mYtmp7Yd84O7h9e1wCVsl7ZYE9oSEhE2xPShnDGwv5P7dpd5riy3t1sP+kSJPvzoDxMG74waoimAwvzyw38yy03Xn2IUQO4UQ3xFCvCaE+LEQ4tMbcWAJCQnXh6uVHa6mPLlSrpUUdCUl0uMP7UJTlA3f13rPwbViI2bsAfA/SSlfFkLkgJeEEE9LKV/dgLETEhKugPXMuA9N1QmiiBMzbVpunBLpzxmXLKq5Up/xSx3XtWyQsVpK5JtHp5lpOgzlTT509/Ca97X08wgk8x2fkaJ1Xb3Wr4R1B3Yp5TQwvfD/LSHEa8AOIAnsCQnXgfU2czg112ayapM2NPKmjuPHQd65hOzwSjxwruS4VgrAl7tJXc1NLH5Pg9u35Xlgd5mOG3BoqsFg3lxTJ6Sln+e5N+Zp2AFDObOnvrnwHGwWG5pjF0KMAvcBz6/wu08CnwTYtWvXRu42IeGGZS1Barpu88yxGY6eayIl3LOj0PMuWSnIPnNshlImddmxG7aPotDLbVuGihMENGy/t82hidqy2a4C3Le7vGycCz1w1mqAFn++2Z7R1r5tuYvK/Jd3M4LnT1V48vA077ilj/fsG1z13G2EGduFYwSRpJiOfdrLmfKK52Cz2DAduxAiC/wV8D9IKZsX/l5K+WUp5YNSygcHBgY2arcJCTcsa8ltT9dtvvbiJC+eqeOHEecbNn/x4iRf+NZrHJyoXdTMwQ1CnjtVvaKxi5ZBFIHtB0gpsf2AKIpfhziof/nZ07TdgO0Fi7Yb8Px4jVfPNZaNc+Fi5FqaTEzXbb728hR/9+oMlbbLZMXmh29U8MNoWTXqm92MIg5PNVGEwkDO4PhM65LrAhvR8OLCMXIpHaSg5QSrnoPNYkNm7EIInTio/5mU8usbMWZCwmZw4Qx6OG8y3XSuiVpkLbPIQ1N1ql0PXRGcazikNJX+rKDW8ai0XQbzJrvKmd72x8636MsYVzT22EAGU1eZazux7NDUGCmmGS6aQJyXLmY0SulYVVJKp9hVDnhhvMruvkxPeXKhhe1aDNCeOTbL6bkOXhBStHT8CGZaLkfPNnjXbQO9WfCiRv3gRB1LV7EMFSmV3nGvNgO/GjO2C78LArlsjNH+NM+frpI3NSIpVzwHm8W6A7sQQgB/BLwmpfz99R9SQsLmcGEOdarW5T8fnObB0RI7StaGL46txdK32vHwQ0mj6yMlVDsubhASRZLhosXxmTaltNELsvNtj3fe2n9FY+8fKTLbnOG2wdyyIL2oGJlpOmwvLP+82wsWXS/sKU9WWvhcSXa4GPgWg+bpuQ512+O5N+bpz6bQNQU/khiaSkZqnKl0uW/XmwG4183I9d/sZhSE5EztkmmQSx3LSqy0PjDf8SHyGCmnyaQ0dFVhtJymP5e6rl7rV8JGzNjfCfwCcEQIcXDhtf9NSvnNDRg7IeG6ceEMer7lUcxozLUddpbTG744tpZZZDljoKuCuY5L1wsxVAVVKLhRwNlaFy+MeP28RtEyGBvIcNdwjmPnm/x4oS/naF8WXRUrjn05dUo2pXHkbANVFaQ1jcF8Cj+KGMylLhoLls90dVXg+AG2H/bGBXj61RnCSDJR7aIo0PUi2k6AEAo2IXkLkBIvjJYF4MUArSkC2wsRCthexL6h/CVn4GtV4Kz0NDVSBMdffjP72IPX3y7gStgIVcz3YN32DgkJm86FM+iW61Mw9WU51I1cHFvLLHL/SJET51vxQqcAqSi03YAgiujLGqQ1jdu35Wk5AcN5kxPnWzSdgIKp4/ghPzxVYWwgw8fuH1nxWFaTB07XbSxDi8eyNNwg5Oi5BilF4c6RQi+Hv9Ro69BUY9lMt+UEvO/ONxc2nzo6Tc7UODHbIp1SsfT4ZjHfdhnOpxFCIqWk0vW4czh3kYom7mZEz8xrtM/itekGlY7H2/eUma7bqzbLWFyAPTRV5zvHZldNr632NLXRlarXisQELCFhgaWWrhAvjjUWcreLrHVx7FIFLGux9B0uWnzswZ2M9acJQokbhKR0wbZ8ioyhkTGVnu3tN49OM1JO8/BYGVNX8UNJwdLoz+i9wHalRTWHpurcOZznw/cMYxkabS8gl9IYLKS4czjfM9ryQ8np+Tb/19PHOD3fxg/lqla8i4uQi7a5ALcN5LB0FVWRdP2QneU0j+0b5FOP7b3ofMTdjEb5rQ/ewd6hHEfOxlqNd9zSh6lrl1xEvdIF6wu/C7B1FkavhMRSICFhgQtn0P05gzOVLrcO5K5qcWy9+vILGS5a/JP7d3KubjPf8nhpokopbVAwdfoWZpeZlMZM0+GB3WUUISgv+KNEUjLfdtd8TIsz15yps2cg2xvrm0fO9RQi1Y7Hwck6pi5wgggh4OBknQM7i5Qzcd7/5GyLp45OU+14nKl0cP1Y7eIEIZauoakK+0dKqAp4YcTDe/quqBdpKWPw2O2Dy9JZsHq67EoXrNeak99qJIE9IWGBC/Ow24sWDzxauupGxJcLIlcT+OOFTpfbhrJIIppOgJSC0f40EM8qh/Lmqrn7Z47NcHq+TRBJcimd0f70imqSxXTFj881MFSFO4YLgGR8vstc26Xrhpyt2ewspxmvtAllxLHzNudqNvWux0DGQFPg0b2DTNW6vH6+xVzLxQ8jXD/k5GyHe0fy1Dqxw2IUwW1DWTRFWdONby0L0NN1m++emEMgyJvxZy9nUitufy2rYq8HSWBPSFjCSrnm/Vc51uWCztUUzSwNOEgYn+9StHROzXVouwGaovChu4c5NNWg1vWYbbpUOnGzh/fdPsBzp6r0Z1LkTQ3Hjzg42eDekXyvucWFRUI7SxYnZjv8w2szGLpCztTQFMGd2/O8OF6jYXu8NF7lbN3BCyIGczpeBDMtj6ZTY6w/yw/eqFBpu1TaLnlTp5A20JWQuZbLrnKauu1RsHS2F601y0kvtwC9WNT1/OkqU1UbQ1cYKVm4gcrByQYHdhbQVWXVReUbJZBfSBLYExKuEZcLOmuZbS5lMdjMNl0G8xZHpqp859gMth/ywK4S+0cK7B8p8MQLE4SRpD9rMJizePr1WVKqQCj0enJCrHl/eEGC+LUXJ3l5ooYbRnTdkGrH467teZ57o0LD8RkpWYz2ZSlnDCSSF87UqNk+UkoKaR2JSn9apW4HuGHEG3MtZpsOpq5g+xHVThdR7XLLQIa2GzA2kKHa0VddxLxcZe7SlIkbhBw732K+7fGOW/o4NFHj2eNzjFe7NLsB6ZRK2w15fbrFHdvzZHSN16abjPVnb5gUy5WSBPaEhGvE5fK06ymaeeroNI1u7FQ4WXMopHVSqsKRsw0+941XeftoiYfH+paN/ep0g5SuYXsRi63bJBHzbY/9I0WeOTbDeLWLG0YUTJ0ggtmmR9602VFKA5L7d71pI+D6ku0Fk205k8NTddK6Bkg6XqzU6c8ZRBI0RVC3fdK6TtpQcYKQH59tkk1pF6lqlqZhLtXibnnRWIFXpxs9lcw7b+0npSnxjS2MKFopKm2PbEonpanYXkC966NnBZFkS5h2bTRJYE94S3MtfMgvp+NeHP9qi2bCSDJVs0kbKqfmOgjgfC2gmNExNQ1TV3jq1Vn+adpY5tgYhCFTNZvhgkWl45IxFAqWwTtuiY/p+VNVmk5Ao+vTdgL6sykyKZUztS639Ge4UNVcWWjeLIRgqJmi6QSEMkJIhR1FC8tQ8cKI7IJcUiIBgSYETddnKH/pytiVUlX1rs8TL0zy8Fi5F+wPTTXQVcFP7lu+iBpGkpmWR9rQaNoe55sBaUMHKVEUBTeIbhiVy1pJ5I4Jb1mu1od8LWPGckP4yX2DfOACm9i1yB3hzUA313YoWDopTcOPIrwgQtcVbC/C0BUKpo4bhDxzbLbXT7TSdjk208X2Q4ppjR0FCyEUymkjNhKbqHHkbIPJahchBC3HZ7zSZaraZrLaYb7tYqjL/cxVRTCYi1Mz/TmTTEqjL5NiMJfCjyTltMHd2/PkLJ1SWgcJrh/hh5K0prLtgmrWC71bLvRmCcNwWYu7WGYZcXq+zddfmeL4THPZ+/uz8RPR8dk2aUNDESoN22ei2sX14/WIoby57mu+FUlm7Ak3HVc6C98Ix7/1jrmWBbrFnHzLCdhRshif75JSFequj2VouGHss9L1InILOvHxSpswklTaHpoCt/THvjAtJyBvavQvVI8+8cIE/dkUta4HMp5ZN+04SN45nOe+XSU6ToDjh9h+iEAyWrZ4eaJGf9bg9m05DFVwaq7DSNngwd1F3rNvaOGzN9E1geNHNB0fVSjs6U9TTC+fLV+YhhLAc2/ME0SSv/1/P0c2pfPAz/+vvRZ31Y7LwckGpqZg6SpNJ1gmsxzMWQhRIwgjMpZByYo4VXFJ6QopXeO+XUXKmRQtx98SVrsbSRLYE24q1iIhPDXXpmkHdLygJ/0rpo1li5drTdVc7YLolfBmTl7DDSL29GfoegG1ro8dhPRlNMIIOq5PKavjBVHvvX4Ykjc1QPTy5Iva9kNTddpOgGUozLQi3CDC8QNMTaEvl+Ij+7f3AqBlqL0U0lDBophJcex8k1enm7x9T5nfeN++i87P4w/t5IkXJtBVhbH+NIM5i7YXQBTP/FdKQ03XbeZbbq96trBtJ9/56r/l1o98kjuGdwOxIsjSVRCS3X1pwkgghOT0fAtdzaMqgod2l2i5PhM1B01V2VVKs3coC0s0/lvFancjSQJ7wpZivTnvK50xT9dtJqpdVEVQtIye9O/WwQzb19Ao4kKuZkH0Stk/UuRrL08x33I5Nd/B0lW2Fy329Fu8MN5AQcXUFA7s6uMHJ+dRhSCUkrShMlxI03A8Ts63+cfjs70uSduL1oIRV5xaGevPUGl7dNyATErl3h3FZQHw5GyLVyZqVDseA7kUo31Z3nnrQC/or3ReBvMm+0cKHD3XpGEH7CorfODukd51WdSJPzxWZjBn9F4fKacZKpiMz3e597H/ku989d9Qeflv0e76NVqOT9PxMTSB40kO7CwBklNzHaYbNvt3lnhkTx+HpurYXsh79sXX4+WJKg3bp5Da+OuzlUgCe8KWYSMqNa90xnxoqs6+oTwnZts4QYipx80ljs+0+eCCF8jVpGo2qmJxpRscAJEkk9LYWU5T73h0vYC37xnkv354rKcUEcTuiGEk0YSCF0TMtmzmOh6WpjJR6RBJMDSVf/HYrbyykE6pdnw0VWWklMYJQpBwz0ihd0xTtS4T1S5hBAPZFG4Q9VIfxbS+alHQ4jV990Kx0qGpBvWuz9hAhv0jRYopeOKJJ/jfv/Qlfv7nf57f+I3f6F3HXvXs7hJHPvSznD/1ek/HL5FIKXqpFwBdVTiwq7jMz2Xp9RjImpyZt7llILtqNfFmNPbeaJLAnrBl2Iic95XOmKsdjx0li0wq7oDTdHzypkbeNHpVoc8en0MRkLf0nnb7co/tG1GxuJJ98DPH5nD8AENVSemCbEpjuGAykDUpZVLs31XqFVI9dXSavUM5um5I0/WxPUkQgSYEeVNDCIGhxj/PvTHP6bkOp+Y7REhUIEIQhCGWFhuNFdMLi5AzbfYN5ZlrubhBhGVoQJzHv03NrTjrXXpNqx2Xk7MdVAWajsfpUzP8689/hR8+9VfUalUAms0mn/70p1e8jv/tZz5PPpvurUss3kR1VawapC+8HsNFk08+OrZqNfFG20BsFklgT9gyLJ1tVzteHHBtn0hyxbOmK50xLwaOcsbotTVbTCcs/nGnNAWBWDYzXc36dilrWRBdaXa4WjA8V7cJQknbCygveK8fp0U2pXNqrk3D9ilaBlP1LjtLFhNVh+2FNKaucL7RJaWpPLC7TNbUaTs+J2aa/MnzZ8ikNDKGghPEmva8qXHPjiJpQ+X4TAvHD9kzkGV3Oc2OkoUfRnz3xByhlORTsc/Ltry14lPJ0msaL/YKzhz6Af/hb/6MN17+HlLKZdufPHmSp59+mv0PP3rRdXQilX15s+c5s6hhv5zlw1qqia/FgvpmkAT2hC3DYrD1Q8nByTqWoWCoKhJ5yVnTxcHxzT92AegqF1m0XuoGsPjHfcdwnoOTDSxdxdQFr003LlmluNZH+NVmhx034JbB2HBrcYHQj0ImKl1CKTE1lbbioykKE9UO/RkDy1BRFGjaAWEUcWK2w76hLPVuQNPxiYDhgtkL6qfmO9S6PlEEpYxBpeWhKYJtORMENByfR/cOoqtxheoH7h7mqaPTnK3ZjFe6bC+aNOyAatdFV1R2FFIrWuEuXlPptPm7v/hDXvnbv6R6fnLVcyKE4IUXXuCnf/qnL3ry2dOfucgS+NBUY0Nn01eyoH4jkAT2hC3DYrA9Pd/G1AVIgROEPT+PlWZNKwXHxT92oPe7xeC99AaxWsrkO8dme/ndAzsLjM93aTohEnnJm8uVPsIv3gCePT6HH4RYhoaE3oJm3fZ6aYiW66MAJ2bbSEBXVUBQ6fiEEnRNpeWGpA0Ny1Cx/YB6J2Cq5nCubrN/pMhYf4Z61yOIJLYXMtNwEAhsX5JNqfSlUxhCYbzSIWfFypmBbIpyxljmClnreDx55BxpQ2W0L8OOooGpKfhByL/9x1PcM1Jg37b8sgbUYv4UX/y9/4fn//5v8NzVg2O2UOTRD/8z/o//+dM8cuBO4OKZ9qKP+7WaTV/JgvqNQhLYE7YMi8H2D77TXHDgU9i3LUs5k+oFmAu51KNz/O/VA8FqKZOl+d1yJrVM6nclHXcW00hzLZfjM03u2l5ALow7nDd7s07bC5huuAgBewezVDsuh8/WEUgadsDeoSwZQ+PBScGLAAAgAElEQVTHC02jC2kdRYDjRYQI2k7Irj6T2aZHEEacmutS7bjMt33uHM5R6/pUOi7nGjY7ixbHZtucmmtR68ZPFP252IagaXt0vZAgkiAVSmmVbYW432nHDRBI/vj7pzk+22a63kVRFObbHkM5g4maTb3rE0YRXhhxcq7No7cN0Dp7kp/8736OY4dfvuQ1Hxy7g4c//Dh3vusDWJbFaTfDI6tsey2lpHBlC+o3CklgT9hSDBctfuK2AWwvvCLJ4OX+2K8mEKyUppmqdunPpfjq82dWTLMsHseiN7llKJi6wtGzLbpexNvGytheyBMvTLJvKEfO1On6ESlNwdBUJmqx2iSSEk2BKJJ888g0aU3hTK3LQDaFrgjabhxwRgsm0w0HN5D0ZQ2Oz7bIpjS6boShCubaHrcNZrl7R5EfnqpgBxHvu3Mbx843aZ8N6MsYvP2Wfl4Yr3Jipo2hCfKmSsv1QUjypk7L8Zmq2xydrHF0ukXB0kmbenw+al3OzHfoyxoEUYQiYlMyVVF4+tXzDKsKx48eWvH8arrBrY+8j7d/+OPkdt5Bf97E1OKnjR+8UeE9+wYve8O93PfiarjcgvqNxIZYCggh/r0QYlYIcXQjxkt4a7N/pEjLCZaVry9trryUS3W6udouOBeW+jt+AIrA1NVVrQcW9zVeaWMZCpauMV1zKacNShmdiWqHnKkTRpLZlk2149Hoepytd5lpdhmf71Bpu5ytdpmo2CgCbhnI4knoSxukVIWUrsYpG1PFC0L6MjoFy6AvrSOlxAvi7kOLn6/j+nz79RnON7qcmuugCME7bx3gQ/dsxw0l5+o2ja6HqsYLxMVMireNFrl7e57JWhfHDyGSnK50KZgaUkpqHY8ogiCIev1IpYSsoWNoCvMth/m2T1XkuPORx5ad1127dvGFL3yBc2en+OK/+UN233GA/ryJpcdKHYFCf9ZY1m1pLd+LtXSGWomlC+r37yrz7r2D7B3KMzaQWdM4W4GN8or5Y+ADGzRWwluctXioXOqPfS03iJWO4QN3D/OJh3dTyqQYKVoLi7o1Xp6ocXq+zTPHZi86jrmWixeEvH6uyYn5FkEU4gdRr29qShM8f7rK116apOOGlNNxLne25RFFEZahkjZ0zjUcZpo2qhDs25ZHVVXu21nmkbESuZROX9bkZ/bv4F88divFbIrhgom54JfesAMcP+DwVJNKyyWta2iq4OBkvLBrGSrdhRueFIJdJYu9gzn2DeVIp3T6sgYjxTSljMFIOY0ENFXBDSRpXSOlKYRuh/oLf8Ppv/w8GV1BCIHrh5xvOsy1HI7PtnnXz3wcgAOPPMpn//X/x6lTp/jMZz7DwMAA+0eKVDoeMgIp49y/7Yfs25Zb5vdypd+LjfD9Wc/3ZauxIakYKeWzQojRjRgrIQFWlqhdqDoZzptMNx06bsDZepeCFbdvWyp524guONWOhyIEh6caWIZC3tRXTBvoquBMtcNs02NH3mSslEaicPRcg2xK45tHznF6rk3d9tlZyqArcG4hxz6cTyGEwI8kOwsGmqoyUW0z1p+lL5vCC+O0jatpbC+pfOonb+sFtGxKi5tc5ONZdcsJadgOmhq7KEbAPTsKaKpgvNLG9uJZvaVrmLqKG0TU/YBQSm7flqdue9S6sRvjrYM5hvMm5xoObhBinz/FxPf/I9VD/4D0HQBakz9HbmQfM+2FpyM/RFMEU4Vb+Fd/+ve87cBdzLddZlvesut3x7Yssy2PphO7T+7blqXtBsw0nVVTXquti2yETPFG75q0lCTHnnBDsFLRzn8+OM2DoyVuGcz25IpXGgjWQjlj8PypSi/FAixLG7x6ts6/f+4MthfgeCGmJogE9OUNTs/bzLU8TF2l3vVQVQVTj6WJiqKxvQAzLZe+bIr5tse2nIGqKEgiwiheMHX8iG15i9H+NK9NN3EDyaGpOrNNh0NTDYbyJk074Eylix9K+nMpZtsOAwv571rX48Rsq6c5d4KI9EJAHy2nef5UlUBKZBRybFrQcD1Gy2nO1roMFyweGc3zR3/yFCee/Tqt8SMXnZ+p7/81xQ//JgC6ABXwI0ndCTjcNAnfmKfW9Tg81WDvUJaRUpqOGxBIQTkdPxVkUhpTtS4vjdd5cLR0Gf/1N6/xUn/6bXmLPQOZdXnA3Mhdk5Zy3QK7EOKTwCchzrUlJKyFC2dk8y0PXYMfnq4wOJ/qSQWX9hNda1n4amX8tY7Lc6fm0YVKxlTJGjpZU+WRW/r43vFZvn+qigAsXWWu7RFGEj+UyEiSNzUsTRBEcfXnndsLnK3aCOD27XmklBw912CkZLFvKA7or59vYWoq9+7I4weSeuhx22CG509XkZIlC7ET7B3KsaucIZvSOFe3EUiatsdIyaLjBnS8EA3oeiHn6jYpTWW0zyJnxfLI0ImIiGh2fSqtiLShc8e2PJqi8PqpcV7+6z/kh9/6S+qV2VXPW/PYDym8t4thphEKsQwTSdvxeMMPGSlnyKU0IuDkbIdsSqOcSTFSBMcPe6mVmabDg6Mldpbj/q2r+a8vSinhTTnrcMGk6fi9dnflTOqae8BsZeuB6xbYpZRfBr4M8OCDD8rLbJ5wA3A9v9hvqk5cxue7/OCNOdwgIpPSuHUgi+NHnJhp4/jhVZWFr/Ser708FXuzmBq5lE7D8bHbIYEV0XAEf/fqeV6fbi3onnVmWy5dL0QRkmo7IowkpXSKUlpnTykOpm4QsaNk8tr5JrYXIokYyqWodwIeGC0ShBEnZ9pMVDu4QchDu0qM9KU5eq5J3tS4Y7jQC1ZhJJltuuwqx7PUu7YXmKi1OTbdJm/pnK13cb2QUEqGhGAwm2J7yeL1802qHZ+IFl03REpQFciaKRRFcOboi7z01J/z6nPfRkbhqtck1zfIfe/7GO3R92BrWYSIvVr8MMILJJGU9Gd1HtnTx5GzdYpm/PQxPt/tNZG2/bDn6/LV589cpGJa6r8Oq8tZx/pzHJysI0RsBKarylV59FwpW916IEnFJFwV1/uLXc4YTNW6nJztLFi1xvnorhfScUOypoYTBDRs/7La9pVuRiu9p9qOt7f9iFsGcpxr2LhBQMsJKaZ1ztUcIgmOG9KwPSIJuqLghRI3ClHdAC8MqXZVWp7PI2NlbC9CCMm+wRyRjJiodsmnNPwo4D8dPMdsw2Fnn8Wjtw0QAeNVh/ffPYxE9IqmFunPGsy331xoLKY1vnm0iaEp5FIqjh/GaRdDxQ8ihBCoStzSrmDGTSqCKH4dBJUXn+Tg9/+a+tlTl7wWe+59Gw996HF23/cobU9y9Gwd4QV0vTh9pCmCKAIEvH1PmXLGIGdqPW140/GpdtyFtFLEU0en2T9SXFHOON/2ev7ri6wkZy1nDA7sLHJ6vsV0w+bAruI1zY9vdeuBDQnsQogngPcA/UKIKeCzUso/2oixE7Ym1/uLHffknENVwNQVVCGQoSSf0WP1iGoRRVC0jFW17W/MtpltuivejFZ6jx/G0SmIfPqyBqaucmiqhhuEFMw0ja6PqoAiJK4v0VSFQMbBUlUUpJSEkWCkZKKpgh+eqrKtkGK64TJStNhXymKoChO1LkEomW06hMQdkRQl7oTUcQO+9J2TDORTGKqybMY+mLOodYOep/l0wyFtqAzkTOZaHgXLwFBDUnrcBm6y1uX4TIucqXG+6aAqYqETU3ysZ47846pB3TDT7HzbT1N44COM3roX09A4XXVo2D79WQPZFkgZ4IURrh+BgP6MgaYq/OPxWQTQdGIr4K4b8PWXp3B9yV078pyr28w2XfaPFDg01ehdr44bxF2a8suvy9IUy9IbQTljoKt59u8s8YG7h3vyx2vxRHmti6XWy0apYh7fiHESbhyu9ot9temb4aLF7nKaphOrKPpzKXYUTbxQUu16jA1kGCmmGS6+WTF5YSFL3fbYVjB7ry+2Vfs/n6rSdUN0VbC7P9NzctTVWA1s6RqOH5E1NfwwTrEcn2nRtH0KaR3XjwhCCTIkAqIIduR10mYcfO4cznN6vs1EwyVr6nzsgZ3YXsiTR84y03Dp+iGaAvWuj6YITvsdTF3h9m2F2BvdC3nsjkFeGK/xw1MV3jZWJqUptL2A3WWLF8arCBF/xgd2lTB0FUGHoVyKI2frzNQdtIUuQ44fgpTkLANLj8dwfMFIMY35gY/z5GsvLjvvpe1jfOCf/SL2rnfSVyrSsD2m6jamprGzZJItpKg7IWP9aeZaLpWOh0hp3NJnYab0ON+uKCAkrh/ScQNmGjaFtMG+oSyaqnBytsOtgxmmm85FqpTHH9rFoakGLcfHDUKOnW8x3/Z4xy193Dmcv+hG0HIC9vRneOL58V5z6wttDjYiuF/rYqn1kqRiEq6Kq/lirzd9MzaQwfbMnuvhwckGQkjG+tPcNphbpjleyeCrYOm9HpqL7w+ikLM1mx0li8mqja4p1Do+Q/kUlY5H1w0wdYWZpkvb8Zms2RTTBmlTxdRV5ltxyznTEAQhaAqkDIEU8YLp9mJsvKUrKnsHs+woWShCcHCyxnTDodL2iCKJFICESIIXRJya62BpGqGUDORS9GdNHh4r89p0k8NTde7ZUYBI4siISsvjbN2m2nXZVjBRFUHTDgjCiK4XEEowVUHQrlH50ZMM3PMu0rfsYzBvEUaSIIpIaSq3v+09fKc0hN2Y5663/xS3P/Yx7n7wEc41XKwwQog4r1+wDHaW0kQyYnvRRFS7HJ1ukU5p7NuW475dRWaaLnuHcmRTGuPzXVquz7aCiRfEaazBnLmQAoqZbbqYurqiKmUwb/LMsZleoH7nrf2kNIVDU42L3B0XjcJOz7fpz6QQChyeanBgZ5GcqW3YE+VG+e5fK5LAnnBVXM0Xe73pm6X7LKYNbh3McHymTd6M3Q0vp18/NFXv3YwWXRPHKzZ5S2eklMHUVGpdHz/wmah1ee/tQ/hhyD8cm6PrRTSduC1dEEqypoZpxDNgP4R9Q4W4HF9CKOPcf95S2FVKY3shDddjrC8NSL79+gwnZ1p03BA/kBiaiD3QowgnkAgg6PocnKyRswweGjWpdlzKmRT7tuU4crbBkbMNGrbHxHyXdErD9n28IOK1c03yloGuCmwv1pUrc8c49+I3qP74u8gwQHSrjOz5zTgwF9K8Mddi2ulSM1R+7n/8Am8/cBe37dnNy2dqOH5Iveuxb1ue8fkOLTcgl9KQMmK+7aIKQceXjJQsCpZOretzer7L9oLJSCn9ZqMMYruEbx45x3DBxAnCnnTU1BVmWy4Hdq1cCDRctChlUvzkvsFlEwmA6aazrKnGolFYsKBIim8ecUXwgZ2lDUuVbHXNexLYE66Kq/lirzcveeE+txctPnj38JqaRH/t5Smq7To/nm6QNTQqHZ/9O+OA0pdNoWsKGUMj3XHZWU7z8kSVu7bnQQqePTHLrQNZWq5PresThBLbj3PYd4/k8QLJG3MthISW5pPSBPNtj53lNKPlNE07xAxYSCtEpBRBWwEvkIBkUX8iidM5HS9kMBcHr798cZL+jMH5lhfr5KVksmoTAnrXpe2GeGF8Y/BaLinFo3nkGaovPol9/o1l52D+0LdRfu6/B2lhaAp9mRTDRZOUptIafIBJT9DX8RjtT/P86SppQ0NTYHvBYq4dF1RBfHMNI0hpCuWMzp6BHLYfxE8grJwOy6Y0Km2P05UueVNjRyl+alAVcckKzyv97ixul0vFChzLUDG1eMF2o1MlW1nzngT2hKtmrV/sjchLrvuPKYqVtqam4YeSlCZ6TZ/nWy7TTYfJWhdTUzA1lY7nM1yIddW6otD1InQ1bjc32he3V+u6AYcm6nHOesE6IGvqjPVlsf2AvKWxu6/Ec6eqZEyVQhB7xqi6QgmNWjcgWCIAVgAlFqpQswP6czDbdjk+0yKtq+hqvBjacuOc/JwbH7+igFc7R/vlJ2kf/Xsip7PyKfAcWkf/gV/655/i5TM1ZlsONdtlsefFjmKa0/Mt9g7lGS2nuW0gw4+nW/RnDf6L/ds5PtNGCKi0HI6cq2H7IVkznq3fNpQjiiIGc2bPRmExNz5R7S5IIlXG+jPMtxyOTDXYWU7z37xz7JLX9Uq/O4vbjfanOTgZ598lEZoitlSq5FqTBPaE68Zm5yUXGyTfsb3AcMHkuyfmcf2Ig5M1dpfTnK07KAJ0RZDSFH50uorjB4yUHEZKGXaXLY7Pdmg7Poau0HJ9VAF5U6Vme5yvhwRSogiBH0q25QIMXaWU1nn84dGFphce1bZHJCW+H6EL0QuoAII4qCsi/v9QSubaLpWmgxNK3CBE1xR0VUHKWIoZRiH2qRdpv/wk9ulL2+Qa5R2848P/FR/5px/nh6cq/ODkPEjIpXUyhkYYRUzVunS8kP07S3zswZ0AFNIzHD3XZKLaZe9ghqbt84OT8fnLpHR0ReGN2TZtJ+CO4Vyvn+nS3PhwwUIiaTsBpqayo5Rmd59g71CW/btKlzzuK/3uLG6XMzXuHckvW2xdzTXyZiQJ7AnXjfXkJa+mO9GF2y8rcqrYbC9YpA2Ns7Uu45UuhiIYyJtYmsLr59uoKqQMlamazZmqTdZQyBgqDVsiJEzXu2QMFSeQBIGkaseyw/6cga6ovH6+Rc5SeXG8wjePnsf1IgbzBild5eE9fRyerDPbclharacIUBSBQKIqCmEoqXc8FFXBQMYKnCgiVCVht0n1lb+l8cq3CBszlzh7guxtDzH2E/+EHXe9je3lLA4muuIt2BeA50ek1Ihw4WDG+tMXBeZ7dhRJaXHhz2Sty86yxVzLwwsjFCHQVJhtOYwNZBZ85+scOdukL2Nwx3CeI2cbFMxYNprSFO7fVV7VZ/9qvztLt7P9kIf39G2pitDrRRLYE64rV5NKWaua5lLNoEtpgyCUWLqKlTHIWhq3DGaYa3mcb9jcvi2WJg6XLDqOT63rIYQgpQkiIchbBh0/JGNozHfcuEm0quAEfm//jh9hmCrVrkutK4g7p0IQxR15ymmD+3aV2FGycIMIUw1ouSFSxMU9AokX0PM5D6REQaAKgRCgCghCSfX4C1Sf+eNVz5tq5ckfeD99D3yYbTt2kk/rSAltx+PkXEQIpA2V7oKzou2HsSTSC1Cg181qJXXJidk2lq4x2qcx23Kpdly8QCKlxPVCnj0+x0g5vfDkITg42UAV8blZLFKCtaXirvS7s5Vz39eLJLAnbBiruS+ut0BkrWqa1ZpBK8Cr55qcrTvsGUgzXDBRFZV9Q3madpxrPjhZo971Gcyb9GVNOl6AocaddKSMte/9WYOJik3HC6h3PHRVIYgkmZSKH0Y0bD/2hgnBDWKZZccNSZsaetclQjJe6aCqCtsKKaptQccPcUPiLkaLSHACUIhQFUjpGmmhYPsRQQSZ299F7R/+HZHdXPb5jeG99D30Mwze+27sKC7marsBlqEyVLCotBykEFiaiq7Eyw6xs2QUF1UBTcdn7yXUJbE3vMTvOQ4omDoYGpyt28y2Xe7ekY+7RNkOja6/oNcXFNM6u8pWzxZ3T3/mmhUSvVVJAnvChnAp98UdC4ZUV1sgsrQ70XilTcsJyKZU8ubKM72lCopeM+gwZLJuc0t/jo4XcLZuIyX8xG0DgKTS9kjrKpGMZXkT1Q6WoVHv+pQs6LgRrhdrw7cVTBw/RBcKvozwwpAoYqHaFISAetdDSommxP1DYxOuLh0nLr3PpDT2DeX40WmHthciRHzjiZZ8DlMTRM0ZnNlJjLEHSOkgEQRRrJwRmkF2/0/T/OFfIlSdzJ3vJnffh0lvv42CpaGrCqEXImW0oGQRaAq4oWRIV9lZzjC5sKBpaSoZoaKqCnlTo+OGuEHIbNPljbkOBUtjIJvCCyI6bsA79/Tx7PE5puo2MoolmnF7PZWcKehLG5yaa9NyQ6JQxudICkxLo+UEzDQ9HD/oVZtuVc+VG5UksCdsCCu5LxYzGnNth53l9FVZDiw+Afz4XAM/iPDCuA1c3tR7nuHTdfui8ZYqKFquT97UGa+0KZg6/bkU9++OC3129aWpdjymG3GQ31YwOTnbjnt4SknX8fGDkHPNuFoziCIUR/CG0yIIA2yfnppFA1wZoaqC/oxBZcHDXRUw13bxgoggkiiKIJSS8fkOja630N4uJFzS6EnKCPf0K9QOf5Pm8R+hmllGP/XHyEhBiLgIyl+4A+Tu+yCalSV37/vQ0nlUwNAULEMla+oYmk+1GxBF4PoB4/NtMqbBrQNZhksWh6Y0FAXqHQ9VU7CA0b4MbdfnhfEapbROreMyMe/x+nSLbfkUg3mTR2/t59j5FtNNh0rXJ20oDOZTFNMGXhjf3erdgP5sikrHRVNVhIBy2mB7Mc19u4pYhsp009nSnis3KklgT9gQTs91aDoebTdc8CJx2ZZP9SRvsLLueLVF0aVPAPfsKPAfXzlLEEkKpo4jI6QU7B3KrBgAlikoDI267dF0Au7clgfihhh3bMuRSam9oB4hadkBu/sy7O4TnG/YsbwwpcX+NKpK14/oeAFdX5JSWCZRDIAggj2lFEIRGKqC44cEgB9KwgVXrJSuYAiBYag0nQA/lDhBnDePnDatw39P85UnCWrTvbFDu0Vw4gdE974XS4sXVKNIEgFWcZDUwz8HgJQgBbhBXEyFlDTcACHBNFRabogfhhwYKbJnMAMIxvozTFQ6BJEkpSm9Jtb1ro8qFAxNodb1abt+bEcc6TQ7Hs+enEfTFD549zDHzrfp+gEgKVkGNduj4wX4kSStK0x6ISOlNHv6M2RSGs0Fb5sr7Uu7le1xtypJYE+4Ii71xzVdtzlT7aIqsQmXE4TMtVyklD3vFrh4oexSi6JLnwBy6GwvmtS7PuOVDndtL7BvW5Zi2lhRUbFUGZG34sA+1pdBVQS2H2B7EQd2FtFVwf6dJV6ZqHFwoobtx9rwlKrihBGaKsgaKuWsGfdOFQG1bogCeNFFuwVgvu2TSUmkhExKJ4wivNAnlGBo8QLoYMFkvu0RRqCrEJ07Re2lb9D68T8ig5UVIo2Xn2T07R/C8SMURaCpkjCKbwjhQmpGEje5GMwbCGIfmKyh91ruFTSVoqUxVEhj6nFK5GfuGeZLz5xie9GiaOp0/JDJqk3R0smkVF6dboGAciZFGEXMtTx+PN1kpGQxkEvhBhEjZYvj59u03QBdDcgYGtmUhq4IKt34iWl4wVrB9kJyKX1VI68Lvydb3R53q5IE9huY6zWTudwf16GpOnuHspyc7fRUD31ZnTPVLveOFImkXFF3fKlF0QsrDbfl02jC4XzbpeX6jM936c8FbL+gk0614yGQNLo+EzUbIaBk6ZxvOrw40SSjq2wvxsZZqiJ4/KGdHBaCcw0Hy1CxvdiWt+sFKAJsP0QRUEzHzTXarh+rPxaOa6GOqJcb94KQnWWLph2Po6mQTWkICaquoAmF+Y5HGPjUjzzL1HP/ie7kq5c8/7ntt7LjkY+QUiGTMlBtqLTd3sInQC6l9kzK0qZOf8bgxGyHYlqn64XUuj7lNAih88pkDUUI+nMGPzpTY7hgEkWSbhCS0TW2FUxqHY9zDYdyxsDQBLNNF01RKZgq55sOMw2HvdtytL2Q7UWT4aLBKxNd5jsuY31pHhwtY2gKL43X2bstw/mGS63rEkWQM1M8f7rCrnKaUlpnvvP/s/euQZKd533f733P/fS9e647s3fsLhYQsAAJEgRIXEgIEglSEmWKdihbjiy5mKTCSipfklQlqXKlUpVUyl8cWnFZJctJOZZlibZESYAg8QaQEggQAIHFfe+zuzM71+7p+7mfNx/ensbuYhcAsQtwQc//A1Cz03P69Olznvd5nvf//P8J89Ur89NvdHncGxXbgf1Dig8yk3mnh6s1iJmv+WPBp26YMFP2mCm7zFbdq/KO325MfKtPnmTamOH0epc3VvtMlxxKjkknjDnbHPLR+2uXXAsp4MnjG1zYDLl5toQCnjrdYkfF5VP7G/z4XJtTGwNu21Fm32SJo4sdumFCw7dZ7gaEqcI2JJYUhKlimOSs90IKjoEpJbZpECa51huHtwR41zZxLJN0EJOpjCDS6bQAzFiQD1o0n3uU1o8fJx20r37RpcnU7ffzwBf/AbMHbiPOBeu9kI1uqM2WR+9vCIEhdRtlquQyjBJMIehHOUVHstKJyFROnGYkmcn5VoAQivVehGNIiq7JR3fXR+0ixVovYLUT0h0xeyaKDuu9CE3ChIIjWe2lVHwLBcxVPU6v9xlECXsaBe7e12C1G/LqhS737m/w1fv3stwNsY0B7SBGAisjgbAtizzymHBEt7z8PrnR5XFvVGwH9g8pPshM5p0erq0gXC84Y8GnXpjg2cYlAk2XY8s8Y6MX04uSsb3djqrHkfkq33juPAutIRXXIs4U5ZH+xw9PNYmyHNeU/NFz55iveaz1YtJccbY5ZK2jNVReudAhSjJ6UcZ6L2ShOeT2uQpFz8QxJTvrPr0w0S0EU4IQlB3NjAmlwJIKS+rpzjDVeweOMeK0x5oWOBJlBHRbZHfNI0oy4kwRJzk5uqefZIokjDn7L/4rsrB/1WtiVyaZv+eXufeRX6MxOcXH9zZ4ZanD4brPD0+nnIkzLGlgOmhjC6VwLImUAimgXnRY70f0whRD6vYPGBhS0I8zwiSh6tpUSxbdKB1VVRWa/YTVXkjBNshzvQFbcwxcS9INEyquRaNos9qL8G2JbxmcWOvhmJLmIMa3TO7Z32DfZImbpkrj7//IrhpHLvp8j7+yrNsxF92383X/qvfKjS6Pe6NiO7B/SPFBZjLv9HC9V6mA2bLLn7+4TLVgUnGtS7Lw2arHRMmhNYxJcu3Mc3C6yOnmgPYwoWibDOKU776xRpYrdtYKlDyTM+t9oizDNyXL7YQkz/EtE8sQrPVCFpoGh2bKY32YgmPi2yZTJYdOkBDEGWGaUbQtvJJBL0iQUlDxbSYKNoubAZbewzEAACAASURBVLsaPsubAZ0wv4SeeHi2yN7JIi8vdUjSDCEFhtKCXkqB5dhM3vEQK09/8y3Xwtt9hNpdv8Tej9zHJ/ZPstAastIJWWwNeOl8m2+9ukycwTBKta9ohp6MtQymSzaTZY+CbdCNdBDuy5Q0U9R9gyDR5h2dIBm1l3KCJMc2JGVH8jcnNyjYJnGmX+fbJp+5eQrLMDi22uPuvXU2+jFRqn9/y2yFheaAYZxhSYmBIM1yXrvQo+rbY9u7K92LP+l9+9OWofiwYjuwf0jxQWYyFz9cUZpzbKVLcxBzz776mG74XqQClkfmxev9cKyXftNkieVuyBF0Jnxopsy51oAgTXl2oc8gzkiyHLdqIIXmTiulGMQJaZ6Ta78L1sNEC05JSRCnDEfNhBNrAzKl+Pjexvia3TZX4ehim5pv41opcU9PUPYCvTCUbIsdJZf6KPi3BjFl3yFHa6kLISjYkqmSx97JAs8ffZnUbGBIg6JjMIwVtlCkWc7kx39pHNiF7VG9/WGqH/08Rn0OgGGqWO6EWIakaBv81aurOIZgOArOiYItGcg8A1TGajdmpuJxcLrEej9mV83j1EZ/rPU+SDLiXGuzKyDOctrDmJpnEiaQxSmGEHi2gW8b3HdAZ965UoRJRtU3+c4b69impO7bnN7Qeyn7J4pUfJvF1pA0z+mP9j7ezkj6J71vb3R53BsV24H9Q4oPMpPZerieOLbGU6eaTBRt7t3fwDGNt/T1tzYwt/xF30nGd67mjV3pgbF2yHI74LULHV5d6iFFzsYgZmMQEyU5niPohglhvDX2KFjpRDSKNiXP4HwQ67F+U2pOeAaOoeVlB1HCK0s9Jgraam6lG7G77pMkKW+sdElyhVI5UsEw1awVpeC1lS71roVjm1rkK031UJEUeJZkZ9Vl6YXv8Zf/5x+z/Mbz7P/K/8Leuz5N2bU5ta5No9McrOIMkx97BFXbg3fLgxQKBaQURKmuSgZxNjKpKPLqcpdhlCEl+JYxrjIYf2r9nzDNSDLF2eaAJFOYEwWmyy57GgWeP9cmDhIqjkVnoNtVnmWMHKUSar7FTMWlXrAZxhlzVY/2UFNUB1E6FvM6vTbg5HqfOMvGOuyWoU1BXEuikAzjlG6YjCdKr3QvXn7fLm4OOb7aZ3fdH3ufXkn/ZTuQ/2S4Xp6nnwX+GZpt9XtKqf/jehx3G1fHu81krhdzRpsd2Hzm5reaHWwF8Z9Uz+Vsc8AL59pMFh32TPjjTE+MjhWnOVGacKEdkSuFUIpMQRgrRB6To1sRKDWWso1H5PKiY5AqRZgwGseXhEmu9VYk/O2pDV5a7PKR3RUGoclz57r4tonKc5qDUWY8ghCCMMnZ6CfM1wwmSg4rnZCCYxK01zn7/b/k6I//krCzMf6b/o8fJTryAIvBkCDOiHM9WWpIwY5H/hs6Yao1X3KFLSW2IUlFjlIQZxkvjkxBbFPSCbT359YGrWJEc1Sa6iiApfaAomvxqZsmmKt5LG0GPLewiS1BKYVCUfZMNgcJwzglvWhadEfZZbLscWy1y1ovxDTkJcH5iWOrtIKEfZMlXEvywvlNTq33WWgOODxT5fBsmWA0papQbzE9udp9e3JNS/kemi5f83TyNi7FNQd2IYQB/A7wMLAIPCuE+DOl1NtzuLZxzXinTOZ6M2ferj/6k2zmbp2Xbxu8eqHD2Wafl5fafHR3jXrBwTIYueDkxLlCSIXIFTkC24Q8U0SZ1kuJs3zEGTdouCadYULRMdlZ11OlS5sBnm0Qpzq7F0KQJDmpgjyPeW25y7GVPnmekStFlF7aN89zSLOcoq0HlHpRxpH5Cusnj3Lyif/I+svfR+UZl2P12I851LkAxRkcU5KOrOVMKTENgSlGsgDoamKY5KQZGFIRJxn9JCNMcpJMb9EmaT7Sa9EBeYtpY0idTXWDlNYg5JWlDuv9kD2NIgdnCnz39TWiNKdgm8yWPSzDZBinI865NhUZJhlF1+TAdIkTq723BOdXLnSpuBaebQBwcEp7iG4Otd1dP0441wooOSY/t6P8lhmHKyUWs1WPx19ZZrbibVMZ3wdcj4z948BJpdRpACHEHwK/AmwH9p8yrgdz5uIH82xzQJhk7KoXxr/f6o+2BjFSwImz/THDZVfDI3hTJWp8rB+cWNcSAWnOXM2nM9R962cXNvnvf/EQry53dXspzhFKUPUc+mGCYYDKFd00ZRSnUZlWRMwyxWonIstz9tS1049nSsqOQZQrolQhFQyyN1PxQZKzsBEgRwJhpiGIM3WpPrrQVUGcg0oCWs9/h3/z9W+yce7E2163iQN3EIZD+laKyqHgGgilMAxB2dPfQyfQ+wDDVI+M2lLhuSadMNOLm603Pi1TEucZAjVeDBDgSBBCYhq6JVRyLYZxSpRaPHVqA5XnzNd8DENwoR1wdmNAtWDh2Q61gk3Vt+kME5Y7Ibfs0NOxuxs+X/v0gUvuD6UA8eZFKbomB6dLnNno0xpELLYD9k0U2Tfpc3y1z1OnWpeYTV8tsdimMr5/uB6BfQ44f9HPi8Dd1+G427hGvNsH592M9Ws+c8hfvLTMbNllZ91nquxgSjku159daFP1tJZLmOQ8u7DJXbur4/fYOpZAsNGPCJKcQ9MlJqdclFKsjRyMtjbYCraJOXKcSDKdouqeriBVCpXpdoQh9YCQIXWPvujZfGy2zFI7QAhBa5gwjDKuNCyaAyKHBIhzNXYv2hr8yXIYrJ1j/Ud/Qfvot8ij4VWvt2G7HPrU59l7369wKptAehZumhHkGUGcU3QNlNI98bKnP1uQZFp4DC2hWy+6rHZDbEMyX/dpD7W8bWsYkqW6elG5IlcCQwosU5Kk2iEoyyEYeYlu9Lo0+xGTFY/ddQ9L+pxrDemHGYdmfSaLDqvdCOkrumHGWi8aDWztesuif9tchWcXNhFC4JrGuKf/q3fOUyvYBKMN7RfPd/Asg8mSzfHVHkcXOxyaLl01sdimMr5/uB6BXVzh39RbXiTEV4GvAuzates6vO023gnv5sF5t2P9rUHMajdmd91nGKc0BxHtIL4oEIhLMzuxlfnq2+PiY5Vdi9Oj9sDZlrZvu9AOkEKSZBn/6N69HF3sYEqB52ijizTPMQQIoXAtE88SbPQTyLWComXKrSYFq92Q2+drzFd94lQzQAwB8Vvuyjex9av84h+AzWf+A+0n/vXbXmenMU/jY1/g1ge+wESjzqm1PiJLsAyttRKmOUmu6Aw1w8QSgjzXejJaA10SphlBktPqR5QckzDR069V36JRsJkIbLJckeYZtmHQGsT0wgTHNAjNDNeQXGgH7Ki69IKEpXYIwJ66j2VKslzwyf0NFppD9k/oXrkhJAvNPodmijx0eOqq+y8PHppiYxDT6kd0Ai1TvHeywIOHpvjesTUmig4vnmtrjXvbQCnNfd8aeLp4c/zixGKbyvj+4XoE9kVg50U/zwMXLn+RUup3gd8FuOuuu97mEdvG9cK7eXAub9ckmeLMRp9//r0uSsHt81WSQcR33lhjvReSK+22s7Oh+8SPvbLMVNlFAR/fW+dca8ByJ2AQZxQsg5eXOjzYDi6pHvZM+Ly81KYXxax0QkzDwBSCkmew0gn5/vF1ZsqaTbLcjlB5jilhEOc4lmSu4iCEZL0XYxpaxlbmilxpP1KVK06u9zi7MaDomtR8C882WWoNxxovF9+Al9+MF//s7vy5K19cIane/AlmP/HLVG/6CApITYuSYxGlo558nBKninAkxZgDwzjV05ZoM+idNY+NQawNO6Ru0ziG1OqSUUbR0TIBYZLh2waHZ6v0o5TWMMaxTOq+TZSkGFLiWBLTkCw0B7gjamLZ21rEU5JUMF/zyFVOJ8jwbMkn90/wa3ftfNvW3GzV49c+Mn/Fqm4redhS0QTGw1wFm7dUhxcnFttUxvcP1yOwPwscEELsBZaA/wz49etw3G1cIy5/cAQKyxB879jaW+ziQLduXjzfxrUEAoFtCp54Yw3XMljvhYRJTpTm9IOEkmdgGwaLLZ3xW4b2Cd3TKNIeptQKNioHhRr/fqt6qBcc7jswyb/70QLtYUrRUZRcfSvuaRQ5vxnw9JkWu+oF0ixnpadwpMQ0ctJMsdpLKDqax57mCinAt02iLCfPFIM4I8tybpoqkWQ5a72QRsFisx+Sx3qzdUuZUQoQSmHnEal0ybk0sNuzB3FmbiJaOQmAWahQv/Oz1O56hGJ9dtQv19d1suhy9746z59tkQG2oQ0uto4n0UbOea6Is5xemNAdDUDZhtQaN0HCVMlluuSMqaAvnu/g2wafuXmKqm/z4vkOjYKDZwpMw2S9r3AtyZ6JAvaIHVTxLQQQxJmmI+Zah/0ff2rfezI/udpG/VbyYEpBEGcICUGcc2i6TD9KaAe6srhaYrFNZXx/cM2BXSmVCiG+BvwVeoP+95VSr17zmW3jumDrwXmz5WKMH7LLA+5Cs49nS1CCsivZM+Hz+nIXK9YGEtloyEVKWO5ElGxztGlnEib6oT2z0ce1BChBmGbcsbOCZcjx70FXD6YhsE2TRkHi2RJTSqSQ2KZgoTmkM0wYxCkb/RjPNPAdgyzL2ehHREmKYwhqBYe1bkQuFO1hgiklaZ7h2xYn1/tUPZ09p5nWRvFskziLSTMd2PMkov/6k/RfeBSrPMncl/5n4vxNQS8JKCEo3/l5ukcfp/rRLzB/54MYlkOYZhgCDKEz8obvsqfhsdoNR0JZMYkhxqbUEr1gRInms4OmIRoSklThmZI4B9eUHJ4tcmC6zN+e3MDshFiG4N79E+ybLAFwx84KzV7E+iDiE3tL/OLENACvL3eJ0px6wWa67F6i3WNKwT376m8Z8b8e95eecWDsjXr7fAXLEJhS8pWP7WK5G25n5B8wrguPXSn1GPDY9TjWNq6Ma+WjX40hc3HA7QbJyAYu49BMkXrBYbbq0uzHoITW4061+0+aK5Jc0R7GRGmGQvDwLVP88+91EeiFYesYuVIEScbDt0yNq4fVbsiR+QpLmwG9KCVTuk3x2oUuzWHEMMoQI49PUGx0Q4JUe4AqBcMkG+m2aPMJyxBYhqQ1zBhECWYqCUbHLTqmnk6NMlIlkINVus/8Bd2XvkUW9ACIVs8wbK/hVKZgtJm5xUAp3Pbz+Lc/DECQC8pCUPMsDEO3Pj66o8o/+uSeMQNkrRchzrdY6sRarEu9yT/P1ZsVQabAQKCUpnKWXZPdDY/FdohCctNUkXv2T/DDUxucWBuMtXjqBYe799c5vtpjomRzen1AcxCP1Sqnyu5o0Zbcsas6zpQfPDR9jXfhlTFb9fjK3Xt48ND0+B69mC55PReSbbw7bE+efghwPfjoV2PIXBxwddBR3LGzMhbzqno2Vc/Gs0yOLm6SZLqN4FkGUyUHxzQ4ttLj7tFDfN+ByUtEnuDNvurFZfcfPHOWRsHmjZU+wzjDt/VG4rlWTMGWzJQdNvoJ/ShDWTm9kX2ca5rEWYZtSUqOSX80fWpIg0wpCrZEIslGE6dS5bT6MTk5g1PP03/hUfqnnucSTiOAyum+8BjVB35z/E9bwViJN/kBSaYYxCn1osvOehFDwmdvm7nECWi27OHsmcRb7jCMUjaDGJUperHO1rf45/moVSUFpFnGTLmAa5qcbw+Zr/kcni0jheDwbIWnTzd5fbnLPfsnGEQpppQ8fPMU3xpp5UwUbaZKHkcXOzx8i3vJEFAnSKh69ruaBv5JcKVk4+1E37bxwWE7sH8IcD346G/HkNkKuFv9UsuQYw31um+DFBRsPdI+U3HZ6EZMlGztlWnBy0sdpkquHjgpuxxd7ABX37Ddmjp9dqFFnKZEScbmUItMFRyDimtR9mxsw2ChOaAdZIDCtww9qWkaVFybfpTimFrZMM10nxlT0gtHfW2VM+j36L/0LXovPkbSXnmbKyRI+5uX+I5eTI/UlnOAkLimZBDr3v3mMGVnbZNumHL7fJUSenO4HSQcni1zer2PY0pWexGGyEZqj2AISUQ+5rhPFB26kWYblT2Lj+2pjRfXesHm43vrvHTZJuPRxTZ3721c8p32woSji22OzFfZHMS8vtxjomhTK2iTi+s12bltgHFjYzuwfwjQGvlnnjjXohemlFyTXfXCJcM/74R3w5C5Ekvh1+7ShKeji212VD26QcLBmZLmf6ucjUHCvokC+6eKDKJUW6YJxbFVzaq5ba5yycO+FRA8y2CjF2kedpZTsA2SLMeRkmaQMlsTFF0HwxCcXOtr+zqldVySVLDWHRImCkMKPMsgz3MMYZCM3ILWF95g/Zk/Z/D6k6g0vup1kW6J4u0PU7rzEezqDHI0yelZkjhVpEphCYESOtDbApI8p9mPCeKcRsHizPoQy4Q/fXGRHRWPgmMQJRkXOiFSwkTRRgpBzzYIk4xBojXay9abPP2yZ1H1LBzTwDIlw/jS79YxJfcfnLwkI96iGl6MgmNycq3HWjfizEafyZJ2U3ppscsdOyuUXPO6THZuG2Dc2NgO7B8CCOBHZ1rUCpoDHqYZPzrT4mN7au/6GO9ELdsqq8+sa0MEAZxtDjizPhgLQW0tDiXXpOCY/PDUBr6TcteehhbGyhRn1gfESUaS56z39bTqVNG+RCRMe6IG7Kx5LG6G5Dn0I02PVEpRdk0WmgF37a5Sck1WRywOKQRZlpOhiOMt7RWJkOCMlBQXl5ss/OE/oXfu9be9Hs7MTRTv/Dz+4fsxLUcPOAl9TNuUKCBTSvfIDR0w41QLiwHkWcbeyQI1z2K9HxHFGcIQrLQDcjRbZ67qccfOGv045emT65Rdg7VBQllpjn+lYLPSDpku2ViGxDINPrK7hiklx1Z71Hz7bfndl1dhrUHE68tdTq73uWmySCeIma34IykCWNgYcseu6nWZ7NyeGr2xsR3YPxRQehNRjXq96s1NxZ8EV6OWbWXRWa441xoSJCnnW8HY4s21DNa6usy+eHGI0pyP762PeckLzT5xmvHShQ57GwWmSw6dMOF3njzNRMnlyK7aOCD0wpT90yXW+jGgSHMoeybr/YjdRYcwzTnfGtIcJMRZTrVgMQhShpl+rWVCxbNxbQNyRcmzWO9FzM1Mciq4ipGFYVK8+T5KH/kC3txBstH13LqKqQKpQOQK25TMlLVUQpwpDKDimSSZlum1DUHdt7XzkNIGF2GScnYzwDHlaGoWdtZ9zreGxJnCtQxKdkZzkJArqChF0ZHcsbuGZ5mEacaZDW18sXtkPnE5TXXrjBVaFGyjF1FwTU6v9Xl1uYdjSWquySDOeH2lz9lmwHTJZbJkE2fZdZvs3J4avbGxHdg/BFAIPranxrlmQDfUOiwf21Mbj71fK7ay6BNrPXzHGAlpaaqga8HTZ5qUXZOl9pDfvHfvuB2w5YYDOoN7ZanLibUehhCYUiClpOrZbGTReJBJKzrqnnTVt5ireryx0sOSmtWyq+bRCROCJMMyJHNlmwtdbdvWynIc28DMFK4tMQxBxbXwLYPfum8f//bps2RKsetTv8obf/J/jT+fWZ6k+pFHKB75BXArSKH75WmmRcFypcaG0FKAROHbJsNEa9lEccpmkNKLtZF1o2BSL7o0ByHdICNMU6IkpRukFB2DHRWX5iDhuXNtfMcEBVMllzjLWO3qYwuhfUvrBZdBqCmanmUyiCL+6tUVKp6+3mu9kM1Bwp6Gz3TJ4bnzbaIk59YdJfZPlulGKSfW+6z3Quq+xWTZ5fR6j9V+TMWzNG00Sdlci9lZ867bZOf21OiNje3A/iFAfaTH8ZHdb7ZetqzHrgcuzqLLrsUwTfFtg9VuxEJzQJQodtYcTq8PuNAOuXd/gwcPTY0f7vYw4fhqD6UUcZozWbBZ6YbMlF2klNR8izMbA7712irTZZdukOJbBidX+jRKNr5tUPUtskzRDlJQgpmqSzeIObkxxLcMfNvEMgzSsEfnxW9z5sd/zUf+y39K7FikuWJplClPlh3yh36Zk3/5e9T23Erpjs8j99yJNEwkAlPqFotCB3B405i6YGn9FSklh2dLdIYJcZrRTBSOZTBXdDBHo/tuGLPcVfi25vivdbW0sG0KXlvuYZsGBVtyoa3bSHsaPuv9BEsKkApDSHo57Kg6XOiEFF2LNMs52xzQCRIsw2NxM6AbxNQKNqc2hjx9usVczadRcFjuROSqT5rlNAo2FU+36YQQnFrtsdwJKLsmudLqlGGSYRlivN9xrfTZ7anRGxvbgf1DgPc7O3qzrNbtAN80aQ1j1rohRdfEsyWL7QhDgm8XOb7aI8nUuDXz/zx1hjRX7J0ocKEdkChFEKW8sdql4tnM1zxQkOVq1MJJGSa6vYKCe/fVObbS50IvxBAK1zZZbkf0Qu1qn+YKtXyaC9//j6y/8B3yROugXHjmUW76hX9AxbH4m5MbREnC8ZWYMLf53P/6RwyEz2ovxBQChBbcSpUeAnIsg/Yw0aqPQmfqmYI0yfEdiWcZNCZtnj7Vwre1kXXVt3FNQZbmnGsHTJUcDBSdUJtW+JZkEKaj/YacLBe0hwmOKUfSCZLdEy5CCOI0Q6H10Au2ZHFzyOn1PqahB77yXFHzbfpRRpLq4bBEKU31NLUphmdLTqwO2FX3Kbs2YZKT5TntIMGzpNaRSTOkkPzirZOUPeuK4m7vldGyPTV640L+tE9gG++Mrexoq+fq2cZ1pZUdma/SC1Mmiy7DKMO2xMiZXm/cZlmOKSVTRWfsXn8xu2J3o8DDt0xz/8EpPnVTg/ZQuxsJBa4lWdoMKTkGx1d7RGnObMVnvuYxVXK5c1eN/+3vHNGtpUyRKkGc5qRZRpoktF99kpf/5X/H0//0t1n90aPjoA6w/Myf40iYr3mjVo7B3kaBsmvQzvW1sYQgHLGH9jR8agWbTCnSTPfRHVNgGbpznY4UJE1DMIgzltohUgr2NAo8cHCKg9MlMiXIUOR5ziBKWe3HFD2TqmeR5uiKQ0DFs1BCkOaKBw9N0Y8zXFOOvEcjltoBphQcX+mx2g2Zq3pMlmxcy2C1F3JyrUdzEGNKGCYpqcoxhWbLJJnCsyWuqZlElqGnhIMkY7EVYBkCzzSo+jb37Jvg4EyR1ZFqJlzKaJFCy/1ufZ/b+NnAdsb+IcH7kR1dXI5bBrrHXfdpBzHNakg3yDEN7R40VbLxbJNOELN3sjBmQFzuhJQrwR3zVU6s9QiSnEzBJ/bVON8KmHRMPEvfcp6lFQzbQcxyO+BHZzdplDR3fW1liXM//AvWnn2UtL951fOPuk2m4gsUnAYV39KyAqbBzTNV5qoRLy52UIBtSVxLkqQK3zIJIm3nVvMtNvraRs8x1GhAS5tarHRCDKm9TCeKDkXX5NR6D5VDc5Dg2yaepTP5INaZshQgDMEwzhAiZapks2/SZ7rscmS+QpzmvLzUphOkeLaehtWrp6AdxNimQZgoCpauyqI0oxekJHmuXZAUxKmgH6YcmC7QDnQLrV50sAzJ7fNlvrnRxzR00J8dyQoEcUZzEHNkXksobzNafvaxHdj/E8WVyvFemPLFO+fG7jYX2gEn1wasdkKEgEGckmSKfpjyrddWcExJcxAzU9bsmU4Y8/L5NqYhmKv5HJwqYRraCzNIEnqhwWonJMlzLCnxHZO5qsfRxTamFKSLr/Dit/+YlZd/oMcyrwK73GDvfV/kkS/9fWqTU7y82GHPhM9M2WPPhM/CxpDI1Fn0Zj/GGhlotNMEU8LuukcvTpksu0gpkELSHIRESQ4IfEfL7e6dKFB2DDaHGZsjmYOV7pA4zSg5Bp0gwXdMhlFCnOkqQGfY2vii2YeD0yV6YcqXP7qT7x9f5+RaHwFEqaIdZCgFnikpOiZFx+TEWh/P0nsq/VDLIxQdEyklQZzhmZKZik2Q5BhS8I8/tY+pssvRxTZBknH7fIWZsubSX64Ts5UYbDNafvaxHdhvEFwvb9J3e/zNQfy2AyZH5qusdSNumioQRAkvLHZIs4xGwWGlGzCMc4ZRysn1AQ/dPMWdu2osNPuEWY6RwY6qx0sXOgyiBAPdXz+/GRDEunUwW3ExpaTm2zz6p9/gu7/7z1g/f+ptP0Nl3x3c+dm/y8Stn6QT5XQoMGsaOKbkXHPIXbvrYy2VXpjQD2MWNgbkQNnVrZIwzVBK8Ym9dXzH4luvreCajPvYnm1S9x2Kjjnm63/5rl089soy7SChM0zYU/dIlSAnZnMQEmWgci0TYJkGjgWOoSdgkywft81eW+7i2ga2ZdANEmarLt1hSjuIeX2lx66az4HpIhdaIVNlh16UYQitSfOJvQ121j2WOyFRmnP/wclL7pHLB8DeTidmm9Hys4/twH4D4HqOZ19pgYC3Gk0/darJJ2+aoHTR315cjr+p2rdKBnx8T43Vbkh7mHBqbcjhmRJJmrHRC/lXf3OG3XWfg9Ml9jaKnFrr8aOFTQwhsE1JlKS0BgmNos1M2SXJczZ6MUXXpD2MOH7i1FWDuuF4zHzkF9hz3xfZue8Qji3xTQPDiEjznG6YsLtRYLkTsNQe8p3X1lgfRHiWgURx+1yVVy50R85CBiXDoBUkfObQFK+t9tlR9Vhph8RpCkJQdkwU2qwjzXJqBZvlbshv3ruXPQ2fb754Acc0kUIRpRmtHlgChAmOaZBkCsc2cEyDfRM+nm2Ov0MFHJmvcHy1T8kxsU0DS0oWmgGNoqQXJbi2ZKri8gs7p3l5qYMlJa5ljBlReyaKbPSjq2qyvBu2yjaj5Wcf24H9BsD1Gs++2gKxZQ598fEnijbHVrpM3DQ5/vvLy/HZqket4PDpQ1OUXIsnj6/h2RFBnNOPE5rDhH6YgVAEScrJtQGdMKI11BK5hpAIBMORb6eUAsOQZApMU3Fuo09zEDPxkc8i/u3/jcqS8XtbjZ00PvYFKrc9hOH4mCVHa8EAC62h9jadcLhtroplCI6vGPzgRBNTwlRR7wc8v9Di9vky9x2Y4OTGnTciFQAAIABJREFUgEGUYEvB/qkiiYL5qscX75jnG8+fJ85y4jSjG6ZEmcIyJALYN1Eca6wMopQHD03ytydbJLmekJ0sO4Qj42lTSoquHC9o87UCF+mHUS/YREnO82fblF1LqzoqwUTRYnfDZ60XkeVwcLpA1bcxpaATJtw8++bye/F39HZG0Ve7by7/m08fmtoO6D+D2A7sNwCu12bW1RaI5862eODg1CWvPTRT4qlTzbc1Qbj83Equyen1AZaEU2sD4iwnTHKKjkGuwDYFwzglzwWNgt7QS3PF6toy7R//FWFjB3d88csEccpKN2RtEDNdMTnftqne+ik2X3mSyqF7KN75eUp7jyCFNk7uBinNfqRlg0ec7JJrsdEL+Q/Pn+f2nVWCOOXwbIma/+Z1vNAecmx1wP2HJrl3X4MwzdgcJHxsz5sTsJrymFF0DNpZDlLgmpJG0SYH9k0WSLKcMxt9Tq71uWmqyH0HJmgPE54/16LqOZQbJipXnG0FKCDJFfMlhwy4c0d5fD6zZZdHX7rAei/kfGuoPU4LNg/fMs1kycWzDY7MV8eqjEmW0xnGvL7c5dBMCcc0xt/Re6nyrqUyfL9bhdu4vtgO7DcArtdm1tUWCKV4y/Ed0+CeffUxhfJq5fjF57anUeTZhRYX2vHYRNoyBP0oI041T9u3DMyiZpZsnH6Zsz/4E5ZffAKVpTgTO2k//MsMk4w405uj6ShTPvC530Z+/r+gbZSwDIkEgiQjShUKxTBWSJlgjgSzTCmxDK0R/+K5TfpRwq56EVPK8efcWfNZbGu5W0MIZisunil49UKH46s9Co5F3beYKDpIIZgoZgzilE6QMIhyDk4XeGWpw+srPUq2iW9LumHKSneTiYIW9rIMrfde97UnaSdMyHLYUXXZVffHve3ldsD3j6+T5kpzyTdDEFAr2JijfvzF13+tG/HR3R5RmnNspctTp5rcs68+DsKPv7L8E1d577Uy3FZy/PBhO7DfALhem1lXWyBum6uMzTS2AkVzEGtHnXfIvC4+t6pvMVN2WOvGuJbUwz0SPENTAl3TYGm9zfC1Jzj3t9+kf+HkJceKNs5z4sWnsXbdhmMYzJQdbX6RgSpMYkpIBwlppk02LCkxpcAQAkxoFB16QULBNlFC0A0ziq4BCmxDL1DnN4eUXQPPNmn2tfn27XNVmoOY1jAiCDP2TBU4NF3ijZUex1d7HJkrsxno63PbXIXFzSEr3YhcwYXNkIprkWQ5Saw4MOXw7MKQ1dG0aCdVLG4O6QwjhiND1Xv21fnkgUs3N48utmkNY3ZUfPZPGvSnUs5vDuhHKaujHj5omYbHX16hEybUfIuZisvhWe1I5NnG+Hjvpcp7r5XhT0PJcbtCuDZsB/YbANdrM+tqC8TDt+is8Yljazx1qslE0ebe/Q0c0+Abz51nouSg4KoPkGXodo5SWk3x79+9k8VNnYFmeUbVt2heOMfRp/6UleceJ72aCBew+MM/5/C+I/i25FxriBSSgm3QGiSkI652qvS4f5YrkjwnzcCUjIXHFDBTcWkNYjqBIM9zukFMmGp523rBwjIEQaKYq5QZxCmTJZulzQGGIan5zqgFpfXdXzjf4d79DXzHQMFIXiGh4Jq0A00XVMBc1efE+oDdDY8zzSEHpkpMlWxeON8hiBM+ub/BvildNVx+HVuDmCRTVDy9T1B0TW6eKdMJYnY3CgBjIbal9nBUScVYpqQ9bHP7fOUSmeb3UuW918rwg+a9b1cI147twH6D4HoMIL3TAlEr2Hzm5imSLGdhY8hKN+BCW8vnPnzrLIubQ544ts7uus/eycLYNKPkmjxwcIpBlPLMmRaWYXD/wSm6QcTLTz/Jc3/9RzTf+NHbnltpeie3fOZL7PnEI6xFMIxzio5Fmiq6Uar55DkIoQeFpBgZTo9imVIQRBlSQmeY0AtTsly/1hRgmRLXgijJ2ehF+K5F3TOIc8ZSx0vtkJmKw+m1Li8tdTWfXgiiNAchuHVHZdzHnig6KBSLo/eeLjl0hjHHV7sUbIuyb+LZBsudjL0T/mgoSbDRi1nvR2PBtK0R/rPNAafWexRsk/lageJIvsEyJPWCfYkQW9mzkEIvAL1hymzN5dhKl7svquDeS5X3XivDD5r3vq31fu24psAuhPgy8E+Aw8DHlVLPXY+T2sZ7x9stEFrTHF5a7OJZBkGUaZei1pCFjT4LzQBDQjeMudCW/JsfnsW1tK9nwZbMVDxmyg5HTy/yvT9+nL/49/8vm6tLVz8ZIagd+gR3f+Er7LntE6QKXlpsU3YlEyWHXhDTHCYUDZNhkrKr7pPkijTNWB/oiVAAzxQjj1VQGaSAyLR4l4FeACyRU3IcHFNPgHqOiWVqu7zVbsCp9QHr3YjF0QanKXXWnEstBdYexDz28jLzNZ/b5irsrHu4lsneiRJPnVxnsR1gSUnBMemGCb4t6YcJwyTDFBJbCN5Y7XL7XI3Jos16P+Jbr61yZL7C0cUO02WXyaLLcidgEHf1Z83UWOt+yzSjF6ZUfZPXlwdkeYYhBEXPIEzyMXV163v+Sau8n+RvLm6FbMkDz9f9D4T3vj0Ze+241oz9FeDvAP/yOpzLNt5n1As2z5xu4lkGnm0QZFoXxjYtnj/bZr7m41qS5c6QTpDRDxOag5yKb3G+lXK2GeDZBrWsz//39f9dj8RfAU6hwv77fon04ENY5WloFIiyHENqbRNQ1DybomMxVc5Z6QY01yNag4SSa4AQCARFxyTLcoquRS+ISZUiRwd6KSWDOBsrM0YJSJFquWAhMFCESU5vkHC+GZBmOanKtwoAcgXdkWBXxTV5faXLnTtrPHhIVyaL7QDymPm6T8k1aQ5igjTl0HSR860A05SsdEMMIRjEKVJAxbH1dU1SJksOJdfksVeWuXmmTMm1KDomLy92OLne50In4JGfm+XBEd1wKysWwIV2RN236AYQZznnmkMeODjxlgD8Xqq8d/M3V2qFIAVhkhIk2fvOe9+ejL12XFNgV0q9DowdWrZxY+PIfJVHX1pmsmSjlOZbD6KMuYrL0aUOYZJhGlqZ8MCUHrcPg4wsy+nHGatphiklvu1w/0O/yJPffvyS45d33szND32J3Xc9xGInozmI8GxJJ4xJ85z5msdk0SFTiqmyw+mNAXmuiFNF1bORUlMFozTHNQVhmqMQBHFKnGvhqzhTFB0ThCBKtTk06HZJmuUoJfAcC88ycG2TIM0RUrdxfNskC1Ot4qgVezGlIs0VwyDl1Qsd+lFCo+hQ8SymSw6ebdCLUm7dUWHfZIF6weH0ep8fnFhnrRdy62yZjX7MSjdi36RDkKQ0e9q39PmzLY6v9dg7UaCERb3g8MChKe47OMlGP+Ird+++5Lv51murhImejDUMScW32FF1STKo+pdmsO8nrtQKma+CZxsfiFn19mTsteMD67ELIb4KfBVg165dH9Tb3nC42m7/+8kCuPjYFc+kFyQkmbZuW+mGnG0NcQ1jRCvMGcYZ68vnOPHdxxA/99nRuL32F6142gu0ePvn4NuPY9kOt933OW7/hS/T8nfhmZKF1gADqY2whSDLFNMlBwPJbM1lvRuT5Dm7Gx7PndkkSDI+uqvGUjsgyXQrpZPmSCGoF21AEbZz7YlqSOI8J8+1nIxAS5RuWdmpXJFnOfP1AnvqPs+fb7O75vHC+TZ5riV6tdiX7s1nOXSClIIjEQI2+jEKgWkIXl2O+ZU75wEI4mwc6PZNFjENwen1PpnS1NGSI2kNYhoFB4TAMqU2qrZMnl3Y5O699bE59ZWyz602ybHVLrNVbyzn2yg67KoXyK9SHb0f+Gm3QrYnY68d7xjYhRDfBmau8Kv/SSn1zXf7Rkqp3wV+F+Cuu+764O7SGwhXKnG/8eNFTKF4faVPo2BzaKb8E7vJHz23yR8/f55jqz08S/PTv3jnzitqb0+WHJ48vsFs2WFXw8cxBYYhmKt79MOY7PxRnv+zP+DPXv5bUIr50h68uUMI+WbwLNqSVuUgN3/pv+W2T32ORr1OcxjTHyS0+hmeaeI5JjXX4EI3JMkUrUGMa2XM1Tzmd3qsdSMQgomyw6/eNMe+yRKPvbxMECcESc7i5pCab9MOEtqDmImSRZhoCeE0VyilMA2wpBhZ3OUIISjYBp/YN8H/8LnDAJz95iujc9CDTdlF2mLZKMArIBopNG4OY9pBwom1PnvqHk8cW+XBQ9NvySAHYcp0xWO+6lFwTBY3hzy/0CZMMuoFC5QgTDPu2T/BGys9Xl/ucs/+ibfNPmerHvcdmLxkEYHra6rybnAjtEK2td6vDe8Y2JVSP/9BnMh/Cri8xN0yf15uD8e865PrA+4/MMFE0bkqC+DouU0ee2WZ1W4ISrG0GaLEyJMzhcdfXaPVT/it+/Zd8p6tQcxqN2ZX3SOIcjb6CcudiE/udDn+g0f5zr/716ycX7jkvbo/fgxn9hCOZWAbehOzPYiIMtj1yS9iFxxeX+1TsA0mCzZvjBaXetFCSIEpJaYBvUhL1d65q8Z8zR8HuGGUcHKtz3deX2OpHeCYBrMVh0bB5dBsiRfObVIv2uyouGwOR5Z5UnByY4BlSCqexd66T7XoMghjzm4G+M5IK77ssn+ywIvnN7Ux9UWBnNH/BeBITb5ZamsN+oqnWz1hkvOdN9Z48ND0WzLIiZKjPUxH3+WuuqYsPnFsjV1mgbIrOTRTpF5wKHsWL73L7PNGaEPcCOewjWvDNt3xA8TlJe5Cs48pFRc6IQemSlQ8i0Gc8v0T63z+th2X8Ja38J1Xl/mdJ05jmlDzHE6t99gcJuyfLOJaFq6l9zxOrvfH7Zet91xo9vFsSc336YYJc9ka3/2Tf8E3n3yUNA7f8l4Avde/z8RnfovcqGI7FlGaEed62tI1DYZJTsE2MKSg6Joc2VllGKWs9UJc02C67CIlLHe1YmGa5bx4rk0vSgjjlAudgM1hyiBKSdOMzdEgUc0zCZKUfpixp+5iGgZJFmFIie+aNHyb/ZMFEBLHlHqBWB+Q5oogyfju62ts9CIaRYv5msdaNyZONC8epbN1Q4BtSnIFWZqTA7ahr59lSGxLt5GOLrb57M/NXhKM/+CZsxScSx+f+ZrPfM3no7trl035Su4/OPmu+tM3QhviRjiHbVwbrpXu+KvA14FJ4FEhxItKqV+8Lmf2M4jLS9xemLLRS6iMvCp1K0GbWVzOWwbdyvn9H57FtbVJdJIpOsMUgWK9HzFZcgHwbUlzGI/79Vvv2QtTfEPxo28/xnN/+YcsvPbjtz/fXQc58MCXsKfqdGIQErJM57sSxTDJyOOMsmsSxCmdMOHhw9Oc2RiS5Yqqb48GigT7J4qUXJMfnGhycLpE2bVYagUstUNKjkmSKUzTpCK1uXQ7SMkVzFV8DMOgPYhZ70WUPIsZ2+HmmTIr3Yj5mosAjq/36YYJe+sFltsBy+2AJFf4bYOGb3P7ziq9MOF8a0ic56x3tNUfQpDl2g80zRRCgWdrO8BukLKj6tMaxO/4XcJbp3zfa7Z7I7QhboRz2MZ7x7WyYv4E+JPrdC4/87i8xDWlYDNIODhdYK2vlQ2VynFN4xLHmy0cXWwTxCkzJe2baZsC3zboRYphlI5fN4xzCpYx3oT91murbKwu89S//1c88/g3GLSbVz1HwzS569OP8Pm/95use7tY78dkWY4XJgyiDNM0KNmSXY0CIDizMSBXOUXb4uaZElXfIc16tAYxQZJRdm0OTeo2xeLmkEypcb84zDIcU7I5SJgsOnrDUSnCNKUbpFiGJENpN6Y4peJpbfIgyZkuOext+JzbDPAcA9MQ7KoXKHkWrUFElOVIBN1BioG2zbNMAQKKtsmG0D3+smdiGzZhktEZxiD0wlhwTKQQVD3rir3ld5ry3c52t/HTxHYr5gPE5SXuwekSzX6EY5vsaVgstQO6YcreRoE7d1XeEgy22iqDJKPo6MnEHVWH15YTLFMQJglJCp0w4eO7a2NmzcO3TPPIZ3+DF5/5m6ue28T0LL/9j7/Kr//D3+TFDa3kGKU5zy80WWgOOTxbpujoDdgzGwPWehEF22Cu5rLUDjE9PXX5B08vaCs3RiwVcuJMESYZK52QmYo7Ct4ZhtCsj/bwTQmCYZzS6kd0ogRLGszVfBpFm7MbCZ0gwTFNZisSxzawLMmDN0/x63fv5jd+72mEgH6UYZsmBVu/p2nqwLvWDzEReJb2As1HSpGeoy36Co5JnOa4lsHOmk+cauPoum+/ZYG90nd5eQDfDuTb+GliO7B/wLi8xJ0q2vz+D88SxHqM/VM3Naj5ziWON1uoF2xu3VHmB8d1xl2wDISUTJVs9k8UaQYxnmXw2VunxqyYLTzyd//hFQP74Y/ey5d/47e57Z7PMExhcmqah6cYW609dMvMeIH4g2fOMlF02FH1eXlpk7OtAICSY3JgqsiZjQG9SPOwJws2vVgbbPjWgLm69kn1TMnLFzoIBVMlm2Y/wrcN+nGKTBStXkyU66rFNiTnNwOiJEMgEFJwYLqAIQ2W2yH9MOHITm1A0SjarHRChnGKb5s4lqQbxJQ9i1vnKry61KE5iJipuByYKnFgqkh7GHO+FdIPU0quyW3zZUAPPqVZzmdunnzLdXy773Ib27hRsB3Yf4pYbgcsdSIeunmKtW5EcxCz3Il48OCVzQ+27OruO9jg1QtdVnohnm3yP372Zh66dZZXX32VUql0yZzAFt3xjk/+PI2pGZprK7h+kQc+/2t8/u/95xw+fHj8WiNMrrhRuIWtvnK9YPPAQb3w/PWry6z3YxzLYBBnzFQcmoOYXAjmqj4b/YilTsTNs1V21jwWWgGmFNR8i0wpDCn55P4GLy11We4Eero0VyAlrmWSZtolyTclnmUSp4pBHNIJE2wpmS3rfYW79zb4/ol1BlHKME6xDS2BUC/qNsvH9tbZ0yiMmSytQcSL5zvcMmdRdmtMlTyOrepR/32TxW01wW18qLEd2H+KuJiKuEWX64UJy92QI1d4/cXl/2TJpV6wuWW6wI+e/Gs+/bXf4YknnuBrX/saX//618eUyB+e2iDPYWfd58Gv/NdUHcFnvvAlXlmPOXToTfON1iDmzEaP5Y5mx1wpsF3eV17cHPLahR63zpUpuxZ5nrPei7AMyTDOmK14/P/t3XlwnPWZ4PHv0/chtVqHJUuWbVkBHIM5AgZykTgbYLKExLMbkiE7ZGFTIQVWdrJFzW4Opia1Q2VnM5mdmmSjIphMKrsbSGYIMLNJwAnswADhSAwxIA5j40OyrcOW1OqW+u7+7R9vd9OSWnfLrW4/nyoXSHrVel4fz/v28/5+z9Naby3rbAt4ePXEBJubfIxPJTg6OkUmC9va67hgQwOf3rGJu37xOiORBJF4CrfT6uHid9mIxAWHw06Tz8HoZIJ01uC22egIWk3KWgMedm5t5fRUknq3gyOnp/A47TT6XXS3+BkKxxGg70SIkUiSzkYvW9cHOKfVz1vDkwQ8LtqDHj62fb0mc1UTZK5+H6tpx44dZt8+7ReWL23YiloyZI3h9GSCf1e03byUwcFB7r33Xu655x5OnjxZ+Hx9fT17n+/jvpdO43RA34kwdhuk04YLNgSo87i4qDPAqycm2LG5iVTG0HcixJtDEdwOG5ub/Vy2uZHjY9GS7XyLd7EeG51ifCpFvceJ12XntRMT9I9HsYvV3rc14CaZzrKx0YfNBpFYmuY6F0dHo7gddozJYgz4PQ7e193EW8OT7Ds6TjyTIZHrbW4Tq4e822nFlspkCXqdBLwumvxOzm2tL2x1z8d25NQUoVgSGzAeS9MWcDESThZi8DjtxFIZ3v+u5kKvFqWqgYi8aIzZsdBxesdeQUvd4WeM4ZlnnqG3t5cHH3yQdDo965hIJMK3en/A9qtvYGwqid9lR0RI2QwD43Eu3eTlwFCE7R0BjodiVhKMJvA47KSyWSLxFKciCY6ORRmLJgu7JfM7YYtNJtJ0r/PRP2bd5W9s8jIRTzE+mWTLem+hr8t7NjUwHk0RjqU5ODyJ22HH5bBhjDARS7LJ76PvZJgLNwR56dg4NiP43TamEhkiiQydjV7q3A5a6z2sq3ORyGSJJbN0NdfNGsBdnKT39g0SS2Y4ODyJz2W12fU47bgd1mCQ105O8OqJCURge0eAnVtn7/TVgQ+qGmlir6DF7PAbDMV4/q0T/OKhf+CJh+/jyFuvz/uaV111FbZAKw0eJyfG4/hddgZCcbLG6q8SSfiJJbN88UNtPHlgmLFJBydC1vb9toAfh114sX+cDQ1eUlmrX0v+wvPkgWFSGQrtCVx2GwdHptjaVkcomiaZyfCuFh/u9nrO72iYlgj39g1yMhTjxf5xGnKDnKeSVh/2resDPH/4NAeGwnhcduKpNBkj+FwOtqyr48PnrcPrtHF0NJpbr+9ma1uAJr+LSDw154Uwv4ookkgRyJ2Dx2FncCLK8fEY/WNRLt0UBCPsOxbidCTJDTveeVj6cv84P/ldP5msoaXOGkQ9EtaBD2rt08ReQQstmXtm3yvc9Vd/yzOP/IzoVGTO1/H7/dx000309PRw4YUX8pePvM5EPIVgGI0mqfc4iMSSGBv0j0XZee462oNeDML73tWC12ktbfS67BhjCEWTbAh6qPdYfz3y9fcXj41zQUcD29obsImwrb2B5w+PMjgRn9YHpVTiyz/43dLs4/RkkpFwnPGotWrlgX0DpNJZNjRm2dzsQ4B01tAR9HLJxiAOm62wSijf98bvdhCJp+bd/FN4R+R2cjqSIJywlkxOJTO4bUKz34XPZSV8EWEsmiy0cRgMxfjJ7waw26zB3PF0hoMjk5zbWqcDH9Sap4m9wuZaMvfoo49y3XXXzfu9W7duZffu3dx88800NDQUPn/d9na++/8O0j86SSRpDYJw2oX3bAzidNhp8FnJLJ/4ulp87B+YAMCQxee0E4qmeW93A2NTSfYPhBAxuJ0ORGD/QIgtLT7Go0kwhkOnJnE7rIedQa81DSh/bvBOOWMqkcZpF5KZLBmTpcHnos7lYCgcxeN0kDEGt91OR9DLeG7AQ0fQm5vkZJVDnHaIpzKL6guef0fkdGDF6LRaFYuxWhxsbPYVjvU4bUzEMoVdpi8fD5HJGpr9bkQEr9MBpBmJxHA7bYv6s1WqUjSxr1E7d+6kLhBkMhya9nmbzcalV13NX/7Zf+b8y97PKycm+OWbIZr80ULZozXgobu1joFQFF8WsoDP7SDoc3N+Rz3Z3PPyfOKr9zi4qDPAgaEIpyeTXLGlyZpKZBfeGg4jYjBG2NLsQ7CRMSmeOniK89rqCfpcOOzCwFicHV2NbGj0zqrJ53/Gu1rrWN/gIRwfJpu1Ni5FEmlSGYPHYdXsz1nn5MNbWwsPkYtjzHfEnOtdQV5xXdxpF0Ynk6xvcJPOWrtOfe40bocQiqZoz10P46ksTrsUyjpWC14X8VS2sFPW47AzEokX1s4rtVZpYq8gYwxDQ0O0t89uDuX1evmDf3sjD/7o+wAEm5r51zfcxM5PfpZNmzdxQYmEl0+mLx8PcX57AKfNViixxFJp3A4bboe9kKiKS0GxVIYru5tnrX4ZnIizPuClO9cWYP/ABKfCCTKZbKE1bTqTJZJI8uSBES7oaKCrxZo6lL9znzm0weO0hkh7nXY8TgciJle/jjMUjgGNhYfIS51/ORiK8bOXjjM2mSCVyeK02xgKJ7h6W1uhGdrYVIJnDp2mfyxKNJliMpamfzxKndvBeW31DIZiNPmt9e+HRqYA644+FEtit0nJnahKrSWa2CsgFovx05/+lN7eXvr7+xkYGMDtnj0h50+//B95ed9v+fgf3czVH99FyliDli/uDM6b8PIPDYM+q+lWxhjq3Q4cNlgf8E6rSc9VCir+fHF/8Es2NvDw6UmcdqurYlvAxWNvhHHabYSmEuw/nuXVEyE+cE4LAa/1Pe8k1CRHRycZmogzMB5jc5OPgNdGo9fN8UQUm02Yimem1c7zs0CLzTf04ckDIxw5NUWj30mDy0U8nSESS/HSsTGuvcC6gDb53VyyMUjAY7VKPhmKsaXFz6Wbm3A7bIVZpSPhBOe0+hkJJxiJJLDbhM9ebm3+2ts3qCtl1Jqlif0MOnz4MHfffTc//OEPGRsbK3z+gQce4Kabbpp1/HsvOZ+nnn6maLmdvVBTni/hNfldvHYyxEvHrDvxdMYwFU9R53VycefsHjTzmblyx2m31pNvbatnY5OPl46N47LbGQ7H8bnsBL1W3f6JN0f4w/dsoDFXx09lDPsHQnhdNtqDXo6cmrRmhtqs/i1+twO7gBHrHUb+PJe6JPTVExMEfY5cTRy8Tgebm70cPjVFJJ4qrD5y2Gz0fOTcXGO16YMtwKrB59/NeJx2LtkULNypz/VOSZO7Wis0sa+ybDbLr371K3p7e3nkkUdKDoDu7e3lpptumnPN9Hzb+0slvPaAhz3/chiPy0adx8FIOMFkIs3GJi+vD4a5eNPcNeJSMcxcuXPNu9fx2JsjvD44wXA4TiKZJp01NOTu0J12G+F4GjCFC8OR05N4nALGGr5xZXcz/WNRxqMpHHU2tudKOB1B77S+5Usd+iACGGEybj3ojKYy2LFq516Xfdbqo/kukKV+7/f2DS6pNKRUJWhiXwWDoRjPvHaEf/z7+3niH+9jcMZUomIiQnNzM2+fHOU3RyOLuhMcDMUYn0ry7NujtNS52Lq+HrfDXkh4Lx8P0d7gYSqZ4sR4DK/TzqYma47ms2+PzrnbstTovnwM+WSbP+a8tnpGwgmOj8cYi6Y4f309IERTaRzYuKCjHoMU6vjfeyKMIIXJQgAuh510Nss1568vJOyZ9eulDn3Y3hHgqYOjhKLW5iyH2JiIJVnf4C1ZMlnqO4JKzwNVajE0sZfZr/7lWf7bX3+H5x/7J5KJuf+xNzU18fnPf57bb7+d7u5ZjObfAAARyklEQVTuRd8JDoZi/GzfAGPRJA67cPT0FAPjUT767tbCReCJAyNsbPJxaCRCV7MflyO3Pj2WZHOza+6Re4t4UDmzv033Oj8PvXScSCLNRZ1B4qkssVSG5jonx0anuP+FYzT5XWzvCOBxOqYl0HPb6hgOxxdM2EvporhzaxvPvj2K0y7W8A6b0BH0cvHGYMnzXuo7grUwD1SphWhiLxNjDNdeey2PP/74vMdddtll9PT0cOONN+L1vpNkFnsn+OSBYY6ORQl6XXQ0eGnyuQnFrLXX+aSVX9HxYv8YDR6XtcszkcEuwtb19dMmAhWXXvpOTHBRZ5D6eWKYGWeT383Ora08/sYwI5EEzX4XdR4nh4aj7OhqLNz5n55KQTZJZ5NvWp37lvdvmXXhWmgL/3zHtAe9bGsPEI6lmUpam5O6WnwEfa6Sd9VLfUeg80BVNdDEXiYiQnd3d8mvOZ0urrz6ev76G/+FK664Ailq+pW32DvBvpNhGnJNt4DcblEnfSfDhWPyuzy7mnyMTiUJxaykftW5LYXljoOhGE8eGJlRzrHx2yNjvLe7ufBzZ8ZQKs62gIdPXdpJo99VaA62o6uRjU3WBqB6j5POoLWxqFSdO2++UlDxZqeFjuleVzfrgejAWJShcKzwDmLmxWCx7wh0HqiqBiudefpt4BNAEngb+A/GmND831XdjDEYY7DZZu8+7OnpYc+ePYWPW9s38Ik/uoUPXv9p1re1cuU8w4wv7gwWSiypjLE2y/hc3LBj44yfD8iMB7BiKH4mm08+Trvw7NujbG6eXofvbvEXHmiuq3ch2HjleJiuZi/h+CRvDE5MaxFQfDc630i4fHLLd60s5nc7iKUy8w50XmopaK5jZsZ4YjzGvqPjXNYVLMtKFh2woda6le6NfgzYboy5CHgL+NrKQ1qbJiYm+O53v8u2bdv4+c9/XvKYiy66iCvf9wEuuPyDfPV//IAf7X2Bj3/uNmzehsVtarHl7+TNjI/fceGGBkLRNLFUGmMMsVSaUNQaolysPejls1du5uvXbePK7mayxrq7v+b8NgbDceo9jtwmIavroTfXRuDyrkaSmSynJxOF44uTWP6ikb/zLnVM/q6+2GLq0GNTSfxuR9HHCQ4MRdjbN8jevkEGQ7FZx4CVvIvLSzNjHArHuKwryKYmf6GpWfEGKqVqzUqHWf+66MPngRtWFs7a8+qrr9Lb28uPf/xjpqasXYi9vb3s2rWr5PFP/vPjjMfNtBrwYt6qv3w8RGfQy7b1gcLnIrmJRsXfmx8oMTaZYCKWxGm3sWWdn51FQzOKlbq7zC/xq/c4iKczeJ0OPE4b4XgKt6OOq85dV/LOOl/b3t8/zuFTUyDClhYf7QHPtJ+x3Dp0cZknP+FIxNDe4CGWzFh9X+wsqmRVfN5zvYPQlSyqVpWzxv554O/L+HoVk0qleOihh+jt7eXpp5+e9fXHHnuMt956i/POO2/W1zweD+2epQ8zXuzD0/aglxsu7VxRj/BC86/mOvYPhIA0JgsOm5RsG5wfXnFsLIrPJbw8EC401BoJJ9jz1BG++CEK6+OXW4cuviAcPjX1To+alvpCIo+nMkTi6cLvz2IuGrqSRZ1tFkzsIvI4sL7El+40xvxT7pg7gTRw3zyv80Xgi8C0mZxn0kIrLk6ePMk999zDnj17GBoamvN1HA4Hzz33XMnEvty4jo1O8fv+cdbVu+lqrps2X3SmldZ4pzf/auDAUJjRqSTv626aNmyi+EFlOJ7EboPnDo0R8Dpp9LlJpjMk0hka/S4e6RuctvFpOTEWXxCGwjHaGzxsaakv/B7k6/RLvWiUegeRnxBV6mGqUtVuwcRujLl6vq+LyM3A9cBHzTxz9owxe4A9YI3GW2KcKzbXaoqrt7Vy8JXf0dvby8MPP1xyKlFeR0cHt912G7feeivr15e61i0/rraAh3AszUQsxe/7xzmvrR67TVZlGd18zb+KFT+onExkCHqt6UXJjDW2zmm3EU2l6fI4OTkRK1tspXrUQNHO2iVeNGa+gxAM2ARPrpWBtgVQtWalq2I+BnwF+LAxJlqekFZHqdUUL7/wNB+4+S84eujNeb93586d9PT0sGvXLpxO57zHLtWTB0Y4cnqSdNbgsINgI5nNMBSOzVrjXU6LSY7F5aF8Pb7B4ySSezCayli92yfiKdoCnsL3lWOcXLnXixef796+wWmbpbQtgKo1K10V8z2gHnhMRPaLyPfLENOqKLWaoqHOP2dSr6urY/fu3fT19fHEE09www03lD2pD4ZiPPv2KCIQ8DhzW+wNl21uZHOzv+JJpnh1S1dzHbFklnUBF9kMjEcTxFMZ3A47oak0181oORBLZmipcxceeg6GlnZHv5jVN8u1mJU1SlWzla6KOadcgay2Ug/QNp//HrrffQGH33yt8Llt27bR09PD5z73OQKBQKmXKpuXj4doqbPWkRdP6TkwFObKNbCT8eLOYK63eYhUJks6k8XjdPD+dzUyEkmCCK0BN9dtby/U15faP30+q7VeXB+mqlpX0ztPh4eH+cEPfsDQ0BBfv+uvZr21n0xkuP323Xz1jj9h165d9PT08JGPfKTkztCVmKs0MTaVpC3g5jeHrJ7pDW4n9T4H8VR27QxzyI9bQvC7HWxsdE0b+DxTNTTJ0rYAqtbJPM87V82OHTvMvn37VuW1jTE899xz9Pb28sADD5BKpbDb7Rw9ehR7XfOsBNvgMoyNjdHZ2bkq8RQ/tJ25U/PJA8PsOxbCIcJEPEU4niabzfLh81q4/SPlWXGznHjzv0fHRqdYH/AWWgOAtbbe67LPuYN0b9/grIeeC31PJZTjOYBSZ5qIvGiM2bHQcTVzxx6NRrn//vvp7e1l//79076WyWS45557uOuuu0r+4/X5fLM+Vy7zlSZAMAbqfA5a6t3E0xnGp1IEfbOnKZ0JM1cO/b4/RDiWxu92TFtyON/dd7XcDWtbAFXLqn7c+qFDh7jjjjvYsGEDt95666yknnffffeVHHKx2uZ7UGeAK7ZY49isXZ82rtjSxJmP0lJ8EbKJsK7Ojc0GR0cnC8dMJdII1p35/S8cK2z1z1vNh55KqcWpyjv2TCbDo48+Sm9vL3v37p332HPOOYfdu3dzyy23lL12vhgzt8kfPR3l1GSCJr+TrmYfboedSzc1FY7Ply1W03w1/+L6eFeLj9/3JzkVSZA1xtrYE4pB1uBx2udsqKV3w0pVVlUl9kQiwXe+8x3uvvtujh49OudxIsL1119PT08P11xzTclOjGdKvjQxHk1ycHgSm83aur8+4C3Zo3y1yxbztb2duVqkye+eNQyjxe/UNeBKrXFVldidTif33nvvnEm9ubmZL3zhC9x22210dXWd0djmki9N/OjZI6SzWdb532kZEImnFuxRXm7z1fxL1cdnDsO4/4VjJUtLa2nVi1Jnu6pK7Dabjd27d3PHHXdM+/zll1/Ol770JT7zmc/g8Xjm+O7KaQ962dzs57LNTdiKykGL6VFebvMtR1xM8y5dA67U2ldViR3glltu4c477ySbzXLjjTfS09PD5ZdfXumwFrRWEuJCcSxUH6+WVS9Knc2qLrE3Njby0EMPsWPHDlpaWiodzqKtlYS40jh0NJxSa1/NbVAqZa1sRllqHKsV91r5/VBKLc1iNyjVfGKfb+fnaiWzciTOSsStlFrbFpvYq36D0kJmbrpZ7XmX5epueKbjVkrVjppP7Ge6RWu5ErK2llVKLVfNJ/binuJ5q7kapVwJ+UzHrZSqHTWf2C/uDBKJp4nEU2SNIRJPEYmnV60tbrkS8pmOWylVO2o+sZ/pplTlSsjaTEsptVxVt459Oc5kU6pyrvPWZlpKqeVY6TDru4BdQBYYAW4xxpwsR2DVTBOyUqqSVlqK+bYx5iJjzCXAL4A/L0NMSimlVmClw6zDRR/6oWIzIqqG7vpUSq22FT88FZFvisgA8MfoHfu8yrV5SSml5rNgYheRx0Wkr8SvXQDGmDuNMRuB+4AvzfM6XxSRfSKy79SpU+U7gyqiu0mVUmfCgqUYY8zVi3yt+4FfAt+Y43X2AHvA6hWz2ABryXy90JVSqlxWuirmXGPMwdyHnwTeXHlIa9dK6+NrpSe7Uqq2rbTG/t9zZZlXgGuBL5chpjWpHPVx3U2qlDoTVroq5lPlCmStm29W6GLv2nVIhVLqTDgrdp6WQ7nq47p5SSm12mq+V0y5aLdFpVS1qKo79kpu7lkrM0uVUmohVXPHXunNPdptcW0aDMXY2zfI/S8cY2/foG72UooqumMvx8PLldL6+NpSPBe2pc7NVCLNY68P6wVXnfWq5o5dR8WpmXQnr1KlVU1i14eXaia92CtVWtUkdt3co2bSi71SpVVNYteHl2omvdgrVVrVPDwFfXipptOdvEqVVlWJXamZ9GKv1GxVU4pRSim1OJrYlVKqxmhiV0qpGqOJXSmlaowmdqWUqjFizJkfPyoip4Bjq/gjWoDTq/j6Z5Key9pVS+ej57I2zTyXzcaYdQt9U0US+2oTkX3GmB2VjqMc9FzWrlo6Hz2XtWm556KlGKWUqjGa2JVSqsbUamLfU+kAykjPZe2qpfPRc1mblnUuNVljV0qps1mt3rErpdRZq2YTu4jcJSKviMh+Efm1iHRUOqblEpFvi8ibufN5WESqti+tiHxaRF4TkayIVOXKBRH5mIgcEJFDIvLVSsezEiLyQxEZEZG+SseyEiKyUUSeEJE3cn+/vlzpmJZLRDwi8lsReTl3Lv91ya9Rq6UYEQkYY8K5//8T4HxjzG0VDmtZRORa4J+NMWkR+RaAMeYrFQ5rWURkG5AF7gH+1Bizr8IhLYmI2IG3gGuA48DvgM8aY16vaGDLJCIfAiaB/22M2V7peJZLRNqBdmPMSyJSD7wI/GE1/rmIiAB+Y8ykiDiBZ4AvG2OeX+xr1Owdez6p5/iBqr2CGWN+bYzJjwp6HuisZDwrYYx5wxhzoNJxrMAVwCFjzGFjTBL4KbCrwjEtmzHmKWCs0nGslDFm0BjzUu7/I8AbwIbKRrU8xjKZ+9CZ+7Wk/FWziR1ARL4pIgPAHwN/Xul4yuTzwKOVDuIstgEYKPr4OFWaQGqViHQB7wFeqGwkyycidhHZD4wAjxljlnQuVZ3YReRxEekr8WsXgDHmTmPMRuA+4EuVjXZ+C51L7pg7gTTW+axZizmXKiYlPle17wZrjYjUAQ8C/2nGu/aqYozJGGMuwXp3foWILKlMVtUTlIwxVy/y0PuBXwLfWMVwVmShcxGRm4HrgY+aNf5gZAl/LtXoOLCx6ONO4GSFYlFFcvXoB4H7jDEPVTqecjDGhETkSeBjwKIfcFf1Hft8ROTcog8/CbxZqVhWSkQ+BnwF+KQxJlrpeM5yvwPOFZEtIuICbgT+b4VjOuvlHjj+HfCGMeZvKh3PSojIuvzKNxHxAlezxPxVy6tiHgS2Yq3AOAbcZow5UdmolkdEDgFuYDT3qeereIXPvwH+J7AOCAH7jTF/UNmolkZErgP+FrADPzTGfLPCIS2biPwE2InVRXAY+IYx5u8qGtQyiMgHgaeBV7H+zQN83RjzSOWiWh4RuQj4X1h/v2zAPxhj/mJJr1GriV0ppc5WNVuKUUqps5UmdqWUqjGa2JVSqsZoYldKqRqjiV0ppWqMJnZ1VhKRTK7z52u5Lnp3iIgt97VrRORFEXk1999/Vel4lVqKqt55qtQKxHJbthGRVqzdyQ1Yu5NPA58wxpzMbeX+FdoPRlURXceuzkoiMmmMqSv6uBtrV2lLccuG3I7G00CHMSZx5iNVaum0FKMUYIw5jPXvoXXGlz4F/F6TuqomWopR6h3TOjeKyAXAt4BrKxOOUsujd+xKUSjFZLD6XyMincDDwL83xrxdydiUWipN7OqsJyLrgO8D3zPGmFxnvV8CXzPG/Kay0Sm1dPrwVJ2VRCSD1QnQiTW85P8Af2OMyYrInwFfAw4Wfcu1xpiRMx+pUkuniV0ppWqMlmKUUqrGaGJXSqkao4ldKaVqjCZ2pZSqMZrYlVKqxmhiV0qpGqOJXSmlaowmdqWUqjH/H8NinvDBiES1AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9eZRdV33n+9lnPneqW7cmlVSSSrIs2cK2PMjGiQ2EyYThAS8vea8NHZLQwQEWq2mS9HvdzVrBNDxIWEmcpEnScSd03AGU5BFI0gxOKw4OYBxjybZkIVmSJZVKJZVquvO9Zz77/XGqrlVyySprqJJU57NWLUv3nnPPvrvk/du/3/79vj8hpSQlJSUlZeWhLPcAUlJSUlKWh9QApKSkpKxQUgOQkpKSskJJDUBKSkrKCiU1ACkpKSkrFG25B/Bq6O3tlcPDw8s9jJSUlJSrit27d09LKfvOfv2qMgDDw8Ps2rVruYeRkpKSclUhhDi+0OtpCCglJSVlhZIagJSUlJQVSmoAUlJSUlYoV9UZwEIEQcDY2Biu6y73UJYNy7IYGhpC1/XlHkpKSspVxFVvAMbGxsjn8wwPDyOEWO7hLDlSSmZmZhgbG2PDhg3LPZyUlJSriKs+BOS6Lj09PSty8QcQQtDT07OiPaCUlJQL46r3AIAVu/jPsdK/f0rKtcp41WHPWJVyy6eUNdg2VGSwaF+yz7/qPYCUlJSUa5HxqsPO/RM4fkRvzsTxI3bun2C86lyyZ6QG4BIghODnf/7nO38Pw5C+vj7e9a53varPGR4eZnp6+qKvSUlJufrZM1Ylb2nkLR1FCPKWTt7S2DNWvWTPSA3AJSCbzbJv3z4cJ7HMO3fuZM2aNcs8qpSUlKuZcssna86P0mdNjXLLv2TPuOYMgBDign7uuOOOi3ru29/+dr71rW8BsGPHDu6///7Oe+Vymfe+973ccsst3H333ezduxeAmZkZ7rvvPm677TZ+5Vd+hTO7s335y1/mrrvu4tZbb+VXfuVXiKLoosaXkpJydVHKGrS8cN5rLS+klDUu2TOuOQOwXPyrf/Wv+Mu//Etc12Xv3r289rWv7bz3qU99ittuu429e/fyuc99jg984AMAfPrTn+bee+/l2Wef5d3vfjejo6MAHDhwgL/6q7/iiSee4LnnnkNVVb7yla8sy/dKSUlZHrYNFWm4IQ03IJaShhvQcEO2DRUv2TOuiSygK4FbbrmFkZERduzYwTve8Y557/3gBz/gb/7mbwB405vexMzMDLVaje9973t8/etfB+Cd73wn3d3dADz22GPs3r2bO++8EwDHcejv71/Cb5OSkrLcDBZt3rp1gD1jVaabHqWswd0bey5pFlBqAC4h7373u/n1X/91Hn/8cWZmZjqvnxnamWMudXOhFE4pJb/wC7/A5z//+cs32JSUlCuewaJ9SRf8s7nmQkBSygv62b1790U/+4Mf/CC/8Ru/wc033zzv9de//vWdEM7jjz9Ob28vhUJh3uvf+c53qFQqALz5zW/ma1/7GpOTk0ByhnD8+IJqrikpKSkXzLJ5AEIIC/geYM6O42tSyk8t13guBUNDQ3z84x9/2esPPvggv/RLv8Qtt9xCJpPhkUceAZKzgfvvv5/bb7+dN7zhDaxbtw6ArVu38tnPfpb77ruPOI7RdZ0//MM/ZP369Uv6fVJSUq5txELhiSV5cBL7yEopm0IIHfgB8HEp5b+c657t27fLsxvCHDhwgBtvvPHyDvYqIJ2HlJSUcyGE2C2l3H7268vmAcjE8jRn/6rP/iyPNUpJSUlZgSzrGYAQQhVCPAdMAjullE8tcM0DQohdQohdU1NTSz/IlJSUlGuUZTUAUspISnkrMATcJYS4aYFrHpZSbpdSbu/re1lP45SUlJSUC+SKSAOVUlaFEI8DPw3sW+bhpKSkvAKXW6EyZelYNg9ACNEnhCjO/tkG3gK8sFzjSUlJOT9LoVD5Ss9+dN84X33qOI/uG1+SZ17rLKcHMAg8IoRQSQzRX0spv7mM40lJSTkPZypUAp3/7hmrXpQXcD6vYs7w5C2N3pxJywvZuX+Ct24dSL2Pi2DZPAAp5V4p5W1SyluklDdJKf/zco3lYlFVlVtvvZXXvOY1bNu2jd/93d8ljuNXvGdkZISvfvWrSzTClJRLw+VQqFyMV7EU0sgrkWuuEng5sG2b5557jh//+Mfs3LmTb3/723z6059+xXtSA5ByNXI5FCoXs7gvhTTySmTFGYDLHUfs7+/n4Ycf5otf/CJSSkZGRnjd617H7bffzu23384Pf/hDAP7Df/gPfP/73+fWW2/loYceOud1KSlXEpdDoXIxi/tSSCOvRK6ILKClYqniiBs3biSOYyYnJ+nv72fnzp1YlsXhw4e5//772bVrF7/5m7/Jb//2b/PNbybHHu12e8HrUlKuJC6HQuXc4j53ngAvX9y3DRXZuX8CSIxDywtpuCF3b+y58C+TsrIMwOU6wFqIOYmNIAj42Mc+1tH1P3To0ILXL/a6lJTLzfkOZF9JofJCUkQXs7gvhTTySmRFGYByy6c3Z857LWtqTDe9S/qco0ePoqoq/f39fPrTn2ZgYIA9e/YQxzGWZS14z0MPPbSo61JSLicX4yVf6L2LXdzPNjxz4dxXMjZpzcIrs6IMwGJczYtlamqKD3/4w3zsYx9DCEGtVmNoaAhFUXjkkUc6rR3z+TyNRqNz37muS0lZSi7GS76Ye1+t7v1ijE2aOnp+VtQh8OVqseY4TicN9C1veQv33Xcfn/pUomz90Y9+lEceeYS7776bQ4cOkc1mgaSDmKZpbNu2jYceeuic16WkLCUXk22zlJk6i8kcSlNHz8+K8gAuVxzxlXbr119/facJPNDp8qXrOo899ti8axe6LiVlKbkYL3kpPOw5FhPOXaqQ79XMijIAcPlbrKWkXM1cTLbNUmbqLMbYLKVBulpZUSGglJSUV2bOS7YNlemmh22oi46ZX8y9r5bFhHMvV8j3WuKa8ACklAs2V18pLFdXt5Rrk4vxkpfKw15MODdNHT0/V70BsCyLmZkZenp6VqQRkFIyMzOTpo1e5aTpiq+exRibNOT7ylz1BmBoaIixsTFWcrcwy7IYGhpa7mGkXCBpumLKcnHVGwBd19mwYcNyDyMl5YJZygr1lJQzSQ+BU1KWmVTpMmW5uOo9gJSUq52rLV0xPa+4dkg9gJSUZeZi0hWXuk3icraETLn0pAYgJWWZudD8+eVYjJdaXiHtA3x5SUNAKSlXABeSrngpD48XG9ZZKnmF8arD4wcnePJomZ6swZZVhY6Bu9TZUVJKTp8+zeDg4CX7zKuF1ANISblKuVSHx6/Gk1iKzlxz4zk00aQ3a6Iogr1jNYJIXnJv49ixY9xzzz3ce++9+P7KO3RPDUBKylXKpVqMX01Y52LlFRYT0pkbTxhLbEPF1jVsQ2FkpnnJs6P6+/s5duwYR48e5Utf+tIl+9yrhdQApKRcpVwqrZtX40lcjN7PYj2NufHkTR03iAGwNJWGG15ybyObzfLJT34SgM985jM4zso6Y0gNQErKVcqlEl97NZ7ExaSALtbTmBvPcG8GJ4hw/AgnCNEUccFibkePHiUIggXf+9CHPsT69eu54447qFZXVq+AZTMAQoi1QojvCiEOCCF+LIT4+HKNJSVlqblU2S2DRZufvmmQ9712PT990+AFHY4u1pO42KyjxXoac+PRVYVbhgrEMmaq4bN5IP+yjl/nm8OTJ0/ykY98hC1btpwzxGOaJs8++yx///d/v+IOgsVyKUkKIQaBQSnlM0KIPLAbeK+Ucv+57tm+fbvctWvXko0xJeVycKb2z5m6+cup/bOYnf2j+8Zx/GhewVrDDbANlZ++6fwL56u5/3zjOd8cTk9P81u/9Vt88YtfxHVdAFavXs2LL76Iba+8ojUhxG4p5fazX1+2NFAp5TgwPvvnhhDiALAGOKcBSEm5Fng16ZtLVXW7mDTUi00BfTUNY843nnPN4Q9fOMG+f9jB7/zO78zruQ1w6tQp/uiP/ohf+7VfW9R4VwJXRB2AEGIYuA14aoH3HgAeAFi3bt2Sjisl5XKw2IX0SlMJvVDJijONmK4K3CDECaKL0uc/ew491+E7O/6cHf/tD2jWKgves3HjxlQ48iyW3QAIIXLA3wD/TkpZP/t9KeXDwMOQhICWeHgpKZecxS6kl1ol9GK9iQtp+bhntMKOp0eJYklvzqA/b6Mqgrdu7b8oIzY3h7YKj35jB1/+499lZvL0gteuXr2a3/iN3+CDH/wguq4veM1KZVkNgBBCJ1n8vyKl/PpyjiUlBZYm5LLYhfRiQy5nfhcBTDc8hkqZC/Im5j6r5YWcrLbpsnU29uVecQc/XnXY8fQJVEXQkzVxw4jDk02u789dtNT1TYN5PvsHf8rf/tlDTJwcXfCanp4e/uN//I989KMfXZFx/8WwbAZAJO27/gw4IKX83eUaR0rKHEsVcjm7VaEAdBW+e3ByntEpZQ3GKm2mGz4NLyBv6vTmDVa/ipz7ue/y5JFp6m7IQJfVScEEOimYiz1wva4/1zFY5zOOe8aqRLGkJ2sihMDWNSBksuFg6heegOi6Lu980z3s3bt3wffz+Ty/9mu/xic+8QkKhcIFP2clsJx1APcAPw+8SQjx3OzPO5ZxPCnXOOdLG1xKobO59M03bukniCSWrr0stXKwYLF7pErN9cmbGjXXZ/dIlcHC+dt/nv1dwljSZemMTLc712RNjWNTrfOmdu4ZqxLGMYcnmnz/8BSHJ5qEcXzeeSm3fHqyRqeYC5KCrummf1HFXJZlccsttyz4+r//9/+eY8eO8alPfSpd/BfBshkAKeUPpJRCSnmLlPLW2Z9vL9d4Uq5tFpPDvhyNWV7J6IzXXbYPd9Nl6zS8kC5bZ/twN+N197yfe/Z3yVsaCEnDe6kYquWFVB3/vEbv6FSTwxNNvDCmYOl4YWIMjk41X3EMpaxBf8HsFHNJKak6PqoiLqiY60wefPBBNC35fpqm8ZGPfIQjR47whS98gZ6ec59JpMxn2Q+BU1KWgsUcqC5HY5bzxfnXdNusLWU678VSLuoM4OzvMtyT41+OzqApgt3HZ5huJgtx0dYXNHpnPqPmBCgK2IYKJP91w5Cas3Bl7RzbhopM1j029WeZrHtMNjxURXD/nesWFVLbu3cvhmFwww03LHA2s5oPfehDNJtNHnzwQTZu3Hjez0t5OakURMqKYDG7+0uhrfNqK3xfSYbhYsTezv4uuiroyxk4QcR0M6Ana7J5IE/VCRirtOfde/YzirZBHIMThEgpcYKQOE5efyUGizbbhrqYqLucrjuUsjr337mWbeu6X/G+w4cP8773vY9t27bxq7/6qy/z3k5VHX7/scPc9LOf4H3/92/R0LrTngEXSGoAUlYEi1lML1Zb50KkEl7J6FyMQVrouwz3ZnjTDf287TWr2D5cYl0py5aBAocmmi97xmDBYsdTI3zyG3v54ZFpGq5PEMbU3QBTU9g8kGdDX/a887FnrMZAwWJVwabcCtjx9An2jC6cp3/ixAkeeOABbrzxRnbs2AHAd77zHb7y9//Q8d6qbZ8XJ1uoCjS8gFNVh4e/d4zxqpt2KLsAlk0K4kJIpSBSLpSlkF84l9SBG0R0Z41XzLI5VxbOme/V2j4HT9c5VXcxVZWfvK6H9942tOjxf/Wp4/TmTKptn5HpNg0vIGtoCCTb1nV3nj9YsPjeoSlGym26LJ2m53NwosXqosUbNvdjasqCc3f296i0PJwg5sXJFrauYukKVccniiUff/Pmzr2Tk5N8/vOf54//+I/xvJeHt7bcehe//xd/i6ooPHO8ghfGWLpC3U0yo2quT5etc/u6UmfOFytPsVK44qQgUlKWkrNTLy+mCvVcLBTP98KYHx6Z4U039J8ztfSVZA/m3tszWuEPHjtMzQ3osnSCOObRH09Qbgd88J4Ni/oec2mlL062iKKYmhtwsF1HVxR++qbBzoL56L5xym2fom1gGyoZU0MIwWTdY+9Ylddv7nvZ3C2UQvvk0TIFU5vV80/OD4q2wWTDZc9YFRuP3/md3+Ghhx6i1WotOOZt27bxMx/6GC0vpGAbNLyAgqXjhhF5S6MxOx8N9yXv7nJ0KLtWSQ1AylXLqy3aupC2i6+GhQ6RD56u05szLrqa99v7xvGjmO6MiaEpWIBA8OJEY9GftW2oyOMHp3CDkJmmjyIEpqrSmzPZ8XRSTDVedxMD0AoY7slgkyzcvTkLXVXYurprwZ31QofsPVmDF043uP2MmL8bRhS0kEf++Pd5346HqVQWDgddf/31fOYzn+Hnfu7nmKh77Nw/gRCJx1J1fKQUbBkoMDLd6ngAc1zug/tridQApFyVLKdOzrkMz0IVvjMtn5+8bn5aYtbUODLZnF1oF2e8JuouigBdFTh+SNUJcP2QIJKddMzzGcTBos36UobnTlRo+SFIMDUVJ4ioOR47nj7BazeUGOyymGn6HJ5osXlVkhrqhhG6qpxzYV3I+xnssvjeoWmePj5DKWOS0yS7d/4NT3/jz2hVpxf8nLVr1/Lggw/ygQ98oJPmeab3VrATA7BlIE8xkxTGHZ9ps6kvTyzlouQpUl4iNQApVyWXWidnscwZnjCOmax7PDta5fGDU53slrPDTD+xsYSpqfM+42TF4Xi5zaoua9HGa6CQLMp1J6DS9tFVFQFoimC03GbPaIU9Y7XzGsQNfVn2nayRNTQsXUNXBS0vZKLhYes6eUunlDVxw+T7NbyAravzhFFy77kOoM/2fsotnxdON9m6OkelHVBuefztf/lVJvb/aMH7+/v7+eQnP8kDDzyAZb280O1M723O0E03PVYXbe54fVIbcblCe9cyqQFIuSq5WJ2cC2WuKnbuYLM/b1J1fHY8PUp/wXpZmGnOYMyNr+WFHJyos3kgf17jdeaOvmjrxJHkdNPFVBWCKKQdxFw/kGPLQIFv7xvnhlWF837mtqEif/HkcdwgouVHOH6IEAIVCCNJueVzbLrNdX05FGKOzTjUjwbcsbbI6zf1nnNhPdv7OTBeQwh43fX9gGBkpsnJe9/9MgOQyRX4uQ9+lC/+v58kl8st6newUChv26LuTDmb1ACkXJUsR9EWJIZnsu5h6+qCB5tnL0wLHT6vK2XIGCrPHK90NH7W9dg4QdRZ9I9NtThebrN5IMdQdwZbV9k61EXzWEjbi9BUhdvXdfHajX0UMzp7xircsb7UGePITJO6ExBLOqGguc8OoogT5RYZQ6M7a2BoCpN1j0DGjMw0sQ2FKJIoisrNq4us77WREvaM1TpGDhYKOXV1duJ+FHPncDelrDn7+ypRu++dHNn5ZSaOvYBl27z3X3+In/3Fj+Cp9qIX/5RLS2oAUq5KLkSa+FJQyho8O1qlP/+S9+GGEb05g6NT8+P6gwWL8brb+fsbtyQSyDueGuHpkQpF20gyWoKYp0cqbOrLdM416q6PqsCLky1ypkYpa7J1sIAiYFXBZqrp0nBDRmaa9HkWAwWLlpecCTx3ooptKBiqikSyc/8E24a6OiGibtskLEncIEYIgR9JbE1wsuJg6wrrS1kOTTVBCoZKNrauJSmXsxIRc8bk7DOYPWM1CtUXiWbGed1tb8Hxo3lzZ+gab/3Av6P54tPc/6GPU+rrp+EGlAz17GlOWSJSA5ByVbIUaZ0LMZdJU3WSNEk3jHD8mHzeYLTcZrDLpjdncrLi8D+fG+eO4SJD3RlaXsjXdp1AUwXfPTjJVN1jdbfFqi6bajtgvOaw/1SNjb051vdkOTbVAiGouwEzTY8339hPMWOgALtGKhSzGl2WTs0JOD7t8DO3DbJ/vMEzoxW8KMbWNHKWyj2betFVZV6IKGsptAMNXYuptwP68xaxoaIrgmo7ANnGlzHXD2TJWzpOEHbqJ+ZCbGefwZw+eoD/9tDnePaHj5PP53nyuf3sriepmXMGupQzueveNzL07neSNbVO0Vl6YLt8pAYg5arlcqd1noseW+PR/RPEwNqixe3rS5yue2wZeCkGP9V0KWY1phs+60pZgihm/3idSttHUxVWd9uMltv8+FSDgqkiFEG17VNuejx/qorjRazpthnssqm5Ic+dqLGpP0sM3DFc7EhEd1kG1/XlmGx6oAi8KEZXBAIQs+PNmhrHppsIBC0/pOXFdFk6YzUHP4zJmCoFU6cnZ9KXN3lmtIIKvDjVxNZV8qbG1tVdPHlkGi+MeXTfOEenmmzqz3P8yCEe+eIX+P7/+mZnfhqNBo/81z/gE//p0/MM9M/ePgSw5EY75dyklcApKYtkvOrwtWfGODbVQlcF0w2PcttnqNtmbXeGW9d1o4hk2f3nQ5PkTY2GF/KGzf08c7zCC+N13CjC1BROV13Gay4xEgWJH0mCCLpsFYQCUiIQbBzI0m0b9OQMohjWlWw29edRhKDc8hiZblN3A0bLLd64ZYCpposXxti6huMnz+rNGzz2wiTDPRmKtsGJcovdxytU2x66qtLfZTFcyvCWrauIpeSxA5MUbY2RmTbWbAWvpqrYuspdG0qYmsL/emovz//PL/HkP3yDOI5fNle2bXPixIlUmfMKIa0ETkm5SPaMVSk3PbqzOrau0Ze3cPyIWMZEsznoL2XhaNScZIcOiW6NG0UYqqDtJ1W4sZQEcUwQSRQBqiKoOSGaqtCdUQkiqDsha7osCpZGwTLY0JedjfXHPHeihq2rGJogiCSHJhps7MtybLoNhJiawlQzMVJ3DXczUfcZLbd4fqzGVN0jlCBlzKmKQ7XloyoKbpCcZ7ztptUdA/PsiQqWDm/c0g/tKo88/Ht886//gihcWA303nvv5XOf+1y6+F8FpAYgZUVwsa0ex6sO3zs0xYuTDXqyJgMFm5ylYekKNSeiL/+SHEHW1OjLWRyfdriuL8d002Os3OZU1UEVAkNTiGLwwogohkhCBGhCEkvwZUylJclZGjeuyvGOm9d09G3mDr+PTTexNAWExPUl1/fniWRMpe0z3JNh92iFqYZHb9bgur4sNw52kTFafP3ZCjMtD00TGIqCkBIJuGHMkck6Gcsgb+uUWx6lrEkpa1J3A5xGla//yRf426/8GZ67sNDazdtu5Qu/+Xne9ra3IYRY8JqUK4vUAKRck1zqfrg7909gago5U6cdRBydbrKxN4eqCHRVsLEvx7ahYie+PVi0eOD1G9g/XueJF6fpzRmEccy+Uw3mkl5iCUKAkCCBUDJb3AWKEMQyeeOJF6eYafn8xMYkzfOtWwf4L/9Ux/UjWkFE1lDJmioNN6Ta8qnYAb05g1LGYPNAnoMTdcYqbSptn1JGZ7ymoKqABD+USJLn1L2Yu6/rIpKSkek2paxJu9Xkh3/zMD/8xp/jtRduAHPDDTfw2c9+lp/5mZ9JF/6rjNQApFxznJmiWHd8vrlnnKoTcl1/lnuu62FjXx6YXyS1kIcwd833D09hqAo5U6XhBcw0fVQBE3WHjKFRyuoM5M2XpXtCoq3zphv6yVs6/3xwksm6R6Xt0/AiFJEs+LFIjMEcYjY0owmVw1MtbhgQFCyNZ0Zr7Bmrc/+da7l5TRdPj1QY6raxNBU3jPADn3YQkjE1+rImwz25Tl3EwYkGURyTNzXCMMYNYwxVEMvE2KhCkLc0blpT5NnRClNNj1hK/sd//T2++5UvLjjPg0Nr+fxnP8P73//+jmxDytVF2g8g5ZpjLkVxquHyj/sncaOY7ozGdN3jf/14gqNTjXnNYBbS8f/aM2N8bdcJHD/qZM88eaTCqoJNf96k5oRMNXz68waGpnJosoUixMv06M9sRNPyI7ozGjGgK4LVXdasCwC2DqaS7P4zpkbO1MlZOv05A13TMDWN/ryJqsCOp0eptj2EgJYbcnSyyYHxOlXHx9IV3rp1FbevK3UW/zXdiQZQKWsQxBI562moioIEgigGAT2ZpAnN5oE8hpocZA/d+39gZebr/ueKPbz/Ew/ymb/YyX3v+T/Txf8qJjUAKdccc4vu7uNVsqZOl6WjKAKhQtbU2X28Oq9qeKG+vOXZw9O8pVOwdMqNAFWVnKy0abohvTmTGwfygMLqrgzdWZ3RcosgkhybbvLF7x7m0X3jCJIK5XLLZ6rhUXdjui0dQ1NoB5JixqDb0hAo2IbGYJfFmqJNb8EiZ6lMt/xO1bEQgqJtEMWSsarL9f1ZTlZdal5IwdJZ152h0go4WZkfo295IRv6svziT26gL2+yrmTTndGJ4xgpJYYm6DJ1BosWDTeg6QasKmbYvr7EO+66gXe//0MAZPJd/JtPfJKv7vwRv/jLH6ZUyJ63MXzKlU1qulOuOeZkIqqOTyljoCkGY9U2pqaQ0QUTTW9eAdJCukJBFANJqmXTCzgwUUPGYOoCQ1OTnbOMmaw7bOpPZAxO11yq7RBLFwgSb+DoZJNj5Raj5TZBGFF3IwqWxuaBHFMNn0hKerstjk61CGJJ0w2JYskNqwp4YdzZ1c8xV3Vcc0Im6h6bB/IdSQonCBkmw8GJOsWM/rIK6cGizbpShkozwDa9ZPFXFaYPPMnBR3ey7oFPset4GQH05U0OTzY4XXPJ3PEeNo/V+Il3/Tz33XkddiaZq3NpL13sgXvK0pEagJSrglezqMxlymR0lZYXYeoKxYxBxlCYafv0Zo15B8AL6QrpqkLTDTqpll2WTrnt4wZgGwqlrI4qVBquy8HxBk4YUW0nom1SJGJsUw2PsapDuZkcRBuaiioiwlgiEawpJvo/eVPD0F36LA3T0NAUgR/FrCmajNccvrn3FFEsMTWVnpzBPZt6WFfK8sMjM/TlDaRUOhXJdwz3UG55nVaQZxdbbezLYekqL062OP3Cbv7py7/P8QPPAdD1nvfwhp/43/m7Z09y4FSD1d0WNSdE6DYb7vsAlVjluRM1bl3bRSlrMlZpM1F3+epTx+edmyyXTHfKqyc1AClXPK+k/Q8saBjeunWAlufzrX0TdKOzeSBHLCXVVsgDr98wTxzt6FST0XKbLQMF1nTbHdmCmaaHocvZQiiBlGDriQxz24uRREhiam7S5rDW9ml6Abqq4gYR33jmJBlTwTJUVnVZBJGkL2cx1UIGnegAACAASURBVPDI6ho9eYPJhkfNDbh9bRE/lkSxJIwkbhDx7GiNgqVysuoihCCMInRVsHeszr99Uz8AhyYaHZ2eLQOFTkbSudohbhsq8i9P/Yi/+5PfZv/TP5j33je/9BDvfvd7aPohDT/g2RMePRmd3pxFMWNSawcIITk61aLpheweqbJ9uHve70RXWRaZ7pQLY1kNgBDiS8C7gEkp5U3LOZaUK5ezdWfm4uy/9Z0KlqF2FDPPNgwb+vLce13I/vE6u0ZmAMFQt83+8frs5ybiaJv683hhxD8emCBramzozfCOmwbRhKDu+hyZajLTCjBUBSkkTS8ka2qEUUx3xmBTf47RskPNCWj6ERldsKpgc2iywYmyx42r8/TnbY5ON7EMhWJGo9z2OF132bo6T9FOdPlHTzfJWxqamhw6N7wQITRypoYUYrYhjEIpozFed9k6WGDPWJUoluRMlVPVNqfrHutLGXY8dZxq22Os6iIl3Lymi1XRFF/43H/m0W/9zwXnefToYX73y39HrbBp1uDESFtjrNqiK2MwXMpQsDTGaw4SyfbhbtaWMsBLC/2u42XesLl/3uemLRqvXJbbA/hz4IvA/1jmcaRcwZwZoy+3fJ47UcXSBeW2x1orM08xE+DxgxMEUbITHe7NcXymTU3T2NKfI2drPD1S4cmjM9y6tpgc+LY8phoBw70ZFMAPY/7siWMULI2+vEnLjxjqtmm4IVEco8yGb06U27zn1jX05iz++dAkAjhVdZCzufAZTaUqfcIIcpbGxt4cJyotVFWhy9a4+7oklPPM8QoHTzfozhhkTZWsofHCeJ1KO6DuBKzptsgYBn4UkTVVTF3l2FSLydkzgMm6x+hMm/G6yxs299KdNfjng5Ocqrls6c/hV8f5zw/9Jw4+8W3OJf3S95qfZOs7f5lWcS1tN0TXFMIopuXH5EwVXcCG/izX9+fZtrb7nP0YpGRZZLpTLoxlNQBSyu8JIYaXcwwpVz5nxujn9OqRAmazYtwg7hQuZU2NXcfLbF9fIm/pHB4t40cxRdug4Yf0d9kIIXh2tILnxxybThbS7kzSaH3viRr9BRNLU4kjyf7xBlEUs7pooysK5XZyKHuy2qLqBPz1rjH6ciZZU6HhhigCWm7A8XILS1VY3WVRafvsP1nDjSKiSHLL2iLdGZ2h7mT3PNyb4enjZQwB+8stGm6Y6PioglDCRN2jLyfwwoiZpkfTDTk00WB9KYNtaEkRWSxZV7LxwpjRcgs/ijHcKt/6k9/jhX/+O+IoXHBuCxu3cd3bfxl6r6elCgwhyJoqLT+iYOoIIemyDZwgpC9ndQ6U94xVF1zob17TNa8i+myZ7vSA+MpiuT2A8yKEeAB4AGDdunXLPJqU5eBM7f+6E2CoSeHT+pKNG0ZYukrdTXRpWl6IlHRy7xuzWTWKgBMzbZwgAimZaXpoqmDTQI4jUy0qLY/ppodlaHTZBn4YMdH0sFUYawRU2gGqQhKuUQSjZYd1JRtDS4rDRmY8au0AXVMoWBp+GOMGMVv7s5xu+LhRhCoEQz02BVunO6N3FtBS1mRdt81zY1Vq7YCsqaGKJAykCpBITtXa2LpKiERRBfW2z5HZg+HN/TkaXkDbF7h+RKVS5qm//e+ceOIbxIG/4JwW19/Ize/5MNHgVhSh4IcRfhRjC4GuJWmnOUPv9CVY020zWLTmLdgL9WM481zm7EPo5ezjnLIwV7wBkFI+DDwMiRroMg8nZRk4U/s/lsmCeOvaLkDw3IkqbhCRN3UabsBYuY0iYOf+0/TlTQRJq8PxukvOUMnoGsdnWoCAOEmrLFgahyccZtoBqzSFibpLRtcwFJhph2RNBS+QaJqCF8HJaotIwrqeLFlDZ7LhMFFPWjVKBH4syZkaQsC+003efEMfhqZ1un9lDRUQ83bKXpDoAiESaYmkREdFVRXaXtLZS1MVejM6t63t5pnjFVw/oidrMdXwKVoGpxsO000PcfoYxx//qwXnsmv1Rja9/d+w+pZ7MXSN6YZLEEuQSYFYxlCouyEFPQl/ZS2N29d10ztb6TyX93++fgwLLeivpo9z6iksDVe8AUhJgZe0/7cNFfnaM2McGK8TRDFhlMgarCnauEEISpIFc3iiSc0JmKy7jEw3afkRWsGk1vZxgoienMHako2pJdLLVSdAFeD6ETUnWZgHuyxMTcEPJb0FjSCSiTBaELNlIEfLC2dF4fK0vJCTVZc7hrtptEPaYYitqrTckIMTTTYPFChYOjNNn+dPJh273rhlADcIOXi6zt6TNZASP4qYbsZYWiI94UfgR4lWjxfErC6YSVMXU2O66SKJaQeSgS6L5095aEIwsOEWujdvp3LoJel0u2c1173tFxja/lYyuk7Tj4hlhBACBYkTxsSxZKbp40cx7SCi5UVsHcyDIrB0tbPTP3PXfnYP4zM7op29aC+2j3PqKSwdqQFIufqIJU03YKLhE0QxfTmDe67rZbzuYunJDjNnajw/VmO6GWBoKmuKNlU3YKLh0Zc3WN+dxTRUbl+XCKyNVx3Gax5uKLG0ZBd+otxmQ2+W1V3JouWEEQP5pCtXxkhE4c4YEooCvVmTvpyVXO9HnKq5eGGEbag03ZBTNYdISoRUsHSVsarDi5MNDE3FVBUMXWW85hEDTS+k5oYIoGglZxQ/Ol5lqhkghKDLTg5dJWCqyeeZqoqpqdz63g/z3S/8MnqhlzVvfB93v+1nKWQtvCDCC2PMOKblBcSzqacCMHWFYDasJAQUMhqGrpEzzr9rX8yivdg+zq/GU0i5OJY7DXQH8FNArxBiDPiUlPLPlnNMK5mLcbuXymXfM1Yla2nomsb1/SaWrlB1fHY8Pcr6UpbrZqtyS9lkp3zb2iIvTjW5fiDXaZISRFHiESiJ4uZUw8PQVYZKNhlDo+2HtP0IIUIGCokk8slZbZ8ghNVdJiPlVqKlE8e4gaTa9rE0hZPVNmuKGdwgTjyNrI4fxzhByETdQQgIw5ha7PPMaIUXJ+ocmWqRt3TqXkjOTOQgyi2PqhNSzCYSD3U3oNL2icKIFyfqiGNPMPpPX+W9/88f8L/dexvPHC8DSaVy1lRZv+VmbvnFzzB002tZP9DNxr48jh9RbXtMNj26VA0/kmwo2pysOQyVbCqtAE0FVUlqHTKmiqWrTDacTrongBfGPD1Snve7Xsyivdg+zov1FFIunuXOArp/OZ+f8hIX43YvpctebvlM1r2OPg5A0TaYbLhUHZ+TFafTMH10ps2qLovhngyOHzPXJKXuxgyXMvTmzU78uu0lEgtTDZ8wjggihTVFi9GKQ8tLFnBDUyh7Ho4fMZAzQcCRKYeMqXDf1n50TeWfD00ThJK1pQw5S+f4jMTSVMYqyTlB0dIJY0m3ZSCA03UfJ4gpZRKJiYabnDn05hLNn+3rulFUleZEnSgG99C/MP5Pf4E/fRyAZ//uT7n3toc4Ot1iy0COupsYt1MVh8Fb7qUdSfrzye8gjGKOTrW5dV0X5uzhtZSCpheSs3TqbjirR2TjBRF+HNOTNeYtvOWWz4+Olemy5/+uW17YMb5znLloz20Qml7AyWqbop00t1moJeRiPYWUiycNAaUAF+d2n+/eS+kdlLIGz45W6c+/tEOc08dBzm+YLpG8MN7gXdsG6bINRmaaTDVm+9NuXztPCvr3HztMKCW9eYPTdQcvishrOrWGy1TdxQ9jwhgEMcWMScHSKWYMNvTmQAgOT7XJGkn7xKmmi64KIim5c7ibibqHokDLC3CCEFPTGCrZTDZcNCUp8DpVdyllTGxd0PKS0JIiBPvG6/TmTEb3PcXJnf+dxtjBefNx4Pvf5uDBD7Gxdx15y6A3FzNZ91AUQRDH9OVMVBWklBydbmLqghsHCzx/stZpam/oCi0/xFAFLS/AD01aXsRgl0G55XFsusUTL06xZVWeg6cbCAE3DhY6wnkAJ6vtcy7aZ24QNvXnOzv/c/07WKynkHLxpAYgBbg4t3vu3nLLZ2SmScMNyZkqBcu45N7BtqEijx+cour4nQXM8WOG+nOcrjvzGqavL2WZNj1OVR3yVhL+OT7dYt9Yle8dmmRtd5b/a/sQW9cUGS7Z/OMLk8w0XaIITENluuFSdQL8MKbL1unL65yoOtTaPt1Zg4YXUmn5SUJRLHHMRMcnCEm6fklYXUzCSrtHK1TbIVMNjzuHi+RMjX2nPPwwpmAl5wluGDLVCFBVWF3MMtRlsXvXj9j73UeoH9uz4HwIRXDguV1sef0QfujSk7PY0JclZ6rsn2hwz6Ye3CBisuHiBhFvvrE/CY+ZOm4QY+kqvTmTKJacjiUtz8cLEy/ECWNsoXDf1gHGay4/PDKDIuDujT2doru5fyddts5YuU257RNEEl0VlDKJoT3XBuHxgxN0Z82XbQzOl2GUculIDUAKcHFudylrcLLicHgyKdIqWDpVx6fSDnn84OSr9izO7uYFkmo7UffssnWGSzY/Hq/jhzG9OYOh/qQzV5edFFetK72kXz/ddPmnAxM8P1aj4QVM1Fy6MgZZQ2W65fFb/3CQravy6JqCKmCynhws5y2NjKnN7vwldS9EAoaqEMdQcQJWdVmMTrdAJOEbU0tCUrqqcLrusarL4lvPj+P4EboCOUPldBzz9LEKY2WHIJYMdicFZjMtj4YbkLV0DFVhdTjBv/zlH/PiU48vPOlCMPzat/GuX/i3rB0epuYEKIjZEFdA1tJ4500DbOjLU275bFvbTaXlYenJ//LDvRmeO1HDDZNzjv68zbNU6LJ1nDCi7gQM92bZPpzsuqtOgOkp1NoBbf+lw+9yy+fAeI1K2yeWYGkKhqYAAhTRuebszYUXRjx5tMwbt/QvuDE4O8Mo5fKQGoAU4OLc7mRXfghVEUl3qiBGSsHmgSzPn6zxU1sW1oY5VxeuOY9BEYIfHSvjBBG6IsjbGnUn5PqBHJtXFejN6lTaAafrDkXboOYEjFXa8wxA209i4lsG8zxxeBp7Vq4gQRDGkieOzrCpP4+mqp2isQiB44d4oURVIIoTgTYvjImlRGtDRldoB0nDGEMVTNQcnCBidbdNve3TcAMm6i6WptAKYvwgojujI2YrioMono27K9yyusCpukdr4gS7/7+HeeKZx8453103/CQb3/ZBtt9+C6+7cQBIKpv9OOZ164pnhFi6GK+7nfu2DnaxZ6wGQDFjsKk/y6GJJgXLwNIVru/LMVTKkDU1du6fmG1S73Nsuo1tKPTlTNpexO6RKjXHZ6YZ8MzxCmEcYxsqBUunJ2uwfbiHUtag4QbsGasuuLk4eLpBT9ZIM32WmdQApADnL+w5373rShlOVV32nawhBayfzagRYmFtGMHCssG6Kjoew+HRMt1Znfq0j0/iaRyebrLnRJWujMZA3uS6gQI3rCqQNTVOVhx2jVQAOuJwhyaaFG2Dom3QDiJypkYswQli3NBnoubihjGnKm0sXcEyFIJQEgQRUhVoKkiZlGWFsUQRAl0RZE2d0YpDt62DgLobYagKQ902sYSK49P2IvxI4gYxrh8SIdE9Qc5QmWq4HY/CUC32HTvFkW//N4488S1kHC00zXRffwc3vOtDBN0bADhdc3j+ZJWb13SzqsvkxyfrfPv5UwwULO5a390Ru5ub3z1jtY5RmG56rC7avP2mQQaLNo/uG8fS1c7vqS9nUnN9dh1P2k7OZVCt78li6rOG2Y8I45hS1mC66ZM3NSYaHvtOVnn95v6OoX/jlv6XbS6mmz73bOqd9/3STJ+lJzUAK5iFduDnkhE+H90ZgxcnW2wayHV61P7oWJnr+7MLasOcSzb46ZFyx2NouEmnqyCO8YKYA+MNKm0PRUBW13hurI4XSgbyFooQnVTF03UHS1cpZQ3WlzKcrDocPF0niiVVx8fWVKqOjx9KgjgZf8UJ8JsSWwV19gA1kXxOmrVLKTEVQRTHRBLylkrTCUFAzlRZXTSZagSMzLTxo4ha2wchsDWFhhfiz3oSLS/ECSIkgvxstTBCYFgWp/Y+seDiX1i/lTVv+SXWv2Y7pZzJWMUliCKKtsnJisN0w8ePJPds6mGoO8NYpc2XfjhC0TboyRmJxyNAUwS6Cve/dvhlzzg7TFPM6Dx/ssrITAshJcWMiaIItqzKcWy6yepihomGSylrYuoqjh/TcEP68hbHy23gpRDiQpuLn7yuJynCO4M002fpSQ3ACuXSp27KZDGTYvavAiGSheSntrzcs/juwcmOXs8cWXO+x5C3NNwwSkTYvABFzO6YdRWhKFiaghdGjMw0KWWTgq413TamrvC+164HYMdTx9lzopooehZtDk82aDghUUynKTskCqBISTOaDV3LpF2vpoCIIJ69RlXA0rVEEtpQ0RQFQ1M5UXYxtaSRi64oRDGJpINQUESMoUpiwA0luioxZs8LurOJmN2EIxl60/s59I0/6MxHae0met7w83RteS0KAing2HTiqfRkLbKGStnxkRJ6cwbrSlnKLY8XJ1sEUUzTDSi3fZCC6weytNyQrz9zkmo7aRE5d+g6XnU4PtPi2dEqfTmTYkZnZCYJ+ygIXphoYGsOb76xj1LW5OmRMj1Zk8m6m0wUUMomB+RdUYSU0HCDeSHEhaqG00yf5Sc1ACuUS11tKRHcOdzN6IyTNCgxde4c7iaWL/+fH146dA4i2ckc0hTBUNHueAzrSll+dKyMrqmApOVHGJqKAoxV2sRScrLqUMwYnQykuTTP8aoz+0xJ1kqyVGpuwHTLY7KeVNrqAkwtUdz0wyT2L0katqu6QAGiOJGEiKWk5gRkTJWCqQNJtbAbRsxMt7B0lZYfU7A0VEUw3RS4QUTGVNEUCFEIwpjYdxGmhoJKNLs1zxgqTTdAvfHNmI//NbqucefPfJh4+G5sU8ULIiYaPrXpNoaqYGkGqwrJnG7oy80K4SUL8VNHZzg00WS66eGGEZt6cxSzJqPlNl4Yzwrn+Ti+xc79E2wbSs4FVhVs6k5IzX1JqqLcDNi2totKOyCSkj1jNUo5E1UR9BdM2n6Ww5MNhBCoisJAzsALYgaLFrahvmIIMc30uTJIDcAK5VJXW5ayBo4fcfv67tnP9zgwXscLYx7dN/6ynO9tQ0X+/Ilj7DlZRQFsXSNGMt30WFO0kSQFXknjc4eRaUmlHaBIH3O2ebqh6pyuexydbs4e3gqmmx5tL+Tz3znAmi6L3aPJmYBtaPRkda7rzzNUtBktO7T8EEtTkUjqTkAUQ8ZQsXU1qYLVFGZaAX4Uzx4CJ4VkMy0PN4zpzZn05w0mah5BFBPEkiiOiaXANtREpyiIEyE3Qmae/TYzP/grSvfez8Bd78LUFRQBMy2flheRty1u+MXPY3QP4qiCetPDqyWhI1MBKQRtP+J0zaUnp3NspoUgpuFGdGV0HD/iySMzFDMGxYzOyUrI8UobVYVqO6A7a7KhL0fTizoG/9v7xrlhVaGjLzQy06Tlh9QduHEwT2/eopQNOF13mWy4TNRd7r9zHXvGagz3ZpJsr5aPG0Rs6M2ytifLz94+tOizo3TBX15SA7BCudTVlmdmEXlhxNMjFaSEuzaUcPyIr+06QW/eRM4+e7BgcarmYqgKAoEbxtTbAV0Dye76hlV5xspt6rPxc0NTyBkqDTdAAU5WHVQl6Y6lKYKxikPG0FhdtDB1lWePV9hzosqabjvpsRvGxDGs784wMtPC0gUtX8xKQ8QEUaLlM1S0KNg6J8ptphseEiiYFoopaLgBURzT9mMiZKL1U3HRVEEUJ3/XFIGpqkgpUFUFx/WoPf9dyk/sIKgm81N54i/pv+OtNF2Ttt9CCIWMqaEJQVRcTc0JCOIkPCUECAlOCJoi0VSIkOwfb7KuaBEhkEC56fOMVyGSEMQxhqowWLRpeAHHyy7dts7m/jyaKjrpqllTY6Lucsf6UuffRClbQkrJU8cq9MxuEHKWzhpVsKE3w9pSlm3ruukvWOwZS5RYa07QqexdTJFfqvR55ZAagBXKpa62PNOl33W8TMHSuHGwi1LW4OhUgyeOTCOEYNtQETeIePzgJHEsuXlNESEER6caaKrA82NafmKYDp6uc3Cy2Yn9D3RZ1N2I6YaLYWjYOuSsJN3Q0gWbVyV6P0cnmwgEuqZgakk8PpYRL061ZtU9YzQh6LFVxmoesQRVSXb/o2WHvnxMEEmkTOL2Y1UHTRFYuiCWAlNXMFSFIIoptwL68yZBJDE0iRdEtLwQRUjcg08y9tgj+DNj8+YqbJZx9zxK/z0/S8MNMVSFvKky0w6IIkk8e/4gSTKQYgSGlpxWaEoSWgpjyXjDZ7BgsmWgQNMPZruKJdk6q3psdFUwVpO0vYjb1xUJZUzgC7YMFABm1UytefIZeUvD0hMv6Mxiu5mGh6ElUtFzHt2FJAykSp9XFqkBWKFcjhjsnEs/F15ShKDc8vj+4WkMVUUokiCSvDjZouEEhBG4QZJD3g4isrpK1Q3olSbfOzTJvxwrJ01YMgaKkkgkGBr4sULW1Gi6AfvH6/hhhKkp3DDYha1DOwxpekno5sen6kiZLMyKIujNm6zvznK8HFFzfYq2hm0kcXsvlNQcn5oTgCCJ0c/WDPiRxNI1soZKztZxg8RgqorACSWmBpEnkTKmdeQZJr/7CO7pIwvOk2pYdNkqb71xgCeOzKAo0HRCwmj2YQJUAXGc/DmWkjhOxlDM6Ag/QlMT76XqhHRnAnoyBrausLaUxQ9jcnaSmdNtGwzkBKu77dnG93mKGb1zSHvX+m6+/ux4Rz6j5gRUWyHv3baK3SdqTDaSOgYvilFVhdvXdOH40QUv2qnS55VFagBWMJcrBjuvheN0O5E/JsZxYo5MNVGFIIhC8paRdOgCbE2h6gYEYUzDDWi6EZqqoAto+zGqkuy6W25IECfqm0EUoyqSKIqJwpjnjle4bV03DSdgsuETxTFCgKGqSAFBKIkiWFPKULB1vnvI48b+PF3ZZAc/VXeoOT5BHGNqKqoiMPWkKXul5eFGMXqcpJ22/ADJ7EGxkMQo6NMHOfytP6U9+uMF50UoGl23v53r7/vXvGbTejRVZdtQF6Pl9qzAnSCISMJRCPK2StNPsmqESOQlBCBUBUURGCThttGKQ4RkXSlDrR3SldHY0JOl5iaL+QOv38C2dd2d0MuZBn/PWHWefEaXZXBdX458xuTjb97MnrEq3zs0xaqCxY2DhXkSEBeyaKdKn1cWqQFIueTMa+HoBnh+yImq29ntZQyNSjukK2OyqT+biJcJBdePGSwm8stTzQY5U0UiUEXSCrLL1vGjpHNVO4pJBAck6qysc90LeP5klZqTtG8MZlM6W37SJtLSVSxNMN1w2dCbo5TRKbd9dENFIAikRFOS2L2mgKYoeEFEvRUglCQm7yvJrj+Moe2HGJqKnD7GC9/6U2ZeeGrhCREKhZvfRP/r349e7MdRBNMNjzCS9OUNCqaKqSv/P3tvHiTXdZ15/u59e+6ZtaEKhUIBIAGCG7iasizTWlube7y0LFu21N66FRPTMzF298y0px2Omejo6ejomIiJbnumox3dbtmyLcstqyVboiWLEmltlEhK3CCRAIi9CrVn5fr29+78cbOKBaCwECQEmMrvH4lZyMyb+V6ec+853/k++lGKgWC0aBHl4BoGNc8iVYqlboxrgGdJCpbBepDgWQZxrojSjJVOzE/dO4UfZfSihHPtgImKywfv38WhGd2Y3y7hP3Zk+SL5jFzpZvx2J7oNXGvQHip93lwYJoAhrgmXa+RtLS/1woQ1P8YbGItkSrHYCSm7JjM1l6WOZpZMNzx+9t4pvnxkhTjLKLkmjWKV5W6oG7WplmGQEtJU8/MNIQZ1cm1okmRag980dNJIMwU5AxtJyPKcKFVaeC3JOTRd59hyj7pnc3y5y1yzT5jkGJmin+f6pDLoA5RsTT+NUn36qHkW3T48/8f/iuXnH7/k91S87S00Hv4lvLEZTKlNXHphxmI74uBkGT/OeGm5T9212FFx6QQpuVLsrbqs9GOkgB+dbVB2DF5a7PHySg9DCuoFGz/WE9UFy2BXo8CBHZVX3VAVKJ44vkqaK8qOxexoAcuQmwH5lRmBdcbKDrMjpc0gfi1Be6j0eXPhqhKAEMJSSiUXPDaqlFq9Pssa4mbG1TTyNnaP6/2I082Aoi3xY201aEiYKDucaYW8/bZx7t/d0JaK7Yi7dlZxLYMkU3zz+CqmgF6UEGYKm4x9o0VOrgVkeT7olCoypYNgrsCzDFZ6EWkOpqFPARvSP2GqWGyHNEoWQZJx13SV/RMlHntpiTPNEENKpmsOuRKcafokKDxLYph60jlOcxq2ZKTsULAkp6VFseBu+x1Vb/0Raj/xS1hj+7AMqR22XIt9o2WWewFKaWmJF+Y72FLgWAYGiqJtsNSJONX0+fCbZvjpe7Vs9XNn1jm6fIx+lOGakmrBxDZtCrbJOw6ObQb/x48scfhcB6Xgrp1V3npg/LKie6v9hHaQUiuYhEnGt082mW0U+MADuzav88QgMbWDhGfOrLN/oowhxTUF7SH//+bCZROAEOJtwMcBRwjxDPBRpdSpwZ//Brjv+i5viJsRr6aRpxDcMVVmsRVhmjk7TJfRis2xpR637fAueo2N5mqWK1SulTjTTLGr7hHGGWNlmxOrvmbKKAVCISVYptBsGs9i3Y9Ic0W8JfjrtUCa56z3E8bKFqaUvPfeSZ44scbd01WyPOfMekCucoqOQT/S/HqFlnsuOSYjZYeibbDuJxQtg4m3foRTT35pU8LB3XUH0+/8VSp77qTimISpohelmFInp5dXe6ByZuoF8hxMQ1BxLcI4ZaUfc9tEhV11j6VeRNF5ZRf+3FybkaLD7KjH3HpAs5ewZ6zIZNVjoR3y1v3jfOrps5xq+lRdC4TiqVPrrPbjS/Lyn5trMV3zmCi7m8N4FddktOxs6gNtXOeSY3Jq1WelF7HYJOIE7AAAIABJREFUCfiVN++55qA95P/fPLjSCeDfAu9WSn1PCPEB4EtCiI8opb7FK1P0Q/yQ4dU08hpFm71jJT0cZRmbFo5plnNgR/m8fxulOS/Md5iuezx7poVlSGoFXXYYq7g8c3qNufWQiYpL048APRjlSknFs7l3poZSMN+U5HmOKfUk70DuB1PogKsErPVifuHB3UzWPIIkwzYErUBbMkZpTk/EmAbsrHqkYYf1VoeRnTNIpTjXDogSRb1gUpjdw7H73kNv7iXG3/bLlPbdjyEE/TBDCkHJMuihUAjW+hGOKal4FovdkOVeSJBommaa5VhS6BOSIRgru2S54mPfPMliO6QTJLT8hB0Vj72jJdb9hDRTFB2TbpjwyafPstAKGC+7FAYSG0IIzqz2+Ng3T7J7pHhRqW5rbX9DSmOj/n/hdW4UdW9ma39giL/7uFICsJVS3wNQSn1KCPEi8GkhxG9x/uZqiB8ivJpG3qHpGsudiPGyzYsLHVZ6MZ4leWB3fXMgCeDESo8vv7iElJpZs9qLMKRACsFERQch0zRIckXZMWj6A168gGrB4u6dNR7aM8KpVZ/5ks9SN8RQug9gDBKBlGBIiSUFLy12We6ETNY8DkyUeeJEE3fQYNWzAw5J6PPSF/+QY49+golb7sL+5X9NP07Z3Siyd9RloRNpmeR3/jpjhkPB0WUU7Q+gTeE922BnzWWhHREkGVGSaa5+pkhyPZyWK0WUKYqW5ORyD8PQn/kzLV3q6kQpJVt7EziWpJ8YzI4W6IXau7hRtEmynCjLObnWY6kbABKlclpBwn4hNstsW0t1V7qOw4btGx9XSgCJEGKHUmoRYHASeAfwOWDfdV/dEDcltmvkzTV9RssOf/rt0xe5Ox2arvKJp85S8bSF4njFoR+mzLUCpmuayviVl5bIlGJX1eX4ik8vTql52ljma8dWMA1BJ0ixJLQDhW1ISq5JmuV0goRuEPP8XJv1XkjLT7BMiVDg5xlxqplDMgdpKhxD0A8T/tXnv8/bbxuj4ph0o4QokcR2hpElrH37c5z68p/Qb2uz9TPPP8H960ep7bwDBJxpBsRZTqufY5iOFnqLMyxDaPqqoU8neQ7rvmYhmVJLP7SCnFzlGFIgJDQ8m16Y0vRjhICpksdqL6YXpXiWwWjJRkhtMbnWj5mqFphr+igEjaLNwcnKQLUT1voJUaLYWfc4tRoSZRmeZZxn37hRqrtSQ3bYsH3j40oJ4LeACWBx4wGl1JwQ4q3AP7mO6xriJsaFjTyBAilwLWMzUGwIjS10Qr56dAXPkufxyLthQpikeLbB06ebSCm4fUeZlW5EyTUxDY/FdkAvTEhyLQUhBbTCFNswuG1HmVrRoe3HnFztcXSlx6of0Ql0vX3EszjXiZFSoAZSzFIKKp7JuXbEZMVhtR/x50/PMV52OTheYLEVcvKbn2P+K3+Mv7580ef++if/Px7+zd+jF2pJ5zjJSBWYhtRsJAChxd0koGytiBolOY5lIAdlniTLsAyJBEYrLo2irXWDFjTnv+RooxtTCoIkJcfGUJo+G6UZhlSs9GL2jZZ4cLY++E4FT59qgtK00DjLCNKMmmfRj7RxSzdKKNomFc/c9jpe2JAdNmzf+LhsAlBKPbrx/4UQY4PHVpRSLeD/us5rG+IG4lJuXdtRP7WZyPlN4Zaf8ImnzvLQnsZAdlnw7Nk29+yq0ig6FB2TIMl4z52TnFzps9KNOL7cp+0njJdtyq7J6dWMJNehtR9llF2DJFUYIh8oc1rMrfskWU6eQuqa5EoAgp11j4NTNZ48tYYhtPyza8mBlAM0/RSUQgnFWi9k/rtf4eyjf0h/ZW7b78MulKnuf4iXFzo4jk3JkUSZIkl1mSfPFZYpKbvacCbNFJNFi26UgqdlsRdaIZnStXnQ8tL9KB1QME2KtqndyJRWJvUcEz9O8aOUAxNVVnohQgh2jxR51+07qA8E+ECXa3bVi5iGpOUnxKkeDCs7JmfWA2oFd9OqsxXEm2qpV2rIDhu2b2xckQYqhPg/gP8J3fSVQogU+F2l1L+83osb4geH8314Fav9hOmat0nz/NR35yBXTDcKF1E/t2sKL3cDukHCseUuZ9e1ls5YyeXUqk+j6GzWkhdaAaebPkXb1MqZKObbAZ5lECSahWNJQTvIKDoWaZrjpzlLvYiyZ9GP9WCWY0gW2iFZrii5JmfWfW5zygi9LcezJa4lSTKFHyqUSDCEJD75FC988Q/oLZzY9ntxvQIP/OSH4a6fxHCKRGlGEKe0fV2PrwyosNWCgx/FLHQiXMvg3XdMcHq1z5OnfUDQ8VNsQ7AepKg8xzIE1YLDeMVlV0PLNCi0k1mt6ACKtV6MYxkkuaaMFmx98tkzWto0zdlaoql4JgiPn75nJ42iQ7Mf8envzuGauvkephlKCQ5MlIfSC0MAV6aB/ibwFuBBpdTJwWN7gf8ghPhNpdT/81reXAjxHuDfAQbwn5RS/+a1vN4Q14YLef1PHF+lHaSbTltl16LZawFwcKoKnE/93K5ZeLYZ0A4SojRn90iBY0s9Tq31iDKPbljarCU/N9di/0SJl5f7TJkGkpwTaz7tMGX3iIefKNp+Qq1gYZuS1LOI+xGmFJxc6dIbeAeUHZM0172BfpTRCTLKTkAr1LvhTOVEqQR0PyA88wJLX/lDeme/v+13Yto29737g/yz/+Wf861zMU+cWKfZCxEIojRHAGGSYUjJ1EApc9032b+jQi9KObbcY7kTUbJNenHKWj8kzcFAYZhyIE9tM1V1cUyDmbo2bImznCjJqHomrX6CYUhqnokUmoZ670z9PG7/1hLN/okyq90Iy5DkSmEZkpKjpbM7YULZNTkwUaFWsIbSC0MAVz4B/EPgXVsHvpRSJ4QQH0bPAVxzAhBCGMD/C7wLmAOeEkL8pVJq+1/kDxF+0HK5F/L601xRK5jnOW0l2UCZbAsu5/m6HiSMlW08S6t2Hpgo8+JCm5cWOhRsgzuntCJlsx8zXS9s8swtUzBdL/LCuTYzjRJzLZ/1vtb4bwc6OJZdCylgqZNim9poRQiBRBAlOWmeU3IMTq32SDOFbQgsQxKnupx07vO/R/uZv97+y5CSfW/+SW577y+TFUb4wok+p9d8RoomnTAmTHJSpXcshgFZnvHSUg/PNunFGT92i26QPnu2jSHg9qkKZ9d9XlrsgVK4tkG1YDNRcdk7VqJRtLhvpkGuFKMlm7PrPqs9HcTvmakihOT2yQq1ggkD6efn5losd0IWOuHmPfK2QVK4UO/nHQcnzvP6Bd1/GTJ5hoArJwBru2lfpdSKEMLa7gmvAj8CvKyUOgEghPgz4KeAH+oEcCPkci8s4ZQdizDJNp25ACxDXvS8y3m+3jVV4eWVHo9+b4FWmKKUNmw5uKPEXTurHFns8s3jTaqeyd6xEjONIi0/5vhKj5VeBAp2jxY4OFXhz586Sy9OyTNtrrIxU7CrYTBWcXnpXIdcKU2RjFMMQ5BmOd0oHwwLK4IoIxfa7at6y73bJoDKHT/B5Ns+zB0HD9Dsp4y7FidXfKTQE8UlRytsSjSlVAqIMvAswfHVPpMVl8deWiFKdJkoz3K+emyVNMtRKFxT6Aa3FEgpaPuxto1EO5xlSnH7ZJVWEFP1LPaOlTZ7L/qe0E32+fWAv3p2gftna0zXCxfdI0PrxSGuFldKAPE1/u1qsBM4u+W/54CHXuNr/p3HjZDLvbCEMzta4NsntaZ/rpQO9CWHTpDwjZdXSLJc68WUHD5w3zRwcbPw5EqXU6t9elGmNXSynCBOeeZsxtHlHvWCw+6GS5xKvnFsla/nSxxZ8ckHZib1gsUjzy9y60SRe3fXeHmpx3I3Is1TWv2QhbaiZBtEiZ7a7YYpUoFrGtQ8g3NtPcjlmRI/ybVH7yCHlW/7MQqTt+AvvAxA7cCbmHzHLyMaM2QKXpjvaBOWOKEfZ9pbwJBkeY5nS1SuCDOFVGDoJgP9ONWS1XFGEGdIAZ04I0q1V7IAepnCtXJsw2C1G5LnObOjBc40+3znVIsHZuvsrHubQXprk33rPbHSC6kVTVa7MTON4mXvkevB5BkaurxxcKUEcEgI0dnmcQFsL4Jy9dhukvii4TIhxEeBjwLMzMy8xre8+XG95HIv96O9kO/di1LiVEsmPH5kmbt2Vrl9osRnnzvHSi/GMiQTZZtGwb7k6x9d6unSjFLEuaIbpoPdu5YbUApeXOwzXXMouBbPnu2QpjmubZIDK/2Ybphwru2zq15gtRvRCROSDBAMduU5y11txyiEoF6w2N3wWOvFiGAdsXQc49aHEEmOApKcwZStjXr3r3Hm8U9y4P3/CHf6IHmes9TVe5p8UOJpBSmWoeUsCo5B29fuYXkOttwwildkecpU1duUh4jTnF6QaQkJOO+ubvb1jEKWa4nr4yt9vjffxjYMHjuyjBCwu1Fgz2hpM6BfeE90w5Sqa9GNXpHnutw9sh2T51qD+NDQ5Y2FK9FAjcv9/TViDti15b+ngXPbrOH3gd8HeOCBB97w08fXY/rySj/arbvEl5e7nGn63Dfzym70+wsdPv2dOYQUjBRsqgULKSVF1+S5Od0cvvD1X1zsESYZcaYQUmzGwFRBMqiFB2nG9xe63DpRoh+mTNU9hIKFdqindoFOlHNqtU+aKVIt7olQA5vEXJGjMCWUHQOlYH1tlZe/9KcsfOuzCGly5298DGEU9U5dwEjJxjJMpu58E4W991Mt2BQdg5MrPW0GP3D6ynK1qTZqm4IkzZFSULAM/CgjU9qwRZeCxKZTFyiqnkmzHxGlF9+uCmj5MSB4/90N9k9U+PgTp+mFAbtGCriGwbHlHm0/Jkyq294TZdekHWjt/kvdI5cL8K8liA8NXd5YuLiw+4PDU8CtQog9Qggb+AXgL2/gem4KHJqu0Q1TumFCrtSmc9NGLfhasPVHu8HqKW8J3lsxt64pmEVHT48mmeL5sy2We3qnfbLZ5/n5Nr0wZrkT0ezH571+y9eKkYttn7WeduXaiP7pIGh2g5R2ENMLYk1vtLQjV8uPtQSy1LpAca7LJ2GqiF8x59LSzmzR+JGQBH36T/wZX//XH2b+a/+VPInJIp/Ok5+m6lpIqZlCVc/CMgVSSnY1CoRJxrlWQJzmVDyTPNdWkArN04+SHFNoK0RbCizDYLRiYw88AwSCmmfRDhPiNB/QaNkcXNuAKfSPTQvLwa0TJVzT4sxaQJorklxxpumz7seYUtL0E1pBvO09MVZyafVTRsv2tvfIRoAP4ozRkrPp4LXQCl71/XAhmv2YonP+vrHomDT7r7UiPMSNwA3zA1BKpUKI/xH4Inqz9wcbukM/zLgeNdsrlZW27ggvHNo6PN9mtRfS7MUoBZ4t6IY5T55aZ6oasHvE4+RKn04Ys9SJmFvXAc0zJR0yoiTXjl0Dk3OJ1r5Z6USbDdCz6wFTVZulXkI/TNH9ZjHw8tUBPs7PW/5mMhBJRP/ZL7D4tU+S+hdXK898/dPse+vPQaHMaNFirRchpa7pWxJ2j2hZhW6YEqY5riXpRTlKQQJYQieCTOm6f6MgCeKMasHWcwWDv0klKLoG09USQZIzUjDphimmAiFfWbBlgCEFd++s0o0S+lFGGKeAIsshzXKWujoJVz1r23tisuby0Yf3sNAJt71HrrRLfy1lxqE+0BsLN9QQRin1CPDIjVzDzYjXe/rySj/arQGj4llEaY5nGRye7/DiYlc3Wl0tQ9AOckquSa5yulHKqVWfhXZA2bPw44yVTkBrIFJmSB3wE60UoadbbYOJisN8S/PibxkvkqTgJwoDBrthXdJJyZCWTgSW0Lr/m6eALKX3/N/Q/uafkfWa235utzrK9Ns/TGN0lDvrBY4u++QIhNIc/jDOKA8E3EwJWaaL/1K88j5JDu0w3fx7y0+IsoyJskHZsWjlMQVLl1IMQ/C+uyZ5caHDyyuSXpThJxlxqrOXbRjYQlBwJKfWfIQUtIME25LYSmv9bHzGIM6YbwWbBuzb3ROHLnG9rxTgryWIb5SUTqz0Bt7ClfMa1pdiFQ0bxjc3ho5gPwS4kqjX1oAxO1Li2bMtXEtwaq2Ha0oQgrJjEEQZqdTyBSXH5JaxEnGW45gSpQTz6z5rg1JAliuEYkC9hJGijRSCMNHG8I2iTcU1ObSrwUuLnc2AuxGoagUTlMmaHxOnOZaELAPyjN6LX6X99T8hbS1e+FEBsAoVZt/+Szz0/p9naqRGvWiz2AmYGSlQK9gsdQI6fkKGYqWX4DkWBdsgyXPW+7pZvRUbJxeEwjYMTEOy1k825SXGSg6ZUuxtFACBa0k8y2S6UaQX6kbtup+AEFRdA8vQJaUDE/rvweB4MztSAGC+leLZkrsuYcB+paB6pQD/akXeNk6IaZ7TCVK6QcqjLy5x984Kh2bqlzyhDhvGNz+GCeAmxOu9a7pSWWlrwGgUbe7ZVePFhTZhkrF/okyYaFrjuTjDlIIsUzQKFjm6oVl0LO6ervKN4ytkuW7WAjiWJM1y4ozBbr/EvrEivShhsROx3In41gk9ZpJkiiDOODhZoWibA1485GowdZsq+se+RetrHydZPbPt55S2x86Hf459b/8gufQ40UpZC9vsqDgkueLW8TL7xkx6YZm/PbqMHydEaca+8SJZJljzI5r9lB0Vl36kxdTUoD6fDCg9nTCh4JoUbcmuhodhGAgUIwWHmmvxV8/PDySfbe6ZrvKtk+vYhqDiWZiGpBum3DZR4taJCq0gZrETY1S1haUhJSvdiLGyzYEdZUZLrxDtNso3VxNUrxTgX22Z8bm5Fmme8/JyH88ymB0t0gpi1oPksvfmsGF882OYAG4ybPzAs1yx3A145sw6jx9Z5kMPzmyae18LLldWujBgWIZgz2iJ/RMlXMtkplHka8dWsUxJnOWMlWxqRYd6webUWo+ZuqRRdChZJmtCINXAeEUBQuAaULRNWn7C82fXObPuYwjJWMVmqROTZZqmaRiS7y90GCnaeK5JwRCc6ygMI6f55GdpfuU/bbt+YdrMPvyzjL3554iMIq0Iyp72DG4HCXMtf2BEH3NwssJExWNH1WWtJ5BCn05eONchyXTT2TEFfqxQ6MGzbJDQ1OBzWYZB3dPSE4ahWOqEZFnOkcUuBcegaJvUChZ+onjnwXGCJNs0ZDmx0uOW8fKmwfrsSIlnzqyT5op33T7Bl76/hCkFd+185VpvLd9cTVC9mgD/asqMzb5u+HuWgWdrYmDNs1nuhpcN5teL0jzE64dhArjJ8NxciyxXHFvu4dmS8bJLK4j5xFNnGa+4r+vOaetJwzJ0XTxIss2AAZreOVZ2eP/dk3z2mbOcTXPGKw57RrTyZL3gECQ53TDBNAW2KbVdowCU5upLASXHBHLmWhFSSlxTstZPSdIMP9YdYs8CaUkWOiFV16SbKMquSbMXU7rjbax//U9QcfDKB5AGpUPvZsfDP8/OqWkcy2CpHZApRRCn+Il22qp6JnXPxI8ynjq5zoOzYAht8C5UznPzHWqeiWMY+FHCepBiSoFnGHSSbPPtskzrCKVJRldAveQwXSswWnR4cbFDJ0wHekSCpU6seyAi5/apGr/40G4AvnB44bzyTKNos3+izGInGARrC88yOLXa54X5FmXHYrRsM3WBi9dWbBdUX88+UqNo88yZFuPlV943TDNGS/Zl2T/DhvHNjxtJAx1iGzT7McvdAM/WdWQhBDXPJsvVVdH0rhYXUgVdyyTJFG87MM577pw8bz7Asw1ypdgzVubDb9rNoek6OQrHlPzE/lFun6zg2QYV18Q0JCNFmz0jRXbWChRdi511j8m6x1jFo+JZ2FLQizJa/YhOpLV1bEOQ5Tl+mBImOb0wpe3HevAKsApVqg/+9GD1guIdb2PqH/9HJt79P2CWRlnpRvQiTTv1kxw/TrUuUKabuEGcUPF0I/vxo8scX+nR8iO6UUoQZ4RJzljZ4YP372Ki7BKlOdlgxkC/o6aeqlzLNfeSDD9KKTgGO+sFGkWbumcNGrhauVMg+N65LmLLJNh2NF9DCn7lzXv4xYd28747Jzm21KcdxpQdk3YY851TLSYruhy0EVS34noH1UPTNU3TDWItq5GkBHHOeNm77PteD0rzEK8vhieAmwx6t7XOePmV+m+Y5IwUL7/berW42vrs1p3kFw4vEMQZt4y/sqM70+zTCmKafYvbp6pMVh1emOuy2o+QCITKUQgE0I8S/CglTLSR+9Zea5Qo8vY5us8/yshbP0IvVtoxC10fz4DKgz9D0lqk+tAHcMd3b1JEt75OrhQSiDPN5bdMAUpxrh1jmSZjJYczzT65ISm51oCiqieKZ+oFDs00KHsWf/TEKZQSOKZOJnmuEOgyFUJgAP0kwx3YWlZdk6V2iCEFUaabukmuJaO3Dr1fqTyz0Al5YLbOSi/UE7+exS1jZRY6IYe4MS5dkzWPDz24i088dYblbshoyWZ6vIQhxWWD+dBQ5ubHMAHcZDg0XePxI8u0gpiaZxMmOUGSsbNefF13eddSn70w+Myt+5saNlII1vsx31/oM1mx6cYmQkLHN9jdKNKP000mDDJDCMkgTpJ2Vlj/5ifoPP8oqBxjfB/l234Mz9InD9cyCJMM5RQY/cl/hsGAVgogBALtGFawTdKCotWPtelKrshzPQGsgLV+zF3TBeZaPjsqLkopVvsxlpSYwLHlHgBjZZcHdo/okw+Kr7y0RBzrSWDHkkihZwhQuhTiWSZVzwHRp160iFJFO0iQUvD2A+MX6ZtcrjzT7MfsrHvsahQ2H9tq1H6jguqhmTrjFfdVkxOGhjI3N4YJYBvcSO6y3m3N8ImnzrLcjRgp2uwcaMWv9+OLPHevFddSn70w+CwNdqtpnvP5F5bJc0XFM5lrRxQdU9Mia3BmPUACvTAlSjJUDn6WEvdatJ/4c7rPPgLZK2WN9a99nJlDbyFW2txFKUU8qMVv1CwtQzBV84iSnFYQY0hBwTG5e2eFrxxZQaLoxXqgy5CCfEBhfHmpS5jknF3vI4XAkhJpaNrqaj/ib763QJjmlB2D8YpDlOYULROBLin5cYZng0r1aWC1G1FyM4SAgxMlVvsxe0c9dlQ9ZkdK9KOU02v9q75uV3NdblRQHQbzNx6GCeAC3Azc5Qt3WwJFP77Yc/e1rOlSpYS9o0W+cHjhouR3YVJ824FxHjuyjBSCz7+wpCUFPEvLJ6QBuxom31/o0ig6GEKLoLWDBASIqM/y1z/F+pOfRSXhRWtL1uYw5r/LyIE3IxBkWU7Rs6gAjaLFYiciR5FlObtGCozFLuNlh7cfnADgWyfX6YYJFcfCNATtICbJ9CkgTDPKjkE3zMjJwRJULUnbT5BCsNKNePedO/DjbPN0c99MjadPr+NZFpbUgb8fpdRccxCsTXY1POqFKqvdiOlGYVO2+elT69w/W7vqe2loxD7EDxLDBHABbhbu8oW19ws9d1/rmrYzdu9HCf/5GycZKdoc2FHZHEI6NF3lqy+v0hzoAVmG5Nhyj9GizZHFDnmuKHvaQ2C1FxEmGd853abmWThVyXwrIlPQsDPOfuMznH38k2Rhb9t1WfUp9r7nV6nf/haEgPlWqFlDlsH9M1VGSy6H51ucbfr4qaIfpkxUbDKleHGhzYEdFX58b4PPPL+ILXMMaeDZJrlKcE2JKSWeJWmHCQKJUnqwTQFTFYdcgRSSmYbuwSx2AnIlGCnZ+ANpaNuUFG2HO3fWuHemhmcbvOfOSYDzDFkWOwH3z9aYaRQve90uPnFWLynzMMQQryeGCeAC3Izc5eu1po0ks3HqWe5GjBYdhITn59rsGS1wrhXwuefOEec5JVtPwSZphj9gzaz3Y2wpaAcRq70YkJRdg14rJc4Uy50AmSec+8bnOPHoHxF317ddi1kZo/rmD1G76x2USg6dUO98FQpDaW2hw/Md0rxFkikMQ1BxTVb7MWv9mEbBYq0X8p3T6+wdK/IjszUWOxEtP6bgmOyouARJikLgmAb1gu4NBFGCH2eUHBMhJGmW8ezZFvfs0mYrrmWwe6TIm/aN8MgLC0gBBdtgrOSSoy66DlsT959++/QVr9t2J87n5trDadkhfiAYJoALcDNyl6+0ptfas9g49aS5ouJq6mkvCvnqsRVuHS+x3AsxhSCIM0YKJmt+Rppn5EpRtA1ONwPCOKNespiuOcy1tV5QwYIXv/Y5Fh/7Y/zm9rINZrFK48d+nvq97yXCwrSEloyOEvLBHIEytaBaq6cVN0uugR/nrPViDCmxDUGcZiC0XHXZMTk0XefpU+uAYvdIgefnWjRXY1CKfpgQZwpbChCSnVUHUxr0kwwpBadXu8y3fPaOFtk/UaZetAnijDt3VgY6SSZBnOGY8jxz+63XYLLicnqtzzNnWoyVHGZHCzSKzkX30s1y4hzihxPDBHABbsYa7OXW9HpMDm+cMASCZ880aYUpbT/BMSVTFY8kUxRdE8s0mGuFSCEJ4pS1XszDt46hECy0AkyppQ7yLGdH2eXcsec58Rf/97bvaXolZn7ig9j3vJ9qqaR39UkOQmkp6DSn5EhAIhEsd0OSVBGniiTL8WwDlUNKjhoILRddg3YYc3S5x13TdYqO5IX5NgudQOv2SMHKoNavXcr0ewkhGCnbyH5CN0rJcknZE3TClNVuxHjJ5vGTa/TClFaQMFrSXsc769rcvuIY/LsvHyPLFSNFrTX0V88usH9HkU6Q0g5jnjkTc+tECVPK8+6lrae7Zj/m1FqPTqCT31A4bYjrjeEg2AXYOvy02ovwbOOGH8cvt6atk8NxphgvuxhS8Imnzm7qvy8MVCX/9Nun+cLhhc3HN9Ao2syvByy0fc61I8ghSjJWehFfP76KynOCNCdOU1p+QpbnxFmOLQVLnYgwTmgFCSvdmE4Ys7PmUXBN9t5xL40DD573XqbtsPcdv8T7/+WfBylVAAAgAElEQVSf89DP/iOKXnEgAyEwJNimgUSzRfuxNmbxTEkc5wNTdwY6+9poBrScQ5jmhImeKl7qhDx7tkXJNbltRxnbkFiGwLK0TIMhBI5lUHBMdtU9pBDcMVWjVrQoWJJ+nFN2LB7a06DomnzppWX2T5SZrheouhYr3QhDaAmIhZbPHzxxmjBJGS87JJniu6dbWKb2NLh3pk7Vs0hzva4L76WN012zH/Ps2RZRqi0jHVOep+E/xBDXA8MTwDa4Gelul1rThZPDsKHTEl3SrWuDibLcCXnk8AInV3ucWQtwbIOpmkuznxCmOQXboOQYgEE/zAhiXXsHgSEF9ZLNSi/Ej1ImKg5KKW15aGjNmJafcMt7f50njzyFNEzuftc/4M73/Qq+Uabimrz3rkkOj5U4ttxjtRuRpLoZHST5piSzUop2mCKk1ubf4NQbQpKpVE/oZlp7Ikwy8lyx1s3pRQl5rktFYZKRZrDWj5hpFKkXbBTw8lKXXMFCJ9J1eQX1gkOtAO84OE6j6HBipU+WK2YaRWYaRR6YbfC9cy2ePNlkqubRCRJ6YYIhBDUv1cNlShHEOd1Ql3saxcYml/8iSefB6e7kag/XEqAEYZpxz64qliGHpaAhriuGCeAmx9VI/15ucvhSNebPPjPHC/NdakWTW8bKLHVC5ps+uxoFXNtgz2iRdT+m5cdUXIuyZ7HWjdhd9wgShWUKhFKsnz7CyS99jHf96j/HaUzS8hNWeiETFY8f2zfKsYpD8gv/lMqtD2LWdrCcQp5o16xnz7aZHSnQCVOa/QjHErQCrc1fdAyklLT6iW4ESy3uBoo81ybsuQLHACEEUaJIpcIxBKYheGGujWtJGgVr4Eqmn9eLtFeBtmVUBGmGIQTHlztkCmxD8vbbdPAHPTw2WnqlZt/sxzx1ap0kzxkvu8wP3MSiNGO5E1FyLaqOxVoQsW+8uPm8S/WRNk53v/dYB4Gg4koO7CjRKDrnDYANMcT1wDAB3MS4Wunfy00OX4pB9I0Ta8w0CtQL+m9TtQJBkpPmipKjRdA8y0AIgZCCom1g11xu3VHBNSVnTx7l8x/796y+8FUAnvur/8ybfvV3GCu7RGnGSMmm7Fk4pkHx0PtoRylTUmKagqV2qN2+cm2w8uZ9o7SDRPvvSoM416UcCRhSS0lvePOmGQhDi7lNlEwWuwl5rjV7LFNgCIEQglY/0iUdp4BtGZxY7pFmGc1+jCmgH2U4toFtCqYqHmku2N1w2TdWZqzskitFP0oxpGC8/ErCPbXWI05zGkUHIQRVzyJX0A4STClRSuHYkrSLZgoNXudyfaTJmseP3zpGEGc3FflgiDc+hgngJsbVSv9uNzlsSsmh6RrPzbW2ZRBFSUZ1y2PjZZfVbsRCO0QpRZrnCAGTVZfbdlRIc72Lbqgun/8v/56//fxfkOev+DQe++Yj3PLOX6DvTekGsRXRCRPiJCNMMxTgJylxmOvXz3TT2jTE5jBVmmYkuaJsW5QdwXIvJMl1o6pgGdimxDQgzzPCVDFeLRKlfdb9BM8xqbgWRcfEjzOa/RBDSixDa/HYpsFE1SOItRaRa+t+wGTN4YHZUfwoJcoyPvDArvNmI2YbHt89s86LC21sQ/L9xS5+lDI+SKrjZZdemOIYgqJjsNwNcS2Df/LWvSSKq+by34zkgyHe+BgmgJsYV8v/v5JOy3aB5dbxEu0w2TwBlAeqna4p6UQpQQw7Kg77xjVzpbmyzAuf/y988/OfJEmSixerFM889gj1hz9CzTNxTYMXFzpIdJlquRMRJLqvUHFN/Din5adU3JQjS13u2VWj7cecbQY0A11TL9omYZyRKwYy04pcQZzBeNnhR/eN0gkToiyn6GglUsc0yPIcQwo808RPUgqmPkEVbINUaUln29TGNsvdiMPzbaRQ5yXJlh9zpukzWXWxJDx1ch0EjJUsZkYKLHZCio7JaNlhpKTN2e/dVWfPWPGa2DtD4bQhbgSGCeAmxquZSbhUk/hSgeXQdJXf/+pJAKquRTtMSFL4lTfP8uTpdeaa2tx9dW2VF7/4Cb75lx8nji6WbQAoTt1C5cc/QmHPfXimwJQS05TMNAosdyOafszuhkeS6/o8CjIrxXMMHtpbH0hR54RJTp7npJmWiI5SgWUIpJR4ljEY2DLoiYw9o7q+LgSMlh2iRJdaagVt74iCVhCT5Dk7qi4SaIcJt09W6EcJ3z3TphumFG1JzTOJMoUhJZ96+izTjQKdICVMMr52dA3XkuwbL5FkurxWsAwKDY+Wn5ADrmXyv717z2sy7LncNRxiiOuFYQK4ifF6lQW2CyyTNY+PPgyPHF7gXDugaBvsbrh89vkFXFOSxz5HvvznPPGZjxH728s2FMZnuPunPko+8yDdSA+G+UlGP86IspyVbsi+sTLjZZssFxQFWh8+Thkt2tw1VUEhiNKM5+c6mBKEIVEoPahlSmzDwLXkgLmjpSgMFEmas9INqLqWbt6W5aZ15XIvZrziUHQsoiTjzJpPwTaouiaNok0r0Pr0hgDTlKz2YnaPFql5Fk0/5uBUlX6cEsU5RddgtRuxe6SIbUqSPKfiWRQdg4V2yDsOjr+qHf/QJH2ImwnDBHCNeK0/5Kt5/vUuCxyaqXNopr7ZbD4836bT9fnGVz7F9z7/h0S97Q1oKmOTTL/9H1K96234CYRRRpbm2jcXrX7f9mPiTDE7mvOWW0Y5sdJnqRdTL9rcM1NjdrS46XL17RNreJaBbZpIIqSQeBYUHIM4yTEMiSkVlmEwVraYKNssdWNOr/k8OFvn5KpPsx+zZ7RIqx/jeyb1gq3N3YWgYEPZs3hots56oAfc6gWbxNE9B9s0KDumDvAD/8eyY3E86lFzLVYFm49XXG36sn+iwqFd9U0NoKvBzSA0OMQQWzFMANeA1/pDfjXPv55lgY0k9NWjK6SZ4qXFDg1b8dIX/2Tb4O+UG0y97Re57Sd+mkRpPf+lno8E8i3/TgpdpzfSjIVWQHeshGEYTJRdRoo24xUHU0omKy7fX2jznTPrjBZtgiTHMgSOKbWOP7BvvMRqL6YdZjw4W+eB2ZFNdtPTp9Y4fK5DvWBz60SJnbUCR5Y6rPkxnvVKQI/SjJpnUinYVAo2e0ZLnF7ziTP9fkIpXl7ps3+8SGlQbpsdLfDCfItWqCd/e1ECSrCr4WBKcU0nsaHswxA3G4YJgFe/m3+tP+SbIRAstAI+9d05mr2I751r0exrUbSk5HDo7/8aT3z8327+W9MrM/v2D+Eeeh+u6xIpYyBRnWAZgjhV5yWAXIGUULIlfpzy9RNr3DZRZrEdMt/yGW07/NTdkzw316bsmty9s8rpNZ+VwTDW7VMV+lHKci9mpRdRGjB83nn7DqQQNPsxh+dbnFjtYxmSH903gmMadMOUkmNS8yxNXxUC2xTEWUYreKV38pUXl0hzRZYrXNMgzTPCMKEdpMw0inTDhFrB5r7dNb52dI161aVe1+WkIFHcO1PmrQfGX/W1OrnSpxPG9KKMsmsyO1KiVrCGXP8hbhhuiBSEEOLnhBDfE0LkQogHbsQaNnChN+6GBPLlRvCb/Ziic37uLDrmVVs2vtbnvx547KUlji918JOMOIM4zTEFNIOY4l1/j+LoFNJ2GX3Lh7j7n36MqR//IIbtEGfanGVHxSPNtZevAozB6w684LENiDLtA7DcDlnra9MWzzJI0pzHjq5sJsG7p2vsahS5a2cFyxS0g4S1bsxEyWGq6rFntEgOzK37m5IJ862Agm1QsEyen+uQZDll16QXpdQ8vWOPkowoSfVnG9gXHpqucWKlT8kx2Fl1AUWUKSbKNgXH4AMP7MKzDY4v9wiTnB/ZU2e64bGzVuAdt+/gX7zvIB96aPerDv4LrYDTTZ9OmFJxLaI0159jPRhy/Ye4YbhRJ4DDwM8C//EGvf8mrmU3/loVQ1/N869H0/Cxxx7jf/3vf4N73/73mXnzzzBatAduXSlJktNFsOsf/BZZoYFTapAZEj/OyDK9049zRdk1qXkmLR8KFuR5Tpi9ItWgci3jkGQ6+EaJbp4mmWLdjznXDnh4//hAAK1PmCQEcUbFNWkHKSXPpF60qXomhjT4kdkiR5d6eJbEtQRBoid4pxseppScWvW5Z6ZG0dGTzSdWu5xuBsSDxnDRMXhursWh6RrTDY+On5IDU3VP6ycJQZRp1zFtbdlhtGRzYEcZP844unR+I/zVXoPn5lrsnyjx8nKfMMk3bS6PLHV4z507XtP1HGKIa8UNSQBKqRdBj/DfaLwe3rivlp1ztc9/vZuGTz75JL/927/No48+CkB3ZYH/7tC7qJRKTJQdji7HoDT/39h9kKafUHQNgjinF+faFF0oUIoTqz1yNJ9+supyuhliqJw016eANIeGbRKmGbWijZ9kVAs2WZ7R9lNWexEf+8YJ+lHGaNlhZ72AZ+fUiw6NgoVCXVQqsY0ecy0fgaDsWtQ8nbiVUiy0A544ntILU44sdTgwUeGOqRpPnmwiBDw4W9883R2YKPHyik/Ns0myjLlmMKCqunzq6bM0/Zixso1A8sTxNQRQdE06YUwQu9d0DZr9mOl6gZJjcmrVpxMmlB2LimcO6/9D3DDc9D0AIcRHgY8CzMzMvO6v/3p4416OnXOpHfzVPP/16hUcPnyY3/md3+Ezn/nMeY9311c4+pW/4O73fYQk0/IGBVurZNKNGS1YtCNdV7dSPR0cxim2FBRsiwcnyyy0fJ4/16Hm2dQ8aPoxWa4oOSb7d5RpBTH+QH/HjxLOtbVjmBA5xwdCa2Gi/Y5nGkXu3lVlqRNy247KedekGybsGSuyZ6xIEGckmeLZsy2CJKUbJpxrBYDgR/eN4sd6uCxMUuoFm4OTFRpFh2Y/4uRqj3U/1g3sts9SN8K1DGbqLrZpcKrpo1TOZLWgfRHCDAHsrBd00L7Ga7BxnzWKzqbOUDdM8GzjCs8cYojrh+uWAIQQjwLbnW1/Wyn12at9HaXU7wO/D/DAAw+oK/zzV41r3c1fDTvnSjv4Kz3/ak8nW5OMPlMpFIKweY5HPva7fPq//hlKbf/V+cunaAcx/ThjrGSzb6yMlIIsz2n1I4JUc/EhJU/AkJLphsfP3LeLRtHhq0eXeXk1oOqZTNcLzK8HtIKYkmMSJJnWJ4ozrIF0tCEUucoouTrBZrmiG+UokSKlYrpeIEwyumG6+XkvvCYb3+nd01WOLHY4udJndqTAg3tGBonboV6wefp0kx/dNzpoHEc8e7aNa0pKjsm+sTKPvrjIeMVh90iR2ZESL8y3sKRkvh0QphmeZWoJDKG0l7BrXvIaXAlDqYchbkZctwSglHrn9Xrt1xPXk2t/uR38xv9errZ/NU5gjx9Z4okTTUaKNpNVl5cWe/TWlzn5pT/isc9+kixLt13bbfe+if/9d/5Pxm+9mxMrPZ4908IyJI2izexoAVMKHj+6zGjJomBb+Imk5CoKpmTfeGVzF6uA2YbHYjfUsgu2YN3XKpu7PA/XNlhohexueCz3I0q2ib+S0fAsmkFClA4mf1N4abHHXTsD9o6VNnWMji/3aAUxVc/arOG/6/YJHj+yzAvzbYSAqZrH/VvooRumKkeXuiSpwrEky52IesFCSEnFttjVKDBVKzBasrhvpjG4PiZhklG0TYI4B1IMIUhyLe98YKJy0TW4HIZev0Pc7LjpS0A/CFwvrv2ldvAvL3dZ7kRXrO1fjROY1pGXnGn6fPnZ46x+/ZMce/zTpMn2O9QDd97Dr/3Gv+CWe95EwTE3B5meO7POJ546w0ovRJHTKFpUPIuCKfEcg0bRpuRYWAZYxiu9m7JjUS/Z5AL2jZWYXw+IMkUQ5RQcix0Vl90jBdZ6Me0wJUxzkjznTMtH5dCNUhxTEiSCLE94+tQ6H314z+b3sNyJ2FF1Nz//hkl9kikenG1QdEyeOL7KkyebHJwsc3LVx7MlcZKTZYoji11umyzTDRPaQUzFNdlRLfC3R5fp+Al+nHD/br0Lnx0p8a0Ta1Q9kwM7KhxZ7CANqHs2t47rPkQ3TK5q5z70+h3i7wJuSAIQQvwM8LvAGPB5IcSzSql334i1XA9s7PwOz7dxTLlZgwa9e2wHCZNV74q1/e1OJ3tHi5vDW44pWWgF9KKUl/76D3n2kY+TRf62a6pM7uGW9/46tzz4VnojVeIsJxzQTvV62+yfKLPc0ebuhkz55Yd28Z2znU2rw/GKQz/OIFd0w4QozVjpBry83Gd2xCNOMpa7IUXb5D13jLF3rATAy8tdXlpcY6LsstwN8aOMOM2xTIltSBDgxxmGq60dHzm8sClut90J6pHDC+f1CA5OVvj2ySbfPL7GntECKMFCJ2L/RBkloOUnmKYkiLSl466GxLUk3TDhTDPgbNNnZ93DMgR7xoqMFi1ypXho7wgfnd63eW2227lfqsdzM8x6DDHElXCjWED/DfhvN+K9rze27vzuntYslG+fbPLgbH1zWKnm2dvOAWxXV956Otn62lKAQHC6GVBxTXorc9sGf29kiul3fIRdD7wL17JY9xMOz7dY6UU8fKvexW4NVjMNLbK20aD8n99x60UBDuAzz5zlKy+tYBqSW8dLmBJaQcrtkxX2jpU2X6fZj3j8yDKGEOQqZ7UXkuQ5hiFIUkXF08Jtca42TwsrvYgvfX+JXpRwy3j5ou9pqRNSL9h84XuLtPyYWsFm32iBs80+caqouJKxss3I4PRlG5K7dlb5y2fPEWcZriUJ04yCbfHwrUUWOwGOpctfH7hv+pKiepe71hee5K6FXTbEED9oDEtArzO2BtMy8Ka9I7y40OaF+TY/fusYb9o7ckmN/ivVlbe+dsXTw0RFR9IJEu75qX/M0Se+iBrU/O3KCAfe8ytUDr0L27IwTYllGphKEqY5634Eg5bx5YzJJyvutms53QzYv6N8ngnNwakiniVJMp1Aio7Jiwsdmr2IHEE7TEhzKNsGUZJjmIIcgULhWZKxikOU5YyVHcquyXzL3/Z7EsBfH16k5lk0CjZ+nPGN4032jhb+//bOPUiuu7rzn1+/3695aaSZ0ci2JEuWLSHLljF47djg2LzCgp2N2CywBFwJYTE4JGDLxkCMa6uo8u7Wkg1QzrJVGONQJCkgYAeZWFiAEPJDEsKyZFnSPKTRvHq6e7rn3u6+9/72j9vd6tH0vDQz6nn8PlUqq/t23z49Gp/z+/3OOd/D9WvjhH1uXumC4WyBwayOUepb8LgdBLzOUjWPi40tkUon7od2rp3TvzWMX+XPtVdEobgcqKHw88zFXb6JoIe3XtnINauj3LWlldaYn61tMVsVU7dVKcvnyuXV9WQMZTSMsTRgn1cPj+bRCybZvEHOk6Bpx924AhHWv+fPue3hp2m96T04XS4ksDrqx+HAHvSC7djLdUGTDSY3TItvvXiavpQ+rkt67/EBTEsS83sQQuD3OPG7nQxk8kjEuAH2yVwBS9qTvYIel33ur5ukdXtITNjjtBvGLFudUytYdDaECHpdxPyeCT+n3uQYZ0fGSI0VGRkrohsmHpcTt1Mgpay8PuJ3cex8hrRWpCPhJ60VSeWKXLM6wq0bmtnekagqzbw0pzxVR/el/hsrFJcTtQOYR/pSGl3DOV7tHqEp7KWzIVTTycy28khKyQ9/+EMe/usvEG9axdee/Ef7ghAEvS60okUs4Obqd3+cyL1/STwW44rGIAOZPCeHRslqBsMVR+zA6xSkNIPfn0vz3NE+WiM+DvemOT2UxTANzgwaZPJFbGFmeO6oRizgJeh1EvW7GRkr0Br1VUolAXxuBwOjebZ1xMYdW3UN5zgznMMwJWMFEwuJYUlcTvC6HBRMiVMIEgE3RQu2tcdIBD2Vuv9yNVB5QhcOgSEFnY1+UjmD3hGNNTE/m1rDjOpG5efanRxjQ3MQv8cOgFGfm1s2NNCX1ulIFOelFHOqVb4a8KJYCqgAME+Uz4NbIj4ymp3ofbV7hA0tYZwOMcHJzKTySErJ888/z+7duzl48CAAXSeP85tfvYi77RqCXidXNke4Y1OAlFZgZKxI0bRojdlVM+GAiWFYjOpFCqYtP2BJC9OCTf4I166JohVMDvem2doW5ZXuJGdHNKI+D2vjfl7pSSEtC0uAz+1mrGDgcgrOjmisawyS1gqAgc/lJKXZWj8Xr3Bjfg9hn4uiKUs7BHC7HHhdgsaQl1VRHzG/G4/LiWHJKSttzgyPsSripynsRS+YtCUCdjLZIbAktER8lZ9r+VjLUdVtbkmJ1zWKXjQ5eMbuEN6yOnLJ/+bT1farAS+KxY4KAPNE9Xlwud1/MJvnfEbjozevm7Uj2L9/Pw899BB79+6dcO2bTzzOzk//b65eFWVre/RCTb6UdA9rNAQ9ZPQiXqcDv9tFS1RgmBZp3RZGawp5aAh4aAxdON/vy+i0ROzAEQ94OTWQJex1M5jVcTsdhHwuCobFcLZAZ0OAvrTOxpYIA6MaA6M6Todg1w0dE77nuqYgBdPkpa4UQghWRfxkvQWEENzQ2UCwdCbfGPLw8pkkf/fCSbJ6gZDXzS9PDuBzu9jWHqMtHuDV7hQZzWBDc5D9byYBCLgdDOXs+/3x9e2Vz51sdR4PuMeVkM5FXkOt8hVLHRUA5onqRGq53d+SkqFsflYO4ciRIzz88MP8+Mc/rnldCMHG9VexsdHLWMGknMgF8LmdnM9oJMfyuJ0ODNMW5tnWFmMgW8DrctIzksPtgO4RrVLZkzdMXupKMjhqyzYYcYuxokHY7+RsygIkr/WlGSslYO/ZvoaAz01rzIfX7WBre3xSkbqtbTEGMnlu39jM/lNDlaqduN+D0yHQivaA+iM9aRwOB05hIoSDbMEk028HIb1gsiqaYyCjI5G4nAHuvGYVL3eP0J0cw+UQrG3w05fRaU5plTxLrdW52ykI+5zzVp6pVvmKpYwKAPNEIujh7IjGYFZnVDcI+1w0hXy0xmpX0VzMiRMnePTRR3nmmWcmfc1Nt9/Nn93/eTqvuppkLs+B00mO9aV565WNnB3RONydJux34cAej9iXzhPxuziX0Ql63HhcDgIeFxm9SHPExZnhLBDk4JkRIj4XVzYFOJ/Ocy6lUzBNQl43TSEPZ9M6EoHPbQ9d33cyyd1bWmY0Dat6lfyW9jhdyTE2tIQIeJwcPz/KULZA1O8iEbRLVE1LEvS6EAgGsxoF06BrOIdlQWdDgBMDWY6ezXDN6ig71yVwCQc7OuOsifsnrOZrrc5fOD4w4xJchWK5owLAPNEa8fHjQ33Egi57yLpWpGtI477/sG7K9/X09PCVr3yFb3/725glOeKLufX2d7DuD/8ra9ZfS9LtJpLLkwh6uaEzzu/OphkqHTU1hj2EfZ6KwNixvjQZrcjAaJ7OhAspJW6nLdXcEPCQ0Yoc68sgJWxqjQKQ1kw6GpwIBGMFkzcHRon53UR8dnNUQ9CHbhj0jNRuOJuKaMDN1kAEsM/sd17RwNa2GC8cH+C1cxmKVh7TAq/b3tU4hCCj2xo8BhZhv4eOhgADmTy/O5sm5HWxozNOeyIAzExqQ5VnKhQXUAFgnujL6FzfGWNotMBovkjU5+HKphB9GZ2tk7zniSee4MEHH6RQqD0I5uabb+aBB79ILrGR00NZcvkix8/rHOxKsmlVmM7GILesb+KuLa08faCLXN5uciqzJu4noxWJeF1YliSlFfA4Xdy9JWEPbjcs8obFjesSFQe4rT3G6aFR+tI6O9c1cHIgYw9xMSVel5OQ30ln0E//aIHnjvZNO6egVrNUuVqn/PpE0IPbKXA7HDgdYFgSgV3hNDSaJ6sbDGbyHBNpwj43f3jNKqySuF2tZqs3B7IMZPKYlmRgVOPV7hH2Hh9g1w0dSpRNoahCBYB54mK999G8Xf+tF2uv6gHWrl1b0/lv3nIt/+kv/oYrt7+dE8kxVlmS1qifn/0+jdMBesHiF8cH2PeGg1uush2XQOJ2CvSiVdkBuJ0O1jUG8bgcZHSDtcEAG1dF8Loc40om+1I6L54YoCs5hizNA9i5roFdO9dyZjhHNm8QD1xwtGdH7Aat8hS1qRKpM5FE2NoW443zo5zP5HE6BEO5PPmihUNA0bBsQTbTondEI+ov0p+xvwdQczWf0gr43E7eGMji9zhoDvtIaQW+d7CH++9YrxK3CkUJFQDmiUTQQ+/IGCcHcvjdTiI+NymtQEor0FdKTF7MBz7wAa6//npefvllADZs2MADX3gE7/qbiQZsuYhDPWkymoHb6aA16ufNoSx6oUjetFgT9nFqOMe6pjDZgoFLCJJaASndICSpMYN1TUHu2d4GXDgS8XucFac3kNH5zq/OcD6r43IITEtyajBb0teX3Lg2zj+/2gfYtfRpvUhXcoxb1jfMKJE6E0mE1pife3a0s/d4P3tfH2QomyfgdeIUgrjfzYhukgh6iAc8pPUivzgxxG0bmmmO+Gqu5qN+NwOjGn6Po9KnEPN7GBjNc7g3VWnIUyhWOisyACzEmMWtbTH2Hh/E6aCiNSOl4Iq4h+8/+wL373rXhPcIIXj88cf5+Mc/zpe+9CU+/OEP8/zrg2gFs+JUm0Je0nqBruEcfo+TNbEAAxmNsM+ue09rttxBU8hHf1rDMC1ODo6SCHrYua5h3PDyWt/x128OcmYkR1Y37SkCEkI+FxZwoj9L0YQPvKWV33aNcC6t0RLxcWNnnGtWj6/3nyyROtMz99aYn107O4kHvdxV+v6/ODHA4GiecK5AwbDQihYRn5u43z5y29oRr7maP9yb4ufH+mkOX0jA60WLhpJctEKhsFlxAWC+xyyWaY35WZsIkNELZPQiATekDu/hi0/+D9KpEe648Ri9mmviZLB3vpM33ngDr/eCFk/1irmzMcCr3QUKpklRswh4nIwVTNrjAYqm7RDPp3VGckUMS/Lu61ZXVsLVzr9W0AN49mg/+aIk5nczVj3egPcAABWKSURBVDQxTLtTdzCjc2VTyG7ikvDguzZXbHruaN+ME6mzPXOv/v5hn4s3B7Mkgh40w2TL6iha0cDjFBVHPlkZ5t7jA6S0wjitojXxoEr2KhRVrDgtoOozaYewZ8uGfa5K5chcWNcU5KqmEOL0Af7+0x/k77/yV/Sf60Ufy/HXj3ylcmZe1tTpS2kIISrOH+yq/v1vDvGLEwO80p0EBOtb7Jm9/RmdM8NjuF0OcgV7mEo04CFXMNGLJhm9yL43BnljYBTTkheqYbpH+F8/P8HPj/XTk8zRl9JLmj79JTkHBw6HsLt0nfYxUK5gEfa6K9o21cxG56ZcjlnWBvJ7nFMG2/KOAWy9I6dwkNaL+FxOtKKBVrBoDvunHdm564YOTAsGRvO4nYKrmoO4HA6lxaNQVLHidgALJdMrpWT42AF2P/IIXcePTrj+83/6Dh/++CcJr1o96Zl5X0pjaDRPRjeI+tzoRZPfnBqmIeThypYI65pCHDyTZFQzGMoWuarZgwBMw6J7NM9VzUEiPje6YXKi35Y86Etp/MOvTjOSs6Uazo1oFK0UzWEvaa2I3+WkaFgUTctOWhcMW7HTD7GAe9LjGnsqVz8vdSWREq5dE530ZzObZqnqHUMs4Ob6tTFefGOIeAA8TkFbc6im5MSE+3TEKzMF5vOoT6FYTqy4ALAQdeD79u3joYce4pe//GXN606Xm3fd86d4qlb6tYLO4d4UbYkALVFfpZIo6nehFWyd/bDPTWs0wJnhLF3DOYqGpCMRYDibpz3hpylsOze/2x5tmNIK7D0+QM+wRkPIjSklQ7kCetEkqxfRDAspJR6nwCFgJGegm3YewDQtnj16jhs7G/jo22r3MhRN2LF27pIKMP6Iyq5mMtCKJle3RviDjc30ZfRZO3LVpatQTM2KCwDzWQf+8ssv8/DDD/Pcc8/VvO5wOPjIRz7CrX/yF0QaW6cNOtUCZmV9H0tKfvq7c5Xu1UTQQyKYYFt7vKJj/39eeIOepIZWKA07KVpYFkT9bg6cHqZomfSmihQMiROBYVkkx0w6E0H6MjoDmUJp1KMThInX5SAe9DKqm5wczNb8bvM58WryXoELOYzJeikUCsWls+JyALM9k67FsWPHuPfee9mxY8ekzv/ee+/lhf0v88cPfJWcO8aB08P0JMemPDOvPv8uk8sbtER8NZ8vB5ArmkKsbwnhdTlsETiXg/UtIeIBD70jGgGPE4ewk8fDOXtAimVJLCTtcT8NIQ9508LCnsq1rT3B1auidDYEGSuYNfMjU2nhz5aFzMsoFIrJWXE7AJjb0cD3v/99du3ahWVZNa/ffffdPPbYY7Rescle1RZMrmoO43M7Od4/yuCojiklUb+74uCqG6Jq7U7etaWVw73pCc+Xdy1lwbX1LaFx10GyriFA70ieRMCJViiSy4Ms2snoqN8DCDY0245XIon4Pfg9F34tXE5HTac+n0dpanyiQlEfVtwOYK7ccccdBIPBCc/fcsst7Nu3j5/+9Kds3759wqq2IxFkY0uY3pRGwbA4l9I4cGqYH7zSS19KAybfnZTr3SfbtUz2Pong+s4EYZ89NlJKaSeNJZgW9Kd1MlqBaMDN6rgf4RCM5u3XZbQC3SM5cnqRruFcxcYy8znxarKdjyrZVCgWlhW5A5gLDQ0NfO5zn+PRRx8FYPv27Tz++OPceeediKrhI7VWtacGR+kZ1mgKe4l6POiGyenBnK1TU5pJO9nuZLpdS/laOZF6uDeFQDJWsPB7XDSFBX6Pg7xpUTAkCChaFi5ToBdN3nZlA/tPDdM7otGf1sjkDfweJ23xAKsi/gkJ3vnUwm+N+PjewR5MS9IQ9NAc8eJyOGadl1mIBj+FYjmjAkANstksTz31FPfddx8Ox8RN0mc/+1n27NnD/fffzwc/+MGK4+9Laew93s/Rcxm6h8dojfrY0dlQWcmeHMwRD7oq8gR+t4us0+CnR/uQMGOnNVlT18WJ1KFckRPnR4n4XbTFA7x+PkNnQ4jGkJeMXmSsYPcAhLwumsI+trfH2dmZ4FenhvG4HVzVHOLaNfHKiMaLE7zzUWVjf5c0G1vCDIxqDGXzpLRCzeEy091nIRr8FIrljAoAVei6zje/+U2++tWvMjg4SGNjI/fcc8+E14XDYfbt2zfuub6Uxg9e6uFMcoyoz01r1Mvx/iyjeYNbNzTjddkDWhqrnFFWN+hO2rLKM3Vakzk6e9DJ+Kqcthi82Z8l4rNnABimZE3MRy5vN45tWhW2B6mXVvv37GinNeZHIsjoBbJ5szQzIEQs4F6QM/nqo7KyrPOoXpxSRXW6+5S/f/l5FQAUitrUJQcghPiaEOJ1IcQRIcS/CCHq2p5pGAZPPvkk69ev5zOf+QyDg4MAPPLIIxiGMc27bQ73pkiO2dIDAa+L5kiAq1eF0AsmR3pT+D1Obr+6CRPQCiZSSnpHchimxVVNoRlXv5QdXdG0ONSd4pXuEU4PZTlwerhmVU7A62RDS4RbNzSztiHI2ZTOWNEkHvCUOootdq5rqAik9aU0upJjZHSDiM9N3rA41JPi7Ig26zP5vpTGc0f7ePpAF88d7ZuQR4D5qyaaz6okhWKlUK8k8B5gi5TyOuAE8GA9jLAsi2eeeYbNmzfziU98gt7e3nHXX3/9dZ566qkZ3SuZK1A05Tg9/saQjzVxP1vWRLlrSyvvf0s7nYkAlrRIa0VyBYPWqJ9r2y500U7ntJK5AnnD5FBPmrxhawEJ7EHtZ0fGO9hc3uDaNdGqZK2JYVoUDIuWsBekwD69kpX3HO5NsaElhJS2tLTP5UQIyfH+zKwSvOWdSi35i2rmIwHcl9LoGs6x57XzvNKdrPz8VCJZoZiauhwBSSl/VvXwN8DEc5aF/Xx+8pOfsHv3bo4cOVLzNcFgkAceeID3v//9M7pneahJtR6/bpi4nY6KEyrLHpfP74NeJy0RX6XpC6Z3Womgh38/1k8yW8TAIuByEQ646GwIcLw/QyzgHlcK+s7NLYDt2LN5k40tYRwOgQV4XQ5u6IxjXfD/E+YaZPQiYa+biN81q6OUmR7JzLUxrxxoWiI+MppBWivyavcIG1rCOB1CDXpRKKZgMeQAPgb842QXhRD3AfcBdHR0zPnD9u7dy0MPPcT+/ftrXvd6vXzyk5/kC1/4As3NzTO+b3moyZnk2AQ9/uqVc3XitOy8RvXijJ1fa8THa+dGSYTchDwuckWDgf48d17TjGHJSinoxVU55f9WS02Dfd5eDlhwYUVeHmxffo1eNMZNAGuN+KaUZ5hpbf9cq4mqA005aA2WRmR+9OZ16vxfoZiCBQsAQojngVU1Lu2WUv6w9JrdgAF8d7L7SCm/BXwLYMeOHXKy103HwYMH2b17N3v27Kl53el08rGPfYxHHnmE9vb2Wd+/eqjJ0XP2nN0bOuPjJJlrvWe2zq8vo7N5dYRkLs+YYRL0OGmN+u0Rjlc0TDmofSar7Vqv6U2OgUPgc9uJ57MjGj8+1Mf1nTHa4oGayevZNIrNpZqoOtCUg5YlJUPZvHL+CsU0LFgAkFK+Y6rrQoiPAO8B7pBSXrJjnwmvvfYaN95446TXd+3axZe//GXWr18/p88pDzWZ7Xtm46iSuQLb18Y40mvP6vW5HWgFk6FcvuYZ/cSS0Sh9GX3SgFMrKDWGvfjczoozH8zqxIIuhkYLdCSCk455vByzd9WQd4Xi0qnLEZAQ4i7g88CtUsqxhf68zZs3c/fdd/Pss8+Oe/69730vjz32GNddd91CmzBvJIIetILJtvYoZ4bG6EvrjOTyRAMTpSVqlYwe7k1PWxt/cVB6+kDXuAqb0ZJc9Wi+WHmu1pjHyzF7Vw15VygunXpVAX0dCAN7hBCHhBDfWOgPfOyxxyp/v+222/j1r3/Nj370oyXl/OGCBIPb6aCjwa6bT4S83HRFw4RKm/kSWbu4Uifsc5EuJYfLTDY34K4trXxo59oFm8M7H+J+CsVKpV5VQFdd7s/cvn07jz76KG9/+9u54447xsk2LCWqV9YHzySJ+l1sao2MqyQqH8VcnIhN5vKcGsxxPmMHiJlKJVy8ym4K+ega0riyKYQlZd1X3Ur3X6G4NMQCH7/PKzt27JAvvfRSvc24rNjyEgP87mwaIWDL6gi3bbRXuE8f6KrMDyhTToB+aOdanjvaV6n6SebyHOpJI4Qk4nOxoSVSKROdifO8OJcwXRWQQqFYPAghXpZS7rj4+cVQBqqYhL6Uxg9e6eX0YI5YwAVS8FJXiqHRAvfsaJ82Abq1LcYPXuklmU3x5mAWKaEh5GVrW3xWUgmTiaypIS0KxdJGyUFfBmYiiVCLw70pktk88aCbgMdNwOsi5veQHLPVPmckyVzq8tINC7dTQNWObyZSCTPt6FUoFEuPFbEDqKdM8FxUKm15CYuo50Jy1ed2kNZMkrnCtJU25RnDm1ZH8btd5A0LhOTMcJZEMDGjckklsqZQLF+WfQCot0zwXByoLS/hQDfMioS0XrRX8tXyEpPdpzoJ3NkY4FBPGp/LHg5T3i1Ml7hV07oUiuXLsj8Cqve82bmoVG5ti5EIeRnJFRkrFBnLG6S0AomAZ0bCbNXlm4mgl23tUSQSSzLjckk1rUuhWL4s+wBQb5nguTjQ1pife7a3cUNnHL1okTdNdqyNVXT7p+PiHIHb6WBdY4j/dvv6Gdflz+foR4VCsbhY9mWg1aWQZcoCaFPp5swX5SMow7IYyOQZzhVwOgS7bmhna0d81veabS5jPvIfatSiQrG0WbFloPWWCmiN+dnaFuV7B7sxLUljyENz2M/h3jTNEd+MHeml5jLmo0lKNVopFMuTZR8ALpcmzVT0ZXR2rmuYsAuZTSXNYqrGUTsChWJ5sOwDANR/BTsflTSLpRqn3lVVCoVi/lgRAaDeVHfsJnMFzgxnGRy1dyN9KW1GjnOxyB4vpp2IQqGYG8u+Cmi+uZSu3nIlTU9yjFe7R0hrRVwOBy0R34y7ahdLNU69q6oUCsX8oQLALLhUWYRyHuJ8RsOwJFGfh7d0xErDVGbWk7BYZI9VX4BCsXxQR0CzYK7HH9m8gdc1PubO5hy/3rkMqH9VlUKhmD9UAJiG6oqXo2fTXNcWI1x1fSYOvLxz8DgdCAF5w+JQT5pt7VHcTseSWj0vhqoqhUIxP6gAMAUXV7x4XQ5+ezrJTVc0VJz2bATVNrVGOdSTwu+R+FwOjvVlWNcYWnKr58WwE1EoFHNH5QCm4GIdoU2tEYSAY33pWSViy4nTRNDDtvYYXpeDgmmSNyy2tkU53JuatVS0QqFQzBUVAKbg4oqXRNDLDZ1xCqY1q0TseFE2D9s7Ely/NsG1a6Ic7k0rrX2FQlEX1BHQFNSqvfe6nNyyvmlWOkKTJU7dTlRNvUKhqBtqBzAF81V7P1kJp0SomnqFQlE31A5gCuaz4qVW4nSxdPcqFIqViQoA07CQFS+qpl6hUNSTuhwBCSH+VghxRAhxSAjxMyHE6nrYUW8WS3evQqFYmdRrB/A1KeUjAEKITwNfBP68TrbUFVVTr1Ao6kVddgBSykzVwyCwdMaSKRQKxTKhbjkAIcRXgQ8DaeAPpnjdfcB9AB0dHZfHOIVCoVgBLNhMYCHE88CqGpd2Syl/WPW6BwGflPLR6e55KTOBFQqFYqVz2WcCSynfMcOXPg38BJg2ACgUCoVi/qhXFdD6qofvA16vhx0KhUKxkqlXDuC/CyE2AhbQxQqtAFIoFIp6smA5gIVACDGIHTBmSyMwNM/mLCTK3oVlqdkLS89mZe/CMlt710opmy5+ckkFgEtFCPFSrQTIYkXZu7AsNXth6dms7F1Y5steJQanUCgUKxQVABQKhWKFslICwLfqbcAsUfYuLEvNXlh6Nit7F5Z5sXdF5AAUCoVCMZGVsgNQKBQKxUWoAKBQKBQrlBUTAJbaDAIhxNeEEK+XbP4XIcTs5lBeZoQQ9wohfi+EsIQQi7acTghxlxDiuBDipBDiC/W2ZzqEEP9XCDEghDhab1umQwjRLoR4QQhxrPS7cH+9bZoKIYRPCPFbIcThkr1frrdNM0EI4RRCvCqE+Ne53mvFBADsGQTXSSm3Af+KPYNgMbMH2CKlvA44ATxYZ3um4yjwAeDFehsyGUIIJ/B3wN3AZmCXEGJzfa2alv8H3FVvI2aIAfyVlHITcBPwl4v855sHbpdSbgW2AXcJIW6qs00z4X7g2HzcaMUEgKU2g0BK+TMppVF6+BugrZ72TIeU8piU8ni97ZiGG4GTUspTUsoC8AzwR3W2aUqklC8CyXrbMROklH1SyldKfx/FdlJr6mvV5EibbOmhu/RnUfsFIUQb8G7gyfm434oJAGDPIBBC9AD/mcW/A6jmY8Cz9TZiGbAG6Kl63MsidlBLGSFEJ/AW4EB9LZma0nHKIWAA2COlXNT2Av8T+BtsHbU5s6wCgBDieSHE0Rp//ghASrlbStkOfBf4VH2tnd7e0mt2Y2+tv1s/Syu2TGvvIkfUeG5Rr/iWIkKIEPBPwGcu2nkvOqSUZulYuA24UQixpd42TYYQ4j3AgJTy5fm6Z90mgi0ES20GwXT2CiE+ArwHuEMugoaNWfx8Fyu9QHvV4zbgXJ1sWZYIIdzYzv+7Usp/rrc9M0VKmRJC7MXOtyzWhPvbgPcJId4F+ICIEOIpKeWfXuoNl9UOYCqW2gwCIcRdwOeB90kpx+ptzzLhILBeCLFOCOEB/gT4UZ1tWjYIIQTwD8AxKeUT9bZnOoQQTeXqOiGEH3gHi9gvSCkflFK2SSk7sX93/30uzh9WUADAnkFwVAhxBLgTO5O+mPk6EAb2lEpXv1Fvg6ZCCPEfhRC9wFuBnwgh/q3eNl1MKan+KeDfsBOU35dS/r6+Vk2NEOJ7wH5goxCiVwjxZ/W2aQreBvwX4PbS7+yh0mp1sdIKvFDyCQexcwBzLq1cSigpCIVCoVihrKQdgEKhUCiqUAFAoVAoVigqACgUCsUKRQUAhUKhWKGoAKBQKBQrFBUAFIpZIIQwS+WNvy+pSD4ghHCUrjWU1DCzQoiv19tWhWI6llUnsEJxGdBK0gEIIZqxu8qj2F3lOvAIsKX0R6FY1KgdgEJxiUgpB4D7gE8JIYSUMiel/CV2IFAoFj0qACgUc0BKeQr7/6PmetuiUMwWFQAUirlTS2VUoVj0qACgUMwBIcQVgImtJ69QLClUAFAoLhEhRBPwDeDri0GuW6GYLUoMTqGYBUIIE/gd9vhAA/gO8ISU0ipdPwNEAA+QAu6UUr5WH2sViqlRAUChUChWKOoISKFQKFYoKgAoFArFCkUFAIVCoVihqACgUCgUKxQVABQKhWKFogKAQqFQrFBUAFAoFIoVyv8HVTR7aqqfROAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -457,18 +491,16 @@ } ], "source": [ - "## Plot the model fit line\n", - "\n", "# Plot the orginal data (as before)\n", - "plt.scatter(df['D1'], df['D2'], alpha=0.3, label='Data');\n", + "plt.scatter(df['d1'], df['d2'], alpha=0.3, label='Data');\n", "\n", "# Generate and plot the model fit line\n", - "xs = np.arange(df['D1'].min(), df['D1'].max())\n", - "ys = 0.7817 * xs\n", + "xs = np.arange(df['d1'].min(), df['d1'].max())\n", + "ys = 0.7185 * xs\n", "plt.plot(xs, ys, '--k', linewidth=4, label='Model')\n", "\n", "plt.xlabel('D1')\n", - "plt.xlabel('D2')\n", + "plt.ylabel('D2')\n", "plt.legend();" ] }, @@ -478,11 +510,15 @@ "source": [ "### Using multiple predictors\n", "\n", - "The model above used only one predictor, fitting a simple straight line, and as such actually mimics previous approaches we've taken to fitting lines. \n", + "The model above used only one predictor, fitting a straight line to the data. This is similar to previous examples we've seen of and tried for fitting lines.\n", + "\n", + "We can also fit more than 1 predictor variable, and that is where the power and benefits of using `patsy` and `statsmodels` really comes through. We can use these tools to specify any models we want, including multiple predictors with different kinds of interactions between predictors, and these functions take care of fitting these models. \n", "\n", - "We can also fit more than 1 predictor variable, and that is where the power of patsy and statsmodels really comes through, as these functions will fit more complex models, including as many parameters as we want, also dealing with some aspects of correlated features, and so on. \n", + "To briefly explore this, let's now add a new variable to our dataframe, and fit an OLS model with two predictors. \n", "\n", - "Here, we will add a new variable to our dataframe, and fit an OLS model with two predictors. " + "In this case, we will fit a model of the form:\n", + "\n", + "$$ d1 = a_0 + a_1 * d2 + a_1 * d3 $$" ] }, { @@ -511,53 +547,53 @@ " \n", " \n", " \n", - " D1\n", - " D2\n", - " D3\n", + " d1\n", + " d2\n", + " d3\n", " \n", " \n", " \n", " \n", - " 0\n", - " -1.148216\n", - " 0.332012\n", - " -0.117398\n", + " 0\n", + " 0.087922\n", + " 0.009294\n", + " -1.611758\n", " \n", " \n", - " 1\n", - " 0.688743\n", - " 1.764193\n", - " -1.140705\n", + " 1\n", + " -0.530187\n", + " -1.418836\n", + " 1.933703\n", " \n", " \n", - " 2\n", - " -0.886799\n", - " -0.332816\n", - " -1.894862\n", + " 2\n", + " -0.092297\n", + " -1.302195\n", + " 0.334072\n", " \n", " \n", - " 3\n", - " -0.241192\n", - " -0.409663\n", - " -0.413454\n", + " 3\n", + " 0.275502\n", + " 0.109635\n", + " -0.124464\n", " \n", " \n", - " 4\n", - " -0.662426\n", - " 0.949813\n", - " -0.864684\n", + " 4\n", + " -1.050818\n", + " -1.059746\n", + " 0.278050\n", " \n", " \n", "\n", "
" ], "text/plain": [ - " D1 D2 D3\n", - "0 -1.148216 0.332012 -0.117398\n", - "1 0.688743 1.764193 -1.140705\n", - "2 -0.886799 -0.332816 -1.894862\n", - "3 -0.241192 -0.409663 -0.413454\n", - "4 -0.662426 0.949813 -0.864684" + " d1 d2 d3\n", + "0 0.087922 0.009294 -1.611758\n", + "1 -0.530187 -1.418836 1.933703\n", + "2 -0.092297 -1.302195 0.334072\n", + "3 0.275502 0.109635 -0.124464\n", + "4 -1.050818 -1.059746 0.278050" ] }, "execution_count": 13, @@ -567,7 +603,7 @@ ], "source": [ "# Add a new column of data to df\n", - "df['D3'] = pd.Series(np.random.randn(1000), index=df.index)\n", + "df['d3'] = pd.Series(np.random.randn(1000), index=df.index)\n", "df.head()" ] }, @@ -577,10 +613,10 @@ "metadata": {}, "outputs": [], "source": [ - "# Predict D1 from D2 and D3\n", - "outcome, predictors = patsy.dmatrices('D1 ~ D2 + D3', df)\n", - "mod = sm.OLS(outcome, predictors)\n", - "res = mod.fit()" + "# Predict d1 from d2 and d3\n", + "outcome, predictors = patsy.dmatrices('d1 ~ d2 + d3', df)\n", + "model = sm.OLS(outcome, predictors)\n", + "results = model.fit()" ] }, { @@ -594,26 +630,26 @@ "text": [ " OLS Regression Results \n", "==============================================================================\n", - "Dep. Variable: D1 R-squared: 0.575\n", - "Model: OLS Adj. R-squared: 0.574\n", - "Method: Least Squares F-statistic: 674.3\n", - "Date: Fri, 28 Feb 2020 Prob (F-statistic): 6.05e-186\n", - "Time: 13:31:04 Log-Likelihood: -975.65\n", - "No. Observations: 1000 AIC: 1957.\n", - "Df Residuals: 997 BIC: 1972.\n", + "Dep. Variable: d1 R-squared: 0.599\n", + "Model: OLS Adj. R-squared: 0.598\n", + "Method: Least Squares F-statistic: 745.1\n", + "Date: Sun, 21 Jun 2020 Prob (F-statistic): 1.21e-198\n", + "Time: 16:14:06 Log-Likelihood: -996.62\n", + "No. Observations: 1000 AIC: 1999.\n", + "Df Residuals: 997 BIC: 2014.\n", "Df Model: 2 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", - "Intercept 0.0104 0.020 0.510 0.610 -0.030 0.050\n", - "D2 0.7354 0.020 36.722 0.000 0.696 0.775\n", - "D3 -0.0080 0.021 -0.389 0.697 -0.049 0.033\n", + "Intercept 0.0179 0.021 0.861 0.389 -0.023 0.059\n", + "d2 0.8070 0.021 38.471 0.000 0.766 0.848\n", + "d3 -0.0368 0.021 -1.763 0.078 -0.078 0.004\n", "==============================================================================\n", - "Omnibus: 0.506 Durbin-Watson: 1.994\n", - "Prob(Omnibus): 0.776 Jarque-Bera (JB): 0.389\n", - "Skew: -0.024 Prob(JB): 0.823\n", - "Kurtosis: 3.084 Cond. No. 1.05\n", + "Omnibus: 0.703 Durbin-Watson: 1.985\n", + "Prob(Omnibus): 0.704 Jarque-Bera (JB): 0.574\n", + "Skew: 0.015 Prob(JB): 0.751\n", + "Kurtosis: 3.113 Cond. No. 1.06\n", "==============================================================================\n", "\n", "Warnings:\n", @@ -623,16 +659,24 @@ ], "source": [ "# Check the model fit summary\n", - "print(res.summary())" + "print(results.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note that statsmodels, as used above, is a powerful, general OLS model approach. \n", + "Note that in this case, we simulated the `d3` column with no relation to the `d1` values we were trying to predict, so the `d3` predictor isn't significant, and overall this bigger model doesn't explain anymore variance of the data (the r-squared is no better). \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Conclusion\n", "\n", - "You can further investigate how to include other features, such as interactions between input variables, and so on. " + "`statsmodels` offers a powerful and general approach to fitting statistical models to data, investigating properties of these model fits, and comparing between models. You can further investigate how to include other features, such as interactions between input variables, and so on. " ] }, { @@ -641,9 +685,11 @@ "source": [ "## Linear Regression with sklearn\n", "\n", - "Scikit-learn also has implementations of Linear Regression models. \n", + "As we've already seen with the `OLS` tutorial, there are multiple ways to apply the same underlying computations. \n", "\n", - "Here we will quickly demonstrate running the same linear OLS model fits as above, using sklearn instead of statsmodels. " + "Another popular module that can be used for fitting models to data is `sklearn`. \n", + "\n", + "Here, for a quick demonstration and comparison, we will fit the `sklearn` implementation of Linear Regression models to our same data. The underlying computations are approximately the same, but as we can see, the API for using `sklearn` and the exact results are different." ] }, { @@ -672,10 +718,10 @@ "metadata": {}, "outputs": [], "source": [ - "# Convert data into shape for easier use with sklearn\n", - "d1 = np.reshape(df.D1.values, [len(df.D1), 1])\n", - "d2 = np.reshape(df.D2.values, [len(df.D2), 1])\n", - "d3 = np.reshape(df.D3.values, [len(df.D3), 1])" + "# Convert data into arrays for easier use with sklearn\n", + "d1 = np.reshape(df.d1.values, [len(df.d1), 1])\n", + "d2 = np.reshape(df.d2.values, [len(df.d2), 1])\n", + "d3 = np.reshape(df.d3.values, [len(df.d3), 1])" ] }, { @@ -696,7 +742,7 @@ { "data": { "text/plain": [ - "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)" + "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)" ] }, "execution_count": 19, @@ -706,7 +752,7 @@ ], "source": [ "# Fit the linear regression model\n", - "reg.fit(d2, d1) #d1 = a0 + a1*d2" + "reg.fit(d2, d1) # d1 = a0 + a1*d2" ] }, { @@ -718,16 +764,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.010669383005965798\n", - "0.7353817173669228\n" + "The intercept value is: \t0.0164\n", + "The coefficient value is: \t0.8084\n" ] } ], "source": [ "# Check the results of this\n", "# If you compare these to what we got with statsmodels above, they are indeed the same\n", - "print(reg.intercept_[0])\n", - "print(reg.coef_[0][0])" + "print('The intercept value is: \\t{:1.4f}'.format(reg.intercept_[0]))\n", + "print('The coefficient value is: \\t{:1.4f}'.format(reg.coef_[0][0]))" ] }, { @@ -745,7 +791,7 @@ { "data": { "text/plain": [ - "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)" + "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)" ] }, "execution_count": 21, @@ -755,7 +801,7 @@ ], "source": [ "# Initialize and fit linear model\n", - "# d1 = a1*d2 + a2*d3 + a0\n", + "# d1 = a0 + a1*d2 + a2*d3\n", "reg = linear_model.LinearRegression()\n", "reg.fit(np.hstack([d2, d3]), d1)" ] @@ -764,43 +810,32 @@ "cell_type": "code", "execution_count": 22, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1000, 2)" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.hstack([d2, d3]).shape" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Intercept: \t 0.010374409482633963\n", - "Theta D2 :\t 0.7354300664652448\n", - "Theta D3 :\t -0.008040442777931771\n" + "Intercept: \t +0.0179\n", + "d2 value:\t +0.8070\n", + "d2 value:\t -0.0368\n" ] } ], "source": [ "# Check the results of this\n", "# If you compare these to what we got with statsmodels above, they are indeed the same\n", - "print('Intercept: \\t', reg.intercept_[0])\n", - "print('Theta D2 :\\t', reg.coef_[0][0])\n", - "print('Theta D3 :\\t', reg.coef_[0][1])" + "print('Intercept: \\t {:+1.4f}'.format(reg.intercept_[0]))\n", + "print('d2 value:\\t {:+1.4f}'.format(reg.coef_[0][0]))\n", + "print('d2 value:\\t {:+1.4f}'.format(reg.coef_[0][1]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Conclusion\n", + "\n", + "The pattern of results with `sklearn` is about the same as before, though we can see there is some small differences in estimation. In general, if you have data organized into Dataframes, then `statsmodels` does offer a more direct way to apply statistical models, but `sklearn` does also offer a lot of useful functionality for model fitting & analysis. " ] } ], @@ -820,7 +855,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.0" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/15-Clustering.ipynb b/15-Clustering.ipynb index 02b8151..f24ad36 100644 --- a/15-Clustering.ipynb +++ b/15-Clustering.ipynb @@ -4,7 +4,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Clustering" + "# Clustering\n", + "\n", + "A common task or goal within data analysis is to learn some kind of structure from data. One way to do so is to apply clustering analysis to data. This typically means trying to learn 'groups' or clusters in the data. \n", + "\n", + "This example is a minimal example of clustering adapted from the `sklearn` tutorials, to introduce the key points and show an introductory example of a clustering analysis. \n", + "\n", + "As with many of the other topics in data analysis, there are many resources and tutorials available on the clustering analyses. A good place to start is the extensive coverage in the `sklearn` documentation. If you are interested in clustering analyses, once you have explored the basic concepts here, we recommend you go and explore some of these other resources. " ] }, { @@ -16,17 +22,18 @@ "\n", "\n", "
\n", - "Clustering\n", - "article from wikipedia. \n", + "Clustering\n", + "article from wikipedia. The sklearn \n", + "user guide \n", + "has a detailed introduction to and tutorial on\n", + "clustering. \n", "
" ] }, { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Imports\n", @@ -34,7 +41,7 @@ "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", - "from sklearn import datasets\n", + "from sklearn import cluster, datasets\n", "from sklearn.cluster import KMeans\n", "from scipy.cluster.vq import whiten" ] @@ -43,21 +50,30 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Scikit-learn has a bunch of example datasets. Here, we'll use the iris dataset: which contains data about different species of plants. " + "## Load an Example Dataset\n", + "\n", + "Scikit-learn has example datasets that can be loaded and used for example.\n", + "\n", + "Here, we'll use the iris dataset. This dataset contains data about different species of plants. It includes information for several features across several species. Our task will be to attempt to cluster the data, to see if we can learn a meaningful groupings from the data." ] }, { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Load the iris data\n", "iris = datasets.load_iris()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that `iris`, as loaded by `sklearn` is an object. The data is stored in `iris.data`. " + ] + }, { "cell_type": "code", "execution_count": 3, @@ -67,16 +83,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "sepal length (cm)\n", - "sepal width (cm)\n", - "petal length (cm)\n", - "petal width (cm)\n" + "There are 150 samples of data, with 4 features and 3 labels.\n" ] } ], "source": [ - "# Check out the available features\n", - "print('\\n'.join(iris.feature_names))" + "# Let's check how much data there is\n", + "[n_samples, n_features] = np.shape(iris.data)\n", + "n_labels = len(set(iris.target))\n", + "print(\"There are {} samples of data, with {} features and {} labels.\".format(\\\n", + " n_samples, n_features, n_labels))" ] }, { @@ -88,15 +104,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "setosa\n", - "versicolor\n", - "virginica\n" + "sepal length (cm)\n", + "sepal width (cm)\n", + "petal length (cm)\n", + "petal width (cm)\n" ] } ], "source": [ - "# Check out the species ('clusters')\n", - "print('\\n'.join(iris.target_names))" + "# Check out the available features\n", + "print('\\n'.join(iris.feature_names))" ] }, { @@ -108,23 +125,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "There are 150 samples of data, each with 4 features.\n" + "setosa\n", + "versicolor\n", + "virginica\n" ] } ], "source": [ - "# The actual data is stored in iris.data\n", - "# Let's check how much data there is\n", - "[n_samples, n_features] = np.shape(iris.data) \n", - "print(\"There are \", n_samples , \" samples of data, each with \" , n_features, \" features.\")" + "# Check out the species ('clusters')\n", + "print('\\n'.join(iris.target_names))" ] }, { "cell_type": "code", "execution_count": 6, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Let's set up some indexes, so we know what data we're using\n", @@ -141,25 +156,38 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEcCAYAAAAydkhNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xu4HVV9//H3J4cDhGuMCQghEIo8\nKAURmxIwiFFKVfTR/BCFCArUSkvFghRUKhW0KNp4bUUpKAIFo+VixEuhVEDkFgwgRkGUSyAXJOES\nrhGS8P39MbOTOfvMnDP7fjmf1/PsJ3uvWTPznZ2z99qzZn1nKSIwMzPLM67TAZiZWfdyI2FmZoXc\nSJiZWSE3EmZmVsiNhJmZFXIjYWZmhdxI5JB0hqRIH2fUsN4FmfWmNSmWxZltviTpT5IekXSTpNMl\nbdvg9menx3uGpAnNiLnkfmdljiv7eFrSzZKOaXDblWOa1qQYzyhRf/1x1LvPdpJ0dOV9yllW07F3\nG0lvycT/n1XLzs8sO7Nq2ZWZZbunZZXP4OIS+81+dxydKS/8nEmallnnggYOuyU26nQAVhMBmwCv\nSB+vB06QdFhEXFPnNmcDR6XPLwBWNRpkg7YE9gP2k/SaiPhoHduYBZyePr8eWNyUyPrP0cAb0+dn\ndC6MlrgFeInkh/DMqmWvzzwvWvYkcE8T4+m2z1lpPpNoAkmbAkTE0RGh9LG4BbvamaSR2JPkDw3g\nZcAPJL26Bftrl59HhIBNSb64Kk5o1hmZjS0R8TTwm/Tl7pJeBiBpErBbpuo+kjZKl70KeHlafnOk\nmcYRMS39TE9rS/Bdxo1EDaq6k94g6TJJT5H+4ijqbpL0IUkLJT0h6QVJyyRdI+mogl0ViogXI+I3\nEXEM8MO0eHM2/HJG0mHp9pdIej7d5wOSzsl2T6XdItkYHszGL2kLSRdKWiTpcUlrJK2SdIOkw3Le\nn8q6i2s9rvTYXoiIC4FFlU0C0zPb31fSDyQ9msayPH3Pp2XqLM6+F8B1mbhmpXW+KekOSSvT7Twj\n6TZJx0lSPbHXStL70vfxqfT/5/eSPitps6p6ldivl3SwpF9KWi3pfkkfq443rXOXkm7JeyW9v+rv\nclale4MNZxGjdpVJOj6N8XlJv5L0tlGOb7KkF9NtXlW17G2Z/X0mLdtL0hXpZ+OF9O/tDkn/KWmw\nxre34qbKLknOTmHDmcJCYCWwGbB3WpY9q7g5E29ud5Ok/STdkr7XiyWdlBfEaJ+znPrvlfTr9P/5\nnnq+J5oqIvyoepCcekf6OCNTfkGm/LHM88U5y6elZe/JlFU/LisRy+LqbWaW7ZdZ9jQwLi0/Z4R9\n/g7YuPIjaYTHNJIurZHqHFUVz5D3Y5TjmpWpf33Vst9klh2alr0XWFsQx+PAbjnvV/VjVlrnTyPU\nOb0gxjNKHNP67YxS7z9G2P8vgfE523yKpPukuv6RVfHmvUfLsu9B+n9b+P+ac+x/zKn3IvBnoxzn\nFWndNcDkTPlFaflLJGfHm5F8YRfFtEWdn+MjMtv4bFr2+fT1V4EfpM9PSJedn6n/xpzP4OJM2e7A\nczmxLs88P7rk5yz7/5H3Xgewf6e+D30mUb+nSb6kxwMHj1DvgPTfZ0lOczcBdiL50ruqaKWSfpd5\nviUbTpW/C8wAJgGDwLbAd9Jlu1XijaSL58LMNnaOod1lzwCHkfwRb0bSHfR64Pm0fj3XCwpJ2jj9\n1fTnaVEAv0x/XX8TGADuAF5F8j6+ieTLaiIwNz2macCnM5t9U+aYrk/L/gbYleQ92xh4DbA0XXZC\nK88mJO0LHJ++vICkId4MOCUtmw4cl7PqVsBZJN2Lx2fK3595/lmS9wiSs6mtgTnA9tkNRcTi9P/+\n55myynuUd+wTgUOACcAladkgyd/GSM5P/92I5O8dSeNJ+uch+XHwIPBqkr9VgI+R/J1NBvZPj3nt\nKPspclPm+f7pvzMzy26qKqvUWUPSWI/kX0j+3wC+QfLevJnkPR+ixOcsa1vgH9LtfSFT/n46pVOt\nUzc/KHcm8b6c9bLLp6VlJ7HhV9NFwAnAXwNbl4xlcfU2M8teztBfG5PT8l2B/wIeJvkSrf5V8vGR\nYs4sE8kf7K3k/5Jd3cB7PCsnrurH19K6B5Wouzqz7ez/36ycfR9GckH7CWBdzra2zYnxjBLHNOTX\neEGdz5Y4lqtytvlHYCAt2yJT/ru0bLPMsTxeqZsuuynv/Ujfg9x4q479skz5OzLl54zyfgyw4Zf1\njWlZ9sz6yLRsG5Iv5gBuBz5F0qi8sgmf5aXpdp9P37fV6evtgX3T58tIGqVKXLcVfAYXZ8oezdTf\nOlP+X5nyo0t+zqZlli3MlO+R9zfR7ofPJOp3Z8l63wAuJfmCfT/Jae7VwKOSPtFgDK/KPH8aeFzS\n1sCNwJHAVJJffNXGl9z+x4GzSc5KtiJpNLI2rSnacp4DFgDHAiemZduUWG9TSZuPVknS4cD3SPrj\nX0b+dbmy7089yhzLy3PK7o+Idenz5zLllf+DiWw4lmWZupD8WGjEvZnnefvOlcZwUfry9ZJ2At6X\nvn4KuDyttwL4e5Iu3NeRnAl+H/iDpF9I2qqB2CvXFsYDf5vGvDgilpM0SKtJGowjMuvcxOgq/0fP\nRMRTmfKleZVrUNd73UpuJOq3ukyliPhTRLyX5EO8P0lXxwKS7pLPSZrSQAynZp7/JCJeIumCqXwR\n/QzYLpLT3X8sCnGE7R+eeT4b2CTd1uN1xlvk57Hh9HuLiNg3Is6L9OcUsCJT97xM3WwXybiIqHyo\nyh7TR0j6/0XSjdUO2WM5ouBY9slZb03lSeZ9yXqC5IcIwHaSsp/tqQWxjPQ+5e67hnUqvpP+K5KG\noHLBe15ErP8MRcS3Sbre9gTeDfx7umh/4MM17jMr+4Vf6R69Od1ntlvpowXrFHks/XfL9IdZxQ4F\n9dvxXreEG4kWk/RuSccDU4C7SM4q7qospviPqmh7g5L2UJJ08/a0+DngM+nzbP/tn4DnJP05yRdi\nnuwX/l5V/fHZba0CBiX9C/m/dBse3TSCm0nGrQMclY4M2jIdQTNT0lySM7SK7DG9puoLM3tMTydh\n6xg2jHBpCklvzXlsA/w4U+3MNP5NJU1NR/18l6G/akuJiOdJugUh6d8/OX2PDmdoXkDW+vdJ0mtr\n3WfJuO5lw6/5k0l+HMGG6xVImiTpiyTX+FYAP2LDyD2AHTN1a/0by37h75hTdmP1PjLxjuS6zPPP\nSdpa0ptIrt3kGelz1t061c/VzQ/KXZOYlrPesOXAaZmy6sdyMiNZCmJZPML6QfIL8qBM/ZeRfNCq\n6/2+4JgOzam7OF32yZxlK0m+sIf1ZVevP8pxzcrUv75E/TnkXz+oPC7I1J2eVydddkTOsueBJTn/\nd9kYzygR40j/TwHMTut9Y5R6R+ds8/qCfS2uek/zRjdlR9y8MVP/5Jy614907FXlF4z2nqTrfLBq\nH4uqlu9Q5n2r9W8srb8RyaCR7Pb2yiw/uGrZgyN8BrPvddHopuworez/40ifs2l572lV+aifkVY9\nfCbRej8jGW10H8kf6zrgEdJ+8ciccpcQwAskFzFvJhnB8urIZFtHxJMkp/Q3knz5LSdp9D5fsM3L\nSS6mPpzGlvUF4HMkF/ZWk4yGeTNJf3JbRcQ8kq6Hy0kuGq4l+UAuTOP8UqbuQpLutfsZevpORFxC\n0rXwIMmZ1kKS9+v+lh/Ehhj+geSa0c9J3ss1JH3Z15GM7vmfOrd7PfAukjyTF0l+GBzF0K607C/a\ns0mGSz8CLe3a+D5D+9fPr1r+JPAVkq6fx0j+Dp8h+Rt/X0TMr3fHEbEWuC1T9Awb8nBI9/FS1esy\n272bZEDFApL3egnJj6pvFKwy0uesqyltscysx6VJZ28Croukvx1JbwXmk3TzPALsEMm1K7NSfO8m\ns/6xCcnIuTWSHiXJA6lcVF0L/L0bCKuVu5vM+scLJElbD5GMphtP0r1xMfCXEXFlB2OzHuXuJjMz\nK+QzCTMzK9Tz1yQmTZoU06ZN63QYZmY95fbbb38sIiaPVq/nG4lp06axcOHCTodhZtZTJD1Upp67\nm8zMrJAbCTMzK+RGwszMCrmRMDOzQm4kzMyskBsJMzMr1LYhsJKmksxS9QqSuy6eGxFfq6ozi+Q+\n8g+mRVdExGcwM8sx/85lzL36XpavWs32E8Zzylt2Y/be5ebxylsXqHt7/aqdeRJrgX+KiDskbQnc\nLuma9Ja7Wb+IiHe0MS4z60Hz71zGqVcsYvWa5M7by1at5tQrkruAj/bFnrfuKZfeBYI166Lm7fWz\ntnU3RcQjEXFH+vwZ4B6S2drMzGo29+p713/JV6xes465V99bsMbI6655KdY3ELVur5915JqEpGkk\n00UuyFm8n6S7JP1POu1m3vrHSlooaeHKlStbGKmZdavlq/Ln6yoqr7VOPXX7UdsbCUlbkMzSdGJE\nPF21+A5gp4jYC/gPkslShomIcyNiekRMnzx51FuPmFkf2n7C+JrKa61TT91+1NZGIp0563Lgkoi4\nonp5RDwdEc+mz38KDEqa1M4Yzaw3nPKW3Rg/ODCkbPzgwPoL0LWuOzhODA6oru31s3aObhLwbeCe\niPhyQZ1XAI9GREjah6QRezyvrpmNbZWLyfWMRipat97t9bO2TTokaX/gFySTkFemUPxnYEeAiDhH\n0vHAcSQjoVYDJ0XEiBOTT58+PXwXWDOz2ki6PSKmj1avbWcSEXEjoFHqfB34ensiMjOz0fT8fBJm\n1lmNJLSVddr8RcxbsIR1EQxIzJkxlTNn79nUfVg+NxJmVrdGEtrKOm3+Ii6+9eH1r9dFrH/thqL1\nfO8mM6tbIwltZc1bsKSmcmsuNxJmVrdGEtrKWlcwuKao3JrLjYSZ1a2RhLayBpQ/3qWo3JrLjYSZ\n1a2RhLay5syYWlO5NZcvXJtZ3RpJaCurcnHao5s6o23JdK3iZDozs9p1XTKdmfWnspP3lC2r5Syk\nbI5Gs+t1Urtj9JmEmdWtOk8CkhvlZSfvAZIb50UyZ8NI9cYPDnDWIXuW+tLL23fe+s2u10nNjLHs\nmYQvXJtZ3cpO3rNmXQxpIIrq1ZJjUTZHo9n1OqkTMbqRMLO6tWJCnrLbLJuj0ex6ndSJGN1ImFnd\nWjEhT9ltls3RaHa9TupEjG4kzKxuZSfvGRxQcg1ilHq15FiUzdFodr1O6kSMHt1kZnWrZfKesmVl\nL8CWzdFodr1O6kSMHt1kZjYGOU/CzPpGLbkBvZDrkKdb43YjYWZdrZY5K9oxv0UrdHPcvnBtZl2t\nltyAXsh1yNPNcbuRMLOuVktuQC/kOuTp5rjdSJhZV6slN6AXch3ydHPcbiTMrKvVkhvQC7kOebo5\nbl+4NrOuVktuQC/kOuTp5ridJ2FmNgY5T8LMul4jc1HM3ntKz84T0W3xjMRnEmbWEblzUdQw78S7\n/2IKl9++rOfmieiWeDyfhJl1tdy5KGqYd2LegiU9OU9Et8UzGjcSZtYRjeYArCvoBen2eSK6LZ7R\nuJEws45oNAdgQMot7/Z5IrotntG4kTCzjsidi6KGeSfmzJjak/NEdFs8o/HoJjPriEbnopi99xSm\n7zSx5+aJ6LZ4RuPRTWZmY1DX5UlImgpcBLwCeAk4NyK+VlVHwNeAg4HngaMj4o52xWhmiaJx/I3m\nNfS7RvIfujV3om1nEpK2A7aLiDskbQncDsyOiLszdQ4GPkLSSMwAvhYRM0bars8kzJqraBx/Xl5C\nLXkNncpLaJdG8h86kTvRdXkSEfFI5awgIp4B7gGqj/5dwEWRuBWYkDYuZtYmReP48/ISaslr6NY8\ngGZpJP+hm3MnOjK6SdI0YG9gQdWiKcCSzOulDG9IkHSspIWSFq5cubJVYZqNSUXj9YvyEhrdbr9o\nJP+hm3Mn2t5ISNoCuBw4MSKerl6cs8qwv8yIODcipkfE9MmTJ7ciTLMxq2i8flFeQqPb7ReN5D90\nc+5EWxsJSYMkDcQlEXFFTpWlwNTM6x2A5e2IzcwSReP48/ISaslr6NY8gGZpJP+hm3Mn2jm6ScC3\ngXsi4ssF1a4Ejpf0PZIL109FxCPtitHMRh7Hn5eXkFe3aP1+1kj+QzfnTrRzdNP+wC+ARSRDYAH+\nGdgRICLOSRuSrwNvJRkCe0xEjDh0yaObzMxq13V5EhFxI/nXHLJ1AvhweyIys1rljeVf+NATzFuw\nhHURDEjMmTGVM2fvWWrdbvilnNULMbabb8thZqVUj+Vftmo1/3TpXazLDIFdF8HFtz4MMKShyFv3\n1CsWAXTNl3AvxNgJvsGfmZWSN5Z/3Uv53dXzFiwZ8rqb8wAqeiHGTnAjYWal1DJmvzqnopvzACp6\nIcZOcCNhZqXUMma/Oqeim/MAKnohxk5wI2FmpeSN5R8Ylz8WZc6MqUNed3MeQEUvxNgJvnBtZqUU\njeUvM7qpm/MAKnohxk7wfBJmZmNQ1+VJmFl3OuK8W7jp/ifWv565y0R2nrxFqdwHaH5uwWnzFw3b\nd5kZ6GqNpx/nfmgFn0mYjWHVDcRIjtx3x2ENRbPnQTht/qL1eRZZ49hwm4aR9lE2nl6b+6EVum4+\nCTPrPmUbCBie+wDNzy3I2wcMbSBG2kfZePp17odWcCNhZqXkzSfR7NyCWuasyNtH2Xj6de6HVnAj\nYWal5M0n0ezcglrmrMjbR9l4+nXuh1ZwI2E2hs3cZWLputW5D9D83IK8fcDwL6qifZSNp1/nfmiF\n0qObJB0GHAhsQ9X/WUS8s8lxmVkbXPKh/Roa3dTs3ILKPuod3VQ2nn6d+6EVSo1ukjQXOBG4jmSm\nuCErRcQxLYmuBI9uMjOrXbPzJD4AzImIyxoLy8zMeknZRmIc8KtWBmJm9WtXctdYSiKzRNkL1+cC\nR7YyEDOrTyW5a9mq1QQbJsuZf+eyntyPdZfCMwlJ/555OQ44QtJBwK+BNdm6EfGPrQnPzEYzUnJX\nM3/lt2s/1l1G6m6qHspQ6W56VYtiMbM6tCu5a6wlkVmisJGIiDe1MxAzq8/2E8azLOeLutnJXe3a\nj3WXUtckJJ0vacuc8s0lnd/8sMysrHYld421JDJLlL1wfRSQ93NhPMnwWDPrkNl7T+GsQ/ZkyoTx\nCJgyYXxL7kjarv1YdxkxmU7SREDASuDV6b8VA8Dbgc9GRMf+SpxMZ2ZWu2Yl0z1Gkl0dwN05ywM4\nvfbwzKyZ2jHRTqP7bpdui6fXjdZIvInkTOJa4N1A9ubzLwIPRcTyFsVmZiVUT4JTyV8ARpxop6he\nK/bdLt0WTz8Y8ZpERPw8Iq4Hdgbmp68rj1vcQJh1Xjsm2ml03+3SbfH0g5GS6Q6oKtpJBfd6j4gb\nmhmUmZXXjol2Gt13u3RbPP1gpO6m60muOVRahsoV7urXkFzENrMOKJu/0Io8h27Lnei2ePrBSN1N\nk0nmjpgMvAO4l2S46yvTxweA3wGeS8Ksg9ox0U6j+26XbounH4yUcf145bmkfwVOiIhrMlUekLQC\n+DfgJ60L0cxG0o6Jdhrdd7t0Wzz9oOykQ6uB10XEPVXluwO3R0THzuWcJ2FmVrtmTzr0W+B0ScdE\nxOp0B+OBT6XLygR0Pkm31YqI2CNn+Szgh8CDadEVEfGZkvGZ9bRGx/bP+Ow1PPrMi+tfb7vlxpx6\n8O7DtgnlfmWfNn9R7vSleXGW3ab1prJnEn8J/BgYJLlVOCR3iV0HvD0iflliGwcAzwIXjdBInBwR\n7ygdPT6TsN5XPbYfkn70sre8qG4gigyOEwjWrNvwmc/bz2nzF3HxrQ8PW3/mLhO54+GnhsRZdpvW\nfcqeSZS6d1PaCOwMfAK4A7gzfb5zmQYi3cYNDE3GMzMaH9tfpoEAWPNSDPkyL9rPvAVLcte/6f4n\nhsVZdpvWu8p2NxERz5PMUNdK+0m6C1hOclaR25Ul6VjgWIAdd9yxxSGZtVanx/ZX72ddid6FWrdp\nvWukZLpDgB9FxJr0eaGIuKIJsdwB7BQRz0o6GJgP7Fqwv3NJG6zp06c3/hdt1kGdHttfvZ8BqeGG\nwnkJ/WOk7qbLgJdlnhc9Lm1GIBHxdEQ8mz7/KTAoaVIztm3WzRod27/tlhuXqjc4TgwODL1rQt5+\n5syYmrv+zF0mDouz7DatdxU2EhExLiJWZJ4XPZqSbS3pFUrv+yFpnzS2x0dey6z3NTpPw4JPHjSs\nodh2y4356mGvHbLNue/Zi7mH7jXqfs6cvSdH7rsjA+lteAYkjtx3Ry750H7D4iy7Tetdo80nsUlE\nvNCUHUnzgFnAJOBRkluMDwJExDmSjgeOA9YCq4GTIuLm0bbr0U1mZrVrVp7EU5JuIblV+HXArRGx\ntp6AImLOKMu/Dny9nm2bdYN2zWNQlMNQJp6FDz0xbN3pO03s+jwHzxHROaOdSXwIeCPJGcD2wHPA\nTSQNxrUk2dYvtT7MYj6TsG7QaK5DWUU5DEfuu+OQhiIvnoFxYt1Lwz/v1eXdlufQrvd2rGlKnkRE\nnBcRR0bEDiTTl54CrAJOBG4FnpD0w2YEbNbL2jWPQVEOQ3V5Xjx5DUReebflOXiOiM4qlUwHEBH3\nRsQ5EXE48DrgcyS3Da8pQ9qsH7Ur16FoaGp1eaP77aY8h07nkYx1pRoJSZMkHSrpbEl3k9xf6c3A\nN4CDWxmgWS8oygtodr7AQMHEX9Xlje63m/Ic2vXeWr4RGwlJX5P0a2AJSRfTKuAEYGJEzIyIUyPi\n6jbEadbV2jWPQVEOQ3V5XjwD4woamHHdnefgOSI6a7TRTR8BHgJOBn4aEQ+OUt9sTGrXPAaVi9Oj\njW4qiqcXRzd5jojOGm100/4kI5veBOwHrCSZ1vR64PpuaDQ8usnMrHZNyZOIiBuBG4EzJW0MvJ6k\n0TgKOFvSSuC6iDi64YjNukCzx+Mfcd4t3HT/hpsfz9xlIjtP3mLYr3nIPzvIy4nI++UPw39p55X5\n17fVqtR8EkNWSBqL/UguWP89sEWzbs1RD59JWLM0ezx+dQNRq1232Zw/rHhuWPk4QXbU6uCAIJLb\ndq8v8zwPNoqmzSchaSNJMyWdJulnJBevrwXeQ3KDv6MajtasCzR7PH4jDQSQ20DA0AYCkoZgTVWh\n53mwZhmxu0nS/5J0MW0GLCPJtP4wcG1EPNT68MzaZyyMx++nY7H2GG100+PAR0muO9zXhnjMOqbT\n8zq0Qz8di7XHaLflmJPemsMNhPW9Zo/Hn7nLxIbi2XWbzXPLq9MdBgeUXIPIlnmeB2uS0rflMOt3\njc7rUO2SD+03rKGYucvE3Lka8squOWlWbvmX31s1T8ShezH3PXt5ngdriZpHN3Ubj24yM6tds+aT\nMLOS8nIsoFyuQi35GY3kcnheBquVzyTMmiAvx6JsrkIt+RmN5HJ4XgbLalqehJmNLi/HomyuQi35\nGY3kcnheBqtHYXeTpGeAUqcZEbFV0yIy60G15B9U160lP6ORXI6xkAdizTfSNYnj2xaFWY8ryrEo\nqltm3bychkZyOcZCHog1X2F3U0RcWPbRzoDNulFejkXZXIVa8jMayeXwvAxWD49uMmuCojkP8sqq\nLxLXMl9CI3MreF4Gq0ep0U3pnV8/CcwBdgQGs8t9F1gzs97S7DyJfwUOA84CvgKcAkwDDgf+pc4Y\nzXL1wlj+RnIizHpJ2TOJB4HjIuKqdNTTayPifknHAQdGxKGtDrSIzyT6Sy+M5c/NiciZ06Hb4jbL\nanaexLbA3enzZ4EJ6fOrgL+uPTyzfL0wlj83JyJnTodui9usHmUbiYeB7dPn9wFvSZ/vB3iQtTVN\nL4zlbyQnwqzXlG0kfgAcmD7/GvDptAvqAuBbLYjLxqiiMfvdNJa/lli6KW6zepRqJCLi1Ij4bPr8\nMmB/4D+AQyLiky2Mz8aYXhjLn5sTkTOnQ7fFbVaPUqObJB0A3BwRawEiYgGwIJ3/+oCIuKGVQdrY\n0Qtj+RvJiTDrNWVHN60DtouIFVXlLwdWOE/CzKy3NHt0k8i/2d/LgedKBnS+pBWSflOwXJL+XdJ9\nkn4t6XUlYzMzsxYZsbtJ0pXp0wAulvRCZvEAsAdwc8l9XQB8HbioYPnbgF3Txwzgm+m/ZqWdNn8R\n8xYsYV0EAxJzZkzlzNl71l0Pmj/JD7hbynrHaNckHk//FfAkQ4e7vgjcCJxXZkcRcYOkaSNUeRdw\nUST9X7dKmiBpu4h4pMz2zU6bv4iLb314/et1EetfZxuAsvVgeOLcslWrOfWKRQA1T/KzbNVqTrn0\nriETEdWyPbNOGLG7KSKOiYhjgE8DH6y8Th9/FxFnRcRjTYplCrAk83ppWmZWyrwFS0qVl60HzZ/k\np+xERGbdouwQ2E9HxHOSpks6TNLmAJI2l9SsO8kqpyz3qrqkYyUtlLRw5cqVTdq99bp1BYMwqsvL\n1oPWTPLTaF2zdirVSEjaVtIC4DbguyS36QD4MvClJsWyFJiaeb0DsDyvYkScGxHTI2L65MmTm7R7\n63UDyvudMby8bD1oLLnPSXfWD8qObvoK8EeS0UzPZ8ovpXn3broS+EA6ymlf4Clfj7BazJkxtVR5\n2XrQ/El+yk5EZNYtynYVHUhyt9cnNfTX1v0k80uMStI8YBYwSdJS4HTSeSki4hzgp8DBJPeGeh44\npmRsZsCGi86jjVoqWw9aM8lPvdsz64SyyXRPA9Mj4vfprcL3iogHJO0D/E9EvLzVgRZxMp2ZWe2a\nnUx3A3B05nVIGgA+Dvys9vDMzKwXlO1u+hjwc0l/CWxCcrH6z4GtgZktis3MzDqs7BDYu4HXALcA\n/wtsSnLReu+IuL914ZmZWSeVznFIRxp9qoWxmJlZlxnxTELSZpLOlrQsvTnfdyVNaldwZmbWWaN1\nN32a5IL1T4DvAQeR3HjPzMzGgNG6mw4huWfT9wAkXQzcJGkgItaNvKqZmfW60c4kpgK/qLyIiNuA\ntcD2rQzKzMy6w2iNxADJLcGz1lLDBW8zM+tdo33Zi+GTDW0KnCdp/T2cIuKdrQjOzMw6a7RG4sKc\nsotbEYiZmXWfERuJdMIhMzMbo8reu8nMzMYgNxJmZlbIjYSZmRVyI2FmZoXcSJiZWSE3EmZmVsiN\nhJmZFXIjYWZmhdxImJlZITe2g8XsAAANBUlEQVQSZmZWyI2EmZkVciNhZmaFPC9EB8y/cxlzr76X\n5atWs/2E8Zzylt2YvfeUTodlZjaMG4k2m3/nMk69YhGr1ySzvy5btZpTr1gE4IbCzLqOu5vabO7V\n965vICpWr1nH3Kvv7VBEZmbF3Ei02fJVq2sqNzPrJDcSbbb9hPE1lZuZdZIbiTY75S27MX5wYEjZ\n+MEBTnnLbh2KyMysmC9ct1nl4rRHN5lZL3Aj0QGz957iRsHMekJbu5skvVXSvZLuk/SJnOVHS1op\n6Vfp42/bGV8nzb9zGTM/fy07f+InzPz8tcy/c1mnQzIza9+ZhKQB4GzgIGAp8EtJV0bE3VVVvx8R\nx7crrm7g3Akz61btPJPYB7gvIh6IiBeB7wHvauP+u5ZzJ8ysW7WzkZgCLMm8XpqWVXu3pF9LukzS\n1LwNSTpW0kJJC1euXNmKWNvKuRNm1q3a2UgopyyqXv8ImBYRrwH+D7gwb0MRcW5ETI+I6ZMnT25y\nmO3n3Akz61btbCSWAtkzgx2A5dkKEfF4RLyQvjwP+Is2xdZRzp0ws27Vzkbil8CuknaWtDFwOHBl\ntoKk7TIv3wnc08b4Omb23lM465A9mTJhPAKmTBjPWYfs6YvWZtZxbRvdFBFrJR0PXA0MAOdHxG8l\nfQZYGBFXAv8o6Z3AWuAJ4Oh2xddpzp0ws26kiOrLAr1l+vTpsXDhwrbus5b5II447xZuuv+J9a9n\n7jKR90zfcdj6UC4L23NRmFkzSLo9IqaPWs+NRG2qcxoguX6Q1z1U3UBUiKFX7AcHBAFrXtpQmrfN\nWvZtZjaSso2Eb/BXo1pyGvIaCBg+pGvNuhjSQBRt0/kUZtZubiRq1M6chuptOp/CzNrNjUSN2pnT\nUL1N51OYWbu5kahRLTkNM3eZmLuN6qzCwQExOG5oad42nU9hZu3mRqJGteQ0XPKh/YY1FDN3mchX\nDnvtkPXnHroXc9+z16jbdD6FmbWbRzeZmY1BHt1kZmYN88x0dTht/iLmLVjCuggGJObMmMqDK58d\nljR3yYf2K5385iQ5M+tG7m6q0WnzF3HxrQ+XqrvrNpuz9Mk/jZr85iQ5M2s3dze1yLwFS0avlPrD\niudKJb85Sc7MupUbiRqta8KZl5PkzKxXuJGo0YDy5k6qjZPkzKxXuJGo0ZwZuTOq5tp1m81LJb85\nSc7MupUbiRqdOXtPjtx3x/VnFAMSR+67Y27S3DUnzSqV/OYkOTPrVh7dZGY2BpUd3TRm8yTK5iXk\n5UQseOBx/rDiufV1dt1mcx5c+RxrM+3tRoL7zno7rzn9Kp5+YcPIpa02GWD8xgM8+syL68u23XJj\nTj14d+dTmFnXGZNnEmXzEmrJiWg251OYWSs5T2IEZfMSasmJaDbnU5hZNxiTjUTZvIRm5EQ0wvkU\nZtZpY7KRKJuX0IyciEY4n8LMOm1MNhJl8xJqyYloNudTmFk3GJONRNm8hKKciF232XxIvV232ZyN\nqk46NhIs/vzb2WqToV/qW20ywLZbbjykbNstN+arVRMROZ/CzLrBmBzdZGY21jlPog6N5CAUrXvQ\nl68fllNxzUmzWnQEZmbN5TOJVCM5CEXrbrXp0KS5CjcUZtZpzpOoUSM5CEXr5jUQwJAzCzOzbuZG\nItVIDoLzFMysX7mRSDWSg+A8BTPrV24kUo3kIBStWz3UtaJ6CK2ZWbdyI5FqJAehaN0FnzwoN6fC\nF63NrFd4dJOZ2RjUlaObJL1V0r2S7pP0iZzlm0j6frp8gaRp7YzPzMyGalsjIWkAOBt4G7A7MEfS\n7lXVPgg8GRGvBL4CfKFd8ZmZ2XDtPJPYB7gvIh6IiBeB7wHvqqrzLuDC9PllwIFSh2/FamY2hrWz\nkZgCZGfxWZqW5daJiLXAU8DLqzck6VhJCyUtXLlyZYvCNTOzdjYSeWcE1VfNy9QhIs6NiOkRMX3y\n5MlNCc7MzIZrZyOxFMhO0LADsLyojqSNgK2BJ9oSnZmZDdPOu8D+EthV0s7AMuBw4H1Vda4EjgJu\nAQ4Fro1Rxujefvvtj0l6qIG4JgGPNbB+N+mnY4H+Op5+Ohbor+MZq8eyU5lKbWskImKtpOOBq4EB\n4PyI+K2kzwALI+JK4NvAf0m6j+QM4vAS222ov0nSwjJjhXtBPx0L9Nfx9NOxQH8dj49lZG2dTyIi\nfgr8tKrsU5nnfwLe086YzMysmG/LYWZmhdxIwLmdDqCJ+ulYoL+Op5+OBfrreHwsI+j5ezeZmVnr\n+EzCzMwKuZEwM7NCY7aRkHS+pBWSftPpWBolaaqk6yTdI+m3kk7odEz1krSppNsk3ZUey6c7HVOj\nJA1IulPSjzsdS6MkLZa0SNKvJPX8PfolTZB0maTfpZ+f/TodUz0k7Zb+n1QeT0s6sSnbHqvXJCQd\nADwLXBQRe3Q6nkZI2g7YLiLukLQlcDswOyLu7nBoNUtv6Lh5RDwraRC4ETghIm7tcGh1k3QSMB3Y\nKiLe0el4GiFpMTA9Ivoi+UzShcAvIuJbkjYGNouIVZ2OqxHpHbeXATMiopFEY2AMn0lExA30yS0/\nIuKRiLgjff4McA/Db57YEyLxbPpyMH307C8ZSTsAbwe+1elYbChJWwEHkCTxEhEv9noDkToQuL8Z\nDQSM4UaiX6UTNe0NLOhsJPVLu2d+BawAromInj0W4KvAx4CXOh1IkwTwv5Jul3Rsp4Np0J8BK4Hv\npN2B35LUDxPQHw7Ma9bG3Ej0EUlbAJcDJ0bE052Op14RsS4iXktyE8h9JPVkd6CkdwArIuL2TsfS\nRDMj4nUkk4d9OO227VUbAa8DvhkRewPPAcNmzOwlaZfZO4FLm7VNNxJ9Iu2/vxy4JCKu6HQ8zZCe\n+l8PvLXDodRrJvDOtB//e8CbJV3c2ZAaExHL039XAD8gmUysVy0FlmbOVC8jaTR62duAOyLi0WZt\n0I1EH0gv9n4buCcivtzpeBohabKkCenz8cBfAb/rbFT1iYhTI2KHiJhG0gVwbUQc2eGw6iZp83Rg\nBGm3zF8DPTs6MCL+CCyRtFtadCDQc4M9qsyhiV1N0OYb/HUTSfOAWcAkSUuB0yPi252Nqm4zgfcD\ni9K+fIB/Tm+o2Gu2Ay5MR2iMA/47Inp+6Gif2Bb4QTqj8EbAdyPiqs6G1LCPAJek3TQPAMd0OJ66\nSdoMOAj4u6Zud6wOgTUzs9G5u8nMzAq5kTAzs0JuJMzMrJAbCTMzK+RGwszMCrmRMCtJ0tGSnh29\nZnfq9fitM9xIWE+RdIGkSB9rJD0g6Yu13HMn3UZLci/SW2mf3Ipt92Ic1vvGbDKd9bT/I0keHATe\nQHKH1c2B4zoZlFk/8pmE9aIXIuKPEbEkIr4LXALMriyUtLukn0h6Jp1Yap6kV6TLzgCOAt6eOSOZ\nlS77vKR7Ja1Of4n/m6RNmxn4SLGlyy+Q9GNJJ0haJulJSd9Js2krdTaXdJGkZyU9KunUdJ0L0uXX\nAzsBcyvHWBXDgZJ+I+k5JZNV7dzMY7T+4kbC+sFqkrOKygRMN5DcU2gfkns/bQFcKWkc8EXgv0nO\nRrZLHzen23kO+Bvg1cA/kNxv6ZPNCrJEbBVvAPZIlx8G/D8gO9vgl4A3puVvBvZK16k4hOTmdZ/J\nHGPFJsCpJMe5HzABOKcpB2h9yd1N1tMk7QO8D/hZWnQccFdEfDxT5wMkE0xNj4jbJK0mPRvJbisi\n/jXzcrGkzwEnA//SpHBHjA24LS1+GjguItYC90i6lOTmc2elt4P/G+ADEXFNuo0PkjQKleN4QtI6\n4JnqYyT5zH84Iu5N1/0iyXwK4yKiX+a8sCZyI2G96K3pKJ2NSM4gfkhyozaAvwAOKBjFswsbvoiH\nkXQocCLwSpJf+APpo1nKxnZ32kBULAdmZOoNZuoSEc+p/FztL1QaiMy2B0nOKPpipkZrLjcS1otu\nAI4F1gDLI2JNZtk44CckZwDVCu+xL2lfkjkfPg18FFhFMnnLF5sUcy2xralaFmzoGlamrB5rq15X\ntuOuZ8vlRsJ60fMRcV/BsjuA9wIPVTUeWS8y/AxhJrAs2+UkaaeGI609ttHcR9KI7AM8COtvEb0H\ncH+mXt4xmtXMvx6s35wNbA18X9IMSX8m6a8knVuZMAdYDOwhaTdJk9JZ/X4PTJF0RLrOcSQTuNRj\ne0mvrXpMKhnbiCLiWeB84AvpKKXdSYYAj2Po2cVi4A2SpqT7NquLGwnrK+n0mjOBl4CrgN+SfDm/\nkD4AzgPuARYCK0nmbf4RMBf4KvBrkslbPlVnGB8F7qx6HF4ytjJOBn4BXAlcl8a7EPhTps6ngKkk\nZxcr6zwOM086ZNbrJG0CPATMjYgvdToe6y++JmHWYyTtTZLLcRuwJfDx9N/vdzIu609uJMx600nA\nbiSjlX4FHBARS0dexax27m4yM7NCvnBtZmaF3EiYmVkhNxJmZlbIjYSZmRVyI2FmZoX+P7Go3PNR\n8WSSAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEcCAYAAADDfRPAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de7wcdX3/8dc7hwDhIjESEEIgSPmhSIzYSMBQDVK8oD9NEYQIFmgrrZaK8hMrlSpa8NKoFa8UFAHBaAWMaKlIlYvcogkXoyIKEsiFS7iEa4AQPr8/ZjaZ3TN7zszZ3dndc97Px2Mf2f3Od2Y+Mzm737l8P/NVRGBmZlYzrtsBmJlZb3HDYGZmddwwmJlZHTcMZmZWxw2DmZnVccNgZmZ13DDkkHSqpEhfp5aY79zMfNPaFMuyzDKfl/S0pHslXSfp45K2b3H5c9PtPVXSxHbEXHC9czLblX09Jul6Sce2uOzaNk1rU4ynFqi/YTtGus4qSTqmtp9yppXa9l4j6Y2Z+P+zYdo5mWmnNUy7NDNtz7Ss9h1cVmC92d+OYzLlTb9nkqZl5jm3hc1um026HYCVImAz4MXp6zXACZIOj4grRrjMucDR6ftzgTWtBtmirYH9gP0kvSIiPjiCZcwBPp6+vwpY1pbIRp9jgNel70/tXhgdcQPwPMnB7+yGaa/JvG827RHgtjbG02vfsyH5jKENJG0OEBHHRITS17IOrGpXkoZhOskfF8ALgR9IelkH1leVqyNCwOYkP1Y1J7TrzMvGloh4DPhN+nFPSS8EkLQtsEem6j6SNkmnvRR4UVp+faTZvxExLf1OT6sk+B7ghqGEhktFfyHpIkmPkh5ZNLuUJOk9khZLeljSM5JWSrpC0tFNVtVURDwbEb+JiGOBH6bFW7LxCBlJh6fLXy7pqXSdf5J0ZvbSU3rJIxvDXdn4JW0l6TxJSyU9JGmdpDWSrpF0eM7+qc27rOx2pdv2TEScByytLRKYmVn+vpJ+IOn+NJZV6T6flqmzLLsvgCszcc1J63xd0k2SVqfLeVzSLyW9V5JGEntZkt6V7sdH0/+fP0g6XdIWDfVqsV8l6WBJv5K0VtKdkj7cGG9a51Yllxxvl/Tuhr/LObVLF2w8Wxj2Mpik49MYn5J0i6Q3D7N9kyU9my7zJw3T3pxZ3yfTshmSLkm/G8+kf283SfpPSeNL7t6a62qrJDkLhY1nBIuB1cAWwN5pWfbs4fpMvLmXkiTtJ+mGdF8vk3RiXhDDfc9y6r9T0q/T/+fbRvI70bKI8KvhRXJaHenr1Ez5uZnyBzPvl+VMn5aWHZYpa3xdVCCWZY3LzEzbLzPtMWBcWn7mEOv8PbBp7WBoiNc0kstVQ9U5uiGeuv0xzHbNydS/qmHabzLTDk3L3gk81ySOh4A9cvZX42tOWufpIep8vEmMpxbYpg3LGabel4dY/6+ACTnLfJTk0khj/aMa4s3bRyuz+yD9v236/5qz7ffl1HsWeMkw23lJWncdMDlTfn5a/jzJWfAWJD/SzWLaaoTf4yMzyzg9LftM+vmLwA/S9yek087J1H9dzndwWaZsT+DJnFhXZd4fU/B7lv3/yNvXAexf5W+gzxhG7jGSH+YJwMFD1Htt+u8TJKewmwG7kPzQ/aTZTAX9PvN+azaeBn8HmAVsC4wHtge+lU7boxZvJJdvzsssY9eovxT2OHA4yR/uFiSXel4DPJXWH8n1/6YkbZoeHb08LQrgV+lR9NeBAeAm4KUk+/EAkh+oScD8dJumAZ/ILPaAzDZdlZb9DbA7yT7bFHgFsCKddkInzxok7Qscn348l6Tx3QI4KS2bCbw3Z9YXAJ8muXR4fKb83Zn3p5PsI0jOmrYB5gE7ZhcUEcvS//urM2W1fZS37ZOAQ4CJwIVp2XiSv42hnJP+uwnJ3zuSJpBcb4fkgOAu4GUkf6sAHyb5O5sM7J9u83PDrKeZ6zLv90//nZ2Zdl1DWa3OOpIGeij/SvL/BvA1kn3zepJ9XqfA9yxre+B96fI+myl/N1WqshXqlxfFzhjelTNfdvq0tOxENh4dnQ+cALwB2KZgLMsal5mZ9iLqjyomp+W7A98G7iH54Ww8+vjnoWLOTBPJH+mN5B+xrm1hH8/JiavxdUZa96ACdddmlp39/5uTs+7DSW5KPwysz1nW9jkxnlpgm+qOupvUOb3AtvwkZ5n3AQNp2VaZ8t+nZVtktuWhWt102nV5+yPdB7nxNmz7RZnyt2bKzxxmfwyw8Qj62rQsewZ9VFq2HcmPcQBLgI+RNCR/1obv8op0uU+l+21t+nlHYN/0/UqShqgW1y+bfAeXZcruz9TfJlP+7Uz5MQW/Z9My0xZnyvfK+5uo4uUzhpG7uWC9rwHfJ/lRfTfJKezlwP2SPtJiDC/NvH8MeEjSNsC1wFHAVJIju0YTCi7/n4Gvkpx9vICkocjavFS0xTwJLAKOAz6Qlm1XYL7NJW05XCVJRwDfJbm+/kLy77MV3T8jUWRbXpRTdmdErE/fP5kpr/0fTGLjtqzM1IXkAKEVt2fe5607VxrD+enH10jaBXhX+vlR4OK03gPAP5Bcnn0VyRnf94A/SvqFpBe0EHvtXsEE4O/SmJdFxCqSRmgtSSNxZGae6xhe7f/o8Yh4NFO+Iq9yCSPa1+3mhmHk1hapFBFPR8Q7Sb64+5NcxlhEcinkU5KmtBDDyZn3/x0Rz5NcXqn9+PwM2CGSU9n3NwtxiOUfkXk/F9gsXdZDI4y3matj46n1VhGxb0ScHelhE/BApu7ZmbrZyx/jIqL2RSq6Tf9Ecj1fJJeoqpDdliObbMs+OfOtq73J7Jesh0kOPgB2kJT9bk9tEstQ+yl33SXmqflW+q9IfvxrN60XRMSG71BEfJPkstp04B3Al9JJ+wP/WHKdWdkf+dqlz+vTdWYvGX2wyTzNPJj+u3V6MFazU5P6VezrtnHD0GGS3iHpeGAKcCvJ2cOttck0/0NqtrzxkvZSkgjzlrT4SeCT6fvs9dingSclvZzkRzBP9kd+RsP19eyy1gDjJf0r+Ue0LfdKGsL1JP3KAY5Oe/RsnfZ8mS1pPsmZWE12m17R8COZ3abHkrB1LBt7prSFpDflvLYDfpypdloa/+aSpqa9db5D/dFrIRHxFMklP0iu138o3UdHUN9vP2vDfpL0yrLrLBjX7Ww8av8QyQERbLz/gKRtJX2O5J7dA8CP2NjjDmDnTN2yf2PZH/mdc8qubVxHJt6hXJl5/ylJ20g6gOReTJ6hvme9p8rrVv3yotg9hmk58w2aDpySKWt8rSLTA6VJLMuGmD9IjhQPytR/IcmXq7HeH5ps06E5dZel0z6aM201yY/0oGvTjfMPs11zMvWvKlB/Hvn3A2qvczN1Z+bVSacdmTPtKWB5zv9dNsZTC8Q41P9TAHPTel8bpt4xOcu8qsm6ljXs07xeSdmeMq/L1P9QTt2rhtr2hvJzh9sn6Tx/27COpQ3Tdyqy38r+jaX1NyHp+JFd3ozM9IMbpt01xHcwu6+b9UrK9q7K/j8O9T2blrdPG8qH/Y608+Uzhs77GUkvoTtI/kDXA/eSXueOzOl0AQE8Q3Ij8nqSnicvi0zWc0Q8QnK6fi3JD94qkobuM02WeTHJDdF70tiyPgt8iuTm3FqSXiyvJ7k+XKmIWEByWeFikht/z5F8CRencX4+U3cxyaWzO6k/NSciLiS5bHAXyRnVYpL9dWfHN2JjDO8juQd0Ncm+XEdybfpKkl45/zPC5V4FvJ0kD+RZkoOBo6m/TJY9cv0qSdfme6Gjly2+R/318nMapj8C/AfJZZ0HSf4OHyf5G39XRCwc6Yoj4jngl5mix9mYJ0O6jucbPhdZ7u9IOkUsItnXy0kOpL7WZJahvmc9R2nLZGZ9Lk0EOwC4MpLr50h6E7CQ5BLOvcBOkdyLMmvKz0oyGz02I+nxtk7S/SR5GrUbo88B/+BGwYrwpSSz0eMZkkSqu0l6wU0guXRxAfDqiLi0i7FZH/GlJDMzq+MzBjMzq9P39xi23XbbmDZtWrfDMDPrK0uWLHkwIibnTev7hmHatGksXry422GYmfUVSXc3m+ZLSWZmVscNg5mZ1XHDYGZmddwwmJlZHTcMZmZWxw2DmZnVqay7qqSpJKM5vZjkaYZnRcQZDXXmkDyH/a606JKI+CRmZjkW3ryS+Zffzqo1a9lx4gROeuMezN272NhXefMCI17eaFJlHsNzwP+LiJskbQ0skXRF+vjarF9ExFsrjMvM+tDCm1dy8iVLWbsueYr1yjVrOfmS5Inaw/2Y58170vdvBcG69VF6eaNNZZeSIuLeiLgpff84cBvJqGZmZqXNv/z2DT/sNWvXrWf+5bc3mWPoedc9HxsahbLLG226co9B0jSSoRQX5UzeT9Ktkv4nHZIyb/7jJC2WtHj16tUdjNTMetWqNfljXDUrL1tnJHVHi8obBklbkYxm9IGIeKxh8k3ALhExA/gyyQAjg0TEWRExMyJmTp6c+6gPMxvldpw4oVR52TojqTtaVNowpCNMXQxcGBGXNE6PiMci4on0/WUkg89vW2WMZtYfTnrjHkwYP1BXNmH8wIabyGXnHT9OjB/QiJY32lTZK0nAN4HbIuILTeq8GLg/IkLSPiQN10N5dc1sbKvdEB5JL6Jm8450eaNNZQP1SNof+AXJQNy14QX/BdgZICLOlHQ88F6SHkxrgRMjYsjBuWfOnBl+uqqZWTmSlkTEzLxplZ0xRMS1gIap8xXgK9VEZGZmefp+PAYz665WksyKOmXhUhYsWs76CAYk5s2aymlzp7d1HbaRGwYzG7FWksyKOmXhUi648Z4Nn9dHbPjsxqEz/KwkMxuxVpLMilqwaHmpcmudGwYzG7FWksyKWt+kg0yzcmudGwYzG7FWksyKGlB+n5Vm5dY6NwxmNmKtJJkVNW/W1FLl1jrffDazEWslyayo2g1m90qqTmUJbp3iBDczs/J6IsHNzEanogPeFC0rc7ZRNIei3fW6qYoYfcZgZiPWmMcAycPosgPeAMnD6SIZ82CoehPGD/DpQ6YX+qHLW3fe/O2u103tjHGoMwbffDazESs64M269VHXKDSrVyYHomgORbvrdVNVMbphMLMR68QgNkWXWTSHot31uqmqGN0wmNmIdWIQm6LLLJpD0e563VRVjG4YzGzEig54M35AyT2FYeqVyYEomkPR7nrdVFWM7pVkZiNWZsCbomVFb6IWzaFod71uqipG90oyMxuDnMdgZn2tTN/9fshFyNNLcbthMLOeVmbMhyrGh+iEXovbN5/NrKeV6bvfD7kIeXotbjcMZtbTyvTd74dchDy9FrcbBjPraWX67vdDLkKeXovbDYOZ9bQyfff7IRchT6/F7ZvPZtbTyvTd74dchDy9FrfzGMzMxiDnMZhZT2plLIe5e0/p23EWei2eRj5jMLOuyB3LocS4De/48ylcvGRl342z0CvxeDwGM+s5uWM5lBi3YcGi5X05zkKvxZPHDYOZdUWrffTXN7na0evjLPRaPHncMJhZV7TaR39Ayi3v9XEWei2ePG4YzKwrcsdyKDFuw7xZU/tynIVeiyePeyWZWVe0OpbD3L2nMHOXSX03zkKvxZPHvZLMzMagnshjkDQVOB94MfA8cFZEnNFQR8AZwMHAU8AxEXFTVTGaWaJZP/tW8w5Gu1byE3opt6GyMwZJOwA7RMRNkrYGlgBzI+J3mToHA/9E0jDMAs6IiFlDLddnDGbt1ayffV7eQJm8g27lDVSllfyEbuQ29EQeQ0TcWzv6j4jHgduAxi1+O3B+JG4EJqYNiplVpFk/+7y8gTJ5B73UT78TWslP6LXchq70SpI0DdgbWNQwaQqwPPN5BYMbDyQdJ2mxpMWrV6/uVJhmY1Kz/vTN8gZaXe5o0Up+Qq/lNpRqGCTtKukASQdLerWkzcuuUNJWwMXAByLiscbJObMM+muMiLMiYmZEzJw8eXLZEMxsCM360zfLG2h1uaNFK/kJvZbbMGzDIGmapM9Kuge4A/gZ8GOSo/01kq6QdJikIssaT9IoXBgRl+RUWQFMzXzeCVhVYDvMrE2a9bPPyxsok3fQS/30O6GV/IRey20Y8sdc0hnArcBLgI8CewLbAJuS9C46GLgW+Dfg15JePcSyBHwTuC0ivtCk2qXAXyuxL/BoRNxbbpPMrBVz957Cpw+ZzpSJExAwZeIEPn3IdE6bO31Q+fxDZzD/sBn1ZYfNYP6hMwbNP5pvPEPz/VZku1uZtxOG7JUkaT7w2Yh4cNgFJT2KtoiIi5pM3x/4BbCUpLsqwL8AOwNExJlp4/EV4E0k3VWPjYghuxy5V5KZWXkjzmOIiJOKriQiLhtm+rXk30PI1gngH4uu08yqldfXfvHdD7Ng0XLWRzAgMW/WVE6bO73QvL12FtEPMVbBj8Qws0Ia+9qvXLOW//f9W1mf6a66PoILbrwHoK5xyJv35EuWAvTMD28/xFiVwr2SJL1Q0hmSfi3pPkkPZF+dDNLMui+vr/365/MvRS9YtLzuc6/108/TDzFWpcwZw/nAy4HzgPvJ6UZqZqNXmT71jTkPvdZPP08/xFiVMg3DHOB1fnaR2di048QJrCz4I9mY89Bs3l7KbeiHGKtSJsHtzpL1zWwUyetrPzAuvz/JvFlT6z73Wj/9PP0QY1XK/NCfAHxa0gxJA8PWNrNRJa+v/ecPm8FR++684QxhQOKofXce1Cup1/rp5+mHGKtS+OmqkqYA3wP2y5seEV1pLJzHYGZWXrvGY1hAkvX8fnzz2WzUOPLsG7juzoc3fJ692yR2nbxVodwEaH/f/1MWLh207iIjtZWNZ7SMndAJZc4YngL2iYjfdDakcnzGYDZyjY3CUPIuEbV7HIFTFi7dkAeRNY6Nj0sYah1F4+m3sRM6oV3jMfwOeEF7QjKzXlC0UYDBuQnQ/r7/eeuA+kZhqHUUjWc0jZ3QCWUahlOAL0j6S0nbS5qUfXUqQDPrDXnjMbS773+ZMR/y1lE0ntE0dkInlGkYLgP2AX5K8ijs1enrwfRfMxvF8sZjaPc4AmXGfMhbR9F4RtPYCZ1QpmE4IPN6feZV+2xmfWb2bsVP9htzE6D9ff/z1gGDf6iaraNoPKNp7IROKNwrKSKu7mQgZla9C9+zX0u9kmo3W9vVQ6e2jpH2SioaTytxt3ube1GZXknHA2si4oKG8qOAF0TE1zoQ37DcK8nMrLx29Ur6AJDXZWAZ8MERxGVmZj2oTILbTsDdOeUr0mlm1iVVJVyN9sQuS5RpGO4DXklyhpD1KpKeSWbWBVUNMOOBbMaOMpeSvgN8SdJBksanrzcAXwQu7Ex4ZjacqhKuxkJilyXKnDF8HNgVuByo/XWMA74P/Gub4zKzgqpKuBoLiV2WKHzGEBHrImIe8H+AdwFHAntExBERsa5TAZrZ0KpKuBoLiV2WKD3wTkTcERHfj4j/iog7OhGUmRVXVcLVWEjsssSQDYOkUyRtWWRBkmZL+r/tCcvMiqpqgBkPZDN2DJngJulc4P8CFwOXAosj4r502ubAnsD+wFHAi4CjI+LaDsdcxwluZmbljXignog4RtJ04Hjg28ALJAWwDtgUEHATcBZwbkQ829bIzayQKganaXXdVem1ePrRsL2SImIp8PeS3gu8AtgFmECSu3BLRDiHwayLiuYXdCIPoddyG3otnn5VplfS8xFxS0T8MCK+GxH/60bBrPuqGJym1XVXpdfi6VeleyWZWW+pYnCaVtddlV6Lp1+5YTDrc1UMTtPquqvSa/H0KzcMZn2uisFpWl13VXotnn5V5pEYZtaDqhicptV1V6XX4ulXhQfq6VXOYzAzK2/EeQw5CzocOBDYjobLUBHxtmHmPQd4K/BAROyVM30O8EPgrrTokoj4ZJn4zPpVq33vZ51+Bfc/vjGNaPutN+Xkg/cctEwodjR9ysKluUN75sVZdJnWP8oM7TmfZBS3K4FVQN2MEXHsMPO/FngCOH+IhuFDEfHWQgGlfMZg/a6x7z0k18WLPm6isVFoZvw4gWDd+o1f3bz1nLJwKRfceM+g+WfvNomb7nm0Ls6iy7Te064zhr8G5kXERSMJIiKukTRtJPOajWZD9b0v8uNapFEAWPf84IPAvPUsWJQ3gi9cd+fDI16m9ZcyvZLGAbd0KpDUfpJulfQ/kl7erJKk4yQtlrR49erVHQ7JrLO63fe+cT3r23Df0XkD/a1Mw3AWycPyOuUmYJeImAF8GVjYrGJEnBURMyNi5uTJkzsYklnndbvvfeN6BqS2L9P6y3CP3f5S7QVsA5wg6TpJX89OS6e3JCIei4gn0veXAeMlbdvqcs16Xat977ffetNC9caPE+MH6n/089Yzb9bU3Pln7zZpUJxFl2n9ZbgzhumZ18tJLiU9C7y0Ydr0VgOR9GIpOVSRtE8a20OtLtes17U6zsGijx40qHHYfutN+eLhr6xb5vzDZjD/0BnDrue0udM5at+dN5w5DEgcte/OXPie/QbFWXSZ1l8qy2OQtACYA2wL3E8yhvR4gIg4U9LxwHuB54C1wIkRcf1wy3WvJDOz8trSKynNQzghIh5vKN8S+HJE/M1Q86fjRQ81/SvAV4rGY9ZrqhoHoFmOQZF4Ft/98KB5Z+4yqefzEDzGQrXK5DGsB3aIiAcayrcF7ouIrjxew2cM1gtazUUoqlmOwVH77lzXOOTFMzBOrM/pXtpY3mt5CFXt27FmqDOGYXslSZok6UUko7W9MP1ce00myWa+v70hm/WXqsYBaJZj0FieF09eo5BX3mvjF3iMheoVOcp/kCTLOYDf5UwPkvsFZmNWVbkIzXIMGstbXW8v5SF0O89jLCrSMBxAcrbwc+AdQDb98Vng7ohY1YHYzPrGjhMnsDLnh6rd/fkHpNzGoTH3oFk8RfVSHkJV+9Y2GvZSUkRcHRFXAbsCC9PPtdcNbhTMqhsHoFmOQWN5XjwD4/IT1xrLey0PwWMsVG/IM4b0wXdZu6hJVmREXNOuoMz6TVXjANRuMA/XK6lZPP3YK8ljLFRvyF5Jkp4nuYdQaw1qlRs/ExH1TXpF3CvJzKy8VvIYsg8imgV8DjgduCEt2w/4F+DDrQZp1gva3V/+yLNvqHsq6ezdJrHr5K0GHbVD/llAXs5C3hE+DD6izivzUbYVUSaPYQnwkYi4oqH8IODfI2LvDsQ3LJ8xWLu0u798Y6NQ1u7bbckfH3hyUPk4QbaH6fgBQdQ/AtvjJNhwWspjyNgTWJFTvpLk2Ulmfa3d/eVbaRSA3EYB6hsFSH78G8dFWPd81DUK4L7/VlyZhuG3wMclbegjlr7/WDrNrK+Nhf7yo2lbrHPKPMbivcCPgZWSfp2WTQfWA29pd2BmVRsL/eVH07ZY5xQ+Y4iIX5HkMnyEZFCdm9P3u6bTzPpau/vLz95tUkvx7L7dlrnljekI4weU3FPIlnmcBGtBmUtJRMRT6ehpJ0bEByPi7IjIvxBq1mdaHReh0YXv2W9Q4zB7t0m5Yx3klV1x4pzc8i+8s2GchUNnMP+wGR4nwdpmuDyGQ4AfRcS69H1TEXFJu4Mrwr2SzMzKayWP4SLgxcAD6ftmAuhKgptZr8jLgYBiuQRl8idaybXwuAZWRGUjuHWKzxisF+TlQBTNJSiTP9FKroXHNbCsVsdj2Kz9IZmNLnk5EEVzCcrkT7SSa+FxDayoIt1VH5V0A8ljt68EboyI5zoblll/KZMf0Fi3TP5EK7kWYyFPw9qjSK+kfyLJbv574BrgEUk/kfTPkl4tqVTPJrPRqEx+QGPdZvPmlZep2855bWwpMh7D2RFxVETsBLwMOAlYA3wAuBF4WNIPOxumWW/Ly4EomktQJn+ilVwLj2tgRZXJfCYibgduB86UtAPwPuD9JOM+m41ZzcYMyCtrvNFbZryBVsYm8LgGVlSZp6tuC8whGerzAOAlwBKSy0tXRcTlHYpxSO6VZGZWXit5DEg6g6Qh2J2kIbgaOAG4LiKeamegZtAffe1byVkw63XDnjGko7jdTTJIz2URcVcVgRXlM4bRpR/62ufmLOSMidBrcZtltToew2uBbwKHAL+VdLek8yQdK2nXdgZq1g997XNzFnLGROi1uM2KKtIr6dqIOC0iDgQmAkcDd6X/1hqKczsbpo0V/dDXvpWcBbN+UPbpqs9GxFXAp4CPA18maSze3f7QbCzqh772reQsmPWDQg2DpE0kzZZ0iqSfkeQx/Bw4jOThekd3MEYbQ/qhr31uzkLOmAi9FrdZUUV6Jf0UeA2wBUkG9JXAPwI/j4i7OxuejTX90Ne+lZwFs35QpFfSAtLnJEXEHZVEVYJ7JZmZlddSr6SImJc+FqOlRkHSOZIekPSbJtMl6UuS7pD0a0mvamV9ZmY2MqUeidGic4GvAOc3mf5mkiS63YFZwNfTf80KO2XhUhYsWs76CAYk5s2aymlzp4+4HrR/YBzwJSfrbZU1DBFxjaRpQ1R5O3B+JNe2bpQ0UdIOEXFvJQFa3ztl4VIuuPGeDZ/XR2z4nP3RL1oPBiezrVyzlpMvWQpQemCclWvWctL3b60bvKfM8syq0kuPzJ4CLM98XpGWmRWyYNHyQuVF60H7B8YpOniPWTf1UsOgnLLcO+OSjpO0WNLi1atXdzgs6xfrm3SkaCwvWg86MzBOq3XNOq2XGoYVwNTM552AVXkVI+KsiJgZETMnT55cSXDW+waUd2wxuLxoPejMwDit1jXrtCEbBkmPS3qsyKsNsVwK/HXaO2lf4FHfX7Ay5s2aWqi8aD1o/8A4RQfvMeum4W4+H9+uFaX5EHOAbSWtIHmkxniAiDgTuAw4GLgDeAo4tl3rtrGhduN4uN5GRetBZwbGGenyzKpSeKCeXuUENzOz8lp97LaZmY0hhRsGSZtK+oSkP0h6WtL67KuTQZqZWXXKnDH8G8lTVD8PPA+cBHwVeAh4X/tDMzOzbijTMLwT+IeI+E9gPfDDiHg/yU3kgzoRnJmZVa9Mw7A98Lv0/RMkA/QA/AR4QzuDMjOz7inTMNwD7Ji+vwN4Y/p+P8Bpm2Zmo0SZhuEHwIHp+zOAT0i6i+Spqd9oc1xmZtYlhZ+uGhEnZ9Oj2DMAABBBSURBVN5fJGk5MBv4Q0T8uBPBmZlZ9Qo3DJJeC1wfEc8BRMQiYFE6HvRrI+KaTgVpZmbVKXMp6UpgUk75Nuk0MzMbBco0DCL/MdgvAp5sTzhmZtZtw15KknRp+jaACyQ9k5k8AOwFXN+B2MzMrAuK3GN4KP1XwCPUd019FrgWOLvNcZmZWZcM2zBExLEAkpYBn4sIXzYyMxvFCt9jiIhPRMSTkmZKOlzSlgCStpRUuHeTmZn1tjLdVbcnGWXt1ST3G3YH/gR8AXgaOKETAZqZWbXK9Er6D+A+kl5IT2XKv4+flWRmNmqUuQR0IHBgRDyi+kHT7wR2bmtUZmbWNWXOGCaQ9EJqNJnkUpKZmY0CZRqGa4BjMp9D0gDwz8DP2hmUmZl1T5lLSR8Grpb0amAzkpHcXk7ySIzZHYjNzMy6oEx31d8BrwBuAH4KbE5y43nviLizM+GZmVnVSuUfRMS9wMc6FIuZmfWAYc8YJG0h6auSVkp6QNJ3JG1bRXBmZla9ImcMnyC56XwhSe+jecDXgcM6F9botvDmlcy//HZWrVnLjhMncNIb92Du3lO6HZaZGVCsYTgE+NuI+C6ApAuA6yQNRMT6jkY3Ci28eSUnX7KUteuSXbdyzVpOvmQpgBsHM+sJRW4+TwV+UfsQEb8EngN27FRQo9n8y2/f0CjUrF23nvmX396liMzM6hVpGAYYnNj2HCVvXFti1Zq1pcrNzKpW5MddDB6gZ3PgbEkbnpkUEW9rd3Cj0Y4TJ7AypxHYceKELkRjZjZYkTOG84BVJAP21F4XAMsbyqyAk964BxPGD9SVTRg/wElv3KNLEZmZ1Ss8UI+1R+0Gs3slmVmv8n2CLpi79xQ3BGbWs8o8RK9lkt4k6XZJd0j6SM70YyStlnRL+vq7KuPrpoU3r2T2Z37Orh/5b2Z/5ucsvHllt0MyszGqsjOG9EmsXwUOAlYAv5J0afoMpqzvRcTxVcXVC5zbYGa9pMozhn2AOyLiTxHxLPBd4O0Vrr9nObfBzHpJlQ3DFJKeTDUr0rJG75D0a0kXSZqatyBJx0laLGnx6tWrOxFrpZzbYGa9pMqGQTll0fD5R8C0iHgF8L8kXWUHzxRxVkTMjIiZkydPbnOY1WuWw+DcBjPrhiobhhUkj9eo2YkkP2KDiHgoImqJdGcDf15RbF3l3AYz6yVVNgy/AnaXtKukTYEjgEuzFSTtkPn4NuC2CuPrmrl7T+HTh0xnysQJCJgycQKfPmS6bzybWVdU1ispIp6TdDxwOcnzl86JiN9K+iSwOCIuBd4v6W0kz2J6mPoxpkc15zaYWa9QRONl/v4yc+bMWLx4caXrLDOewpFn38B1dz684fPs3SZx2MydB80PxbKhPZaDmbWDpCURMTN3mhuGchpzDiC5H5B36aexUagR9Xfdxw8IAtY9v7E0b5ll1m1mNpShGoZKM59HgzI5B3mNAgzuirVufdQ1Cs2W6XwHM6uCG4aSqsw5aFym8x3MrApuGEqqMuegcZnOdzCzKrhhKKlMzsHs3SblLqMx02/8gBg/rr40b5nOdzCzKrhhKKlMzsGF79lvUOMwe7dJ/Mfhr6ybf/6hM5h/2Ixhl+l8BzOrgnslmZmNQe6VZGZmhXkEtxE4ZeFSFixazvoIBiTmzZrKXaufGJTIduF79iuckObENTPrFb6UVNIpC5dywY33FKq7+3ZbsuKRp4dNSHPimplVzZeS2mjBouXDV0r98YEnCyWkOXHNzHqJG4aS1rfhDMuJa2bWy9wwlDSgvPGGynHimpn1MjcMJc2blTvaaK7dt9uyUEKaE9fMrJe4YSjptLnTOWrfnTecOQxIHLXvzrmJbFecOKdQQpoT18ysl7hXkpnZGDRUr6Qxm8dQNG8gL2dh0Z8e4o8PPLmhzu7bbcldq5/kuUwbu4ngjk+/hZd+9DKeXr9xwuYDYpstxnP/489uKNt+6005+eA9ne9gZj1hTJ4xFM0bKJOz0G7OdzCzTnIeQ4OieQNlchbazfkOZtYtY7JhKJo30I6chVY438HMumFMNgxF8wbakbPQCuc7mFk3jMmGoWjeQJmchXZzvoOZdcuYbBiK5g00y1nYfbst6+rtvt2WbNJwcrGJYNln3sLmA/UTNh8Q22+9aV3Z9ltvyhcbBu9xvoOZdcuY7JVkZjbWOY+hoFZyBPLyHU6bO71puZlZr3LDkGrMEVi5Zi0nX7IUYNjGoTHfYX0EF9x4z6BEuFo54MbBzHrWmLzHkKeVHIFm+Q7ZRqFIfTOzXuCGIdVKjkDZfIdu50eYmQ3FDUOqlRyBsvkO3c6PMDMbihuGVCs5As3yHRq7tQ5X38ysF7hhSLWSI9As3+GKE+fklvvGs5n1MucxmJmNQT3zdFVJb5J0u6Q7JH0kZ/pmkr6XTl8kaVqV8ZmZWYUNg6QB4KvAm4E9gXmS9myo9rfAIxHxZ8B/AJ+tKj4zM0tUecawD3BHRPwpIp4Fvgu8vaHO24Hz0vcXAQdK7sJjZlalKhuGKUA2s2tFWpZbJyKeAx4FXtS4IEnHSVosafHq1as7FK6Z2dhUZcOQd+TfeOe7SB0i4qyImBkRMydPntyW4MzMLFFlw7ACyHbg3wlY1ayOpE2AbYCHK4nOzMyAah+i9ytgd0m7AiuBI4B3NdS5FDgauAE4FPh5DNOfdsmSJQ9KuruFuLYFHmxh/l4ymrYFRtf2jKZtgdG1PWN1W3ZpNqGyhiEinpN0PHA5MACcExG/lfRJYHFEXAp8E/i2pDtIzhSOKLDclq4lSVrcrC9vvxlN2wKja3tG07bA6Noeb8tglT52OyIuAy5rKPtY5v3TwGFVxmRmZvX8SAwzM6vjhgHO6nYAbTSatgVG1/aMpm2B0bU93pYGff+sJDMzay+fMZiZWR03DGZmVmfMNgySzpH0gKTfdDuWVkmaKulKSbdJ+q2kE7od00hJ2lzSLyXdmm7LJ7odU6skDUi6WdKPux1LqyQtk7RU0i2S+v5595ImSrpI0u/T789+3Y5pJCTtkf6f1F6PSfrAiJc3Vu8xSHot8ARwfkTs1e14WiFpB2CHiLhJ0tbAEmBuRPyuy6GVlj40ccuIeELSeOBa4ISIuLHLoY2YpBOBmcALIuKt3Y6nFZKWATMjYlQkhEk6D/hFRHxD0qbAFhGxpttxtSJ9kvVKYFZEjCj5d8yeMUTENYySx21ExL0RcVP6/nHgNgY/oLAvROKJ9OP49NW3Ry+SdgLeAnyj27FYPUkvAF5LklhLRDzb741C6kDgzpE2CjCGG4bRKh3caG9gUXcjGbn00sstwAPAFRHRt9sCfBH4MPB8twNpkwB+KmmJpOO6HUyLXgKsBr6VXur7hqT8gdr7yxHAglYW4IZhFJG0FXAx8IGIeKzb8YxURKyPiFeSPGhxH0l9ealP0luBByJiSbdjaaPZEfEqkgG3/jG9JNuvNgFeBXw9IvYGngQGjSzZT9LLYW8Dvt/KctwwjBLp9fiLgQsj4pJux9MO6Wn9VcCbuhzKSM0G3pZel/8u8HpJF3Q3pNZExKr03weAH5AMwNWvVgArMmekF5E0FP3szcBNEXF/KwtxwzAKpDdsvwncFhFf6HY8rZA0WdLE9P0E4C+B33c3qpGJiJMjYqeImEZyev/ziDiqy2GNmKQt084NpJdc3gD0ba++iLgPWC5pj7ToQKDvOmw0mEeLl5Gg4ofo9RJJC4A5wLaSVgAfj4hvdjeqEZsNvBtYml6bB/iX9KGF/WYH4Ly0Z8U44L8iou+7eY4S2wM/SEfb3QT4TkT8pLshteyfgAvTSzB/Ao7tcjwjJmkL4CDg71te1ljtrmpmZvl8KcnMzOq4YTAzszpuGMzMrI4bBjMzq+OGwczM6rhhsFFP0jGSnhi+Zm9qJX5Jr5P0h7T7b0dImi5p5Sh5nIThhsEqIulcSZG+1kn6k6TPlfkxSZfRkZyG9HHSH+rEsrscx3zg9IhY38Zl1omIpcCNwImdWodVyw2DVel/SRLYXgKcArwP+FxXIxrFJL0GeCktPjenoG8B75U0ZpNmRxM3DFalZyLivohYHhHfAS4E5tYmStpT0n9LejwdRGmBpBen004FjgbekjnzmJNO+4yk2yWtTY+4/13S5u0MfKjY0unnSvqxpBPSyyqPSPpWmo1aq7OlpPMlPSHpfkknp/Ocm06/CtgFmF/bxoYYDpT0G0lPKhmYaddhwn4X8L8R8VTDct4iaVG6vx6S9KPa/kr338fS7Xlc0nJJhysZ0Oa7aex/lPSGhnX9FJhE8jQB63NuGKyb1pKMt1AbbOgakmfv7EPyjKStgEsljSM5s/gvNp517ABcny7nSeBvgJeRnIUcAXy0XUEWiK3mL4C90umHA38FZEfT+zzwurT89cCMdJ6aQ0ge7PbJzDbWbAacTLKd+wETgTOHCf0vgLpR1iS9CfghcAXw58ABwNXU/xZ8APglyQPl/gs4D/gOcBnwynRfXJBtfCPiWeCWdPus30WEX351/AWcC/w483kf4EHge+nnTwI/a5jnhSTP/98nbxlDrOsfgDsyn48BnhhmnmXAh5pMKxrbcmCTTJ2zSY7YIWlIngWOyEzfEngEOHeoONL4A9gjU3ZkurxxQ2zTGuDYhrLrgO8Osx8WZD5vla77S5myaWnZzIZ5LwG+3e2/Nb9af/l6oFXpTWnvmk1IzhR+SPIQM0iOXl/bpPfNbiRHsLkkHUpylPtnJD9kA+mrXYrG9ruIeC4zbRUwK1NvfKYuEfGkio85/kxE3N6w7PEkZw7NRiKcADzdULY3SSM2lF9nYnxC0lPA0sz02iOdt2uYb226TutzbhisStcAxwHrgFURsS4zbRzw30Bej5ymz5aXtC/JWAefAD5IcpT8Ntp7U7tobOsapgUbL9EoUzYSzzV8ri1nqMvBD5Kc2ZSVtx3rGj7nrXsSyRmH9Tk3DFalpyLijibTbgLeCdzd0GBkPcvgM4HZwMqI+LdagaRdWo60fGzDuYPkx3Uf4C7Y8JjkvYA7M/XytnGkbgb2zCk7kOQyV7vtRXI5yfqcbz5br/gqsA3wPUmzJL1E0l9KOqs2OAzJ0ehekvaQtG06at0fgCmSjkzneS/JYCUjsaOkVza8ti0Y25Ai4gngHOCzae+iPYFvkHwHs2cRy4C/kDQlXXcrLgf2byg7HThM0mlpT6uXS/pgtvfUSCgZa3wKSe8k63NuGKwnRDJk5GzgeeAnwG9JfpCfSV+QHOXeRtLTZjXJ+MM/Ikni+iLJtfGDgI+NMIwPkhxRZ19HFIytiA8BvwAuBa5M411M/X2AjwFTSc4iVo9wO2ouAP6PpJfXCiIZvOmvSIaAvJmkR9IBJNvWinnATyPi7haXYz3AA/WYdYmkzYC7gfkR8fkOreMzwOSI+NtOLD9dx2bAH4F5EXFdp9Zj1fEZg1lFJO0t6V2S/kzS3iT5AVsD3+vgaj8F/EkdfFYSSVLe6W4URg+fMZhVJG0Mzgb2IOlldAtJzsKSrgZm1sANg5mZ1fGlJDMzq+OGwczM6rhhMDOzOm4YzMysjhsGMzOr8/8B0ksJLM4NI0AAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "# Let's start looking at some data. \n", - "# Let's start with a scatter plot of petal length vs. petal width\n", - "fig = plt.figure(1)\n", + "# Let's start looking at some data - plotting petal length vs. petal width\n", "plt.scatter(iris.data[:, pl_ind], iris.data[:, pw_ind])\n", "\n", "# Add title and labels\n", "plt.title('Iris Data: Petal Length vs. Width', fontsize=16, fontweight='bold')\n", - "plt.xlabel('Petal Length', fontsize=14);\n", - "plt.ylabel('Petal Width', fontsize=14);" + "plt.xlabel('Petal Length (cm)', fontsize=14);\n", + "plt.ylabel('Petal Width (cm)', fontsize=14);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just from plotting the data, we can see that there seems to be some kind of structure in the data. \n", + "\n", + "In this case, we do know that there are different species in our dataset, which will be useful information for comparing to our clustering analysis. \n", + "\n", + "Note that we are not going to use these labels in the clustering analysis itself. Clustering, as we will apply it here, is an unsupervised method, meaning we are not going to use any labels to try and learn the structure of the data. \n", + "\n", + "To see the structure that is present in the data, let's replot the data, color coding by species." ] }, { @@ -169,53 +197,76 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEcCAYAAAAydkhNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xt8FdW58PHfQxLEyMULthWQBGsV\nuQqiQPUIFlCrVnuqViy1oLUcg7bavlZrOVW0pee02urpW1Fpy0VJ1Ve0Vqv1WCl4qR4xeFAExKIE\n5CJE1BjuCXneP2Z2mOzMZM/ee/Y1z/fzmQ97r1kz88wmydqz1jyzRFUxxhhj/HTKdQDGGGPylzUS\nxhhjAlkjYYwxJpA1EsYYYwJZI2GMMSaQNRLGGGMCWSPhQ0RmiIi6y4wktpvn2a4yolhqPftsFpE9\nIrJFRP4hIreIyGfT3P9X3fOdISKHRhFzyOOO9ZyXd/lURF4WkcvT3HfsnCojinFGiPot55HqMbNJ\nRKbEPiefdUmde74RkbM88d8Xt26OZ93P4tY94Vk3wC2L/Q7Whjiu92/HFE954O+ZiFR6tpmXxmln\nRGmuAzBJEeAg4HPu8kXgWhG5RFX/luI+vwpMdl/PAz5JN8g0dQNGA6NFZIiqfj+FfYwFbnFfLwFq\nI4ms+EwBxrivZ+QujIx4BWjG+SJ8aty6L3peB637GFgdYTz59nsWml1JREBEugCo6hRVFXepzcCh\n+uE0EoNxftAADgP+JCInZOB42fK8qgrQBecPV8y1UV2RmY5FVT8F3nLfDhCRwwBEpCdwvKfqKSJS\n6q7rDxzhlr+sbqaxqla6v9OVWQk+z1gjkYS47qR/EZGFIlKP+40jqLtJRL4jIjUi8pGI7BWRTSLy\nNxGZHHCoQKq6T1XfUtXLgT+7xYdw4JszInKJu//3RWSXe8z3ROReb/eU2y3ijWGdN34R6Soi80Vk\nhYhsF5FGEflERF4QkUt8Pp/YtrXJnpd7bntVdT6wIrZLYIRn/6NE5E8istWNZbP7mVd66tR6Pwtg\nsSeusW6de0TkdRGpc/fTICJLRaRKRCSV2JMlIt9wP8d69//nHRGZKSLlcfVisS8RkXNE5DUR2S0i\n74rIDfHxunXeEKdbco2IXBb3czk21r3BgauIhF1lInKNG+MuEVkuIl9OcH5Hisg+d5/PxK37sud4\nt7llQ0XkMfd3Y6/78/a6iNwnImVJfrwx/4gdEufqFA5cKdQAdUA5MMwt815VvOyJ17e7SURGi8gr\n7mddKyI/8Asi0e+ZT/2vi8ib7v/z6lT+TkRKVW2JW3AuvdVdZnjK53nKP/S8rvVZX+mWXewpi18W\nhoilNn6fnnWjPes+BTq55fe2c8y3gc6xL0ntLJU4XVrt1ZkcF0+rzyPBeY311F8St+4tz7qL3LKv\nA00BcWwHjvf5vOKXsW6dPe3UuSUgxhkhzqllPwnq/d92jv8acLDPPutxuk/i638zLl6/z2iT9zNw\n/28D/199zv0Dn3r7gGMSnOdjbt1G4EhP+f1ueTPO1XE5zh/soJi6pvh7PMmzj5lu2X+67+8C/uS+\nvtZdN8dTf4zP72Ctp2wAsNMn1s2e11NC/p55/z/8PmsFTsvV30O7kkjdpzh/pA8Gzmmn3unuvztw\nLnMPAipw/ug9E7RRSG97XnfjwKXyH4GRQE+gDPgsMNddd3wsXnW6eOZ79tFPW3eXNQCX4PwQl+N0\nB30R2OXWT2W8IJCIdHa/NQ10ixR4zf12fQ9QArwO9Mf5HM/A+WN1OHC7e06VwK2e3Z7hOaclbtkV\nwBdwPrPOwBBgo7vu2kxeTYjIKOAa9+08nIa4HPihWzYCqPLZtDvwHzjdi9d4yi/zvJ6J8xmBczXV\nA7gU6OXdkarWuv/3z3vKYp+R37kfDnwNOBSodsvKcH422jPH/bcU5+cdETkYp38enC8H64ATcH5W\nAW7A+Tk7EjjNPeemBMcJ8g/P69Pcf0/1rPtHXFmsTiNOY92en+D8vwHMwvlsvoTzmbcS4vfM67PA\nNHd/v/CUX0au5Kp1yueFcFcS3/DZzru+0i37AQe+Nd0PXAucCfQIGUtt/D49646g9beNI93yLwAP\nABtw/ojGfyu5sb2YPesE5wf2f/D/Jrs7jc94rE9c8ct/uXUnhKi727Nv7//fWJ9jX4IzoP0RsN9n\nX5/1iXFGiHNq9W08oM7MEOfyjM8+PwBK3LKunvK33bJyz7lsj9V11/3D7/NwPwPfeOPOfaGn/DxP\n+b0JPo8SDnyzfskt815Zf9Mt+wzOH2YFlgE34zQqx0bwu7zR3e8u93Pb7b7vBYxyX2/CaZRicS0N\n+B2s9ZRt9dTv4Sl/wFM+JeTvWaVnXY2nfJDfz0S2F7uSSN3/hqw3C3gE5w/sZTiXuf8NbBWRH6UZ\nQ3/P60+B7SLSA3gJ+CZwNM43vngHh9z/jcDdOFcl3XEaDa8uSUUbzk7gVWAqcJ1b9pkQ23URkUMS\nVRKRicBDOP3xh+E/Lhf280lFmHM5wqfsXVXd777e6SmP/R8czoFz2eSpC86XhXSs8bz2O7YvN4b7\n3bdfFJEK4Bvu+3rgUbfeNuAqnC7c4ThXgg8D/xSRF0Wkexqxx8YWDgaudGOuVdXNOA3SbpwGY5Jn\nm3+QWOz/qEFV6z3lG/0qJyGlzzqTrJFI3e4wlVR1j6p+HeeX+DScro5XcbpLfi4ivdOI4SbP66dU\ntRmnCyb2h2gRcJQ6l7vfCwqxnf1P9Lz+KnCQu6/tKcYb5Hk9cPndVVVHqerv1P06BWzz1P2dp663\ni6STqsZ+qcKe03dx+v8FpxsrG7znMingXE7x2a4x9sLzuXh9hPNFBOAoEfH+bh8dEEt7n5PvsZPY\nJmau+6/gNASxAe8HVbXld0hV/4DT9TYYuBD4jbvqNODqJI/p5f2DH+sefdk9prdb6fsB2wT50P23\nm/vFLKZPQP1sfNYZYY1EhonIhSJyDdAbeAPnquKN2GqCf6iC9lcmIoPESbo51y3eCdzmvvb23+4B\ndorIQJw/iH68f/CHxvXHe/f1CVAmIj/B/5tu2nc3teNlnPvWASa7dwZ1c++gOVVEbse5QovxntOQ\nuD+Y3nP61AlbLufAHS6REJGzfZbPAH/xVPuZG38XETnavevnj7T+VhuKqu7C6RYEp3//evczmkjr\nvACvls9JRE5M9pgh41rDgW/z1+N8OYID4xWISE8RuQNnjG8b8CQH7twD6Oupm+zPmPcPfl+fspfi\nj+GJtz2LPa9/LiI9ROQMnLEbP+39nuW3XPVz5fNCuDGJSp/t2qwH/t1TFr9sxnMnS0Aste1srzjf\nICd46h+G84sWX++dgHO6yKdurbtuus+6Opw/2G36suO3T3BeYz31l4Sofyn+4wexZZ6n7gi/Ou66\nST7rdgHv+/zfeWOcESLG9v6fFPiqW29WgnpTfPa5JOBYtXGfqd/dTd47bsZ46l/vU3dJe+ceVz4v\n0WfibvPtuGOsiFvfJ8znluzPmFu/FOemEe/+hnrWnxO3bl07v4Pezzro7ibvXVre/8f2fs8q/T7T\nuPKEvyOZWuxKIvMW4dxttBbnh3U/sAW3X1w9l9whKLAXZxDzZZw7WE5QT7a1qn6Mc0n/Es4fv804\njd5/BuzzUZzB1A1ubF6/AH6OM7C3G+dumC/h9Cdnlao+iNP18CjOoGETzi9kjRvnrzx1a3C6196l\n9eU7qlqN07WwDudKqwbn83o34ydxIIZpOGNGz+N8lo04fdmLce7u+WuK+10CXICTZ7IP54vBZFp3\npXm/0d6Nc7v0Fsho18bDtO5fnxO3/mPgTpyunw9xfg4bcH7Gv6Gqj6d6YFVtApZ6iho4kIeDe4zm\nuPdh9rsK54aKV3E+6/dxvlTNCtikvd+zvCZui2WMKXBu0tkZwGJ1+tsRkbOBx3G6ebYAfdQZuzIm\nFHt2kzHF4yCcO+caRWQrTh5IbFC1CbjKGgiTLOtuMqZ47MVJ2lqPczfdwTjdGwuAk1X1iRzGZgqU\ndTcZY4wJZFcSxhhjAhX8mETPnj21srIy12EYY0xBWbZs2YeqemSiegXfSFRWVlJTU5PrMIwxpqCI\nyPow9ay7yRhjTCBrJIwxxgSyRsIYY0yggh+T8NPY2MjGjRvZs2dPrkMpCl26dKFPnz6UlaU6i6Qx\nplAVZSOxceNGunXrRmVlJYX0sMV8pKps376djRs30q9fv1yHY4zJsqLsbtqzZw9HHHGENRAREBGO\nOOIIuyozpoMqykYCsAYiQvZZGtNxZa2RcCdVWSwiq0VkpYhc61NnrIjUi8hyd7k5W/EZYwpHdTVU\nVkKnTs6/1dXpb5/uPotVNsckmoD/o6qvi0g3YJmI/M19LrvXi6p6Xhbjyrl58+Zx5pln0qtXr1yH\nYkzeq66GqVNh1y7n/fr1znuASSHm9PPb/vLLQQT27Uttn8Usa1cSqrpFVV93XzcAq3Gm9Ozw5s2b\nx+bNm3MdhjEFYfr0A3/gY3btcspT3b6x8UADkco+i1lOxiREpBJnTuFXfVaPFpE3ROSv7tzMfttP\nFZEaEampq6tLO57qFdVU3lVJp1s7UXlXJdUr0r/O3LlzJ+eeey5Dhw5l0KBBPPzwwyxbtowxY8Zw\n0kkncdZZZ7FlyxYWLlxITU0NkyZN4sQTT2T37t0sWrSIYcOGMXjwYK644gr27t0LwI9+9CMGDBjA\nkCFDuP766wF48sknGTlyJMOGDWP8+PFs3bo17diNyWcbNiRXnmq9ZOsWrWzPlwp0BZYBX/NZ1x3o\n6pl79p+J9nfSSSdpvFWrVrUpC7LgzQVaPrNcmUHLUj6zXBe8uSD0PvwsXLhQr7zyypb3n3zyiY4e\nPVq3bdumqqoPPfSQXn755aqqOmbMGH3ttddUVXX37t3ap08fXbNmjaqqXnbZZXrnnXfq9u3b9bjj\njtPm5mZVVf34449VVfWjjz5qKfvd736nP/jBD9KKO0gyn6kxmVRRoQptl4qK9LZPZ5+FCKjRfJvj\n2p1e8VGgWlUfi1+vqp+q6g739dNAmYj0zGRM0xdNZ1dj62vPXY27mL4ovevMwYMH89xzz3HjjTfy\n4osv8v777/PWW28xYcIETjzxRH72s5+xcePGNtutWbOGfv36cdxxxwEwefJkXnjhBbp3706XLl24\n8soreeyxxygvLwecnJCzzjqLwYMHc/vtt7Ny5cq04jYm382cCe6Pf4vycqc81e3LyqBz59T3Wcyy\neXeTAH8AVqvqrwPqfM6th4ic4sa33a9uVDbU+19PBpWHddxxx7Fs2TIGDx7MTTfdxKOPPsrAgQNZ\nvnw5y5cvZ8WKFTz77LNtttOASaBKS0tZunQpF154IY8//jhnn302AN/97ne55pprWLFiBffdd5/l\nM5iiN2kSzJ4NFRXOYHNFhfM+7ACz3/Zz58KcOanvs5hl8+6mU4HLgBUistwt+zHQF0BV7wUuAqpE\npAnYDUzUoL+aEenboy/r69s+Mbdvj75p7Xfz5s0cfvjhfPOb36Rr167Mnj2buro6XnnlFUaPHk1j\nYyPvvPMOAwcOpFu3bjQ0NADQv39/amtrWbt2LcceeywPPPAAY8aMYceOHezatYtzzjmHUaNGceyx\nxwJQX19P797O+P/8+fPTitmYQjFpUnp/wIO2t0ahraw1Eqr6EtBuVpaq/hb4bXYicswcN5OpT05t\n1eVUXlbOzHHpXWeuWLGCH/7wh3Tq1ImysjLuueceSktL+d73vkd9fT1NTU1cd911DBw4kClTpnDV\nVVdx8MEH88orrzB37lwuvvhimpqaOPnkk7nqqqv46KOPuOCCC9izZw+qyp133gnAjBkzuPjii+nd\nuzejRo1i3bp1acVtTDKqq507gDZsgL59ne6ZqP/QTpvmfKvfvx9KSpxbU2fNivYYph1hBi7yeUl3\n4FrVGbyuuLNCZYZoxZ0VaQ9aFyMbuDbxFixQLS9vPdBbXu6UR6Wqyn9AuaoqumN0VIQcuBbNbG9O\nxo0YMULjZ6ZbvXo1J5xwQo4iKk72mZp4lZVO0lm8igqorY3mGKWlzhVEvJISaGqK5hgdlYgsU9UR\nieoV7bObjDGZlW6+Qhh+DUR75SZ61kgYY1LSN+DejqDyVJSUJFduomeNhDEmJenmK4QRe35S2HIT\nPWskjDEpSTdfIYxZs6Cq6sCVQ0mJ897ubsqeopyZzhiTHenmK4Qxa5Y1CrlkVxIF4uabb+a5555L\nerslS5Zw3nkd6snrxpgIWSORR1SV5uZm33W33XYb48ePz3gMTXZfoUlC2Ml7op7kJ5ltw9YthEmH\nchJjmGSKfF6iSKbTBQucxz2KOP+mmQ10ww036N13393y/pZbbtE77rhDf/nLX+qIESN08ODBevPN\nN6uq6rp167R///5aVVWlJ554otbW1urkyZN14MCBOmjQIP31r3+tqqqTJ0/WRx55RFVVly5dqqNH\nj9YhQ4boySefrJ9++qnu3r1bp0yZooMGDdITTzxR//73v6uq6uLFi/Xcc89VVdXt27frBRdcoIMH\nD9aRI0fqG2+80RLfd77zHZ0wYYJeeumlvudkyXQmnl8yXVmZaufOrcs6d3bKE9ULm4iXTBJf2LrZ\nSAxMV9QxEjKZLud/5NNd0m4kMvDT8frrr+vpp5/e8v6EE07Q+fPn63e+8x1tbm7W/fv367nnnqvP\nP/+8rlu3TkVEX3nlFVVVramp0fHjx7dsG3skeKyR2Lt3r/br10+XLl2qqqr19fXa2Niod9xxh06Z\nMkVVVVevXq1HH3207t69u1Ujcc011+iMGTNUVXXRokU6dOhQVXUaieHDh+uuXbsCz8kaCRMvmUdu\nR/lo7mQeFR62brqPH8+GqGMM20hYd1O601z5GDZsGNu2bWPz5s288cYbHHbYYbz55ps8++yzDBs2\njOHDh/P222/zz3/+E4CKigpGjRoFwDHHHMN7773Hd7/7XZ555hm6d+/eat9r1qzhqKOO4uSTTwag\ne/fulJaW8tJLL3HZZZcBzkMCKyoqeOedd1pt663zpS99ie3bt1NfXw/A+eefz8EHH5zyOZuOJxMT\n8oTZZzJJfGHrZiMxMF25itEaiQx98hdddBELFy7k4YcfZuLEiagqN910U8ujwteuXcu3v/1tAA45\n5JCW7Q477DDeeOMNxo4dy913382VV17Zar+qivs09TblifjVie3LG4MxYUSZNJfMPpNJ4gtbNxuJ\ngenKVYzWSGTok584cSIPPfQQCxcu5KKLLuKss85izpw57NixA4BNmzaxbdu2Ntt9+OGHNDc3c+GF\nF/LTn/6U119/vdX6/v37s3nzZl577TUAGhoaaGpq4vTTT6faHcV655132LBhA8cff3yrbb11lixZ\nQs+ePdtcqRgTVtjJezp3dsoT1QubiJdMEl/YutlIDExXzmIM0yeVz0s+jknEDBo0SMeOHdvy/q67\n7tJBgwbpoEGDdNSoUbp27Vpdt26dDhw4sKXO8uXLddiwYTp06FAdOnSoPv3006raduB65MiROmTI\nEB05cqQ2NDTo7t27dfLkyQkHrs8//3zfgevbb7+93XOxMQnjx++ej3TK0jluunUjvn8lI6KMEXsK\nbBJPLM3GQ/ELnD0F1pjiYk+BTcakSc6zjZubnX+tgTAmbxRTnoOffI/bHsthjMlb1dXOw/xiNyCu\nX3/g4X7e73Jh6+WbQojbriSMMXkr7B3qGbiTPSsKIW5rJIwxeauY8hz8FELc1kgYY/JWMeU5+CmE\nuK2RMMbkrWLKc/BTCHFbI5Elmzdv5qKLLkp6uyuvvJJVq1a1W+fee+/l/vvvTzU0Y/JW2ImNsjEB\nUiYUQtyWJ5FjTU1NlJbm/01mhfSZGmMSszyJJER9n/KNN97ILM9UWjNmzOBXv/oVgwYNAmDevHlc\nfPHFfOUrX+HMM8+kubmZadOmMXDgQM477zzOOeccFi5cCMDYsWOJNYJdu3Zl+vTpDB06lFGjRrF1\n69aW/d9xxx0ArF27lvHjxzN06FCGDx/Ou+++y44dOxg3bhzDhw9n8ODB/PnPf07vBI2JQLbmosin\nPIR8iiW0MGnZ+byk+1iOTDyVw+9R4c8//3zL4zfmzp2rvXv31u3bt6uq6iOPPKJf/vKXdf/+/bpl\nyxY99NBDWx7BMWbMGH3ttddUVRXQJ554QlVVf/jDH+pPf/pTVW39WI1TTjlFH3vsMVVV3b17t+7c\nuVMbGxu1vr5eVVXr6ur085//vDY3Nyd1TvZYDhMlv9+7sPNO+NVLdz6JXJ1zLueswB4VHk4m7lP2\ne1R437jbFSZMmMDhhx8OOI/wvvjii+nUqROf+9znOOOMM3z327lz55apSE866SRqa2tbrW9oaGDT\npk3867/+KwBdunShvLwcVeXHP/4xQ4YMYfz48WzatKnlKsSYXPD7vdu3DxobW5c1NjrlieoF/c7m\nUx5CPsWSjPzvDM+wTN2nHHtU+AcffMDEiRPbrPc+mltDjguVlZW1PNq7pKSkzVSjQfuprq6mrq6O\nZcuWUVZWRmVlJXv27Al7KsZELltzUeRTHkI+xZKMDn8lkan7lOMfFd6e0047jUcffZTm5ma2bt3K\nkiVLUjpm9+7d6dOnD48//jgAe/fuZdeuXdTX1/OZz3yGsrIyFi9ezPr161PavzFRydZcFPmUh5BP\nsSSjwzcSmbpPeeDAgTQ0NNC7d2+OOuqoduteeOGF9OnTh0GDBvFv//ZvjBw5kh49eqR03AceeIDf\n/OY3DBkyhC9+8Yt88MEHTJo0iZqaGkaMGEF1dTX9+/dPad/GRMXv9y7svBN+9dKdTyIb8imWpIQZ\nuMjnJe35JDQ/niPf0NCgqqoffvihHnPMMbply5bsB9EOG7g2UcvWXBT58Pudj7Fg80kU1j39Y8eO\n5ZNPPmHfvn3ccMMNTJkyJdchtVKIn6kxJlje5UmIyNEislhEVovIShG51qeOiMhvRGStiLwpIsOz\nFV+uLVmyhOXLl7Nq1aq8ayBMxxJ0L38mchiKRTrnnPefV5jLjSgW4ChguPu6G/AOMCCuzjnAXwEB\nRgGvJtpvUHdTsnkAJlhzc7N1N3UQQffyV1WlnteQy1yAbEgn/yGXuRPke3eTiPwZ+K2q/s1Tdh+w\nRFUfdN+vAcaq6pag/fh1N61bt45u3bpxxBFHtNwyalKjqmzfvp2Ghgb69euX63BMhlVWOhPfxCsp\ngf37U99vRYUz6WMxCvrMwpxzOtumK2x3U07yJESkEhgGvBq3qjfwvuf9RresVSMhIlOBqUCbJDWA\nPn36sHHjRurq6iKLuSPr0qULffr0yXUYJguC7tlPp4Fob7/FIJ38h0LInch6IyEiXYFHgetU9dP4\n1T6btLnUUdXZwGxwriTi15eVldm3XmNS0LdvZq4k8j0XIB1Bn1mYc05n22zJap6EiJThNBDVqvqY\nT5WNwNGe932AzdmIzRgTfC//1Kmp5zUURC5AGtLJfyiE3Ils3t0kwB+A1ar664BqTwDfcu9yGgXU\ntzceYYyJVtD8BrNmtS2fMwfmzm1dNneuU57P8yNELZ05IWw+Ce+BRE4DXgRWAM1u8Y+BvgCqeq/b\nkPwWOBvYBVyuqjU+u2vhN3BtjDGmfXmXJ6GqL6mqqOoQVT3RXZ5W1XtV9V63jqrq1ar6eVUdnKiB\nMMZkj9/9/NOmQWmp8y24tNR5H3bbfFMIMeZCh38KrDEmsepqZ1wi9qjr9ethyhTwPoh4/3645x7n\ntWfOLd9tp051XudLt0ohxJgrRflYDmNMtILu5/dTUtK68chlLkBYhRBj1PKuu8kYU7iSuW8//lbZ\nQsgFKIQYc8UaCWNMQsnct19SEm7bfMoFKIQYc8UaCWNMQn7385cGjGjG+vLb2zbfcgEKIcZcsUbC\nGJOQ3/388+ZBVdWBK4eSEue9d9A6aNt8ywUohBhzxQaujTGmA7KBa2NMQtPGv02pNCGilEoT08a/\nHTr3AaLPLfA7dthjJBNLUc//ELUwzxPP58VvPgljTGJV41YrNLeay8B5H1/mzCcRL+q5EKqqtM1x\nQbVTp8THSCaWQp3/IWrk+3wSUbHuJmNSUypN7A+ZTxuf+wDR5xaUloZ/0mz8MZKJpVDnf4ha2O4m\naySM6aBEFP+n8/uL/1PRqVPbMme/0NzctjxxPMnV9R4jmVjSiTvqc84lG5MwxrSrhPATRMTnPkD0\nuQV+xwgSf4xkYkkn7o6YTxG6kRCRS0Rktog8LiJPeJdMBmiMyYyp49bSdk4v9Slrm/sA0ecW+B0D\nnG/viY6RTCzFPv9D5MIMXAC3A43As8A8YK53CbOPTC02cG1M6qrGrdYSGhWatYRGrRq3WquqVEtK\nnEHZkhL/QeuYBQtUKypURZx/0x3A9Tt22GMkE0s6cUd9zrlClAPXIrIVuFpVF2aorUqZjUkYY0zy\noh6T6AQsTy8kY0wmZO2+/Q6XIGAgfCMxG/hmJgMxxiQvNg/C+vXOXTexeRAi//udtQOZfBPY3SQi\nv/G87QRMAlYBb+KMT7RQ1e9lKsBErLvJdGRZu2+/mBIEDBC+u6m9TJrBce9j3U39U47KGBOprM2D\nYBMudFiBjYSqnpHNQIwxyevb1/8LfuT37WftQCbfhBqTEJE5ItLNp/wQEZkTfVjGmDCydt9+h0wQ\nMBB+4HoycLBP+cHAt6ILxxiTjKzNg2ATLnRY7eZJiMjhOA93qQNOcP+NKQHOBWaqau9MBtkeG7g2\nxpjkRZUn8SGwDSdPfxVOIxFbPgB+D8wK3NoYk3mZmHAh6mNnQR6FUlQSPSf4DJwrib8DFwIfedbt\nA9ar6uYMxWaMSSSWv7Brl/M+lr8ArbuCwtbLxLGzII9CKTphH8tRAWzQMJWzzLqbTIcWNn8hE3kO\neZQ7kUehFIy055MQkdPDHkxVX0gitkhZI2E6tLATHGRiIoQ8mlwhj0IpGFEk0y3BGYuITQUS+y+I\nfw/OILYxJtvC5i9kIs8hj3In8iiUotPewPWRwGfcf88D1uDc7nqsu3wLeBs4P8MxGmOChM1fyESe\nQx7lTuRRKMUnzPPEgWXABJ/yCcD/htlHphabT8J0eJmYcCHqY2dBHoVSEIh4PondwHBVXR1XPgBY\npqp+iXZZYWMSxhiTvKjnk1i9UjzTAAAX50lEQVQJ3CIiLY2B+/pmd12YgOaIyDYReStg/VgRqReR\n5e5yc8jYjCl86dzk37u3M0IbW3r39t9f2GNMmwalpc6+Skud9wEhWm5CBxDmcgM4GdiKkyexxF22\n4yTanRxyH6cDw4G3AtaPBf4SZl/exbqbTMFbsEC1vNyZszO2lJeH6y/p1av1dkFLWZlq586Jj1FV\n5bv9gnF/aBNi2F2a/ESU3U0AIlKOM/FQf5w7nFYBf1TVnWEbJBGpdBuCQT7rxgLXq+p5YfcH1t1k\nikA6N/mLtL8+kfhjlJbC/v1tqlVSy3oqUtqlyU9R3ALbiqruwpmhLpNGi8gbwGacBsO3K0tEpgJT\nAfraPW6m0OVyrob4Y/g0EAAbODrlXZrCFthIiMjXgCdVtdF9HUhVH4sglteBClXdISLnAI8DXwg4\n3mzcBmvEiBF5lwVuTFJyeZN//DFKSnwbir68H/pKwr63FZf2Bq4XAod5Xgctj0QRiKp+qqo73NdP\nA2Ui0jOKfRuT19K5yb9Xr3DHKCuDzp0THyP2wKP4EMctahNi2F2awhbYSKhqJ1Xd5nkdtESSbS0i\nnxNxOlhF5BQ3tu1R7NuYvJbOXA2bNrVtKHr1ggULWu9v7lyYMyfxMWbNgqoq54oCnH+rqpj03BVt\nQgy7S1PYEs0ncZCq7o3kQCIP4tzB1BPnTqlbgDIAVb1XRK4BqoAmYDfwA1V9OdF+beDaGGOSF1We\nRL2ILBaRn4jIaSISeqA7nqpeqqpHqWqZqvZR1T+o6r2qeq+7/reqOlBVh6rqqDANhDF5I1sJAwE5\nDKHi8du2ABIdCiDE4tbe/bHAd4AFwEagGWgAngFuxMmd6BTmPttMLpYnYXIunTyHZATkMGhVVeJ4\nSkv9t40vz7NEh2x9tB0RGciTOB5nEqKxwBich/81AM+r6gWRtlxJsO4mk3PZmswgIIeBkhJoakoc\nT1h5lOhg80RkTtrzSSTY+VHANOB7QFeNaPA6FdZImJzL1mQG7SXOeY8fFE8yx8mTSRhsnojMifTZ\nTSLSU0QuEpG7RWQVsA74Es781uekF6oxBS4oMSDqhIGSgO9i8eXpHjePEh2y9dGaYO02EiLyXyLy\nJvA+cB3wCXAtcLiqnqqqN6nqf2chTmPyV7YmMwjIYWhT7hdPacA9J/HleZboYPNE5IH2BixwBqvX\nAVcD/cIMcmR7sYFrkxeyNZlBVZVqSYkzgltS0nbQur14/LYtgEkYCiDEgkQUA9cichrOQPUZwGig\njgNPgV2iqusy2H6FYmMSxhiTvEjGJFT1JVX9maqOAw4FJuNcWUwGVorIehGZF0XAxhhj8k/YSYdQ\n1X2qugT4OU629P/FaTguy0xoxmRZ1Flb48e3ngxo/PjgZDi/8rDJbzYbkMmghLfAulnWI3G6nGLd\nTgcB64HFwGJVXZDhOANZd5OJRHW1MwC8a9eBsvLy1B9GNH48LFoUru6AAbBqVbi68U9p7dzZuUe0\nsfFAWVmZ07Ds23egLJ1zMUUpkjwJEXkW+CJQDmzCbRSAv6tqGtk60bFGwkQi6qytdCcDygTLQDMe\nUU06tB34Ps7VwtpIIjMmH+Vy4p9sKaZzMVnTbiOhqpdmKxBjciqXE/9kSzGdi8ma0APXxhS1qLO2\nxo0LX3fAgPB147OrO3d2xiC8bDYgEyFrJIyB9Cb+8fPcc20binHjfCf0YeVK/3K/svnzW8c4Z44z\n+4/NBmQyJKUH/OUTG7g2xpjkRfqAP2NMAunmKoStm07+g+VOmFSEeXZHPi/27CaTc34z45SVqXbu\n3LosaLacsDPrpDMDj83eY+KQ7rObRKQBCNUXpardI2y3kmLdTSbnkpnkxy9XIWyORjq5HDZ7j4kT\nRZ7ENRHGY0zxSib/wK9u2ByNdHI5OkIeiMmIwEZCVednMxBjClZQjkVQ3bDbx9dNJ5ejI+SBmIyw\ngWtj0uWXY5FMrkLYHI10cjls9h6TqjADF0Bn4FbgHWAPsN+7hNlHphYbuDZ5wW9mnGRmywlbN50Z\neGz2HuNBFJMOxYjIL4BLgP8A7gT+HagEJgI/UdX7Im+9QrKBa2OMSV7UeRJfB65yG4P9wJ9V9Xs4\n80pMSD1MY+IUwr38Nn+D6UASPQU25rNA7IH3O3AmGwJ4BvhF1EGZDip+Tof16533kD+PlPCL8Yor\nWs/pkI9xG5OisFcSG4Be7uu1wFnu69HA7qiDMh3U9OmtJ/0B5/306bmJx49fjPv2tZ70B/IvbmNS\nFLaR+BMQe1rZfwG3isg6YB7w+wzEZTqiQriXP92cCGMKTKjuJlW9yfN6oYi8D5wKvKOqf8lUcKaD\nKYR7+dPNiTCmwIS6khCR0925rgFQ1VdV9dfAMyJyesaiMx1LIdzL7xej35wO+Ra3MSkK2920GDjc\np7yHu86Y9EU9p0Mm+MXoN6dDvsVtTIrC5kk0A59V1bq48uNwEjLsAX/GGFNAIsmTEJEnROQJnKfB\nLoi9d5engL8BL4cMaI6IbBORtwLWi4j8RkTWisibIjI8zH6NaWXaNCgtdb7Rl5Y679OpF/X8DZZP\nYQpNe+nYwFx3aQYe8ryfC9wH3AT0DJPaDZwODAfeClh/DvBXQIBRwKth9muP5TAtqqpaz5cQW6qq\nUqsX9fwNycwxYUyGEfFjOW4B7lDVnek0SCJSCfxFVQf5rLsPWKKqD7rv1wBjVXVLe/u07ibTorQU\n9u9vW15SAk1NydfLxPwNfmxOB5MDkT6WQ1VvVdWdIjJCRC4RkUPcgxzivespTb2B9z3vN7plbYjI\nVBGpEZGauro6vyqmI/L7w+9XHrZeJuZvSLeuMVkW9hbYz4rIq8BS4I84j+kA+DXwq4hiEZ8y38sc\nVZ2tqiNUdcSRRx4Z0eFNwSspCVcetl5QnkPY+RvCsnwKk8fC3gJ7J/ABcATgfSbBI8CZEcWyETja\n874PsDmifZuOIPa8pETlYetFPX9DMnNMGJMvwgxcAFuBQe7rBuAY93U/YGeYfbj1KwkeuD6X1gPX\nS8Ps0wauTStVVaolJc6gcElJ28HoZOtFPX+Dzelg8gQRD1x/CoxQ1XdEpAEYqqrvicgpwF9V9YgQ\n+3gQGAv0dBudW4Ayt6G6V0QE+C1wNs7VyuWqmnBE2gaujTEmeWEHrsMOOr8ATAF+7L5XESkBbgQW\nhdmBql6aYL0CV4eMxxhjTBaEbSRuAJ4XkZOBg3AGqwfiPJbj1AzFZowxJsfC3gK7ChgCvAI8C3TB\nGbQepqrvZi48Y4wxuRQ6x0GdpLabMxiLMcaYPJPo2U3lInK3iGxyn7v0RxHpma3gjDHG5Fai7qZb\ncQasn8J5dtME4J4Mx2SMMSZPJOpu+hrwbVV9CEBEFgD/EJESVQ14toExxphikehK4mjgxdgbVV0K\nNAG9MhmUMcaY/JCokSgB9sWVNZHEgLcxxpjCleiPveBMNrTXU9YF+J2ItDzDSVXPz0RwxhhjcitR\nIzHfp2xBJgIxxhiTf9ptJFT18mwFYowxJv+EfVS4McaYDsgaCWOMMYGskTDGGBPIGgljjDGBrJEw\nxhgTyBoJY4wxgayRMMYYE8gaCWOMMYGskTDGGBPIGgljjDGBrJEwxhgTyBoJY4wxgayRyIHqFdVU\n3lVJp1s7UXlXJdUrqnMdkjHG+LLJg7KsekU1U5+cyq5GZzqO9fXrmfrkVAAmDZ6Uy9CMMaYNu5LI\nsumLprc0EDG7GncxfdH0HEVkjDHBrJHIsg31G5IqN8aYXLJGIsv69uibVLkxxuSSNRJZNnPcTMrL\nyluVlZeVM3PczBxFZIwxwayRyLJJgycx+yuzqehRgSBU9Khg9ldm26C1MSYviarmOoa0jBgxQmtq\nanIdhjHGFBQRWaaqIxLVy+qVhIicLSJrRGStiPzIZ/0UEakTkeXucmU248sly50wxuSjrOVJiEgJ\ncDcwAdgIvCYiT6jqqriqD6vqNdmKKx9Y7oQxJl9l80riFGCtqr6nqvuAh4ALsnj8vGW5E8aYfJXN\nRqI38L7n/Ua3LN6FIvKmiCwUkaP9diQiU0WkRkRq6urqMhFrVlnuhDEmX2WzkRCfsvhR8yeBSlUd\nAjwHzPfbkarOVtURqjriyCOPjDjM7LPcCWNMvspmI7ER8F4Z9AE2eyuo6nZV3eu+/R1wUpZiyynL\nnTDG5KtsNhKvAV8QkX4i0hmYCDzhrSAiR3neng+szmJ8OWO5E8aYfJW1u5tUtUlErgH+GygB5qjq\nShG5DahR1SeA74nI+UAT8BEwJVvx5dqkwZOsUTDG5J2s5kmo6tOqepyqfl5VZ7plN7sNBKp6k6oO\nVNWhqnqGqr6dzfjCCpvTMP7+8cit0rKMv3984PZh92n5FMaYbLKM6yTF5zSAM34Q3z00/v7xLFq3\nqM32A3oOoLa+ttX2nUs6o6o0Nje2u8+wxzbGmETCZlxbI5GkyrsqWV+/vk15RY8Kaq+rbXkvt/rd\nzJWc+H2GPbYxxiSSl4/lKAbZzGmI36flUxhjss0aiSRlM6chfp+WT2GMyTZrJJIUNqdhXL9xvtsP\n6DmgzfadSzpT1qks4T4tn8IYk23WSCQpbE7Dc996rk1DMa7fOFZevbLN9nMumMPcr85NuE/LpzDG\nZJsNXBtjTAdkA9fGGGPSZo1ECqY9NY3S20qRW4XS20qZ9tQ038S5ZBLfLEnOGJOPrLspSdOemsY9\nNfeEqisI6nnQbVDimyXJGWOyzbqbMmT2stmh62rck9CDJhKySYeMMfnKGokk7df9aW3vl/hmSXLG\nmHxljUSSSqQkre39Et8sSc4Yk6+skUjS1JOmhq4rcZPxBSW+WZKcMSZfWSORpFnnzqJqRFXLFUWJ\nlFA1oso3ce6Brz0QKvHNkuSMMfnK7m4yxpgOKOzdTVmbmS7fVK+oZvqi6Wyo30DfHn2ZOW6m7zf3\naU9NY/ay2ezX/ZRICVNPmsrztc+z6sNVLXUG9BzAP7f/k0Y9MB9EmZRxSOdD+GTvJy1lhx50KB//\n6GN6/6o3m3ccmN67V9de/PLMX4aKJ2zcxhgThQ55JRE2LyGZnIio2aRDxphMskmH2hF28p7S20rT\nvuU1HTbpkDEmUyyZrh1h8xJy2UCATTpkjMm9DtlIhM1LSDcnIl026ZAxJtc6ZCMRNi8hmZyIqNmk\nQ8aYfNAhG4mweQlBOREDeg5oVW9AzwGUSeuZ5cqkjEMPOrRV2aEHHYreovTq2qtVea+uvVjwtQU2\n6ZAxJu90yIFrY4zp6GzgOgXpzOngt+3Auwe2mmNi4N0DMxi9McZEz64kXOnkIPhtG2RAzwGsvHpl\n2vEaY0w67EoiSenM6eC3bRBvprYxxuQ7ayRc6eQgWJ6CMaZYWSPhSicHwfIUjDHFyhoJVzo5CH7b\nBom/fdYYY/KZNRKudHIQ/LZd8LUFvvkUNmhtjCkkdneTMcZ0QHl5d5OInC0ia0RkrYj8yGf9QSLy\nsLv+VRGpzGZ8xhhjWstaIyEiJcDdwJeBAcClIhLfQf9t4GNVPRa4E/hFtuIzxhjTVjavJE4B1qrq\ne6q6D3gIuCCuzgXAfPf1QmCciEgWYzTGGOORzUaiN/C+5/1Gt8y3jqo2AfXAEfE7EpGpIlIjIjV1\ndXUZCtcYY0w2Gwm/K4L4UfMwdVDV2ao6QlVHHHnkkZEEZ4wxpq1sNhIbgaM97/sAm4PqiEgp0AP4\nKCvRGWOMaaM0i8d6DfiCiPQDNgETgW/E1XkCmAy8AlwE/F0T3KO7bNmyD0Wk7cTP4fUEPkxj+3xi\n55KfiulcoLjOpyOfS0WYSllrJFS1SUSuAf4bKAHmqOpKEbkNqFHVJ4A/AA+IyFqcK4iJIfabVn+T\niNSEuVe4ENi55KdiOhcorvOxc0ksm1cSqOrTwNNxZTd7Xu8BLs5mTMYYY4LZYzmMMcYEskYCZuc6\ngAjZueSnYjoXKK7zsXNJoOCf3WSMMSZz7ErCGGNMIGskjDHGBOqwjYSIzBGRbSLyVq5jSZeIHC0i\ni0VktYisFJFrcx1TqkSki4gsFZE33HO5NdcxpUtESkTkf0XkL7mOJR0iUisiK0RkuYgU9PP5ReRQ\nEVkoIm+7vzejcx1TKkTkePf/I7Z8KiLXRXqMjjomISKnAzuA+1V1UK7jSYeIHAUcpaqvi0g3YBnw\nVVVdlePQkuY+0PEQVd0hImXAS8C1qvo/OQ4tZSLyA2AE0F1Vz8t1PKkSkVpghKoWfPKZiMwHXlTV\n34tIZ6BcVT/JdVzpcJ+0vQkYqarpJBi30mGvJFT1BYrkkR+qukVVX3dfNwCrafvwxIKgjh3u2zJ3\nKdhvMiLSBzgX+H2uYzEOEekOnI6TvIuq7iv0BsI1Dng3ygYCOnAjUazciZqGAa/mNpLUud0zy4Ft\nwN9UtWDPBbgLuAFoznUgEVDgWRFZJiJTcx1MGo4B6oC5bjfg70XkkFwHFYGJwINR79QaiSIiIl2B\nR4HrVPXTXMeTKlXdr6on4jwE8hQRKcjuQBE5D9imqstyHUtETlXV4TgTh13tdtkWolJgOHCPqg4D\ndgJtZsosJG6X2fnAI1Hv2xqJIuH23z8KVKvqY7mOJwpuF8AS4Owch5KqU4Hz3b78h4AviciC3IaU\nOlXd7P67DfgTzkRihWgjsNFzhboQp9EoZF8GXlfVrVHv2BqJIuAO9v4BWK2qv851POkQkSNF5FD3\n9cHAeODt3EaVGlW9SVX7qGolTlfA31X1mzkOKyUicoh7UwRu18yZQEHeGaiqHwDvi8jxbtE4oOBu\n8ohzKRnoaoIsP+Avn4jIg8BYoKeIbARuUdU/5DaqlJ0KXAascPvyAX7sPlCx0BwFzHfv1OgE/D9V\nLehbR4vEZ4E/ubMJlwJ/VNVnchtSWr4LVLvdNO8Bl+c4npSJSDkwAfi3jOy/o94Ca4wxJjHrbjLG\nGBPIGgljjDGBrJEwxhgTyBoJY4wxgayRMMYYE8gaCWNCEpEpIrIjcc38VOjxm9ywRsIUFBGZJyLq\nLo0i8p6I3JHMs3fcfWQk98J9nPb1mdh3IcZhCl+HTaYzBe05nOTBMuBfcJ6weghQlcugjClGdiVh\nCtFeVf1AVd9X1T8C1cBXYytFZICIPCUiDe7EUg+KyOfcdTOAycC5niuSse66/xSRNSKy2/0m/ksR\n6RJl4O3F5q6fJyJ/EZFrRWSTiHwsInPdrNpYnUNE5H4R2SEiW0XkJnebee76JUAFcHvsHONiGCci\nb4nITnEmq+oX5Tma4mKNhCkGu3GuKmITML2A81yhU3Ce/dQVeEJEOgF3AP8P52rkKHd52d3PTuAK\n4ARgGs7zlqZHFWSI2GL+BRjkrr8E+FfAO9vgr4AxbvmXgKHuNjFfw3mI3W2ec4w5CLgJ5zxHA4cC\n90ZygqYoWXeTKWgicgrwDWCRW1QFvKGqN3rqfAtngqkRqrpURHbjXo1496WqP/W8rRWRnwPXAz+J\nKNx2YwOWusWfAlWq2gSsFpFHcB5C9x/u4+CvAL6lqn9z9/FtnEYhdh4fich+oCH+HHF+569W1TXu\ntnfgzKvQSVWLYc4LEzFrJEwhOtu9S6cU5wrizzgPbAM4CTg94C6ez3PgD3EbInIRcB1wLM43/BJ3\niUrY2Fa5DUTMZmCkp16Zpy6qulPCz9W+N9ZAePZdhnNFURQzNZpoWSNhCtELwFSgEdisqo2edZ2A\np3CuAOIFPmtfREbhzPlwK/B94BOcSVzuiCjmZGJrjFunHOgaFk9ZKpri3sf2Y13Pxpc1EqYQ7VLV\ntQHrXge+DqyPazy89tH2CuFUYJO3y0lEKtKONPnYElmL04icAqyDlkdFDwLe9dTzO0djkmbfHkyx\nuRvoATwsIiNF5BgRGS8is2OT5gC1wCAROV5Eerqz+r0D9BaRSe42VTgTuaSil4icGLf0DBlbu1R1\nBzAH+IV7l9IAnFuAO9H66qIW+BcR6e0e25iUWCNhioo7xeapQDPwDLAS54/zXncB+B2wGqgB6nDm\nbn4SuB24C3gTZxKXm1MM4/vA/8YtE0PGFsb1wIvAE8BiN94aYI+nzs3A0ThXF3UpnocxNumQMYVO\nRA4C1gO3q+qvch2PKS42JmFMgRGRYTi5HEuBbsCN7r8P5zIuU5yskTCmMP0AOB7nbqXlwOmqurH9\nTYxJnnU3GWOMCWQD18YYYwJZI2GMMSaQNRLGGGMCWSNhjDEmkDUSxhhjAv1/fzw3JDfm6OEAAAAA\nSUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEcCAYAAADDfRPAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgU1bn48e87CzKsiqAgKGBUUARFR0XxKsa4RL2iESLGDdFr1KgYf66J0VEx8YZcExKNXk0UF1QWFRe8alBxxWWG1Q1EHAPDNqAiOzPM+/ujqqG6p3q6erq7epn38zz90H3qVNVbzXSfrlPnrSOqijHGGBNRlO0AjDHG5BZrGIwxxkSxhsEYY0wUaxiMMcZEsYbBGGNMFGsYjDHGRLGGwYeIVIiIuo+KJNYb71mvV5piqfZss0FENovIchF5T0RuE5HdU9z+Ge7xVojIzumIOeB+h3iOy/v4QUTeF5GLUtx25Jh6pSnGigD1tx9Hc/cZJhEZGXmffJYldey5RkRO8sT/vzHLHvYsGxOz7AXPsgPcsshnsDrAfr3fHSM95XE/ZyLSy7PO+BQOO21Ksh2ASYoAOwFd3cdRwGgROVtV/9XMbZ4BXOg+Hw98n2qQKWoPHAkcKSIDVPXXzdjGEOA29/kMoDotkRWekcCx7vOK7IWRETOBBpwfv4Njlh3leR5v2XfA52mMJ9c+Z02yM4Y0EJHWAKo6UlXFfVRnYFe9cRqG/jh/XAC7AM+JyP4Z2F9Y3lJVAVrjfFlFjE7XmZdpWVT1B+AT9+UBIrILgIh0Bvp4qh4uIiXusr7Arm75++pm/6pqL/cz3SuU4HOANQxJiOkq+g8RmSIia3F/WcTrShKR/xKRShH5VkS2iEiNiPxLRC6Ms6u4VHWrqn6iqhcBz7vFbdnxCxkROdvd/hIR2ejuc7GIPODtenK7PLwxfO2NX0TaicijIjJfRNaISJ2IfC8ib4vI2T7vT2Td6mSPyz22Lar6KDA/skmg3LP9QSLynIisdGNZ5r7nvTx1qr3vBfCmJ64hbp37RWSWiNS621knIh+JyOUiIs2JPVki8gv3fVzr/v8sFJG7RKRNTL1I7DNE5BQR+VhENonIVyJyQ2y8bp254nQ5LhCR82P+LodEui7YcbaQsBtMRK50Y9woInNE5KcJjq+LiGx1t/lKzLKfevZ3h1t2kIg86342trh/b7NE5H9FpDTJtzfivcgucc5CYccZQSVQC7QBBrpl3rOH9z3x+nYliciRIjLTfa+rReRavyASfc586v9cROa5/8+fN+d7ImWqao+YB85ptbqPCk/5eE/5as/zap/lvdyy4Z6y2MeUALFUx27Ts+xIz7IfgCK3/IEm9vkF0CryY6iJRy+c7qqm6lwYE0/U+5HguIZ46s+IWfaJZ9kwt+znQH2cONYAfXzer9jHELfO5ibq3BYnxooAx7R9Ownq/a2J/X8MlPlscy1O10hs/fNi4vV7j2q874H7fxv3/9Xn2Ff41NsK7J3gOJ9169YBXTzlj7nlDThnwW1wvqTjxdSumZ/jcz3buMstu9t9/RfgOff5aHfZw576x/p8Bqs9ZQcAG3xiXeZ5PjLg58z7/+H3XitwdJjfgXbG0Hw/4HwxlwGnNFHvGPff9TinsDsBPXG+6F6Jt1JAX3iet2fHafCTwBFAZ6AU2B14xF3WJxKvOt03j3q20Vuju8LWAWfj/OG2wenqOQrY6NZvTv9/XCLSyv111M8tUuBj91f0/UAxMAvoi/M+HofzBdUJGOseUy/gds9mj/Mc0wy3bBSwL8571goYACx1l43O5FmDiAwCrnRfjsdpfNsA17tl5cDlPqt2AP6A03V4paf8fM/zu3DeI3DOmjoC5wB7eDekqtXu//1bnrLIe+R37J2AnwE7AxPcslKcv42mPOz+W4Lz946IlOH0t4Pzg+BrYH+cv1WAG3D+zroAR7vHXJ9gP/G853l+tPvvYM+y92LKInXqcBropvwO5/8N4O84782Pcd7zKAE+Z167A1e42/tvT/n5hCnMVihfHgQ7Y/iFz3re5b3csmvZ8evoMWA0cCLQMWAs1bHb9CzblehfFV3c8n2Bx4F/43xxxv76uLGpmD3LBOeP9AP8f7FuSuE9HuITV+xjnFv3hAB1N3m27f3/G+Kz77NxLkp/C2zz2dbuPjFWBDimqF/dcercFeBYXvHZ5gqg2C1r5yn/wi1r4zmWNZG67rL3/N4P9z3wjTfm2Kd4yk/zlD+Q4P0oZscv6HfdMu8Z9Hlu2W44X8YKVAG34jQk+6Ths7zU3e5G933b5L7eAxjkPq/BaYgicX0U5zNY7Slb6anf0VP+uKd8ZMDPWS/PskpP+YF+fxNhPOyMoflmB6z3d2Ayzpfq+TinsK8CK0XkphRj6Ot5/gOwRkQ6Au8C5wF74vyyi1UWcPs3AvfhnH10wGkovFonFW0wG4APgUuBa9yy3QKs11pE2iaqJCIjgKdx+td3wf86W9D3pzmCHMuuPmVfqeo29/kGT3nk/6ATO46lxlMXnB8IqVjgee63b19uDI+5L48SkZ7AL9zXa4Fn3HqrgMtwumcPwTnjmwh8KSLviEiHFGKPXCsoAy5xY65W1WU4jdAmnEbiXM8675FY5P9onaqu9ZQv9auchGa91+lmDUPzbQpSSVU3q+rPcT64R+N0Y3yI0xXyexHpnkIMN3ueT1PVBpzulciXz+tAN3VOZa+OF2IT2x/heX4GsJO7rTXNjDeet3THqXU7VR2kqg+p+7MJWOWp+5Cnrrf7o0hVIx+koMd0FU5/vuB0UYXBeyznxjmWw33Wq4s88bwvXt/i/PgA6CYi3s/2nnFiaep98t13EutEPOL+Kzhf/pGL1k+p6vbPkKr+E6dbrT9wFvBXd9HRwK+S3KeX90s+0vX5vrtPb5fRr+OsE89q99/27o+xiB5x6ofxXqeNNQwZJiJniciVQHdgLs7Zw9zIYuL/IcXbXqmIHChOIsypbvEG4A73ubc/djOwQUT64XwJ+vF+yR8U07/u3db3QKmI/A7/X7Qpj0pqwvs448oBLnRH9LR3R74MFpGxOGdiEd5jGhDzJek9ph+csOUidoxMSQsROdnnsRvwkqfaGDf+1iKypzta50mif70Goqobcbr8wOmvv859j0YQPW7fa/v7JCIHJ7vPgHEtYMev9utwfhDBjusPiEhnEfkTzjW7VcCL7BhxB7CXp26yf2PeL/m9fMrejd2HJ96mvOl5/nsR6Sgix+Fci/HT1Ocs94TZb5UvD4JdY+jls16j5cAtnrLYxzI8I1DixFLdxPqK80vxBE/9XXA+XLH1FsY5pmE+davdZb/1WVaL8yXdqG86dv0ExzXEU39GgPrn4H89IPIY76lb7lfHXXauz7KNwBKf/ztvjBUBYmzq/0mBM9x6f09Qb6TPNmfE2Vd1zHvqNyrJO1LmWE/963zqzmjq2GPKxyd6T9x1Lo7Zx/yY5T2CvG/J/o259UtwBn54t3eQZ/kpMcu+buIz6H2v441K8o6u8v4/NvU56+X3nsaUJ/yMpPNhZwyZ9zrOKKFFOH+g24DluP3c6jmdDkCBLTgXIt/HGXmyv3qynlX1O5zT9XdxvvCW4TR0d8fZ5jM4F0T/7cbm9d/A73Euzm3CGcXyY5z+4VCp6lM43QrP4Fz4q8f5EFa6cf6Pp24lTtfZV0SfmqOqE3C6Db7GOaOqxHm/vsr4QeyI4Qqca0Bv4byXdTh902/ijMr5v2ZudwYwFCcPZCvOj4ELie4m8/5yvQ9naPNyyGi3xUSi+8sfjln+HfBnnG6d1Th/h+tw/sZ/oapTm7tjVa0HPvIUrWNHngzuPhpiXgfZ7mc4gyI+xHmvl+D8kPp7nFWa+pzlHHFbJmNMnnMTwY4D3lSn/xwRORmYitOFsxzooc61KGPisnslGVM4dsIZ8VYnIitx8jQiF0brgcusUTBBWFeSMYVjC04i1Tc4o+DKcLoungAOU9UXshibySPWlWSMMSaKnTEYY4yJkvfXGDp37qy9evXKdhjGGJNXqqqqVqtqF79led8w9OrVi8rKymyHYYwxeUVEvom3zLqSjDHGRLGGwRhjTBRrGIwxxkTJ+2sMfurq6li6dCmbN2/OdigFoXXr1vTo0YPS0ubOsGiMyScF2TAsXbqU9u3b06tXL3L9Joa5TlVZs2YNS5cupXfv3tkOxxgTgoLsStq8eTO77rqrNQppICLsuuuudvZlTAtSkA0DYI1CGtl7aUzLElpXkojsiTPNX1ec29w+qKrjYuoMwZmg42u36FlVvQNjjPGYtnga42aNY8WGFXRt25XRh4zm1L1PTbxiE+sDKW2zkIR5jaEe+H+qOktE2gNVIvIv977mXu+o6mkhxpV148eP58QTT2SPPfbIdijG5Lxpi6dR8X4Fm7c53ZvLNyyn4v0KgEBf5H7r3/LuLYgIdQ11zdpmoQmtK0lVl6vqLPf5OuBznOkuW7zx48ezbNmybIdhTF4YN2vc9i/1iM3bNjNu1rg4ayRev17rtzcKzdlmocnKNQYR6YUzx+6HPouPFJG5IvJ/7lzFfutfKiKVIlJZW1ubcjxTZ9cw+O436H3TNAbf/QZTZ9ekvM0NGzZw6qmnctBBB3HggQcyceJEqqqqOPbYYzn00EM56aSTWL58OVOmTKGyspJzzz2Xgw8+mE2bNvH6668zcOBA+vfvz6hRo9iyZQsAN910EwcccAADBgzguuuuA+DFF1/kiCOOYODAgfzkJz9h5cqVKcduTC5bsWFFUuXNrZds3UISesMgIu1wprm7RlV/iFk8C+ipqgcBf8OZeaoRVX1QVctVtbxLF997QAU2dXYNNz87n5rvN6FAzfebuPnZ+Sk3Dq+88gp77LEHc+fO5ZNPPuHkk0/mqquuYsqUKVRVVTFq1Ch++9vfMmzYMMrLy5kwYQJz5sxBRBg5ciQTJ05k/vz51NfXc//99/Ptt9/y3HPP8emnnzJv3jxuueUWAI4++mg++OADZs+ezYgRI/jjH/+YUtzG5LqubbsmVd7cesnWLSShNgzu1IPPABNU9dnY5ar6g6qud5+/DJSKSOdMxjT21QVsqouegnVT3TbGvrogpe3279+f6dOnc+ONN/LOO++wZMkSPvnkE0444QQOPvhgxowZw9KlSxutt2DBAnr37s1+++0HwIUXXsjbb79Nhw4daN26NZdccgnPPvssbdq0AZycjZNOOon+/fszduxYPv3005TiNibXjT5kNK2LW0eVtS5uvf0CcnPWL5ESSouiEziT2WahCXNUkgD/BD5X1Xvi1OkKrFRVFZHDcRquNX5102XZ95uSKg9qv/32o6qqipdffpmbb76ZE044gX79+jFz5swm14s3cVJJSQkfffQRr7/+Ok8//TT33nsvb7zxBldddRXXXnstp59+OjNmzKCioiKluI3JdZGLwc0dQRRv/VS2WWjCHJU0GDgfmC8ic9yy3wB7AajqA8Aw4HIRqQc2ASM0w1PM7bFzGTU+jcAeO5eltN1ly5bRqVMnzjvvPNq1a8eDDz5IbW0tM2fO5Mgjj6Suro6FCxfSr18/2rdvz7p16wDo27cv1dXVLFq0iH322YfHH3+cY489lvXr17Nx40ZOOeUUBg0axD777APA2rVr6d7duYb/6KOPphSzMfni1L1PTelLO976LbUhiBVaw6Cq7wJNZkqp6r3AveFE5Lj+pD7c/Oz8qO6kstJirj+pT0rbnT9/Ptdffz1FRUWUlpZy//33U1JSwtVXX83atWupr6/nmmuuoV+/fowcOZLLLruMsrIyZs6cySOPPMLw4cOpr6/nsMMO47LLLuPbb79l6NChbN68GVXlz3/+MwAVFRUMHz6c7t27M2jQIL7++usEkRmTPqnmEwQx5oMxTF44mQZtoEiKGL7fcG4ZdEta92Gi5f2cz+Xl5Ro7Uc/nn3/O/vvvH3gbU2fXMPbVBSz7fhN77FzG9Sf14YyBNpLWK9n31BS+2HwAcPrlK46qSFvjMOaDMUxcMLFR+dl9zrbGIUUiUqWq5X7LCvImesk6Y2B3awiMSVJT+QTpahgmL5wct9wahswp2HslGWMyK9V8giAatCGpcpMe1jAYY5ol1XyCIIrE/ysqXrlJD3t3jTHNkmo+QRDD9xueVLlJD7vGYIxpllTzCYKIXEewUUnhslFJJhB7T40pLE2NSrKupDxx6623Mn369KTXmzFjBqed1qLuYm6MSZF1JeUQVUVVKSpq3F7fcUc48xXV19dTUmJ/FiaYoBPeBC0L2g2VTGJd0LphJOulKqwY7RsAYN4keP0OWLsUOvaA42+FAT9v9uZuvPFGevbsyRVXXAE42cnt27enoaGBSZMmsWXLFs4880xuv/12qqur+elPf8pxxx3HzJkzmTp1KrfddhuVlZWICKNGjeLXv/41I0eO5LTTTmPYsGF8/PHHjB49mg0bNrDTTjvx+uuvU1payuWXX05lZSUlJSXcc889HHfccVFxffvtt4waNYrFixfTpk0bHnzwQQYMGEBFRQXLli2jurqazp078+STT6b0dpqWIeiEN79773eoKvVa32S9oBPjJDNRT9C6qU7+E4YwY7SupHmT4MWrYe0SQJ1/X7zaKW+mESNGMHHijmzNSZMm0aVLF7788ks++ugj5syZQ1VVFW+//Tbg3FH1ggsuYPbs2axevZqamho++eQT5s+fz0UXXRS17a1bt3L22Wczbtw45s6dy/Tp0ykrK+O+++4DnFtxPPXUU1x44YVs3hydfHTbbbcxcOBA5s2bx+9//3suuOCC7cuqqqp4/vnnrVEwgQWd8KauoW57o9BUvaAT4yQzUU/QuqlO/hOGMGO0huH1O6Au5iZ6dZuc8mYaOHAgq1atYtmyZcydO5dddtmFefPm8dprrzFw4EAOOeQQvvjiC7788ksAevbsyaBBgwDYe++9Wbx4MVdddRWvvPIKHTp0iNr2ggUL6NatG4cddhgAHTp0oKSkhHfffZfzzz8fcG7E17NnTxYuXBi1rrfOj3/8Y9asWcPatWsBOP300ykrS+3GgaZlycQkNkG2mUxiXdC6YSTrpSrMGK1hWNt4ToQmywMaNmwYU6ZMYeLEiYwYMQJV5eabb2bOnDnMmTOHRYsWcfHFFwPQtm3b7evtsssuzJ07lyFDhnDfffdxySWXRG1XVXHuYE6j8kT86kS25Y3BmCAyMYlNkG0mk1gXtG4YyXqpCjNGaxg69kiuPKARI0bw9NNPM2XKFIYNG8ZJJ53Eww8/zPr16wGoqalh1apVjdZbvXo1DQ0NnHXWWdx5553MmjUrannfvn1ZtmwZH3/8MQDr1q2jvr6eY445hgkTJgCwcOFC/v3vf9OnT/QdYr11ZsyYQefOnRudkRgTVNAJb0qLSimRkoT1gibHJZNYF7RuGMl6qQozRrv4fPytzjUFb3dSaZlTnoJ+/fqxbt06unfvTrdu3ejWrRuff/45Rx55JADt2rXjiSeeoLi4OGq9mpoaLrroIhoanHvB/OEPf4ha3qpVKyZOnMhVV13Fpk2bKCsrY/r06VxxxRVcdtll9O/fn5KSEsaPH89OO+0UtW5FRQUXXXQRAwYMoE2bNjZ/g0lJMhPeBC0LchE1mcS6oHXDSNZLVZgxWoIbpH1UUiGyBDdjCovddjuRAT+3hsCYHFVIeQh+cjFuaxiMMTmrkPIQ/ORq3Hbx2RiTswopD8FPrsZtDYMxJmcVUh6Cn1yN2xoGY0zOKqQ8BD+5Grc1DMaYnFVIeQh+cjVuaxhCsmzZMoYNG5b0epdccgmfffZZk3UeeOABHnvsseaGZkzOOnXvU6k4qoJubbshCN3adqPiqArfPIQg9XJNrsZteQxZli+3uc6n99QYk5jlMSSQ7nHE8W67/cgjj/DJJ58wfvx4pk2bxubNm9mwYQPTp0/nyiuv5K233qJ37940NDQwatQohg0bxpAhQ/jTn/5EeXk57dq1Y/To0bz00kuUlZXx/PPPs/vuu1NRUUG7du247rrrWLRoEZdddhm1tbUUFxczefJkdt99d4YOHcp3331HXV0dY8aMYejQoel6+4xplrDmcsilPIFciqUpLb5hyMQ44hEjRnDNNddsbxgmTZrEAw88wCOPPLK9zsyZM5k3bx6dOnViypQpVFdXM3/+fFatWsX+++/PqFGjGm13w4YNDBo0iLvuuosbbriBhx56iFtuiZ779txzz+Wmm27izDPPZPPmzTQ0NNCqVSuee+45OnTowOrVqxk0aBCnn3667834jAmD3+cu6LwNfvVSnY8hDLkUSyIt/hpDJsYR+912e6+99oqqc8IJJ9CpUyfAuR328OHDKSoqomvXro0m2Ilo1arV9mk6Dz30UKqrq6OWr1u3jpqaGs4880wAWrduTZs2bVBVfvOb3zBgwAB+8pOfUFNTw8qVK5t9fMakyu9zF3TeBr96qc7HEIZciiWRFn/GkKlxxJHbbq9YsYIRI0Y0Wu69zXXQ6zylpaXbf+UXFxdTXx/94Yi3nQkTJlBbW0tVVRWlpaX06tWr0SQ+xoQprLkccilPIJdiSaTFnzFkahxx7G23m3L00UfzzDPP0NDQwMqVK5kxY0az9tmhQwd69OjB1KlTAdiyZQsbN25k7dq17LbbbpSWlvLmm2/yzTffNGv7xqRLWHM55FKeQC7FkkiLbxgyNY449rbbTTnrrLPo0aMHBx54IL/85S854ogj6NixY7P2+/jjj/PXv/6VAQMGcNRRR7FixQrOPfdcKisrKS8vZ8KECfTt27dZ2zYmXfw+d0HnbfCrl+p8DGHIpVgSseGq5MZIgfXr19OuXTvWrFnD4YcfznvvvUfXrrnzS8KGq5p0s1FJ2Y2lqeGq1jDkiCFDhvD999+zdetWbrjhBkaOHJntkKLk43tqjIkvJ/IYRGRP4DGgK9AAPKiq42LqCDAOOAXYCIxU1Vmx2ypEzb2uYEy6xftVm8ov/FwbjpluqZwJ5NJZRERoZwwi0g3opqqzRKQ9UAWcoaqfeeqcAlyF0zAcAYxT1SOa2m68M4a+ffvaOP00UVW++OILO2NoAWLH2oPTDz50n6E8v+j5qPLSotKofAJwrgl48w4i6+fCbR4yJd57FuSYU1k3VU2dMYR28VlVl0d+/avqOuBzoHtMtaHAY+r4ANjZbVCS0rp1a9asWRN4GKiJT1VZs2YNrVu3TlzZ5L14Y+0nL5zc7LyDXB2rny6p5Cfkam5DUl1JItIb6AWUAbXAfFVNekC8iPQCBgIfxizqDizxvF7qli2PWf9S4FKgUeIYQI8ePVi6dCm1tbXJhmZ8tG7dmh49emQ7DBOCeGPqG7QhI9stBKnkJ+RqbkPChsH9Er8cOAfnS9rbP7NVRN4BHgSeUU381yMi7YBngGtU9YfYxT6rNPrZr6oPuvukvLy80fLS0lJ69+6dKBRjTIyubbuyfMPyRuVFUpRS45CLY/XTJd57FuSYU1k3k5rsShKRccBcYG/gt8ABQEegFc5F5FOAd4E7gXkicliC7ZXiNAoTVPVZnypLgT09r3sAywIdiTEmZfHG2g/fb3iz8w5ydax+uqSSn5CruQ2Jzhi2Aj9S1dU+y1YBb7iP290Lxz2Bj/025I44+ifwuareE2d/LwBXisjTOBef16pq4+bUGJMRkQuefqNkBu420EYl+WjqPcvkupkU5qiko4F3gPk4w1UBfgPsBaCqD7iNx73AyTjDVS9S1UqfzW3nNyrJGGNM03Iij0FV38X/GoK3jgK/CiciY0wy/Mbbz141m8kLJ9OgDRRJEcP3G84tg24JtG62fxXHyocYwxL4jEFEdgEqgOOA3Yi5PqGqu6U7uCDsjMGYzPMbb18sxWzTbY3qnt3n7KjGIZtj9YPKhxjTLS23xBCRF4F+wKPASmJGC6nq/6YYZ7NYw2BM5p045UTf0TN+iqSIuRfMTbhut7bdeG3Ya2mLMRX5EGO6pasraQhwbEu5RYUxZodkxtXHDmvN1bH6XvkQY5iSyXz+Ksn6xpgCkcy4+iKJ/prIh3kI8iHGMCXzRT8a+IOIHCQixZkKyBiTe/zG2xfH+RoYvt/whOvmwlh9r3yIMUzJdCUtwrkVxiyg0Q3qVNUaC2MKVLzx9kFGJeXqWH2vfIgxTMlcfH4b2AV4AP+Lz8+kPboA7OKzMcYkL10Xn8uBw1X1k/SEZYzJtjEvjWTy6koacPqVh3cuh877BMpNgPSP/R/zwZhG+/bLuPbbRzKxFNr8CemWzBlDJXC1qr6f2ZCSY2cMxjTPmJdGMnF1JXi7hVWjX7ticxMg/WP/x3wwhokLJjYqFwT1dFD47SOZWPJ1/oR0S9d8DLcA94jIT0RkdxHp5H2kJ1RjTFgmxzYK4NsoAExeOLlRWbrnEvDbBxDVKMTbRzKxFOL8CemWTFfSy+6/rxF9fUHc13bx2Zg8ksxNtP1uuZ3usf/J3NY7dh/JxFKI8yekWzINw3EZi8IYE7oigjcOsbkJkP65BJKZ8yF2H8nEUojzJ6Rb4K4kVX2rqUcmgzTGpN/wzuXONQWvONccY3MTIP1j//32Ac41hkT7SCaWQpw/Id0CnzGIyJXA96r6REz5eUAHVf17uoMzxmTOLaeNhxRGJaV77H9kH80ZlZRMLIU4f0K6JTMqaRFwcezZgTvPwiOqum8G4kvIRiUZY0zy0jUqqQfwjU/5UneZMSYLpi2exolTTmTAowM4ccqJTFs8LTM7mjcJ/nwgVOzs/DtvUmb2Y7IumYvPK4CDgeqY8kMAv6k/jTEZFjuufvmG5VS8XwGQ3u6NeZPgxauhbpPzeu0S5zXAgJ+nbz8mJyRzxvAk8FcROUFESt3HicBfgAmZCc8Y05TQxtW/fseORiGibpNTbgpOMmcMtwG9gVeByLRNRcBk4HdpjssYE0Bo4+rXLk2u3OS1ZIar1qnqOcB+wC+Ac4E+qjpCVesyFaAxJr7Q5hHoGOcyYrxyk9eSnnhHVRep6mRVnaSqizIRlDEmmNDG1R9/K5SWRZeVljnlpuA02TCIyC0i0jbIhkRksIj8Z3rCMsYEcerep1JxVAXd2nZDELq17ZaZG7oN+Dn851+h456AOP/+51/tws5ZGGkAABtKSURBVHOBajKPQUTGA/8JPAO8AFSq6gp3WWvgAOBo4DxgV+BCVX03wzFHsTwGY4xJXrPzGFR1JDAE5yZ5jwM1IlIvIpuADUAlcAHwD2D/sBsFYwzB8wsykYeQQ7kNoeVztAAJRyWp6nzglyJyOTAA6IkzxedqYI6qWg6DMdkSNL8gE3kIOZTbEFo+RwuRzKikBlWdo6rPq+rTqjrdGgVjsixofkEm8hByKLehpcyTEJakRyUZY3JI0PyCTOQh5FBuQ0uZJyEs1jAYk8+C5hdkIg8hh3IbQsvnaCGsYTAmnwXNL8hEHkIO5Ta0lHkSwpLMLTGMMbkmcpH39TucLpyOPZwv5tiLv0HrZWLfIWgp8ySEJfB8DLnK8hiMMSZ5TeUxJHXGICJnA8cDuxHTDaWqpydY92HgNGCVqh7os3wI8DzwtVv0rKrarRtNyzBvUvN/ef+pL6z3zEPcrhuceEfj7UGwfbx0LVSNB90GUgyHjoTT7mHa4mmNfpGD/UovRMnM4DYWuAZ4E1iGk/S2napelGD9Y4D1wGNNNAzXqeppgQJy2RmDyXux+QDg9NUHueVEbKMQT1EpiMC2rU3v46VrofKfjVafduApVGxeFDUktERKEBHqGnbcQ7N1cevM3JLDpF26zhguAM5R1SnNCUJV3xaRXs1Z15iC1lQ+QKKGIUijANDgcwNkv31UjfddfdzaOWwuif66qNf6mJ+HO3IHrGHIb8mMSioC5mQqENeRIjJXRP5PRPrFqyQil4pIpYhU1tbWZjgkYzIsm/kAsfvQbb7VVhQXB96k5Q7kv2QahgdxbpaXKbOAnqp6EPA3YGq8iqr6oKqWq2p5ly5dMhiSMSHIZj5A7D7EvwHous2/wfCta7kDeS/Rbbf/GnkAHYHRIvKeiNzvXeYuT4mq/qCq693nLwOlItI51e0ak/NSyQdo1y3YPopKobhV4n0cOtJ39dEdD26UJ1AiJZQWlUaVWe5AYUh0xtDf8+iH05W0Fegbs6x/qoGISFcREff54W5sa1LdrjE5L5W5Dq77onHj0K4b/Oyh6O2d8XcYel/ifZx2D5RfvOPMQYqh/GJOHfZUo3kfxhw9hjsH35n5uSBM6ELLYxCRp3Bu4d0ZWIkzh3QpgKo+ICJXApcD9cAm4FpVfT/Rdm1UkjHGJC8to5LcPITRqrouprwt8DdVHdXU+u580U0tvxe4N2g8xuSUVPIQkhEnxyBQPP/+oPG6ew3KiczlpvjlT9hZSWYlk8ewDeimqqtiyjsDK1Q1K7fXsDMGk3Wp5CEkI06OAeUXRzcOfvEUFUODzwXk2PJMxJ2C2HkWwHIl0qXZM7i5K3cSkV0BAXZxX0ceXXCymVemN2Rj8khY8xLEyTFoVO4Xj1+j4FeepfkU4rF5FrIjyK/81ThpLAp85rNcca4XGNMyhZWHECfHoFF5qvvNwnwK8dg8C9kRpGE4Duds4Q3gLOBbz7KtwDequiwDsRmTHzr2cKa19CtPJyn2bxxicw/ixRNUFuZTiKdr264s39A4u9tyJTIrYVeSqr6lqjOA3sBU93XkMdMaBdPihTUvQZwcg0blfvEUxclcji3P0nwK8dg8C9nR5BmDe+M7r55uqkEjqvp2uoIyJq+ENS9B5AJzolFJ8eLJw1FJNs9CdjQ5KklEGnCuIURag0jl2NeoavCbqaSRjUoyxpjkpTIqqQvO3AuR0UcLcO6yuo/7uAD4AmhyLgZjjDH5o8muJFXdfksKEbkTJ8HtX54qi0VkFfBHYFpmQjQmJOlOUnv0dPj6rR2vex8Lu+7j3xXkl7gGwbp+oPmT8hjjI5kEt03AIar6eUz5AUCVqpb5r5lZ1pVk0iLdSWqxjUJTOveF1V8Eqxs7Mqm4FahGz7cQdFIe06KllODm8Slwm4hsbwDc57e6y4zJX+lOUgvaKEDwRgEaD1fdtrXxJDwNddGNAuRc4prJbcncxuJy4CWgRkTmuWX9gW2ADREw+S2bk+WEpZCOxWRU4IZBVT8Wkd44k/X0xRmZNAF4UlU3ZCg+Y8IRVpJaNhXSsZiMSurGd6q6EWcmN2MKy/G3+l9jaG6yV+9jc+8aQw4lrpnclmgGt5+JSKnnedxHOOEakyGpTJbj58IXnMbBq/exvpPgcOWH/uV+ZWc+EB3j0PucSXiaMymPMXEESXDrqqqr3OfxqCW4GWNM/mj2RD2qWuT33BgTwy8HAoLnEgTNoUgl1yKsyYRM3kt4jUFEdlLVLWEEY0xeis2BWLsEpl4R3c+/dolTBxp/Gfut71c3aL2gMQZd17Q4Qc4C1orImyLyOxE5WkSyMlObMTnLd2KcJHIJguZQpJJrEdZkQqYgBGkYrgJqgF8CbwPficgrInKjiBwmItbFZFq2ZPID/OoGzaFIJdeiJeRpmLQJMh/DQ6p6nqr2APYHrge+B64BPgC+FZHnMxumMTksmfwAv7rx1o8tD1ovmTqW22B8JPVrX1UXqOoDqjoCOAT4PU6i22mZCM6YvOA7MU6pk2PgFS+XIOhEP6lMCBTWZEKmIAS+XiAinYEhOFN9HgfsDVQBfwdmZCA2Y/JDvIlx/Mr8LvQGnegnlQmBwppMyBSEhHdXFZFxOA3BvjgNwVs4DcF7biZ0VlkegzHGJK/ZeQyuq4BvgOuAl1X163QGZ0yUfBhrn2rOgjE5LkjDcAxOF9LPgLEiUotzxjADmGENhUmbfBhr7xfj87+Kvl9RLsZtTBKCjEp6V1XHqOrxwM7AhcDX7r+fisg3IjI+s2GaFiEfxtr7xeg3J0KuxW1MEpIdlbRVVWfgjEa6DfgbTmNxfvpDMy1OPoy1TzVnwZg8EGhUkpvtfAQ7RiQdCeyEc+1hCvBmpgI0LUg+zIkQL8Z4dY3JQwnPGETkNZyEtndwsp9rgF8Be6vq3qp6sao+kdkwTYuQD2Pt/WIsbuXkLXjlWtzGJCHIGcMa4NfAm6q6KMPxmJYsH8bap5qzYEweSJjHkOssj8EYY5KXah5DuoJ4GOfWGatU9UCf5QKMA04BNgIjVXVWWPGZAvHStVA13pn+Uorh0JFw2j3Nr5fu+Q/AzixMzgvzFtrjgXuBx+Is/ylOdvW+OBe673f/NSaYl66Fyn/ueK3bdrz2fukHrZfu+Q+SmaPBmCwK7ZbZqvo28G0TVYYCj6njA2BnEekWTnSmIFSND1YetF665z9IZo4GY7Iol+ZS6A54xwEudcsaEZFLRaRSRCpra2tDCc7kAd0WrDxovUzMf5BqXWNCkEsNg/iU+V4ZV9UHVbVcVcu7dOmS4bBM3pDiYOVB62Vi/oNU6xoTgiYbBhFZJyI/BHmkIZalwJ6e1z2AZWnYrmkpDh0ZrDxovXTPf5DMHA3GZFGii89XhhKF4wXgShF5Guei81pVXR7i/k2+i1w4TjTaKGi9TMx/0NztGROi0PIYROQpnLu0dgZW4txrqRRAVR9wh6veC5yMM1z1IlVNmKBgeQzGGJO8nMhjUNVzEixXnFttGGOMyaLAF59FpJWI3C4iC0Vks4hs8z4yGaQxxpjwJDMq6U6cORj+B2gArgfuw7mX0hXpD80YY0w2JNMw/By4TFX/F9gGPK+qV+NcKzghE8EZY4wJXzINw+7AZ+7z9TgT9AC8ApyYzqCMMcZkTzINw7+BPdzni4CT3OdHApt81zDGGJN3kmkYngOOd5+PA24Xka9xbo73jzTHZYwxJksCD1dV1Zs9z6eIyBJgMLBQVV/KRHDGGGPCF7hhEJFjgPdVtR5AVT8EPhSREhE5xr17qjHGmDyXTFfSm0Ann/KO7jJjjDEFIJmGQfC/2+muwIb0hGOMMSbbEnYlicgL7lMFnhCRLZ7FxcCBwPsZiM0YY0wWBLnGsMb9V4DviB6auhV4F3gozXEZY4zJkoQNg6peBCAi1cCfVNW6jYwxpoAFvsagqrer6gYRKReRs0WkLYCItBWR0O7SaowxJrOSGa66O85kOofhXG/YF1gM3ANsBkZnIkBjjDHhSmZU0p+BFTijkDZ6yidj90oyxpiCkUwX0PHA8ar6nTPZ2nZfAXulNSpjjDFZk8wZQxnOKKRYXXC6kowxxhSAZBqGt4GRntcqIsXAjcDr6QzKGGNM9iTTlXQD8JaIHAbshDOTWz+cW2IMzkBsxhhjsiCZ4aqfAQOAmcBrQGucC88DVfWrzIRnjDEmbEnlH6jqcuDWDMVijDEmByQ8YxCRNiJyn4jUiMgqEXlSRDqHEZwxxpjwBTljuB3novMEnNFH5wD3A8MzF1Zhmzq7hrGvLmDZ95vYY+cyrj+pD2cM7J7tsIwxBgjWMPwMuFhVnwYQkSeA90SkWFW3ZTS6AjR1dg03PzufTXXOW1fz/SZufnY+gDUOxpicEOTi857AO5EXqvoRUA/skamgCtnYVxdsbxQiNtVtY+yrC7IUkTHGRAvSMBTTOLGtniQvXBvHsu83JVVujDFhC/LlLjSeoKc18JCIbL9nkqqenu7gCtEeO5dR49MI7LFzWRaiMcaYxoKcMTwKLMOZsCfyeAJYElNmArj+pD6UlRZHlZWVFnP9SX2yFJExxkQLPFGPSY/IBWYblWSMyVV2nSALzhjY3RoCY0zOSuYmeikTkZNFZIGILBKRm3yWjxSRWhGZ4z4uCTO+bJo6u4bBd79B75umMfjuN5g6uybbIRljWqjQzhjcO7HeB5wALAU+FpEX3HsweU1U1SvDiisXWG6DMSaXhHnGcDiwSFUXq+pW4GlgaIj7z1mW22CMySVhNgzdcUYyRSx1y2KdJSLzRGSKiOzptyERuVREKkWksra2NhOxhspyG4wxuSTMhkF8yjTm9YtAL1UdAEzHGSrbeCXVB1W1XFXLu3TpkuYwwxcvh8FyG4wx2RBmw7AU5/YaET1w8iO2U9U1qhpJpHsIODSk2LLKchuMMbkkzIbhY2BfEektIq2AEcAL3goi0s3z8nTg8xDjy5ozBnbnDz/rT/edyxCg+85l/OFn/e3CszEmK0IblaSq9SJyJfAqzv2XHlbVT0XkDqBSVV8ArhaR03HuxfQt0XNMFzTLbTDG5ApRje3mzy/l5eVaWVkZ6j6Dzqdw7kMzee+rb7e/HvyjTkz4ryN914dg2dA2l4MxJh1EpEpVy32XWcOQnNicA3CuB8R2/cQ2ChH77taWpd9tjlq/tFhAoa5hx/+F3zaD7tsYYxJpqmEINfO5EATNOfBrFAC+XLWh0fp12zSqUYi3Tct3MMaEwRqGJIWZcxC7Tct3MMaEwRqGJIWZcxC7Tct3MMaEwRqGJAXNORj8o06+6++7W9tG65cWC6VF0fl/ftu0fAdjTBisYUhS0JyDCf91ZKPGYfCPOvGva4c0Wn/ssIMYO/yghNu0fAdjTBhsVJIxxrRANirJGGNMYDaDWzPcMnU+T324hG2qFItwzhF78nXt+kbJbMPL9wqcjGaJa8aYXGFdSUm6Zep8nvjg34HqCtG3j42XjGaJa8aYsFlXUho99eGSxJVcsU1uvGQ0S1wzxuQSaxiStC3FMyy/ZDRLXDPG5BJrGJJULH7zDQXnl4xmiWvGmFxiDUOSzjnCd7ZRX7FNSLxkNEtcM8bkEmsYkjTmjP6cN2iv7WcOxSKcN2gv32S2P599cKBkNEtcM8bkEhuVZIwxLVBTo5JabB5D0LwBv5yFDxev4ctVG7bX2Xe3tnxdu4F6TxtbIlBSJGzetqOwdbHwxV2ncMRd/2Lluq3by3dv34qbTznAJuoxxuSEFnnGEDRvIJmchXSziXqMMZlkeQwxguYNJJOzkG42UY8xJltaZMMQNG8g1ZyFVNlEPcaYbGiRDUPQvIFUcxZSZRP1GGOyoUU2DEHzBpLJWUg3m6jHGJMtLbJhCJo3EC9nYd/d2kbV23e3tpTEnFyUiDMKyat1sVB996ns3r5VVPnu7VvxlwA5D5bvYIwJQ4sclWSMMS2d5TEElEqOgF++A9CobMwZ/TN5CMYYkzJrGFyxOQI132/i5mfnAyRsHGLzHbapNsp/8JZZ42CMyWUt8hqDn1RyBJLJd8hmboQxxgRhDYMrlRyBZPIdsp0bYYwxiVjD4EolRyCZfIds50YYY0wi1jC4UskRSCbfIZu5EcYYE4RdfHZFLjA3Z1RS5GKyjUoyxhQCy2MwxpgWKGfurioiJ4vIAhFZJCI3+SzfSUQmuss/FJFeYcZnjDEmxIZBRIqB+4CfAgcA54jIATHVLga+U9V9gD8D/x1WfMYYYxxhnjEcDixS1cWquhV4GhgaU2co8Kj7fApwvIgN4zHGmDCF2TB0B7zZXUvdMt86qloPrAV2jd2QiFwqIpUiUllbW5uhcI0xpmUKs2Hw++Ufe+U7SB1U9UFVLVfV8i5duqQlOGOMMY4wG4algHcQfw9gWbw6IlICdAS+DSU6Y4wxQLh5DB8D+4pIb6AGGAH8IqbOC8CFwExgGPCGJhhPW1VVtVpEvkkhrs7A6hTWzyV2LLmpkI4FCut4WvKx9Iy3ILSGQVXrReRK4FWgGHhYVT8VkTuASlV9Afgn8LiILMI5UxgRYLsp9SWJSGW8sbz5xo4lNxXSsUBhHY8di79QM59V9WXg5ZiyWz3PNwPDw4zJGGNMNLtXkjHGmCjWMMCD2Q4gjexYclMhHQsU1vHYsfjI+3slGWOMSS87YzDGGBPFGgZjjDFRWmzDICIPi8gqEfkk27GkSkT2FJE3ReRzEflUREZnO6bmEpHWIvKRiMx1j+X2bMeUKhEpFpHZIvJStmNJhYhUi8h8EZkjInl9r3sR2VlEpojIF+7n5shsx9QcItLH/f+IPH4QkWtS3m5LvcYgIscA64HHVPXAbMeTChHpBnRT1Vki0h6oAs5Q1c+yHFrS3JsmtlXV9SJSCrwLjFbVD7IcWrOJyLVAOdBBVU/LdjzNJSLVQLmq5n1CmIg8Cryjqv8QkVZAG1X9PttxpcK9g3UNcISqppL023LPGFT1bQrkdhuqulxVZ7nP1wGf0/gGhXlBHevdl6XuI29/vYhID+BU4B/ZjsU4RKQDcAxOQi2qujXfGwXX8cBXqTYK0IIbhkLlTm40EPgwu5E0n9v1MgdYBfxLVfP2WIC/ADcADdkOJA0UeE1EqkTk0mwHk4K9gVrgEbeL7x8i0jbbQaXBCOCpdGzIGoYCIiLtgGeAa1T1h2zH01yquk1VD8a50eLhIpKXXX0ichqwSlWrsh1LmgxW1UNwJtv6ldsdm49KgEOA+1V1ILABaDSjZD5xu8NOByanY3vWMBQItz/+GWCCqj6b7XjSwT29nwGcnOVQmmswcLrbN/808GMReSK7ITWfqi5z/10FPIcz+VY+Wgos9ZyJTsFpKPLZT4FZqroyHRuzhqEAuBds/wl8rqr3ZDueVIhIFxHZ2X1eBvwE+CK7UTWPqt6sqj1UtRfOaf4bqnpelsNqFhFp6w5swO12ORHIyxF9qroCWCIifdyi44G8G6gR4xzS1I0EId9EL5eIyFPAEKCziCwFblPVf2Y3qmYbDJwPzHf75gF+4960MN90Ax51R1gUAZNUNa+HeRaI3YHn3Jl2S4AnVfWV7IaUkquACW4XzGLgoizH02wi0gY4Afhl2rbZUoerGmOM8WddScYYY6JYw2CMMSaKNQzGGGOiWMNgjDEmijUMxhhjoljDYAqeiIwUkfWJa+amVOIXkWNFZKE7/DcjRKS/iNQUyG0lDNYwmJCIyHgRUfdRJyKLReRPyXyZuNvISE6De0vp6zKx7SzHMRa4S1W3pXGbUVR1PvABcG2m9mHCZQ2DCdN0nAS2vYFbgCuAP2U1ogImIkcBfUnT/XMSeAS4XERabNJsIbGGwYRpi6quUNUlqvokMAE4I7JQRA4QkWkiss6dROkpEenqLqsALgRO9Zx5DHGX3S0iC0Rkk/uL+48i0jqdgTcVm7t8vIi8JCKj3W6V70TkETcrNVKnrYg8JiLrRWSliNzsrjPeXT4D6AmMjRxjTAzHi8gnIrJBnImZeicI+xfAdFXdGLOdU0XkQ/f9WiMiL0beL/f9u9U9nnUiskREzhZnYpun3di/FJETY/b1GtAJ524CJs9Zw2CyaRPOfAuRyYbexrn/zuE490hqB7wgIkU4ZxaT2HHW0Q14393OBmAUsD/OWcgI4LfpCjJAbBH/ARzoLj8bOBPwzqb3P8CxbvmPgYPcdSJ+hnODtzs8xxixE3AzznEeCewMPJAg9P8AomZaE5GTgeeBfwGHAscBbxH9XXAN8BHOjeUmAY8CTwIvAwe778UT3sZXVbcCc9zjM/lOVe1hj4w/gPHAS57XhwOrgYnu6zuA12PW2QVnDoDD/bbRxL4uAxZ5Xo8E1idYpxq4Ls6yoLEtAUo8dR7C+cUOTkOyFRjhWd4W+A4Y31QcbvwK9PGUnetur6iJY/oeuCim7D3g6QTvw1Oe1+3cff/VU9bLLSuPWfdZ4PFs/63ZI/WH9QeaMJ3sjq4pwTlTeB7nZmbg/Ho9Js7omx/h/IL1JSLDcH7l7oPzRVbsPtIlaGyfqWq9Z9ky4AhPvVJPXVR1gwSfc3yLqi6I2XYpzplDvJkIy4DNMWUDcRqxpszzxLheRDYC8z3LI7d23i1mvU3uPk2es4bBhOlt4FKgDlimqnWeZUXANMBvRE7ce8yLyCCcuQ5uB36N8yv5dNJ7UTtobHUxy5QdXTTiKWuO+pjXke001R28GufMJll+x1EX89pv351wzjhMnrOGwYRpo6ouirNsFvBz4JuYBsNrK43PBAYDNap6Z6RARHqmHGnysSWyCOfL9XDga9h+u+QDga889fyOsblmAwf4lB2P082VbgfidCeZPGcXn02uuA/oCEwUkSNEZG8R+YmIPBiZIAbn1+iBItJHRDq7s9YtBLqLyLnuOpfjTFrSHHuIyMExj84BY2uSqq4HHgb+2x1ddADwD5zPoPcsohr4DxHp7u47Fa8CR8eU3QUMF5Ex7kirfiLya+/oqeYQZ67x7jijk0yes4bB5AR1po0cDDQArwCf4nwhb3Ef4PzK/RxnpE0tzhzEL+Ikcf0Fp2/8BODWZobxa5xf1N7HiICxBXEd8A7wAvCmG28l0dcBbgX2xDmLqG3mcUQ8AewnIv0iBepM3nQmzlSQs3FGJB2Hc2ypOAd4TVW/SXE7JgfYRD3GZImI7AR8A4xV1f/J0D7uBrqo6sWZ2L67j52AL4FzVPW9TO3HhMfOGIwJiYgMFJFfiMg+IjIQJz+gPTAxg7v9PbBYMnivJJykvLusUSgcdsZgTEjcxuAhoA/OKKM5ODkLVVkNzJgY1jAYY4yJYl1JxhhjoljDYIwxJoo1DMYYY6JYw2CMMSaKNQzGGGOi/H/uD3Kaj1VJyAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "# Plot the data colour coded by species\n", - "fig = plt.figure(1)\n", - "plt.scatter(iris.data[:, pl_ind][iris.target==0], iris.data[:, pw_ind][iris.target==0],\n", - " c='green', label=iris.target_names[0])\n", - "plt.scatter(iris.data[:, pl_ind][iris.target==1], iris.data[:, pw_ind][iris.target==1],\n", - " c='red', label=iris.target_names[1])\n", - "plt.scatter(iris.data[:, pl_ind][iris.target==2], iris.data[:, pw_ind][iris.target==2],\n", - " c='blue', label=iris.target_names[2])\n", + "# Plot the data color coded by species\n", + "for ind in range(n_labels):\n", + " plt.scatter(iris.data[:, pl_ind][iris.target==ind],\n", + " iris.data[:, pw_ind][iris.target==ind],\n", + " label=iris.target_names[ind])\n", "\n", "# Add title, labels and legend\n", "plt.title('Iris Data: Petal Length vs. Width', fontsize=16, fontweight='bold')\n", - "plt.xlabel('Petal Length', fontsize=14);\n", - "plt.ylabel('Petal Width', fontsize=14);\n", + "plt.xlabel('Petal Length (cm)', fontsize=14);\n", + "plt.ylabel('Petal Width (cm)', fontsize=14);\n", "plt.legend(scatterpoints=1, loc='upper left');\n", "\n", - "# Note that splitting up the plotting per group is basically a hack to make the legend work, \n", - "# The following command plots the data perfectly well, colour coded by target:\n", - "# plt.scatter(iris.data[:, petal_length_ind], iris.data[:, petal_width_ind], c=iris.target)\n", - "# However, it's a pain to get a labelled legend when plotted this way" + "# Note that the data, colored by label, can also be plotted like this:\n", + "# plt.scatter(iris.data[:, pl_ind], iris.data[:, pw_ind], c=iris.target)\n", + "# It is, however, more difficult to add labelled legend when plotted this way" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Task:\n", - "If we didn't already know the Species labels, we might notice that there seem to be distinct groups of datapoints. Clustering is the approach of trying to find these groups algorithmically. \n", + "In this data, we know we have 3 different 'groups' of data, which are the different species. \n", "\n", - "Here, we will do so with the KMeans algorithm. For information on KMeans and how it works, see the lecture. " + "As we can see in the plots above, these different species seem to be fairly distinct in terms of their feature values.\n", + "\n", + "The question then is whether we can learn a clustering approach, based on the feature data and without using the labels, that can learn a meaningful grouping of this data. \n", + "\n", + "If this approach works, then we might be able to try to use it on other data, for which we have feature data, but might not be sure about the groupings present in the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Apply K-Means Clustering\n", + "\n", + "Clustering is the process of trying to learn groups algorithmically. \n", + "\n", + "For this example, we are going to use the K-means clustering algorithm. \n", + "\n", + "K-means attempts to group the data into `k` clusters, and does so by labeling each data point to be in the cluster with the nearest mean. To learn the center means, after a random initialization, an iterative procedure assigns each point to a cluster, then updates the cluster centers, and repeats, until a final solution is reached. \n", + "\n", + "
\n", + "K-means is a clustering algorithm that attempts to learn k clusters by grouping datapoints to the nearest cluster center mean. \n", + "
\n", + "\n", + "
\n", + "For more information on K-means, see the article on \n", + "wikipedia\n", + "or on the sklearn\n", + "user guide. \n", + "
" ] }, { "cell_type": "code", "execution_count": 9, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Pull out the data of interest - Petal Length & Petal Width\n", @@ -227,20 +278,21 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Whitening Data:\n", - "If your different dimensions use different units (or have wildy different variances), then these differences can greatly impact the clustering. \n", + "### Whitening Data\n", + "\n", + "In this example, we are using two features (or two dimensions) of data. \n", + "\n", + "One thing to keep in mind for clustering analyses, is that if different dimensions use different units (or have very different variances), then these differences can greatly impact the clustering. \n", "\n", - "This is because KMeans is isotropic: it treats different in each direction as equally important. So, if the units or variance are very different, this is equivalent to weighting certain features / dimensions as more or less important. \n", + "This is because K-means is isotropic, which means that it treats different in each direction as equally important. Because of this, if the units or variance of different features are very different, this is equivalent to weighting certain features / dimensions as more or less important.\n", "\n", - "To correct for this it is common, and sometimes necessary to 'whiten' data: to normalize each dimension by it's respective standard deviation. " + "To correct for this it is common, and sometimes necessary to 'whiten' the data. 'Whitening' data means normalizing each dimension by it's respective standard deviation. By transforming the data to be on the same scale (have the same variance), we can ensure that the clustering algorithm treats each dimension with the same importance. " ] }, { "cell_type": "code", "execution_count": 10, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Check out the whiten function\n", @@ -250,9 +302,7 @@ { "cell_type": "code", "execution_count": 11, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Whiten Data\n", @@ -263,24 +313,20 @@ { "cell_type": "code", "execution_count": 12, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "# Combine data into shape for skl\n", + "# Combine data into an array to use with sklearn\n", "data = np.vstack([d1w, d2w]).T" ] }, { "cell_type": "code", "execution_count": 13, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "# Initialize KMeans object, set to fit 3 clusters\n", + "# Initialize K-means object, and set it to fit 3 clusters\n", "km = KMeans(n_clusters=3, random_state=13)" ] }, @@ -293,8 +339,8 @@ "data": { "text/plain": [ "KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,\n", - " n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto',\n", - " random_state=13, tol=0.0001, verbose=0)" + " n_clusters=3, n_init=10, n_jobs=None, precompute_distances='auto',\n", + " random_state=13, tol=0.0001, verbose=0)" ] }, "execution_count": 14, @@ -303,7 +349,7 @@ } ], "source": [ - "# Fit the data with KMeans\n", + "# Fit the data with K-means\n", "km.fit(data)" ] }, @@ -314,38 +360,83 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEcCAYAAAAydkhNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XeYVOX1wPHvmb6NpfeqSEcUkSYI\nFpRgr9hi0KhRo9Ek6s8YEzXRxMTEGhNbbFFjNxo1VkTFggIKIoJ0pHe2z+7MnN8fd3Z3ZnZmd3Z3\ntoDn8zzzMPPe9957ZtmdM/e9bxFVxRhjjEnG1dIBGGOMab0sSRhjjEnJkoQxxpiULEkYY4xJyZKE\nMcaYlCxJGGOMScmSRAaIyI0iotHHjfXY79GY/fpmKJbVMceMiEiZiGwUkY9E5AYR6dLI458Yfb83\nikjbTMSc5nknx7yv2EeBiHwsIucl1G/Q/0lrkeK9lorIYhH5nYhkR+sNjNn+ZsIxfhuz7YmEbXfH\nbJuWRjweEZkhIm+KyBYRKReRDSLyvohcKSI50XozYo47I4M/kmQxzaj8XWzK82RCwt/65JaOpz48\nLR2AaVIC+IGu0cd44AoRma6qbzfwmCcCP4o+fxTY1dggGykPGAeME5H9VfXnLRxPUwoAg4HfAEeL\nyARVXSoi24COwFgRcalqJFp/fMy+hyQcq/K1Ap/UdlIR6Qi8gvNzjtUt+jgUmAV8Wb+302gzgEnR\n5zc287m/N+xKogWISABAVWeoqkQfq5vgVP1wksRwnA90gHbASyIyuAnO11zeV1XB+dCcEVN+Raau\nyFqT6Ht1A2OB7dHi0cCZ0ecfR/9tg/N/jYi4ovUr9RWR7tFtucCIaPliVd1ZRwjPUZ0gvgaOALKA\ntsA0oKFfOFq16NWTu6XjaGmWJJpQwiXmRBF5XkR2A98k2d43Zr8LRWSuiOwQkaCIrBeRt0XkRylO\nlZKqlqvqIlU9D3g5WpwD3BBzvunR438nIiXRc64Ukftim6dERKm+igBYFRu/iOSKyGMi8pWIbBeR\nChHZJSIfiMj0JD+fyn1X1/d9Rd9bUFUfA76qPCQwqiHHSojrP9G4wpUfrNFyV7SJRcVp1hMRyRKR\nP4rIUhEpEpHi6M/uBREZW9t56kNVI6o6B3gqpnh09N+PYsoqrxCGAfnAVmBuwrYxOEkHqhNMUiLy\nA2By9GUJcLSqzlTVMlXdrar/U9WjgEV1HKfy/3pWXeUi0lFE7o3+HEvEaVJcKiL/jjav9Y3+Lk5K\nchyNKWsnIrdF9y2LHud9ETkxIYbYJrKLReSvIrIBKAd6Rev0FJF/iMgqcZradorI/0Tk0CTv9VgR\nWRg95xIROae2n01rZ81NzecloEP0ecpvbiJyGvBAQnH36GM38FgjYvgTcEL0+bSYponDgCMT6vYD\nfgJMjjbjlKdx/Fzg3ISyfGAiMFFEAtEP9UzL9Jedh3F+Ti5gOnBHtHwyTvMKwKOqqiLyF+DShP37\nRR/vAZ9mOLZk7zUxSfyd6qamj4FVOMlzPM5VwSEp9k3m2JjnT6nq+mSVVDVUx3Hq4zGcK5RYecAA\n4EnqSEgAItIZ573vG1Psx2kaO1RErlHV25LsejPVf6eVxxoIzMZp0qvUFpgKHCUiZ6nqM9G6RwD/\noToJDwT+BWysK+bWyq4kmk8BziV7FjX/AGJVfjMpwvkF8wN9gNOBNxoZw5KY53lU/zE8hfPtsiPg\nBboAj0S3DayMN9rsEfsh3y+huawQ50O1L5CN0xw0HucbKEBG7xeIiC96dTU0WqTA5xk49OvApujz\ns2LKK58r1c13lf9fnwKdcK7SBuEkjm8yEAtQdRUzhuomJoA50X/nAsHo8wnRfysTwUdUJ4JDEupA\n3UmiX8zzxWkH3DiVP9MXcb5ktAH2B34JrFPV1dHfxfcrd4j5PZRo0e9wEkQYOAXn764n8EF0+80i\nUpnwY+Xi/Ixzgf7AFuAunL+N3ThfqALAfjh/Ty7gbyLiqzwu1Qniumj803HuCe6R7Eqi+VyvqpXf\nKmv7Y1sV/TcHuB6Yh/Nh85aq7m5kDKm+FGwEfotz+d4VJ1HEGpjm8Utw/piewbnBmofTBJT0ODF/\n0PU1KbZZIcY9qrqmgcesoqohEfkXcDUwSkT6A2uBk6NVZsbcQ1qF07RTeUN5UfTxzzSvvuqU4r3O\nBZ6OxhsUkXk4Cbm3iPQkPkmsjD4/UETyqL5XsUVVl2cixgxbhXNvZRzO38BinCbFO2NuytfluOi/\nbuCFJNt9OL/vTyeUP66qlWUrRCSL6qvsfJyrw0QdgZEi8hXVTYDbgD9F431WRC4nPjnvMexKovl8\nkWa9v+M0CUSAHwJ3Am8Cm0Xk2kbGMCjmeQGwXUTycS6lz8Fpf01MEOB8C0vH/wH34lyVtCE+QYDz\nDSzTinG+UV8EXJnB4z4c8/ws4Ac4N/0B/hmz7Rc4Vy/5wM9wmgo/BtaLyFEZjAecq4UlwB+Aw1S1\nImZb7BXBqThXAEFgnqpuwkkUHuDHOMkb6rgfEbUq5nlGOzuISKovqRcCS3Ga9q7GuaqdC6wUkQPS\nPHznNOp0SFKW+Hfanuorg7qO1Y7qz9SNCQltXRrHaJUsSTSf0nQqRW8Ino7zyzkBOB/nQ9AP/EFE\nejQihl/FPH8t5n5E5R/Uu0C36Df8n6UKsZbjnxHz/ETAHz3W9hT1G+r9mOaFXFUdq6oPagbnvVfV\nJVTfTziT6maeXTj3lyrrLVfV0Tj3jKbgJKqNON8u78lQLJXvNaCqg1X116palFAtNklUNuvNU9XK\nZqjZCdsS90nl1ZjnZ6dookHq7gVUeVUV+0Vhn2QVVXWOqg7CSXQ/AK7FaX7tg3NfrapqLefbEv23\niOjvYUKTlEtV702yX+Lf6Q6cJiuAZYnHiTnWazj3GisTQzdxephV6llLrK2aJYlWRkROEZHLgB7A\nApyrigWVm6nnL5uIeEVkmIg8ChwTLS7GabMFiL3hWAYUi8hQ4PIUh4z9wB8hIrFXC7HH2gV4ReQ3\nJP/G1ujeTfXQX0SmJjzG171b1dXEIJx2bXBu3pZVVhCRq6M9twLAhzhNbRuim3vH1GvqwVSxH/i9\nk5TNTtgGaVxJqOr/qG7HzwbeFGdgY0BE8kXkByLyNtGut7WobAYcLiJ9RMQL/D5ZRRG5RUSOw/lw\nngk8S3Vnj9j4t8fsk3iFUZnccoGHRKSXiGSLyFARuYjqv6laqWopzpcngP1E5M8i0llE8kRkhIj8\nonK7qhYDn0XrdgT+L1rvdGqOU9lzqKo9GvnAGcij0ceNMeWPxpT3TbJfje04bbCa4rEByKojltW1\n7K8434ymxNRvh/OtK7Hetyne06lJ6q6Obvt1km1bcf7A1fl1i4s1bv863tfkmPqz6vl/kuzxZRrH\nyMNJqLH7HZRQ551azvGfFP/Xk9M4d9Vx6vF7uDTh/CfEbBuSsK0M5xt2OsfthHM1W9vP84Bo3Rkx\nZTNijnFDTHkFzv2r2J/trJi6y2s5z50x9a5Ksn1WdFsXnCa2lDHHHCdpzDHbB+MkpFTHWh1T9wic\n5JZYZ1t9/v9b08OuJFqfd3F6Gy3HuVQO4zRfPA1MUuebTboUp116E863xhuAwRoz2lqdgVQ/wPmm\nWYKTiG4Ebk1xzBeAW3Bu5IYTtv0Jp718Pc5l+/vA4Ti9QvY4qloIPB9TtFBV5yVUewynN9Q6nA/e\nCpz/u9tx7ik1p8Tmo9grhW+IvwqMbYqqlapuxWn6/DFOUtyG8z434Vw9/QJYVsdhbsXpSlw5/uBD\nUn+7/hvOFURl3TKcQXw34NyjqHQvcB/O34cmxLwZp9vvn3Hu4wRx/p6W4fx9xfYSq5WqfgMcAPwD\nJ/GU4/xOL8a5P3VxTN13cZpaF0XrLce5X/YqeyiJZj9jjDGmBruSMMYYk5IlCWOMMSlZkjDGGJOS\nJQljjDEp7fHTcnTs2FH79u3b0mEYY8weZd68edtUtVNd9fb4JNG3b1/mzp1bd0VjjDFVRCStec6s\nuckYY0xKliSMMcakZEnCGGNMSpYkjDHGpGRJwhhjTEqWJIwxe6yKcJj1BQWUVlTUXTmJbSUlbC0u\njivbXVbGxsJCbF47R7N1gRWRXsDjOMtjRoAHVPWuhDqTgZepXg3rRVX9HcYYk+DxBV/w109mE4pE\niCicPnQY10+cjNdd90Jyq3ft5Mo3XmPJ9m0A9GvbjhsnHc4/5n7Gp+u+Q0TokJ3Fn4+cyvheves4\n2t6t2WaBja5o1U1V50fX2Z0HnKiqi2PqTAauUtVj0z3uqFGj1MZJGPP98vqypVz99huUhqrXuQp4\nPJwxdDi/nXR4rfsGQyEmPPIgO8tKicR8/rlEcIkQilSvOprl8fDqWefSr227ZIfao4nIPFUdVVe9\nZmtuUtWNqjo/+rwQZ377xizFaYz5nrrns0/jEgRAWSjE019/RTChPNE7K1dQFqqISxAAEdW4BAFO\nc9bjX6a7PP3eqUXuSYhIX+BAnNWuEo0TkQUi8r/oMprJ9r9IROaKyNytW7c2YaTGmNZoc1HiEt8O\nVaWwvDzptkobigooDyeul5VcSJXVu3fWXXEv1uxJQkRycVY3u1JVCxI2zwf6qOoInEXk/5PsGKr6\ngKqOUtVRnTrVOfWIMWYvM7xLl6TlOV4f7bOyat13/85d07pvARBwexjbo1e949ubNGuSiC5+/gLw\npKq+mLhdVQtUtSj6/HXAKyIdmzNGY0zrd834iWR5PEhMWZbHw3UTJ+ESSbkfwOgePRnaqTN+d3W/\nHZ/bTb4/QJanuszjcpHn93PGsP0zHf4epTlvXAvOesA7VPXKFHW6AptVVUVkNM76wn20liDtxrUx\n30/fbN3C7Z9+xMLNm+iRl8/Pxoxjct9+ae0bDIW4f97nPP/NIiIR5YRBg7n4oNG8vPQbHl0wn+Ly\nco7oty9XjBlPp5ycJn4nLSPdG9fNmSQm4Cx+/hVOF1iA64DeAKp6n4hcBlwChIBS4Beq+nGSw1Wx\nJGGMMfWXbpJotnESqjobqPU6UFX/BvyteSIyxjTWws2buOn9mSzcvIlcn49zRxzI5aPH4XFltiX7\n2nfe5IVvviasisfl4rwRB/KriZMzeg6T3B6/noQxpmWs3LmDs158lpLoaOfdwSAPzp/LhsJCbpsy\nNWPnueqt//HikqrhVIQiER78Yh5et5urxk/M2HlMcjYthzGmQR6Y93mNMQlloRD//XYJW0uKU+xV\nP5FIhJdiEkSsB+dbM3NzsCRhjGmQr7duIZzknqbf7WHNrl0ZOUdxRTmp7ppWJAx8M03DkoQxpkEG\nd+yEO0l302A4RJ/8thk5R47Xl/JGpjfD9z1McvZTNsY0yE8OOhhfwqC0gMfDtP0GZKzbqMvl4rgB\ng5JuO//AgzJyDlM7SxLGmAbZt30Hnjz5dIZ37oIAuT4fM0aM5E9HHJ3R89w59RhOGjS4apCcW4Tz\nRozk/w45NKPnMck12ziJpmLjJIxpeaqK1DHSORMikQgua2bKiFY3TsIYs/fZUFjAXXM+YfbaNbTP\nyuKigw7m0N59+Mfcz3h92bf4PR7OHj6C04cM49EFX/D84kWEVTlx0GAuHHkwr367hEcXzKeovJwj\n9+nPZQePpWN2dsrzxSaIb7dv445PP2LBpk30ys/nstFjmdi7b419CoJl/P3zOXHx/HD/A3AnJJuI\nKs99/RWPVMbTb18uGz2u1nhawtsrlvP3uXPYXFzEmB69uGLMOPo24VTmdiVhjGmQLcVFTH3yMQqD\nwapeTgG3G7/HS2moomqm1SyPhyyPl5JQBWXRLrN+t5tsr5eyUKhqym+vy0X7rGzePGcGbfz+Ws/9\nzdYtnPb805RWVFT1fsryePjDEUdxwsDBVfXKQhX84MnH2VhUGBfPYX334W/Tjos75vUz3+alJYuT\nxPMj2vgDjfthZcijX87nto8/rIrRLUKW18t/z/ghfdrWr7NAq1tPwhizd3lw/lyKy8vjusGWhcPs\nDpbFTcVdGgqxo6y0KkEABMNhdpaVxa0JURGJsDtYxjOLFtZ57j9//CElMQmi8jw3fzArbp2IV5Yu\nYWtxcY14Zq5eyfId26vKNhYW8vw3X6eI56u6fxjNIBgK8ddPZsfFGFalpKKCv33+aZOd15KEMaZB\n5qz7LuNjFcpCIT5Zt7bOegs2b0paXlgeZEdpadXrOevXURKquf61S4QvN22ser1oy+YaPbUq4/k4\njXiaw9rdu5OWR1T5fP26JjuvJQljTIP0bJNf+2RsDeAWoXcaYyw6ZSfvYutCyPP5ql73zs9P+uEv\nQNfcvKrXXfPyCEdqNr2nG09z6JidnTIpd89r02TntSRhjGmQiw46GL8nvu+LR1w11nOoXDs6kQvB\nk1Duc7s5d8SBdZ77stFj49Z+AGeMxmlDh8XFdPqQ4Xgk/mPOLUL7rGzG9+pdVTasU2f6tG1bY2JC\nr9vNj9KIpzm0y8riyH774k9IelkeD5ccPLrJzmtJwhjTIAd07cZfpkylfSCLLI8Xn9vNpL79+Odx\nJ9Ejrw0Bjwef282ILl154qRTGdyxE363G7/bzT7t2vH4SadwcI+e+NxuAh4PXXJyue+YE9inXfs6\nz33cgEH8Yuwh5Hh9ZHu9+N1uThw4mF8nzAzbLS+PR088JS6e/bt05d+nnB6XuESEx088lYO794iL\n5/4042kut02ZylH79sfndpPt8dLG7+fGSYcn7dWVKda7yRjTKOFIhPWFBbTx+2kbcJYOVVU2FBbi\n87jjmoY2FxUR1khc88j2khJKKiro2aZNvcdaBEMhNhUV0SE7m9yYZqZEqeJJpjHxNJeCYBk7S8vo\nnpeX9lKsiVrdokNNxZKEMXu/tbt38fAX81i6fRsjunRlxgEj4+4pVCoqL+fpRQuZuXolXXJy+NGI\nkRzQtVsLRFw/qspbK5fz3NeLCGmEkwcN4Zj9BtYYy5FJliSMMXuFBZs3cfaLz1IeDhOKRPC63AQ8\nbl48/Sz2bd+hql5hMMjxTz/B5uIiykIhBPB7PNw06XBOGzq85d5AGv7vnTd57dulVT2xsjxeJvTu\nzX3HnNBkVzM2TsIYs1e4fubblFRUEIr27KmIhCkqL+fmD2fF1Xt84RdsKiqsGo+hOF1Yb/rgPcqS\ndINtLb7ZtpX/frskrqtuaaiCj9au5fMN61swMoclCWNMq1UeDvPNtq01yhX4dN13cWVvr1hOMGbQ\nXCWXCF9v3dJUITbaR2vXEE7StbUkVMH7a1a1QETxLEkYY1otj8uVct2InIQb1e2yspLWC0citG0l\n02okkx8IJL357He7aRdI/p6akyUJY0yr5RLh5MFDaowNCHg8nDP8gLiyGSNG1hg7UTkYLvbeRWtz\n9L77JS0XEY4fmHwtjeZkScIY06pdP/Ewxvbsjd/tIc/nw+92M2WfffnpwWPi6k3q24/LDh6L3+0m\nz+eMn+jbth0PHX9SC0WenjZ+Pw8ffzJt/QFyfb6qx9+nHU/nnNyWDs96Nxlj9gyrd+1kza5d9O/Q\ngR61TEOxu6yMhZs30S4ri6GdOrfasQ6JKsJhvti0kXAkwshu3WuMZs80W0/CGNPqfbd7N/9Zupjd\nZWUc1m8fxvfszfbSUl5aspiNhQWM7tGLI/fZl7JQiI++W8vyHdvZWlLMsQMGIghvrFjGl5s20je/\nLScOGkJ+IEB+IMDEPn2rzqGqzN24nrdXLCfL4+WEQYNbdBR1qni8bjeje/RssbhSsSsJY0yLeH3Z\nUq56+w3CkQgVkQjZXi9DO3Xm6y2bCasSDIfJ9nrpkZfHtpJSykIVlIZCZHu85Pp9+NxudpSWUlJR\nUTXlxjOnnsHADh2rzqGqXPPOG7y+bBlloQrcLhcecfHbSYdxxrD9m/09q6ozJmLZt1XxuKPxnNnM\n8dg4CWNMq1VSUcHVb79BWShUNbNpSUUFczespyQUqurKWlJRwfIdO9hVVlq1jkJJqIKtxcWsLyig\npMIZW1AWClEQDHLVW/+LO8/H69byv2XLKA05a0+EIhHKwiFuen8mO2OmFG8uH69by+vLvo2LJxgO\n8bsWiicdliSMMc1uzvrvkk45kaxdQ5OUJysDZ0nT3WVlVa9jRzHH8rhcfLB2dT0izozXl6WO5/01\nzR9POixJGGOaXeKU3JmiEDe7q9ftTjpNOUjK8RdNyetKHY/P3To/jltnVMaYvdqYHr2Sflgm+/hM\nth6FS6TGh5dbhFHdupMXsz72yYOGJF10KKIRJvXp15DQG+WkwUNbVTzpsCRhjGl2PrebB449kRyv\nlxyvl4Dbg9/t4eTBQ2gfCJDjdcZDZHk8TOjVhz75bavKsr1eBnXoyIHduletJZHj9dElJ5e/HPWD\nuPOM6NqNS0aNxh9dIyLb6yXL4+HeacfXGLHdHEZ06cqlCfEEPB7+Nu24FoknHda7yRjTYorKy3ln\n5QoKy4NM6N2Hfm3bUR4OM3PVSrYUFzGyW3eGde5CRJXZa9ewatcOBnboxJhoV9H5mzbw9ZYt9GjT\nhkl9+qVsxlpfUMCsNasIeDxM2Wdf2rTwNB2tIR6bKtwY02ARVT5Zt5bVu3YxsENHDurWHYCFWzaz\naMtmerXJ55BevXG7XKzYsZ0569fRPiubw/r2w+/xsLGwkA/Wribg8XB4333imoD2Vqpa9fPpmdeG\nCb371Gs9iF1lpcxctZKwKpP79qtzcaTGanWD6USkF/A40BWIAA+o6l0JdQS4C5gGlAAzVHV+c8Vo\njIEdpSWc8cKzbCwsIKyKS4T+7TqQ5fGwcMsmlOp1okd06cI7K1ciAi5x4XW7OGHgYJ5etBCXuHAJ\nqMI/jjk+boDb3iYYCvHjV17ii00bURS3uGiXFeDZU89IujhSoteXLeWXb72B2yWg8FuN8NtJhzf7\n2Ilkmu1KQkS6Ad1Udb6I5AHzgBNVdXFMnWnA5ThJYgxwl6qOSXrAKLuSMCazLn3tFd5dtaJq/AI4\nSUFViZ3Q2vmOLEQSOqMKNbunZnu9fHbBJWR7vU0TdAu789OPuX/eZ3FTlbtFGN2jJ0+efHqt+24r\nKeHQRx6kLByKK/e73bxx9gz6tG3bJDG3usF0qrqx8qpAVQuBb4AeCdVOAB5Xx6dA22hyMcY0g3Ak\nwjsJCQIgnJAgwGkOSEwQkHz8ggth1uqWXxuhqTy7+Ksaa1mEVZm7YT2FwWCt+765YhnJesVGVHlt\n2dJMhtkgLdK7SUT6AgcCcxI29QBiVxJZR81EgohcJCJzRWTu1q01FyQxxjRMRJVIE7QuKEp5kgWB\n9hahcM1Fg6q2JVlQKFZFOJz0Zx6OKMFQKMkezavZk4SI5AIvAFeqakHi5iS71PjpqeoDqjpKVUd1\n6tSpKcI05nvJ63ZzcPceNf4QheR/nOnOr1oRiXBonz6NC64Vm9p/v6SD8/Zt3yHlYkiVDuu7T9Jy\nv8fNlH37ZyS+xmjWJCEiXpwE8aSqvpikyjqgV8zrnsCG5ojNGOP4wxFHkR8IVC3gk+3x0jE7m265\neWR7nHsKAY+HXJ+PgR06Vd1n8Lpc+N1uxvboSbbHi+C0ywc8Hq6fOJn2Wdkt9Zaa3M/HHpL05/PX\nKVPr3LdP27b89OAxBDweXAgCZHk8TB+6P8M6d2niyOvWnDeuBXgM2KGqV6aocwxwGdU3ru9W1dG1\nHdduXBuTeQXBMl78ZjHLdmxneOcuHD9wMG4RXlu2lPkbN9C3bTtOGTyUPL+fmatWMHvtGjpm53Dq\nkKF0y83j03Xf8eaKZWR7fZw0aAj7dWi9K8NlSjAUivv5nDx4SL0S49dbNvPy0m8Iq3LMfgMZGe12\n3FRa3TgJEZkAfAh8BVX3wK4DegOo6n3RRPI3YCpOF9jzVLXWDGBJwpjms7WkmG+3b6NHXhv6tm0H\nOAPDXl/+LT3btOHoffrjSjE2IByJsGDzJsIa4YAu3ZKu69zSVJWvt26hqLyc/bt03Wt7Y0ErHCeh\nqrOpowlTnYz10+aJyBiTrogqN856l2cXL8LvdlMRiTCya3fcLuHDtWuq6vndbp499QyGd+kat/+8\njev5yasvEwyFEcDlEu75wbFM7N23ed9ILVbt2sl5L7/AtpISXCKEIxFumHQ4pw8d3tKhtSibu8kY\nU6cnFn7JC998TXk4TGF5OWWhEHPWfxeXIACC4TCnP/9MXFlhMMiM/7zAjtJSiivKKaoopyAY5OJX\nX2ZrSXFzvo2UIqr88KXn+G73bkoqKigqL6c0FOLG92eycPOmlg6vRVmSMMbU6eEv51Ut+lMpnKKp\nOhgO8X7MmIg3VixLOnYiosp/ly7JZJgNNn/jBnaXldWIszwc5smvFrRITK2FJQljTJ0K6hgQlmh9\nYXXv9t1lZVQkGSMRDIfZ0UpWY9tVVookGdEWUW01VzstxZKEMaZOE3r1qdeHxbT9BlQ9Hx+dCDBR\ntsfLhN6tY+zEyG7dkyayLI+HKf32bYGIWg9LEsaYOl09fiJ5fj8+l9MjqXL8Q7IPkBMHDqZtoHoA\n2ZBOnZm6735xPYWyPF7G9OxZNeV3S2uflc1lo8dWjQ0BZ6xD7/y2nDR4SAtG1vJsqnBjTFq2FBfx\n6Jfz+XzDevZp154fH3gQOV4fv575NvM3biDX7+PSUWM4Z/8DauwbUeV/y77l2cVfEY4opwweyvED\nB9VrKu3mMHvtGv618Et2lZXyg/4DmD50OFl7aTfYVjdOoqlYkjCm8Vbu3MGyHds5tFcfsqIrpO0q\nK2XFjh0M6NCBvFoWxYmosrGokDyfnzYZWjdic1ER6wsLGNapM77ot/uyUAXbS0rpmJ2N35O69359\n4tlWUoKq0imn/ms3pBtPa9XqxkkYY1qfTUWFHPn4w5TE9Fwa26MHpaEwC2K6fk7s3YdHjj+5xkC5\nN5cv4zez3qGovJyIKof33Yc/HXl0gxcZ2lVWyvFPP8G6AufGtwDThw4nPxDgsQVfOHNIiXDJqNFc\nOmpMjZvNb61Yxm/ee4fCaDyH9e3Hn4+cWiOeVbt2cuUbr7F0+zYA+rVtxx1HT2NQx7rngouoctvH\nH/L4gi8AZ73ti1PEszewKwljvseG3HtXjXUMUjl+wCDunHpM1esFmzdx5gvPUBaTYHxuN2N69OSx\nE09tUDyHPPwAG4sKa5R7RAhhKZp8AAAgAElEQVTFfFZleTz8euJkzho+oqps4eZNnJFGPMFQiAmP\nPMjOstK42Vfb+P18MOPCOq8+7p7zMffP+zyuS3CWx8N1EyZxdpKmttaq1a0nYYxpXb7ctDHtBAHU\nWNvgwXmf15jKujwc5rP161hfkDjBc91W7dyZNEEAcQkCoDQU4u9z41caeGB+evG8s3IFZaGKGtNz\nV4TDvPpt7eM2VJWHvqg5ZsSJ57Na991TWZIw5ntq/qb6TbCcOHhuze5dSQfJ+dzulB/2tVm2Y1u9\n6m8rKYl7vXZXevFsKCpIurZFaSgUN74jmYpIhOLy8qTbtpeWJC3f01mSMOZ7alr/AXVXipHlie/l\nM6ZHz6RrKJSHwwxowKyvo+vZHXZwwv2D0WnGs3/nrkknF8z2ejmgS+0LYfrcbnq2yU+6bVCHvXNt\nG0sSxnxPdc3No3+79mnXv3bCxLjXF4wcRbbXiyvmZm2Wx8OPDzyINrX0hkqlbSCLw/v2S7ot8cM/\n4PHwqwmT4souHHkw2V5fjXjOPyA+ntE9ejK0U2f87up+Oz63mz75bTmsX/IFgGL99tDDCCT0Zgp4\nPFw3cVKKPfZsad+4FpHpwBFAZxKSi6oen/nQ0mM3ro1pnAteeYn3Vq9EcWZxvWny4RSVV3DnnI8p\nLi8nPxDgV4ccymlJZkNdV7CbOz79mI++W0O7QBYXjTyYEwcNblQvn1s+mMWTixZQHgrTOTeHW484\nCp/bwx2ffsTqXTsZ2LETvxx7CCO61vzWn248wVCI++d9zvPfLCKiygkDB3PpqDHkRLv/1uXTdd9x\n56cfs2rXjlrjac0yOk5CRG4DrgTew1kpLm4nVT2vgXE2miUJY4ypv0yPkzgXOFNVn29cWMaYTNu4\ncjP3XP5P5r+zEK/PwxFnT+QnfzmXrNza11aur/dXr+KW2bNYuXMnHbOy+enoMZwz/IC9cmyAqZZu\nknABXzZlIMaY+ivcWcRlY35F4c4iNKKEK8K89dj7rPxqLXfNvjljH+CffLeWS15/pWoMwpaSYm6d\n/QEl5RX8ZFStKwybPVy6N64fAM5pykCMMfX35iPvESwNopHqFuCKYAWrFq5h6efLM3aev37yUdwg\nNXC6jN47dw6hSCTFXmZvkPJKQkTujnnpAs4WkSnAQqAitq6q/qxpwjPG1GbZF6sIliTpty/CmsXr\nGDR6v4ycZ8XO7UnLK8JhdpaV0im7/nMfmT1Dbc1NiV0ZKpubBjVRLMaYeup/QF8+enEOwdKERKFK\n78GZm4a7X9v2fLl5Y41yr8tN2wZ0dzV7jpRJQlUPa85AjDH1d/R5h/HvP75EebCiqsnJ6/fQZ2gv\nBo3un7Hz/HL8IVz43//ENTlleTxcPGp00oFpZu+R1j0JEXlYRPKSlOeIyMOZD8sYk4427fO4+5M/\ncODhw3G5XfgCXo44ayJ/eus3Ge11dEivPtzzg2Pp17YdAB2ysrlq3AQusZvWe710x0mEgW6quiWh\nvCOwSVVbbMpxGydhjENVm6U7anOdxzStjIyTEJH2OFO6C9BORGK7N7iBY4DNjQnUGNM4hTuL+Pcf\nX+SD5z7Fn+Xj2EuO4vhLj8ad0AwUiUR4458zeeme1ykpKGXc8aM4+/pTadc5+VxEqcQmiC1rt/Kv\n3z3HvLcWkt+pDadddTyHnXFIiyWRDYUF3DXnE2avXUP7rCwuGDmK4wcMsqTWCLVeSYhIBJJOrFhJ\ngRtU9ZZMB5Yuu5Iw32fB0iAXjbiKLWu3ESp3vsP5s/2MOWYkv3nmF3F177z4ft554kOCJUEAPF43\nbTvn89Ci28nJr3/vpO0bd3Lh/r+gZHcJ4ZDTDTaQ4+fUXx7Hj26c3sh3Vn9biouY+uRjFAaDVTPW\nZnk8XDByFD8fe0izx9PaZWo9icNw5msS4FTg8JjHBKB3SyYIY77v3vv3R+zYuLMqQQAES4LMeXUe\na75ZV1W25bttvP34+1UJAiBUEaZwRxGvP/Rug8793F9fobSwrCpBAJQVB3n2zy9TvLu4QcdsjIfm\nz6O4vDxuSvPSUIgH5n1OQTBYy56mNrUmCVV9X1VnAf2A/0RfVz4+UdX6TUhvjMmoL2ctoqy45geg\nuISln1UPpls+fxUeX83W5WBpOV/OXNSgcy+c9XVccqrk8XtZtei7Bh2zMT5d/x0VSQb2+dxuvt1e\nv7UqTLXaBtMdmlDUJ1W7nqp+kMmgjDHp6bZPF7x+DxXB+A9rcQkde1avodChR3si4ZofoG6Pi277\ndmnQubv268LyL1aR2GIdClbQsUf6U5BnSs+8Nny9ZXON9vHycISuubnNHs/eorYriVk4s77Oinme\n7PV7TReeMaY20y44Ercn/ga1y+0iv2MbDjhsaFXZgIP2ofu+XWvU9fg8nHjZDxp07tOuOh5fVvzU\n2l6fh6GHDKJr384NOmZj/OSgg/EnrPPgdbk5qFv3lAsFmbrVliQ64awd0Qk4FliKMxts/+jjXGAJ\n0GJrSRjzfdepZwf++L9f06VvJ3xZPrx+D4PG9Oevs27CFbNQj4hw61u/Yfihg/H6PfizfXTo3p6b\nXrqGngO6N+jcg8fsxzWPXkZ+xzb4s/14/V5GTT2AG57/ZabeXr2M6NqNv06ZSvtAFlkeDz63m0l9\n+/L3Y+wjqjHSHScxD7hWVd9OKJ8C/FlVD2yi+OpkvZuMccYubFm7DV/AS7subWutu3tbASWFpXTt\n2zkjXUPD4TBb1mwjt10Oee1avlknHImwvrCAfH+A/IBNGZJKpteTGAKsS1K+HpvLyZhG27hyMy/c\n+SqrvlrLwIP7c/IV0+jYI711ojet3crlo69l15YCAPYZ0Yf75t/G7Jc+481HZhIJRzjyh5OYdPo4\nFn24hFf+/gaFO4uZePIYjj7vMHyBmquxLZj1Nfde+TBb1myjx4BuXHHvBXTq3YmX73mdr2YvodfA\nHpx85TF07NGe1x54mzmvzadD9/acePkPGDwmM5MKNpTb5aJ3fu2J0qQv3SuJucBy4DxVLY2WZQGP\nAP3TWgLPmb7jWGCLqg5Lsn0y8DKwKlr0oqr+rq7j2pWE2dMt+WwZVx/xOyrKKwhXhPH4PPizfNz9\nyR/oPahHrfvu3rabUztfkHRbIMdf1fMpkOOnS59ObFq9taobrD/bT6+B3bnro5vjEsUbj8zkrz/+\nR43jZeVlESoPURGswOV24fF5yGuXQ9HOYoKl5YgIviwfl91zPlPPO7yhPw7TTDI1TqLSJThjJtaL\nyCwRmYVzZXF4dFs6HgWm1lHnQ1U9IPqoM0EYsze465IHKCsuI1wRBiBUHqKkoIT7fvFYnftePva6\nlNtiu8aWFQdZs3hd3DiJYEmQdd9uYOZTs+P2u+eyfyY9XmlhKRVBZ5WASDhCeWk52zfurJqBVlUJ\nlgS594pHCJbauIS9RVpJQlU/xxkrcS0wH/gi+rxfdFs6x/gA2NHAOI3ZK1WUV7BiwZoa5aqw4P2v\n69x/46otddapTVlxkNkvzal6XVJUSnnitOO1SdIQ4XIJK75c3ai4TOuR9sR8qlqCs0JdUxonIguA\nDcBVqpr0r0RELgIuAujdu3cTh2RM03F73Hh9HsrLKmpsy86r+6ary+0iEmr4ynDikri5m3wBb4OP\nVSkcipDbCm5gm8xIeSUhIieLiDfmecpHhmKZD/RR1RHAPcB/UlVU1QdUdZSqjurUqVOGTm9M83O5\nXBx57qQaH87+LB/HXXxUnfsf+5O661SpnKozhi/g5diY83g8HnqluA8irvid3V4XLnf8R4jL7aJH\n/6513ksxe47ampueB9rFPE/1eC4TgahqgaoWRZ+/DnijU5Ebs1e75PYZjJg8FF+Wj5z8bLwBL+NO\nOJizfn1Knftefs+P6dijXY3yAw4fRl77XLLbZJHdJoucNtlced9FdOndiazcADltsvFn+bj49hkM\nPDh+caLbP/gd+R3jl4/p2KsDU86dhDfgJSff2XfouEGcdd1J+KJlgRw/PQd04/f/vbZxPxDTqqTV\nuyljJxPpC7yaondTV2CzqqqIjMZJQH20jgCtd5PZW6xfvpENyzfRZ0hPOveu3xXysi9XcedF95Pb\nNocb/vNLsrOzCVWEWPzJt0TCEYYeMhCvz4uqsuSz5ZQUlDB47ACy87JSHnP+uwv55pNvOfCI4QwZ\nNxCAbRt2sOqrtXTp06nqaqFwZxFLP19Bfsc8+h/Yz6bl3kOk27uprqnC/aqakW4KIvJvYDLQEWcN\nihsAL4Cq3icil+H0lAoBpcAvVPXjuo5rScK0FisXruG9p2cTCUc49LTxDBy1b8bPUV5ewb9veZGP\nX5lLuy5tOP/mMxkwKvkypcniWfjB1zx+43MU7y5h8vTxnHbV8ezeWsDb/3qfret2sP/EwYw/4eAa\n03e0tOKCEmY+NZs1i9ex38h+TDp9PIFsf0uHtUfLVJIoAz4BZuLM0fSpqtac9rEFWZIwrcFTf3iB\np255kYryEKqKL+DlhJ9O5cI//TBj5ygpKuXMnj+hpKA0rvyCW89m+jUn1hlP78E9WTZvZVy9vPa5\nhMpDhENhyssqyMoN0HNAN27/4Pet5kN4w4pN/GzcdQRLyykrDhLI8ZPbLoe/zbmVDt1qNrWZ9GRq\nnMTlOKOqfwJ8AOwUkTdE5P9E5GARSXechTF7rQ0rNvHkzS8QLC0nEo6gESVYUs7Lf3uDFQtWZ+w8\nt19wX40EAfDPXz1JeVl1t9WNKzcnjScxQQAU7iiitKisqndVaVEZaxav58U7X81Y3I11x0/up2BH\nUdW4j7LiIDs37eL+q+oeR2Iar671JB5U1XNUtScwGLga2AVcCXwK7BCRl5s+TGNar09fnVdjumyA\nivIQH7+c1jCitMx5fX7SclWY9cxHVa8/+W/jrqzLy8p554kPG3WMTAmHwix8fzEa0YTyCJ+8Yi0I\nzSHtKwFVXaqq96nqGcBI4A84HeqObargjNkTeLweXK6aN2tdLsGbZKGfhkp2jkremGk1PF5Po28e\nZzLuRhFSvpfWdt9kb5VWkhCRjiJyqojcKyKLceZXOhz4OzCtKQM0prU75KTRSa8kXG4Xh542LmPn\nOeKsiUnLXW4Xk2LOM+Hk5PGky5/tZ9pFRzb8ABnkdrsZd9wo3N74hOD1ezj8rAktFNX3S61JQkTu\nEpGFwHc4TUy7gCuA9qp6iKr+SlXfbIY4jWm1OnRrxy8euhhfwEsgx48/248v4OXi239E9327Zuw8\nl959Hl37JSzmI3DtEz+LWzuifdfk8SRLWH2G9KBt53yy8wL4Al782X4OOmp/jr1oSsbibqwr7ruQ\nbvt0ISsaY1ZugL7DenPBree0dGjfC3X1booAa4C/AK+r6qqUlVuI9W4yrcWurbv55JW5RMIRxh43\nqsl63sx+aQ7vPf0RHbu34+zfnEqb9nlJ6yWLZ8emnTzxu+cp2FHEtAuPYOQR+1NRXsGnr85n+4Yd\nDB0/kP1G7tMkcTdGJBJh3tsLWf/tRvoN783+k4bYeIxGylQX2Ak4YxsOA8YBW6levnRWa0galiRM\npqgqSz9fzrL5q+jatxMjp+yP2924du+NqzZzz08fomhnMSddOY3Dpk+grKSMp/7wIptXb+WQE0dz\n6KnjCIVCvHjHayz/YhXDJgyqmirjrcdmMf/thfQZ0pPTrjkBn8/L2iXrWfj+YvI7tWHMMSPx+b1s\n+W4bc99cQCDbx5hjDyKnTTYF2wuZ89p8wuEIY44ZGTdHkzEZSRIJB/QB43GSxmRgNE7SeE9VZzQ0\n0MayJGEyobysnOuO+QNLP1uORhSXx01+xzzu+PD3dOzevkHHvO+qx3jh9viupLntcijeXRLXW6dt\n53wKdxZVTRUO4M/24fZ6KNldUlXm8rgYPW0k899eiAAujxuvz83hZ03gtQffxeVy4XIJqsqJP5vG\ni3e8hsvjAlUi4Qg/vft8pl3QOu41mJaX8SQRc2AfzlXFNOBiIFdVW6ybgSUJkwmP3vAMz932ctxs\nrC63ixGTh/Lnt39b7+Pt3lHIqR3Pz2SIqQlJp+xO5At4eWjRHXTbp0uTh2Rav4wtOiQiHhE5RESu\nF5F3cW5ezwROw5lf6UeNjtaYFvbmwzNrTNcdCUf46oPFlBTWHMBWl4eu/lemQqtbmt/zIuEIs56t\nc6YbY+LU2hlaRN7CaWLKxhl5/R7wU2CmqtZcKcWYPVSoPPVsM+FQOOW2VIL1WbinmUTCESrKWl9c\npnWr60piO/BzYICq9lLVc1X1EUsQZm8z4ZQxeLw1W037DOlFXgMW0Jnx++mZCCujvAEv408Y3dJh\nmD1MXdNynBmdmmN5cwVkTEs47/dn0rFnBwK5zmpw/ujaDtc8dlmDjtd9326MPHJ4jfLERXoAPL4k\nt/Qked2eA7qTFY3R6/fgz/YxYvJQAjl+RMDtceHL8jH22IPwZ/twuQRxCf5sP8deNIX+B/Zr0Psx\n31/Nup5EU7Ab1yZTgqVB3n/2E76Z8y099uvGUedOpk2H5GMQ0vXW47N45Pp/EywJMva4UVx5/0Ws\nXbyeh659gq3rdjBqyv6cd8uZ7N5awP1XPc6axesYMKo/F912Dm6Pm4f+70m+/mQJPfp34ye3nUvX\nfp359NV5zHt7Ae27tuOoGZPp1LMDC2Z9zeyXPiMr18+R5xxKnyG9WDZ/Je89PZtwKMKk08czZOyA\nDP2kzN6gyXo3tTaWJExrEQ6HWTJnOZFwhMFj98Pj9aCqLJu/kpKCUgaO7k9WTup1qzet3sKG5Zvo\nPbgHHXt0SFmveHcxS+eupF3nNvQd1rteg8rqE4/Zu6WbJFrJLF7G7NkWfbSEG0/6MxXBUFVT0cV/\n/RFP3vwCO7fsxu0SQqEIl91zPlPPOzxu32BpkFvOuJN5by/A6/dSXlbBpOnjueqhS2pMYvfsX17h\nsd8+g9fvIRwK022fLvzh9etqTSqV1i3byHXTbmHX5t24aonHmFh2JWFMIxXvLubM3hdTWlgWv0FA\ncAa3VfJn+7jjg9/HTX1x16UP8taj78V1wfVn+zjj2pM45/pTq8rmvrWAG0++jWBJ9WKRLreLfsN7\nc9/822qNMRKJcE6/n7Jt3fb4eLJ83P7B7xhwUOZX0TOtW8bGSRhjavfhi5/VWO8AAIXEL2EVZRW8\n8vfqOTEjkUiNBAFULVoU68W7Xo1LEOB0a123dAPfLV1fa4yLP15K0a6imvEEK/jvP96qdV/z/Zay\nuUlECklzmI6qtslYRMbsYQp3FNU6ziJWJKLs3Lyr6nU4FKYixb6Jg/h2bylIWs/tdVO4o6jW8xbs\nKEp67yIxHmMS1XZPomF9/4z5njnw8GG4vW5CFXUPuvNn++PGKnh9XvoN783KBfFDj0Rg/4mD48rG\nHT+K1V9/l3Rk+L4H9K31vEPHD0yayAIJ8RiTKGVzk6o+lu6jOQM2prXpf2A/Jpw8lkCOv6oskOOn\n18Du+LOry/zZPnrs15Ujz4lfPOiKf1xEIMeP2+P8OXq8HrLysrj49vgZb068fBrtu7bDF/ACTiLx\nZ/u55I4Z+LP81Ca/YxvOvv6UGvF079+VI862xXtManbj2pgMiEQifPjCHP73z3eJhMIcNeMwDjvz\nEBa89zUv3/sGhTuKOPS0cUw9/3AC2TU/0Nct28gLt/+XlV+tZfCY/px85bF07tWxRr3i3cW8ev/b\nfPrqPDp0a8dJVxzD0PED045z/jsL04rH7P0yOk4iOvPrr4Ezgd6AN3a7zQJrMikSibBt3XZy8rPJ\nyc9p6XCSUlW2b9iBL+CLG3C3c8tuNBKhfdemWXDImEzJ9DiJ3wPTgT8CdwBXA32BM4DfNDBGY2r4\n8MU53H3pg5QWlhKJRBhzzEFc/chPyc7LaunQqiz+ZCm3nnsP29fvIBJRBo8dwHk3n8E/fv4oqxet\nBYQe/bty3VNX0G94n5YO15hGSfdKYhVwiaq+Ee31dICqrhCRS4AjVPXUOg7RZOxKYu+x5LNlXHXY\njXEzqHr9HkZMHsof/3d9C0ZWbdv67Zw36ArKiuPHKqDOFVCs3LY5PLH67+S0yW7uMI2pU6bHSXQB\nFkefFwFto8/fAI6qf3jG1PTsba9QnjCVdUUwxML3F7Nl7dYWiire6w+9SzgUnwwi4UiNBAEQqgjx\n/jO2foPZs6WbJNYC3aPPlwNHR5+PA+q/IosxSWxYsYlkF7Yen5dt63c0f0BJbFi+iYpgRd0VgbLi\nIJvXtI7kZkxDpZskXgKOiD6/C7gp2gT1KPBQE8Rlvof2nzQk6ZoOofIKeg/u2QIR1bT/oUPiurrW\nJis3wMDR/Zs4ImOaVlpJQlV/paq3RJ8/D0wA7gFOVtVfN2F85nvk9KuOJ5AbiFtHIZDt59RfHkdu\n29bRy+nwsyfStlM+Hl91nw9/to82HXKrxi8AeP1euvfvyphjRrZEmMZkTLo3rg8FPlbVUEK5Bxiv\nqh80UXx1shvXe5dNq7fw6G+f4Yt3vyK/Ux6nX3UCR5w9sV7TYTe1gu2FPHHz83z4wqf4s/wc+5Mp\nHHPRkbxwx6u8+egsIuEIR5w9kTN/dRJZua2nV5YxsTI9TiIMdFPVLQnlHYAtNk7CGGP2LJnu3SQk\nn+yvA1CcZkAPi8gWEVmUYruIyN0islxEFoqIXaebeinYUcjFI69mius0prhO46QOM/jk1XlJ6/71\nwn9wtHc6U1ynMdV/Bg9e+6+k9ZbOXcHPxl/H0d7pnNRhBo/e8DThUN1zNAGUl5Xz958/wgn55zLV\nN52rj7yJVV+v5d9/fJFTO5/P0d7pXDLqGhZ9tKTB79mYplbrlYSIvBJ9egzwDhA7T7EbGAZ8o6pT\n6zyR02RVBDyuqsOSbJ8GXA5MA8YAd6nqmLqOa1cSptKpnc9n97bCGuX/mP9n+h9QvbbzrT+8m3ef\n/LBGvTOvO4nzbz6r6vW6bzdwyUHXxI2J8Gf7mDz9EK7656V1xnPdtFtYMOvrqgn5RMDt9eB2u+LG\ngvizfdz54c22/rRpVpm6ktgefQiwM+b1dmAdcB9wTjoBRe9b1NaP8QScBKKq+inQVkS6pXNsYz55\ndV7SBAFw7+X/rHoeiUSY+dTspPWe+8t/414/86f/JF3nYeZTs9m5ZXet8axdsp6F7y+O218VQuWh\nuAQBUF5awRO/f77W4xnTUmqdlkNVzwMQkdXAX1Q1raalBuoBfBfzel20bGMTntPsJRbN/ibltu+W\nVv8KlRSU1Fh4p1LiVNrLvlhFJFxzkJwv4GX9so2065yf8pxrv1mH2+tOaxSRqrLqqzV1VzSmBaTb\nBfYmVS0WkVEiMl1EcgBEJCfawykTknVfSfrXLCIXichcEZm7dasNVjIwbMLglNt6Dqi+IM1uk52y\np1Rst1aA/gf0jeuOW6kiWEGP/l1rjafXoB6E01hfApxmqL7DeqdV15jmllaSEJEuIjIH+Ax4Cmea\nDoDbgb9mKJZ1QK+Y1z2BDckqquoDqjpKVUd16tQpQ6c3e7Jxxx5EXvvcpNsuvfv8qucul4tJ08cl\nrXfKz4+Ne336NSfGjX0AZ03oQ08bR7subalNn8E9GTZhUI39PV43vixfXJkvy8c5v2mx6c+MqVW6\nvZvuADbh9GYqiSl/jszN3fQKcG60l9NYYLeqWlOTSdvDS+6i77Dq7xk5+dnc+NI1DBi5T1y9Xz/1\nc444ZyLicq4o3B4XJ195DBf88ey4er0H9eDP79zAgFH7IiJkt8nixJ9N45cPXZJWPDf95xqm/vhw\nAjl+xCUMnziYv312K2deeyK57XJAYJ8RfbjltevYLyFGY1qLdMdJbMaZ7XVRdBbYEaq6UkT6AYtU\ntc7hsCLyb2Ay0BHYDNxAdF0KVb1PnDaAvwFTcRLReapaZ7cl691kkolEIrhcdX8HSreeqjZqQF+y\n/Rt7TGMaI9PrSWQB5UnKOwFl6RxAVc+sY7sCP00zHmNqlc4Hf33qNfbDPNn+liDMniDd5qYPgBkx\nr1VE3MD/Ae9mOihjjDGtQ7pXEtcA74vIwYAf52b1UCAfOKSJYjPGGNPC0u0CuxjYH/gEeAsI4Ny0\nPlBVVzRdeMYYY1pS2mMcoj2NftuEsRhjjGllar2SEJFsEblXRNZHJ+d7SkQ6NldwxhhjWlZdzU03\n4dywfg14GpgC/KOJYzLGGNNK1NXcdDLwY1V9GkBEngA+EhG3qqY354Axxpg9Vl1XEr2AqjmVVfUz\nIAR0b8qgjDHGtA51JQk3NQfRhajHDW9jjDF7rro+7AV4QkRiFxsKAA+KSNUcTqp6fFMEZ4wxpmXV\nlSQeS1L2RFMEYowxpvVJa9EhY4wx30/pzt1kjDHme8iShDHGmJQsSRhjjEnJkoQxxpiULEkYY4xJ\nyZKEMcaYlCxJGGOMScmShDHGmJQsSRhjjEnJkoQxxpiULEkYY4xJyab8bgEaWg7lc8HVDvyHIeJr\n6ZCMMSYpSxLNSDWCFvwKSv/nFIgb8EH7xxHvwBaNzRhjkrHmpuZU9hqUvgGUOQ8tBt2J7rwEVW3p\n6IwxpgZLEs1IS/4NlCbZsB1C3zZ7PMYYUxdLEs1JE1eCreSi5iqxxhjT8ixJNKes43BWf03kBc/g\n5o7GGGPqZEmiGUn2GeAdBJIdLfEBAaTt7YhYHwJjTOtjn0zNSMQP7Z+C4HtocDa4OyNZpyDuri0d\nmjHGJGVJopmJeCAwBQlMiStXDUL5lyAB8A5HxC7yjDEtr1k/iURkqogsFZHlInJtku0zRGSriHwZ\nfVzQnPG1lEjpa+iWMeiuS9CdP0K3TkYrlrZ0WMYY03xXEiLiBu4FpgDrgM9F5BVVXZxQ9RlVvay5\n4mppGloBu3+FM3aisrAE3fEj6PwhIt4Wi80YY5rzSmI0sFxVV6pqOfA0cEIznr9V0pLngFCSLUEo\n/6i5wzHGmDjNmSR6AN/FvF4XLUt0iogsFJHnRaRXsgOJyEUiMldE5m7durUpYm0+ke0kTxJAZHez\nhmKMMYmaM0lIkrLEue3tlQIAABB1SURBVCj+C/RV1f2Bd4DHkh1IVR9Q1VGqOqpTp04ZDrN5iX8y\nkF1zg1aAb3Rzh2OMMXGaM0msA2KvDHoCG2IrqOp2VQ1GXz4IHNRMsbWcwFHgHQBkVZdJFmSfi7i7\ntVhYxhgDzdsF9nNgPxHpB6wHzgDOiq0gIt1UdWP05fHAN80YX4sQ8UL7J9CSF6HsVZAcJOdM8E1q\n6dCMMab5koSqhkTkMuBNwA08rKpfi8jvgLmq+grwMxE5HqeRfgcwo7niqy+NFIEWgKsLTset5CLh\n3VD+Cfj2x+Xu7uyrEYhsAslDXHnOehLZ0yEwGcSPuNrVce5doGXRcydrxTPGmMyQPX2K6lGjRunc\nuXOb7Xyqpeju66HsTcDlNA3l/RpX9vE16ka2Hgfh2PEO+ZB3PRTfCpFiIAL+wyD7DCj4LYS3OGXe\nA5ypOtxd4s8d2YHu+iWUf+ac29UByb8V8Y9twndsjNkbicg8VR1VZz1LEvUT2Xk5BGcBwZjSANLu\nQcQ/prre9h9DxYdpHNELhIFITJkb3D2Rjm9WjbxWVXT7CRBaTnxvqCyk4yuIp08D35Ex5vso3SRh\ncz/Ug0Z2QPA94hMEQBlafF98UVoJAqCC+AQBEIbINij/vLootAhCa6nZXbYCLXkyzXMZY0z9WJKo\nj/AWSDUCOrwuwydTiGysfhneAEnncwpBeHWGz22MMQ5LEvXh6UPNb/0AbvAlXrWlvpmdFo2Ad1j1\na+8wZ+xEDQHwjklSbowxjWdJoh5EsiDnMuLGNERvXkvOJfGVcy9PcRQX8T/2LJA8nHsTlQLgn4x4\n+lef290Dso5NOLcHXG2Q7NPr/2aMMSYNNlV4PblyL0Q9PdGi+yGyFbwHI3lXIp7eCfUuJYIbiu7G\nue/ggsAJSO7laNFdUP4xuNojORegvolQfC+Uve1MFZ59JpL9wxrnlja3oJ5hUPIv0GLwH4HkXoa4\n8prnzRtjvnesd5MxxnwPpdu7ya4k6ikSCcHOC6HiY5yppwKQdy2UvgKh+dUVvUciudPRglshvApc\nHSDnUiT7rBoD4DS0Fi24yRl0J14InIjkXYO4cpr1vRljTCK7kqin/2/v3mPkKs87jn9/Z2Z3Z71r\ne32hwbEJl4CsILfE4JoiC0pikoBABiLakEtDGlRaJ7QQiqBQSptUaptCKGobqAh2IIEQ7opJEAEC\nEVQ0UBswYAytce1iXMJaYIP34p3ZefrHedc7O7uzu3PxHM/M85FG3nPOe84+ry3PM+877yW/axXk\nXptm6YixX3R3QvefEXVfuP+M5XdjvZ+OZ2/vL9sObUvQ3Lt8RrVz7oDweRIHQD63s4wEAeNHQg1A\n302Yjc51sP774yU2xpQdgtxmyL1cRbTOOVc9TxLlyG6s/hm2L7QagtwmxuxKt58g90b1v88556rg\nSaIcbcdV/wy1g2aNHqc/BmTGlzOD1FHV/z7nnKuCJ4kyROkPQ+qYcu4oOu6Erj9BGh0voBnngToY\nuydTO7QthrbfqiJa55yrnieJcs17sGiGcwd0XQ2polZG26mo52ZIHREfR/Ng5p+jrj8aU0zRHDTv\nXmg/ififowM6z0Zz1vqX1s65xPnopirk83miaGyezQ8PE6XGLslhZtN6w59uOeecq5bPk5iE5Xdj\ne2+O94RQZ5jh/MVxmwfl8znYcyXs+zmQi7ua5twIu6/YP/IoTwq6L4e+tWC94RyQOhqij0D2ifh3\nAkRHQudnoe+GkTOgBdBzH+xbA4OPYJPEY5bH+u+BgR/G+1F0rETdX0OpeQfs78o519pariVhNoDt\nOguG3yZeLgMgA5nTiHpuGFM23/uZeCJcXbQVxNMJmU8Q9dw4Np4918DAQ8DA6D3RPDT/YRR11ylO\n51wz8HkSJVj/QzC8i9E3ZIBBGHwMy23dfyY/9EIdEwRF8QzA4C+wgiGwNrwTBn7CaIII9+R3x60L\n55w7AFouSZD9FWPfaAOlIPvS6PHg43ULaUJKQbZgMl32lRJ7WQyGOjnnXO21XpJIfQRon+CCIFow\netj20XpFVIIgOnT0MHUoE+9lkQ51cs652mu5JKEZn4s/pY+Rioeotv/26KmOc5g4mdTDSDzLR0+l\nfxNSixg31kBtaMaX6hqdc651tF6SSC1Ac26FaCHQQTxx7Tg09w5UsD1oFEUw74Gxs6OJIPMVxv+1\nLSrx2yb66z1k/Knuq6eMRxKac1vYAa8dyED0IdRzE0ofMXmlnXOuQi03ummEmUF+J5CZcghpPrcV\nht+FtuP3z4vID26A3EuQOZco3ROfG3gc+u+BrouIMvGggfzQFui/AzKfIcqcFJ/L7oGBNZBeSjTj\nE2XHY/l3Id8PqYU+r8I5VxGfJzEFSZBauP/YzGDfo/GqrAyjznMhcwZSiih9FKTHrqMUZU4AThi9\nP/e/8W5z9EH2SaxtETb0Euy5AuiHwXvJd60mmnkxUdtsaLts0ngmjT2aC9HcCmvunHPT17JJopjt\nuRIGHwX64+Psehh8BHr+ZcpP6za0EXvvArAhIAfZjVjf7cBQQaks9P0z+aFXiebddKCq4ZxzNdVy\n30lMxLKb4oQQEkR8cgCGnobshqnvf/8asH5gZJ+IIcYmiALZx8nnchNfc865g4wnCYi3DWWCN24b\nxPY9M+mtZkOQ++/yfl/u2fLKO+dcQjxJQDyCacKJau0omj3FzSnK7rVLlxoN5ZxzBxdPEgCZ0yc+\nrwgyZ056q5SCzrOJh69OR0SUPrys8JxzLimeJABFs9Cc74Fmg7rDaybq+VeUmj/1/bOuCRPfMqCZ\nQAekz2DCFsYcX2fJOdc4fHRToPbl8BvPQPZFsDy0L0Wa3oxrqRPNXYPltsPwdkgfg1LxEh/5/nUw\n8AC0LyOaefGBrIJzztWcJ4kCUtvYpTnKvT99OBR1JUUzVsGMVdWG5pxziahrd5Ok0yW9LmmLpL+Y\n4HqHpLvD9WclHVHP+Jxzzo1VtySheJu17wJnAMcCn5d0bFGxC4H3zOxo4J+Ab9crPuecc+PVsyWx\nHNhiZlvNbAj4MXB2UZmzgdvDz/cBK+WLEznnXGLqmSQWAm8WHO8I5yYsY2Y5YA8wbrU7SRdJWi9p\nfW9v7wEK1znnXD2TxEQtguIlaKdTBjO7xcyWmdmyQw6ZYOlt55xzNVHPJLEDOKzgeBGws1QZSWlg\nNvBuXaJzzjk3Tj2HwP4ncIykI4G3gPOBLxSVWQdcAPwHcB7whE2x4cWGDRt2SdpeRVzzgV1V3H8w\naaa6QHPVp5nqAs1Vn1aty7SWfqhbkjCznKSLgZ8TL3i01sw2SfoWsN7M1gFrgB9K2kLcgjh/Gs+t\nqr9J0vrpbLzRCJqpLtBc9WmmukBz1cfrMrm6TqYzs4eBh4vOXVvw8yDwe/WMyTnnXGm+dpNzzrmS\nPEnALUkHUEPNVBdorvo0U12guerjdZmEpvhe2DnnXAvzloRzzrmSPEk455wrqWWThKS1kt6R9ErS\nsVRL0mGSnpS0WdImSZckHVOlJGUkPSdpY6jLN5OOqVqSUpJekPTTpGOplqRtkl6W9KKk9UnHUy1J\nPZLuk/Ra+P9zUtIxVULS4vBvMvJ6X9KlNXl2q34nIekUYC/wAzNbknQ81ZC0AFhgZs9LmglsAM4x\ns1cTDq1sYUHHLjPbK6kN+HfgEjP7VcKhVUzSZcAyYJaZnZV0PNWQtA1YZmZNMflM0u3A02Z2q+Jd\nxmaY2e6k46pGWHH7LeBEM6tmojHQwi0JM3uKJlnyw8z+z8yeDz9/AGxm/OKJDcFie8NhW3g17CcZ\nSYuAM4Fbk47FjSVpFnAK8SRezGyo0RNEsBJ4oxYJAlo4STSrsFHTUuDZZCOpXOieeRF4B3jMzBq2\nLsCNwBVAPulAasSARyVtkHRR0sFU6SigF/h+6A68VVJX0kHVwPnAXbV6mCeJJiKpG7gfuNTM3k86\nnkqZ2bCZfZx4EcjlkhqyO1DSWcA7ZrYh6VhqaIWZHU+8edjXQ7dto0oDxwM3m9lSoA8Yt2NmIwld\nZquAe2v1TE8STSL0398P3GlmDyQdTy2Epv8vgdMTDqVSK4BVoR//x8AnJd2RbEjVMbOd4c93gAeJ\nNxNrVDuAHQUt1fuIk0YjOwN43sx+XasHepJoAuHL3jXAZjO7Iel4qiHpEEk94edO4DTgtWSjqoyZ\nXWVmi8zsCOIugCfM7EsJh1UxSV1hYAShW+bTQMOODjSzt4E3JS0Op1YCDTfYo8jnqWFXE9R5gb+D\niaS7gFOB+ZJ2AH9tZmuSjapiK4A/AF4OffkAV4cFFRvNAuD2MEIjAu4xs4YfOtokPgQ8GHYUTgM/\nMrNHkg2pan8K3Bm6abYCf5hwPBWTNAP4FPDHNX1uqw6Bdc45NzXvbnLOOVeSJwnnnHMleZJwzjlX\nkicJ55xzJXmScM45V5InCeemSdJXJO2duuTBqdHjd8nwJOEaiqTbJFl4ZSVtlXR9OWvuhGcckLkX\nYSntyw/EsxsxDtf4WnYynWtojxNPHmwDTiZeYbULWJ1kUM41I29JuEa0z8zeNrM3zexHwJ3AOSMX\nJR0r6WeSPggbS90l6dBw7W+AC4AzC1okp4Zr/yDpdUkD4ZP4P0rK1DLwyWIL12+T9FNJl0h6S9J7\nkr4fZtOOlOmS9ANJeyX9WtJV4Z7bwvVfAocD143UsSiGlZJekdSneLOqI2tZR9dcPEm4ZjBA3KoY\n2YDpKeI1hZYTr/3UDayTFAHXA/cQt0YWhNcz4Tl9wFeBjwFfI15v6S9rFeQ0YhtxMrAkXP8ccC5Q\nuNvgd4DfDec/CRwX7hnxWeLF675VUMcRHcBVxPU8CegB/q0mFXRNybubXEOTtBz4AvCLcGo1sNHM\nriwo82XiDaaWmdlzkgYIrZHCZ5nZ3xYcbpP0d8DlwF/VKNxJYwOeC6ffB1abWQ7YLOle4sXn/j4s\nB/9V4Mtm9lh4xoXESWGkHu9KGgY+KK4j8f/5r5vZ6+He64n3U4jMrFn2vHA15EnCNaLTwyidNHEL\n4ifEC7UBnACcUmIUz0cZfSMeR9J5wKXA0cSf8FPhVSvTje3VkCBG7AROLCjXVlAWM+vT9Pdq3zeS\nIAqe3UbcomiKnRpdbXmScI3oKeAiIAvsNLNswbUI+BlxC6BYyTX2Jf0O8Z4P3wS+Aewm3rzl+hrF\nXE5s2aJrxmjXsArOVSJXdDzyHO96dhPyJOEaUb+ZbSlx7Xng94HtRcmj0BDjWwgrgLcKu5wkHV51\npOXHNpUtxElkOfA/sH+J6CXAGwXlJqqjc2XzTw+u2XwXmA3cLelESUdJOk3SLSMb5gDbgCWSFkua\nH3b1+y9goaQvhntWE2/gUokPS/p40Wv+NGOblJntBdYC3w6jlI4lHgIcMbZ1sQ04WdLC8Ludq4gn\nCddUwvaaK4A88AiwifjNeV94AXwP2AysB3qJ921+CLgOuBF4iXjzlmsrDOMbwAtFr/OnGdt0XA48\nDawDngzxrgcGC8pcCxxG3LrorbAezvmmQ841OkkdwHbgOjP7TtLxuObi30k412AkLSWey/EcMBO4\nMvx5d5JxuebkScK5xnQZsJh4tNKLwClmtmPyW5wrn3c3OeecK8m/uHbOOVeSJwnnnHMleZJwzjlX\nkicJ55xzJXmScM45V9L/A+vEfQKr5KfkAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEcCAYAAADDfRPAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hUZfbA8e+ZPgkhlIQWSkCkF0WkIyCiiIrY6yq6rm1tu6uu67qWXd2fu669l7WtunbXXlAERQEFFASkN+klkJ7JlPP7406SmcmkTDIpwPt5nnmYufe9954JyZy5bxVVxTAMwzDK2Jo6AMMwDKN5MYnBMAzDiGISg2EYhhHFJAbDMAwjikkMhmEYRhSTGAzDMIwoJjEkgYjcLiIaftyewHHPRxyXnaRYNkScMyQiJSKyTUS+EZHbRKR9Pc8/Lfx+bxeRVsmIuZbXHR/xviIfeSLyrYhcFFO+Tv8nzUUV77VYRJaLyF9FJCVcrnfE/k9jznFrxL6XYvY9FLFvSi3icYjIdBH5VER2ikipiGwVkdkicp2IpIbLTY847/Qk/kjixTS97HexIa+TDDF/6+ObOp6aOJo6AKNBCeAGOoQfo4BrReQsVZ1Rx3NOAy4MP38e2FffIOspDRgJjBSRQar6uyaOpyF5gL7AX4DjRGSMqq4Ukd1ABjBCRGyqGgqXHxVx7OiYc5W9VmBudRcVkQzgPayfc6SO4cdRwCzgx8TeTr1NB8aFn9/eyNc+oJk7hiYgIh4AVZ2uqhJ+bGiAS3XHSgwDsT7EAVoD74hI3wa4XmOZraqC9UE5PWL7tcm682pOwu/VDowA9oQ3DwPOCT//NvxvS6z/a0TEFi5fJltEOoX3tQAGh7cvV9W9NYTwBhVJYRkwEfACrYApQF2/ZDRr4bske1PH0RRMYmhAMbePY0XkTRHJBX6Osz874rjfiMgCEckREZ+IbBGRGSJyYRWXqpKqlqrqUlW9CHg3vDkVuC3iemeFz/+LiBSFr7lORJ6IrHoSEaXibgFgfWT8ItJCRF4QkZ9EZI+I+EVkn4h8JSJnxfn5lB27IdH3FX5vPlV9Afip7JTA0LqcKyau/4XjCpZ9mIa328LVJypWlZ2IiFdE/k9EVopIgYgUhn92b4nIiOqukwhVDanqfOCViM3Dwv9+E7Gt7E5gAJAO7AIWxOwbjpVooCKpxCUixwPjwy+LgONUdaaqlqhqrqp+rKrHAktrOE/Z//WsmraLSIaIPBr+ORaJVV24UkT+G646yw7/Lo6Lcx6N2NZaRO4JH1sSPs9sEZkWE0Nk9dflInKviGwFSoEu4TKdReRxEVkvVjXaXhH5WESOivNeTxSRJeFrrhCR86v72TRHpiqp8bwDtA0/r/IbmoicATwVs7lT+JELvFCPGP4BnBx+PiWi2mECcExM2e7AZcD4cBVNaS3O3wK4IGZbOjAWGCsinvAHebIl+wvOs1g/JxtwFnB/ePt4rKoTgOdVVUXkX8CVMcd3Dz++BOYlObZ47zU2MTxGRTXSt8B6rIQ5Cuvb/+gqjo3nxIjnr6jqlniFVDVQw3kS8QLWnUikNKAX8DI1JCEAEWmH9d4Pidjsxqr2OkpEblTVe+IceicVf6dl5+oNzMGqrivTCpgMHCsi56rqa+GyE4H/UZF4ewP/AbbVFHNzYu4YGk8e1u24l8q/9JHKvoEUYP1SuYFuwJnAJ/WMYUXE8zQq/gBewfoWmQE4gfbAc+F9vcviDVdpRH6wd4+pCsvH+iDNBlKwqnpGYX3TBEhq/b+IuMJ3Uf3DmxT4Pgmn/gjYHn5+bsT2sudKRdVc2f/XPCAT626sD1ay+DkJsQDldyvDqag+Apgf/ncB4As/HxP+t+zD/xsqPvxHx5SBmhND94jny2sdcP2U/Uzfxvpi0RIYBPwB2KyqG8K/i7PLDoj4PZTwpr9iJYUgcBrW311n4Kvw/jtFpCzJR2qB9TNuAfQEdgIPYv1t5GJ9ifIAh2L9PdmAR0TEVXZeKpLCzeH4z8Jq49tvmDuGxnOLqpZ9e6zuD2x9+N9U4BZgIdYHzGeqmlvPGKr6IrANuBXr1rwDVnKI1LuW5y/C+gN6DauRNA2reifueSL+iBM1LrLKIMLDqrqxjucsp6oBEfkPcAMwVER6ApuAU8NFZka0Ca3HqrYpaxReGn78u5Z3WTWq4r0uAF4Nx+sTkYVYSbiriHQmOjGsCz8/XETSqGh72Kmqa5IRY5Ktx2orGYn1N7Acq7rwgYiG9ZqcFP7XDrwVZ78L6/f91ZjtL6pq2ba1IuKl4m46HesuMFYGMEREfqKiem838I9wvK+LyNVEJ+RmzdwxNJ4falnuMazb/RDwK+AB4FNgh4jcVM8Y+kQ8zwP2iEg61m3y+Vj1qbFJAaxvW7XxR+BRrLuPlkQnBbC+aSVbIdY350uB65J43mcjnp8LHI/VcA/w74h9v8e6S0kHrsGqBvwW2CIixyYxHrDuClYAfwcmqKo/Yl/kN//Tsb7p+4CFqrodKzk4gF9jJWyooX0hbH3E86R2WBCRqr6Y/gZYiVVtdwPW3esCYJ2IHFbL07erRZm2cbbF/p22oeIOoKZztabiM3VbTBLbXItzNBsmMTSe4toUCjfqnYn1CzkGuBjrg88N/F1EsuoRw58inn8Y0b5Q9kf0BdAx/E3+mqpCrOb8Z0c8nwa4w+faU0X5upodUXXQQlVHqOrTmsQ55FV1BRXtA+dQUYWzD6u9qKzcGlUdhtUGNAkrOW3D+hb5cJJiKXuvHlXtq6p/VtWCmGKRiaGsym6hqpZVMc2J2Rd7TFU+iHh+XhXVL0jNvXfK7p4ivxz0iFdQVeerah+s5HY8cBNW1Wo3rHay8qLVXG9n+N8Cwr+HMdVNNlV9NM5xsX+nOVjVUQCrY88Tca4PsdoOy5JBR7F6hpXpXE2szY5JDM2MiJwmIlcBWcBirLuHxWW7SfAXTEScIjJARJ4HTghvLsSqgwWIbDQsAQpFpD9wdRWnjPyQHywikXcFkefaBzhF5C/E/2ZW715JCegpIpNjHqNqPqz8rqEPVj01WA2wJWUFROSGcI8rD/A1VjXa1vDurhHlGnqAU+SHfNc42+bE7INa3DGo6sdU1MunAJ+KNdjQIyLpInK8iMwg3E22GmVVfANFpJuIOIG/xSsoIneJyElYH8gzgdep6LARGf+eiGNi7yTKEloL4BkR6SIiKSLSX0QupeJvqlqqWoz1hQngUBH5p4i0E5E0ERksIr8v26+qhcB34bIZwB/D5c6k8jiS5k1VzaOeD6zBNRp+3B6x/fmI7dlxjqu0H6tOVat4bAW8NcSyoZrjFesb0KSI8q2xvl3FlltVxXs6PU7ZDeF9f46zbxfWH7Vav25RsUYdX8P7Gh9RflaC/yfxHj/W4hxpWEk08rgjYsp8Xs01/lfF//X4Wly7/DwJ/B6ujLn+yRH7+sXsK8H6Jl2b82Zi3bVW9/M8LFx2esS26RHnuC1iux+rPSryZzsrouyaaq7zQES56+PsnxXe1x6r+qzKmCPOEzfmiP19sZJQVefaEFF2IlZCiy2zO5H//6Z+mDuG5ucLrF5Ca7Bug4NYVROvAuPU+gZTW4pVz7wd69vhbUBfjRj1rNbgpuOxvlEWYSWf24G7qzjnW8BdWI2xwZh9/8Cq/96CdUs+GzgaqzfHfkdV84E3IzYtUdWFMcVewOrFtBnrw9aP9X93H1YbUWOKrRqKvCP4mei7vchqpmqp6i6sas1fYyXC3VjvczvWXdLvgdU1nOZurG6/ZeMDvqbqb9GPYN0plJUtwRpYdxtWm0OZR4EnsP4+NCbmHVhddP+J1S7jw/p7Wo319xXZu6taqvozcBjwOFayKcX6nV6O1d50eUTZL7CqUZeGy63Bav/6gP2IhLOcYRiGYQCmjcEwDMOIYRKDYRiGEcUkBsMwDCOKSQyGYRhGlP1+SoyMjAzNzs5u6jAMwzD2KwsXLtytqpnx9u33iSE7O5sFCxbUXNAwDMMoJyJVzitmqpIMwzCMKCYxGIZhGFFMYjAMwzCimMRgGIZhRDGJwTAMw4hiEoNhGPstfzDIlrw8iv3+mgvHsbuoiF2FhVHbcktK2Jafz8E8j1yjdVcVkS7Ai1hLR4aAp1T1wZgy44F3qVg16m1V/SuGYRgxXlz8A/fOnUMgFCKkcGb/AdwydjxOe80Lrm3Yt5frPvmQFXt2A9C9VWtuH3c0jy/4jnmbf0FEaJvi5Z/HTGZUl641nO3A02izq4ZXfuqoqovC684uBKap6vKIMuOB61X1xNqed+jQoWrGMRjGweWj1Su5YcYnFAcq1obyOByc3X8gt447utpjfYEAY557mr0lxYQiPv9sIthECIQqVuT0Ohx8cO4FdG/VOt6p9msislBVh8bb12hVSaq6TVUXhZ/nY80PX59lKg3DOEg9/N28qKQAUBII8Oqyn/DFbI/1+bq1lAT8UUkBIKQalRTAqqp68cfaLtd+4GiSNgYRyQYOx1oVKtZIEVksIh+Hl5iMd/ylIrJARBbs2rWrASM1DKM52lEQu+S1RVXJLy2Nu6/M1oI8SoOxa0zFF1BlQ+7emgseYBo9MYhIC6xVwK5T1byY3YuAbqo6GGsh9f/FO4eqPqWqQ1V1aGZm3Kk+DMM4gA1s3z7u9lSnizZeb7XHDmrXoVbtEAAeu4MRWV0Sjm9/16iJIbwA+FvAy6r6dux+Vc1T1YLw84+wFpPPaMwYDcNo/m4cNRavw4FEbPM6HNw8dhw2kSqPAxiW1Zn+me1w2yv63rjsdtLdHryOim0Om400t5uzBwxKdvjNXmM2PgvW+rg5qnpdFWU6ADtUVUVkGNZ6u920miBN47NhHJx+3rWT++Z9w5Id28lKS+ea4SMZn929Vsf6AgGeXPg9b/68lFBIOblPXy4/YhjvrvyZ5xcvorC0lIndD+Ha4aPITE1t4HfSNKprfG7MxDAGawHwn7C6qwLcDHQFUNUnROQq4AoggLWY/O9V9ds4pytnEoNhGEbiqksMjTaOQVXnANXe46nqI8AjjRORYRj1tWTHdu6YPZMlO7bTwuXigsGHc/WwkThsya2lvunzT3nr52UEVXHYbFw0+HD+NHZ8Uq9hVNjv12MwDKNprNubw7lvv05ReNRxrs/H04sWsDU/n3smTU7ada7/7GPeXlE+3IlAKMTTPyzEabdz/aixSbuOUcFMiWEYRp08tfD7SmMGSgIB3l+1gl1FhVUclZhQKMQ7EUkh0tOLTBVyQzGJwTCMOlm2ayfBOG2UbruDjfv2JeUahf5SqmoF9ccMRjOSxyQGwzDqpG9GJvY4XUN9wQDd0lsl5RqpTleVDZPOJLdjGBXMT9YwjDq57IgjccUMFPM4HEw5tFfSunjabDZO6tUn7r6LDz8iKdcwKjOJwTCMOjmkTVtePvVMBrZrjwAtXC6mDx7CPyYel9TrPDD5BE7p07d84JpdhIsGD+GPo49K6nWMCo02jqGhmHEMhtH0VBWpYcRxMoRCIWymCikpmsU4BsMwDjxb8/N4cP5c5mzaSBuvl0uPOJKjunbj8QXf8dHqVbgdDs4bOJgz+w3g+cU/8ObypQRVmdanL78ZciQfrFrB84sXUVBayjE9enLVkSPISEmp8nqRSWHVnt3cP+8bFm/fTpf0dK4aNoKxXbMrHZPnK+Gx7+dHxfOrQYdhj0kwIVXeWPYTz5XF0/0Qrho2stp4msKMtWt4bMF8dhQWMDyrC9cOH0l2kqcFN3cMhmHUyc7CAia//AL5Pl957ySP3Y7b4aQ44C+fwdTrcOB1OCkK+CkJd2912+2kOJ2UBALl02c7bTbaeFP49PzptHS7q732z7t2csabr1Ls95f3WvI6HPx94rGc3LtvebmSgJ/jX36RbQX5UfFMyO7BI1NOijrnLTNn8M6K5XHiuZCWbk/9flhJ8vyPi7jn26/LY7SL4HU6ef/sX9GtVWIN/s1iPQbDMA4sTy9aQGFpaVSX1ZJgkFxfSdS01sWBADklxeVJAcAXDLK3pCRqTQV/KESur4TXli6p8dr//PZriiKSQtl17vxqVtQ6C++tXMGuwsJK8czcsI41OXvKt23Lz+fNn5dVEc9PNf8wGoEvEODeuXOiYgyqUuT388j385J6LZMYDMOok/mbf0n6WIKSQIC5mzfVWG7xju1xt+eX+sgpLi5/PX/LZooCldeDtonw4/Zt5a+X7txRqYdVWTzf1iKexrApNzfu9pAq32/ZnNRrmcRgGEaddG6ZXv3kZ3VgF6FrLcZAZKbE7w5rQ0hzucpfd01Pj/uBL0CHFmnlrzukpREMVa5Wr208jSEjJaXKRNwprWVSr2USg2EYdXLpEUfidkT3X3GIrdJ6CGVrKceyIThitrvsdi4YfHiN175q2IiotRPAGkNxRv8BUTGd2W8gDon+mLOL0MabwqguXcu3DchsR7dWrSpN/ue027mwFvE0htZeL8d0PwR3TKLzOhxcceSwpF7LJAbDMOrksA4d+dekybTxePE6nLjsdsZld+ffJ51CVlpLPA4HLrudwe078NIpp9M3IxO33Y7bbqdH69a8eMppHJnVGZfdjsfhoH1qC5444WR6tG5T47VP6tWH348YTarTRYrTidtuZ1rvvvw5ZsbVjmlpPD/ttKh4BrXvwH9POzMqWYkIL047nSM7ZUXF82Qt42ks90yazLGH9MRlt5PicNLS7eb2cUfH7Y1VH6ZXkmEY9RIMhdiSn0dLt5tWHmtZTVVla34+Loc9qtpnR0EBQQ1FVX3sKSqiyO+nc8uWCY+F8AUCbC8ooG1KCi0iqpBiVRVPPPWJp7Hk+UrYW1xCp7S0Wi9TGqtZLNTTUExiMIwD36bcfTz7w0JW7tnN4PYdmH7YkKg2gjIFpaW8unQJMzeso31qKhcOHsJhHTo2QcSJUVU+W7eGN5YtJaAhTu3TjxMO7V1prEUymcRgGMZ+a/GO7Zz39uuUBoMEQiGcNjseh523zzyXQ9q0LS+X7/Mx9dWX2FFYQEkggABuh4M7xh3NGf0HNt0bqIU/fv4pH65aWd6DyutwMqZrV5444eQGu2sx4xgMw9hv3TJzBkV+P4Fwjxx/KEhBaSl3fj0rqtyLS35ge0F++XgJxepuesdXX1ISp8tqc/Hz7l28v2pFVLfa4oCfbzZt4vutW5okJpMYDMNotkqDQX7evavSdgXmbf4latuMtWvwRQxkK2MTYdmunQ0VYr19s2kjwTjdUIsCfmZvXN8EEZnEYBhGM+aw2apcdyE1prG5tdcbt1wwFKJVM5nSIp50jyduA7Lbbqe1J/57amgmMRiG0WzZRDi1b79Kffc9DgfnDzwsatv0wUMqjW0oG6AW2RbR3Bx3yKFxt4sIU3vHX4uioZnEYBhGs3bL2AmM6NwVt91BmsuF225nUo9D+O2Rw6PKjcvuzlVHjsBtt5PmssY3ZLdqzTNTT2miyGunpdvNs1NPpZXbQwuXq/zx2JSptEtt0SQxmV5JhmHsFzbs28vGffvo2bYtWdVMAZFbUsKSHdtp7fXSP7Ndsx2LEMsfDPLD9m0EQyGGdOxUaVR5spn1GAzDaJZ+yc3lfyuXk1tSwoTuPRjVuSt7iot5Z8VytuXnMSyrC8f0OISSQIBvftnEmpw97Coq5MRevRGET9au5sft28hOb8W0Pv1I93hI93gY2y27/BqqyoJtW5ixdg1eh5OT+/Rt0tHMVcXjtNsZltW5yeKKZO4YDMNoEh+tXsn1Mz4hGArhD4VIcTrpn9mOZTt3EFTFFwyS4nSSlZbG7qJiSgJ+igMBUhxOWrhduOx2coqLKfL7y6e7eO30s+ndNqP8GqrKjZ9/wkerV1MS8GO32XCIjVvHTeDsAYMa/T2rqjVmYfWq8njs4XjOaeR4zDgGwzCalSK/nxtmfEJJIFA+Y2iR38+CrVsoCgTKu50W+f2syclhX0lx+ToERQE/uwoL2ZKXR5Hf6vtfEgiQ5/Nx/WcfR13n282b+Hj1aooD1toNgVCIkmCAO2bPZG/E9NyN5dvNm/ho9aqoeHzBAH9toniqYhKDYRiNbv6WX+JO9xCv/kLjbI+3DazlPnNLSspfR44mjuSw2fhq04YEIk6Oj1ZXHc/sjY0fT1VMYjAMo9HFTm+dLApRs6Y67fa4U36DVDk+oiE5bVXH47I3n4/j5hOJYRgHjeFZXeJ+QMb7yIy3noNNpNKHl12EoR07kRaxXvSpffrFXagnpCHGdetel9Dr5ZS+/ZtVPFUxicEwjEbnstt56sRppDqdpDqdeOwO3HYHp/btRxuPh1SnNV7B63Awpks3uqW3Kt+W4nTSp20Gh3fsVL4WQ6rTRfvUFvzr2OOjrjO4Q0euGDoMd3iNhRSnE6/DwaNTplYaOd0YBrfvwJUx8XgcDh6ZclKTxFMV0yvJMIwmU1Bayufr1pJf6mNM1250b9Wa0mCQmevXsbOwgCEdOzGgXXtCqszZtJH1+3Lo3TaT4eFunYu2b2XZzp1ktWzJuG7dq6yi2pKXx6yN6/E4HEzqcQgtm3iKjOYQj5l22zCMhIRUmbt5Exv27aN32wyO6NgJgCU7d7B05w66tExndJeu2G021ubsYf6WzbTxpjAhuztuh4Nt+fl8tWkDHoeDo7N7RFXvHKhUtfzn0zmtJWO6dktoPYV9JcXMXL+OoCrjs7vXuKBQfTWLAW4i0gV4EegAhICnVPXBmDICPAhMAYqA6aq6qLFiNAwDcoqLOPut19mWn0dQFZsIPVu3xetwsGTndpSKdZMHt2/P5+vWIQI2seG02zi5d19eXboEm9iwCajC4ydMjRp0dqDxBQL8+r13+GH7NhTFLjZaez28fvrZcRcUivXR6pX84bNPsNsEFG7VELeOO7rRxzaUabQ7BhHpCHRU1UUikgYsBKap6vKIMlOAq7ESw3DgQVUdHveEYeaOwTCS68oP3+OL9WvLxxeAlQhUlcjJoa3vwkIopuOoULkraYrTyXeXXEGK09kwQTexB+Z9y5MLv4ua9tsuwrCszrx86pnVHru7qIijnnuakmAgarvbbueT86bTrVWrBom5WQxwU9VtZd/+VTUf+BnIiil2MvCiWuYBrcIJxTCMRhAMhfg8JikABGOSAli3/bFJAeKPL7AhzNrQNGsLNIbXl/9UaS2IoCoLtm4h3+er9thP164mXg/WkCofrl6ZzDBrrUl6JYlINnA4MD9mVxYQufrGZionD0TkUhFZICILdu2qvIiHYRh1E1Il1AC1CIpSGmcRnQNFIFh5oZ3yfXEW4YnkDwbj/syDIcUXCMQ5ouEllBhEpLuITBCRKSJypIgk3JQuIi2At4DrVDUvdnecQyr9xFT1KVUdqqpDMzMzEw3BMIwqOO12juyUVekPUYj/x1nbeUv9oRBHdetWv+Casck9D407YO6QNm2rXECozITsHnG3ux12Jh3SMynxJarGxCAi2SLyDxHZBKwBvgA+wPq2v09EZojIGSJSm3M5sZLCy6r6dpwim4EuEa87A1tr8T4Mw0iSv088lnSPp3zRmxSHk4yUFDq2SCPFYbUReBwOWrhc9G6bWd5u4LTZcNvtjMjqTIrDiWDVs3scDm4ZO5423pSmeksN7ncjRsf9+dw7aXKNx3Zr1YrfHjkcj8OBDUEAr8PBWf0HMaBd+waOPL5qG59F5EFgOvAZ8B7wHdYHdTHQBhgAjAXOAQLARar6fRXnEuAFIEdVr6uizAnAVVQ0Pj+kqsOqewOm8dkwki/PV8LbPy9ndc4eBrZrz9TefbGL8OHqlSzatpXsVq05rW9/0txuZq5fy5xNG8lISeX0fv3p2CKNeZt/4dO1q0lxujilTz8Obdt8V1BLFl8gEPXzObVvv4SS4bKdO3h35c8EVTnh0N4MCXcRbih1HscgIvcA/1DV3bW4yBQgRVXfrGL/GOBr4Ccob8e6GegKoKpPhJPHI8BkrO6qF6lqtZ/6JjEYRuPZVVTIqj27yUprSXar1oA1WOujNavo3LIlx/Xoia2KvvvBUIjFO7YT1BCHte8Yd53jpqaqLNu1k4LSUga173DA9qKCeoxjUNUbansRVf2ohv1zqKFKUq0s9dvaXtMwjMYRUuX2WV/w+vKluO12/KEQQzp0wm4Tvt60sbyc227n9dPPZmD7DlHHL9y2hcs+eBdfIIgANpvw8PEnMrZrduO+kWqs37eXi959i91FRdhECIZC3DbuaM7sP7CpQ2t0Zq4kwzBq9NKSH3nr52WUBoPkl5ZSEggwf8svUUkBwBcMcuabr0Vty/f5mP6/t8gpLqbQX0qBv5Q8n4/LP3iXXUWFjfk2qhRS5VfvvMEvubkU+f0UlJZSHAhw++yZLNmxvanDa3S1Tgwi0lpEHhSRJSKyXUR2Rj4aMkjDMJrWsz8uLF8op0ywimpoXzDA7IgxC5+sXR13bENIlfdXrkhmmHW2aNtWcktKKsVZGgzy8k+LmySmppTIlBgvAv2xGpB3EH8ci2EYB6C8GgZpxdqSX9ETPbekBH+cMQy+YJCcZrJq2b6SYiTOKLOQarO5q2lMiSSG8cA4M3eRYRx8xnTpxkerV1Ya/VyVKYf2Kn8+KjzZXuxo6hSHkzFdm8fYhiEdO8VNXl6Hg0ndD2mCiJpWIm0MaxMsbxjGAeKGUWNJc7tx2ayeRGXjE+J9IEzr3ZdWnopBXf0y2zH5kEOjevh4HU6Gd+5cPn12U2vjTeGqYSPKx26ANRaha3orTunbrwkjaxq1nkRPRMYBtwDXA0tVtVmMbzfdVQ2jcewsLOD5Hxfx/dYt9Gjdhl8ffgSpThd/njmDRdu20sLt4sqhwzl/0GGVjg2p8vHqVby+/CeCIeW0vv2Z2rtPQtNSN4Y5mzbynyU/sq+kmON79uKs/gPxHqBdVpOyHoOIZAGvASPj7VfVJumUbBKDYdTfur05rM7Zw1FduuENryS2r6SYtTk59GrblrRqFpIJqbKtIJ80l5uWSVp3YUdBAVvy8xiQ2Q5X+Ft8ScDPnqJiMlJScDuqrgVPJJ7dRUWoKpmpia99UNt4mqtkrcfwXyAduAbT+GwYB4TtBfkc8+KzFEX0OBqRlUVxIMjiiG6aY7t247mpp1YavPbpmtX8ZdbnFJSWEhdV9TcAACAASURBVFLl6Owe/OOY4+q8MM++kmKmvvoSm/OsxmsBzuo/kHSPhxcW/2DN2STCFUOHceXQ4ZUajD9bu5q/fPk5+eF4JmR355/HTK4Uz/p9e7nukw9Zuccau9u9VWvuP24KfTJqnnstpMo9337Ni4t/AKz1py+vIp79VSJ3DEXAMFVd2rAhJcbcMRhG3fV79MFK6wBUZWqvPjww+YTy14t3bOect16jJCKpuOx2hmd15oVpp9cpntHPPsW2gvxK2x0iBCI+q7wOB38eO55zBw4u37Zkx3bOrkU8vkCAMc89zd6S4qhZTVu63Xw1/Tc13mU8NP9bnlz4fVT3Xa/Dwc1jxnFenGq05ipZ6zEsB1omJyTDMJraj9u31TopAJXWBnh64feVpoUuDQb5bstmtuTFTpxcs/V798ZNCkBUUgAoDgR4bEH0rP1PLapdPJ+vW0tJwF9pqmt/MMgHq6ofV6GqPPND5TEdVjzfVXvs/iSRxHALcJ+IHCMi7UWkTeSjoQI0DKNhLNqe2MTFsQPaNubui1uf7LLbq/yAr87qnBqnZIuyu6go6vWmfbWLZ2tBXty1IYoDgajxF/H4QyEKS0vj7ttTXBR3+/4okcTwETAMa6bVrcCu8GN3+F/DMPYjU3r2qrlQBK8junfO8KzOcdcgKA0G6VWH2VSHJdh1tW9Me8CwWsYzqF2HuBP4pTidHNa++gUjXXY7nVumx93Xp+2BszZMIolhQsTj6IhH2WvDMPYjHVqk0bN17W/2bxozNur1JUOGkuJ0YotocPU6HPz68CNoWU0vpqq08ng5Ort73H2xH/geh4M/jRkXte03Q44kxemqFM/Fh0XHMyyrM/0z2+G2V/S9cdntdEtvxYTu8RfNiXTrURPwxPRC8jgc3Dx2XBVH7H9q3fjcXJnGZ8Oon0vee4cvN6xDsWZHvWP80RSU+nlg/rcUlpaS7vHwp9FHcUacWUY35+Vy/7xv+eaXjbT2eLl0yJFM69O3Xr1z7vpqFi8vXUxpIEi7FqncPfFYXHYH98/7hg379tI7I5M/jBjN4A6Vv93XNh5fIMCTC7/nzZ+XElLl5N59uXLocFLDXXVrMm/zLzww71vW78upNp7mLFnjGK4C9qnqSzHbzwdaqupj9Y60DkxiMAzDSFyyxjFcB/w6zvYNwHNAkyQGwzjYbVu3g4ev/jeLPl+C0+Vg4nljuexfF+BtUf1aw4mavWE9d82Zxbq9e8nwpvDbYcM5f+BhB0zffaNCIomhM7AxzvbN4X2GYTSy/L0FXDX8T+TvLUBDStAf5LMXZrPup008OOfOpH1oz/1lE1d89F75GIGdRYXcPecrikr9XDa02tV3jf1QIo3P24F4ozeGYPVMMgyjkX363Jf4in1oqKJK2O/zs37JRlZ+vyZp17l37jdRA8fA6t756IL5BEK1nXPV2F8kkhheAR4SkUki4gw/jgUeAF5umPAMw6jO6h/W4yuK069ehI3LNyftOmv37om73R8MsrekeaypYCRPIonhNuAb4FOgKPz4GPgW+EvyQzMMoyY9D8vG7Y3Tk0aVrn2TV8PbvVX8bq1Om51WdeiaajRvtU4MqupX1XOAXsC5wHlAb1U9W1X9DRWgYRhVO+6iCbi8LsRW0ZbgdDvo1r8LfYb1TNp1/jBqdKW++16Hg8uHDos7WMzYvyU8GbqqrlHVN1T1dVVNXiWmYRgJa9kmjYfm/p3Djx6IzW7D5XEy8dyx/OOzvyS1t9DoLt14+PgT6d6qNQBtvSlcP3IMV5iG5wNSteMYROQW4H5VrXHRUxEZDbRR1feTGF+NzDgGw7CoaqN0HW2s6xgNqz7jGHoCm0TkLeA9YIGqbg+f1AP0A8YA5wNtgQuTFrVhGLWSv7eA//7f23z1xjzcXhcnXnEsU688DntMFU8oFOKTf8/knYc/oiivmJFTh3LeLafTul38uX+qEpkUdm7axX/++gYLP1tCemZLzrh+KhPOHt1kiWNrfh4Pzp/LnE0baeP1csmQoUzt1ccksgTVOPJZRAYCVwFnYk27rYAfcGGto7EIeAp4XlXjTzvYgMwdg3Ew8xX7uHTw9ezctJtAqdWd1J3iZvgJQ/jLa7+PKvvA5U/y+Utf4yvyAeBw2mnVLp1nlt5HanriK5jt2baX3wz6PUW5RQQDVpdVT6qb0/9wEhfeflY931nidhYWMPnlF8j3+cpngvU6HFwyZCi/GzG60eNp7uq1HoOq/qSql2HdERwBnAZcBBwHtFPVoar6VFMkBcM42H3532/I2ba3PCkA+Ip8zP9gIRt/ruiuuvOX3cx4cXZ5UgAI+IPk5xTw0TNf1Onab9z7HsX5JeVJAaCk0Mfr/3yXwtwaa5+T7plFCyksLY2aHrw4EOCphd+T5/NVc6QRK5FeSSFV/VFV31XVV1X1c1U1A9sMown9OGspJYWVP/TEJqz8rqJvyJpF63G4Ktcc+4pL+XFm3RZlXDJrWVRCKuNwO1m/9Jc6nbM+5m35BX+cwXYuu51Ve8xHVSIS7pVkGEbz0bFHe5zuyh/4YhMyOlesQdA2qw2hYOUPTbvDRsdD2tfp2h26tyde1X3A5ycjq/HX7uqc1pJ4LQmlwRAdWrRo9Hj2ZyYxGMZ+bMolx2B3RDcy2+w20jNactiE/uXbeh3Rg06HdKhU1uFyMO2q4+t07TOun4orZnCd0+Wg/+g+dMhuV6dz1sdlRxyJO2ashdNm54iOnapcXMeIzyQGw9iPZXZuy/99/GfaZ2fi8rpwuh30Gd6Te2fdgS1icRsR4e7P/sLAo/ridDtwp7ho26kNd7xzI517darTtfsOP5Qbn7+K9IyWuFPcON1Ohk4+jNve/EOy3l5CBnfoyL2TJtPG48XrcOCy2xmXnc1jJ0xtknj2Z2ahHsM4AKgqOzftxuVx0rp9q2rL5u7Ooyi/mA7Z7ZLSjTMYDLJz425atE4lrXXTV9kEQyG25OeR7vaQ7jHTdVQlWesxGIbRQLat28FbD3zA+p820fvInpx67RQysmq3bvL2Tbu4ethN7NtpLWTfY3A3nlh0D3Pe+Y5Pn5tJKBjimF+NY9yZI1n69Qree+wT8vcWMvbU4daUGp7Kcy0tnrWMR697lp0bd5PVqyPXPnoJmV0zeffhj/hpzgq69M7i1OtOICOrDR8+NYP5Hy6ibac2TLv6ePoOPzSpP5tE2W02uqZXnxyN6iV0xyAiZwETgXbEVEOparX3ayLyLHAisFNVB8TZPx54F1gf3vS2qv61ppjMHYOxv1vx3WpumPhX/KV+gv4gDpcDt9fFQ3P/Ttc+WdUem7s7l9PbXRJ3nyfVXd5jyZPqpn23TLZv2FXeZdWd4qZL7048+M2dUcnhk+dmcu+vH690Pm+al0BpAL/Pj81uw+FykNY6lYK9hfiKSxERXF4XVz18MZMvMsvAN3f1GscQcZJ7gJeAbGAfsCfmUZPngck1lPlaVQ8LP2pMCoZxIHjwiqcoKSwh6A8CECgNUJRXxBO/f6HGY68ecXOV+yK7sZYU+ti4fHPUOAZfkY/Nq7Yy85U5Ucc9fNW/456vOL8Yv8+aLzMUDFFaXMqebXvxFVtDmFQVX5GPR699Dl+xGTewP0ukKukC4BxVfbMuF1LVr0Qkuy7HGsaByl/qZ+3iygsjqsLi2ctqPH7b+p31un5JoY8578xn8sXWN/yigmJKixMYqxqnwsFmE9b+uIF+I3vXKzaj6STSK8kG/NhQgYSNFJHFIvKxiPSvqpCIXCoiC0Rkwa5duxo4JMNoOHaHHWecgWcAKWk1N5za7PXrWCg2iZoryeVx1ut8AMFAiBbNoBHaqLtEfquewposr6EsArqp6mDgYeB/VRUMT8ExVFWHZmZmNmBIhtGwbDYbx1wwrtIHstvr4qTLj63x+BMvq7lMOQk/Irg8Tk6MuI7D4aBLFe0akWs+ANidtkqJyWa3kdWzQ41tI0bzVm1iEJGHyh5AOnCtiHwjIo9H7gvvrxdVzVPVgvDzjwCniGTU97yG0dxdcd90Bo/vj8vrIjU9BafHyciTj+TcP59W47FXP/xrMrJaV9p+2NEDSGvTgpSWXlJaekltmcJ1T1xK+66ZeFt4SG2Zgtvr4vL7ptP7yOgFfe776q+kZ6RFbcvo0pZJF4zD6XGSmm4d239kH869+RRc4W2eVDede3Xkb+/fVL8fiNHkalqP4cvankhVJ9R4MauN4YMqeiV1AHaoqorIMOBNrDuIartNmV5JxoFiy5ptbF2znW79OtOua2J3wqt/XM8Dlz5Ji1ap3Pa/P5CSkkLAH2D53FWEgiH6j+6N0+VEVVnx3RqK8oroO6IXKWneKs+56Isl/Dx3FYdPHFjeXrB7aw7rf9pE+26Z5XcF+XsLWPn9WtIz0uh5eHczxfV+orpeSY02wE1E/guMBzKAHVhrSDsBVPUJEbkKuAIIAMXA71X125rOaxKD0VysW7KRL1+dQygY4qgzRtF76CFJv0ZpqZ//3vU23763gNbtW3LxnefQa2j8JTzjxbPkq2W8ePsbFOYWMf6sUZxx/VRyd+Ux4z+z2bU5h0Fj+zLq5CMrTZ3R1Arzipj5yhw2Lt/MoUO6M+7MUXhS3E0d1n4tKYkhPA7hWlXNj9meCjysqhfXO9I6MInBaA5e+ftbvHLX2/hLA6gqLo+Tk387md/841dJu0ZRQTHndL6MorziqO2X3H0eZ904rcZ4uvbtzOqF66LKpbVpQaA0QDAQpLTEj7eFh869OnLfV39rNh+8W9du55qRN+MrLqWk0Icn1U2L1qk8Mv9u2nasXI1m1E5SxjFgrc4W777Ti9WV1TAOSlvXbuflO9/CV1xKKBhCQ4qvqJR3H/mEtYs3JO06913yRKWkAPDvP71MaUlFF9Nt63bEjSc2KQDk5xRQXFBCaYk1PqG4oISNy7fw9gMfJC3u+rr/sifJyykoH5dRUuhj7/Z9PHl9zeM8jLqpMTGISBsRaYvVn6F1+HXZIxNrNPOOhg7UMJqreR8sJN6Nt780wLfvfp+068z/aFHc7aow67Vvyl/Pfb9+d9ClJaV8/tLX9TpHsgQDQZbMXo6GNGZ7iLnvmZqChlKbAW67sYaxKLA8zn7Fai8wjIOSw+nAZqvc4GqzSZVjFOoi3jXKOCOmtHA4HfVuAE5m3PUiVPlemls7yIGkNlVJE7DmRxLgdODoiMcYoKuq3tVgERpGMzf6lGFx7xhsdhtHnTEyadeZeO7YuNttdhvjIq4z5tT48dSWO8XNlEuPqfsJkshutzPypKHYndFJwOl2cPS5Y5ooqgNfbdZ8nq2qs4DuwP/Cr8sec1V1a4NHaRjNWNuOrfn9M5fj8jjxpLpxp7hxeZxcft+FdDqkQ9Kuc+VDF9Ghe8wCOAI3vXRN1NoLbTrEjydekurWL4tW7dJJSfPg8jhxp7g54thBnHjppKTFXV/XPvEbOvZojzcco7eFh+wBXbnk7oYcb3twq2kcw1G1PZGqfpWUiBJkeiUZzcW+XbnMfW8BoWCIEScNbbAeM3Pemc+Xr35DRqfWnPeX02nZJi1uuXjx5Gzfy0t/fZO8nAKm/GYiQyYOwl/qZ94Hi9izNYf+o3pz6JAeDRJ3fYRCIRbOWMKWVdvoPrArg8b1M+Ml6qnO3VVFJITVhlD2P1BWOPY1qtokFX4mMRjJoqqs/H4Nqxetp0N2JkMmDcJur9+v9bb1O3j4t89QsLeQU66bwoSzxlBSVMIrf3+bHRt2MXraMI46fSSBQIC37/+QNT+sZ8CYPuXTVHz2wiwWzVhCt36dOePGk3G5nGxasYUls5eTntmS4ScMweV2svOX3Sz4dDGeFBfDTzyC1JYp5O3JZ/6HiwgGQww/YUjUnEiGUZ/EELlSyHDgX8BdwNzwtpHAzcCNqvphcsJNjEkMRjKUlpRy8wl/Z+V3a9CQYnPYSc9I4/6v/0ZGp7otbP/E9S/w1n3R3T5btE6lMLcoqpdNq3bp5O8tKJ92G8Cd4sLudFCUW1S+zeawMWzKEBbNWIIANocdp8vO0eeO4cOnv8Bms2GzCarKtGum8Pb9H2Jz2ECVUDDEbx+6mCmXNI+2A6PpJWuA20LgJlWdEbN9EvBPVT283pHWgUkMRjI8f9trvHHPu+X9+cFq1B08vj//nHFrwufLzcnn9IxGGvMpxJ3+OpbL4+SZpffTsUf7Bg/JaP6SNcCtH7A5zvYtQJ+6BGYYzcWnz86MSgpgLUbz01fLKcqvPKisJs/c8J9khVazWvZACgVDzHq9xllmDCOhxLAMuE1Eykc/h5/fGt5nGPutQGmgyn3BQLDKfVXxJbLYTSMJBUP4S5pfXEbzk0hiuAJrTMMWEZklIrOw7iCODu8zjP3WmNOG43BWbmju1q8LaXVYdGb6385KRlhJ5fQ4GXXysKYOw9gP1DoxqOr3WGMZbsJaVOeH8PPu4X2Gsd+66G/nkNG5LZ4W1qpp7vDaCDe+cFWdztfpkI4MOWZgpe3xVlxzuOL0fJL4ZTv36oQ3HKPT7cCd4mLw+P54Ut2IgN1hw+V1MeLEI3CnuLDZBLEJ7hQ3J146iZ6Hd6/T+zEOLo027XZDMY3PRrL4in3Mfn0uP89fRdahHTn2gvG0bBt/jEBtffbiLJ675b/4inyMOGko1z15KZuWb+GZm15i1+Ychk4axEV3nUPurjyevP5FNi7fTK+hPbn0nvOxO+w888eXWTZ3BVk9O3LZPRfQoXs75n2wkIUzFtOmQ2uOnT6ezM5tWTxrGXPe+Q5vCzfHnH8U3fp1YfWidXz56hyCgRDjzhxFvxG9kvSTMg4E9emueirwvqr6w8+rpKpv1y/MujGJwWgugsEgK+avIRQM0XfEoTicDlSV1YvWUZRXTO9hPfGmVr2O8/YNO9m6Zjtd+2aRkdW2ynKFuYWsXLCO1u1akj2ga0IDvRKJxziwVZcYapop602gA7Az/LwqCpgZrYyD1tJvVnD7Kf/E7wuUVwNdfu+FvHznW+zdmYvdJgQCIa56+GImX3R01LG+Yh93nf0AC2csxul2UlriZ9xZo7j+mSsqTRT3+r/e44VbX8PpdhAMBOnYoz1//+jmahNJmc2rt3HzlLvYtyMXWzXxGIapSjKMeirMLeScrpdTnF8SvUNAsAaclXGnuLj/q79FTTvx4JVP89nzX0Z1l3WnuDj7plM4/5bTy7ct+Gwxt596D74iX/k2m91G94FdeWLRPdXGGAqFOL/7b9m9eU90PF4X9331V3odkfzV5ozmrV7jGESkeSzjZBjN1Ndvf1dpvQAAFGK/ePlL/Lz32Kflr0OhUKWkAJQv9BPp7Qc/iEoKYHVB3bxyK7+s3FJtjMu/XUnBvoLK8fj8vP/4Z9Ueaxx8ajPpeq6IzAVmAl8C81S16k7fhnGQyc8pqHYcRKRQSNm7Y1/562AgiL+KY2MH1uXuzItbzu60k59TUO1183IK4rZFxMZjGFC77qpXY41uvgz4CtgrIp+IyB9F5EgRSWQshGEccA4/ekCl9QKq4k5xR40lcLqcdB/YtVI5ERg0tm/UtpFTh+LyOCuVDQVDHHJYdrXX7T+qd9zk5YmJxzCgdusxPK2q56tqZ6AvcAOwD7gOmAfkiMi7DRumYTRfPQ/vzphTR+BJrah19aS66dK7E+6Uim3uFBdZh3bgmPOjF9y59vFL8aS6sTusP0eH04E3zcvl910YVW7a1VNo06F1eXIQsRLNFfdPx+2tvsY3PaMl591yWqV4OvXswMTzzII3RrQ6Nz6LSEfgSuAaoIWZdts4mIVCIb5+az4f//sLQoEgx06fwIRzRrP4y2W8++gn5OcUcNQZI5l88dF4Uip/iG9evY237nufdT9tou/wnpx63Ym065JRqVxhbiEfPDmDeR8spG3H1pxy7Qn0H9W71nEu+nxJreIxDnzJml01AxiPNS3GBKAHsBCremmWqn5a9dENxySGA08oFGL35j2kpqeQmp7a1OHEpars2ZqDy+OKGgS3d2cuGgrRpkPDLNJjGMlSn3EMiMiDWIngUKxEMBu4FvhGVYuqO9YwEvX12/N56MqnKc4vJhQKMfyEI7jhud+Skuat+eBGsnzuSu6+4GH2bMkhFFL6jujFRXeezeO/e54NSzcBQlbPDtz8yrV0H9itqcM1jITVeMcQXsVtI9YiPR+p6vrGCKy2zB3DgWPFd6u5fsLtUTOTOt0OBo/vz/99fEsTRlZh95Y9XNTnWkoKo8cSoNadTqQWrVJ5acNjpLZMaewwDaNG9V2P4Sjg38CpwDIR2SgiL4jIRSJiZuQykub1e96jNGZaaL8vwJLZy9m5aVcTRRXto2e+IBiITgChYKhSUgAI+APMfs2sf2Dsf2rTK2mOqt6pqhOBVsCFwPrwv2WJ4vmGDdM4GGxdu514N7AOl5PdW3IaP6A4tq7Zjt/nr7kgUFLoY8fG5pHQDCMRCY1BUNVSVZ0F/B24DXgYK1n8KvmhGQebQeP6xV0TIVDqp2vfzk0QUWWDjuoX1S21Ot4WHnoP69nAERlG8tUqMYiIQ0RGi8gtIvIF1jiGmcAZWJPrXVjtCQyjFs68fiqeFp6odQg8KW5O/8NJtGjVPHonHX3eWFplpuNwVfTbcKe4aNm2RdTgM6fbSaeeHRh+wpCmCNMw6qU2jc+fAaOAFKwR0F+GHzNVdWODR1gD0/h8YNm+YSfP3/oaP3zxE+mZaZx5/clMPG9sQlNLN7S8Pfm8dOebfP3WPNxeNydeNokTLj2Gt+7/gE+fn0UoGGLieWM550+n4G3RfHpTGUakeo1jEJH/Ep4nSVXXNEB89WISg2EYRuLq1StJVc8JT4tRr6QgIs+KyE4RWVrFfhGRh0RkjYgsERFzD24kJC8nn8uH3MAk2xlMsp3BKW2nM/eDhXHL3vubxznOeRaTbGcw2X02T9/0n7jlVi5YyzWjbuY451mc0nY6z9/2KsFAsFbxlJaU8tjvnuPk9AuY7DqLG465g/XLNvHf/3ub09tdzHHOs7hi6I0s/WZFnd+zYTSERluPQUSOAgqAF1V1QJz9U7Am7JsCDAceVNXhNZ3X3DEYZU5vdzG5u/MrbX980T/peVhFz+q7f/UQX7z8daVy59x8ChffeW75682rtnLFETdGjVlwp7gYf9Zorv/3lTXGc/OUu1g8a1n5lNoiYHc6sNttUWM13CkuHvj6TrMes9Go6juOISlU9Suguj6HJ2MlDVXVeUCr8HxMhlGjuR8sjJsUAB69+t/lz0OhEDNfmRO33Bv/ej/q9Wv/+F/cdRJmvjKHvTtzq41n04otLJm9POp4VQiUBqKSAkBpsZ+X/lbdAomG0bia05TZWcAvEa83h7cZRo2Wzvm5yn2/rNxW/rwor6jSYjVlYqelXv3DekLBygPXXB4nW1Zvq7Q90qafN9d6Km5VZf1PTd6PwzDKNafEEK/bSdy/YBG5VEQWiMiCXbvMACIDBozpW+W+zr0qbjxTWqZU2cMpsgsqQM/DsqO6zpbx+/xk9exQbTxd+mQR9NeuLUIEsgdUXpPBMJpKc0oMm4EuEa87A1vjFVTVp1R1qKoOzczMbJTgjOZt5IlHkNamRdx9Vz50cflzm83GuLNGxi132u9OjHp95o3TKi2M4/a6OOqMkbRu36raeLr17cyAMX0qHe9w2nF5XVHbXF4X5//ldAyjuag2MYhIvojk1eaRhFjeAy4I904aAeSqavX364YR4dkVD5I9oOK7RWp6Cre/cyO9hvSIKvfnV37HxPPHIjbrzsHusHHqdSdwyf+dF1Wua58s/vn5bfQaeggiQkpLL9OumcIfnrmiVvHc8b8bmfzro/GkuhGbMHBsXx757m7OuWkaLVqngkCPwd2468ObOTQmRsNoStX2ShKRWo9oVtUXqr2QNR5iPJAB7MCaUsMZPvYJse7vHwEmA0XARapaY3cj0yvJiCcUCmGz1XxDXNtyqlqvQXbxjq/vOQ2jPuq8HkNNH/aJUNVzativwG+TdT3j4FabD/tEytX3Azze8SYpGM1Vc2pjMAzDMJqBWicGEXGJyB0iskpESkQkGPloyCANwzCMxpPIHcPfsGZRvRcIATcAjwJ7gJqHgRqGYRj7hUQSw5nA5ar6JBAE3lXVa7AakSc1RHCGYRhG40skMbQHloefF2At0APwCXBsMoMyDMMwmk4iiWET0Cn8fA1wXPj5SKA4mUEZhmEYTSeRxPAOMDH8/EHgDhFZDzwPPJPkuAzDMIwmUu04hkiq+qeI52+KyC/AaGCVqn7QEMEZhmEYja/WiSG8nsK3qhoAUNX5wPzwetBHhafVNgzDMPZziVQlfQm0ibM9PbzPMAzDOAAkkhiE+NNgtwUKkxOOYRiG0dRqrEoSkffCTxV4SUR8EbvtwADg2waIzTAMw2gCtWlj2BP+V4C9RHdNLQXmAE8nOS7DMAyjidSYGFT1IgAR2QD8S1VNtZFhGMYBrNZtDKp6h6oWishQETlLRFIBRCRVRGrdu8kwDMNo3hLprtoea5W1I7HaGw4F1gH3ASXAtQ0RoGEYhtG4EumVdD+wHasXUlHE9jcwcyUZhmEcMBKpApoITFTVvTErT60FuiY1KsMwDKPJJHLH4MXqhRQrE6sqyTAMwzgAJJIYvgKmR7xWEbEDfwS+SGZQhmEYRtNJpCrpRmC2iBwJuLFWcuuPNSXG6AaIzTAMw2gCiXRXXQ4MAuYCnwEerIbnw1V1bcOEZxiGYTS2hMYfqOo24NYGisUwDMNoBmq8YxCRFBF5VES2iMhOEXlFRDIaI7gDlQbWoEWvoiWfohqvPd8wDKPp1OaO4Q6sRueXsXofnQM8DpzRcGEdmFRDaN6foPhja4PYARe0eRFx9m7S2AzDMMrUJjGcCvxaVV8FEJGXgG9ExK6qwQaN7kBT8iEUf0J5714FKET3XgGZXxAzPsQwDKNJ1KbxuQvwddkLVf0OCACdGiqoA5UWCdcW+wAAEzJJREFU/ZfoyWnLduyBwKpGj8cwDCOe2iQGO5UHtgVIsOHaAKpsT7ARf+ygYRhG46vNh7tQeYEeD/C0iJTPmaSqU5Md3AHHexLkr6LyQHEnOPo2RUSGYRiV1CYxvBBn20vJDuRgIClnoyUfWtVGWgS4ABvS6j7MzOWGYTQXtV6ox6g/ETe0eQV8X6K+OWBvh3hPQ+wdmjo0wzCMcuZraiMTcYBnEuKZFLVd1QelP4J4wDkQkUSmsTIMw0ieRv30EZHJIrJSRNaIyE1x9k8XkV0i8mP4cUljxtdUQsUfojuHo/uuQPdeiO4aj/pXNnVYhmEcpBrtjiE8E+ujwCRgM/C9iLwXnoMp0muqelVjxdXUNLAWcv9EVIO0FqE5F0K7rxFxNllshmEcnBrzjmEYsEZV16k1D8SrwMmNeP1mSYvewOr9G8sHpd80djiGYRiNmhiygF8iXm8Ob4t1mogsEZE3RaRLvBOJyKUiskBEFuzatashYm08oT3ETwxAKLdRQzEMw4DGTQzx5nvQmNfvA9mqOgj4nPhdZVHVp1R1qKoOzczMTHKYjUvc44GUyjvUD65hjR2OYRhGoyaGzVjTa5TpDGyNLKCqe1S1bCDd08ARjRRb0/EcC85eWCunhokXUi5A7B2bLCzDMA5ejdld9XvgUBHpDmwBzgbOjSwgIh3Daz4ATAV+bsT4moSIE9q8hBa9DSUfgKQiqeeAa1xTh2YYxkGq0RKDqgZE5CrgU6z5l55V1WUi8ldggaq+B1wjIlOxKt1ziF5julnRUAFoHtjaY3W4ii8UzIXSueAahM1uzTuoGoLQdpA0xJaGiAtSzgLPeBA3Ymtdw7X3gZaEr21mZDUMI7lENbaaf/8ydOhQXbBgQaNdT7UYzb0FSj4FbFa1T9qfsaVUnioqtOskCEaOR0iHtFug8G4IFQIhcE+AlLMh71YI7rS2OQ+zpsmwt4++digH3fcHKP3OuratLZJ+N+Ie0YDv2DCMA5GILFTVoXH3mcSQmNDeq8E3C4ieU1BaP424h1eU2/Nr8H8de3gcTiAIhCK22cHeGcn4tHwEtKqie06GwBqiezF5kYz3EEe3Or4jwzAORtUlBjPvQgI0lAP/396dB7lZ33ccf38erXa1h836IGBswhFSN8YpGIgpuFwxITAwHC0JBpIJKYUGCuUoQwLNkEJDh4SE0jSEFDCYcBgIx3CE4UpIoaFAbCCAYwjG4TCGYBeMWe+p1bd//J71SlrtIWlX8mq/rxkNfn7P9f3JWN/n+B1dj5ObFAA6sU0/zS0aUVIA6CE3KQD0QmY9dP+2vyj9MqTfYmDT1h6s/ZYRnss554bniaEYve/DYD2Re9eM8skMMu/2L/auhYLjJ6Wh941RPrdzbiLzxFCMuh0YeHUPkID6/DuywV9Ij4hlIDm3fzk5N/RtGCAFyb0LlDvnXGk8MRRBaoTmM8jpcxC/gFbzabkbt5w5yFEicr/2RtAkwruGPiloOBDV7dJ/7sRMaDwi79x1EE1GTV8uvjLOOTcIH3a7SFHLKVjdLKztvyCzDpKfQ5PORnWfzNvudDIkoO1HhPcIEaSOQi1nYm3/Ad1PQTQVNf8dVr8fbLoKOh8Nw243HY+avjrg3Jp8KVY3F9pvAtsEDQtRyxkomlSZyjvnJgRvleSccxPQUK2S/I6hSJlMGj48BXqeIgz1lIJJ34KO+yD9XP+GyYNRy3HYxsug948QTYPm01HTCQM6pVn6LWzjxaEjnJKQOhpNOh9FzRWtm3POgd8xFC2z/khIvzLCrSNyX1Y3Qss/ErWcvLnEMhuwdYeEXtSbt62H5Fw0dan3bHbOjQnvxzBKMum1RSQFGNiCqQM2/QSz/r4I1n5XGN4iZ9tuSK+E9EtlROucc6XxxFCMnt+Vfwzriu8OYukV5Mzetpkg/Xr553POuSJ5YihGcrfyj6F60OT+5brPAKmB25lBYufyz+ecc0XyxFCEqG47SHy6mD3ylhuh+RtI/e/81XQsqIHceYzqITkbkn9RRrTOOVcaTwzFmnZPXk/jBmi+EBJ5dxPJA1Hr1ZDYMSxH02DSP6HmU3I2UzQFTfs51O9D+OtogMaj0JTr/cWzc64qvFVSGTKZDFGUm1szvb1EidzhMMxsRD/yI93OOefK5f0Y8lhmA9Z2dZhTQY1xT+MTB0y4k8mk4aNvQtfDQDo8RppyJWw4f3OLoQwJaDkPNl0Pti4uAxK7gKZC+tlwTgBtC00nwqYr+kpAM6D1TuhaDJ0PYUPEY5bB2u+AjpvCfA4NC1HL6Sgxbcy+K+fcxDPh7hjMOrD1R0Dve4ShKgBSkDqYqPWKnG0z674YOqdVRDIrnkZIHUTUemVuPB99GzruBzr694mmoekPoqilQnE652qB92PIYu33Q+96+n+EATqh81EsvXpzSab7+QomBfLi6YDOX2JZzVWtdy103Et/Uoj3yWwIdxHOOTdKJlxioOdpcn9cY0pAz4v9y52PVSykgpSAnqwObj0vDzIXRGdcJ+ecGx0TLzEkPgnUF1ghiGb0LyY/VamIBiGItu1fTGxL4bkg6uI6Oefc6JhwiUFNx4Wr8RyJ0Jy0/nP9RQ1HUziBVEJfPPP7i+o+C4lZDGgvoCRq+kpFo3PO1baJlxgSM9CU6yCaCTQQOpPthqbejLKmzoyiCKbdndtLmQhSJzHwa5tVRARbDyxquXDYeCShKUvimeLqgRRE26DWn6C6HYs4v3PODW3CtUrqY2aQWQukhm3umUmvht4PILnH5n4Lmc7lkH4RUscQ1bWGso7HoP0OaD6VKBVe9me6VsKmxdB4OFHjQaGs5yPoWAx184iaDio6Hst8AJl2SMz0fg/OuZJ4P4YCJEFi5uZlM4OuR8Jop/SixmMgdRhSgqhuZ6jLHbcoSu0J7Ll5OdP1NLRdCZl3oe0yMtF3wlAXH18Mva9B7woyiohSBxAlt4LkuUPGM2Ts0VSIppZcd+ecG8qETQz57KNvQucjQHtY7lkGnQ9B638Oe1Weab8TNl7YX5B+ET74m9yNej+GDaeQabmQqOWk0Q3eOedG0YR7x1CI9awISSBOCqGwA7qfhJ7lwx9g48UjP1nb98lkCrUucs65LYMnBghTapIeWG6dWNdTQ+6aybQBXUWcLA2Zt4qJzjnnKsoTA4SWRwU7j9WjaKthdi6hSWvUWvw+zjlXIZ4YAFKHFi5XBKnDh9w1iuohsdPIzxVtS+SJwTm3BfPEACiajKZcC9oK1BJ/JqHWH6PE9OEPMG0paEreQbeDaIe8skkw1cc1cs5t2bxVUkz18+ETT0HPC2AZqJ+HNLLHRFE0FbZ5hkxXvH/9AqL6MHFPpnsFdD8BdXOIUgeMZRWcc25UeGLIIiVzh8UoUtSwLzTsm1tWvyvU71puaM45VzEVfZQk6VBJr0paJelbBdY3SLo9Xv+MpB0rGZ9zzrkKJgaF6ciuAg4D5gDHS5qTt9nJwIdmtgvw78D3KhWfc865oJJ3DPOBVWa22sy6gduAo/K2OQq4Mf7zncBC+WBAzjlXUZVMDDOBt7OW18RlBbcxszTwETBgRDlJp0paJmnZunXrxihc55ybmCqZGApd+ecP7TqSbTCza8xsLzPba+utCwxj7ZxzrmSVTAxrgO2zlmcBawfbRlIdsBXwQUWic845B1S2uepvgU9L2gl4B1gEnJC3zX3A14D/BY4FfmXDTBixfPny9ZLeLCOu6cD6MvbfktRSXaC26lNLdYHaqs9ErcsOg62oWGIws7SkM4CHgQRwvZmtkHQJsMzM7gMWAzdJWkW4U1g0guOW9SxJ0rLBJqsYb2qpLlBb9amlukBt1cfrMlBFO7iZ2YPAg3llF2X9uRP4UiVjcs45l8vHSnLOOZfDEwNcU+0ARlEt1QVqqz61VBeorfp4XfJomHe7zjnnJhi/Y3DOOZfDE4NzzrkcEzYxSLpe0vuSXq52LOWStL2kxyWtlLRC0lnVjqlUklKSnpX0u7guF1c7pnJJSkh6XtID1Y6lXJLekPSSpBckLat2POWS1CrpTkmvxP9+9ql2TKWQNDv+O+n7bJR0dsnHm6jvGCTtD7QBPzOzudWOpxySZgAzzOw5SZOA5cDRZvb7KodWtHjQxGYza5OUBP4HOMvMnq5yaCWTdC6wFzDZzI6odjzlkPQGsJeZ1USHMEk3Ak+a2XUKM3M1mdmGasdVjngk63eAvc2spM6/E/aOwcyeoEaG2zCzd83sufjPHwMrGThA4bhgQVu8mIw/4/bqRdIs4HDgumrH4nJJmgzsT+hYi5l1j/ekEFsIvF5qUoAJnBhqVTy50TzgmepGUrr40csLwPvAo2Y2busCXAmcD2SqHcgoMeARScslnVrtYMq0M7AOuCF+1HedpOZqBzUKFgFLyzmAJ4YaIqkFuAs428w2VjueUplZr5ntThhocb6kcfmoT9IRwPtmtrzasYyiBWa2B2HCrX+IH8mOV3XAHsDVZjYP2AQMmFlyPIkfhx0J/Lyc43hiqBHx8/i7gFvM7O5qxzMa4tv6XwOHVjmUUi0Ajoyfy98GfF7SzdUNqTxmtjb+7/vAPYQJuMarNcCarDvSOwmJYjw7DHjOzP5UzkE8MdSA+IXtYmClmV1R7XjKIWlrSa3xnxuBg4FXqhtVaczsAjObZWY7Em7vf2VmX6lyWCWT1Bw3biB+5HIIMG5b9ZnZe8DbkmbHRQuBcddgI8/xlPkYCSo8iN6WRNJS4EBguqQ1wHfMbHF1oyrZAuCrwEvxs3mAC+NBC8ebGcCNccuKCLjDzMZ9M88asQ1wTzzbbh1wq5k9VN2QynYmcEv8CGY18PUqx1MySU3AF4C/L/tYE7W5qnPOucL8UZJzzrkcnhicc87l8MTgnHMuhycG55xzOTwxOOecy+GJwdU8SSdJaht+yy1TOfFLOkDSH+Lmv2NC0mclvVMjw0k4PDG4CpG0RJLFnx5JqyX9oJgfk/gYY9KnIR5O+ryxOHaV47gcuNTMekfxmDnM7CXgaeDcsTqHqyxPDK6SHiN0YNsZ+DZwOvCDqkZUwyTtC/w5ZY6bM0I3AKdJmrCdZmuJJwZXSV1m9p6ZvW1mtwK3AEf3rZQ0R9IvJH0cT6K0VNK28bp/Ab4GHJ5153FgvO4ySa9K6oivuL8vKTWagQ8VW7x+iaQHJJ0VP1b5UNINcW/Uvm2aJf1MUpukP0m6IN5nSbz+18AOwOV9dcyLYaGklyVtUpiYaadhwj4BeMzM2vOOc7ikZ+Lv6/8k3d/3fcXf30VxfT6W9Lak4xQmtLktjv01SYfknesRYCphNAE3znlicNXUQZhvoW+yoScIY+/MJ4yR1ALcJyki3FncQf9dxwzgqfg4m4C/BT5DuAtZBPzzaAU5gtj67AfMjdcfBxwDZM+m90PggLj888Bu8T59/powsNslWXXs0wBcQKjnPkAr8NNhQt8PyJllTdKhwL3Ao8CewEHAf5P7W3A28CxhQLk7gBuBW4EHgd3j7+Lm7ORrZt3AC3H93HhnZv7xz5h/gCXAA1nL84H1wO3x8iXAL/P2mUIY/39+oWMMca5vAKuylk8C2obZ5w3gvEHWjTS2t4G6rG2uJVyxQ0gk3cCirPXNwIfAkqHiiOM3YHZW2Ynx8aIh6rQB+Hpe2W+A24b5HpZmLbfE5/5RVtmOcdleefveDdxU7f/X/FP+x58Huko6NG5dU0e4U7iXMIgZhKvX/QdpffMpwhVsQZKOJVzl7kL4IUvEn9Ey0th+b2bprHVrgb2ztktmbYuZbdLI5xzvMrNX846dJNw5DDYTYSPQmVc2j5DEhvJiVoxtktqBl7LW9w3p/Im8/Tric7pxzhODq6QngFOBHmCtmfVkrYuAXwCFWuQMOra8pL8kzHVwMXAO4Sr5SEb3pfZIY+vJW2f0P6JRVlkp0nnLfccZ6nHwesKdTbEK1aMnb7nQuacS7jjcOOeJwVVSu5mtGmTdc8CXgTfzEka2bgbeCSwA3jGzf+0rkLRD2ZEWH9twVhF+XOcDf4TNwyTPBV7P2q5QHUv1PDCnQNlCwmOu0TaX8DjJjXP+8tltKa4CtgJul7S3pJ0lHSzpmr7JYQhXo3MlzZY0PZ617g/ATEknxvucRpispBTbSdo97zN9hLENyczagOuB78Wti+YA1xH+DWbfRbwB7CdpZnzucjwM/FVe2aXAlyR9N25ptaukc7JbT5VCYa7xmYTWSW6c88TgtggWpoxcAGSAh4AVhB/krvgD4Sp3JaGlzTrC/MP3EzpxXUl4Nv4F4KISwziHcEWd/Vk0wthG4jzgSeA+4PE43mXkvge4CNiecBexrsR69LkZ+DNJu/YVWJi86RjCFJDPE1okHUSoWzmOBx4xszfLPI7bAvhEPc5ViaQG4E3gcjP74Rid4zJgazM7eSyOH5+jAXgNON7MfjNW53GV43cMzlWIpHmSTpC0i6R5hP4Bk4Dbx/C0/was1hiOlUTolHepJ4Xa4XcMzlVInAyuBWYTWhm9QOizsLyqgTmXxxODc865HP4oyTnnXA5PDM4553J4YnDOOZfDE4Nzzrkcnhicc87l+H+NXfT8BwoLAAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ "# Let's check out the clusters that KMeans found\n", "plt.scatter(d1, d2, c=km.labels_);\n", - "plt.xlabel('Year');\n", - "plt.ylabel('Age');\n", "\n", "# Add title, labels and legend\n", "plt.title('Iris Data: PL vs. PW Clustered', fontsize=16, fontweight='bold')\n", - "plt.xlabel('Petal Length', fontsize=14);\n", - "plt.ylabel('Petal Width', fontsize=14);" + "plt.xlabel('Petal Length (cm)', fontsize=14);\n", + "plt.ylabel('Petal Width (cm)', fontsize=14);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the plot above, each data point is labeled with it's cluster assignment, that we learned from the data. \n", + "\n", + "In this case, since we do already know the species label of the data, we can see that it seems like this clustering analysis is doing pretty well! There are some discrepancies, but overall a K-means clustering approach is able to reconstruct a grouping of the datapoints, using only information from a couple of the features. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "It looks like it's doing pretty well! Other than some discrepancies between the versicolor and virginica boundary, KMeans is able to reconstruct the species labels algorithmically, given only information on a couple features. " + "## Other Clustering Approaches\n", + "\n", + "Clustering is a general task, and there are many different algorithms that can be used to attempt to solve it. \n", + "\n", + "For example, below are printed some of the different clustering algorithms and approaches that are available in sklearn." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Clustering approaches in sklearn:\n", + " AffinityPropagation\n", + " AgglomerativeClustering\n", + " Birch\n", + " DBSCAN\n", + " FeatureAgglomeration\n", + " KMeans\n", + " MeanShift\n", + " MiniBatchKMeans\n", + " OPTICS\n", + " SpectralBiclustering\n", + " SpectralClustering\n", + " SpectralCoclustering\n" + ] + } + ], + "source": [ + "print('Clustering approaches in sklearn:')\n", + "for name in dir(cluster):\n", + " if name[0].isupper():\n", + " print(' ', name)" ] } ], "metadata": { "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -359,7 +450,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/16-DimensionalityReduction.ipynb b/16-DimensionalityReduction.ipynb index ed267ce..73c989c 100644 --- a/16-DimensionalityReduction.ipynb +++ b/16-DimensionalityReduction.ipynb @@ -4,7 +4,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Dimensionality Reduction" + "# Dimensionality Reduction\n", + "\n", + "Datasets are sometimes very large, containing potentially millions of data points across a large numbers of features. \n", + "\n", + "Each feature can also be thought of as a 'dimension'. In some cases, for high-dimensional data, we may want or need to try to reduce the number of dimensions. Reducing the number of dimensions (or reducing the number of features in a dataset) is called 'dimensionality reduction'. \n", + "\n", + "The simplest way to do so could simply be to drop some dimensions, and we could even choose to drop the dimensions that seem likely to be the least useful. This would be a simple method of dimensionality reduction. However, this approach is likely to throw away a lot of information, and we wouldn't necessarily know which features to keep. Typically we want to try to reduce the number of dimensions while still preserving the most information we can from the dataset. \n", + "\n", + "As we saw before, one way we could try and do something like this is by doing clustering. When we run a clustering analysis on high dimensional data, we can try and re-code data to store each point by it's cluster label, potentially maintaining more information in a smaller number of dimensions.\n", + "\n", + "Here we will introduce and explore a different approach to dimensionality reduction. Instead of dropping or clustering our features, we are going to try and learn a new representation of our data, choosing a set of feature dimensions that capture the most variance of our data. This allows us to drop low information dimensions, meaning we can reduce the dimensionality of our data, while preserving the most information. " ] }, { @@ -16,8 +26,11 @@ "\n", "\n", "
\n", - "For an explainer on dimensionality reduction, with examples in real data, go\n", - "here.\n", + "For more information on dimensionality reduction, see the scikit-learn \n", + "user manual,\n", + "and / or \n", + "blog post\n", + "with an explainer and examples in real data.\n", "
" ] }, @@ -25,15 +38,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Overview of Dimensionality Reduction\n", - "\n", - "Datasets can be very large, containing not only potentially millions of data points, but also potentially very large numbers of features about each data point. We can consider each feature of our dataset to be a 'dimension'. For large-dimensional data, we may want to, or need to, try to reduce this number of dimensions. \n", - "\n", - "The simplest way to do so could simply be to drop some dimensions, and we could even choose to drop the dimensions that seem likely to be the least useful. This would be a simple method of dimensionality reduction. \n", + "## Principal Component Analysis\n", "\n", - "Typically though, we want to reduce the number of the dimensions in a way that preserves the most information. One way to do so could be clustering - if we run a clustering analysis on high dimensional data, we could re-code the data to store each point by it's cluster label, potentially maintaining more information in a smaller number of dimensions. \n", + "The method we will for dimensionality reduction is Principal Component Analysis (PCA).\n", "\n", - "Here we will explore another common method for dimensionality reduction - Principal Component Analysis (PCA). " + "PCA can be used to learn a new representation of the data, 're-organizing' our features into a set of new dimensions that are ranked by the variance of the dataset that they account for. With this, we can do dimensionality reduction by dropping dimensions with a small amount of explained variance. " ] }, { @@ -56,27 +65,21 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Principle Component Analysis\n", + "### PCA Overview\n", "\n", - "To use PCA for Dimensionality Reduction, we can choose to preserve _n_ components, where _n_ is a number lower than the original dimensionality of our data set. \n", + "To use PCA for Dimensionality Reduction, we can apply PCA to a dataset, learning our new components that represent the data. From this, we can choose to preserve _n_ components, where _n_ is a number lower than the original dimensionality of our data set. By transforming our data with PCA, and choosing the keep the top _n_ components, we are able to keep the most variance of the original data in our lower dimensional space.\n", "\n", - "By transforming our data with PCA, and keeping _n_ components, we are able to keep the most variance of the original data in our lower dimensional space.\n", + "Broadly, PCA seeks to take advantage of the correlational structure of the variables, and uses this structure to re-encode the data. For example, if feature $x_1$ and $x_2$ of our data are correlated, PCA looks for how it could re-organize the data into some new dimension $x_pc$ which captures most of the shared variance (correlated structure) between the two. \n", "\n", - "Most broadly, PCA seeks to take advantage of the correlational structure of the variables, and uses this structure to encode the data. \n", + "In practice, PCA is most useful to go from _m_D -> _n_D data, where D is the dimensionality of the data, _m_ is a large number and we want to choose a new dimensionality _n_, where _n_ < _m_. \n", "\n", - "For example, if feature $x_1$ and $x_2$ of our data are correlated, PCA looks for how it could re-organize the data into some new dimension $x_pc$ which captures most of the shared variance (correlated structure) between the two. \n", - "\n", - "In this notebook, we will work through a simple PCA example, with a simple example of using PCA to perform PCA to go from 2D -> 1D data. \n", - "\n", - "In practice, PCA is most useful to go from _m_D -> _n_D data, where _m_ is very large, and _n_ < _m_. " + "For this this notebook, we will work through a simplified example, illustrating the point in dimensionalities that we can plot, by going from 2D to 1D data." ] }, { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Imports\n", @@ -88,23 +91,26 @@ "from sklearn.decomposition import PCA" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this examples, we will create some example data, with 2 dimensions, in which the two dimensions are correlated (share some variance). " + ] + }, { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "## Create some random, correlated, data\n", - "\n", "# Settings\n", "means = [50, 50]\n", "covs = [[1, .75], [.75, 1]]\n", "n = 1000\n", "\n", "# Generate data\n", - "dat = np.random.multivariate_normal(means, covs, n)" + "data = np.random.multivariate_normal(means, covs, n)" ] }, { @@ -114,20 +120,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAD71JREFUeJzt3X+IpVd9x/H3p9FaiFETMgnb7NoV\nXZuqtGs6pIEFiYRofogb/4hEii6aupZGqkWoG1tQKIGUVi1CG7rWNCv4K6AhoQnqdmsRodFM0pAf\nxjSLbpNxl+xYxR9YhI3f/jHP1pvdmcydO3PnznPu+wXDvffc5+797u6Zz5x7nvOcSVUhSWrXr026\nAEnSeBn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+g1tZJsS/K1JI8leTTJ+7r2jyT5fpIHu6+rBl5z\nY5LDSR5P8sbJVS8NL66j17RKsgXYUlUPJDkLuB+4Bngr8LOq+ttTjn8V8DngYuA3gX8FXllVz2xs\n5dLqOKLX1KqqY1X1QHf/p8BjwAXP8ZLdwOer6hdV9T3gMIuhL21qz5t0AQDnnntubd++fdJlqFH3\n33//D6pq5rmOSbIdeC3wTWAX8N4k7wDmgA9U1Y9Y/CFw78DL5lniB0OSvcBegDPPPPP3L7zwwnX4\nW0inG6ZvwyYJ+u3btzM3NzfpMtSoJP+9wvMvBL4IvL+qfpLkFuCvgOpuPwq8C8gSLz9t7rOq9gP7\nAWZnZ8u+rXFZqW+f5NSNplqS57MY8p+pqi8BVNXTVfVMVf0S+CS/mp6ZB7YNvHwrcHQj65VGYdBr\naiUJ8Cngsar62ED7loHD3gI80t2/C7guyQuSvAzYAXxro+qVRrUppm6kCdkFvB14OMmDXduHgLcl\n2cnitMwR4D0AVfVoktuBbwMngBtccaM+MOg1tarqGyw9737Pc7zmJuCmsRUljYFTN5LUOINekhpn\n0EtS4wx6SWrcikHvxk+S1G/DrLo5weIl4P+/8VOSg91zH19m46frgFfTbfyUxI2f1tH2fXeP9Loj\nN1+9zpVI68u+PR4rjujd+EmS+m1Vc/SnbPwEixs/PZTk1iRnd20XAE8NvGzZjZ+SzCWZW1hYWHXh\nkqThDB30p278BNwCvBzYCRxjceMnWMXGT1U1W1WzMzMrbr4mSRrRUEHvxk+S1F/DrLpx4ydJ6rFh\nVt248ZMk9diKQe/GT5LUb14ZK0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhrn74yVtO5G3YVS4+GI\nXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNc1Oz\nCXLjJ0kbwRG9JDXOoJekxhn0mlpJtiX5WpLHkjya5H1d+zlJDiZ5ors9u2tPkk8kOZzkoSQXTfZv\nIA3HoNc0OwF8oKp+B7gEuCHJq4B9wKGq2gEc6h4DXAns6L72ArdsfMnS6hn0mlpVdayqHuju/xR4\nDLgA2A0c6A47AFzT3d8NfLoW3Qu8JMmWDS5bWjWDXgKSbAdeC3wTOL+qjsHiDwPgvO6wC4CnBl42\n37Wd+mftTTKXZG5hYWGcZUtDMeg19ZK8EPgi8P6q+slzHbpEW53WULW/qmaranZmZma9ypRGZtBr\nqiV5Posh/5mq+lLX/PTJKZnu9njXPg9sG3j5VuDoRtUqjcqg19RKEuBTwGNV9bGBp+4C9nT39wB3\nDrS/o1t9cwnw45NTPNJm5pWxmma7gLcDDyd5sGv7EHAzcHuS64EngWu75+4BrgIOAz8H3rmx5Uqj\nMeg1tarqGyw97w5w2RLHF3DDWIvSSEbdTuTIzVevcyWbk1M3ktS4FYPeqwclqd+GGdF79aAk9diK\nQe/Vg5LUb6uao/fqQUnqn6GD3qsHJamfhgp6rx6UpP4aZtWNVw9KUo8Nc8GUVw9KUo+tGPRePShJ\n/eaVsZLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalx/uKRKeIvZ5CmkyN6SWqcQS9JjTPoJalxBr0k\nNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1Lj\nDHpJapxBr6mV5NYkx5M8MtD2kSTfT/Jg93XVwHM3Jjmc5PEkb5xM1dLqGfSaZrcBVyzR/vGq2tl9\n3QOQ5FXAdcCru9f8Q5IzNqxSaQ0Mek2tqvo68MMhD98NfL6qflFV3wMOAxePrThpHRn00unem+Sh\nbmrn7K7tAuCpgWPmu7bTJNmbZC7J3MLCwrhrlVZk0EvPdgvwcmAncAz4aNeeJY6tpf6AqtpfVbNV\nNTszMzOeKqVVMOilAVX1dFU9U1W/BD7Jr6Zn5oFtA4duBY5udH3SKAx6aUCSLQMP3wKcXJFzF3Bd\nkhckeRmwA/jWRtcnjeJ5ky5AmpQknwMuBc5NMg98GLg0yU4Wp2WOAO8BqKpHk9wOfBs4AdxQVc9M\nom5ptVYM+iS3Am8CjlfVa7q2jwDvBk6eafrQwDK0G4HrgWeAP62qr4yhbmnNquptSzR/6jmOvwm4\naXwVSeMxzNTNbbjWWJJ6a8Wgd62xJPXbWk7GutZYknpg1KB3rbEk9cRIQe9aY0nqj5GC3rXGktQf\nwyyvdK2xJPXYikHvWmNJ6je3QJCkxhn0ktQ4g16SGmfQS1Lj3L1S0rK277t70iVoHTiil6TGGfSS\n1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpca6jXyeuN5a0WTmil6TGGfSS1DiDXpIaZ9BLUuMMeklq\nnKtuJE2tUVbLHbn56jFUMl6O6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+g1\ntZLcmuR4kkcG2s5JcjDJE93t2V17knwiyeEkDyW5aHKVS6tj0Gua3QZccUrbPuBQVe0ADnWPAa4E\ndnRfe4FbNqhGac0Mek2tqvo68MNTmncDB7r7B4BrBto/XYvuBV6SZMvGVCqtjUEvPdv5VXUMoLs9\nr2u/AHhq4Lj5ru00SfYmmUsyt7CwMNZipWG4qZlWNOqvSezj5k/PIUu01VIHVtV+YD/A7OzsksdI\nG2nFEb0nrDRlnj45JdPdHu/a54FtA8dtBY5ucG3SSIaZurkNT1hpetwF7Onu7wHuHGh/RzeYuQT4\n8ckpHmmzWzHoPWGlViX5HPAfwG8nmU9yPXAzcHmSJ4DLu8cA9wDfBQ4DnwT+ZAIlSyMZdY7+WSes\nkqx0wuq0kU+SvSyO+nnpS186YhnS6Krqbcs8ddkSxxZww3grksZjvVfdrOqEVVXNVtXszMzMOpch\nSTpp1KD3hJUk9cSoQe8JK0nqiRXn6LsTVpcC5yaZBz7M4gmq27uTV08C13aH3wNcxeIJq58D7xxD\nzZKkVVgx6D1hJUn95hYIktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINe\nkhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWp\ncQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNe96kC5A2oyRHgJ8CzwAnqmo2yTnAF4Dt\nwBHgrVX1o0nVKA3LEb20vNdX1c6qmu0e7wMOVdUO4FD3WNr0DHppeLuBA939A8A1E6xFGtqagj7J\nkSQPJ3kwyVzXdk6Sg0me6G7PXp9SpQ1VwFeT3J9kb9d2flUdA+huz1vqhUn2JplLMrewsLBB5UrL\nW48RvR9v1aJdVXURcCVwQ5LXDfvCqtpfVbNVNTszMzO+CqUhjeNk7G7g0u7+AeDfgQ+O4X2ksamq\no93t8SR3ABcDTyfZUlXHkmwBjk+0yFXYvu/uSZegCVrriN6Pt2pOkjOTnHXyPvAG4BHgLmBPd9ge\n4M7JVCitzlpH9Luq6miS84CDSb4z7Auraj+wH2B2drbWWIe0ns4H7kgCi98jn62qLye5D7g9yfXA\nk8C1E6xRGtqagr61j7cSQFV9F/i9Jdr/B7hs4yuS1mbkqRs/3kpSP6xlRO/HW0nqgZGD3o+3ktQP\nXhkrSY1zU7NTuN5YUmsc0UtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGubxSYzPqUtUjN1+9zpVI\n080RvSQ1zhG9JK1CHz+pOqKXpMYZ9JLUuGanbtyzRpIWOaKXpMYZ9JLUOINekhpn0EtS4wx6SWpc\ns6tupFa5okyr5Yhekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIa55WxkrQB\nJvkrCA16bTqjfENM8vdxSpudUzeS1LixBX2SK5I8nuRwkn3jeh9pI9mv1UdjmbpJcgbw98DlwDxw\nX5K7qurb43g/aSOsd792F0ptlHHN0V8MHK6q7wIk+TywG1j1N4TfDNpE1q1fSxtpXEF/AfDUwON5\n4A8GD0iyF9jbPfxZksfHVMswzgV+MMH3X4s+1w7rVH/++jmf/q21/vmdFfs1bLq+Df3uI32tfd3q\nXo++Pa6gzxJt9awHVfuB/WN6/1VJMldVs5OuYxR9rh16V/+K/Ro2V9+G3v0bP0tfa99sdY/rZOw8\nsG3g8Vbg6JjeS9oo9mv10riC/j5gR5KXJfl14DrgrjG9l7RR7NfqpbFM3VTViSTvBb4CnAHcWlWP\njuO91smm+Zg9gj7XDj2qv4f9+qTe/Bsvoa+1b6q6U3XaFKMkqSFeGStJjTPoJalxUxn0Sc5I8p9J\n/qV7fFmSB5I8mOQbSV4x6RqXk+RIkoe7Wue6tnOSHEzyRHd79qTrXMoytf9Nku8keSjJHUleMuk6\n+66v/du+PT5TGfTA+4DHBh7fAvxhVe0EPgv85USqGt7rq2rnwDrdfcChqtoBHOoeb1an1n4QeE1V\n/S7wX8CNkyutGX3u3/btMZi6oE+yFbga+KeB5gJe1N1/Mf1bG70bONDdPwBcM8FaVqWqvlpVJ7qH\n97K4Nl0jarB/27fXwTTuR/93wJ8DZw20/RFwT5L/BX4CXDKJwoZUwFeTFPCP3VWY51fVMYCqOpbk\nvIlWuLylah/0LuALG19WU/rcv+3bYzJVI/okbwKOV9X9pzz1Z8BVVbUV+GfgYxte3PB2VdVFwJXA\nDUleN+mCVmHZ2pP8BXAC+Mykiuu7Bvq3fXtMpm1Evwt4c5KrgN8AXpTkbuDCqvpmd8wXgC9PqsCV\nVNXR7vZ4kjtY3FHx6SRbuhHPFuD4RItcxjK1fz3JHuBNwGXlhR1r0ev+bd8en6ka0VfVjVW1taq2\ns3j5+r+xOAf44iSv7A67nGefyNo0kpyZ5KyT94E3AI+weBn+nu6wPcCdk6lwecvVnuQK4IPAm6vq\n55Osse/63L/t2+M1bSP603SXtb8b+GKSXwI/YnE+bTM6H7gjCSz+3322qr6c5D7g9iTXA08C106w\nxuUsV/th4AXAwe65e6vqjydXZlt61L/t22PkFgiS1LipmrqRpGlk0EtS4wx6SWqcQS9JjTPoJalx\nBr0kNc6gl6TG/R9Cbk7wGwbK1QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAVX0lEQVR4nO3df6ye5X3f8fcnND+0BgoMwxA/apI5WZOqM5FHkBARKU3LjyyGSnRGUfASFgcJa0kbdTF0WpEmJi8tyRZ1ITWDAgo/W4JAw0tjeSwIrYQYQvnlUAy4xMGz3SQjbESZbL7747nPeHz8nHMen3OeX/d5v6Sj53mu+759vobLH1++zn3dV6oKSVK7vGXUBUiSFp/hLkktZLhLUgsZ7pLUQoa7JLWQ4S5JLWS4S1ILGe5jKsnOJD9L8lqS/5XkfyS5IslbmuMfTvJgkleT7BxxuVLf+ujbv5/k6eb4S0l+f9Q1TyLDfbz906o6EvhlYCPwBeDG5tj/AW4C7PiaRLP17QCXAccA5wHrk6wZSZUT7BdGXYDmVlWvAvcn+Z/AI0muq6pHgUeT/MaIy5PmbYa+/cWuU55Lch9wFnDnSIqcUI7cJ0gT6LuAs0ddi7SYZurbSdK0PTOKuiaZ4T55XgGOHXUR0gD06tvX0MmpPxt6NRPOaZnJcxLw41EXIQ3AQX07yXo6c+9nV9XPR1bVhDLcJ0iSf0LnD8DDo65FWkzT+3aSTwEbgA9V1a5R1japnJaZAEmOSvJROj9Q+npVPZXkLUneAby1c0rekeRto61UOjwz9O2PA/8O+EhVvTjaCidXfJ77eGruXT8B2A+8ATwLfB34WlUdSHIO8OC0y75dVecMsUzpsPXRt18CTga6p2K+XlVXDLvWSWa4S1ILOS0jSS1kuEtSCxnuktRChrsktdBY3Od+3HHH1fLly0ddhlrqscce+7uqWjaK723f1iDN1rfHItyXL1/Otm3bRl2GWirJ347qe9u3NUiz9W2nZSSphQx3SWohw12SWshwl6QWMtwlqYUMd0lqIcNdklrIcJekFjLcJamFxmKFqg7P8g0PzOu6nRsvXORKpN7so6PnyF2SWshwl6QWMtwlqYUMd0lqIcNdklpozrtlkpwC3Ar8A+ANYFNV/cck1wCfBvY1p15dVZuba64CLgcOAP+yqv5yALVLahnvslk8/Yzc9wOfr6pfAc4ErkzyvubYl6tqZfM1FezvA9YA7wfOA76a5IgB1C4tSJJTkjyYZHuSZ5J8tmk/NsmWJM83r8c07UnylSQ7kjyZ5AOj/R1IM5sz3Ktqd1U93rx/DdgOnDTLJauBO6vq51X1ErADOGMxipUW2UwDlw3A1qpaAWxtPgOcD6xovtYB1w+/ZKk/hzXnnmQ5cDrwnaZpfTOCuWlqdEMn+H/QddkuevxlkGRdkm1Jtu3bt2/6YWngZhm4rAZuaU67Bbioeb8auLU6HgGOTnLikMuW+tJ3uCd5J3AP8Lmq+imdUcu7gZXAbuC6qVN7XF6HNFRtqqpVVbVq2bKR7F0s/X/TBi4nVNVu6PwFABzfnNbXwEUaB32Fe5K30gn226rqGwBVtaeqDlTVG8ANvDn1sgs4pevyk4FXFq9kaXH1GLjMeGqPtkMGLv6rVONgznBPEuBGYHtVfamrvfufoxcDTzfv7wfWJHl7ktPozE8+unglS4un18AF2DPVv5vXvU17XwMX/1WqcdDPyP0s4BPAryd5ovm6APhikqeSPAl8GPhdgKp6BrgbeBb4JnBlVR0YTPnS/M00cKEzQFnbvF8L3NfVfllz18yZwKtT0zfSuJnzPveqepje/xzdPMs11wLXLqAuaRimBi5PJXmiabsa2AjcneRy4GXgkubYZuACOneAvQ58crjlSv3zkb9asmYZuACc2+P8Aq4caFHSIvHxA5LUQoa7JLWQ4S5JLWS4S1ILGe6S1ELeLTNC8328qSTNxZG7JLWQ4S5JLWS4S1ILGe6S1EKGuyS1kOEuSS1kuEtSCxnuktRChrsktZDhLkktZLhryUpyU5K9SZ7uarurazvJnVM7NCVZnuRnXce+NrrKpbn5bBktZTcDfwLcOtVQVf9s6n2S64BXu85/oapWDq06aQEMdy1ZVfVQkuW9jjWbZ/8O8OvDrElaLE7LSL2dDeypque72k5L8r0k305y9kwXJlmXZFuSbfv27Rt8pVIPhrvU26XAHV2fdwOnVtXpwO8Btyc5qteFVbWpqlZV1aply5YNoVTpUIa7NE2SXwB+G7hrqq2qfl5VP2rePwa8ALxnNBVKczPcpUP9BvD9qto11ZBkWZIjmvfvAlYAL46oPmlOhruWrCR3AH8FvDfJriSXN4fWcPCUDMCHgCeT/DXwF8AVVfXj4VUrHR7vltGSVVWXztD+z3u03QPcM+iapMXiyF2SWshwl6QWclpG0sRbvuGBeV23c+OFi1zJ+HDkLkktZLhLUgvNGe5JTknyYJLtSZ5J8tmm/dgkW5I837we07QnyVeS7EjyZJIPDPo3IUk6WD8j9/3A56vqV4AzgSuTvA/YAGytqhXA1uYzwPl0FnisANYB1y961ZKkWc0Z7lW1u6oeb96/BmwHTgJWA7c0p90CXNS8Xw3cWh2PAEcnOXHRK5ckzeiw5tybx6OeDnwHOKGqdkPnLwDg+Oa0k4AfdF22q2mb/mv55DxJGpC+wz3JO+ms0PtcVf10tlN7tNUhDT45T5IGpq9wT/JWOsF+W1V9o2neMzXd0rzubdp3Aad0XX4y8MrilCtJ6seci5iaHWluBLZX1Ze6Dt0PrAU2Nq/3dbWvT3In8EHg1anpG0mTZb6LgzR6/axQPQv4BPDU1GbBwNV0Qv3u5kl6LwOXNMc2AxcAO4DXgU8uasWSpDnNGe5V9TC959EBzu1xfgFXLrAuSdICuEJVklrIcNeSleSmJHuTPN3Vdk2SHyZ5ovm6oOvYVc3K6+eS/NZoqpb6Y7hrKbsZOK9H+5eramXztRmgWZW9Bnh/c81Xp7bdk8aR4a4lq6oeAvrdKm81cGezUfZLdG4YOGNgxUkLZLhLh1rfPPTupqkH4tHnymtpXBju0sGuB94NrAR2A9c17X2tvAYfraHxYLhLXapqT1UdqKo3gBt4c+ql75XXPlpD48Bwl7pMe4LpxcDUnTT3A2uSvD3JaXQeaf3osOuT+uUeqlqyktwBnAMcl2QX8IfAOUlW0ply2Ql8BqCqnklyN/AsnT0OrqyqA6OoW+qH4a4lq6ou7dF84yznXwtcO7iKpMXjtIwktZDhLkkt5LTMEjLfx7fu3HjhIlciadAcuUtSCxnuktRChrsktZDhLkktZLhLUgsZ7pLUQoa7JLWQ4S5JLWS4S1ILGe6S1EKGuyS1kM+WWSTzfW6LJA2CI3dJaiHDXUtWkpuS7E3ydFfbHyX5fpInk9yb5OimfXmSnyV5ovn62ugql+ZmuGspuxk4b1rbFuBXq+rXgL8Bruo69kJVrWy+rhhSjdK8GO5asqrqIeDH09q+VVX7m4+PACcPvTBpERju0sw+BfzXrs+nJflekm8nOXumi5KsS7ItybZ9+/YNvkqphznDfYZ5yWuS/LBr/vGCrmNXJdmR5LkkvzWowqVBSvIHwH7gtqZpN3BqVZ0O/B5we5Kjel1bVZuqalVVrVq2bNlwCpam6WfkfjOHzksCfLlr/nEzQJL3AWuA9zfXfDXJEYtVrDQMSdYCHwU+XlUFUFU/r6ofNe8fA14A3jO6KqXZzRnuveYlZ7EauLP5g/ASsAM4YwH1SUOV5DzgC8DHqur1rvZlUwOVJO8CVgAvjqZKaW4LmXNf39wudlOSY5q2k4AfdJ2zq2k7hPOSGrUkdwB/Bbw3ya4klwN/AhwJbJl2y+OHgCeT/DXwF8AVVdXvoEcauvmuUL0e+LdANa/X0fnhU3qcW71+garaBGwCWLVqVc9zpEGqqkt7NN84w7n3APcMtiJp8cxr5F5Ve6rqQFW9AdzAm1Mvu4BTuk49GXhlYSVKkg7XvMI9yYldHy8Gpu6kuR9Yk+TtSU6jMy/56MJKlCQdrjmnZZp5yXOA45LsAv4QOCfJSjpTLjuBzwBU1TNJ7gaepXMb2ZVVdWAwpUuSZjJnuB/OvGRz/rXAtQspSpK0MK5QlaQWMtwlqYUMd0lqIcNdklrIcJekFjLcJamFDHdJaiHDXZJayHCXpBYy3CWphQx3SWohw11L1gz7Ax+bZEuS55vXY5r2JPlKsz/wk0k+MLrKpbkZ7lrKbubQ/YE3AFuragWwtfkMcD6dR1ivANbR2bBGGlvz3YlJmnhV9VCS5dOaV9N5xDXALcB/p7On6mrg1mbD7EeSHJ3kxKraPZxqNQjLNzxw2Nfs3HjhACpZfI7cpYOdMBXYzevxTXvf+wNL48Bwl/rT9/7Abv6ucWC4SwfbM7WNZPO6t2nve3/gqtpUVauqatWyZcsGWqw0E8NdOtj9wNrm/Vrgvq72y5q7Zs4EXnW+XePMH6hqyZphf+CNwN1JLgdeBi5pTt8MXADsAF4HPjn0gqXDYLhryZphf2CAc3ucW8CVg61IWjxOy0hSCxnuktRChrsktZDhLkktZLhLUgsZ7pLUQoa7JLWQ4S5JLWS4S1ILGe6S1EKGuyS10Jzh7j6TkjR5+hm534z7TErSRJkz3KvqIeDH05pX09lfkub1oq72W6vjEeDoqY0PJEnDM9859wXvM+lWZJI0OIv9A9W+95l0KzJJGpz5btaxJ8mJVbV7vvtMSuMqyXuBu7qa3gX8G+Bo4NPA1D81r66qzUMuT+rLfMN9ap/JjRy6z+T6JHcCH8R9JjWBquo5YCVAkiOAHwL30tla78tV9ccjLG9elm94YNQlaMjmDHf3mdQSdy7wQlX9bdJr1lEaT3OGu/tMaolbA9zR9Xl9ksuAbcDnq+on0y9Iso7OrcCceuqpQylSms4VqtIMkrwN+Bjw503T9cC76UzZ7Aau63WdNwtoHBju0szOBx6vqj0AVbWnqg5U1RvADcAZI61OmoXhLs3sUrqmZKYtyLsYePqQK6QxMd+7ZaRWS/L3gI8An+lq/mKSlXTWbuycdkwaK4a71ENVvQ78/WltnxhROdJhc1pGklrIcJekFjLcJamFDHdJaiHDXZJayHCXpBYy3CWphQx3SWohw12SWsgVqprTfDd62LnxwkWuRFK/HLlLUgsZ7pLUQoa7JLWQ4S5JLWS4S1ILGe6S1ELeCin1kGQn8BpwANhfVauSHAvcBSynsxPT71TVT0ZVozQbR+7SzD5cVSuralXzeQOwtapWAFubz9JYMtyl/q0Gbmne3wJcNMJapFkZ7lJvBXwryWNJ1jVtJ1TVboDm9fheFyZZl2Rbkm379u0bUrnSwZxzl3o7q6peSXI8sCXJ9/u9sKo2AZsAVq1aVYMqUJqNI3eph6p6pXndC9wLnAHsSXIiQPO6d3QVSrMz3KVpkvxikiOn3gO/CTwN3A+sbU5bC9w3mgqluTktIx3qBODeJND5M3J7VX0zyXeBu5NcDrwMXDLCGqVZGe7SNFX1IvCPe7T/CDh3+BVJh29B4e5CD0kaT4sx5+5CD0kaM4P4gaoLPSRpxBY65z610KOAP23u7z1ooUdzn/AhmoUh6wBOPfXUBZYhScMxKdtOLjTcXeghSWNoQdMyLvSQpPE073B3oYckja+FTMu0cqHHfOfTJGmczDvcXeghSePLZ8tIUgsZ7pLUQoa7JLWQ4S5JLWS4S1ILGe6S1EKGuzRNklOSPJhke5Jnkny2ab8myQ+TPNF8XTDqWqWZuFmHdKj9wOer6vFmFfZjSbY0x75cVX88wtqkvhju0jTNU02nnmz6WpLtwEmjrUo6PIa7NIsky4HTge8AZwHrk1wGbKMzuj9kl7FBP87aR2SoH865SzNI8k7gHuBzVfVT4Hrg3cBKOiP763pdV1WbqmpVVa1atmzZ0OqVuhnuUg9J3kon2G+rqm8AVNWeqjpQVW8AN9B5xLU0lgx3aZp0HnV6I7C9qr7U1X5i12kX03nEtTSWnHOXDnUW8AngqSRPNG1XA5cmWUlne8mdwGdGU540N8NdmqaqHgbS49DmYdcizZfTMpLUQoa7JLWQ0zIamPnej71z44WLXIm09Dhyl6QWMtwlqYUMd0lqIcNdklqotT9Q9eFKkpYyR+6S1EKGuyS1UGunZaRx59ShBsmRuyS1kOEuSS1kuEtSCznnrrEzn7lon0ejcTfsZy05cpekFhpYuCc5L8lzSXYk2TCo7yMNk/1ak2Ig0zJJjgD+E/ARYBfw3ST3V9Wzh/trebuYxsVi9mtp0AY1cj8D2FFVL1bV/wXuBFYP6HtJw2K/1sQY1A9UTwJ+0PV5F/DB7hOSrAPWNR//d5LnBlTLQhwH/N2oi5jFONc31Nry72c9/MuL9G3m7NcwNn17nPvGXCa19oHUPd++Pahw77W5cB30oWoTsGlA339RJNlWVatGXcdMxrm+ca5tAebs1zAefXuS//tPau3jVvegpmV2Aad0fT4ZeGVA30saFvu1Jsagwv27wIokpyV5G7AGuH9A30saFvu1JsZApmWqan+S9cBfAkcAN1XVM4P4XgM21tNGjHd941zbvExYv57k//6TWvtY1Z2qQ6YMJUkTzhWqktRChrsktZDh3iXJEUm+l+S/NJ/PTfJ4kieSPJzkH46wtp1Jnmpq2da0HZtkS5Lnm9djxqi2P0ry/SRPJrk3ydGjqG0pGef+O5Nx7tezmYQ+b7gf7LPA9q7P1wMfr6qVwO3Avx5JVW/6cFWt7LqXdgOwtapWAFubz6MyvbYtwK9W1a8BfwNcNbrSloxx778zGed+PZux7vOGeyPJycCFwH/uai7gqOb9LzF+9zSvBm5p3t8CXDTCWg5SVd+qqv3Nx0fo3BOuAZnQ/juTse3Xsxm3Pu/z3N/0H4B/BRzZ1fYvgM1Jfgb8FDhzFIU1CvhWkgL+tFkFeUJV7Qaoqt1Jjh+j2rp9Crhr+GUtKePef2cyzv16NmPf5x25A0k+CuytqsemHfpd4IKqOhn4M+BLQy/uTWdV1QeA84Erk3xohLVMN2NtSf4A2A/cNqri2m5C+u9Mxrlfz2bs+7wj946zgI8luQB4B3BUkgeAf1RV32nOuQv45qgKrKpXmte9Se6l84TCPUlObEY3JwJ7x6i2h5KsBT4KnFsuqBikse+/Mxnnfj2bSejzjtyBqrqqqk6uquV0lpT/Nzrzfr+U5D3NaR/h4B9WDU2SX0xy5NR74DeBp+ksfV/bnLYWuG9caktyHvAF4GNV9fqw61pKxr3/zmSc+/VsJqXPO3KfQbPU/NPAPUneAH5CZx5tFE4A7k0Cnf9nt1fVN5N8F7g7yeXAy8AlY1TbDuDtwJbm2CNVdcUI6luSxqz/zmSc+/VsJqLP+/gBSWohp2UkqYUMd0lqIcNdklrIcJekFjLcJamFDHdJaiHDXZJa6P8Bm7zT9gVfoygAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ "# Plot our two random variables\n", - "f, ax = plt.subplots(1, 2)\n", - "ax[0].hist(dat[:, 0]);\n", - "ax[1].hist(dat[:, 1]);" + "_, ax = plt.subplots(1, 2)\n", + "ax[0].hist(data[:, 0]); ax[0].set_title('D1');\n", + "ax[1].hist(data[:, 1]); ax[1].set_title('D2');" ] }, { @@ -137,51 +145,61 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEcCAYAAADKlrO6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO29f5hcdZXg/TldXUmqo6YTjS5pCMEfExSRBHoRzTpD4khUINMCDvLCvLizM6y77r6CTjRRxgRGJT7ZWdid51lHZvdZeV+ECUygB4hDwg44jigwiR0MGRId+RGmokMUGiHpJNXd5/3j3tu5ffveW/dW3apbP87nefKk+tatW+dWdZ/z/Z6foqoYhmEY3UtP3gIYhmEY+WKGwDAMo8sxQ2AYhtHlmCEwDMPocswQGIZhdDlmCAzDMLocMwRG3YjIe0TkLhF5RkSOicivRORpEblbRD7mO2+JiKj771s5yvstnxxLanh9v4hsdP8NZS8hiMhznowJzt3oux8VkYqIvCQie917XVGnLEt893t+PdcyWpPevAUw2hsR+TfAw0DRd3iB++904BXg3hxEayT9wAb38W3AcI6yhNELzHf/vQu4WkT+DPiM1lY4tIQT9wvw3XoFNFoL2xEY9bIOxwhMAkPAXBwj8F7gRuAZ70RVfU5Vxf33yRxk7QZuwPm7Pgn4FI4hBvjPwB/nJZTR2pghMOrlHe7/rwI7VPWIqr6sqk+o6gZV/Zp3YpRrKOCq+ZiI3C4ir4rIz0Xki+Lwb0Xkp+7x74rIuxJcN7ErSkReJyK3icge17VVEZFREfmeiFzuO28j8KzvpVdHvPd5InKviPyLe62D7n0uCbyviMg6ETkgImMi8n0RGUzwuUeiDr9Q1W8Cn/Q99QURWeC+72IR+UsR2SciL7sy/lJEtovIh3zyfQt4xHeNDb773eie82kR+Tv3Ho+697FPRL4uIq+v516M5mCuIaNeXgB+A5gH/EREtgE/BL6nqs/GvjKcW4E3uY9fB3wVZ3exxnfObwH3i8hSVR2vWfLpvA74vwPH5gEfAD4gInNU9bYkFxKR3wXuAAq+wycBVwMXi8j7VXW/e3wD090uK3BcbZL+FmaiqsMi8hOc76gP+CBwN7AIuDxw+huBC4DfFpHfVtVHSMbFwG8Gji0FPg/8a2BVjeIbTcJ2BEa93AJ4fueTgX8PfAt4RkR+ICLLUl7vF8Bi4GO+Y2twDMI8TsQb3opjILLiVRzFuARHYc4B3g8ccZ+/DkBVNwKn+V53m9/dJSJ9wDdwjMCPcOIks4GVwHEct9lmcILOwBfc6xwDVuPEH/4CxzBlxT7f4yXu/88Dv4Pznc3Bceld7D7XA3wGwHXhrfS9/gbf/W50j90CLMO5t6J7zQfd51bW8DtgNBkzBEZdqOoDOKvMR4CJwNPvAx4QkTRK7b+p6gvAdt+xCvBVVf01JxQMOAYjK47g7ES24BijMeAHOEYBnBVuElbgKESAs3GU8DGcz2eWe9xzvbwPRwkDfEdVd6jqK8D1OPecFWF/578CzgS2uY8PA/f7nk96vwCHcHY1e3E+t38GPlzjtYwcMNeQUTeuC+ERd4X7fpyV5b/DWR0O4Ci8hxJe7jn3mmMiU96RF1V1zH183Hfu7CrXSvP7/QXgppjn58Q85+fNCc6ZIyJzcVwxHv/sPXDv/VfAv0r4ntU43ffYc9f9d5zdWxSlJBcWkbcCf1/l/ETXMvLDdgRGXYjIG7zHqjqqqt9R1f+A4x7yWDDjhdGE+fyrxQGO+R77FfZbU7zvJ3yPh4DZqio4q+UgcSmYL/oe/4XPjTL1D+hR1cPAL33nnuw9EJES041EzYjIZcDb3R+PAH/rPvbu9xiO8S4CbyCcuPtdwwlFfzuwwL3H/1qrzEbzMUNg1Muwm+VzkYgsFJGiiLyb6cHDpxsswy84YQxWiMgC1x11fYpr+I3NKFAUkT8mXCH7jcM73NW9xw+Al93HV4vI/yUir3c/mxUishnHpw7wGHDUffxREbnANaxfYXpdRircTKS3iMingP/le2qTqnqyefc7iXO/c3FjFyH47/edIjLL97P/czsCHBWR9zEz8G60MGYIjHqZBVyJ419+Ecd1s4cTfuG/VtUfN1IAt0jqTvfHk4GDOMrrnBSX8Re9fRd4Dfh/cJRk8P1ew/GHg7Oafs1Np/yku9L/NI6CnQV8G/g1zmfzfeCPcILeqOoo8HX3OrNx4iKvAP+BE0HqtGxw3/sXOEFrb5X/33EMTPB+S8A/uvcZld3zT5zYvfwucMy93/OBv+GEMbvGldtvDI02wAyBUS9/DPw3YCfwc5wg5xFgN/BFZqYoNoprcap8D+EYo/uAi1K8/uvA14AyTsDz73AU4ysR5/8e8D0cJT8NVb0T+DfAVuBfcFbNh3A+o68Df+o7/QZgPU6M4BjwOE4w+VAK2YNM4Cj2f8T5TFaoarCq+Drgz3EM1GHgAeC3wy6mqkdxvsddBAyUqv4Mxz00gmMQngX+I076rNEmiI2qNAzD6G5sR2AYhtHlmCEwDMPocswQGIZhdDlmCAzDMLqctqwsftOb3qRLlizJWwzDMIy2YteuXb9U1YXB421pCJYsWcLOnTvzFsMwDKOtEJHnw46ba8gwDKPLMUNgGIbR5ZghMAzD6HLMEBiGYXQ5TQ0Wi8hzOJOgJoBxVR0UkT/BmZQ0idP35JOqerCZchmGYXQzeewIVqrqMlX1BnRvVtX3qOoynMZXX85BJsMwjK4l9/RRd/ygx1zih2AYhmF0BMMjZTZv38/B0TEW9ZdYu3opQ8sHcpGl2YZAgR0iosA3VfVWABH5Ks4gi1eYPih7ChG5BqffOYsXZzmq1jAMo7kMj5RZf88exirOmO/y6Bjr79kDkIsxaLZraIWqng18BPi0iPwmgKp+SVVPwRni8Z/CXqiqt6rqoKoOLlw4ozDOMAyjbdi8ff+UEfAYq0ywefv+XORpqiHwgsCq+iLOhKRzA6fcAVzaTJkMwzCazcHRsVTHG03TDIGIzBWR13uPgQuAp0TkHb7T1gD7miWTYRhGHizqL6U63miauSN4C/B9EXkSeALYpqoPAptE5CkR+TGOcfhME2UyDMNoOmtXL6VULEw7VioWWLt6acQrGkvTgsWq+gxwVshxcwUZhlGVVsqyqRdP7la5n9zTRw3DMKrRalk2WTC0fKBlZLcWE4ZhtDytlmXTaZghMAyj5Wm1LJtOwwyBYRgtT6tl2XQaZggMw2h5Wi3LptOwYLFhGC1Pq2XZdBpmCAzDaAtaKcum0zBDYBhGS9NJ9QOtihkCwzBalk6sH2hFzBAYhpE7Uav+uPoBMwTZYYbAMIxpNNsVE7fqt/qB5mDpo4ZhTOEp5fLoGMoJpTw8Um7Ye8at+q1+oDmYITAMY4o8WjnErfqtfqA5mCEwDGOKPFwxcav+oeUD3HTJmQz0lxBgoL/ETZecafGBjLEYgWEYUyzqL1EOUfpZumKCMYiVpy9k667ytJ2If9XfjPqBbk9RtR2BYRhTNNoVExaD2LqrzKXnDFRd9Q+PlFmx6WFOW7eNFZsezixukUdcpNWwHYFh5EwrrUazbOUQdl9RMYhH9h3i0XWrYq/VqHoCS1E1Q2AYudKKBVNpXTFhCh8Iva+gwvXwYhB51BNYiqoZAsPIlWauRhux84gyZLN7e0LvqyDChOqM6yzqL+VWTxAVF5lXKtZ13Vba6VXDYgSGkSPNWI0Oj5RZfuMOrt2yO3M/eJQhGx2rhJ4/oRoZg6ilnkCBZTfsCL2PpDGFtauXUuyRGccPHx+v+fNpt7iDGQLDyJFGF0x5CunlIzMVcxb1AWkNlhcIDgsMp60n8Bgdq7D27ienKdk0inho+QCvmzPTOVKZ0Jo/n3YbrWmuIcPIkbWrl87wnWeZpROmkPzUu/OIcqv0CEwGPEDefUXFIOJSV73zP3fXk6GupcqkTnOnpXW5jYYYSqj982m3uIPtCAwjRxpdMFVN8QR3HmlTNKNW6kEj0F8qVr2vaqmrQ8sHmAwxAh7+e02riLPembVbawzbERhGzjSyYCpqlQ0zdx61ZDAF0017IoLBc2f3htYFBIOpN11yZmyANe5+/Eo2bWFc1juzRu/0sqapOwIReU5E9ojIbhHZ6R7bLCL7ROTHInKviPQ3UybD6GSiVuzBFfrwSJnP3fVkTX7toeUDPLpuFc9uujByxR5ciUf58Hc+/1LV+ykWZgZ2iz0yTcmmLYzLemfWbq0x8tgRrFTVX/p+fghYr6rjIvJ1YD3whRzkMoyOI65AzHMDlUfHEJwMnDDS+LWTrsSjfPjffuzAlBxhOxLv/y/e82OOVCYBEIHLzz1lmlHzru+lqw4kSN/MemfWTqM1c48RqOoOVR13f3wMODlPeQyjG/CvyCHaCEA6v3bSlXiUcQnKEbUjUU7sClRh664ywyPlGfflpasGjV/WbSranWbvCBTYISIKfFNVbw08//vAlrAXisg1wDUAixcvbqiQhtEpRPn9BWXMXVHHUSwIh4+Nc9q6bYmKopK2qIjz9QcJGo1qqZlxz7VaFXer0GxDsEJVD4rIm4GHRGSfqn4PQES+BIwD3w57oWs0bgUYHByMW8AYhuGy8b69oYoxCeL6i7zisDjFmbaKNiyYGuWeCu5IaknNLI+ORX4W3dRTKIqmuoZU9aD7/4vAvcC5ACJyNXARcKVqTH6YYXQQjXZTDI+UIyt8k1Dq7aESyAMNc9XUUkUbFky98rzFidxKcamZcW6sqM+iVXP7m0nTdgQiMhfoUdVX3ccXADeKyIdxgsO/papHmiWPYeRJM5rN1VPFKjAVjA0SdOnU2i8pLJg6eOqCqjuLaqmZcc3twmjV3P5m0kzX0FuAe0XEe987VPVBEfknYDaOqwjgMVX9VBPlMoym04xmc/WsdOO25QWZnr4Z5euv5f2TZtr4m9rN7yuy4eIzpr3u2i27E71fK+f2+2l0A7umGQJVfQY4K+T425slg2G0Cs1oQRAVkJ07q8CR4xOxyj6OCVWGR8oMLR/g+uE9se+fNcGdFMDRwM7Fa1sddu/z+4r0zeqtqlBbqXNoM3aPuaePGkY30owWBFGpnB87e6BmI+Cx/p49XD+8h28/diDyHC/bKMv4R9JmblH3vuHiM6aK3x5dtyrSCGTdObSeeFAzGthZiwnDyIEsWhBUW7WGpXJ684HrJVj8FUYjso2S7qTqmbSWtduu3hV9M3aPZggMIwfqHQkZplzW3v0kN9y/l9EjlWnX819zxaaHUwVS40izqwhTpFEKcufzL/HIvkOhn0uaHkJR8YZqxidrxVuvYUnbN6kWzBAYRk7UqqggXLlUJnVq7kDUqjPPVMmDo2PT7i2sQV21NhP17qSSrM6TKN40O5l6DUszGtiZITC6ilYKAoaR1I2QpCo3bNVZKvZEpoVmRV/Eeyhw3ZbdU0o+rEupd54f/32k3UkNj5TZeN/eKTdV2JyEscoEG+/bO3WNaoo3raun3hV9vbvHJJghMLqGVhwUHySpGyFq9m8Q/yo8aUuHeigVe/jaJe+JzOWvNUjtXz0Hd1JeIDasqd7au5+cVhQXNAIeo2OVqUyoaoo3rasnixV9oxvYmSEwuoZmDoqvlTg3gn83k1Sh9vcVUxdY1YPXv8ibK5CV8VGc+EZwJRxn3Ddv3z+jMjoO/+9BnOJN6+ppxoq+XswQGF1DO4wPjHIj1KLQS8UCqsl7C2XF5u37p1IzT1u3rarR8srT+vuKvHKkQpTjKmwHF2fc036vSc+vxdXT6i2prY7A6BpafXzg8EiZw8fGZxyvVaGfvXger9TRa6hW/Ao1yWerwM2XL6NvVm+kEfAI5s/HGfe032vS89MOvWkHzBAYXUMr/AFHFRZ5Lo5gY7T5fc4ksVoU+g9+9hJ9s2ZOJ2s0foUaNSEtSJoVfBJD47lfij0zp5mFkeb3oN2mjyXBXENG15C3r7aaPztsxd83qze2ZUIcChw5Xp9bKGlQ2iM4MtL/mcfJ730fSe4xaGiiArHee/uzhsLoLxXZuOaMVL8Hre7qSYsZAqOryPMPOM6fXa1xW5jCS0K9rSQm3TGPSY1QmNHwPvPhkfK09FE/nlGudo/BlXs14x6WYdTKQdu8kHZs/z84OKg7d+7MWwyjg2iGgogLnEYNZRnoL/HoulVTMn7uridTrdCTrOj7S8XIFfNAfylVllLYtf2rba8/kf96pWJhyrUyPFKO7Rx6y+XLTHHXgYjsUtXBGcfNEBjdTlhHS79yygpvUHxSBCeICqROG/WYO6vA4Rj30IDrZomS66rzFvPIvkN1pYH2APP6ioweqTCvVOT4+MRUwVlYC+kzvvxgqMxzZxXYe+OHE72nrfzDiTIEFiw2up5mdHeE5IFTD0/p+zthpiXOCIDjeooL0j6y71BquYNMAi8fqaA4hVv+quNgC2mIlrnavXg0ontop2MxAqPraVZ9gbciTereGegvRQaRs2JRlR3BwdGxGQHfKDdWLaSpmvYPxPFXS3vnD7gr/1oLB7t5F2E7AqNr8VI5o5RaI+oLhpYPMJnACHjZN40sdvMCrytPXxh5zqL+0jQF6c0W9lIn+0tFEmZoRlIeHZuWUhtlJL3j/hW//7i38q9lYlq37yLMEBhdSVCZBGlkfUEiA+Mq1/6+YkNk6C859QlA5HyCUrHAytMXzlCQW554gSPHncK3ubN7mdNbnxoR97re9aPw4hlxu6SxysSMUZoecZ97s9yDrYoZAqMriVMmjS4QSuJzr0wom7fvp1G5HK+MVbh75wE+d9eToZ9DQYSbLjmTR/Ydimx37SnuuG6mxSoaJo2byds5VAtcT6imLhxsh/YjjcQMgdGVRP2BC0SOMKyH4ZEy7/zjv2HJum1cu2U3RysTlIo9xHlVDo6O1VRRvOJtC6oaGgUe/dlLkW6YSVWGlg/UpQjn9xX56dcu5KrzFofe5/y+YupYQ5LsJc+Qp6n8Tdp+pJ6Rk62MBYuNrqSWxmG1BhOHR8p8dsvuaX10FKdTZ1x6ZrVAbpCCCFe89xS+MnQmwyNlvnTvnsSZNlHvnbTaN4g3HxjgK0NnMnjqgtDPLm1KbZL3DZvMVo0kraLboY15rdiOwOhK0vYdqieYuHn7/shmanc+/kKsLElTNwX42U0f5StDjt9/5/Mv1WwE/J9D0vef31eMXYEPLR8IHRpfb2oqnOheWo9LL0n/oE6OI9iOwOhK0vYdqmeWQZx7ZcJ1wVSTJW68I8zcydz5+AuxMkXhxQa8Kl/vvr0UTRFmxC0Ep06gb1YvN6es/A3e+7xSkcPHx6lMJHcaLfJVX9dDtV1EJ8cRzBAYbUdW+d5p3Af1KIE494qX4RIni/+5sCpogRkpoGnaUPivc8V7T2Hz9v1cu2X3tECud72wy/rnC3/u7idjh8/7CX6PnhHxHyfE8ARpxuQ1aM4Q+bxoqiEQkeeAV4EJYFxVB0Xk48BG4J3AuapqvSOMSPLy0/b3FacGw/sRcXoIxSm8lacv5PbHDoRe94r3npLo/f3KcU4gFUdxUkAHT11Q12egwJ1PvMCEO9WrloSliUmddq9R30+179Fv+ILjJoNEpYtmTTOGyOdFHjuClar6S9/PTwGXAN/MQRajzchj3OTwSJnXjs4cGAMnZuAGFZm/8jVMTQlw5XmLp3z61d7fr4DGQtI1/b7qenzWEylGOyYl7PtJ+j0maWNdy+6nFvJuY95IcncNqerTANIkq260N3n4aZPOvvUrY7/iDntljwiDpy4Ivc6Vf/FDHv3ZS1M/zyoIxxP4zD1j1OzRlEkIfj9RSr3szmYOuoj6+4qxHVqbRafNIfBotiFQYIeIKPBNVb016QtF5BrgGoDFixc3SDyj1WmknzYq9pDGyBwcHeOG+/dWVcYTqqEuk6ARABIZAY8kRiDLXkFJCX4/ce2x1/7Vk6y/58fTdj5hbjmY7prp5l5B9dLs9NEVqno28BHg0yLym0lfqKq3quqgqg4uXBjdG8XobOodN1ltVGRYemgaIxMVSwgjLPUwaAQaQRZGYKC/RCHhJj7s+4lz51QmNNT9FcZst71Ft/cKqpemGgJVPej+/yJwL3BuM9/faH/qmRcbpyzifNZJc91LxQJHU7plPFdIOzG7t4eDo2PEbVTmu66cqO8nK3fO6FiF9ffsCd2FdUqOfzNommtIROYCPar6qvv4AuDGZr2/0X5EbfVr9dPGKfu42IP3XtfdtTsylXGgvxSbHRRHu1WnHhuvvlo/WpmMrSlYefrCGZPKamWsMhHpEuuEHP9m0MwYwVuAe92gcC9wh6o+KCIfA/4MWAhsE5Hdqrq6iXIZLUhceiHUlrkRp+yTxB56RagELEGxIGy+7Kypdgm1MFaZ4Ib799b02lYlLpNreKTM1l3lpsQpOiHHvxk0zRCo6jPAWSHH78VxExnGFFGr94337eXY+GRNBiJO2VfLEY/KHJo7q3fqPepZfb58pMLG+zrLGER9HrUM25k7q0Cx0BM5W7m/VJz2ewGdk+PfDHJPHzU6l3qyOKKUSJgiqGYg/H1topR9tRzxKHm87qDDI+XI9g99xZ7YVs1x99bORK3G0xhML7uov2/WlFIP+w43rnEa3FnWUG3Y8HqjIdQ7ED6rrpQDgT40aY2TvzAs6vphBsZPj5woPOsm+ktFXhmrsMiNn3htJ6IMpp9iQUCZtgvzfn/AFH6tRA2vN0NgNIQoRR5UzFFEGZI5xZ7E6Zng5Mw/u+nC0OuHKZNgEdNrR8cji8k8xRRnKIza6C8VQ3dISX9/jHCiDIG5hoyGUG8FcJSrBsJdA1EGIsw9ERWI3vn8S2zdVZ46HmdwvCwhMwLZM7+vyGjEZ29ZQI3BDIHREOqpAI7qSuknqYEIqzoNc02MVSYSp34K4fEGIxteOzrOvIgdgWUBNQYzBEZDqLVTY5LuonF1BGHunuuH90zLWa+3Sdmi/lJNmS/dQEGE2b2SKDg+0F/i8LHxGQq/MunMPSgVC5YF1CQsRmA0jFqyhpLEFpJct1qQt1aKPUKxkEzRdRMC0+YJVNstefGV67bsDq0n8K4X9z1bb6H0WIzAaDq1VABXiy0k2TEEdwBZMj6piTqRdhsKUwVkYfEdf9aQX2lHGetF/aXY359Onh+cB2YIjJaiWmyhWh/74ZFyw4wANL9rJzir41LCWoQ88RvxpIuAWl2Iecyl6GRseL3RUlTrLhq1YyiPjrFi08NcG+FqCCLAVectDn2v+X3FWkRvGAqMJejv0yiSTgDr7yuGdnaNo9Ymgp08PzgPzBAYLYWnGPzK2Gs1DPFZI0njAf7pYGHvdeF7TkoveIPJK5RXKhb40989K3TKmp9iQXjt6HhNbaCHlg/w6LpVPLvpwqk4UDWDEvV7YFlFtWGGwGhJjvrcIF6r4eGRcuKW0HHcfPmyqRGRO59/aVrO+uhYhS3/8EJd1+8UeoSp1Xmcgi2IUJmYGTuppQ100rkC9c6lMKZjhsBoClEDYcKo5v8NuhLSMOAGIT2ZwuIJlRQTwToZbxfiZXIFdwVeBlVcOm5aV03cd++nnrkUxkwsWGw0nLQZHtX8v8FA5JJ12xLJIZyIJaxdvZTN2/fnEvxtF+aVijNmL3tjLgf6Sxw5Pl613UdaV00a33+nzg/OA9sRGDWR1Qo/jCjl0SMS+j79pejgruf/98/p9QxRp7SGqNdVFoXIzBnInhFYu3ppVSNQi6vGfP/5YIbASE3a+bBpMzyi4gDewPfg+2xccwbFnvBw5mvHxukvFWes/McqE7HZMO30hxEMePvxB9rTUOwhst9PeXSMa7fsjn19ra4a8/3nQzv9vhstQlYrfIXQ3YTn/w1T1FH+4s0fP4swW1CZ0Mg+/xOqkdkw8/qKsTuNVsGLeWy4+AyndXOAykRtaafjk7Wtwos9wi2XL+PRdatCq72r7SLN958PZgiM1GS1wofo3cTQ8gEmI4KQUf7itAW/ItEFYqNHKsyd3dohtGKPTK2Uh5YPcPm/PmWGYau1CNqr/k3rdnrdnN5QpZ1mFxlMJzUj0HjMEBipiVopRhUUhdUG+InaTTTaXxyXm7+ov9TSxUn9pSKbP37WNCX5yL5DmQS//VPb/KvzJES5k9LuIo3mYobASE3YSrFaQdHQ8gH6ZkWvsMOUblp/cVauHO89WjVAecvly9i94YIZK+UsDFdBZJorxr86T5Kqm3Y8ZSsb227CDIGRmjA/7txZvVULiuL+6MMUSFJ/sed7zmrmrxdgXbt6aajfPW+u3bKbd3xx24yd17wMDOGkaqQrppqrKM5IWzZQa9PaTlCjZQnmcJ8WkcvvV/5RDeW8QS+1kKTlcVq8SuZLzxnIp8tcArzCa39NRsKWQLHEKeZgV9F5pSIijjuoWhvoWpvLGc3BDIGRCUkmkoUpA6/vT9gqf+N9e6et8sMK0Ro1IGasMsEdjx9oi6Hz3s4ryj+flGDBnb8Cu96+/1GjRy0Q3BokNgQi0gO8E3hZVQ8GnpsD/K6q/r8Zy2e0CUlWfEmVQdwqP9hquJE+5nYwAh7e51lrkVxYwZ1HVn3/rRK4dUlkCETkFOBvgHcBKiL3Ab+vqi+7p8wD/jcQawhE5DngVWACGFfVQRFZAGwBlgDP4RiUl6OuYbQmSZV8EmVQbZWfxN3UbShw+Ng4xYKk7pXkNwIeY5UJNt63l7mze63vfxeQdEewCXgJOANH6f8p8D0RWaWqh1K+50pV/aXv53XA36rqJhFZ5/78hZTXNFqAJEo+iZuh2iq/v6/YsFGU7czoWIVijzC/r8jokUqi8EaxRyInro2OVSID8Jbt01kkzRpaCXxWVZ9W1ceA84Gngb8TkTfXKcPvALe5j28Dhuq8ntGiJC0qqpZJcrQy0VG9grKkMqn0zeqNTfcsiExlYW3++FmxaaFRbTgs26ezSLojeAPwiveDqlZE5ArgL4G/A65IeB0FdoiIAt9U1VuBt6jqz93r/jzKsIjINcA1AIsXL074dkYrUa2oyNsp9M2Kr2Yda/GRjXlTHh1jybpt9Iiz0vN/WgJc8d5TpuYxeET1DppQpVQsWLZPh5PUEPwMOAv4qXdAVSdE5BPAXcD9Ca+zQlUPusr+IRHZl+/IRfUAAB0rSURBVFRQ12jcCjA4ONhGYbzuoZrbJ27MpD8gefh49llA3UiYx0eBrbvKDJ66ADhhfHsk/PwBd/D8nY+/wIQqBREuPceCvp1GUtfQg8AfBg+q6gRwObAryUW8bCNVfRG4FzgX+BcROQnA/f/FhDIZLUQSt0+cO6ERKaBGOGOVCW64f++07yvMCJSKBVaevpCtu8pTw2cmVNm6q5xoBKXRPiQ1BF8CPh72hKqOA5cCb427gIjMFZHXe4+BC4CngPuAq93Trgb+OqFMRguRpJdMFmMmjWx4+Ugl1vj2l4rcdMmZPLLvUKIeQWnmUxitRyJD4Cr7iohsEJEfi8hrIvKqiDwpItcDs1T1+SqXeQvwfRF5EngC2KaqD+JkJH1IRH4KfMj92WgzkvSS8beMyJL5bdIyuhp9xZ7MP5tamTvb6SIaFZD3H087n8JoPZLWEfQCDwNn47iJtuHEnd4FfBn4iIj8lmswQlHVZ3DiDMHjvwI+mF50o5VIUlkMJ1JMT1u3LbNOmRsuPmNaFex1d+2O7SzaihQLwtcueQ9DywdYfuOOqtO/6qFULDC7tye2N5NnwAsSPpPYn01Ubca00fokdQ1dA7wdOFtVf0dV16vqOlVdg2McfsM9x+gAatnmR7l9Dh8bD319XLwgTcucoJtiaPlAW+4OxieUa7fs5m3rvxNrBKImsVWjR5jWuG/jmjNi3XTe9xM1mN5/3DqLtj9Js4YuA76qqnuDT6jqUyJyk3vO/8hSOKP5pB00773GWxUGs0+8Bm4eXpZKf19xRjFTscdZfaZt7RBUOI1cTTcK75ajFC8kHxgfpFgQNl92Vuj3F+znBNPTQwcidnp+F1bS3aDRuiTdEZyB4xqK4v8A765fHCNv0g4Q8fuHITz7xGtX4Pcjv3ykAuIEJb2VarEgNfX38Suc4ZFyqh1Fu+BNI0vbWE6ESCMwtHyA3Rsu4JbLl0W2+k4yE8LmDLc/SXcE84G4VhKHgP76xTHyJu02P2n3zzB/dGVCmTu7l41rzmDz9v0cqaFQrFiQaQpn8/b9rdo5ui5Ears3VWfVf92W3TX1f0rSQ8o6i7Y/SQ1BAYgMBOMUL1peYAeQZJvvLxyrV+kGi8nSUpnQaYquU9tOHJ/Qmu/NM8Jhbr4sWkwb7U9SQyDA7SJyLOL52RnJY+RMtXbStQyCKRULzCn2RPq26y0m8yu6sE6axgn82TxJ4kFZnWO0NkkNwW3VT4lvQW20B9W2+UlcQcWCMHdWL6+MnZhcBbD2r55M3SI5LWYEquO5+aLiQRvv2+trPTEzfTSYGmrpo+1PIkOgqv+20YIYrUOczzguJVAgdthMrVraSwfNaiZxt9MjwvBIOfK79Lefjspi8r/W0kfbHxtVaaQiyg8/0F/i0XWrIl+3efv+yL73cZSKBTauOYO7dx7g0Z+9lPr13UaxR3jdnN7YFNMJVa7bsruu3dMiSx/tKJKmjxoGUHuqYK2rw5suOZOdz79kRiAh3jyC+X3xRXX1GAFLH+08bEfQBWSZGVJrqmCtGT1Dywf43F1P1iRrt1IeHaPYI6nHVsYVrBVEmFS19NEOxQxBh9OIjI40Q8j9IyXDMnqi+uDDiX42cdW23YrnAho9UgkN6FYmlb5iD5OTyT4/AR5dtyo0K6xULEwrMgvDBtO3N+Ya6nDSVgpnSbDq2K+OCiJcdd7i2OZwV7z3lKlzjRN4IyZHvnwBz266kMmID/FIZTKxEfX8+f4OsWGVxkZnYjuCDidpRkcjCoviUk29ASfzSsXIbKBvP3aAR/Yd4ry3zu+6GMGKty3gRwdeCV2Zg/PZekV0/X3FVP2HgjuzoD/fVvfdh+0IOpyozI1gpXA9/eSjupVWCxCPVSYQIbILpifLE8++zIq3LUgkSx4UC0JfMbs/pfl9Rb79h+8LXZkDM76r146OUywk2zUJcHNMbyGjO7EdQYdTrVIY6isIiotBJAkQjx6pcPPly6Z2IzAzjlCZVH50YDSyN37eVCY0s0I5b74ChK/MV2x6eMZ3VZlU+ktF5s7urfp5L+ov2YrfmIHtCDqcJD7fegqC4ozI2tVLq/bPF4H19/x4aoUbpU7HUvi7G0XWkYqB/lJs588w4orA1q5eGiujpXQaUdiOoAuotgKM8tPPSzDgpaoRqaI9J9VR8u1AlmbIU8ppV+dxu6z19+yJjBcURMwFZERihqBDqCfYG5WUkyRZJ66qdPP2/Q3vLdROROXip/nuwlx9HmOVCWb39lAqFlKnfxrdjRmCDqDeWoGoYSfe8ThFFReDuG7L7rruq5OIUsZpvzvv2LURn+0rY9NjLvVmgFmb6u7ADEEHUG/3x7hVfTVFFVdVesP9e9tybGQW9IjrcjtSiVWg1eo8wj7XoeUDU0V6QbIMBlt76e7BDEEHUG/3x7hVfRIjE6Z4hkfKvHY0bpZR5zK/r8iGi89IpCyjvqPgwJ6gEk6SDVYv1l66e7CsoQ4gSa1AHHGZRbUYmeGRMp+768lE3UY7rWh4fl+RkS9fkFhRxn1HcTuFZlQAW3vp7sF2BB1AFqvDKHdCtRbDQR/yytMXsuWJF6qmes6dVXAzhuqbTtZq+F1h1w/v4c7Hnc+iIMIV7z2FrwydOe18L5aSNKTuV8KNrgew9tLdQ9N3BCJSEJEREXnA/XmViPxIRJ4SkdtExIxTShq1OhweKXPk+Ez3jmdkwiqSb3/sQKKdwOHjE4mNgLdpaIXdg0CiKufrh/dw+2MHpgzihCq3P3aA64f3TDtvaPlAqrTUZiphay/dPeShdD8DPA28QUR6cMZgflBVfyIiNwJXA/8rB7namqxXh1GziftLRTaucfzfYVWuWSMCvQKVSUIb1MV1L82a+X1FLnzPSWz5hxciz+kvFRkeKXP7YwdCn7/z8Rdm7AoGIlbe1XoCNRprL909NNUQiMjJwIXAV4HPAm8EjqnqT9xTHgLWY4Ygd6Iaxs2d3TulCJriK1aoRCh6byraik0P1zTrICl+47f8xh2RtRHFHuGis05i7V9Fz0+YUA11p23dVZ72eQvw/rct4LlfjeWqhK0dRXfQ7B3BLcDngde7P/8SKIrIoKruBC4DTgl7oYhcA1wDsHjx4iaI2t0kCRTWOmwmDXGLfU+WtauXRubV10PY+M24dNhzT5sfuRPw45e1PDrG1l1lzl48jx/87KWp+1XgRwdesUIwoyk0LUYgIhcBL6rqLu+YqirwCeBmEXkCeBUIzTlU1VtVdVBVBxcuXNgUmbuZKF90v28EYpgPuZn4e+hnTS1umFpbZY9VJnjsmZdnGL1mzY0wjGYGi1cAa0TkOeAvgVUicruq/lBVP6Cq5wLfA37aRJmMCNauXhra2vi1o+NTbaaDQeoq/eUaIqNHf4K+SGmIWoln/T4eUVlWlqppNIOmGQJVXa+qJ6vqEpxdwMOqepWIvBlARGYDXwD+vFkyGdEMLR9g7qyZnsPKpE5bpQ4tH+DRdavcSVnNk2/urMK0Xj1ZMr+vyObt+2fMVwDYuOaMGR1Vs/gjirKhjcoSipohYXQnrZCqudZ1G/UA31DVh/MWyHB4JWJyWNgqtdmK5PDxCVZsejg00FoPxYLw2tETA9yrtdSYVypy+Pg4k3U21+sLqatI4p6qpReQtY4wguRSWayq31XVi9zHa1X1naq6VFVvyUOebidqdZi0YtlTLFlTKvbETt7y6hayMgIFEebO6p1RBxH01ft3QXNn92bSYfXI8QkuPWdgaj5zQYRLz4nP2Kl1slyec6yN1sRaTHQ5Ycrkui27uX54T+KCorjZxPUwVplkYkKZ31dsSgxiUjXVLijueFr6+4ps3VWeVoC2dVc5VqnXqtCtdYQRxAxBlxOmTBRncDyQqGK5kQpkkhPjLBsdg1jUX4ocxhN1PKkPf1bMzqZULKAh7TaqKfVaFXq9vamMzsMMQZcTpTQUprpMrl29lEX9JQ6OjrF5+36GR8rT3Ek9Eb0fBvpLPLfpQub3hSvR+X3FROmnCrFFWlng7XTSDulJmkJ73Oc+KhaE/lJxmnFNuxOB2hW6tY4wgrRCsNjIkbiisIOjYwyPlFl794lOouXRMT67ZTeFgkz5xsNSHwVYefrCyHbUxYJMDWn3gp1xC/5GTjrzVw5HFaZFDe8BmN3bk8o1VplQ5s7uZfeGC6aOxc0XiKLWZoPWOsIIYoagywhrb/Dtxw6EKuFF/SU23rd3RvB0EqpmySiwdVeZB578eWgTunH3mD8TZ/mNO6oOsin2SLL21iSfMTw6VmHz9v3sfP6lyNeFKeSwfkzFHuF1c3qr3kdwpV+LUq9HoVvrCMOPaJV2wa3I4OCg7ty5M28x2o4wxVUqFma0N/CO33TJmQ1p3eCnVOzhaGVyyijd8fiB2FjALZcva7hMQQS4+fJlMxTnsht2MBri0hlw3Whxf1lh7StsLKTRaERkl6oOBo/bjqCLiMoyee5XY1NzbsujYxREmpZOOFaZBByX0x2PHUB6JLzNKI4LJ25MY1+xhyPu9bJEmZlfPzxSDjUCwJQij3K5Ra30bZVu5IUFi7uIuCwTLyhcKhamfP5ZNJSb31ecUYkbxSQwEbEdKPYIG9c4MYWoYOfYePZGAJzVe5A4I+mt5sOCyPP7itZIzmg5zBB0EdWyTNLUA8ydlazZ3NHKBFmoZ6+1xfBIOXIQTxIvp5exk4by6NiMNgxx2Tzean9O8cSfV3+pyC2XL0s1xtIwmoW5hrqIagHJNPUAh48nMxhjGbpqoto9eHzuridjR2QWRNh82VkMLR+IHLyT9L2jXD9eqmzw2scatFsxjCywHUGTybPZV7WRlu1QUBQXu7jivaGjLKaYVJ26V++zKKSYf+l/7yj31IaLz7AWDkbbYTuCJtIKzb7iApJhO4ZWJGrn4o2AjBoOEzR03ueQ5p69945L3bwuIqvJczFZVpDRapghaCJxK8VWUAhhym3l6Qt5ZN+hqumQabnqvMUMnrqAjfftjcy+icKv0MNSLgdPXZA4Jz/sng8fG4+Uyf/eUUY1ym0knAjAW8dPo5XoqjqCvPO0T1u3LVSZCvDspgsTXSPPe8hyNvD8viJ9s3pTX8+rb4jy83vPQ+2Vs1HfEzh1DGnbPEN0gVtYPYFhNIquryNoBbdM1EoxqW8+q3uo1ZiEuY7SVPD6eflIpWr1bfA9BgKyxu2wHl23qqbvdXikTI9IaNDZq2OoRtguI66Nh2HkTdcYglZwy9TaG8aj1nvwK/7+viKvHR2f1jsoqTGJch0FB8PUahzCCCp/P1m3U75+eE9ku41SsTBVx5CEoNsoajfVDgF6o/PpGkPQCj3Y/Yo0rIK3miKOkjXOvRLcRYStwtMYxDC/+OCpC2bsMCBdEDaIvxFcFPXusPwMj5QjjUBBpO4isHoXAYbRSLrGEGSpNOohLFMl6ao8LgjpFVoFSVok5jcyaV1HcZlIfqM3ocpAlWCsx+hYpepnUq9y9d9nj0jkLmbCl3ZaK9bx02hluqaOoJV6sNeaZ7529dLQIefe7IAwku54PINY6/jDINPcUaUibyj1Tsl+0VknJerhX+0zqVYXUU0+/33GFaJ5hrZe/CMua41hGEYj6JodQSutyGp1U8X1yw++1lPESXz1foOYRSwl6I7yr/7Lo2NseeIFZvUmW4N49xW1S6m1UVuadhr+IT2G0Yl0jSGA1unuWI+baiDBa6u1TygWnCHtr4xVZhjELGIp1ZRsZVKpJGxRsai/1JCMr7SxIcvuMTqZrnENtRL1uKmSvDZOEQ/0l9h82Vns3nBBqIsii3m2WSlN774a0bIhbWzIsnuMTsYMQQ7U49tO8tpqnTHD3sfrgVQeHZsRh0gbS8lCafrvqxEZX1EG9arzFrdMLMkwmkVXuYZaiXrcVNVeG1fAFObrDrpe/HGFYB5/koyitauXct2W3TXXEgSrbRuR8RUXMwpLh20Fl6JhNIqmGwIRKQA7gbKqXiQiHwQ24+xOXgM+qar/1Gy5Oom1q5cmDipDtCtJOLGDGB4pz+gLFOWrH1o+wM7nXwrNy+8r9jgxgoiZx957Bu+nETn4UQa1VWJJhtEs8nANfQZ42vfzN4ArVXUZcAdwfQ4ydRRDywcih6+EraKjXCxetoy3YwjL/Y/y1X9l6ExuvnzZNBfWLZcv4x//5CNsvuysqb79fgS48rzFM5RwPa40wzCq09QdgYicDFwIfBX4rHtYgTe4j+cBB5spU6eycc0ZiVfR1XrhVMsCijIk1VbcaQrXbJVuGI2j2a6hW4DPA6/3HfsD4DsiMgb8Gjgv7IUicg1wDcDixYsbLGb7k6ZuIs6nv6i/VDUoW81Xn3UNgGEY2dK0NtQichHwUVX9jyJyPvBHbozgHuDrqvq4iKwFlqrqH8Rdq9Y21EY0YQ3XvJbOXpuIMPxtocOIahV96TkDU3MOLCBrGM0hqg11Mw3BTcDvAePAHBx30CPA6ar6NvecxcCDqvquuGuZIWgMUSv3qAK1+X1FNlwc3xguqutmWIfSJI3mDMOondznEajqemC9K8z5wB8BQ8AvROQ3VPUnwIeYHkg2aqSWmQNxPn2orT1HXCA6SJJGc4ZhZE+udQSqOi4ifwhsFZFJ4GXg9/OUqROotSVDnPGo1Z8fF4gOY6wywbVbdnPtlt2xswgMw8iOXCqLVfW7qnqR+/heVT1TVc9S1fNV9Zk8ZMoCrzr3tHXbWLHp4Uw6VtZCLS0Zsuo6GmTt6qUUe8J6plYnKxkMw4jHWkxkRKMUaS3U0pKhEf18wNlJvG5O7RvPLGQwDCMeMwQZ0ShFWgu1NI5r5AS30YSziaOo5lpqlZ2YYbQrZggyohVGYXrU0t00i66jaa/tVRsXJN51FPd8K+3EDKNdMUOQEY1UpGmp1pIhbAXdyAluUddeefpCNm/fz4Rq6OQ1j7jpYa20EzOMdsUMQUa00ihMcIzB2tVLpyqDvZ5BUStooGH9fMIM06XnDLB1V3nK7RNXzTKQk0vLMLoFa0OdEVmOwqylBiDsGmEppLN7eyJX0I2coxtMP12x6eHIjqfB6uZqLq2sW1QbRrdhhiBDsuidk1UNwOFj46EKP6p5XLNX0HGFZgPuLiaJEWxUi2rD6CbMELQYtQyPDzMeaWn2CjpqJR8cSlONLHdihtGtmCFoMbKqAYhifl+Ro5XJ3FfQWa7krYupYdSHGYIWoxafd1K3TqlYYMPFZwD5r6BtJW8YrYMZghajlpVylPGY31ekb1ZvZO+gvLGVvGG0BmYIWoxaVspRxqNai2jDMAwwQ9CSpF0pm5vFMIx6MEPQIZibxTCMWrHKYsMwjC7HdgRGKFlUNxuG0R6YITBmUGt1s2EY7YkZgjak0av1WqqbDcNoXyxG0GaEdQ+9dstult+4I7Me/NbR0zC6CzMEbUZUO4mXj1QyG8jSSrMVDMNoPGYI2oy4VXlWA1labbaCYRiNxQxBm1FtVZ6F+6bahDPDMDoLCxa3GWHtJPykcd/EBZ2tQM0wugczBG2Gp5w33reX0bHKtOeC7ps4RW8pooZheDTdNSQiBREZEZEH3J//XkR2u/8Oishws2VqN4aWD7B7wwVcdd5iCuKMfS+IcOk5AzMUfXA2sRdMbvTQ9+GRMis2Pcxp67axYtPDmWU0GYaRPXnECD4DPO39oKofUNVlqroM+CFwTw4ytR3DI2W27iozoc6E3wlVtu4qJ1b0jUwRrWaEDMNoLZpqCETkZOBC4H+GPPd6YBVgO4IE1KvoG5ki2ujdhmEY2dLsHcEtwOeByZDnPgb8rar+OuyFInKNiOwUkZ2HDh1qpIxtQb2KvpEpolaQZhjtRdMMgYhcBLyoqrsiTrkCuDPq9ap6q6oOqurgwoULGyJjO1Gvom9kiqgVpBlGe9HMrKEVwBoR+SgwB3iDiNyuqleJyBuBc3F2BUYCqo20TDKsplEpolkOpjcMo/GIusHGpr6pyPnAH6nqRe7PnwLep6pXJ3n94OCg7ty5s4EStget3Cq6lWUzjG5FRHap6mDweKvUEXwC2JS3EO1GKxd9tbJshmFMJxdDoKrfBb7r+/n8POQwDMMwrNeQYRhG12OGwDAMo8sxQ2AYhtHlmCEwDMPocswQGIZhdDm51BHUi4gcAp7PW44qvAn4Zd5CJMRkbQztJCu0l7wma22cqqozWjO0pSFoB0RkZ1jhRitisjaGdpIV2ktekzVbzDVkGIbR5ZghMAzD6HLMEDSOW/MWIAUma2NoJ1mhveQ1WTPEYgSGYRhdju0IDMMwuhwzBIZhGF2OGYKMEJGCiIyIyAPuz38vIrvdfwdFpGVmMYfI+kER+ZEr6/dF5O15y+gRIusqV9anROQ2EWmVVuqIyHMissf9HHe6xxaIyEMi8lP3//l5ywmRsn5cRPaKyKSItEy6Y4Ssm0Vkn4j8WETuFZH+vOX0iJD3T1xZd4vIDhFZlLecfswQZMdngKe9H1T1A6q6TFWXAT8E7slNsplMkxX4BnClK+sdwPW5SBXOlKwi0gPcBnxCVd+NU1SYaJhRE1npfu+eIl2HM4v7HcDfuj+3CkFZnwIuAb6Xo0xRBGV9CHi3qr4H+AmwPj/RQgnKu1lV3+P+jT0AfDlH2WZghiADRORk4ELgf4Y893pgFdASO4IIWRV4g/t4HnCw2XKFESLrG4FjqvoT9+eHgEvzkC0Fv4NjvHD/H8pRllhU9WlV3Z+3HElQ1R2qOu7++Bhwcp7yVENVf+37cS7O31zLYIYgG24BPg9Mhjz3MZwV4a9DnsuDMFn/APiOiPwz8Hu0zrS4oKy/BIo+t8VlwCl5CBaBAjtEZJeIXOMee4uq/hzA/f/NuUk3nTBZW5Vqsv4+8DdNlimOUHlF5Ksi8gJwJbYj6CxE5CLgRVXdFXHKFcCdTRQpkhhZrwM+qqonA/8b+K9NFy5AmKzq5Dp/ArhZRJ4AXgXGIy6RBytU9WzgI8CnReQ38xYoho6QVUS+hPM78O28hAshVF5V/ZKqnoIj63/KU8AgZgjqZwWwRkSeA/4SWCUitwOIyBuBc4Ft+Yk3jTBZtwFnqerj7jlbgPfnJJ+f0M9VVX/oxl/OxfFl/zRPIf2o6kH3/xeBe3G++38RkZMA3P9fzE/CE0TI2pJEySoiVwMX4cS3WsbVkuCzvYMWc2maIagTVV2vqier6hKc1erDqnqV+/THgQdU9WhuAvoIkxXHhz1PRH7DPe1DTA8k50LU5yoibwYQkdnAF4A/z1HMKURkrhsPQkTmAhfgBF/v40RA+2rgr/OR8AQxsrYcUbKKyIdxvv81qnokTxn9xMj7Dt9pa4B9ecgXRcuk3nUon6B1/O2hqOq4iPwhsFVEJoGXcXyurcpa123UA3xDVR/OWyCXtwD3igg4f1d3qOqDIvIPwF0i8u+AAziLg7yJkvVjwJ8BC4FtIrJbVVfnKCdEy/pPwGzgIfe5x1T1U/mJOUWUvFtFZClOvOt5oBVkncJaTBiGYXQ55hoyDMPocswQGIZhdDlmCAzDMLocMwSGYRhdjhkCwzCMLscMgWEYRpdjhsAwUiAi3xIRdf9VRORFEXlERD4tIkXfeZeIyHYROeSee36OYhtGLGYIDCM9/wc4CViCUzl6P3AD8PduNSk4HSZ/AHw2DwENIw1WWWwY6Tmmqr9wH5eB3SKyA/gRTrfUDar6/wGIyJtyktEwEmM7AsPIAFV9CniQFmsmZhhJMENgGNnxj8Bb8xbCMNJihsAwskNosclThpEEMwSGkR3vAp7JWwjDSIsZAsPIABF5N/Bh4K/ylsUw0mJZQ4aRntki8q9wFlILgQ8CXwR2Af8FQEQWAIuBfvc1bxeRUeAXvowjw2gJbB6BYaRARL7FiYljE8AoznSvrcA3VfW4e94nceY/B7lBVTc2XFDDSIEZAsMwjC7HYgSGYRhdjhkCwzCMLscMgWEYRpdjhsAwDKPLMUNgGIbR5ZghMAzD6HLMEBiGYXQ5ZggMwzC6nP8fG9bOjf4owvMAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJztnX2QHPV557/PjFpoVgaNhBeXGRAi\nmEh3iiyt2QLKqvgiuSIZBPIaYV4O7sjlhUqdU2UU38arsw4JGx+q0hG4ylUl5nKVchXgE7bQBhAx\nUJZcSXQW9iq7sqxDOMeLxI24sI60MtaOpNnZ5/6Y6VFvT/+6f79+me6ZfT5VqtXu9nT/umf26ae/\nzxsxMwRBEITOJ5f2AgRBEIR4EIMuCILQJYhBFwRB6BLEoAuCIHQJYtAFQRC6BDHogiAIXYIYdEEQ\nhC5BDLogCEKXIAZdEAShS5jTzoN99KMf5SVLlrTzkIIgCB3PoUOHfsHMvUHbaRl0InoXwIcAagCm\nmLmfiL4B4PMApgF8AOB3mPmk336WLFmCkZERnUMKgiAIDYjouM52JpLLGmZexcz9je93MvMnmXkV\ngJcAPGy6SEEQBCE+QmvozPxLx7fzAUiXL0EQhBTR1dAZwKtExAC+xcxPAQARfRPAvwVwBsAarxcS\n0YMAHgSAxYsXR16wIAiC4I2uh76amT8F4BYAXyKizwAAM3+Nma8G8AyAP/J6ITM/xcz9zNzf2xuo\n6QuCIAgh0TLodrCTmT8AsAfAja5NngWwKd6lCYIgCCYEGnQimk9El9r/B7AOwM+I6HrHZhsBHEtm\niYIgCIIOOhr6xwDsISJ7+2eZ+ftEtJuIlqKetngcwB8mt0xBELLE8GgZO195EycnKriyWMDg+qUY\n6CulvaxZT6BBZ+a3Aaz0+LlILIIwCxkeLWPL80dQqdYAAOWJCrY8fwQAxKinjJT+C4JgxM5X3mwa\nc5tKtYadr7yZ0ooEm7aW/guC0PmcnKgY/dwPkW7iRQy6IAhGXFksoOxhvK8sFoz2k1XpppNvMiK5\nCIJgxOD6pShY+Rk/K1h5DK5farSfLEo39k2mPFEB4+JNZni0nNqaTBCDLgiCEQN9JTx2xwqUigUQ\ngFKxgMfuWGHsxcYp3cRFFm8yJojkIgiCMQN9pcgyRFzSTZxk8SZjgnjogiCkQlzSTZyobiZp3mRM\nEIMuCEIqxCXdeDE8WsbqHftw7dBerN6xT1sDz+JNxgSRXARBSI04pBs3UbJn7N93apaLGHRBEGIh\nK+l+foFNnfXEeZNp9zURgy4IQmSylFOelcBmGtdENHRBECKTpXS/rAQ207gmYtAFQYhMVrxiIDuB\nzTSuiRh0QRAikxWvGEg2e8aENK6JaOiCIERmcP3SGXoxkG66XxLZM6akcU3EoAuCEJl2pvtlJZsm\niDRSIImZE9u5m/7+fh4ZGWnb8QRB6C7cmSNA3etNQ1JpJ0R0iJn7g7YTDV0QhI4hS9k0WUQMuiAI\nHUOWsmmyiGjogiB0DO3s0NgpWr0T8dAFQegY2pVj3qmDLsSgC4LQMbQrx7xTtXqRXARB6CjakWPe\nqVq9GHRB6AI6Ue/NMlmcpqSDlkEnoncBfAigBmCKmfuJaCeA2wFcAPAWgH/HzBNJLVQQBG/CdPWL\n6wbQrTeSrFW+6mKioa9h5lWO5PbXAPwGM38SwM8BbIl9dYIgBGKq98YV8OvUwKEOWekHY0poyYWZ\nX3V8exDAndGXIwiCKaZ6b9QBEHHvJ6tkoR+MKboGnQG8SkQM4FvM/JTr978LYJfXC4noQQAPAsDi\nxYvDrlMQugYTmUJn2yC9170Pr20B84BfpwYO4yCrUpOu5LKamT8F4BYAXyKiz9i/IKKvAZgC8IzX\nC5n5KWbuZ+b+3t7eyAsWhE7GRKbQ3dYvN9trH6RYm2nAL0stc9tJlqUmLYPOzCcbXz8AsAfAjQBA\nRA8AuA3AfdzOLl+C0KGY6N262/rpvV778PpDJdQN0+od+7QNU1YGSbSbLOeoB0ouRDQfQI6ZP2z8\nfx2ArxPR5wB8FcC/YubJhNcpCF2BiUxhsq1K79WVP2wjbzL3Mqg9bFZliahkWWrS8dA/BuDviegw\ngB8D2MvM3wfw3wBcCuA1Ihojor9IcJ2C0BWYyBRxSBph5I84vM0syxJRybLUFOihM/PbAFZ6/PwT\niaxIELoYk/zmNct68czBEzMkEve2QV6w1/F08PI23cdas6wXuw+VPfPfuzkDxuuaEurvV9pIpagg\ntBHdKTbDo2XsPlSeYcwJwKYbSjMkjaCCIvfxckSoaYS73N6m17GePnii5XW20TaVJTpJnhnoK2Hk\n+KkZN1sGsPtQGf3XLEp13WLQBaHN6OQ3q4KZ+4+NN42fV/qhlxfsPJ7XxB83Xt6m13pU+KVHeqVS\nLihYOHthCtVa3Tya6Phpsf/YeEtwOQtPIGLQBSGDqDxZ29j5GdfyRAXXDu1FsccCM3CmUm3xep3e\n8JLLC/hfb53y9TZNAn72sVTSkvumMlGptuwjC8bRj6wGRsWgC0IGUXm4OYKWp8wATk9eNJRur9dp\nKFfv2BfobfoVJDmxjbaftLR6xz6tc0jbOPqR1eZdYtAFoQ3oaMRuGcLKU1OGANDyvSmVag1fee4w\nAMyQYFSG2s5LH1y/FIPrl+KhXWO++y+5zst94xgeLWP1jn1aNwbA3Di2U4fPavMuMeiCEBMqg6IT\nvPSSIawcYWGPhYnJumRy9vyUpzxhQo25eWwAM/7vRXmigs27xnDfzYtRLFiexycAT9y9qsV4+2XE\nBGFqHMN0nIyCbnC73VA7Czz7+/t5ZGSkbccThHbhFWwk1KWPHAHTHn9mpWIBB4bWAoDSc3Vus2Ro\nb2zrLTW8X11vmQB8+rpFM7R2m4KVw7nqdNOoATBOlbRyhI/Mm9O8eZkaR53r18kQ0SFHp1sl4qEL\nQgz4ldh7GXNgpkasE2TLa6Yc6qBryG0Y8DTmdU1/urnPLc8fwTwrZ2TM3VJNGLIapGw3YtAFIQbC\nGA6nRrxAIWcA4TxzAlBsyDVxPYN77cd9s6pUa0bGPE+k5UEH6eNZDVK2GxkSLQgxEMZw2PLE8GgZ\nZy9MeW4TxhiXigW8s2MDRh9ehyfuXtXSQCtL6DxxeLUReGjXGFY98mqzlcBsbRTmRjx0oetIo+rQ\ntMS+WLBmBNaiZK84cRsx5zFMZZZ2UCxYge+XqqhpolJtCXxmLUjZbiQoKnQVXsHJgpVvy/iw4dEy\nvvLc4UCv072ea4f2GnviBDSzR/YfG9cyYiYpg8WCBSJgYrKKnrl5nL1g1gtGlx4rBwb5vl9B16db\nAp9+6AZFRXIRuoo0e1UP9JXw+F0rPSWOgpVTzqYMI9fYxvvRgRUYXL8UVxYLODlRwc5X3mzpaOjM\n/1YNt3BSKhYwtm1dU7KZTMiYA8Bkddrz/dr83FjzPIKuz2wLfPohkovQVSSV7aAr44R59PeSa6w8\noVZjTCteY2eUjBw/pex46JUDr/MkUJ6oYHi03ByQEfQaOz3TD9MMHWbgoV1jeGjXGBb2WLByhKoi\nXShq4LOTGoMFIQZd6CqSyHYwLVoxHS6sugkAwPYXjiqzXyrVGr7z+nsthtJZtm/SVMuJfX46Eg2j\n7tV7NdoC6hLKphtKLYVFBSuPeVZuRosCL+zfWzmg6rrDRQ18trsgKWnEoAtdRRIl2Un29nZ7h+6K\nyyAdWeX12k8kYZ9MKtUaNgeU+tss7LFmaNgqj7f/mkXN4Gye6rr5JXP0Vd+paeD+mxdrxwyC1gN0\nX992MehCV5FEtkOSMo6ud6h68lBJGTkiXDu0V7v/uRe6r/rVuammRAOon1DsnwV1WvRbz/5j40YB\n0KBr3G0FSRIUFbqOgb4SDgytxTs7NuDA0NrInlZSI8dMAriqPOt7b7raMwhbYwZDL887KtVp1g46\nh5WAbEwNbdA1zvI4uTCIQReEAJIqWgnqcnjt0F6s3rGv6f0+dscKlIqFGdkyjw6swKYbSsiTTv5K\nK6uvW4SFPVaEs6ija2j9ttNZh6mhDfLAu60gSSQXQQjAHjlmByDzRDNGwdmYZkv4ZX7Yxt6uinxo\n15hnzxN7VF1YT/zAW6eaNwN7PWF6xhSsHFbv2Bd47irpyJ1LvnX4SOA8VR2CguTdVpAkBl1IlDRT\nwuI6ttto1phbJvr4abWAt8EwNZpeGntUCcM+H/urlSdYOcJk1Wxtk9VpTDpuQoPfvdh3PajPu9fI\nu0cHVjSDqF7vn+57qxMkN81KyjJSKSokRtpVm3EdW1Vh2WPl8L+/cYvvNgt7LJxzFc/kAEDRUlcH\n21NPq5x/YY8VmGoI1KtNt29c3vI+5ICW/HqT9rmm72035JnrVoqKQRcSI80e1XEe26/0/P6bF+PR\ngRWhyvejoFPMk4XjljRH17nxM9Dd3vvcC+mHLqSOX0AqCa/JuU+V0XGvKWgdw6NlXwP29MET2H9s\n3Lf9bRLoGNViwcKH56dQC/sooDiuicYeJQ/ePS4vaJ+dmmoYJ1pZLkT0LhEdIaIxIhpp/OyLRHSU\niKaJKPDOIcw+VBkJCwpWSzvULc8faelBYoK7xarOmrzasjrXsXX4SOAcTTRed/bCFKxcuEyTpJio\nVGM15jY1Zq2WvAt7rEjpf/a4PPfnottSDePEJG1xDTOvcrj9PwNwB4C/jX9ZQjegSgkjj8n1URto\n6QQH3cEwVY7y9heOYni0jGcOntA+frXG+Mi8Oc20wm7GTpm0z7VYsJB33cysPGHb7cs9PwNWjmDl\n9a6S1+fCc595wtnzUzNSPWcjoSUXZn4DAChk/qvQ/ahSwlQl5VEemYNeS0BLqqHqNROVKh558aix\nRj0xWcXow+sAmLWq7TROnqlg5PgprXJ/G68+Nc7MF3f/Fyfu6+j+XBV7LPzq3MUB2p3ejyUKugad\nAbxKRAzgW8z8VIJrEroIr5QwVXZGlEdmVb6xjV027sRP99bJ4vBag83g+qVaco0XxYKFsW3rMntT\nYK7HDoB6eiHgn/rnNsA7X3kTg+uXttwQVL3kqfF7d48b+/vVO/a1vF+d3I8lCrqSy2pm/hSAWwB8\niYg+o3sAInqQiEaIaGR8fDz4BULXE7U6z+7v7Xy89tqnG7dHHvfDZXmiguu2vIytw0cw0FfC/Lnh\nRr9t37gcQPaDfN95/T2t7XRGyNm95L3eEgbwlecOK2UUCZJeRMugM/PJxtcPAOwBcKPuAZj5KWbu\nZ+b+3t7e4BcIXY+qjF3Hm1IFMgE096mi6Cotn/DxwosFK9Qszhoznj54Assf/j7CpgTb18G93qyh\nm+niN0LuoV1jWDK0F0uG9vrKXF4BUvvGrnrNbAySBkouRDQfQI6ZP2z8fx2Arye+MqGrCVudpwpk\nOkvjAWDwe4dbNFl3V0CVTEO46CX/x+d/ikl3E24NooxsW71jH5ZcXvCVfdLKQ3fi7h8zPFqe0b99\nYY+Fbbcv1/aUg2Qup4ziVVzkpJP7sUQhsLCIiH4Nda8cqN8AnmXmbxLRFwD8GYBeABMAxph5vd++\npLBIiErUAh5n8YmXUSAA9zWKhWy2Dh9pasZxQFTXoTud+29ePKPHuRdWnvCRS+YYxST8blYE4J0d\nG3zjC149bzqd2AqLmPltACs9fr4HFw29IMRCULZEUPAzCHdR04KChXlWzrfk/NGBFdh/bDy2AGWn\nGXN3IVGeCPfedDX6r1nk6yUD9XTO84a9ZvyKl2wZReX1E9C11aI6SKWokBim1aA6Ax/stMewNrFn\nbr5lwIKXV+5e/4JCOD27WLDw4bmptvQlTwLCTK3cLskHoMxKcWMqWdkettfTk93EK4lRg92A9EMX\nEiGoCtOLR148GlhwNNBXiiS5nL1QazkGA3jm4ImWgJtz/WHK+gtWHts3Lsd0hxpzoFX6qFRr2Pzc\nGAa/p2fMTbHy1Lzxb7qhNCPrhQHsPlRWZjXNVt3ciRh0IRFMpvEAdQOq0lndj9d+mSxhYdSnzNtp\nkKrMDJNMRztzp9u8RmYoi4CisLDHws47VzafxvYfG/e8odiB0bCZUt2MSC5CIpjmBvuV/bsNotfj\neFzYTxKqfTP02sfmibB51xh2vvIm1izrxa4fv4dqAn1VOp2FPVazutZN0Geom/qYx4V46EIimDZQ\n8ktts0eyOYtQnN5Z3PjdKHSPZ8/0LE9UsOsn77VNQ4/resyfm8fq6xYZvSZPpBwjN39uvmVtBSuP\nbbcvV+5PmnCZIwZdSARTjTPoj9StwTsHQSchwahg+OdLe832rNY49DALU+I4TLFg4ejXP4d3/1k/\nq6dg5fH4XSux7fblnu/7N7+wAk/cvcpIIhGd3ByRXIREMJnVODxaxuSFqcB9qvpzJCnBmBB2mEPW\n2L5xOYZHy4Hn0mPlUKlOazXjsn9nIpF027zPdiATi4RU8RoGHIRqWLIqja7HyuHc1HTiXvL9Ny82\nPpesYVd36twgu3lCUNaQiUVC5rF7jpsaQK/89Gae+ncPtwQfw5Tuh2HvT9/vCGNebHSZdFdk2pq2\n7uDppJtfdcMs0HYjGrqQGjtfeTO0AfRKgRzoK+Ej89LzUcK03E0DO6feee3zRM1+8bqGOsngZJg6\nBkE8dCFh/LysqB6e1+v9OigKamrM2H2ojP5rFmm3V7CrNrcOH8Ezr5+Y0dKgWLCwfePy0B61Xx2D\neOlqxEMXjPHqR67azs/L0vXwVKl4Xq+XlLbw2AZTp7c8UC/8sRuXuUMXE5UqBr+r7mEehPQ4D4cY\ndMEIk0fhoGpRHcNBAD593SLt9DVdYyR4c3Kiop3nf3Ki4jvkojrNoefESg56OMSgC0aYlPTrVPo9\ndscKz9xtGwbw7j9XtMu8ncZIMCdH1OwZf2BoLZ64e5Xy/bmyWAgsmFJ9BoKe8iQHPRyioQtGmDwK\nB3XEs/V1HaNgUuZtb/e1PUciDZroBOIedGFPBgKAkeOnlFlItnEN6rjo5VHrdNWUHPRwiEHPKDop\nW2mkdZm0LVUV/JQnKlgytNfomCqc16DYY4E5XGfELFIsWDg/VUNFkXZZsPLYdEMJ+4+NNz8Da5b1\n4qXD73teA13jX6nW8MiLRzExWfXcPk/UfEIaOX5KOfzDypGnR60b8JReLeaI5JJBdHTqtNK6TB6F\n45A/rDzh7Pkpz0dz9zU4PVntGmMOANXatNKY56jezfHRgRUYXL8UVxYLODlRwf5j48rh11ca9L45\nrTDmADDN3BwDt/+Y9+D3YsHCzi+u9DTIEvBMDqkUzSCq8VrOyjydbZIizJOB38gwFfPn5nFhanpG\noZCVJ8yfOwdnKlXkFFNtZgvv7thgVGlLiD7xCVBXk9rDL8J+FqTyVI1UinYwOh6MiZcTtzQT5lE4\njPc1eaHWYqiqNW564bPZmOcIuO+//wgH3jql/Rr7vY/a94Y5Wp641xok4BkPIrlkEJ2ULd20rqxU\n3IVJN5u95rpu4Io+Y++mGUbG3DaYOplFQUxUqpFkExlOkRxi0DOIjk6tq2WbTg5KisH1S2Hlkuhe\n3j0QYYaB275R3Ss8iGLBUhrMgb4SHr9rZXANgOLtIkA5Y1X3xu1sf3xgaK0Y85gQySWD6KRs6aZ1\nZSUAZa9r+wtHuypwGSfM9c6QZ89PYfOuMRQVwyJ0uG3lx1uGXjtxfn7KExXPRl2bbih56vOMurEv\nWHmRTTKGGPSMotKpTfXwLE1Ht9cZZ+/yuPOw02ayOt3sDhml2Zfdl8Xvs+H8jDk/VwsKFojgG2yd\nmKziibtXzbhBz7PkgT9t5B3oIMLo4WEr7nT7tZii25pVV+PtJmMeJ6aymrMy9PzUtG/aInDRITg/\ndTGt8vRkVToipoyWh05E7wL4EEANwBQz9xPRIgC7ACwB8C6Au5j5dDLLFIBwmQVhKu50Kvnc2+vu\nX1fquWQO4XwNqMlg5dCEkdV0bri2Q6DzeZSe5u3FRHJZw8y/cHw/BOAHzLyDiIYa33811tUJMwir\nh5umGZrcOEyNv24edLuGUnQzYWS1oM8SAc2+6Zt3jfnuw/SzIUQniuTyeQDfbvz/2wAGoi9H8KNd\nHehUf9Rehtg0i0a6IbYHQv39MpXLgj5LDDSrQ4M+j1nJsJpN6Bp0BvAqER0iogcbP/sYM78PAI2v\nVySxQOEi7epAp/pDJaDFOJg+NUg3xGS4/or5M66pLVSVJyq+fcndsZI1y3oDb7j2exv0ecxKhtVs\nQtegr2bmTwG4BcCXiOgzugcgogeJaISIRsbHvfs+CHq0qyBjcP1Sz54fDOCRF4/O+JnK+DOg9A4H\n+krNaTdZIk+E66+Yn/YyQvH2+CQODK31LEaqTjM27xpreS+8guy7D5Wx6YaS7w3Xfs+DPo/S07z9\naGnozHyy8fUDItoD4EYA/0REH2fm94no4wA+ULz2KQBPAfVeLvEse/bSjg50A30lPKTQR09PVpv9\nsgF1R0XAXzP1G4yQFjVm/OMHZ9NeRijsNgiqHH8GWt4LlSSy/9g4DgytbdHAgdYnQr/Po5T4t59A\nD52I5hPRpfb/AawD8DMALwB4oLHZAwD+OqlFCsmhSk/089C2v3DRSw+SULw00+HR8qzuw2ITZ92s\nTpqn+73QHUAS9olQSvzbj46H/jEAe6j+gZkD4Flm/j4R/QTAc0T0ewBOAPhicssUksAvC2Fw/VKl\nl+72Am0v7dqhvZ65y07DYR9TiDeH/t6brgZQ74ToV5BUnqjgui0vo8aMvKJbpVMS0X0iVKUnSk/z\n9hJo0Jn5bQArPX7+zwA+m8SihPbgl4VwYGit0qCrUKUkFnssrN6xDycnKom1vLUrRlVGqpu5/+bF\nzTL/bbcvx+D3DqNaU18D+/p4XaeClceaZb3N9yuJuoUoSF67P1L6P4sJeuRWeXsLGz1Gtg4fwXde\nf8/XgFp5wq/OTTX3k5SxZVzsp217oLMBAmb0bLGN2yMvHtVuHZAnwjRzc+LR7kNlI+McpZWuCZLX\nHoyU/s9igrIQtt2+HFZ+pjZr5Qnbbl+OrcNH8PTBE76Gs1QsYP7cOTMGVCSJ/XRgyw+zAfvpxx0D\n6Zlb99V0tPVp5mbXw/3Hxo1zx9uVnih57cGIQZ/FBOURD/SVsPPOlTOCWjvvrI8VC8pSyRPhwNBa\nnGljZ0XbeD06sCLWgGOWOTNZnZF2OPi9wxj87uHmza3GHHgtFhQu3hRUVbx+xjmO9ESd3kGS1x6M\nSC6zGN02vV6Ps0GShv37gpVrWxm/c0333bxYObw4LYI6QxJgHGNwX1kv7Zx9jm3lCGcvTAW2NPYz\nzrrpiSr9W1dKyVLn0KwiHvosJkqASedR/tqhvW3tyeJc06MDK9CTsXauVxYLyjUt7LHwzo4NWoMn\nwmDHGICL16lULOAj8+b4BlCB4Nxxd+pqnqgphdietl+nUF0ppV2V0p2MeOizlKgBpntvujrQA253\nWNLt2f7nOz5pnKmTJH5NyZihNG5xoBrAfO3QXuVr7KHSOjd6r173zs+Un9HWlVLCdA6dbRC3MRug\nv7+fR0ZG2nY8QU2Uyeu24Yk6PT4sftJFjoB/fdPFNL5/+Z/+pmM6N7onAMW5X1VBT5TPgcm+TjY8\nczf2TSOuNXQrRHSImfuDtsvWM6nQNvw6KvoFprYOH8FDu8Zm/AFaOcKTd6/Ck3evSmy9TvxckGkG\nnj54AluH655hpUOMuS1TeP2cAMyf6y3D5HMU+EfsV50Zp4zh52n7BU5FSokPMeizFL9Akmoa0vBo\n2VNmqU4ztr9wNFPpY8+8fgKrd+zriIlGBSuvDIROM+OJu1dBlflZm+aWwKiTUrEQOIYurvL8sEZb\nWgTEh0gusxSvxktelBp/jDrDnbttvmc7IACfvm4RfvT2KU+jvbDHQs/cOaHlrSfvXhWbYQwKoqua\nednGWao8w6MruYhBn8XoauFWjrSKg0qa04i6BWeFZVLnXSxYOFPxn+/ph61fRzWgQcbauZ0Y7fgR\ngy5os+qRV5Xet67XPX9uHlY+17IfK0+Yk6OO0bJNKBYsbN+4HAN9pcTaDfgFDU3xC44GEWfwVDBH\ngqIdhE6VXJL4SSm6JurC1HTLfhb2WNh550q88Y1b8OTdq5o9YLqFiUoVm3eNYcnQ3sR6x9j9VUwr\nX73+sKOUyUuVZmcgBj1l/AouOgkvSaZn7pymNzjQV2r2F+kmkny+JaDZLEvnOAQ0s41Uz0NhDbBM\nH+oMxKCnTNwNh8J4+0l5zm7jId6cGfZAZt3cdEaj/47PZyesAZbUws5ADHrKxPkoG9bbV3VV9JpP\naYJtPLYOH8F1W16WDBhD7ICmyfaA/2cnrAGW1MLOoPuegTuMOBsOhe1L7dVDe/7cObht5cex6yfv\nBfb68ML23uw2u4IZhLrxNanIXbOsF8OjZWWDr4U9ViQDLNOHso946CnTrkq9IEaOn8KEYyDCRKWK\nXT95D7UQxtz23gB0hDHPYqtdWz5Zs6xX+zV7f/o+tjx/RDmJaNvty2NcoZBFxENPmTgbDhUVE4au\nLBZ884OHR8t45uCJFkkkjGdup7F10uxQRj0FMahwygQCMCdPM66hSeGVLZ/sPzaufUzVhKI8Udvk\nEclDTxcx6BkgjkfZ4dEyfnVuquXnVp6wZlmvb2fFna+8GYu+7Xyy0OkamFQzKlOKBQtj29b55uOr\nWNhj4Vx12rPgBmi9UeuMhnNexzgCydPMbTPmMiIuXcSgdwk7X3nTM3Vw/tw5vmPFBvpKsRStuL1A\nnX0+dseKVLs22py9MIXh0bKxMXfKGCqv1F1F6XXTdUIANt1w8QavirGYePvtSi1s12xRQY0Y9C5B\n5cmdqVSVhqo8UcHwaNm/HS1ap+K4IQCP37USI8dP4SvPHdYqsrGHLAyuX4rB7x6OZe7owh4LzP6F\nUl5Ua4zNmn3T7WtV8jHcNm754ez5qcDztFMVbVTTgDbdUMLen75v5O2r1hWXLCLFR+kjBj1jhP1j\n88uW+X9nznka2TxRoNwy3diuxoxiwcLZC1MtuvB9Ny/GyPFTRgHQGjO2PH8El8zJxWLMrVx9eLX7\nWi3xGeDgRHcFjJldAp0437sFrmtl8hTiNIB+MZb9x8YDDbpXr5WkZBEZEZc+kuWSIaJUjfply6g8\n5hqzlvdUY0bBymP7xuUtQ6MA8LAlAAAUx0lEQVSfuHsVHh1YETg02otKtRZbIFL1FFFKwJh4FX5t\nHT6CzY0+8Yz6U0KYoDLQagAH+ko4MLQW7+zYgANDa5uGN+i982qdG3chmxMpPkofbQ+diPIARgCU\nmfk2IloL4L8AmAvgEIDfY2Z/gVDw5ZEXj4bWIP08OZVObRs7He+xUq3hK88dbnYXfMLVljWpXia6\n1KYZj7x4tNmmVafdbxScxlSVJRQGEwPo17RLtZ8kZREZEZc+JpLLlwG8AeAyIsoB+DaAzzLzz4no\n6wAeAPA/ElhjqrQrDWt4tKx8fNb9Y1NlywRNZdfpiw5cNNphHtPb0Sv99GQVw6Pl2DR5P5xetEmW\n0EJFaqmNSXqh1/tqH8NLfrLXnaQsIsVH6aJl0InoKgAbAHwTwB8DuBzAeWb+eWOT1wBsQZcZ9KTT\nsJw3ixypy1uC8siD0PGcTLNNKtUaHto1hp2vvBlY/JJXVC4mgSrbxw/T9Em396t7w7WzYlTXulgw\nq+QM4xEH3dyFzkarHzoRfQ/AYwAuBfAfANwO4F0Am5h5hIj+K4C1zLzCbz+d1g89yR7QuhODAGD1\ndYvwDyfOBA4XiErf118NDLKlhY6HH2YYhB3U3X9s3PeGpspuAdSfE6DuLU9MVmcYW9VThJUn7Lxz\nZeIerhT/dB66/dADPXQiug3AB8x8iIh+CwCYmYnoHgBPENElAF4F4KmfE9GDAB4EgMWLF+ufQQbw\nG6Q8PFqO9EegU3hjc/Dt0y0ebtz5vTo50kmgkxZpp+ntPzaOkxMVFHssnJmstrxuolI1fhqw0wSd\n1a1e74ttzL1u5F5er32jeHSg1ccZ6Ct5FhhVa9yWnG2RRboXHcllNYCNRHQrgHmoa+hPM/P9AH4T\nAIhoHYBf93oxMz8F4Cmg7qHHsuo24Rd0iiq9mAShVAYqzvzeR1486ilVEICClcNkAhOH8kR4/K6V\n+O7ICRx461Tz59dfMR+/+NWFpsG7ZE4O/dcsmmEcVePzVNfKcpXhO7Gvo/1ePqTISVdd7zDSx4Ti\nScjvPRXPWggiMG2Rmbcw81XMvATAPQD2MfP9RHQFADQ89K8C+ItEV5oCXmlYNlFTvUyCUDmFvB5H\nIGt4tOwrtTCQiDEH6iXpAPDjd0/P+Pnbv5ic8bQwUam2pG/aqXyqXu7OS5ajuvebV8QpGGj2jh/o\nKylTHf2utzO10O6S6NeT3nRgRLcMQhGSJUoe+iARvQHgpwBeZOZ9Ma0pM9g9oFVE8ZBVgURP481o\n6VceRyDLNhJp6ebFHgubnxtr8Zxr09zytGAHYd0G0u9G9OTdq1Cw8rB35SfFlCcqeGjXGPq+/irW\nLOv1zKdes6w3cHiIruE1zdlOMn9c6B6MDDoz/5CZb2v8f5CZ/wUzL2XmJ5NZXvqE9diCUHXR80rQ\nmEa9J0vcwwW2v9Ca995OTk9WYZr8YuKZmsQpnGvafaiMTTeUmte7/hTAePrgiUBDrWt4TQdG+MVz\n0phDK2QTKf3XIEyql1vvXLOstxnUCzPF/UylirFt60Kfg9f6kiy8SZJKtYY/fm4M21846rtd2KZf\nlWoN33n9PUwzo9hj4VfnvHuweAWm/QyvG5PgpN9nRroaCjZS+q+BqTfl9djt9u5MhyrE3Q/jkRf9\njWHWmQ7RhMuEGjMYdY/dL6/dbcBV7xMBkbxov3gOIPKLUEc8dE1MvCmdR32GfvVkEoUfSenm7agI\nzRJuAz64fik27xpruQYMREpJdGbSqDx16WooiIeeALp/WHZuMwHKDIx2TptRoVqbF7PJmHvdaAf6\nSsprENXg2pk0ScR0hO5ADHoC6P5h2YUq7+zYgMfvWumZ9fD4XcGVg8Oj5cDsCzfFgne6nxsC8NZj\nt0aau5knwvVXzI+8jzi28SJH9cCn343VzcIeS3mjTdrgSldDQYUY9AQI0juB1j9AU50eqLdsvXZo\nLx5ytG3VzQLZvnE5LFWCuwPbCIU1RvYN4aZfu9zXey8VC0pDWCoWPG94TgpWHvfedHXgdffisnkW\nRh9ep7yxulnYU99e9d4kbXDDfFaE2YFo6Ang1jvdurJ7zJjzdbp/lFuHjygHSlSqtWYrWd01qjh7\nfgrXDu3FgoLlW22pwr4RPBMw/GJi8kKz0MiJe5iEnTlUbEwnOlOZ2Sel/5pFLdlFu37ynu+6zziC\nqzrXRVXl6bWPpKo6pXxf8EKrOVdcdFpzrjhIqsHXdVteDuxZ8qSrZ7mKa4f2amvfOfLOlfeCgGbf\ndN3JQU782sDq4GwP4NfjRfVeJNmcTRBM0G3OJZJLwgQVhJjo3k50GlDpprGZyCnTDC0t3G5OFcWL\nPD1ZxUO7xnDdlpexdfiI0WudqaNA/XpZeWqRmfykEC/pxMpT86lFCnqErCEGPWH88pKj9OXQCd7p\nFtboaP5Ogm4lztF0NvPnmmvbNjWuV2maGHWv1NFqjfGRefoVt26temGPBTTy36WfipBFxKAnjJex\n9MrVNi0MufemqwO30S1m8Qqy6WTBuG8pfreYL3wqut5rMrdU9WQ0MVn1nM+pwtl0q2fuHM8eM1LQ\nI2QFCYomjFeALExhiFfrVKBu5FTyi7OYZevwkea2eSLce9PVMzxod5BteLTsWSBjYw968Ar8epWi\nq3rXmFBj1m4hm8SotSTncQpCHIiHHhGdHHD31HbTPGVVB7/+axbhrcduxbs7NijXd3Ki0syIsQ2/\njoThVyAD1LtF2oY1TxT4xOFn9Gw5o1iwAvV53Rayqm6WQePy/DBteSsI7UYMegTC9qhOonWq301C\nJVUESRiqfV4yJ4dnHL1pdAZwqIxeqVjAOzs2YPThdRjbVs8FL1jeH0sCtFvIqp4Inn39ROiApko+\ni3KTiIMwhWVCdyIGPQJhe1TH1TrV+XO/m4TK4AZlyqiyPM5PTWulOTqNuMlN7JxioIZJSb3qmk0z\nQgc0B/pK2HRDacZTBAPYfaicmhGVwReCEzHoEYiiqZpMuNF51Pe7Sfj1iQlao3uf8+fqhV2sPIWu\nhDWVMLy219lHmIDm/mPjkQPacSKDLwQnEhSNQByBN/dgYtvDGjl+qtk/3atKU9UYystA3nvT1Z5V\npTqZMu59XqtZIDR/7pzQlbCqjoVAa4aQyssfXL9UORvUiWlAM2uB0aytR0gX8dAjEEfPDpWH5dSo\nJypVgC82kDLt3fHowArcf/PipkeeJ8L9ion0QejerM5E6FXuF5B1dqj0uw4DfSWt1Ms4ngbC7Ccu\nsrYeIV3EQ4/AQF8JI8dPzUgH9OrR4ofKk3IbtOo0o2fuHIw+HG5q0aMDK0IZcDd+3rOTqAalpHj6\nMSm7375xecukKSduWUiHMNOrkiRr6xHSRTz0CAyPlrH7UHlGOqBpgMzE8GVhfuRAXwn33bzYN70w\nDoMSx9OPrdurYgVespDuPrPS6TBr6xHSRZpzRSCO5k1uDR0InvpTsPJ47I66t+1XZKNbhBMG575V\nnQ/jPEaU/aqajxGAd3xy+AUhK+g25xLJJQJxBKS8KknXLOvF7kNlpVRQqdaw/YWjOD813RJMtfep\nCrY6j2lKkjcIL+JqEZtE1aggZBEx6BGIy1B4GS67r7eyJ7dH0NE5hd4vnS2MkUziBtEuRGcWZgui\noYfArsyze5g4ictQBM2PVGE/HcSdzqaT75zVikXRmYXZgnjohrg9VcZFzbuUgAyh8i7nWTmc9pic\n4xwZF6fMEHSDyLoHLxN+hNmAtodORHkiGiWilxrff5aI/oGIxojo74noE8ktMxsMj5bxlecOt3iq\ntjFXtWM18Vzd2wJo8S433VCCVyzb+XQQ91zLoHxnqVgUhPQx8dC/DOANAJc1vv9zAJ9n5jeI6N8D\n2Argd+JdXnawPVCdRlRer9PxXFXbPnbHimbWjFdWDNA6ri3uuZZBOnQYiafdQda0jysISaNl0Ino\nKgAbAHwTwB83fsy4aNwXADgZ++oyhJcH6kTlwZoEJ3W2Va2DufUGEafMEHSDMJV40pJosi4NCUIU\ndD30JwH8CYBLHT/7fQAvE1EFwC8B3Oz1QiJ6EMCDALB48eLwK00ZP0/TLWU4PcA4OgQ6f66cxFOp\nYni0nFoaoWkmSdxZOLqkdVxBaAeBGjoR3QbgA2Y+5PrVZgC3MvNVAP4KwJ96vZ6Zn2Lmfmbu7+1N\nt290FFSeZp5oRsaEu52pyf50+nL4BTXT1KtNM0nCTG2KA2lmJXQzOh76agAbiehWAPMAXEZEewEs\nY+bXG9vsAvD9hNaYCVQeqNtoBUkzAGDlLvYQcVdcWjmaMbfS7eX6dRFM2yjpSjzDo2VlNWzSxT5S\nZCR0M4EeOjNvYearmHkJgHsA7APweQALiOjXG5v9NuoB065F1wPVMqqN5HW3N396sgoQmqPYvI4x\n0FeqT5/3wLRtb1o54ztfeVNZip90sU/c2T+CkCVC5aEz8xQR/QGA3UQ0DeA0gN+NdWUZRMcD9RsC\nbVOtcVMecXvz1Rpj/iVzMLZN3VVx2+2tXQRNjFLagUG/DpNJHz/u7B9ByBJGBp2Zfwjgh43/7wGw\nJ/4ldTZe0owXfp58kJcf1SilHRhU3fRMq2LDIkVGQrcilaIx4za2OSLP3HVbHgmr50YxSu0ODLrz\nvr2aj4nsIQjREYOeAE5j61UI5DReaTSNamdg0Eve2X2ojE03lJoj9kT2EIR46AiD3smVfTrySLvP\nrZ3dB1Xyzv5j49o94wVB0CPzBj3tAF4c+Mkjaei57QwMSt63ILSPzBv0tAN4YUjziUL32O26kUje\ntyC0j8z3Q+80D8+dW24/UbQjzzvNY6uQvG9BaB+ZN+g65fBZIs02sllsYSvDJQShfWRecum08WFp\nPlFk9WlG8r4FoT1k3kPvNA8vzSeKTnuaEQQhXjLvoQOd5eGl+UTRaU8zgiDES0cY9E4izV4h0qdE\nEGY3xIqRaknQ39/PIyMjbTueIAhCN0BEh5i5P2i7zGvogiAIgh5i0AVBELoEMeiCIAhdggRFI9DJ\nTcMEQeg+xKCHpBuahgmC0F2I5BKSLJbZC4IwuxGDHpKsltkLgjB7EYMeEimzFwQha4hBD4m0hRUE\nIWtIUDQkUmYvCELWEIMegU5qGiYIQvcjkosgCEKXoO2hE1EewAiAMjPfRkR/B+DSxq+vAPBjZh5I\nYI2CIAiCBiaSy5cBvAHgMgBg5t+0f0FEuwH8dbxLEwRBEEzQklyI6CoAGwD8pcfvLgWwFsBwvEsT\nBEEQTNDV0J8E8CcApj1+9wUAP2DmX3q9kIgeJKIRIhoZHx8PuUxBEAQhiECDTkS3AfiAmQ8pNrkX\nwHdUr2fmp5i5n5n7e3t7Qy6zuxkeLWP1jn24dmgvVu/Yh+HRctpLEgShA9HR0FcD2EhEtwKYB+Ay\nInqame8nossB3Ii6ly6EQJp8CYIQF4EeOjNvYearmHkJgHsA7GPm+xu//iKAl5j5XIJr7GqkyZcg\nCHERNQ/9HvjILUIw0uRLEIS4MKoUZeYfAvih4/vfinc5s48riwWUPYy3NPkSBMEUqRRNGWnyJQhC\nXEgvl5SRJl+CIMSFGPQMIE2+BEGIA5FcBEEQugQx6IIgCF2CGHRBEIQuQQy6IAhClyAGXRAEoUsQ\ngy4IgtAlEDO372BE4wCOx7S7jwL4RUz7SptuOhdAzifryPlkF9W5XMPMge1q22rQ44SIRpi5P+11\nxEE3nQsg55N15HyyS9RzEclFEAShSxCDLgiC0CV0skF/Ku0FxEg3nQsg55N15HyyS6Rz6VgNXRAE\nQZhJJ3vogiAIgoOOMehElCeiUSJ6qfH93xHRWOPfSSIaTnuNJnicz2eJ6B8a5/P3RPSJtNeoi8e5\nrG2cy8+I6NtE1DFdPYnoXSI60ngfRho/W0RErxHRPza+Lkx7nboozueLRHSUiKaJqKOyQxTns5OI\njhHRT4loDxEV016nLorz+UbjXMaI6FUiulJ3fx1j0AF8GcAb9jfM/JvMvIqZVwH4EYDnU1tZOGac\nD4A/B3Bf43yeBbA1lVWFo3kuRJQD8G0A9zDzb6Bed/BAimsLw5rGZ8s2dkMAfsDM1wP4QeP7TsJ9\nPj8DcAeAv01xTVFwn89rAH6DmT8J4OcAtqS3tFC4z2cnM3+yYQteAvCw7o46wqAT0VUANgD4S4/f\nXQpgLYCO8dAV58MALmv8fwGAk+1eVxg8zuVyAOeZ+eeN718DsCmNtcXI51G/SaHxdSDFtUSGmd9g\n5q6ZQs7MrzLzVOPbgwCuSnM9UWHmXzq+nY+6bdCiIww6gCcB/AmAaY/ffQF17+mXHr/LKl7n8/sA\nXiai/wvg3wDYkcbCQuA+l18AsByP8ncCuDqNhYWEAbxKRIeI6MHGzz7GzO8DQOPrFamtzhyv8+lk\ngs7ndwH8TZvXFAXP8yGibxLRewDuQzd56ER0G4APmPmQYpN7AXynjUuKhM/5bAZwKzNfBeCvAPxp\n2xdniNe5cD1t6h4ATxDRjwF8CGBKsYssspqZPwXgFgBfIqLPpL2giMya8yGir6H+WXsmrcWFwPN8\nmPlrzHw16ufyR7o7y7xBB7AawEYiehfA/wSwloieBgAiuhzAjQD2prc8Y7zOZy+Alcz8emObXQA+\nndL6TPB8b5j5R40Yx42o67T/mOYiTWDmk42vHwDYg/rn65+I6OMA0Pj6QXorNENxPh2L6nyI6AEA\nt6Eeh+qYXGyN9+dZGEiWmTfozLyFma9i5iWoe377mPn+xq+/COAlZj6X2gIN8Tof1DXaBUT0643N\nfhszA6aZRPXeENEVAEBElwD4KoC/SHGZ2hDR/EZMBkQ0H8A61AOIL+BiYPcBAH+dzgrN8DmfjkR1\nPkT0OdQ/ZxuZeTLNNZrgcz7XOzbbCOCY7j47Jp1MwT3oHK1ZCTNPEdEfANhNRNMATqOuBXYqgw05\nJgfgz5l5X9oL0uRjAPYQEVD/23iWmb9PRD8B8BwR/R6AE6g7Ep2A6ny+AODPAPQC2EtEY8y8PsV1\n6qI6n/8D4BIArzV+d5CZ/zC9ZWqjOp/dRLQU9bjUcQDa5yKVooIgCF1C5iUXQRAEQQ8x6IIgCF2C\nGHRBEIQuQQy6IAhClyAGXRAEoUsQgy4IgtAliEEXBEHoEsSgC4IgdAn/H2KUUdwPSzGgAAAAAElF\nTkSuQmCC\n", - "text/plain": [ - "" - ] + "metadata": { + "needs_background": "light" }, - "metadata": {}, "output_type": "display_data" } ], "source": [ "# Check out how the data relates to each other\n", - "plt.scatter(dat[:, 0], dat[:, 1])" + "plt.scatter(data[:, 0], data[:, 1]);\n", + "\n", + "# Add title and labels\n", + "plt.title('Simulated Data', fontsize=16, fontweight='bold')\n", + "plt.xlabel('D1', fontsize=14);\n", + "plt.ylabel('D2', fontsize=14);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Task:\n", + "As we can see, there are features are indeed correlated. \n", + "\n", + "\n", + "Note that one way to think about PCA is as a 'rotation' of the data to a new basis. If we want to choose a single dimension to represent this data, we can see that choosing one or the other of the original dimensions (the X or Y dimension in the plot) would not be ideal. What we want to do with PCA is chose a new set of dimension - like drawing new axes into our plot - to best represent our data.\n", "\n", - "Let's say that we want or need a lower dimensional representation of our data for some further analysis. \n", "\n", - "Instead of simply choosing a subset of dimensions though, dimensionality reduction is the process of trying to capture the most information from the original space, in a smaller number of dimensions.\n", "\n", - "Note: here we are going from 2D -> 1D for simplicity, and convenience. In practice is most useful when you have an intractably large number of dimensions, say 20,000, and want to transform the data into a lower dimensional space (that captures the most information you can), but is much more manageable, containing, perhaps closer to 20 dimensions. \n", "\n", - "Here we will use Principal Components Analysis (PCA) for dimensionality reduction." + "In this case, we have 2-dimensions of data. What we want to do, with PCA, is chose a lower dimensional (in this case, 1D) representation of this data that preserves the most information from the data that we can, given the new dimensionality.\n", + "\n", + "Note that in this example, we are only going from 2D -> 1D, for simplicity and convenience. In practice is most useful when there is a very large number of dimensions, say 20,000, and want to transform the data into a lower dimensional space, maybe something like 20 dimensions, that is more manageable and usable for further analyses." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Applying PCA\n", + "\n", + "Now, we want to apply PCA to our data, to reduce it's dimensionality, while capturing the most information we can from the original space.\n", + "\n", + "To do so, we will use the PCA implementation from `sklearn`.\n", + "\n", + "We will use the `PCA` object to initialize a `PCA` model specifying any settings we want, that we can then apply to the data. " ] }, { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Initialize the PCA model, here specifying 1 component\n", @@ -191,45 +209,139 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "collapsed": true - }, + "metadata": {}, + "outputs": [], + "source": [ + "# Fit PCA to the data\n", + "pca = pca.fit(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `pca` object has now learned the principal component representation of our data. \n", + "\n", + "We can now apply this to our original data with `transform`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, "outputs": [], "source": [ - "# Fit the PCA model, and apply it to transform the data\n", - "out = pca.fit_transform(dat)" + "# Transform the data, using our learned PCA representation\n", + "out = pca.transform(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The returned variable is a new array, with our data, after dimensionality reduction. \n", + "\n", + "Recall that are original data was 2 dimnensional. Our transformed data is now 1 dimensional." ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 28, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Original data dimensions: \t (1000, 2)\n", + "Transformed data dimensions: \t (1000, 1)\n" + ] + } + ], + "source": [ + "# Check out the dimensions of the data\n", + "print(\"Original data dimensions: \\t\", data.shape)\n", + "print(\"Transformed data dimensions: \\t\", out.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By reducing the dimensionality, we off course lose at least some information.\n", + "\n", + "Using PCA, we are nevertheless trying to preserve as much variance as we can. \n", + "\n", + "Next, let's check how much variance we have kept. \n", + "\n", + "We can do so, our the sklearn PCA object computes and stores how much explained variance each component captures. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The proportion of variance explained by the first principcal component is 0.8861.\n" + ] + } + ], + "source": [ + "# Check how much variance is captured by the first component\n", + "print(\"The proportion of variance explained by the first \" +\n", + " \"principcal component is {:1.4f}.\".format(pca.explained_variance_ratio_[0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let's plot the transformed data. \n", + "\n", + "Note that in the plot below, the data is 1 dimensional, so the x-axis here is just index number. " + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJztfXuQXNV55+90jyQjR4iJjEBCaGQB\nkbGGxNbIZtg4xmA7CSkwMdixwbV5YpkqUol3U7VO7LXMyrWupPKyd5eKTUjWmy1QMAiCQ8LaYGOI\nE49AoxgzQhaIMZIGPZFHw9jCmkef/aPv6Tn36/O89/Ttvt3nV6WCmem+9zy/832/73EY5xwRERER\nEd2DSrsbEBERERERFlGwR0RERHQZomCPiIiI6DJEwR4RERHRZYiCPSIiIqLLEAV7RERERJchCvaI\niIiILkMU7BERERFdhijYIyIiIroMfe146Rve8Aa+bt26drw6IiIiorQYHR19hXN+ru1zbRHs69at\nw65du9rx6oiIiIjSgjF2wOVzkYqJiIiI6DJEwR4RERHRZYiCPSIiIqLLEAV7RERERJchCvaIiIiI\nLkMU7BERERFdhijYIyJKiNEDk7jj8f0YPTDZ7qZEdCDaEsceERGRHaMHJvGRu0YwM1fD4r4K7r5l\nGEMD/e1uVkQHIWrsERElw8j4SczM1VDjwOxcDSPjJ9vdpIgOQxTsERElw/D6FVjcV0GVAYv6Khhe\nv6LdTYroMEQqJiKiZBga6MfdtwxjZPwkhteviDRMRBNyC3bG2OsAPAlgSfK8+znnn8n73IiIMmD0\nwGRbBOzQQH8U6BFahNDYzwC4mnP+I8bYIgDfZow9wjkfCfDsiIiORXRihke7DspuQ27BzjnnAH6U\n/Lgo+cfzPjciotOhcmJGYZQd8aAMhyDOU8ZYlTH2XQDHATzKOd8Z4rkREZ2M6MQMixjtEw5BnKec\n83kAb2GMnQPgQcbYIOd8TP4MY2wLgC0AsHbt2hCvjYhoK6ITMyzEQTk7V4sHZU6wOpMS8IGMfQbA\njznnf6b7zObNm3m8aCMiIoIicuxmMMZGOeebbZ8LERVzLoBZzvkpxthZAN4D4E/yPjciIqL3EKN9\nwiAEFbMKwP9hjFVR5+y/wjl/OMBzIyIiIiIyIERUzPcAvDVAWyIiIiIiAiCWFIiIiIjoMkTB3oOI\nJV8jIrobsVZMjyEmgUREdD+ixt5jiEkgERHdjyjYewwxW7I3Eem33kKkYnoMMVuy9xDpt95DFOwa\ndHMGXEwC6S2ELlbWzXujWxAFuwJRw4noJoSswdIte6PbD6co2BWI5Vgjugkh6bdu2BvdcjiZEAW7\nAp1WZa7btYsIf/iuiVD0W6ftjSzohsPJhijYNbhh0xqw5L/tnPRe0C4i/NDONdENzvduOJxsiIKd\ngG6aGzataWt7ekG7iPBDu9dE2Z3v3XA42RAFO0G7Nw1FWbWLSB+1DmVdE52Esh9ONkTBTtDKTZNF\n2JVRu4j0UWtRxjURUSyiYCdo1abJI+zKpl10mtXTjSjbmtAhWnatQRTsCrRi0/SSsItUQYQLomXX\nOvSEYO8EraCXhF2kCiJc0EvKTtHoGsGuE96dohX0mrDrFqogonXoJWWnaHSFYDcJ707SCqKwi4hY\nQGhlpxMs805BqQW7mMjDp17TCu+oFUSoEIVAZyCUstMplnmnoLSCXZ7IvgpDX7WC+flm4d1rFEiE\nHe0WAmU/VDqx/Z1kmXcCSivY5Ymcr3F86O0X4oJzzlIutk6jQIreGJ24EduJdgqBdh8qeWFrf7vW\nWrTM0yitYKcTeWOS+i+ueuvUzVL0xi67IGkF2ikEfA6VTjyQTe2PNWw6B7kFO2PsQgB/B+B8ADUA\nd3LOv5D3uTbQiQRQCgFWtLYYTdRmtFMIuB4qQkiema2hWmHYdv0gbr58bWHt1MHU/navtU6zzNuJ\nEBr7HIA/4JzvZowtAzDKGHuUc/5cgGcbIU/kHY/vL4UAK1pbpO/rX7oYdzy+v+e1mnYJAddDZWT8\nJM7M1sABzNU4tj40hg3nL2v7nJnaX2Y6pBOtozzILdg550cAHEn+f5oxthfABQBaLthllGVRFa0t\nyu/rX7oY2x7e0/FWTbfD5VAZXr8C1QrDXI0DAGqcd4yyomt/WemQbqQrg3LsjLF1AN4KYKfib1sA\nbAGAtWvDm5RlWlRFa4vifWWxaiLqc7bt+kFsfWgMNc6xuIOVFRllpEPaTSG1AsEEO2PspwDsAPBx\nzvmr9O+c8zsB3AkAmzdv5qHeK6OMi6pIlMWqiajj5svXYsP5ywpRVrqNivBBN+4Lxnl+GcsYWwTg\nYQBf45z/he3zmzdv5rt27cr93gh/lH0Dl739OrSzX91IRZigGuuyrCvG2CjnfLPtcyGiYhiAvwGw\n10WolxFFTHqr3yE//7arLg7+/CLgKoBMY9mJG1jXr6La2mlURCv7rRvrbrP2Q1AxPw/gPwJ4ljH2\n3eR3n+Sc/3OAZ7cdRWgzrX5HOzWykJvURQCZ+tqpmqmqX0Bx4budREW0eo5CH2KdqCgAYaJivg2A\nBWhLR6IIbabV72iXRhZ6k7oIIFNfO00zFVD1q8i2dlLggW+/fQVryEOsUxUFoMSZp0WhCG0mxDtM\nC7xdGllo4eQigEx97STNVIauX0W2NS8VEUpz9ZmjLILV9RBz6U+nKgpAIOepL8rmPO10jt1lgbfD\nZBTtEpu0KI2mbBy7DmVpa2jN1bXfdzy+H3/+9X2ocaDKgP/8ixuC+I98fDlFr+/CnKe9gCIcKz7v\noAvfRXNoh3OoXSa+qa+d6iRTCbNObStFKyyzomkVGa79Ma3vdh/KUbCXDCptolMpBiCbcGr3prAh\ndPs6mat1QbvWX6sUB5/+qNZ3J8xnFOwK3LPzIB4ZO4KNq87GsrMWdZSAUWkTt111ccc4v/KiEzaF\nCa1oX6u5WnEQ9S9djMnTM8HXSDudr62wavL2pxO49yjYkdbA9h2dxicffBYA8C8vvAIGYMmizhEw\nOm2iLGa7TdvthE1hQiva10qNV64SyQFUGFpyYJZl/bkiT386wYLuecFONbAN5y1L/Z2j9QLGx7Tv\npNA0X7hou52wKUxoRftaOafiIBIhEq0KI+w0tLP9uvkssk09L9ipBrby7NcBmGr8nQEtFTBZQ7bK\nuNlcnbydfHCFbB/d6K3oqziIZmZrqKGusbcijLCT0Antp/NZdJt6XrBTDezWKy/CVRtWFsaxdzr1\nEBKu2m6nH1wh2lfURpcPIleOvexrkrZ/x+6JlvoYsrSp1WPaFYI9j4mj0sCGBvoLu62m06mHkLBp\nu51m/rci+kU8r+jMUp9nl31Nyu2vVhjuH53A7FxrfQw+bSpiTEufoCRrPn0Vhg9uvhA3bFpTaBJO\n3s3faQItK3T9cOlfJ5jPrWwPfd7Wazdi28N7vJNbfNZK3qS3UGuyXclxI+MncfjUa9j+1EHUJDEX\nMpkpS5vyjEPPJCjJms/MPMc9Ow9ix+6JQgRD3s3fDRUXBUwVCl1utT986jVlIax2HXihNWr6vMnT\nM94ONp/1pvqsaIerk77MMfqi/aMHJrFj94SXj6HVbSoCpRPsdOELE0eEcxURxSKQZ/O3u1RraOjG\nwjRG1Nrqq1YwP79wN2sewZQXoU1n1fN8HWw+603FMz+we6JwAdsOvp7uIdnHMHZ4KmjFwk7dr6US\n7Dra5e5bhrFj9wTuH51oCIYiTuQsm9+moXYSHeEDymsePvUaRg9MGsdI3vTzNY4Pvf1CXHDOWUoO\numjBFDo6x+V5NiGoG2PVs+i4MyC4gHURakVzy6Z666MHJht3/oaw6juNPpRRKsFuol0+9/7LcOOm\nNYWenkMD/dh67cZGBI0Qzi7mMdVQi3ao+cBlAwvBJQ7Y7U8tzI3rrfY3Et+Ij2BqheYknmObV5/n\nmZ5hE4KmMbaFjQLAjt0T3gLW5DdxEWp5YrqzZMya9lCr6bVO2a9AyQS7jXYpOkxOaAA/ma05Zama\nNFTx+U6LRvDRSgT1MjffXPLAZ9Or/gboBVOrNKeiNTIXrV43xrrPyr/3tUDu2XmwcZk2DUzwEWpy\nOwTnff/oBObmzdVIacasS3CE6XA0/S2LYtDJ0UOlEuxUY2k17eKS/n5mttb4maOuVeoWuU1DDW3+\nh4BqA4vfq9rou9hNh7GrYMrr69D1pR0amYty4jLGeatFjh6YxNaHxjCXhJNQC9nWBt29orKwBvTj\nqsqYdQmO8FEWVL4enwO8E/erQKkEO7CwOFtNu7imv1crrLH4AaDCWGORqzILXTSyTlogdAOrnJpF\nHU66scmqOdnmuFM1MtsYh7A0RsZPYl6OEUTaQjYVntO9nwprU1Y3zZhlyftdgiN8lAXR16wHeKft\nV4HSCXaBVg+oi6Y6NNCPbdcPYutDY5ivcVQrDLe8440YGT+JfUenG46aMl2aazuMXDaBqY+t4sKz\nHCa2vnSyRmYa4xCWxvD6FViyqC5YGQMqFYZajTsVntO9nzp/TbSKPPYimkVY6TbHMeC3zkIf4J0Q\nKVNawR4Sqolw1VRvvnwtNpy/rLEAb//HetJJpcLAOe9Ix4oOpogCue1ZN4FvHLbP5shyYA6vX4G+\nCsPsfP1QVvXFl76QfQJZNncIoSBru4wx9C9d7P0MlY8jr6DUPVP8TdUG+fc3blrj5Dj2tVhCHuCd\nEinT84LdJMxcNVXx+U89+Cxm5uqcu9Dgq+AtN+NDaQiu2njWTeCqSRa6OVhi5LN80c004gmMGZ2D\ntmfk6ffQQD1aSzg+tz28BxvOX+b9LCpYfegJE889NGBPXNM918VxnMVisR3grntM9+6itfieF+yq\neGlKRQjYNFVanOHqN63EWy48B/1LFzuHzNkWAP27aYOoPmt6tquml5VOcjV5i3JaCiHBAczPu71H\nN4apNs/X2WDfZLkHdk80HIt5+z15ega1NlqMtjWSdY5d1lArqBXXQ0j17nZo8UEEO2PsbwFcC+A4\n53wwxDN1CH3yUd5PF4bl4rACgL4qw/w8R7UCrFy2BP1LFyu5dl3fbOn39O8mDUFVm8TUDlnTm69x\nbH1oDACCFURz1faLclr6vsc0P3QdgTGvqK3RA5O4b9ehhnJQrebrd6c6fgWyts9lDYWiVkzJhCbn\nLH33HY/vX8i/ma3h8489j4+/52daKtxDaexfBvC/APxdoOcp0YqTT54IuWCQzplmow76Kgyb1vVj\n9OApbH/qICqMOWtOspBWLQCVEB9evwJ91USgSMKAfvaRsSNOi3Py9Azma3Vtcy4R7i5mvOuB66Lt\nu27MvIe8rwCw0XFZOWnxWRFdxQB8YChfIbuQvLFASKXK1D7be1zXUCiuXJVM6PNuGuHzr/tfwdMv\n/bClmnsQwc45f5Ixti7Es0wIbaLTIlwiecJXi5DbNTfPsevAZKOaHOd1rp05cO22BaDVcjhP/xfN\nGtE1g6vw9Es/tPaNhnDWOLfyhK06cG2cZyg+2vV7JqpKFzfuClWOQ17kFW4yfMfbNVuZriOX5KUi\nIO9pXTKhK8Qh9vnHnse/7n+lEHqsVBy7q/kmFggDtOFUowcmcdOd38HsPMeiKsP2LVdk1nLkdjHG\nUvG/1QrDtusHnVKibQtAZ+bNJRr2fI0bPyuid3RUkvibCOGscY7FDjxhUZy4jLzvzKJ9ylSV7JQE\n8tf4aYWGHRI+453l0BX7cWZ+Ye8URVuooDpo81pQH3/PzzgpVyFQmGBnjG0BsAUA1q7Nxtm6LH66\nQO4bncD2jzZXBtyxe6LxmZl5jh27JxoCMc+mbHDqs/WQx23XD3px1LYFoDPzXD7rQiWJjXjvx67Q\n8oR0Y7eDz80T0pdH21c5JYEwBbZCatihINdrcZ1jG6WogrwfBULQFlnpozwHre6dRR7ehQl2zvmd\nAO4E6hdtZH2ObfGPjJ9MohLq0FUGpMFteUt5yu1y1Yx9HDCm9+ZdLCptjNZ3sR0grVywOpoja0if\nT9ilLb9BjEMnOyp9QGPxqQOeWp66MeqrVupjDDfhTPff+WcvwfHpM7kOy7x0XZaD1vbOog7vUlEx\nLuhfuhgVBgjZrqsMeMOmNbhvtC7sqxWGjauXB2uDijscGT+J6ddmcde3f9CgOGwFtXwoAtfP+ggr\n+g6T8M7bBtNndRtF1p5NNXoo6mukHr9uqrXikt8g3ud7sOVxRLYqJlou+rU4oR/o5SDyhTC6yzx2\n7J5ATfL3mISz6MvG1ctTa/D33v0zqRumfA7LLNEsoSArDWdmaw0moGiECnfcDuBdAN7AGJsA8BnO\n+d+EeLYPRLXFeV7XAN62rh+fuOZSAM2VAYcG+nH7dfmTOFzaRAsfAW6CKO8Gdo15twlt6mTO015f\nLcpk1vcvXdxwUtc4nOiYxhpJEsi2XrtR+X5bBIzvwWbShH00yVZWskwV/Zqrr1fTga/KAZFj8QV0\nNWFoX26/Lm0RmCxfUz9colladTgOr69nM8/M1/1e949O5ObnsyBUVMxNIZ6TFyPjC9UWOYBdByax\n7+g0br58rVJwUb6UJiep4LsgxOKn3JNcLEz3njw3CPnEvAN+/Lvv5+Qx8+VfTZFCk6dnGsWhKqjP\np6pdskD9/GPPN+aDc679zsunXmsSCqa5t/1NHhuqCftokq2KDDt86rWU07/CGG7ctMZYbI9aesIy\nThX5quprwtC+UIvAtCZ1wREu0SwuazoPN//BzRfinp0HvRLfQqOrqJjmUD2k4rBNC9OUnCSQRVsS\nZj/n9ROcYSFSxlVT1fkJfL4vFqkvF+wqSHSfUyVK+cT0CmtCFSk0vL5eqMpUOpam+c8mgodBnQRE\nv/Pht6/FDUnooeng8rnS7vj0GSsVpENIRzXt66K+CubmFpz+8qGvArX0gAXL2Fbky7cvshP39q+O\nNQVH6GhFlbZsW9N5raIbkpo27fS5dIVgp6F6//UfnpVMdK4VRvLCtCUnAf7aEjX7b3nHG7HsrEVO\nWoBOG3J9t2rT+Dg5faMhdJtUpZX5xvQODagjhWz9Sb1bSvMHkvIPEg+s+s58jWP1OWdhaMAcFWRb\nF1SBeOL5E4018ZtXrGtE1rgIj5CO6hCx2lRh8mmba19kQcuw4D8D3BLF7nh8v9KnpIuoMs2na8kP\nlaO5SJResKtO1y2/sB53/ss4OEcjDlsHsTBdkpN8tSWZhuGcY9lZi4wcNW2XThtyvVxBtWlcnJwq\nLdu2SHXv0x0wppBOXRSMb3+oQJU1diAd90+/Qze9ae5Vf9PNhVAgOIBajTs70+lYhxAWLtqtC+7Z\neRCPjB3BNYOrcPPla72pC9vnZUFLobtC0OZTMkVU6eY6S8mPdgh1oAsEu46y4BxG5xiFi/YgPiP4\nPRvyms0+2pBpEfvCxn1S2JyrN2xag1emz+DcZUtSfVP1x7Q5svTnFy45Fz848SOsP/en8K4NK1N1\nvXVCQbfpTRUL5XVhqsUvKxDMo9xEKxBC+79n50F88sFnAQD/8sIrAOy1hXz5a7GPqFP259Ysx9br\nNgJo1soBs+ZtKpImxuWLT7yI46/+BPuOTmNooPk6QOqTC+3/yIPSC3aTA0fnHNPBVXAIrnvH7gmj\nNhvKbFYJTro5Qi4qm6lK22bjnuV7K+Ua2qrxDtUPmqi2/8SP8a3nT2D7R4eVDkF5PHWbXrc+Rg9M\n4otPvIhvfv84OOcpuoA6iOU1IZLZ2snFZj38xXh9fc/R1O8fGTtiFOxZtFr54JQPZSHUXQqz+dx/\nCtQP50efOwYAeGbi2abvUJ/c1ms3Kh3u7ULpBXsWyiIPaFSHHPerq5ho4uKowHcJUQSaF7OPMLbB\npLX6HCg0IshFWOexcmj0zSzJZNQlX+kcvK5OPZoKL0PlIKZrQtAYpnVg+32RkMerQkzXawZXGb/r\nGxUlIMaMHsom34eLlaUby0fGjjT9LEfXyT45WQ7IDvd2zQ/QBYIdyOfA8YUseLKa0jqthUYpfHDz\nhQCanaaq39121cWZMjF1gkKXOq86UFTVJeWxEhEwFaa/41JuR5b5UwnnRVWWEri6d+scvC5tUB0g\nFKboC3Hj1s4f/LAxXzRRSLU+OqVAFgPw3jefh5/Mzjc4dhNM4aumvujoPqoI9C9dnKJlTBaJ6W/X\nDK5qUEsAsHHV2Y3n0oKBshyQHe7tRFcIdopQziXds3WmNF1UOui03JQ2k9zIvqiqTrJQOeseGTvi\nddDIVEmV1LVRbRgRA05DDlXVJVVjpaOsVAXZXJ3MujGdPD2D7VuuwI7dEw1+X6dFqawd1zU0vH5F\n6gCpsLpvp5ZEvZjqsgtKD6gf1A/sngCApkQh1fooksOlhz9dG7deeZGzVSrWhE9UlGmdqvZjiINP\nPP+RsSPYuOpsfPk7LzU9t5MoNYquFOythrzp5ftOVYtKDhsUgo1ydeJiXuok4tCHoVH6iXLZrlE7\n4ju09rqgY8TClmOH5eePjJ9UVpdUjRVQ36T08PvSEy8qC7L5QBd94/IcE/Xk8l1xgIiEGQCNOR87\nPJX6vdx3quePvTwFAKlEIQBOkTlAa2ganZXgUozP5AT3qXRoWqfieTZaJgtuvnwtbr58rfa5KjnQ\nTopMRhTsGrhuEjG5n3rw2aZrzYBmgSsWuewMki/mVTmJ5DA0+aAQkLnsCoCfv/gNWt5S7tfwenPt\n9du/OobZeY5/feEV1KRnXHZBPRpBPF8XGuYS8QIA39h7LNVGGnEUunCaCnsOTzUuGPEVCroDRO7r\nxtXLmw7+Gzetwf27DjUOtWdfnsLeI69iUTKe9QAAOEXmtIqm0VkJtkPTZl34zJdpndLPtaIYm8tz\nW8kSZEEU7Any1PIYPaC+1szkPLztqovr2u58M1euchKJ96gOCursMwl1ykNf9aaVjWgOOeZfLqNK\nNcvBC5YbHVQ6IaPa7GJcBKoV1tBuVW0OVTiNjos8f6xiLvfgAtpX1Q1Wt111MbZvuSJFS8zXOK6+\ndCVeODaNAydPNx00smNa9Fn1vlA0TVZhGVIYDg30K+8IUH2uFf413XPl4n57jrzq5GMoClGww7+W\nhyoyRHetmcl5qKNkdBtYdVCcma1h7PCU04KmEQmffmiszgVXGT78trQnXxenX63U/3vPzoMpzlx+\np07I6Db7kkWVVP16l2flgWr+ZAeoIiHVG7SvuhusKC0hMlOFxk7XjO6gc6lYmQVZhSX9HqCONXfF\nzZevdaI7WqU5qyjFj9w1gp/MLtiyrnH8RaDnBfvogckmpyCHvqqdamPRTSyuNbM5D8XfVZQMoA9p\nlBM1OBYqyNkcjnI7gQUud04SamLzyWWN02CNAkcVhkb0jnwo6AS4TkiYBEdWjdEULkitlpdPvYZK\nZeHmK24oQ+EKVV91gkleB3tensKzL09paTWd1eNSsTJPX7I8T3wvFE2ks1ayIo9PQswDhSqOvx0h\nqqUU7FkHilaFA9IcuCjQZapqp9pYt111cUqAywvPtikaGv+8X0jjnMRfuFaQk4XNM4dO4evPLXDb\nx6fPNIVa3n7dxlSmpgjrki0GEb1DE49M8cO0naYxyqIxmgQJtVqEeS+iWSgllQdyv1zWrFzyVtBs\nlFZTHXSyJeeblOcCUzVF+jnXPWObR1U+h+o+VPH8LLIgz2GjUrKA5jj+doWolk6wq2K9Tfeayqbg\nh770bxCH7H2jE/jg0JoUtcEBgNVJCJ2wMWmjADK1TfdM1e9EfLmArta1DrIW9a19xxshhiuXLWkK\ntVyyaMHJl4r8SaglUTKXOoxV8ca6vrtyrD6bwSRIdHkIDMh1YbEJLpubOsAvu2A5Bi9Yjn1Hp1Nj\npTvoWuE0FG1XXTUp1pAc/aOrjupqdcnPkx3NW6/diG0P70kJUbl8iCoM0gZ5jfxktoZt/7gnFRBg\ngzwPJo69XSGqpRPsNNb77p0Hm0p3As2b6Z2XnNsQ6kCacpEXjE37NWmQtG1Uk1W1TRwAqtIEtqJa\nLqVRxftU8cTbtyzca7rv6HSqvLAsrOVMTTm8c+zwFO7bdQhz8xzVaj3W3aXOdas1GJMgofSYHH+s\nij6iGqNNa1VB1sRV2ZajB9L136sVhr1Hp/G9iammaCqVFZjHaWjLcD186rWmqyZVEV/ikKefEc82\nOR9pwEKFJP4Jx3PDuY2Fm9FoGCQAp6qKw+sXLsQAgGcmpnDTX48o70fWwUXhaFWkjg2lE+wqE2hm\nroYvPfEifu7Cc1IOMfmkPPbqT1LPqUiUixxeKJyY1Dkow6bNy3HoqlNadQAI7diFtqBOKRPn6FJU\nSy4vXGH1sanV1E44Si/cv+tQ/Q+cY8/hKat2UoQGYxN0ch9UvLeKhzfVADeBRtzQbEsgbeV9+O11\njU9UgATcSjFkgW5tyJmvfRWGapU1/DAq+gdAk9CVD3mV9WoKWADnqFQYWOIIlh3PsjIDAPc+fahB\nS84nwt316skPbr4Qd+882PidbAX4VDaVx1OlQLUyE16H0gl2MVDb/nEPnpmYavz+G98/jsf2HlM6\nNKsVhvPOfh0WVV/F7HzdwfRZcpGALOBl56BvOVVVHDoVjq4HgOk9JqcUrZniKmzF5vzgZj0lQZ8t\nJyeZnM6076GcobYxyvIcOmb3Pn0wVZrAZ67kiCkBnS9FpKMPr19RDzd1KMUg+pTFCtI5Yj/90NiC\nY73GG4cNtVZkjRcA+qoMH0qErs16pe+ma4cKVJ3jWQ6DpJq+bY5u2LQG90l5BH1Vhlemz6SsK9eD\nInRV0rwonWAHkkzB6zY20tArrO40Ujk0hZB9bO8x9FUYPnK5ukCPWGxz835Fq1RtEweFSWN0OQBs\n0G1MWVN6y4XngDGGihQGZ0sR19XlthXLGkwuBNfRFeK9vpcQhKJvVO1XZQtTpWDPkVdTz8kaz60r\nMUBDXgGk6CLbWNkOb91hpjpkH9g9kcp8ZckVebKmLSKn5CvgGIBf23wh/vv7L2t816S8qNacbc+o\n+i+HQcrUGg0fVmFooB+3v28Qn04u5qnVOB7beyyVzyAOCtvF1O3i0nUopWAH0hyxqlaDWMwMaESc\n6Ar0yE4bW9Eqk8ZH/+bCzw2uXq6s7md6roApQkJoSk+9NAkAjdt6xGEiFr9wOPnGwdNiWdThJScZ\niT5kFc6hNg19jippSMwLreKrsV6mAAAgAElEQVQnIGqA+7z/hk1rmsoNyNy9qFf/redPpEJebeGr\ndN26hueaaIIdSb0agavftNJIUclXE94ozTlVXubm0lVHdRSFzsdhAqXWVOHDumdMnp5ZKN8hGVYs\n6fsT+447XUyt2ovtrMRZWsEONJ/iQkACaa3VVCNZtVgnT88oNSXTJvGJ1pHfLYTh0y/9UFmfxLUA\nkuiXcMIJ81ZgPrmtR1AmgLo+jAmqxSu+Z6vTkUc4+9I3rgehLmlIjK0QvHIZaCrUbQc9LSsg1tbI\n+MnUhRy+NIJu3Yo+CK3aNu503kWZAxEtdeuVFzX+JjuB6cFu0rIHVy9X1uGh/hpVhI3rXpLfKSxv\nnzLRNGyxWqn3feWyJU0XUwPNzlXVXmxnJc5SC3YBWUDuHD+JS1edneItTWFsKi2UakpyhIBuk7hG\nxJjereO/XQog0YPlvW8+D9/cd7zh9KpW0jHoAvM17lUTW7eRbcI3j0Zjei+Fr4Zqy2Y0vdtmhaTW\nRMLXioO1wpAS5jVe9/1UDZmjJt+JWLc2usx2KMqWMFVqVGUzXBQCuQT0jIYq0kXY6PaSKZrH58IL\nlWVBM6DlC7qfOXQKX/jGC8qwTnksqKJDb1tqNbpCsFOhKpyqgkox3eVoE0hUYOoWjMohauPlTO+W\nNRiXAkiyNjVf4/i5C8/Bx668qBGiJ4pQ1eO3AY565AuHe01sQM912oSvq0aj27AuAgRwKz7l+1zd\nZ2zvkudXldwFzkXaBIB6CsWH3qb2AY0emMRNfz3SWCu3X5cW2KJk9DOHTnlp1a79fWD3RCPskZbN\nsKF/6eJGPaAaR6qAHdDsvKfKB+XnXaN5XC+8EP1VcfxDA/XKn3/77XGMv/JjPPrcAgdv2t/D6xfu\nKWDktqUitPcggp0x9ssAvgCgCuAuzvkfh3iuK1TmlEjHvmZwVcPsVTmhbAJJ3rwm7V8++b+SxHbb\neDmxaCjHThfuLe94Y+rSYyEYZeGv06ZEHzacv6xJsPrUxKZQxXXbhKRJo6GOX1McvE5Ts/HNIeCS\nWCb3t8kHIflvRH6FEBZc4wMCmmu375HqA4lnN9EJSW5BFk1Rnt+Nq5en1hfl022YPD3T0MIryc8y\nRJ0bkUMhSlW8a8NKfOv5E02KlC5oQM7InrP401wdtKLKqeqGLNv+FkWHeI1jDsXebZtbsDPGqgDu\nAPBeABMAnmaMfZVz/lzeZ+ugclJuvXYj7n36IMYOv4pajaMv4VDlBa8LXzQJJNeIEfk5DGji5VTf\n0XHsdOEuO2sR7v1Y2jyWhb8w6YG0NqXSbGSayacmNm23nI34908fwmc9sv4AKItWUQ5XHjc5pZw6\nfqlV9a4NK40Xa6j6Q8fWlXqxacPy2pKjN2Q+/MkXTljnQKXFimeLQ1L+DANw5c+cm+niCTq/otSC\neK6Ptg6gYXWqKjOOHqjfIjWX1Ln56DveiGVnLTLOhS5oQI7mqTCmVIB8xkPUkaI3ZMlUkW5/izDX\nxDBLxeWHVjZUCKGxvx3Afs75OAAwxv4ewPUAWiLYVZsLQEqAMyCVMJM3fFFVlta0mW9IYuJtm1Vn\nypuclKrv0oSOG6XoCxstkSV5YmQ8XQ1RJIa4Xk4hJ0TJ0TpfUVgd4vM3/fVIquiS7G+gVNyjzx3D\nkkXNkTm6triEQIp+i/eckTJIdT4Z1XpRRbq4zAF1asoas1gv1BqQy0T4xt7T+e1TrC8X0Lneem39\nAmrh3JUtkfkax/SZOfzhr1za+L5K6dKtW1WVUJUC5DIelPcXEIfPl7/zklO+hmjPLeTAajVCCPYL\nABySfp4AcHmA5yqhM8MoRycnzKjCF7OGU7mE7bkKTJ0p7/J9+l1VbLhLNIkstOSfTRhev6LpPlEd\n9y+DOqE56rHDNFqHaoXy5pch3qnyb7hsXJVDXBcCCaS5Yo56mdadP/hhqnYKLVSlOyhUVqccI65a\nUyqnpvibqm6JCP3ztcjo/C5OOH2f3AMBmT/nnGPs8FRqPN55ybmpzzcTHmqofCWqPSMHH/DEQe2i\nOcvtZgDOO3sJfnZN3W81NNCP924832qpiYJ9IiKNlqRuJUIIdlXp7qb5YYxtAbAFANauzV6vmAor\nER7VV61gbi4twOWkB2r+tjqm2tUpl6cqpEn4uyYDZYkvF0Lmi0+8qLykQwWdE5o6FYG6ViSSnYDm\nxcRYfdEtlqwZU8KXSoPWOcRp+rpIcgHq4bSMtGdmbuGuUqrh6Q4K8VlqderCZXUav0o5Ec8QzvCs\ntdTpdX9ZBJIqQkXO7BQhuVVWt6apJeLzHp1F1L90cUrhc9WcqRV0fPoMnnzhBD6WhH+a9qesNMic\nv49VmxchBPsEgAuln9cAOEw/xDm/E8CdALB582bXg7kJSodUshluunxtI1aYerZl+NyNaMvSzMuX\n0Q3pW8Igr7B2PajEc+Wx+Otf3+xk+QiuUuWElp2KAACGpnhnSkPc/r7Bpjned3Qae16ewlvWLMcl\n5y1rCCMRKSGogG3X179rcojTJJf7dh0CGGvKDRDgaI7sAOpZmxtXnd3kx6BjvmP3BA798LQyXFau\nbKjzK4g5plTRjt0T+Nz7L7NaA6q5dVFMTKCH54ffXt+bt391LJXZ+cTzJ1Dj9cP89velNVrXtWVa\n65OnZ1BJDo4KA5adtcjponQhZ3wDDNLUT/pvqjuBW4UQgv1pAJcwxt4I4GUAHwZwc4DnKqGL5RVZ\npS4OPFfhrFs0oYv6+AjX0M/LMhZUo3RZ6PSibeqEbsR4J7ueZoJSGkKsAwB4dM9RfPHJ8caz/v3Q\nKdywaQ1GD0w2RUpsfWgM264fbHKIi3EDFEku8xzCpqgAuGzNcuw58mq9qiUDBlcvx4bzl0mhjUk4\nKef48ndeUlpNchkB4RCWY7iFRvvI2JFUHsOn/+FZ7DlcD+elczy8fqFioRyxAZgVB1+rzcXZrNqb\nk6dnUiGTG1ed3bhUhNaRd22TT8ipHBbqSsH6BhjI7aE3cVUDXLnoityCnXM+xxj7XQBfQz3c8W85\n53tyt0wBW/KF66TphDNdoDI/NzNrvshXFf7nChfh6uMT8LEqXA8q6qC8Z2ddk1VV7aNjKDRZ3UXb\n8kXSgLrGvCww5IzNvgrDbC29g2bneUNIz5O/1RIBIqgbBqSeR4vICVNcoK+vnn267+h0KptSpj1E\nGQI5eUgoInTMxWfF+Fy2Zjn2Hp1OUUPfeXGhkNg8r0dcLao251QMDfSn6rfImZKuWcFyWWHxN7pH\nfOvtiPbtOzqdokWuWL8C+45NK9epq3KSKeSUUGA2OeASPKEKtxW1gVRJT61GkDh2zvk/A/jnEM8y\ngU62qVaJTeugwlmlIcj8XA3NiRXyd3WXEbjAdtC4Lkjb81zHQgWVg7JRD3/XIWzfcgUA/XV+YuNR\noU4zGuUKgfImkscgFd0w35xNu6i6oBktWVRJRUvJvgDhlFVFS4gicrIpLjt1RXidfOiLuvW0DIGu\nTr3qs1uv26icWzlrVQQHqHIqdBFZtNDY6IGF4lj0EPvX/a9g5/jJulAiSTWU7rn36YNN9I/oG12D\nI+MnGxYJQ50WyZrJLAtX15BTVTaoXKKX+jroXIn30r/LhzwNt1XNZREoVeapLgwQQNO9pfSEt2m8\numgbmZ/TXTn2wO4Ja1lXWUDpEqV0B40seGaS2172Hp021tJwEda+kUGyg1KOUpmZ59ixewIXnHNW\n0xjK1wbKGo/QlgGkLgKXKwTqxoAnGZsikUXw3wDwtnX9+MQ1lzb6o4oWoZuchovK0UnUFL8xoXi+\ne+iU9tCnQs2kfeoOYXk+RAVD6hxW5VTonifPHS2OJb4jSmGLAxMJAUVDcWW6Z8+RV+v1+xUJeXQN\nTr82m9LY+5cuTh1wsrVtUk5s+RkqqBy5DGg6lFRrWGfdiMPhK1JNeBpum9dXkRWlEuw6s0jF4con\nvAtfp9MQXCiS+3YdSv1O9356t6rw0AthLwt9eQGJOzmBuhARN+sA7nVpVO3OEg0zNFB3ZtJ6+Mww\nhlTjka2bPkIpyFER8hgI4QvO69SI5HAz1XsRP8vRIhvOX+YULiq+ryqFcEa6nV516NMNbdKYddSe\nyplpKm2re7f43cj4yQaX/5PZGv7gK9/Flnde1PBL7ZXKE1erDBVFiWFK9/Aax+AFyxtrcn5eXRdl\n9MAk7vr2DxrPZ1gYM91a1AlFUyKbCipHrtCmRT12cSjRUg10zw+vXygVUK3WDwdK97m2q5UolWAH\nmheticMVm4PWz1ANuEnTsWn68kUKqrKuNGJCOMK++OR4yjQVB5PgLuWLDOS1Q6kHuV/ifSbOUG5T\nFgtnaCCphy/VLhHaict4pZJf5jl+7XJ1mQaV8H1k7EiDGhEON3pwUMtI1VdxMbgo5yAiTWQeXO6v\n+JlmeVJ6RwddaV7VGJkO3TwaoEwtAsBLJ0/jkw8+i4Mnf4xlZy1qspx0hwilez70trXYd2yhDrqq\nLoqgrgRkR6JvZJaqfIYJKkeueD71STjV1hFeUc6xcfXyRmIUs9w+ViRKJ9gpdByuNnOsqo9v1mk6\nJgHZJHwUZV2FCSji7GVw8l/ZfyAvOhkMdR6Z1tJQcbmAmjM0cZiu2vwHhtY0OYt1gkcWuHLyi6lM\ng+6g+LcXT4Jx3rSpVdabrsIhLecAwMlHI/PRjAHvvvS8RtKKClkyH1VhizaNVLYodELpW/uOK7//\npSfH8d43n9dkOanoQUGh6W44oo5jmcJRZYbKY+ri7JcVKVt5A5f6QSqfhOnwFO8Xfg56EIjP0LyU\nolF6wa7b/FRLBux1VGQt34XX8+ECRZz9siV9qUxLlcYuzHVZG6gln6kQYaIL/6RZuXSjmdrtos3L\nY2FL3aefv/19gxg7POUUQUQP1tu/unBtm6iPo8porf897WSXeX3aR1PGKW2PyCiscZ5KWlFBRSfZ\nMh8pj/2VXYeMt1IJy0nQJ7LvZePq5Rg7PIVXps/gsb3HlO/jAB597hgWVfUVESmFtrivkgoQkLly\nlfPWtN5cLD15bFShqhSq6J0sRQBt79cdBO2sxQ6UWLCrtG0Z1NMvtDdTHRVAPyE2B5iNCxQm4G1X\nXdxIR6bcunzJwPanDqYW5PRrs40Kj6YMOB8/ga7dNg3Kx3RWfX7y9Aw+J12h5goVjSNHNogsUpqB\nTKNgROKP3EfTpRsUcn1x3zwBl2sBKY89Z/CjyOUW5uZFzMxCxJIJjEmsAvQ3jAHNY+9LaYq/+fgF\ndJ/zDc8Va07nYPWht1zpxpB5KVlQSsHuW6+FlhO44/H9SvPMNCE+5qJoo44LVJm4I+P10rp7Dk81\nHFzygrzj8f1OwkS+hs3VT0DbPTJuLkXgOhYuprAPhtevaKJx5MgGmtEqt5+Guqm4VBF5oqqRkaX/\ngDmU1ZRzISgCW/0bStNVKwt19nWoJlbfuzasbCgStksp6NhXq/pkmyx+AJ88ENk60I2hbo58IsFs\n79fBV1a0AqUU7K4nokqA2swzk3brU+XRlQukdE0NUB4GtsVC+7Zx9XKjRaOCK7fuorW4msK29tA+\n0BomAFKmv8+dlKpxEVmgplwEW/9NvhtVoTCTYmK78FxVbuHxfcfx6HPNtEtfleHqxC/z2N5jePKF\nE7j7lmHnSJvb3zeITyfx9BVmO/7c4ZIHYqr3Q8dQp5xkiQSj7XQJTPCld1qBUgr2rCeizTyzTQjd\noDfd+Z3Ghtq+5YrU5wVPqiqzqm2TZOrSw8DWNvk54ho2Uf/adQH7mJC6w4Ly3SZT2HQwyo5QuUaK\nrK2J77psIpfNRi+zeMDgtDT133YvLi0UZlNMTIJXCNx7nz6IJX0V7Dk8hZXLljQVK6syYFtSY+ex\nvceaIoRc1sfk6ZlGXXbTPQO+oDTPzFwtdV2jakx1IY+m8XdZ3z4+NkBP3WaxWkKilIIdUFMONrgc\nCK4TskNKShIJOk3fSy6SgEG7kdskUpBVMd22tsnPYYwtZEXONYdByv9PD6M8JiS1PmjKO43esN0X\nqrvrNUuCim38AHUYqS9MwoM69FWlE3zbLRzKYi0+9dIk+qoMi/qaLzQX2mvWOW4VxUBpHmDhukYR\nkkqTgu7X0Jx0/OWYelerV3VxvE9gQiegdILdNyJDRkgTiYpq+vPIeL2IlIiPNWllsi/AJVrEZv5N\nvzbbKIpV4/WMP1ngqlLFQ4wPjReWU96BtCC/cdMaa/GmSoWlImDEZ1wtC18+VXWZhe8zTMKDHuIi\n9TwPqLYLLOQGAGiicfLMcasoBpli2/PyFJ59eSplecoXgAu/io7mpGNMKS+b1atTJnTzmrXAWKtR\nOsGe1+Ps4nhxwQ2b1uC+0QVulx4wvg42AE0Hlo7Ts5l/dzy+P3XH5J4jrxK6p75RVDHSeUxIVSia\neBZ1XnI0+zOoRs8kfbOP+BsEzaWrmGejylQQAkZlVehKN6ie4RLWJ9e+8c0alqHSduWxpzROXueh\nzXrI+mx5X37krpGG5Slq9cvJh0CzX0V+jq4Ym412oglccpld3bxmrVXVapROsIcwB/M6UYBECHzU\nzMf7aDcqE5IWKHLVVofX15NBxBhtXHU2/uWFVwDUhX21AszXHC7jVYybqT+mPquEvix0gGaNXiQq\nKp3PjIGDY57Xy/bSdzpRZQrItInsJ/Ap3WASfvLhq5pHX+Eoa7uvTJ9puutVbkuIda9DqGerDj+a\nfAiYI73kQ8LnBilaFoIqDap5Vc3njGZfFonSCXZfgZklnd6nLTYKwIX7BZoFnxzGRzP4XPwEtAiV\nrMEPrk7X9nARKj4RMz5C31WjpzVkZucW7sn84pPjTReV26gyHVR+AtEeXchhFqjm0TbGuvlxtbLk\nda+y1vJo3KH2FJDuj64OkEuffWXF8PoVeJ0mO9YG+drEGtdXgi0KpRPsgPtC1m2UVsaZZtVc6CIE\nEq1ztm6SioWiW6y28giyBi/X9nAVKlk2rkvJBgGbRk+1/2qFpWr00HbZqDIdVH4CoJmrzgvVPJpu\n9gqhEQsKS5XRCuTLlmzVnspL/fhQiz4HAaUN5WsTWfJzUdfgqVBKwe4KnTDyPclDvNMFdBHKqevy\nVXH0c7ZNr+ov1YRs1wW68NoyfOPYbRo9/ewt73hj6tYkOcJEbDrXC5jlTarzE7jEevuCzqNJOIbQ\niIcG9BmtNme2y7OLjN0OTSvprGxVHR56Jad8baIQ7iKqp11ce1cL9v6li5NEiubaHD4nuQ4uRcHy\naC6uqesum57210eoNOAQvqlqk2tcvc+cLDtrUSpWm7H6QQj4aZ4qAaE7YEJsUFvVTFcfRdZ1pcpo\nnZmtYezlqabwVF/4jFFeJ25I6kcX5khpORFNRi96EcEIFQBrVyzFwR+ebgqLLOrAE+hawS6q94lL\njLdeu9G6wX0GP0tRMN93um7mEJve1m7X8E1Vm5hjVUMZLmND6ZjJ0zPeG171efkmpJDha66lMGwW\njVw5UPTBx9kqMlq/susQ5uZ5o8b/oirDuy89L3cIpg2haKUQQRTCSU7DHAGk4+clAS4Xc6O5J1ve\neVHK4au7PavV6FrBLjYsR/qiXFMIoSoxwfZ8n6JgMnzr3YiFqxI0KqGcRSPy4cBNG4mmdNPoBhra\nSN/pOjbbrh9MWQKq2GLbhtf1656dBzNl75oQIlQXgFNOgstzviJdEMNRF17f/P5x1Dh3iv7JqnVT\na07OMnVFXuqHauNyzsR8Itzl+Pk+IsB/84p1jRu5KK0p/xzSsvBB1wp2ecOKMrj37DyojDUdGdcn\nJuhgonl0sJXYNdETNs5aFsoh+Uff1H3du+XFDujpktEDk9ZrDgXElXGUA/WpS6M7FLc+NLZw3ZmD\nSe0i5EJomal1o7m+zvU5cySxCQzOllWeNSbGQb5jNQsfnYceo07yqy89D48nh1rFED9POXbRblqa\nRG5XOwqClUqwuxbhAZqLKG1/6mCKG5PDvahZL7IcAXUaPgAvmke0kwpmnwn34axDaQk+qfu6GjGy\nw1q0wRTDbbvmkEJ38PkICboRR8bTt/1UkqgkWw2YEMXTdFBVyqQ0gI/QGF6/AlUGyLL9bQP9+N7L\nU06WVd4ggbtvSV8UHkKb9bEg5MOFMYarNqzErVdelBLcqvj5oQF7oIGqry5VQ0OiNILdtwgPgIY2\nPjdfa1ylJkCTc4RZLyrXmdLwRQQBpXlMoBvB6QouCT6cdShHm+vdkrYaMaa+yJ+R6TN6zaF4j8kH\nEMrkHV7ffNvP5OkZbQ0Sn3dn0TJN1prou+9BMTTQj8/+6mWNao3VCsOvvnUNPnHNpU6Wlesa05Xj\nHRpovig8jzbre7APDfQ3RZ3JiovpHt0s+0u+C6AInj2XYGeMfRDA7QAuBfB2zvmuEI1SQbV5AHsR\nHmr2yZCdgIJTFxMtLrVQpeEfnz7jPbGqxeCzyanzjHLWus9mdfyNHnC/W5KatXKNGB/NlY4RFeqm\njRsyGklHz+hqkPhaX75QKQVCAI0emPR+nnxAflbyU1DhZtJMXdaYrRxvqHVqshRNMEWdmfamb7vb\nwbPn1djHANwA4EsB2mKEbuO6ZmHKZh+grqwnTzT1fNdQj/vlAJ54/oQ1RlqVnJN3EcuLzaRR0M/a\noNKqRsbd75bUxX679kX+nW6MbJsjxPia2ic/n9Ygka2vVtx1GdLBSw/IeukGtXCzHZaqOaR+JNut\nS77rlB62rpai6rviLuIsVJZPu0MqHa7IJdg553sBgAUsuq+DbuPqNjOdSNnsq2oKOtEJkE3eB3ZP\nNN1mbuKbdaGQpsXgwxHmcRzRd1Kt6vbrNjYtel09edGWUEJV1y+XzZF1TFzHXebzVRcgA2jcP7qo\nr6K9qMMXOgtC5eD11R5p6QZ5XE3z6lKgbuu1G5tuvPIRarYyz3Jf5uY5LltzNgYvWN60r1XtkhOM\ndPe8hgCNEAsVOmtDaTh2wFyER4ZOsNqEj24DjYyfbFws7XLq2rRL36qNuu/p+EsfUK1qZm7BMeuz\n6EMdNKbn560RpPp9Fqerri0+F3X4go6vysGbhRI0lW5QvRfQr1UVZURvvPLRzm1lninN+r2JKew9\n8mpT+QjaLjk+Xb7nNU/SVNY93SpYBTtj7DEA5yv+9CnO+UOuL2KMbQGwBQDWrjXHiOeFTrC6CB/5\nM75p8QIm7dJ1U6gOA9oW+YIF3VVuLok+qbssKwuOWdPlxjbIURyhNBXXw0M1VmOHp/DK9Bl86/kT\nqbjvrPynrL2L3AISPAiO/BmWOqgcvK7tdi3d4BsRk9ePJMPFshB92faPe/BMUtROVcmTtkt1cXkW\nISyvcV0YdTti2AEHwc45f0+IF3HO7wRwJwBs3ryZ7oGgCMVpmZxWJmThim1tVmkdNv7SNdFH1qqW\nLenDXd/+AXzi8ylUYYvy+1sl7ATkaJ6Z2Ro+/Q/PgoZsU60vy1pRhrBWF65DHFy93DvxzRUm69KV\nUvLpm0tEjI9V5Zt1rbMshgb6MXjBcjwzMdX4LiWGVe3yrZVkGp+KJkqtHdy6QKmoGFeE4nzliWEM\n+Pqeo+hfuthpc/pyxbY2q7SOneMnjfyli8YgNtiNUoU/n/h8+Rmi3XLYIpCuvCje4WIFZTkAaDQP\nqzDUammpLjvO6bgD6uxeFXTUg+w89E1884HJusxr9tO+yeGd8phRZ3HeQ0Pum6tl4VLJk7aL/uwr\nhOXxkQMtsh50oZE33PH9AP4ngHMB/BNj7Luc818K0rKcCMH5ion54hMv4tHnjuGZiSk8M/EsAKSE\nu6/TUzfZpjbrtA4Tf2lbrDoe0yc+X7VJKfcpJxrJG0KVaAU0Z/f5CCoazXP1m1biiX3HGwdgX5Xh\nQ8RxLtMqPsLRRj3sOzoNxgCRPiFf7yfGLtSmD2H266pcqq6YE8+Wo1LEVX8bVy830m+ubXXdw0MD\n5ktvXOArhE2BFq57upXIGxXzIIAHA7WlIzE00I+fzM6nfvfI2JGGYM/qfMu6+FwWjWsZAJ8ICR1U\nm/S2qy5OaXR0wesSreRbo3TmrQ10w9165UW49cqLnBx4vsLRJAxEETo5vFauZxNaw85r9puqXKqu\nmKMc8sw8x9efO9Z4HqXfQrZVhVCKnOsz2qmNu6C0VExoD7YJ1wyualwtJ34WaKeDRAXXMgCqOF5b\nhIQKJmpJp4XpEq3kW6N05q0NPia8a19s7zNppUCSRXtJOos21LrxreWjg+6AFpaM6oo5MV6CbpJh\nKyEdQija9nGrfTm2g6DV7zehVILd5oV2fYavpiS080fGjuCawVUpGqadDhIVXASGnNiiCmn0WYRZ\nNqm8IWgRL1mAZI39zWMRhRI4L596DZUKA5/n6KuypuqFIdaN7hCXI3Vc+2Bqj+mwpCWABWx1fvJq\n2LZ9rCtBUpSgbWeoI1Aiwe7ihXaB7NCamXX/rlxJcPTAZNPi7hSTzIVXlxNb5nKENAqE4hE7YSxV\nffHRvGhEEADlxSQh+qo6xIFsV9zZ2kPHRR6Tz73/MtyYXODBACvH7gvV+JsUGFWFUN3l8K2Cbm6K\nWtulEewqLzQ4T90H6oL+pYsXojXgfums6QTOIthaZaapNihN886S2NIKjB6YVGZqtvtwlOGredGI\nIEB/MYlPX1XrRXWI56F4XNtjyqwODd27dAqMrkKo7nL4VoG2r+gLN0oj2OlA/eYV6xqFuuT7QCno\nhpg8PYMKq3OAFQaMHZ5yMltDcumtNtPkTaaKtc6S2NIKtDJTU4Usmbq+826KCMrTbp/bulyrLuoU\nC5vSEdqvlKVqp67v8sFKa6mr/AStgkxTMQB7Dk8VerCURrDTiRwZP2mlY0yheLYwLgrVCZz12rQi\nHa6qWOuscduhocrUbBVslQZ1cOHCqWAyRQRlgWm9UE3ZheIxKRYuSkdIv1Keqp0qK4F+XvZtuIxL\naCtaKC8u5axDojSCHfC/mcQWiqcL49K9m0ZzZNW4i3S4mmKtXRxMrfTs37hpDe7fdaiRqWkqNJYX\nI+P2SoM63LBpjVbLLz95SdIAAA4CSURBVIKW8F0vtvebDgoXpSOkL8T2Pt93mT5vGhdfK9plX8h9\ncylnHRKlEuwyXCbcFoqnC+MyvXNooJ5+nMUB69P2UDC9i24q6mCSq+DZFnuWA2BooD+VqRny2RTD\n61c0VRq0WV10s29cvdzLiRcKodeL6aBwPURCHV4u7/N9V5a2+cyj6yFA+zaYOJWLQGkFO2CfQNuG\nyLphsjpgXdt+z86DytBKF6iEoO5ddOFRB1PqlnbDYs/jM1C1zVauNYtAEYeIHLmhOrSoo9mWJZun\nprdv+/P4dOQ1YdNqQx4itkO5SCXHBB+ryPUQCGnl+6LUgt0FLsLfd4CpAzbkKXzPzoP45IP1sgUi\nKcpVuPsKWLqpgLSDSVUFT4WUAAzsWFaVa81KEclzrSr6BDTXsXHJkm11Te+sEBapyo9kWvehtHHX\n6qihqSuXduli8l3WlM8hIFv50Xna4WglR/7I2JGmn10FexZagG4qWxU8FfqXLm6kztc4MP3abDDH\nsqrMQYioIpdQQXozki5LNk9541ZBFU9fdGa0zeJpx3jpQmwB9xyGLFZGkX41IAr2TMgysa4apql8\ngQ0uyUm2NtDF7aJNTZ6eAUM9qoUBjTDUEI7lwdXLgeS5QiMOof3o5tBU1MuUJduuXAAdaDy96irI\nVkOeS8YY5ms8k18qZOkAnxDbkLkrRVNOUbBnhM/E+miYpvIFLm0yFaUKFTtPN9Lw+hWN26UoZZHH\nsUx5SVGONZT2ozrEfLIvO4Eb1oGG9aqugmw15PGcfm0WX3xyHEC4xECXv1P4hNiqLGDx+yxzXiTl\n1LOCvRU3/OggX/ygqm1NcfPlazNfyKBbPKGiN2QTX748QkdZZBG6Nl6yldqPz+Yrmhv2ge8YtTIT\nWsxlFr+Ubd36rmufEFtV7ko767/4oCcFu+2Gn9Dvuvfpg6mLH1yTokIilJY7Mq6/PEJFWeTpm29y\nSkQarmNURMGqrOuvf+liVFid6FN9L0uMvxxiC+gT9Ojh6HKItLOio4yeFOyUf2ylp3rH7gkklB4A\nYN2K12P8xI8KL/ProsG5LMrh9StQrbBGETF6eYR4V4g+Fc1L9ipsAiuEsMrql9r28J7UjV5AWhDb\n6EdTopLrTU7y72w+rE7R6HtSsItTPmQ9Dx1oXb/1b3g9JiZPt8XpZhK4rotyaKAf264fTEU4tLIP\nUTNvPUxab0hh5TuXsgLGOcfY4SllLLgumsXWbl8ax3Y4FZGs5oqeFOzUQddKjp3ex/ixKy/Cx668\nqOO0UJ9FKZcwbid/24koY19NAqtdwkp1EYxPhUaXdocOQSw6pNGEnhTsQBhN0DV8UHUfY6dt+ixc\nZafwty5tKELYtqKvRbVdN5+tEFYu4YvyXaoi+QtwDzFVOT4pl+5DD5mSvQQ6iTrsScEe4lo9nxTh\nMtAJrViUqgsPijZPizxYQmu3nXAoZuXGdZ/3pUho8pcrn06tct1eddmbPslenbLXe06w59ksoW5x\n6lSEXJS6Cw9abZ7SDV4klRBau+0UztZnXZgyO4H8FIkPny7+5U1o64RkL1/0nGDPs1nk72a9bLlX\nIG8G+cKDoqmQInnP0FZPJ3G2rrBldrr0yXccbXs67zh2QrKXL3pOsOeZZPrdrJct9wLoWLVaqAP2\n+vtFzFNIq6eTOFtX2DI7XfvkM462PZ13HMs4D4zz7PfWMMb+FMB1AGYAvAjgtzjnp2zf27x5M9+1\na1fm9+ZFCI69LBOcF2UaK6Gxiw1eFCfda2vCBHFTlcjs3L7lijgHAcEYG+Wcb7Z+Lqdg/0UA3+Sc\nzzHG/gQAOOefsH2v3YLdF+1cNO1+d7udd75o12FSpjFqNTpJyHZSW0LAVbDnomI451+XfhwB8IE8\nz+tE3LPzYNvKjbZbaGT1R7RzMxUdldApDs5OQqdEhrR7/7QTlYDP+m0AjwR8XtsxemASWx8aw1yN\npy6RKAq66nJFQXCXVY+IFrGZ/vzr+/CRu0YwemCygJa2D1nGKKIYtHv/tBNWjZ0x9hiA8xV/+hTn\n/KHkM58CMAfgbsNztgDYAgBr12arXFg0RsZPYr62QFVVGCt047Y7KiKL06jXNNgyOtZ6Be3eP+1E\nLo4dABhjvwHgVgDv5pyfdvlOWTj2hik3W0NFKlFbdBvKJDTa5cCMiFChbPvHhqKcp78M4C8AXMk5\nP+H6vbIIdqCcC6PdbW73+yMiVOiGdVmUYN8PYAkAQV6NcM5vtX2vTIK9bOhlh1FEhA7dsi+Kioq5\nOM/3I8Kj1zjuiAgX9Nq+CBkVE9EBiFEaERHN6LV9kdt5mgWRimktuoFLjAiLuCa6YwwKoWIiOhOd\nkiAS0RnoFn45L3ppX0QqJiKiy9HLiTq9iijYIyK6HL3GL0dEKiYiousRs2N7D1GwdwG6wSkU0Vr0\nEr8cEQV76VGUYyweHhER5UEU7CVHEYkXMaoiIqJciM7TkqMIx1iMqug8jB6YxB2P7+/6ssgR2RA1\n9pKjCMdYL5c/7QRQGixaUBE2RMHeBWi1YyxGVbQPKiHea3VPIvxResEenXrFIEZVtAcqIR4tqAgb\nSi3Yo0ka0e1QCfFoQUXYUGrBHk3SiG6HEOI7dk+Akd/HtR6hQ6mjYmKqdESv4IHdE9j+1MGuvyA8\nRvuEQak19miSRvQCesUyjdRqOJRasAPRJI3ofvSKs7RXDrAiUHrBHhHR7egVy7RXDrAiEG9QioiI\n6BjE8GUz4g1KERERpUOkVsOg1FExERERERHNyCXYGWOfZYx9jzH2XcbY1xljq0M1LCIiIiIiG/Jq\n7H/KOf9ZzvlbADwMYGuANkVERORAjAWPyMWxc85flX58PYDiPbERERENxFjwCCAAx84Y+++MsUMA\nPoKosUdEtBWxdn4E4CDYGWOPMcbGFP+uBwDO+ac45xcCuBvA7xqes4UxtosxtuvEiRPhehDRlYh0\nQjbEMhsRQMA4dsbYAIB/4pwP2j4b49gjTIh0Qj7EWPDuRSFx7IyxSzjnLyQ/vg/A9/M8LyICiKnl\neRFjwSPyJij9MWNsA4AagAMAbs3fpIheR0wtj4jIh7xRMTeGakhEhECv1EaJiGgVYkmBiI5EpBMi\nIrIjlhSIiIiI6DJEwR4RERHRZYiCPSIiIqLLEAV7RERERJchCvaIiIiILkMU7BERERFdhrZcjccY\nO4F6QlMWvAHAKwGbUwbEPvcGYp97A3n6PMA5P9f2obYI9jxgjO1yqZXQTYh97g3EPvcGiuhzpGIi\nIiIiugxRsEdERER0Gcoo2O9sdwPagNjn3kDsc2+g5X0uHcceEREREWFGGTX2iIiIiAgDSiXYGWO/\nzBjbxxjbzxj7w3a3JwQYYxcyxh5njO1ljO1hjP1+8vufZow9yhh7Iflvf/J7xhj7H8kYfI8xtqm9\nPcgOxliVMfbvjLGHk5/fyBjbmfT5XsbY4uT3S5Kf9yd/X9fOdmcFY+wcxtj9jLHvJ/N9RbfPM2Ps\nPyXreowxtp0x9rpum2fG2N8yxo4zxsak33nPK2PsN5LPv8AY+408bSqNYGeMVQHcAeAaAG8GcBNj\n7M3tbVUQzAH4A875pQCGAdyW9OsPAXyDc34JgG8kPwP1/l+S/NsC4K+Kb3Iw/D6AvdLPfwLgL5M+\nTwL4neT3vwNgknN+MYC/TD5XRnwBwP/jnL8JwM+h3veunWfG2AUAfg/A5uTKzCqAD6P75vnLAH6Z\n/M5rXhljPw3gMwAuB/B2AJ8Rh0EmcM5L8Q/AFQC+Jv38RwD+qN3takE/HwLwXgD7AKxKfrcKwL7k\n/78E4Cbp843PlekfgDXJgr8awMMAGOpJG310vgF8DcAVyf/3JZ9j7e6DZ3/PBvAD2u5unmcAFwA4\nBOCnk3l7GMAvdeM8A1gHYCzrvAK4CcCXpN+nPuf7rzQaOxYWicBE8ruuQWJ6vhXATgDncc6PAEDy\n35XJx7plHD4P4L+gfq0iAKwAcIpzPpf8LPer0efk71PJ58uE9QBOAPjfCf10F2Ps9ejieeacvwzg\nzwAcBHAE9XkbRXfPs4DvvAad7zIJdqb4XdeE9DDGfgrADgAf55y/avqo4nelGgfG2LUAjnPOR+Vf\nKz7KHf5WFvQB2ATgrzjnbwXwYyyY5yqUvs8JlXA9gDcCWA3g9ahTERTdNM826PoYtO9lEuwTAC6U\nfl4D4HCb2hIUjLFFqAv1uznnDyS/PsYYW5X8fRWA48nvu2Ecfh7A+xhjLwH4e9TpmM8DOIcxJq5r\nlPvV6HPy9+UAflhkgwNgAsAE53xn8vP9qAv6bp7n9wD4Aef8BOd8FsADAP4DunueBXznNeh8l0mw\nPw3gksSjvhh1J8xX29ym3GCMMQB/A2Av5/wvpD99FYDwjP8G6ty7+P2vJ971YQBTwuQrCzjnf8Q5\nX8M5X4f6PH6Tc/4RAI8D+EDyMdpnMRYfSD5fKk2Oc34UwCHG2IbkV+8G8By6eJ5Rp2CGGWNLk3Uu\n+ty18yzBd16/BuAXGWP9iaXzi8nvsqHdTgdPB8WvAHgewIsAPtXu9gTq0ztQN7m+B+C7yb9fQZ1b\n/AaAF5L//nTyeYZ6dNCLAJ5FPeKg7f3I0f93AXg4+f/1AJ4CsB/AfQCWJL9/XfLz/uTv69vd7ox9\nfQuAXclc/wOA/m6fZwD/DcD3AYwB+L8AlnTbPAPYjroPYRZ1zft3sswrgN9O+r4fwG/laVPMPI2I\niIjoMpSJiomIiIiIcEAU7BERERFdhijYIyIiIroMUbBHREREdBmiYI+IiIjoMkTBHhEREdFliII9\nIiIiossQBXtEREREl+H/AzESBEM10hQ6AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEcCAYAAADHiMP9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO29e5hdVX03/vmeyQWiIQz3hJCJAYySWG0mSpAqoGilv4A1aPHSVlo12pe+lb7tUxU1Rtr61p+9YN/yqvHyYt8CAgZBUaqgCIhMTCZVSMBcGJhkSAJJmIRgQuZy1vvH3uvMOuustfZa+3LOPnO+n+fJk5kz++y91tprfe8XEkKAwWAwGIxKqwfAYDAYjHKAGQKDwWAwADBDYDAYDEYMZggMBoPBAMAMgcFgMBgxmCEwGAwGAwAzBEaOIKLfIqJbiWiAiI4S0X4iepyIbiOidyjXzSciEf+7oYXjvUEZx/wU3z+eiFbH/34//xECRPSUHKPHtauV+QgiGiWi54hoczzX8zOOZb4y3wuz3ItRTkxp9QAYkwNE9DsAfgJgqvLxCfG/VwA4COA7LRhakTgewGfin78J4I4WjsWEKQC643/nAHg/Ef0vAB8V6RKQ5mNivgDw06wDZJQLrCEw8sLHETGDKoDfB/ASRMzgXADXAhiQFwohnhJCUPzvyhaMtRPwWUTnezaAjyBiyADw3wF8ulWDYpQbzBAYeeHs+P9DAH4khDgshBgWQvxCCPEZIcTn5IU2k5FmwnkHEf0HER0iot1EdA1F+BMi2hZ//lMiOsfjvt4mKiJ6KRF9k4gejU1eo0R0gIgeIKIrlOtWA3hS+er7Lc9eRkTfIaJn4nvtiuc5X3suEdHHiWgHER0hop8R0VKPdbdCRNgjhPgKgCuVP32MiE6InzuPiL5FRL8mouF4jPuI6IdE9BZlfDcAuE+5x2eU+a6Or7mKiO6P5/hiPI9fE9HniWhmlrkwmgM2GTHywk4ALwcwC8BWIvo+gIcBPCCEeNL5TTPWADgp/vmlAP4ekbZxmXLNBQC+R0QLhRBjqUdej5cC+GPts1kA3gDgDUR0jBDimz43IqI/AHATgC7l49kA3g/gUiJ6vRBiS/z5Z1BvjjkfkQmOwqfQCCHEHUS0FdE7mgHgzQBuAzAHwBXa5ScCeCuAi4noYiHEffDDpQDeqH22EMDfAHgtgDelHD6jSWANgZEXrgMg7dJzAXwYwA0ABojo50T0msD77QEwD8A7lM8uQ8QYZmHCH7EAEaPIC4cQEcj5iAjnMQBeD+Bw/Pe/BAAhxGoAL1O+903VDEZEMwB8CREz2IjIjzIdwEUARhCZ074ARM5pAB+L73MUwO8i8k98FRGDygu/Vn6eH/8/CODtiN7ZMYhMfZfGf6sA+CgAxKa9i5Tvf1aZ7+r4s+sAvAbR3KbG9/zP+G8XpdgDjCaDGQIjFwgh7kIkdd4HYFz783kA7iKiEOL2RSHETgA/VD4bBfD3QojnMUFogIhx5IXDiDSTWxAxpSMAfo6IOQCRxOuD8xERRgBYgogYH0W0PtPiz6VJ5jxExBgAfiCE+JEQ4iCATyGac14wnff9AF4F4Pvxz78B8D3l777zBYC9iLSczYjWbQjA21Lei9ECsMmIkRti08J9scT7ekSS5gcQSYunIyJ893je7qn4nkeIalaTZ4UQR+KfR5RrpyfcK2SffwzA/3T8/RjH31Sc4nHNMUT0EkQmGokh+UM89/0ATvN8ZhJeofwszXj/ikibs+FYnxsT0QIADyZc73UvRuvAGgIjFxDRcfJnIcQBIcQPhBB/hshsJHFCwxftMPkEkvwER5WfVcK9IOC571Z+/n0A04UQhEh61uEK3XxW+fmrinml9g9ARQjxGwD7lGvnyh+I6FjUM4vUIKJ3Ajgr/vUwgB/HP8v5HkXExKcCOA5muOZ7GSYI/n8AOCGe4z+nHTOj+WCGwMgLd8RRQcuJ6GQimkpEi1HvZHy84DHswQRTOJ+ITojNVJ8KuIfKdA4AmEpEn4aZMKtM4uxY2pf4OYDh+Of3E9F7iWhmvDbnE9EXENncAaAPwIvxz79HRG+NGezfoT6vIwhx5NKpRPQRAF9X/vQPQgg5NjnfKqL5vgSxb8MAdb6vJKJpyu/quh0G8CIRnYdGBz2jxGCGwMgL0wC8D5H9+VlEJp1HMWE3vlMI8UiRA4iTrW6Of50LYBciItYbcBs1ee6nAF4A8BeIiKX+vBcQ2cuBSLp+IQ7DvDKW/K9CRGinAbgRwPOI1uZnAP4akXMcQogDAD4f32c6Ir/JQQB/hglndig+Ez97DyLntpT6/xURo9HneyyAx+J52qKBtmNCm/kDAEfj+V4I4G5MMLWV8bhVpshoAzBDYOSFTwP4IoANAHYjcoYeBvBLANegMbSxKFyNKGt4LyKm9F0AywO+/3kAnwPwNCLH6P2ICORBy/V/BOABRMS+DkKImwH8DoC1AJ5BJEXvRbRGnwfwT8rlnwXwCUQ+hKMA1iFyOu8NGLuOcUQE/jFEa3K+EELPUv5LAF9GxKh+A+AuABebbiaEeBHRe+yHxqiEEE8gMhv9FyLG8CSA/4Yo7JbRJiBuoclgMBgMgDUEBoPBYMRghsBgMBgMAMwQGAwGgxGDGQKDwWAwALR5pvJJJ50k5s+f3+phMBgMRluhv79/nxDiZP3ztmYI8+fPx4YNG1o9DAaDwWgrENGg6XM2GTEYDAYDADMEBoPBYMRghsBgMBgMAMwQGAwGgxGDGQKDwWAwADBDYDAYDEaMjmYI/YPDuP6+7egf5Aq9DAaD0dZ5CFnQPziM932tDyNjVUybUsGNH1yG3p7uVg+LwWAwWoaO1RD6BvZjZKyKqgBGx6roGzB1SGQwGIzOQWkYAhEdQ0S/IKJfEdFmIvpskc9btuBETJtSQRcBU6dUsGxBLq1rGQwGo21RJpPRUQBvEkK8QERTAfyMiO4WQvQV8bDenm7c+MFl6BvYj2ULTmRzEYPB6HiUhiHEbf1eiH+dGv8rtJ1bb083MwIGg8GIURqTEQAQURcR/RJRf9d7hBDrDNesJKINRLRh794s7WYZDAaDoaJUDEEIMS6EeA2AuQBeR0SLDdesEUIsFUIsPfnkhuqtDAaDwUiJUjEECSHEAQA/BfC2Fg+FwWAwOgalYQhEdDIRHR//fCyAiwH8urWjYjAYjM5BaZzKAGYD+CYRdSFiVLcKIe5q8ZgYDAajY1AahiCEeATAb7d6HAwGg9GpKI3JiMFgMBitBTMEBoPBYABghsBgMBiMGMwQGAwGgwGAGQIjBbiPBIMxOVGaKCNGe2Cy9JHoHxzmwoYMhgZmCIwgmPpItBtBnSxMjcHIG2wyYgRhMvSR4OZIDIYZrCEwgjAZ+khIpjY6Vm1bpsZgFAGK2hC0J5YuXSo2bNjQ6mEw2hDsQ2B0MoioXwixVP+cNQRGR4KbIzEYjWAfAoNhAYfXMvJAO+0j1hAYDAM4EomRB9ptH7GGwGAYkEckUlbJsJ0kS4YZ7RbRxhoCg2FA1kikrJJhu0mWDDPaLaKNGQKDYUDW8NqsCXyTIQGQ0X5h2swQGAwLskQiZZUM202yZNjRThFtnIfQRuDY+fZC1vfF75tRFDgPoc3BNuX2Qh7EvIySJTOpyQ1mCG2CyWJT7gSCMlmZd1nm1Ql7qFVghtAmCLEpl/XAlIWgFI3Jwrx1lGFenbKHWgVmCG0C32iFMh+YMhCUZqDVDuGiBIJWzwvonD3UKjBDQHklah0+NuUyH5gyEJQ8Yds3rQw1LFIgKEMIZSv3ULvQiSzoeIZQZok6DcpMdMtAUPJC0r5plUPYJRBMBkd3q/bQZKMTNnQ8QyizRJ0GZSe6zSAozZDkyrpvbAJB3gStldJyK5hSWd933igNQyCiMwD8O4DTAFQBrBFCfLHo55ZZok6LVktxrUQawpeGuJV139gEgjwJWqdIyyqKeN9lNEGVhiEAGAPwV0KIjUQ0E0A/Ed0jhHisyIeWXaJmhCGU8KUlbnLfrN04BMpzAjnAJBDkSdBsBdsm8xnKm0747LtWMIzSMAQhxG4Au+OfDxHR4wBOB1AoQwA6W6KWKIu0knUcoYQvq+R8+8YhjIxVsXbjUKkl5TwJmr7G3TOmdYTGkCedSNp3rdLCSsMQVBDRfAC/DWCd4W8rAawEgHnz5jV1XJMVZTEB5DGOUMKXRXJOo420kunmRdD0NW6Vfb3Z65nn85L2XavWtHQMgYheCmAtgKuFEM/rfxdCrAGwBohqGTV5eJnRaqJgQlkcZnmNI4TwZZGcQ5MFy8B084K+xs32pzR7PfN+XtK+a5WPqlQMgYimImIGNwohbm/1ePJGWYlCWRykJlPE9fdtL5x5ppWcQ5hJWZhuEbCtQ5HCT7PXs4jnufZdq3ybpWEIREQAvg7gcSHEP7d6PEWgrEShLI51dRzdM6bh2rs2l4556vBlJmVhukVBX4eihZ9mr2cr3l8rfJulYQgAzgfwRwAeJaJfxp9dI4T4QQvHlCvKTBTK4liX47j+vu2lZJ42JEnDZWG6zUJewk9ZssE75f2VhiEIIX4GlC6CL1fksanyVMPL5s9Qx1Nm5qnDVxouC9NtBvJ4f2XLBu+E91cahtApcG2qJAKdpxpeNn+GaTztIpGV1RTYSuQh/PC6Nh/MEEoCHwKd5wEp22Ezjeeqi85qsEuXkUG0kzbTTGSVqHldmw9mCDkhK7HyIdDygIyMVkFE6J4xLfV4XTVvWkF0kw5/2TQaFZ1iX242eF2bD2YIBoQSxTyIlY801NvTjVXLF2HVnZtQFQLX3rUZC0+bmVvIZCuJbtLhL5tGo6MT7MvquQCaU6qiXda1rNprKJghaEhDFPMgVr7S0PDhEVSFyIUw6oet1UTXdfjb3XzQzgSjf3AYazcO4dv9Qxgbr2JKhQAijI2XT1trBcqsvYaCGYKGNEQxL2LlIw3laTay3Tt0Hs0gdu1sPmhXgqEygtGxKmRZgNFxAUBAIF/BoV2ZZqsFqTzBDEFDGqLYTGKVp9lIhTyMq5YvwvDhkaaay5LGJMdSdvOBjaC1I8GQ7/Xo6AQjAKK48K4KIEAQQuRaCrrVTDMtQ2p37VUFMwQNScTdlSiTlLKflwSUp9lIjivtYSyK2DWrr0FecI132YITMaUrIhhdXe1BMOR7lcyAAEztIly48BT8dOveaC4Vwqrli3JZ61YzzSxnwFcgzGN/Fr3HmSEYYJNEXZtGvihbyYU8JaC8JZIsh7Eo6ShLX4MpFcK7lp6BFUvmNo2oJI5XiPr/Sw71vXYp69k3sB/3Pv4MBAAhBIYPj+T+vFZI2VkZkksg1H0wac9/M7QoZggBsG0a9UVViIzSe54SUN4Zzz4hn7ZnFWUu0wnSrgNH0D84bL2/ur4j4wI3rdvR1B4FrjXsG9iPsWpkcx+vikKlX1Uw8TH9pSkNEUq4faTaos2uSWPIiyHpRHvV8kW49q7Ndaa3tOe/GVoUMwQH9E1k2zTqi4IQqFQIhHr7auiG86mNk0Xt9M0K9pFKQscSQiCkZHXzLxoJvImpyYOXxeGZRi13EbQipF/TGHW7f4XglCTTlIYIJdwhUm1RPiLfPZwHQ9KJ9t2bdjea3lLugWZoUcwQYpjUPNMmMm0a/UWZHLMhG65o1VDdtEdHo25fn3vHq4zPMF3bLH+F1KzGxt1amcrUJAMZH093aLLakm3MuxntF3W7f5IkmVbiDCHcee+fNPCdZx4MadmCEzGlQhgdF+iqEC5ZPBvrn3quwfSWxs/QjOAVZggwHzDbJsoiNfluuLxVQ32Tdc+YVqsiKAB8u38Il1s2qdzgI+Oidu3iObOCIpGyzM1HK9NLXVwe27qzjm9ktIrr7t2Kqy9+eebDl6f0a1tDNSS5ikhDcDFFfW1D+0/4aFKm/WPba0Wh6f4JIgACIMLC02bmKgjKfdQ/OFxIrxBmCDAfsNBNlMeBV+2/eZWVsNk0xxXf5vi4W2p619IzcNO6HRAAxsaqtZDXNNpLmnX10cp0YpbVYS+J6kPb92H9U881xRfh+35ta6iulY8PQb8+pP9ESIVXff/kxWR916sZkrUcy64DRzA2Hmlp8lzpNbls8BWWirQgMEOA+YA1YxOpMBFu9UCn3QQ2m6aEzaapHrYVS+Zi7cYoOYksTnNfpFnXJK0sz2Y68r7X3bsVD23f17QwyJvW7fBmtLY19KmWq/9drm1o/4kQTU/unyQmGyLwhEaVFeWfMI1lSlcllcnSV1gq0rnMDAH2A1bkJtKhv+ThwyO46qKzrH/33QT6JvOxabqczpL4plG/1QOvzk3/W6jNPu9mOr093bj64pfX1qloM0P/4DBW3bkJY9VIbRvxmIO+N5MEhqS/+xKjJC3WNtYkJhsq8DQrqsxnX6pjGa8KXPG6M3D68ccGC5K+wlKRJjBmCDGaSfwB/wgmibSbwLTJFp4207npbCY0AEE2UX2+rhyOLCpwEQekmRpi38B+jFcnbHgVouA5JAkMSX/3mW+SFutCEpNN61vKI6rMBt99qe+/LD4SHzpU5N5khtAChEQwSWTZBPomS9p0Jvu8Pl5dwk+a73X3brUe+KwqcFEHxLVOeWaMLltwIqZPjfwWlQrh2rcvDr6nj0CRlC1t0jrUOSZpsUlwvadQB7e8lx5VJr/nm4fhQkh0UojjOI99U5QAywyhBQiJYFKRdROkdcJlIdim2HidYKnEwCcJzTbmZml4IfZ+wBzSrP6eB0PzukdAtrRJaMlDE7O9pzQ+IXkvGVUmv+ebh5GEkPn67L8y1GtKAjOEJqN/cBhPHziS2vGU5bkhm1Hf4GkJgRobXwFw/lknNUSY6NKeKQmt2XDVowqx99uivPT3kAdDc92jb2AiW3p0XCTmA+hCwNqNQzj9+GODix+mGX+oT0j/nm8ehs94QpPwQk2xzBA6BK5MUhmN8O7XzWtavZ0smzGLBKtLWbZwQ2mSMCWhNRsu5mmz9/tWOpVRXs2eY2g+gK61pa3Dk8ZEklYTCc3D8B2zDyPwqVXU9HyIFOhIhpB3xUDfLGc9GmHO8ccCQCEJJjqybsa0EmwIM8nzwGR5xy7mabL3A3BWOrVFeTWTKPT21OcDSKnftjbqe9t14Ahu/sWOYCammgu74rV677nzvMaaRgDRzU5pNJlQTdpUJty2RkU6g/NCxzGEvO14IVnOPs7aojZJ3upv3t9LM0bXGIqKWjKN0WXiMF2fFOVVFFYsmYvbNuz01hKkECAl4FAm1jewv0Yox6oCq+7c5N27I4sAkmVNQzVp1SQKJNcqUsdXxoZAHccQfF54yItS7ydrtVy+ZG5iJmlWZ20SXElIPt9NQ1BN3wMapWfA3o83D1u677qmqfRpGmOSZqNfHzrHPCNTVC3BlaGuf88nJFX/+7IFJ6KrQjV/S1WEV3pNk2yX5b6hWqpuWvMtu15WB3OpGAIRfQPAcgDPCiEWF/EM1wtPU7fcZpu1HaC8nLUuZN1saRmV6XsA6hjml+9/Ag9u21voQfA51LY1ciXP2VCkKSBvwqFmnYfms8j10U2ctjH29nTj2rcvrovICtnjrrwHAKl7DLjW1PYu0woP+nNDhMFWaBClYggAbgDwbwD+vagHuF64ry1Qv59J6vKpX1IUIXFtNt+CZFmcevr3VIb5k18/i2oc7TIyWoxT1Wddbcwr70qnWZG3Fpllz/n4xvQxvvfceV4mMtO+VO87MjpRQ2tKhQAijI4ln9Wk+9qS9NTf05QJT1q7VcsXJfYgaYUGUSqGIIR4gIjmF/0c0wsMtQWqSCt12caiI1RSsBHmkIJkoURDjnHV8kXYtOtgrZqqzjAlMwCAKoDuGdMS750GpkOtzse0RqZQy1bbeIuITEnLvHx9Y+p+89G2bPtSvS+AmulpdDzKTbadVbW8xurvTZRZuflDkbkyNOw7q4Blusfw4RHnGWvVXiwVQ/ABEa0EsBIA5s1LjljwhWr6AYCK1i826cWvWDIXFP/fapOBStC7Z0yrSb8h0mYI0dDDaUGEsfFqLZdAL443HjOFCiG3Foy+40vKDNdDLeXPSREyRan3RZqjQmEj/KYxhuxb276U9127cQi3btgJWaK3q4tQIcL4eKPdXn0uofYVjIxV8bFv/wo7hqNqpDLse9GcWbXzYRMgsgpYtrVznbG8wn5D0XYMQQixBsAaAFi6dGlyyqUD+iFWJVko/WJD6vCsWDLX61lpJQsXETfdM0RNTYu6MSrSmxzvVRedlUtxPBvSJgSZnL1qqGWtZHNChEzR6n1R5qg04/C1r4fs26Sorr6B/ajG2gEB+IOlZ1h7XqjP1bF9729qP0uhxLf/uWneoQJWCGPX92KasN80aDuGkBdML91m+nG9eF/nUFK2qrxX2qgHn/DXJDU1LXRpBrH0ptekkWaDPMMufYhxiNlFdZ7esn5nzUzh6oWctAfKGF6YFr72dV/HvlwX177U7yVDZU1rqe/FKoCx8XruIE1MBBjfm+l9mnyCoea8UMau7sW0JulQdCxDsL1008Z0vXgf+6n+LD1bde3GIdy+cSgo6sFnPqFqalroY5TjsdWkyXMMt28cqgUC5JkQ1NvTjQ/+zsvw5QcGAETVNG3+jqTItbzzXuTaFlVCIgRJ5h655lv2HMJ1927FJYtn473nzjOui83PEPL+THtRLYAnTUyL5szCpl0HUakQRNzuUl4v3+fIaGTitL33Zpnzmmk2LBVDIKKbAVwI4CQiGgLwGSHE14t4VveMaajEre50e2gIQfGxn+qmGj1b1SapqM9I2gQ24t+sjWQyv+Tdp0BH/+Awbtuws+ZctFXxNI3PBzOPnYoKRTVxKgRs2nXQmFVuIkLyuryihNSQaBldYyre1mxtJMnc09vTjZvW7cA133kUAPDgtn0AIt9RmnpFPjDtRdXEBKAhojBqezlx/arli2pRTdfetdlqLmyWOa9ZzykVQxBCvKcZz+kfHI7aSFYjyUB1HuvXqYfLZR+02TFtphrVbAIgs0poI/4+G6koIpIkOWd9Zt/A/ppJhwC8szdfh77NsWfq0KWq93n7bUwh0UBj8bZmhir6mnsA4O5Nu+t+X/PAE1j5xjPrmtHnuTeSkjL1InhAY5Le8OGRTJ0B2xWlYgjNghpiKhTnsYrQEscqdEKy68ARAKhTiXVCnYckn0aKKJKI2CRnkykJsGcv22CyLecJm2PP1aErxG/ja/7RQ6Il9OJteYRH+iDJ3KM/65LFs2uaAQAM7j+M1d/dZJTO8ygt7utTchXBKyLctx3QkQwh6WXftG4HPnXHo7VIhaQSxzokIdHLObtKB/sS87yl+bxMGjaYJOeK1pfZ5UNJunfeJjGTVqg69pI6dPn6bXSp31W7XxcwpA1c30t5hEf6IInx6M+S4bprHngCg/sP10pwI15HKZ0DyFRa3FVHTIW6b7pnTKvLmzFdU5T5zecsN9sE2JEMwfWyZb17NWwtTUvD3p76cs5HR6v41B2RHTXtoSxCmm+WJFQXDigEKhUCxf6bJB8K4C4dkNdB8SlpoHfo0tfLl5DoUr8vAXPd03ZdHkzfJy5fPksyOTUTXWYsv+9rfcZoNOlvCWkl6htIYVsryeiltmoS2oo0uSWd5VZkK3ckQwDMhKR/cBjXfm9zTUIBIsktTUtDoFE1FSk1DokipPlmSEJAI+Mx1aVpdRp/0vrKPWOLgQ+pg+RjtlDhS5xM12Vl+r5x+UAUrGHLRDeZEPV72FqJ2ornZQ2kUN/5UaU8RtEE2Cc6rmjt3YSOZQg6+geH8Z41D9cylQGgq0L4W88a7vIe+mZftXwR7t60Gz/btq92UEySj09Vx6I6rRUdwaCWtVCZgDQTqNK3rrrL67IcDF+12+T76R9sbOXpMgH5Mi3dbFFkCGkIkfRNMrPV6ho+PFIXmTV8eCQxOEPfB/rzXcXz0gZSSHTPmFazBghMJKzlQYBt+06PjoMltLUVfgxmCDH6BvbX7JoSV7z2jCBmYCrfICNN1j/1nLWJehIx0e/t6rTm2oTNtEWaxp5UElv6EXRnbZaDEUKobb4fH0kxDdMKIVwh788kmJi0Ft2pbcsbsYVom6C/K1fPDxehV+Fa26zCzPDhEUQziyLVuioEIUSDDyb07LgqtarRcUDEhPTQVpMQxT6EJmLZghMxtWuiltG0wKiVuk2rlW8IKWQ1MlrFdfdurWs1qf5ddlqzMQNbSWeVofjWbDfB93DI63YdOGKsKurzmW6/T8PQQgm17vtRx+d6fpHSXAhTq3feAwIRgbMRY9WprTv75bx9QrQl9HflWn/fd5Pn2pqKHE6fajZl6mcnxIykn2nVFCVDkW2VlbNEOGYFM4QYvT3duHnleTWzha3olYSreqbJYeaCbk9+aPs+rH/quaAyAID9gNVtTkfIpA2qJGmSIE3Xv+ersfOwi4xmLtN8XHNMKwmmISYhUq46vqJ8MSFMTb02EkLNETsmp7bu7FcJuitEW4f+rkKz/E33y2NtQ4ocSqQ1V6pzI43RSgHRFKAgg1p8I63yBjMEBWrkga8Jx7axANT9nNSM5cYPLsN1927FQ9v3JZYBsG0O2wGTn6shkyZNxAQ9XFTaWEfiZjcvjo7jksWz6xLtpOkHiOrIvPWcU/DqM46vG7tpPkUQ1DTEJETK1b9XhNYVwtT0dy2h+61MTm3dtCHHkkU6N50LNds7pCRF1j1hc+S67p209q7oN+k/XDT7ONzw8FPGUGQ9QOH6+7YHRVrlDWYIBugEQK9FbiMQqvSl2mxNJRyARiZx9cUvtzZg9zkQLiebKpGMjZk1kaS1EKK+l8E9jz0DICpHMLUrYhbTplTwxrNPrrvHSTOnN9iv1fmEROeksefanhVCgEKIYqi9Pw/tQxcu1Hdt8lsBEyXb1ZwGYMLJ6/tsnzVwCVrNkH5DypyocM0/qQqy1KbXP/Wc1Regz1+asGz+xqLBDMEA3fyj1yK3SQ0hlR9tkRtZpWTbAVMlEpsmkrQWai8DHdIhL+vsdMWRJlO7yOmLUW3Zat8BE1HNGn6a9vshRDH0GUnChzoGH7+BfObn3vEqa3isbqM29RLIUozQdp9WhFFK3L5xqLZHQ8uc2OYf4h8ZPjzi1ZK1SPSQqbcAACAASURBVNOjD3JhCER0JoCvCiHelMf9Wg31pZhqkdsIt0tzMF1vYipFmR3UuV2yeDYefmI/fKJG1LGrvQyIgNgqBCAi/NXY8Xj/1r2oiihiY/Vlbgmnb2AikUn2HQDMdeqzEhSf72dNgAsdY5LwkeWZpjG7bNRJwQ0+6+Qaj0kwkhngenOpvEttqNqBWuYky3NMviZpDsviCG+W1mRCXhrCSwFckNO9mg5XMSxbLXLTS3NtAv36vCQBtQqmi5DojmGfqBGTKUf1FWzZcwh3b9pd50OQDNTXCblswYnoqlCNQFWFaCgPnkRQktZQnXuSPThEuvdNlnJdnyR8+OyLEOLTN2DPBk4KbvBdp2ULTjQWrjP5E9Tcn9v6h2ptLk1aY1r0DTQWQQSAa77zqPPcJO0tk7Dkk7xXZngxBCJalXDJaTmMpSVI2txJNkTdThqyCbJKAqZkOhMhMdURSiLYPuaD3p7uBvMOEFa5tbenG9e+fXGdCUMvD24jKFv2HEoMz3PFg/tKtqHrE5JcJeflEj7UZ9q0F/2ZtmtdNmp5nySTotc6xXkLauE6da5A5FsbNexdAA1ao638tA90hrl4zqyG6rE+NZlsTAEArrt3q3fyXpnhqyGsBjAA4Ijl78fkMpoWQN3cR0cjG67+EtUDK1VCwBw5lLe655JS1m4cqmMGerNx0xxNoYUm+JpXTNpJqGQk69yo3zF1VdMZj830oV5nsuXKzwHU3TskE9y1PqY94MtsbL25fQQXX+bjej+9Pd3O4AYgWSPpG4jyONTCdSZBqnvGNHRVJkyPAlHm8MLTZjZojVn8Dfqc5buQJ8d0bnzflymfI0uZ81ZrFL4M4UkAnxJCfMv0RyJ6DYD+3EbVREj1dmQ8kpq/3T9Ua9GnQj9kly+ZW7iDLEm61cs8/NbcWVh16SIA9aF9+gF2Scmh5hWTlJVGMjKZ1GwEcUqF8MrZxxlNH6Y1S8opAFB3b1cmuESojVg1x5i6cOnO9UVzZoVL5Z7XJgktPkzDVWokyWymrv+bXnEqfhRHq1UQZQ6btMY8CKw6D9VvY0rU9H2/KnOpADj/rJMSQ7ltY212ITsTfBnCRgBLABgZAiYyv9sOvT3deNfSM2oN1XWJxpZxK5AtPtsHupNPN4+sWDIXt/VPmBgkMwhNvpFIY15xSVn6vbNIP3VrMS7wq6GDted2KaYPPcRXTQIiAJt3HWwglrsOHKkxNpkJDsDYHU2FTZq3zf3K8+bjaz970tiFy+RcV/8e4j9xOTvls3zMn0nvSS81ot7btt90ZnXSzOk4ZmrjOTJpjSHIoiX5XgM0rrXODHz3vYmJq+vZLObgyxA+A2CG4++PAXhZ9uG0BiuWzDXabnWpVDUnXL5krjWsLy+ozjkiNJQVuOqis3Dzh+o3ra1tpc8BDwmV06NjXOUw0ko/6mGSz1M1kgqA88+ul8hMhHPLnkO4df1OVIVoeI/dM6bhi/durYtPT8pM1uezQgmr1QmAyX9jktxNznXdDKU7ZF1jVHMMpLNTr7ElifiX738CP/n1s8YSFzboe0Vt7zl1SgU3f8jcI1l/P65zZDLVJo3LVTIlREsKuSZNnkLSuvhkxxcBL4YghHgs4e+jAAZzGVELoL7U7hnT6rizWkPoitedgdOPP7YhSkRHrrbA2DlHFUKXoRyGvml1Qm2r2GlCiBnEV4IC0qX/mw6TKd1fl8hMhFP1NYyOC1x8zil4TZw5bYpASer3a5uPacy+/hsfM4n6rm2MXx8DoNSIGheQWSQjY1Gm+U8efwZqTUffUgn6Xtl36GgtO31krIrbDb440/txnSPbPvC5Vmf8RWjwSQmVIfve5udw+TaLQOqwUyL6OIAvCyEO5DielkEutsv+bPIt6MjTFqg650RV4J0GhmSaR9qKnUlEPo1ZAUhXT8h0mKRvQkqUKvO2SX96KQAB4P6te/GRC85Eb083tuw5VKvkKX1DgNscaJuP6RBfvmSut/9GhlbKcgeyk5wpPr97xjRjaKduZtz09MEaYVRzR6oC+PHjz9Q1ggL8SyXoe2XtxqG6v5uSF9Xv+p6JtL4TmwCXF3zOeei+VzWipw8cQaVCqCb4NvNGljyEawDcCmBSMAQgrB+u7z1s0Tk+99SlfYo/8yHskpmEOr31wxpa2M42z9B1dB0mE/O2jUeGWaqmJuknkmGrppwMW+ioaz56gMKtG3aCAO8SxrLcwdHRal0PYj0+X0rANaKrhHaqzusqgEefPlhzlAOo+coIaGAGXZWwUgn6Xvn2hp0YGRfoImDxnFnG+bn2QGheh/49PRDiciUD29fk5Aufc+6rRevRczK4QIUpWqsIZGEIbelEdsG0+XylmbyTn+T9Vi1fhE27DgZL+2mkctNcJBNw2b9t93A1Ylef44pksf3dV3LUNSbVd/DpmBkAkc1ezckwMcak+fT21AcojMWVZadPDbPL69K16mRUzT/ARG9naVKQ81VzCdRyI1OnRNqCrMg7NhZpDm9+5an4cKw1hUK+xz89/2VGp7lP8qRvXgcQaX22Hg56EyY1+Sxr6Xd1rL4hykn0wxS92FiYMH0oayi4lpGCUJOJ+nmeyU+mTRIq7YfY+G3PVpmAT/6CLf7fZJf2Lerm44RL8pXI+6jOy9s3DtWZkshhKukfHDYmHpmeJQMU1Mqyvu9Ml+4luromxqbOuYqI6agmBSDaY2pyn1oSo0LA4tNn4YrXZoviUddGSrREUZtYdc7AhMRrSwKTY3bldQCoc1zLmH9dUJGBEKawaFn6/bYNOxsYg6/WrvspkkKUXTTDFr2oBhcAwLwTZuBti04zmkfzRhaGcA6AXXkNpCywESEXAdPttndv2m2NRfYJH9QPR9oQV3UuacLfdCaQlL+grs+V582vmSSqAg1x92kczfrcQn0l6nroNu83veIU4/dkITgpZfv0PjZpJEnvTNUIhw+P4NCRUXz1Z09ivCpiH0cjk79941BduLT0OeiCiVoSoyqAR4YOYsszm41aTij6BibCZWXPcHWNdK1HhierobC9Pe6eHybiDth7OMhxmbQtgcaeIICf+VG9r9S8bM2q1HHr9+0fnOgXUqlEwkglHv/lS+Zi8ZxZdXvuqf2H8eUHBkCAt7aZFr6lK04G8BEAXxRCPA8AQoid8d9mAfgLAP9bCLHffpf2houA6ZKdq6x0b89EnfRLFs8G0LgZQ0LzAD/bbNrwN1/7t+5QfXhgf601oUw4cj0nSeOwSf5pfSWXL5mLb2/YidFxgaldhI9ccKbx+WqEEuCXeGTSSELNa30D+yFiCqvaj1WGtu/Q0ZoJaOqUCgj1XedUaTmt1pIEPVyWDGukhyerobA+uTI24u7q4aBrkBcuPAU/3bq3JmAJTGiuUNYtKaLHppnKcapjsNEMtV/IeBUAonBo6cPq7Yky9a+7d2tdL3Z1zC1lCAA+CqBHMgMVQoiDRHQ2gKsBfDrLYIjobQC+CKALwNeEEP+Q5X55wmWiMNlt9VBA1Qaq1kk3ZTzbqqmmJfZqY5CkDZ/W1KQ7VDfvfr6OWOkSX99AlKi1effzuGTxbKvGkVTgLNRXor6Lm1ee55ynGpIqYRqrDb7+JxPhsM2rf3AYV3zl57Vooa4K8O7XzcOiObOwaddBo11b11oiv4G5sXsaXPSKU+ryGFRmYNpPtv4gtnehnz3JVFyCium5/YPD+PL9T9T6eEjNdeFpM1GJy7UnRfSYNNPbNuys5XeofgrbOzRFYOl1xXp7ohIiDz9RvweLbpjjyxAuRcQUbPgGgH9FBoZARF0ArgfwFgBDANYT0XeTciCahSQThXyBeg2YpJIXNnNQFmKi2yrV0r8+IWzy2SHRGdKheuO6HQCA6rjAH5zbGPanq/8ExKW4UUfwVVOEq8CZzenoY9ZSTSa2CJcpmvTr00LSB6akOz2YwcSY124cqis7Pl4F9h46Wpd8ZrJry3cqzRGmbGnf8ervUj73Xa8129P1vazPNykJK62QYjpDL46OGzVXUfsUGHPUX1LNujXNVOmhrpujTOOW2qmsQ2YzQ/b2TOSmyEi4ohvm+DKEMwE84fj7ALJnKr8OwHYhxAAAENG3ALwdURZ0ofC1ryeZKHykIZ0BuMxBPuNKkpBNUq5PCFuafIpFSqhhFVHooS7V6+q/ieCrcdhqFJA6ZlNORNKYdV+PrPcP2AsVJiWLqRFZvqGltoKAem0gE0EzhfY9MnRggnmOu+3aw4dHgqLF5JhNQROqQ1S3p9sYiCls1zeEMwshNBWhk++zb2A/qg4p3LSvVDMxEVCpUM3Br5rkTHW9enu6a9pp0r5Rc1MuWTw7UxlwH/gyhFEAZwDYafn7XABjGcdyunb/IQDn6hcR0UoAKwFg3rzsixNK+JIIcJI0ZGMAOiPwCdNzxcSrz5/SVanZLHVpxMZ00jh9hw+P1FTvCpmlaVskjST4AJQopyjiQmjE2PbOVK1iZLRxzDZfj6q16SY1V00dG5FxhRLbIm6kk1itDWS6x4olc3HLhp0YU9KL9zx/dGId0ejAN61/2iRBtaaWLRvY9H6ARqarOrSbVRdMrtqrTp8oBPn0gSOYOqVibTeq7iu5Pz73jldh1fJFtbUgAG8551T8dOter0ACXwbXPziM1d+LmlKte/I5LDxtZm1MWaLDbAgpbvcOAD+3/P1yAP+VcSwm4afB3CaEWANgDQAsXbrUZI4LQlJ4pI5Q9dV2ve17NqKhtlYE3IerAfGG7aoAVyhqvYsZpiEcPt9RTW/bnzmE/h0H6gi++j4IMGab2phV94xpdT2fdcJo8/UIwFnx1nZ4dSKTxDxtETcNYbqWbmWSeV972WJs2nUQm58+iEefPliXYGZjxPoa2KR3k8SqvldSwjxt2cCm9wPUO26vu3crLlk8u/asNCahEKg+LgB4fM8hbNlzqM7U9p5zzSavQ0dG6zTa2zbsxOVL5tZpW+NVgVefcTw+fMGZwfNwWQJUB/TIWBVfuf8JPLBtb2E1jnwZwvUAbiWiIQD/JoQYBwAimgLgzxFFGb0741iGEGkhEnPRhLDW7hnTnOGRJoSqryHXm4iG3loxpPS2NBnJsEBVrdcjg1TJWCUcthIRQONm9j3YcqObbM9J5UJsjGfzroO1ayoEbNp10FjlU/f1LJ4zC5tnH6xVUB0bc7eP1MchNY6kkFSTc1Sfty1SzcS8L18yN/pMeb7JrKVD349Jmo6+F2QbVZ/3IwMwZk6fUjtnAsCD2/bhwW37UCEEJ4wlmaNM95A+LjVMV+3MZwshvWndDqx5cKDus7FxYXX8q+ZLH/9bgx9GWwdd4n3m+RczhWsnwbe43e1E9HkA/wLgb4lI+hPOBPASAF8QQqzNOJb1AM4mopcBeBoRg3lvxntaITfQr3ZOVN4whUeG3CtNSKiO7hnTarV15AYBUNdaMSQvwSW165FBJskYsMdou7JLXXDFcidJsDbGI53nEkTALet3QsSmDb3Kp07gZKkAAhJDhyV0QpnkQ3AxTJv2Ig+8SepWo9F8fRiu9+HSdNT3mpTQpmqBMgCjQqS4bSdQFY2O2FDfFuCXR6BXNbZ15lOfFZmE6u+T5PgPMUPXaYaGddDDo6947TxseWZzYeY178Q0IcQniegOAO8DcDais3M/gJuEEL/IOhAhxBgR/TmAHyIKO/2GEGJz1vuaYEt0meK5wKbaI7bU+dAevWq/49WXLa61qFQ3ckjp7S17DmHhqTNx6nHHNJQmMElNusTh8iWk8TMAjRLkr3YewCe/82hNMrJJsC7GozvPqwK1OP6RcQGKo0B0Z590+suok3knzsCO5w57zylPbbG3x96tzMbYQ59vQqim4/NMycRkAAaEQIVQV1kVQI1JmHIjTMKUSas9/fhjg8qYqPd0Mbe+gfr+09JPoJ4j01rYTGam58i1t+WI9PZ0N4RH55FhboNvYtoMAF8A8PsApgL4MYD/LoTY5/xiIIQQPwDwgzzvaYIuEQETpY9NEr6M/pB1721hpHoTGx/TjqncQ3R+JuKSQ/0QEjet24FrvvNo/NtBXLiwMRtXbbLT1dVIBA4dGa2tj+44tNVz8VHfpQR564adtY5ZahE3PcQvKXFIt3PrkVVTugjVamPZDZ3QrnzjmXUmET3aJI+DmKaGU4g5LhShmo4v9LV949kn457HnqmFG198zqk4eeb0hhpTslaRKXnNpNWuvnSRt8asE3CT8CHXOGrxSXUhn0lRPqZzoYfV6ol0N35wWV1PClMFA9VHmIcQYIOvhvBZAFcCuBFRX+X3AvgSgHcVMqqCYZKIJAFX0T9Y38T+tv4hvKvXnkcAYKLuvodpxxTOZ7s+zSa4e9Puht+NG1rWHBACW/Ycqm3CLXsO4csPTNhPrzxvfoM9W49791WXJaEf15qsr904VKci37zyvETTlryfStTUDGMC8K6l5lLIvlKjz7x8GIarnIEpjFa1QxdJCIq4t762APDAtr21/S1LkKvlzJOKKZq02jRViU3Q9zWokRkkmYdN58IWpaWavB7cthdVpeou0GhdAIrvoObLEFYA+IDsqUxENwJ4iIi6pIO5neArEfUN7K9VlQTceQRS2pU6cVdXsmlH3yh3b9rtXSrCB4tmH1dXRlmWytDHIJ3Oo+MCn7oj0iimTalg4akz667dvPv5hnHrPoAQM9KyBSdiatdE5Eet0cr4hKlHhvglmbaARqKma2suU41LavSZly8jNGk7gPnwhzSGKZpQ5AGX9qOa75KKKZo6HObB0OresZJsJrV1tQaR7ApnM6/q58IUpaVHYKnP0vebXqeqqHpGvgzhDAAPyl+EEL8gojEAc2DPTSg1fDaQiWDZiHzfwERyi25+chFE3xpIKnyc2N0zpuEbDz1ZG8+H37jAWfpBjkEqCyNjVZxy3DEAJiJ3JENRv6OXQAgJV5X2UdUkd7tWdE7GItvanNqg5g/oUVJpCKhpXrbqri5GaNJ29BpEepimyw6dJoFQwqcGVpq/q3vQZPZJOg+2Olq+uTeh8zA9X5YHV82hegio3hXO5eeR4z10ZBRf+9mTQMzoumdMayg5YvrMtEdayRC6AOjhN2MB329LmAiWjcjrm4kAazlm9f6uyBITXARA/RthwoEnADx/1Jw3qI5BLaRVoajg20ULT2nIkuzt6a5Lyrn2rsj3nzamXDfl3Kb05l2xZG5DJdAQInDoyCj+5Z6tNU1h1fJFwY1+1DnbihK6zH36fXRtx2Za9CnvkNaxn8RIksIhXaYvnx7StrWx7R1TbStX7k0SU/J5PlDPgF1d4dQ9umnXwYakKvnM932tr2aGuvK8+Q0lR2ZOn1KX+CfNTgCCBKK08CXoBOA/iOio8tkxAL5KRIflB0KIy/IcXBngq4qqjtKQZja9PfbIEhNsBKB/sL5mv74hXd2M1DGMjNZna/b2dBs1CzUpZ2S0ik/fuanmtLU1WNdhIyo3f8i/mbzrvnoU2chYfex5KAF1FSUMsWPr2o5N61TNmres34EX49BYddwhGpmKJEaSFA5p+776uU8PDR2289Y34K5tZYv8S8OU5PN0Z64eAip9jibfw9h4Y8a5GjRSFQKbdz9fZ2ISAL72sydrvq8xzexUdPIe4M8Qvmn47D/yHEjZoUcbmV6IPBBFNrOxmS70xKJa9UaBmqSd1xj0cQCoheeZVGkbbERFJQq2ZvI+99Vj3itEXrHnpjXQx2qS6kOFh6SoMfm7GtgAoC4azOe92Qr3uRhJUjik7ftJZp+0WLbgRGttK1cByVCm5NKcpMXAFQo7Oi4g+9PplQ/0JNhFs4+r24sE1IW56jWV8vCTJME3Me1PCh1FyWGKNlp9qXmjp5XYshATPZb+VafPwuN7DmE8Nl+tvnRR4r1D7erqOH6180AtdBRwN1hX4fJF6NeoppOkDFDdLyKzvWWkiE9tIj3MUB9HSC6IDl2adc3n9o1DdcwAaAyPdu0dVw6Hbh655juP1gk8qsZrK6ndzPBYpYs0KkoJ+iRmHcKUkjQn01qre4MItWq0euWD4cMjdZVWZx47teEdrN041KClNxOT2geQF/Roo5GxxtCxZhwIoF5TkdCJ1eLTZ+HRpw825DO47umyF9sgD0f/4DB+uuXZBlU6CSZfhF6OWV1PX3uwau9fNPs4zDx2qjGqRYfLLKESyH2HjuL2jUNYsWRucMcxm3nBFILaPWNaXfY1YA6PVu/tlF41Aqe+P13gkRE0vT32Rj+2dSxCku0b2F+XMSwEamZZ3X+ThVknBQ/Y5msSjvTKB8sWnIjpUys1gt89Y1rDWjXDLOQCMwQP6NFGXRWqs5/rdW+KUu1cB9ckafhqKUn24iTYVGkfrcOnHLNcT1/zkW7v953HsgX13b/0ktsA6urYq+vvC32tpT6lRhLp9m+JV8+NKnTa5mzSBGwaqx4hpYdXmxiHD4oKga2Xwhv7KKdJ3DTBdJZs+QCmkPUv3ru1di+98oEUVD59x6MYrwqs/m5jj49mmIVcYIbggLq51WijWgvA2CTx4LZ9WPfkc17EIcuBcR1cX0nDZU9W7cVJndV06M+XvYhNWpSKEBOb77WmWH9fxubqf5BEOH2ghp1KmHoQm+zfLmagBhTo+8JU90mPkNLDq9NEsWQJgU2CSVPU/TcA6sKLbWNMOn/qvdSeD2o+gKkQYN/A/rpkSFPlg027Dtai/2SeTSsZgA5mCBaYNvfn3vGq2t8XnjYT135vc61CpsuZmiYEzgRdUwmtN2OzkavmkFvjWvu2jGAfyKJgY4qj2RZHH2piW7FkboNjXz/kplh/aWZJeo7LxxCy/jb09tSHnVZg70HsY/82BRQkZbnrZqThwyPW8OoQ6PdVS7ZnIXqmEg76O/LNJPdhWLpZz5QPINm5yoBNfiYdIdF/rUDHMoQkScHHubTo9Fk1hgCYnak+cdn6WGy16aVpRj+4vuWAk2zkvT3dICAxIzhp/foG9jdES7jaJPqoyfphXmEI+VPvq8f6h2R6umzjaQinvlZ62GlSD2LX/dSIKhNzMcGkaeVhqlDvq5dsT6MtSH+Z6T5JTM60b20MSz9nqgag93wAInOs2gI2qfqpCrV2mE/0X7PRkQzBR1LwMU/Y4pJVJMVl62O58rz5dbHIBGBqV72jN8k0A5hj931s5K6M4JvW7ag5am94+Cnr+unOs2vfvhjDh0e8K0Ca4BP3rn6uzyOvTM9Qwmnbay7C4XpGUv2rJGYg71+E81K9764DR+pKtoeutymXJCkDPOm8qtFnQNToRmrD0vSzavmiuh7ksgSN+syaH0BE31u1fMKUl7Q/envq82zKZC4COpQh+EgTrkOj+xZcLzcpLlt1lI6MVrHmwYH6aApEtsYb1+1ocGK6TDOmVpJJNnLXvNXKqQ9u21cLn7NpTya7tU/mrQ2+ce+2sEigOZmeOmx7La1EbjL3qLb1JBu6RBLTSUuw5H31ku3qeutht6ZnqZoP0Fht1/Rcafa0mWF6eyai2saroq6wolzPuzftDvIDjIvo9xDkoY0VhY5kCD6RF7ZDa5L4XKGHSdKYHj2hmlp06H4Kk2lm2YKoSmnNxon6WOikOHzdViuhV04likwUrlaZLiaRxJRNZrOkuHedIKrrZPt+0VAbHtkS4UJMUDZzD+BuZOQ777SOYdPZSWoeYwu71edp6i5ng6kvtTo2GdXWmLQYRQ8eO7Wrzmdg0vr3HTrq/L2d0ZEMwSbB2pKSVPhoF6bnuezVasz8Nx56siERSYX6F5NpRppRXM3ufRmdes0li2fXVU5d+YYFmHns1ExSqU3FNzlKVeZrKgsN+FUMDc0b8IE0pan1nuQ81IZHqmlB/t0WRmyDjdDa9qXvvpZIE6HlClZw2vGViqKmUNdQBm5aA8Bec0oymkVzZmHTroP4dv8Q7n38mYaS7jpOmjnd+XuRKLqybUcyBB+H66fveBSbdx3EojmzMHx4pCapds+YlioT2TUWNWb+woWn1DURWTq/GxsHh1EVMPopTFE3IaGcEkmMThIRlfBlCTN0HXjdXOA64K7aOkDxFSJ1UxowsVbqPEwJgmnCWG0EwfbOXYEEpnvaIrRcY/J5hmmcpoqiJk3DF6qPQGa+u0xs6hpef9/2WskZW39luVZA1HBpPDARMyuKDOuV6DiG4ErgUR2u4wK4cd0OABNt/lTHU0h9lqSIHHXDnjRzOqZPVdpLDh1EVaDWUlO16au+ADVaIY105cNE3nvuvBojuP6+7Q0x2j4E1+fAqwdbb+moEh/VP2Ibf17M2xb55WpClLSmoWGsSXV2TO88KZDAdE81QmtsrDHxUodPsIKEybej/pyF4Kk+Apn5bqpCa9p3khGOjkfanKlEim7uuuLcec7w5zRw3UONfipKwOk4huBy8kmHq6w8KKFLqsOHR7xND0lc3RS7LNPuZaSGLmHanMm6zT70MPkwEVeMtomYqTbyWkJfwoHX/QIqAbb5R2zjz8NvYDJhyRIfriZESWva2xMWxuoyC9l8P+q+tiXb6feUEVp6nw6bIJT0DB0m/xKQrpChDj3zPaibWuzrqQJY/b3NDb4Nda1ULcIVHhsCVzJn/+BwQ/RTEYERHccQXFKbdLjWXu7YRHE0W9JPEnx8Diazj7rRTGYAvfl3yJhsUogPE9EPhRqjbfJLqDbyrgpBeJYilmORY5UYPjxi9Y+Yxh/KGF1zVgUDWeJj+tQKPvLGBdi8+/kGH4LP85P+rptzbJVuXUw2KdnOJEGrPTKkP8GVee56hi/SmDp97uG7r8fi3hTj4wLjBt+Ga/318NjQpLwkIa9vYH9dn/ALXn4y+xDygI/U1ttT3+dV9SEkSc8mld1WLEvPXNaTVFxmANXUEJLu6CIgPiqvSaOxXavbyMerUdOPLKWI8yAaPmGPpjmr1VMFJsJuZx47Ff/3A+c23DvrgTXN31bpNonJ2oiibY/19nTXBRLIJC2XuSIr8zWZtCTcRgAAGg5JREFUk5Iq2/rOJwlJvg3bvdVKw8BEZd1QbcEWMaiOTy15cv/WvegfdDfgSoOOYwiA38YN3dwhZYbTNu9Qx3bhwlNqVRXHq/COBtFr3qjZmqHmnKQDpzOuaVMq1rLh6hhdoalXXXRWJjOQb9ijbc6yvaGpJHTaqrG2NTD5aK666KxECT8Utr2uamOS0AkhGuac5l0kaalZAxZC19zl23Bp0abwWADBSXnqWekiNJS+7u1pzL5nH0IL4LvhXaYhdROpEl1ViJpwL6MidOnVdihO1kLdkpQEkx1clWRCmJPvgQu1kSdl4eralW+4qwrfsMekOdv6amepGquvgY+PJq1E7AOd2Zh6HKfNWUj6no+p1XX/NOth820kfccUwp4qCZIi7bmrq4KFp81s+HNoX/E0YIbgQMiG95XU5HVqZVEAtXK4qsSqt2lUD0VoTRTVDi5r3sw7YUZNkknTWcrX7GLzMdjGqDsEJUPZsucQrr1rszE/IU/TgO+8dQeu6d2GEjOXjwYwm1BcDNpGHG1RU/p3XMwmLdFO+l7/4DCePnDEygzVscv+xWp4uG8BybzMeyZGkiaHYsKHEV49IS+UgiEQ0bsArAbwSgCvE0JsaO2IIvhsXPXl+Lwsed1f3fpLPLW/1o46Ih6axCpgD5vs7WmsieLa4DrDuvril2PLnkO1LNqQcFpfs0uoBGljqjL7VGoxpvyEtDZmwL+eUtJ85L1tXcZs91Sfb/PRpJHGbd9xJf4B/sl8ac1Vru/pe0tNEFOjeeT5UEHxXARg7VWStDZ5IdRspa+JrTNgVj9NEkrBEABsArACwFdaPRAVvhtX9xkkobenGyvfeGYtoQmYKGKnSqxJnZ/U5/k4i1WCD6Ahi9aVwWq17TvMLqESpMtpp2oxEKIhPyEEaUwDJv+Ly7Hq07ErpPBdGmnc9h1T1FSaZL60Eqvre67QTj2aR4dAlD/UVSFU4j0iQ2Z1gl9n3ksZ4poHTNpY1jL5WVAKhiCEeByI7OjNhkuq9t24aWKm1cxftc2jvLce8ZEE23hsREeNjtCzaPU1cdn2XWaXNBKky2mn2rF9or6yQo8Gc/UcSJqHCbZ3ZvpumrW0fccUNaXGtYc8xzRWH1OMbX1sY9aZmAtvfsUpODI6joe277OeT73hvamfd9FlImx10fLIx0iLUjCEEBDRSgArAWDePLtE6wMftTF044ZAZv7qSPPykw6SvrlUoqA2uDetic227xORESJBmg5gnnZT0/1dNnY9Gkz1v/iUmU5CyB5Kuw62HBdp2rp1w86o6mfcqjPremc1xdieb4rmkTWI9h06ivu2PIux8cj/9eELzgQArH/qOeva6g3v9bIizSgTkXQ2m12ZF2giQyCiewGcZvjTJ4UQd/reRwixBsAaAFi6dKmPwGBFFinf5+CExrunhW4SUiNwbJurt8fc4F5fk7UbhwCgwcHna3bxNaMllWXIumam+wP2KC51HYQQUXXX2NaeBzOQ8wohviHroBecWzRnVsP76hvYj2qcWzBeFU4NRd7T5oiWyKo52+aZtFYmxp5UZViWiDER3azz8Dn7rrPZisq8QBMZghDi4mY9yxdZObHrgCY5XoF8GITJnKPbH22by9TgXpfEZFhqUgXIrMiDkITeH5iwl+sOSN2sgtg2rVcszYqinIR9A8kF52z736ZJ2RzRPvfMA661sjGRtP6PLPPwDbpwjSGJthTFLNrOZJQniuTELserbztHnxevPufoaBW3rN+RmMwkYdr06pqoXa9cFSDzgM2Elff9TcXv9Jo9qnP3unu31mzRej2pZkhwaZ+zbIFWrLHa2NDdtP9tmprLEZ3FTJjHXPPKO9D/lnYeSWdfvaf8JwtGhkT4FWHKKgVDIKJ3APhfAE4G8H0i+qUQ4neb8eyiJDRd0lYdrz7tHH1f/LIF9eWKN+9+PjGZScK26dVN2qwuYzYTVoiJxGXOsM1VJ/pqD4Denm5cffHLG2zRzbAvZy2Y1tsTFZyTrR4FzKWs9f3v43NSI7xM4ZGhpq0skTVFvou0tMF29m0lLXzm4Mpen3QMQQjxHQDfafU48oROgID6Mr9JhNbXhNLbo6e0C1x0zil4zRnHZ7ZLN9uWaTJhhRCFJHOGzaxw9cUvx7qB/cYeAKY1KDoKxFYwLU0k2+ZdB4PKHfjYtdX6XlnCI02O+yKS3Jpti7edfVufaZ85hGSvZ0EpGEK7Immz6QRI/TmJ0IbYMFcsmYvbNuysEbT7t+7FRy44M5cDUJQGZUKo3VaXmtImrDUyVXvpkTTjTBq/LaRZjZgIMaOp9w0tdxBi187KGFVCGJopL6FL47sOHKkVfWuGJmeD6ezbNO6k/aTnZrgqDGcFM4SUSJs5qtsPbQiRzpMIWlo0W7oKmbNJapLlytMkrKmlQJJqzYeOMymsVd8/KoEgAgTI24zmUyE1Cba9mZRVLc1pvs/Sv2/LlPfJFZLmtZt/MVE/quhAhVC4TLQhDu6kDnZZwAwhJUI3W4idUHc4+SDvwletkq58iZFNakpKWHMSrDgWv/Z/inHqz/IJazUVQzQ59n32mem+tqCCEPhkVQNhHc98GKtvrlDfwP5aC0xTxFyz4/ltsO2bsphumSGkRGhUTIidMM+EnrQok3RlWps0UlMSgR4zxORngWsNk4iVJBChjv2iiKBtLiohS2NCSmKsvvswKWIurSZXFjTLdMsMISV6e8KiYkLshHkm9KRFmaQrm9Trc9htNZhseQdp485DEo8AfwaedJ1Jqywi7NNnfYrYM773dJljsggKZUGzGBYJD/W4rFi6dKnYsKF1hVGvv287/ulHW1AVQBcB/+OtC529ll0vVW5KufHLsCnLIjWZ1gZITuyzJu0poZN6+F/ofJOIiakuVF5r6urBG4o0Jk3bffLeM0Xvw9Bz3GwUwbCIqF8IsVT/vKM1hDQb7aZ1O3D3pt24ZPHsYImoLHZCIFsBsmYjra1a1yxkDaZrv7cZvxo66FVULgkuzS6pSGBWAu7qwRsKHw3VZ32K2DNF78MyacMmNNN827EMIc3hvGndjlrJ6ge37cNbzznV2UMglOE0iwDnTZiawcTS2KptB/3x3c/XrkmKKEqC7Rk+RQKzEnBXD9685tFqNGN/NVsYC0Uz303HMoQ0h/PuTbvrfv/RY8/ggW17rep1We2SeRGmVs0xi135+vu216RqAvDO3mwhfDZiYlrjPA/2sgVRcbaR0SoqFWrowZvXPFqJZu6vooUxGRxgaiXrk8/EUUYFI83hvGTxbDy4bV/dZzaCWqYoHR15EaZWzTHkgOgH3RSdlMd4fJyweR7sIohEWUyEEmU+QyGaS//gMN6z5mGMjEeCyG39Q7j5Q/5lKwCOMiocaQ6U7F1wy/odeGz386hW7VmVZVXBgfTExCcxqVlIe0CaKW3ZehH4PLOdfDxFIWviW1EI1Vz6BvbHRe4ihJStaDY6liEA6Q6UbGrjo+atWr6o5oAu28FNmruvQ7RsZgYfNMM8oK7VikAtpMzmxrzgy/CyJL4VhVAivmzBiZjaRTUNIaRsRbPR0QwhC1Rbsfq7RP/gcK3w1/qnnguq3NlMuGrf+zhEWy2llkFi1JFV6iub1Jg3bM2KVMKv51YA2Wsn5YU00YU3rzzP6EMom1DFDCElkqQ49VCrJZXLhKTa980oA5CFoJdVklbXSi+4Fvr9MkiNeUPfX2p/EFdDmbKsSxoi7hKcWi1UqWCGkBJJUtyyBfV9Cky16FsN2xyKdohKZCXoZZCkTQxNrpWp4JqPA7JvYL8znNl3HGWFvr/q+oNoDWXUd5qX7ysr2mmtQ8EMISWSpJXenmIqkOYJ2xxsBy9Ekgnt9paGoLdaYkwyfZx+/LENBdeS/DZpGGQRmlKRRM/kG5D1mvRmUqZzZRuPr/kzy3zKqpXmBWYIKeEjreRdgTRvuOaQRo0N7X6VlaC32v7qMn3IUhkhpqO0DDJvTSmU6KVhHvr+sjWTChFAfM2fWdamDFppkWCGEIDQ8tStJlg+yMt+mab7VR7r00r7q9P0oZTK8DUdpWWQeWtKKtHTiwDqyEti1t9j6D1CzJ9Z0GqttGgwQ/BE2o3fLILVLLtmUpev0O5XZXKohcJl+lB9L30DjbX682SQeQsekujJIoAPbd+H9U89Z9zzZZGYQ82fNpQpazh0bHmAGYIn8tz4RTi5mmHX9O3y5ep+VTZkfRcu00ea6Ji0DDJPxiqJ3nX3bsVD2/c593xZJOY8zJ9lyxpOM7asYIbgibw2fhEvtllSmus57WAe01HEuzARi3Zcm96eblx98cux/qnnnHu+THPLSqjLou2Y0KyxMUPwRF4bv4gX2ywpzSeyqiwHyAfNJADNXps8tFDfPd9u792Gsmg7JjRrbNwgJ0YzbfBFNMJptQ+hHVHGpkR5YLKHRhaJMu/vPMdma5DDDAHNP0Bl3nSdhsn4LsreAaydoIZSt4NPzBfcMc2BZtsOJ4uKnQZlI8BFvYtWzrPMpo92ghQUj45WIdDYcnUyohQMgYi+AOBSACMAngDwJ0KIA816Ph+g5qBTTBmtnmeZHL3tDCkoShtKGZ3NeaMUDAHAPQA+IYQYI6LPA/gEgI8148Fpa8e0AmWTrkNR5iiOPFGGeXayFpoX9HyMCiFYYGy3M1sKhiCE+JHyax+Adzbjua2W5ELQTmO1oVM0sU6Z52SHqmml8SG045ktBUPQ8KcAbrH9kYhWAlgJAPPmzcv0oDJIcr5op7Ha0CmmjE6ZZycgi6bVjme2aQyBiO4FcJrhT58UQtwZX/NJAGMAbrTdRwixBsAaIIoyyjKmdpLk2mmsLkxGJ64JbLJhtOOZLU3YKRG9H8BHALxZCHHY5zt5hJ2WjZC44DPWdppPXmhH1VyiE99XJ6Gs77fUYadE9DZETuQLfJlBXmgnSS5prK0mjK3a/O2omgOtf1+M4tFO9AUAKq0eQIx/AzATwD1E9Esi+nKrB5QV/YPDuP6+7egfHG7aM02EsVmQxO2ffrQF7/taX1PnLVXzrhRRIK1EK98Xg2FCKTQEIcSkSqNsleTXSptlK6X0dnXitqONmTG5UQqGMNnQKuLYSsLYauLWbqo50L6MjDF5wQzBA6G28VYSx1YRxlYTt7I675LQjoyMkT/Ksn9LE2WUBnlWO7UhS+PzMrzgTgA7ZxntjFbsX1uUUVmcyqVFWsdfb083rrroLCZMTQA7ZxntjND9W2TACpuMEtBq2zgjGe32jiZrSWVGOoTs36K1CWYICWi1bdwFNktFKPM70tGJJZUZboTs36IDVpgheKCMjj+2m9ejjO/IhE4sqcxIhu/+LVobZobQpmjX7NxORv/gMJ4+cARTuioYG0tfUpnRuShaG2aG0KZoN7t5p0PV6KZUCO85dx4WzZnFPgRGMIrUhpkhtCnayW7OqNfoxqsCc44/Fu89N1v5dgYjbzBDaGO0i92cwRpdJ6Odgj+YITAYTQBrdJ2Jdgv+YIbAKCXaSaryBWt0nYd2C/5ghsAoHdpNqmIwbGg3UyEzBEbp0G5SFaN8KIuG2W6mQmYIjNKh3aSqyYqyENVQlEXDVNfvqovao+ULMwRGUxBCXNpNqpqMaDVRzcKMyqBhtnr90oIZAqNwpDkc7IBtLVpJVLMS0zJomGVgSmnADIFRONr1cHQi1Eqs7dqOtQwaZhmYUhowQ2AUjnY9HJ0GXTJftXxRS0pr5LFfWq1hloEppQEzBEbhaNfD0WnQJfPhwyMtcYZOlv3SaqaUBswQGE1BOx6OTkOZNDneL60BMwQGgwFg8kjmjPRghsBgMGpgybyzUWn1AACAiP6WiB4hol8S0Y+IaE6rx8RgMBidhlIwBABfEEL8lhDiNQDuArCq1QNiMBiMTkMpGIIQ4nnl15cAtZazDAaDwWgSSuNDIKK/B/DHAA4CuMhx3UoAKwFg3jzuOMVgMBh5gYRojjBORPcCOM3wp08KIe5UrvsEgGOEEJ9JuufSpUvFhg0bchwlg8FgTH4QUb8QYqn+edM0BCHExZ6X3gTg+wASGQKDwWAw8kMpTEZEdLYQYlv862UAfu3zvf7+/n1ENJjysScB2Jfyu+0KnnNngOfcGcgy5x7Th00zGblARGsBLARQBTAI4CNCiKcLfuYGk8o0mcFz7gzwnDsDRcy5FBqCEOLyVo+BwWAwOh2lCDtlMBgMRuvRyQxhTasH0ALwnDsDPOfOQO5zLoUPgcFgMBitRydrCAwGg8FQwAyBwWAwGAA6lCEQ0duIaAsRbSeij7d6PHmAiM4govuI6HEi2kxEH40/P4GI7iGibfH/3fHnRET/Gq/BI0S0pLUzSA8i6iKi/yKiu+LfX0ZE6+I530JE0+LPp8e/b4//Pr+V404LIjqeiL5NRL+O3/d5k/09E9Ffxvt6ExHdTETHTLb3TETfIKJniWiT8lnweyWi98fXbyOi94eMoeMYAhF1AbgewCUAzgHwHiI6p7WjygVjAP5KCPFKAMsAXBXP6+MAfiyEOBvAj+PfgWj+Z8f/VgL4UvOHnBs+CuBx5ffPA/iXeM7DAD4Qf/4BAMNCiLMA/Et8XTviiwD+UwjxCgCvRjT3Sfueieh0AH8BYKkQYjGALgDvxuR7zzcAeJv2WdB7JaITEFV5OBfA6wB8RjIRLwghOuofgPMA/FD5/RMAPtHqcRUwzzsBvAXAFgCz489mA9gS//wVAO9Rrq9d107/AMyND8qbEJVOJ0TZm1P09w3ghwDOi3+eEl9HrZ5D4HyPA/CkPu7J/J4BnA5gJ4AT4vd2F4DfnYzvGcB8AJvSvlcA7wHwFeXzuuuS/nWchoCJzSUxFH82aRCryL8NYB2AU4UQuwEg/v+U+LLJsg7XAfgbRFnuAHAigANCiLH4d3VetTnHfz8YX99OWABgL4D/E5vJvkZEL8Ekfs8iqlrwjwB2ANiN6L31Y3K/Z4nQ95rpfXciQyDDZ5Mm9paIXgpgLYCrRX2fiYZLDZ+11ToQ0XIAzwoh+tWPDZcKj7+1C6YAWALgS0KI3wbwG0yYEUxo+znHJo+3A3gZgDmIeqZcYrh0Mr3nJNjmmGnuncgQhgCcofw+F8CuFo0lVxDRVETM4EYhxO3xx88Q0ez477MBPBt/PhnW4XwAlxHRUwC+hchsdB2A44lIlmVR51Wbc/z3WQCea+aAc8AQgCEhxLr4928jYhCT+T1fDOBJIcReIcQogNsBvB6T+z1LhL7XTO+7ExnCegBnxxEK0xA5p77b4jFlBhERgK8DeFwI8c/Kn74LQEYavB+Rb0F+/sdxtMIyAAelatouEEJ8QggxVwgxH9F7/IkQ4n0A7gPwzvgyfc5yLd4ZX99WkqMQYg+AnUS0MP7ozQAewyR+z4hMRcuIaEa8z+WcJ+17VhD6Xn8I4K1E1B1rVm+NP/NDq50oLXLc/B6ArQCeQNSgp+VjymFOv4NINXwEwC/jf7+HyHb6YwDb4v9PiK8nRNFWTwB4FFEER8vnkWH+FwK4K/55AYBfANgO4DYA0+PPj4l/3x7/fUGrx51yrq8BsCF+13cA6J7s7xnAZxGVxd8E4P8CmD7Z3jOAmxH5SEYRSfofSPNeAfxpPPftAP4kZAxcuoLBYDAYADrTZMRgMBgMA5ghMBgMBgMAMwQGg8FgxGCGwGAwGAwAzBAYDAaDEYMZAoPRYhDRDbJSK4PRSjBDYHQEiOhkIvrfRPQUER0lomeI6MdE9JZWj43BKAumJF/CYEwKrAUwA1Gyz3ZERcIuQPsWPWMwcgdrCIxJDyI6HsAbAHxcCPFjIcSgEGK9EOIfhRDfiq/5QyJaT0SH4iYlt8V1+OU9LiQiQUSXEFE/ER0hogeJaC4RXUBEvyKiF4joLiI6UfneDfFnn4q1kheI6P8Q0bGO8RIR/Q0RPRE/51Ei+kPtmlVENBhrO3uI6N/zXzlGp4EZAqMT8EL87zIiOsZyzTREjUVeDWA5gJMQlRLQ8VkAVyNqQNIN4BYAqxA1KbkQwCIAq7XvXBDf980ALkdUX8bVtOXvEGkyVyFq4vQ/AXyFiP4/ACCiywH8NYD/hqhBynJEJRoYjGxodf0O/sf/mvEPESF+DsCLAB5GVF//XMf1r0BUG2pu/PuF8e+/q1zz5/FnS5TPVqO+wckNAA4AeKny2R8COArgJco1sg7TSwAcAfAGbTzXAfhB/PP/QNQQZWqr15X/Ta5/rCEwOgJCiLWIaulfCuBuROWT+4joGgAgoiVEdGdshjmEqHgcAMzTbvWI8vMz8f+Pap+dgno8IoR4Qfn9YUQayZmGoZ6DqDjbf8bmpReI6AUAf6Zcf1t8zZNE9HUiehcRTXfNn8HwATMERsdACPGiEOIeIcS1QojXIyoXvpqIZiEqEXwYwB8BeC0mettO024zqt4yvq/+WZZzJb97KaKqpvLfIkSmJgghdgJYCODDAJ4H8E8A+uPOaQxGanCUEaOT8RiiM/AaRD6Da4QQTwIAEa3I8TmvIqKXCCF+E/++DMAIotLFpjEdBdAjhPiJ7YZCiBcBfB/A94noHwDsQdQw6Ec5jpvRYWCGwJj0iKN+bgPwDUQmn0MAliLqxfxjTBDhPyei6wG8EsDf5jiEKQC+QUTXIjJb/QOAryoMogYhxCEi+kcA/xg3g3kAwEsRMZGqEGINEV0Z33MdImf5FYg0l205jpnRgWCGwOgEvACgD8BHAZyFqLnK0wBuAvB3QojniOj9AD6HKLLnEUSO2//M6fn3A9iMqMPXDEQ5EX/juP7TiHwRfw3gS4jMQr8E8P/Hfz8A4GOIHONTETG0FVK7YTDSghvkMBgFgohuAHCSEGJ5q8fCYCSBncoMBoPBAMAMgcFgMBgx2GTEYDAYDACsITAYDAYjBjMEBoPBYABghsBgMBiMGMwQGAwGgwGAGQKDwWAwYvw/YUOfxQAgMWQAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ "# Check out the transformed data, in the new space\n", - "# Note: since the new data is 1D, the x-axis here is just index number\n", - "plt.plot(out, '.')" + "plt.plot(out, '.');\n", + "\n", + "# Add title and labels\n", + "plt.title('Simulated Data', fontsize=16, fontweight='bold')\n", + "plt.xlabel('Samples', fontsize=14);\n", + "plt.ylabel('PC-1', fontsize=14);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion\n", + "\n", + "Dimensionality reduction, and PCA in particular, are common data transformations, especially for large data. \n", + "\n", + "As for our other topics related to machine learning and data analysis, here we have merely introduced the basic ideas behind dimensionality reduction, and one of the most common algorithms to do so, PCA. For further information on these topics, look into more technical courses or resources. " ] }, { @@ -247,7 +359,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -261,7 +373,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/17-Classification.ipynb b/17-Classification.ipynb index 9bfab78..6ef08fe 100644 --- a/17-Classification.ipynb +++ b/17-Classification.ipynb @@ -4,7 +4,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Classification" + "# Classification\n", + "\n", + "Another general task in data analysis and machine learning is classification. \n", + "\n", + "Classification, in general, is the process of predicting the 'class' of datapoints, meaning to assign a label to the data point, or assign them to a grouping or cluster. \n", + "\n", + "Classification is a type of supervised learning, meaning we typically have some data for which we know the classes, and we want to learn a procedure that can use this information (the data with known labels), to learn a mapping from data to labels that we can apply to new data. \n", + "\n", + "Note that if we have data that we are trying to categorize, but don't already know any labels, we typically call this clustering. \n", + "\n", + "Classification can also be thought of as the categorical version of prediction. Prediction, as we've talked about it, is process of predicting a continuous output from a set of features. Classification is the same idea, except in case we are predicting a discrete category (or label). " ] }, { @@ -12,7 +22,7 @@ "metadata": {}, "source": [ "
\n", - "Classification is process of categorizing data - of assigning data points to predefined groups (or clusters). \n", + "Classification is process of categorizing data - of assigning data points to predefined groups (clusters) or labels. \n", "
\n", "\n", "
\n", @@ -27,7 +37,15 @@ "collapsed": true }, "source": [ - "## Support Vector Machines" + "## Support Vector Machines\n", + "\n", + "There are many algorithms for doing classification.\n", + "\n", + "For this example, we are going to use Support Vector Machines (SVMs) as an example algorithm. \n", + "\n", + "SVM is one of the most common algorithms for classification. SVMs are an algorithm that seeks to learn a boundary - or dividing line - between groups of data of interest. Once we learn this boundary, we can label datapoints based on where they sit relative to this boundary - basically which side of the line they are on. \n", + "\n", + "To separate the data, we want the dividing line, or 'decision boundary' that separates the data. There might be many different lines that do this. To try and find the best solution, SVMs try to learn the learn that has the greatest separation between the classes. To do so, SVMs use 'support vectors', which are datapoints nearby the boundary, that are used to calculate the line of greatest separation. " ] }, { @@ -40,34 +58,23 @@ "\n", "
\n", "This \n", - "article\n", + "article\n", "provides a nice overview of the SVM algorithm. This is also a code-based explainer from\n", - "scikit-learn.\n", + "scikit-learn.\n", "
" ] }, { "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, + "execution_count": 23, + "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import numpy as np\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ + "import matplotlib.pyplot as plt\n", + "\n", "# Imports - from scikit-learn\n", "from sklearn.svm import SVC\n", "from sklearn.metrics import classification_report" @@ -77,62 +84,96 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Overview\n", + "### Data Generation\n", "\n", - "In this example, we will generate some 2 dimensional data that comes from two different (known) groups, and apply an SVM classification model to this data. " + "In this example, we will generate some 2 dimensional data that comes from two different groups. \n", + "\n", + "This training data has labels, meaning for each data point we also know which group it comes from. \n", + "\n", + "We will then use a SVM classification model, to try and learn the decision boundary between the groups of data. If we are successful at learning a decision boundary, we can use this to predict the label of new datapoints." ] }, { "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, + "execution_count": 26, + "metadata": {}, "outputs": [], "source": [ "# Setting for generating some random data\n", - "n_points = 50\n", - "label_prop = 0.5\n", + "n_points = 50 # Total number of data points\n", + "label_prop = 0.5 # Proportion of points in class 1\n", "\n", "# Initialize data matrix (as zeros)\n", - "dat = np.zeros(shape=[n_points, 2])\n", + "data = np.zeros(shape=[n_points, 2])\n", "\n", "# Set up the number of data points in each class\n", - "n_dat_1 = int(n_points * label_prop)\n", - "n_dat_2 = n_points - n_dat_1\n", + "n_data_1 = int(n_points * label_prop)\n", + "n_data_2 = n_points - n_data_1\n", "\n", "# Generate the data\n", - "dat[0:n_dat_1, 0] = np.abs(np.random.randn(n_dat_1))\n", - "dat[0:n_dat_1, 1] = np.abs(np.random.randn(n_dat_1))\n", - "dat[n_dat_2:, 0] = np.abs(np.random.randn(n_dat_1)) + 2\n", - "dat[n_dat_2:, 1] = np.abs(np.random.randn(n_dat_1)) + 2\n", + "data[0:n_data_1, 0] = np.abs(np.random.randn(n_data_1))\n", + "data[0:n_data_1, 1] = np.abs(np.random.randn(n_data_1))\n", + "data[n_data_2:, 0] = np.abs(np.random.randn(n_data_1)) + 2\n", + "data[n_data_2:, 1] = np.abs(np.random.randn(n_data_1)) + 2\n", "\n", "# Create the labels vector\n", - "labels = np.array([0] * n_dat_1 + [1] * n_dat_2)" + "labels = np.array([0] * n_data_1 + [1] * n_data_2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Data Visualization\n", + "\n", + "Now that we have some data, let's start by plotting it." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGfCAYAAAD/BbCUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xts3OWd7/HPN8TbxAoyVWK0EOMZ\nJKIV2SbFu0MIAqpCEKVNSf7YIChzuu0Rldk9LYVS6bSsRRMqjdRyyWZ7qLYaLio9Z3oTrQqpqEob\nGrFIDanTzQWaVonajHGKIA1bN8GbJinf88eMg+2MMzPxb37X90uy7HnmyczXHsF85vk9F3N3AQAA\nhGVO1AUAAIBsIXwAAIBQET4AAECoCB8AACBUhA8AABAqwgcAAAgV4QMAAISK8AEAAEJF+AAAAKGa\nG9UTL1q0yPP5fFRPDwAAArRjx44/uHtvK30jCx/5fF7Dw8NRPT0AAAiQmVVb7ctlFwAAECrCBwAA\nCBXhAwAAhCqyOR+NnDhxQqOjozp27FjUpSTGvHnz1NfXp66urqhLAQCgJbEKH6Ojozr33HOVz+dl\nZlGXE3vursOHD2t0dFQXX3xx1OUAANCSWF12OXbsmBYuXEjwaJGZaeHChYwUAQASJVbhQxLBo038\nvQAASRO78AEAANKN8DHNggULWu67YcMGPfTQQx17/N/97ne64oortGTJEt1yyy06fvx4W88FAEAc\nJTp8VCpSPi/NmVP7XqlEXVGwPve5z+kzn/mM9u3bp3e/+916/PHHoy4JAIBZS2z4qFSkwUGpWpXc\na98HBzsTQDZv3qwrrrhCAwMDuv766/X666+fum/Xrl267rrrtGTJEj366KOn2h988EFdfvnlWr58\nudavX9/2c7q7nn/+ea1bt06S9LGPfUw/+MEPZv/LAAAQsVgttW3H0JA0Pj61bXy81l4sBvtcV199\ntbZt2yYz02OPPaYHHnhADz/8sCRp9+7d2rZtm9566y0NDAxo9erVevnll7Vv3z5t375d7q41a9bo\nhRde0Pve975Tj3nkyBFdc801DZ/vm9/8ps4//3ydd955mju39hL19fXp4MGDwf5iAABEILHhY2Sk\nvfbZGB0d1S233KLXXntNx48fn7Knxtq1azV//nzNnz9f1157rbZv364XX3xRzz33nAYGBiRJR48e\n1b59+6aEj3PPPVc7d+6c8TkPHTp0WhsrWwAAaZDY8NHfX7vU0qg9aHfeeafuuecerVmzRlu3btWG\nDRtO3Tc9EJiZ3F333nuv7rjjjhkfs9nIx6WXXqo//vGPOnnypObOnavR0VFdeOGFgfw+QDOVPRUN\nbRnSyNiI+nv6VVpVUnFZwEOKADIrsXM+SiWpu3tqW3d3rT1oY2NjWrx4sSTpySefnHLf008/rWPH\njunw4cPaunWrLr/8cn3gAx/QE088oaNHj0qSDh48qDfeeGPKv5sY+Wj0tXTpUpmZrr32Wj311FOn\nnnft2rXB/3LANJU9FQ1uHlR1rCqXqzpW1eDmQVX2pGxGN4DIJDZ8FItSuSzlcpJZ7Xu5PPv5HuPj\n4+rr6zv1tXHjRm3YsEE333yzrrnmGi1atGhK/xUrVmj16tVauXKl7rvvPl144YW64YYbdNttt+nK\nK6/UsmXLtG7dOh05cqTtWr785S9r48aNuuSSS3T48GHdfvvts/vlgBYMbRnS+ImpE6rGT4xraMtQ\nRBUBSBtz90ieuFAo+PDw8JS2vXv36tJLL42kniTj74Ygzbl/jlyn/3/BZHp7/dsRVAQgCcxsh7sX\nWumb2JEPAJ3R39N44tRM7QDQLsIHgClKq0rq7po6oaq7q1ulVR2YUAUgkwgfQMJU9lSU35TXnPvn\nKL8pH/hE0OKyoso3lZXryclkyvXkVL6pzGoXAIFJ7FJbIIsmVqJMTAidWIkiKdBwUFxWJGwA6BhG\nPoAEYSUKgDQgfAAJMjLWeAvfmdrD0OnLQADSh/AxTTtH3m/YsEEPPfRQxx7/kUce0SWXXCIz0x/+\n8Ie2ngfpFLeVKGxIBuBsJDp8pP0T11VXXaWf/vSnyuVyUZeCmIjbShQuAwE4G4kNH2F+4tq8ebOu\nuOIKDQwM6Prrr9frr79+6r5du3bpuuuu05IlS/Too4+ean/wwQd1+eWXa/ny5Vq/fv1ZPe/AwIDy\n+fxsy0eKxG0lShwvAwGIv8SudjnTJ66g/0d89dVXa9u2bTIzPfbYY3rggQf08MMPS5J2796tbdu2\n6a233tLAwIBWr16tl19+Wfv27dP27dvl7lqzZo1eeOGFKafaNjtYbunSpYH+DkiPOK1E6e/pV3Xs\n9BMe27kMxCF2QPYkNnyE+YlrdHRUt9xyi1577TUdP35cF1988an71q5dq/nz52v+/Pm69tprtX37\ndr344ot67rnnNDAwIEk6evSo9u3bNyV8TBwsByRZaVVpytJfqb3LQGEtHQYQL4kNH0F84mrVnXfe\nqXvuuUdr1qzR1q1btWHDhlP3mdmUvmYmd9e9996rO+64Y8bHZOQDaTAREM525CLMEUwA8ZHY8DHb\nT1ztGBsb0+LFiyXVjraf7Omnn9a9996rt956S1u3btWXvvQlzZ8/X/fdd5+KxaIWLFiggwcPqqur\nS+eff/6pf8fIB9JiNpeBmDMChCdOlzgTO+G0UxPvxsfH1dfXd+pr48aN2rBhg26++WZdc801WrRo\n0ZT+K1as0OrVq7Vy5Urdd999uvDCC3XDDTfotttu05VXXqlly5Zp3bp1OnLkSNu1fOUrX1FfX59G\nR0e1fPlyfeITn5jV7wbETdyWDgNpFbdl8eZ++tHZYSgUCj48PDyljaPhzw5/NyTV9DkfUm0Ek7Nk\ngGDlN+UbTlXI9eR04O4DgTyHme1w90IrfRM78gEg+eK2dBhIq7hd4kzsnA8A6RCnpcNAWoW5SKMV\nsRv5iOoyUFLx98q2tO/yCyAYcdsdOVbhY968eTp8+DBvqC1ydx0+fFjz5s2LuhREIG4TyADEV9wu\ncTadcGpm8yS9IOldql2mecrd10/r83FJD0o6WG96xN0fO9PjNppweuLECY2OjurYsWPt/A6ZNm/e\nPPX19amrqyvqUhCyMCaQAUCr2plw2sqcjz9Lus7dj5pZl6QXzexH7r5tWr/vuPun2i12sq6urim7\nhwKYWdwmkAFAq5pedvGao/WbXfUvrosAEWOPDABJ1dKcDzM7x8x2SnpD0k/c/aUG3f7BzHab2VNm\ndlGgVQI4TdwmkAFAq1oKH+7+F3e/TFKfpBVm9p5pXTZLyrv7ckk/lfTk9MeQJDMbNLNhMxs+dOjQ\nbOoGMi9uE8gAoFVt73BqZuslveXuD81w/zmS3nT3njM9TqMJpwAAIJkC3eHUzHrN7Lz6z/MlXS/p\n19P6XDDp5hpJe1svFwAAZEkrq10ukPRkfURjjqTvuvsPzeyLkobd/RlJnzazNZJOSnpT0sc7VTAA\nAEi2WB0sBwAAkomD5QAAQGwRPgAAQKgIHwAAIFSEDwAAECrCBwAACBXhAwAAhIrwAQAAQkX4AAAA\noSJ8AECHVfZUlN+U15z75yi/Ka/KnkrUJQGRamV7dQDAWarsqWhw86DGT4xLkqpjVQ1uHpQkTiBG\nZjHyAQAdNLRl6FTwmDB+YlxDW4YiqgiIHuEDADpoZGykrXYgCwgfANBB/T39bbUDWUD4AIAOKq0q\nqbure0pbd1e3SqtKEVUERI/wAQAdVFxWVPmmsnI9OZlMuZ6cyjeVmWyKTDN3j+SJC4WCDw8PR/Lc\nAAAgWGa2w90LrfRl5AMAAISK8AEAAEJF+AAAAKEifAAAgFARPgAAQKgIHwAAIFSEDwBALHEacHpx\nqi0AIHY4DTjdGPkAAMQOpwGnG+EDABA7nAacboQPAEDscBpwuhE+AACxw2nA6Ub4AADEDqcBpxun\n2gIAgFnjVFsAABBbhA8AABAqwgcAAAgV4QMAAISK8AEAAEJF+AAAAKEifAAAgFARPgAAQKiahg8z\nm2dm281sl5m9Ymb3N+jzLjP7jpntN7OXzCzfiWIBAEDytTLy8WdJ17n7eyVdJulGM1s5rc/tkv7L\n3S+R9K+SvhxsmQAAIC2ahg+vOVq/2VX/mr4n+1pJT9Z/fkrSKjOzwKoEAACp0dKcDzM7x8x2SnpD\n0k/c/aVpXRZLelWS3P2kpDFJCxs8zqCZDZvZ8KFDh2ZXOQAASKSWwoe7/8XdL5PUJ2mFmb1nWpdG\noxynnVjn7mV3L7h7obe3t/1qAQBA4rW12sXd/yhpq6Qbp901KukiSTKzuZJ6JL0ZQH0A0JbKnory\nm/Kac/8c5TflVdlTibokANO0stql18zOq/88X9L1kn49rdszkj5W/3mdpOfd/bSRDwDopMqeigY3\nD6o6VpXLVR2ranDzIAEEiJlWRj4ukPQzM9st6Reqzfn4oZl90czW1Ps8Lmmhme2XdI+kz3emXACY\n2dCWIY2fGJ/SNn5iXENbhiKqCEAjc5t1cPfdkgYatH9h0s/HJN0cbGkA0J6RsZG22gFEgx1OAaRG\nf09/W+0AokH4AJAapVUldXd1T2nr7upWaVUpoooANEL4ANAxYa88KS4rqnxTWbmenEymXE9O5ZvK\nKi4rdvR5AbTHolqUUigUfHh4OJLnBtB5EytPJk8A7e7qJgw0UNlT0dCWIY2Mjai/p1+lVSX+Rkgc\nM9vh7oVW+jLyAaAjWHnSGpYHI4sIHwA6gpUnrSGkIYsIHwA6IoqVJ0nc3ZSQhiwifADoiLBXniT1\n8gXLg5FFhA8ATZ3NiELYK0+SevmC5cHIoqY7nALItumrViZGFCQ1DRLFZcXQVm0k9fLFxN+H1S7I\nEpbaAjij/Ka8qmPV09pzPTkduPtA+AXNICl1AmnFUlsAgUnKiAKXL4DkIHwAOKOkTIhkd1MgOZjz\nAeCMSqtKDXcqjeOIQphzTACcPUY+AJxxNQsjCgCCxoRTIOM4gwVAEJhwCqBlSd0fA0ByET6AjEvK\nahYA6UH4ADIuKatZAKQH4QPIOPbHABA2wgeQcaxmARA2VrsAAIBZY7ULAACILcIHAAAIFeEDAACE\nivABAABCRfgAEKkznSsDIJ041RZAZKafK1Mdq2pw86AksdQXSDFGPgBEhnNlgGwifACIDOfKANlE\n+AAQGc6VAbKJ8AEgMpwrA2QT4QNAZDhXBsgmznYBAACzxtkuAAAgtggfAAAgVIQPAAAQqqbhw8wu\nMrOfmdleM3vFzO5q0Of9ZjZmZjvrX1/oTLkAgFaxdT3iqpXt1U9K+qy7/9LMzpW0w8x+4u6/mtbv\nP9z9w8GXCABoF1vXI86ajny4+2vu/sv6z0ck7ZW0uNOFAcBsZP1TP1vXI87amvNhZnlJA5JeanD3\nlWa2y8x+ZGZ/O8O/HzSzYTMbPnToUNvFAqjJ+htrMxOf+qtjVbn81Kf+LP2d2LoecdZy+DCzBZK+\nJ+lud//TtLt/KSnn7u+V9H8k/aDRY7h72d0L7l7o7e0925qBTOONtTk+9bN1PeKtpfBhZl2qBY+K\nu39/+v3u/id3P1r/+VlJXWa2KNBKAUjijbUVfOpn63rEWyurXUzS45L2uvvGGfr8db2fzGxF/XEP\nB1kogBreWJvjUz9b1yPeWlntcpWkj0raY2Y7623/Iqlfktz9a5LWSfpnMzsp6b8l3epR7dsOpFx/\nT7+qY9WG7agprSpNWekhZfNTf3FZkbCBWGoaPtz9RUnWpM8jkh4JqigAM+ONtbmJN9yhLUMaGRtR\nf0+/SqtKvBEDMcHBckACVfZUeGMFECvtHCxH+AAAALPGqbYAACC2CB8AACBUhA8AqcHOr0AytLLU\nFgBij4PUgORg5ANAKrDzK5AchA8AqcDOr0iTtF9CJHwASAW2VEdaZOHwSMIHgFTgIDWkRRYuIRI+\nAKQCB6khLbJwCZHVLgBSg4PUkAZZODySkQ8AAGIkC5cQCR8AAMRIFi4hcrAcAACYNQ6WAwAAsUX4\nAAAAoSJ8AACAUBE+AABAqAgfAAAgVIQPAAAQKsIHAAAIFeEDAACEivABAABCRfgAAHRcZU9F+U15\nzbl/jvKb8qrsqURdEiJE+ACAAPEme7rKnooGNw+qOlaVy1Udq2pw8yB/mwwjfABAQHiTbWxoy5DG\nT4xPaRs/Ma6hLUMRVYSoET4ATMEn97PHm2xjI2MjbbUj/QgfAE7hk/vs8CbbWH9Pf1vtSD/CB4BT\n+OQ+O7zJNlZaVVJ3V/eUtu6ubpVWlSKqCFEjfAA4hU/us8ObbGPFZUWVbyor15OTyZTryal8U1nF\nZcWoS0NE5kZdAID46O/pV3Ws2rAdzU28mQ5tGdLI2Ij6e/pVWlXiTVa1vw1/B0xg5APAKe18cmdi\namPFZUUduPuA3l7/tg7cfYA3XKABwgeAU1odHmdiKoDZMHeP5IkLhYIPDw9H8twAZie/Kd/w8kyu\nJ6cDdx8IvyDMqLKnwmUghMLMdrh7oZW+zPkA0DYmpibDxAjVxAqmiREqSQQQRIrLLgDaxpLSZGDp\nNOKqafgws4vM7GdmttfMXjGzuxr0MTP7ipntN7PdZvZ3nSkXQBywpDQZGKFCXLUy8nFS0mfd/VJJ\nKyV90syWTuvzQUlL6l+Dkv490CoBxAr7NiQDI1SIq6ZzPtz9NUmv1X8+YmZ7JS2W9KtJ3dZK+obX\nZq9uM7PzzOyC+r8FkELs2xB/pVWlKXM+JEaoEA9tzfkws7ykAUkvTbtrsaRXJ90erbcBACLCCBXi\nquXVLma2QNL3JN3t7n+afneDf3LaGl4zG1Ttsoz6+xn2A4BOY4QKcdTSyIeZdakWPCru/v0GXUYl\nXTTpdp+k30/v5O5ldy+4e6G3t/ds6gUAAAnXymoXk/S4pL3uvnGGbs9I+sf6qpeVksaY7wEAABpp\n5bLLVZI+KmmPme2st/2LpH5JcvevSXpW0ock7Zc0Lul/Bl8qAABIg1ZWu7yoxnM6JvdxSZ8MqigA\nAJBe7HAKAABCRfgAAAChInwAAIBQET4AAECoCB8AACBUhA8AABAqwgcAAAgV4QMAAISK8AEAAEJF\n+AAAAKEifAAAgFARPgAAQKgIHwAAIFSEDwAAECrCBwAACBXhAwAAhIrwAQAAQkX4AAAAoSJ8AACA\nUBE+AABAqAgfAAAgVIQPAAAQKsIHAAAIFeEDAACEivABAABClenwUalI+bw0Z07te6USdUUAAKTf\n3KgLiEqlIg0OSuPjtdvVau22JBWL0dUFAEDaZXbkY2joneAxYXy81g4AADons+FjZKS9dgAAEIzM\nho/+/vbaAQBAMDIbPkolqbt7alt3d60dAAB0TmbDR7EolctSLieZ1b6Xy0w2BQCg0zK72kWqBQ3C\nBgAA4crsyAcAAIgG4QMAAISK8AEAAEJF+AAAAKFqGj7M7Akze8PMXp7h/veb2ZiZ7ax/fSH4MgEA\nQFq0strl65IekfSNM/T5D3f/cCAVAQCAVGs68uHuL0h6M4RaAABABgQ15+NKM9tlZj8ys78N6DEB\nAEAKBbHJ2C8l5dz9qJl9SNIPJC1p1NHMBiUNSlI/h6gAAJBJsx75cPc/ufvR+s/PSuoys0Uz9C27\ne8HdC729vbN9agAAkECzDh9m9tdmZvWfV9Qf8/BsHxcAAKRT08suZvYtSe+XtMjMRiWtl9QlSe7+\nNUnrJP2zmZ2U9N+SbnV371jFAAAg0ZqGD3f/SJP7H1FtKS4AAEBT7HAKAABCRfgAAAChInwAAIBQ\nET4AAECoCB8AACBUhA8AABAqwgcQM5WKlM9Lc+bUvlcqUVcEAMEK4mwXAAGpVKTBQWl8vHa7Wq3d\nlqRiMbq6ACBIjHwAMTI09E7wmDA+XmsHgLQgfAAxMjLSXjsAJBHhA4iR/v722gEgiQgfQIyUSlJ3\n99S27u5aOwCkBeEDiJFiUSqXpVxOMqt9L5eZbAogXVjtAsRMsUjYAJBujHwAAIBQET4AAECoCB8A\nACBUhA8AABAqwgcAAAgV4QMAAISK8AEAAEJF+AAAAKEifAAAgFARPgAAQKgIHwAAIFSEDwAAECrC\nBwAACBXhAwAAhIrwAQAAQkX4SIlKRcrnpTlzat8rlagrAgCgsblRF4DZq1SkwUFpfLx2u1qt3Zak\nYjG6ugAAaISRjxQYGnoneEwYH6+1AwAQN4SPFBgZaa8dAIAoET5SoL+/vXYAAKJE+EiBUknq7p7a\n1t1daw8Sk1oBAEEgfKRAsSiVy1IuJ5nVvpfLwU42nZjUWq1K7u9MaiWAAADaZe4eyRMXCgUfHh6O\n5LnRvny+Fjimy+WkAwfCrgYAEDdmtsPdC630bTryYWZPmNkbZvbyDPebmX3FzPab2W4z+7t2C0b8\nMakVABCUVi67fF3SjWe4/4OSltS/BiX9++zLQtwwqRUAEJSm4cPdX5D05hm6rJX0Da/ZJuk8M7sg\nqAIRD2FNagUApF8QE04XS3p10u3RelussXKjPWFMagUAZEMQ26tbg7aGs1jNbFC1SzPqj3C8nu3I\nz06xyN8HADB7QYx8jEq6aNLtPkm/b9TR3cvuXnD3Qm9vbwBPfXaabUfOqAgAAJ0TRPh4RtI/1le9\nrJQ05u6vBfC4HXOmlRvsZwEAQGe1stT2W5J+LulvzGzUzG43s38ys3+qd3lW0m8l7Zf0qKT/1bFq\nA3KmlRsc0gYAQGc1nfPh7h9pcr9L+mRgFYWgVJo650N6Z+XGRz/a+N+wnwUAAMHI5PbqZ1q5EeZ+\nFswtAQBkUSbDh1QLGgcOSG+/Xfs+sYqj0X4WknT0aLDhIMlzSwhNAIDZyGz4mMnEqMjChVPbDx8O\nNhwkdW5JkkMTACAeCB8NFIvSggWntwcZDpJ6VkpSQ1M7GNkBgM4ifMyg0+EgqWelJDU0tYqRHQDo\nPMLHDDodDpJ6VkpSQ1OrsjCyAwBRI3zMoNPhIKlnpSQ1NLUq7SM7ABAHhI8ZhBEOZlpxE2dJDU2t\nSvvIDgDEgdX2CAtfoVDw4eHhSJ4bmMn0Qwel2shOmgIWAHSCme1w90IrfRn5ACZJ+8gOAMRB0+3V\ngawpFgkbANBJjHwAAIBQET4AAECoMhk+2MESAIDoZG7Ox/TVDBM7WEpc5wcAIAyZG/m46y52sAQA\nIEqZCh+VSu102kbYwbJ9XL4CAJyNTF12OdPoBjtYtofLVwCAs5WpkY8zjW6k5WySsHAAGwDgbGUq\nfMw0urFwIZ/W28UBbACAs5Wp8DHTiaz/9m/R1JNkaTyAjTksABCOTIUPzu0IzkxBLqmXrybmsFSr\nkvs7c1gIIAAQPE61xVmrVGpzPEZGaiMepVJyg1w+Xwsc0+Vy0oEDYVcDAMnTzqm2hA9AtUstjf5T\nMJPefjv8egAgadoJH5m67ALMJI1zWAAgrggfgNI3hwUA4ozwkXJBreBI+0oQJiMDQHiY85Fi03ch\nlWqf5tt9Uw3qcQAA6cWEU0gKbgUHK0EAAM0w4RSSgtuFlN1MAQBBylz4SPvchcmCWsHBShAAQJAy\nFT6ytotlUCs4WAkCAAhSpsJH1k5iDWoFBytBAABBytSEU3axBACgM5hwOgPmLgAAEL1MhQ/mLgAA\nEL1MhQ/mLgAAEL25URcQtmKRsAEAQJRaGvkwsxvN7Ddmtt/MPt/g/o+b2SEz21n/+kTwpQIAgDRo\nGj7M7BxJX5X0QUlLJX3EzJY26Podd7+s/vVYwHUmWpY2NgMAoJlWLruskLTf3X8rSWb2bUlrJf2q\nk4WlxfRD2SY2NpO4/AMAyKZWLrsslvTqpNuj9bbp/sHMdpvZU2Z2UaMHMrNBMxs2s+FDhw6dRbnJ\nk7WNzQAAaKaV8GEN2qZv1bVZUt7dl0v6qaQnGz2Qu5fdveDuhd7e3vYqTSgOZQMAYKpWwseopMkj\nGX2Sfj+5g7sfdvc/128+Kunvgykv+djYDACAqVoJH7+QtMTMLjazv5J0q6RnJncwswsm3VwjaW9w\nJSYbG5sBADBV0/Dh7iclfUrSj1ULFd9191fM7Itmtqbe7dNm9oqZ7ZL0aUkf71TBScPGZgAATJWp\ng+UAAEBncLBcArD3BwAgqzK3vXocsPcHACDLGPmIAHt/IAqMtgGIC0Y+IsDeHwgbo20A4oSRjwiw\n9wfCxmgbgDhJVfhIyrAye38gbIy2AYiT1ISPiWHlalVyf2dYOY4BhL0/EDZG2wDESWr2+cjna4Fj\nulxOOnAgsKcBEmn6nA+pNtpG6AUQlEzu88GwMjAzRtsAxElqVrv09zce+WBYGagpFgkbAOIhNSMf\nTOIEACAZUhM+GFYGACAZUnPZRWJYGQCAJEjNyAcAAEgGwgcAAAgV4QMAAISK8AEAAEJF+AAAAKEi\nfAAAgFARPgAAQKgIHwAAIFSEDwAAEKrMhY9KRcrnpTlzat8rlagrAgAgW1K1vXozlYo0OCiNj9du\nV6u12xLbsgMAEJZMjXwMDb0TPCaMj9faAQBAODIVPkZG2msHAADBy1T46O9vrx0AAAQvU+GjVJK6\nu6e2dXfX2rOk1Um3TM4FAHRCpiacTkwqHRqqXWrp768FjyxNNm110i2TcwEAnWLuHskTFwoFHx4e\njuS5syyfrwWJ6XI56cCB9vsBACBJZrbD3Qut9M3UZRe0PumWybkAgE4hfGRMq5NumZwLAOgUwkfG\ntDrplsm5AIBOIXxkTLEolcu1uRtmte/l8umTSFvtBwBAu5hwCgAAZo0JpwAAILYIHxFjIy8AQNa0\nFD7M7EYz+42Z7Tezzze4/11m9p36/S+ZWT7oQtNoYiOvalVyf2cjLwIIACDNmoYPMztH0lclfVDS\nUkkfMbOl07rdLum/3P0SSf8q6ctBF5pGnLILAMiiVkY+Vkja7+6/dffjkr4tae20PmslPVn/+SlJ\nq8zMgiszndjICwCQRa2Ej8WSXp10e7Te1rCPu5+UNCZp4fQHMrNBMxs2s+FDhw6dXcUpwkZeAIAs\naiV8NBrBmL4+t5U+cveyuxfcvdDb29tKfanGRl4AgCxqJXyMSrpo0u0+Sb+fqY+ZzZXUI+nNIApM\nMzbyAgBk0dwW+vxC0hIzu1jSQUm3SrptWp9nJH1M0s8lrZP0vEe1e1nCFIuEDQBAtjQNH+5+0sw+\nJenHks6R9IS7v2JmX5Q07O4Gy48RAAADIklEQVTPSHpc0v81s/2qjXjc2smiAQBAcrUy8iF3f1bS\ns9PavjDp52OSbg62NAAAkEbscAoAAEJF+AAAAKEifAAAgFARPgAAQKgIHwAAIFSEDwAAECrCBwAA\nCBXhAwAAhIrwAQAAQkX4AAAAobKozn8zs0OSqmfoskjSH0IqB83xesQLr0f88JrEC69H+HLu3ttK\nx8jCRzNmNuzuhajrQA2vR7zwesQPr0m88HrEG5ddAABAqAgfAAAgVHEOH+WoC8AUvB7xwusRP7wm\n8cLrEWOxnfMBAADSKc4jHwAAIIViFz7M7EYz+42Z7Tezz0ddT9aZ2RNm9oaZvRx1LZDM7CIz+5mZ\n7TWzV8zsrqhryjIzm2dm281sV/31uD/qmiCZ2Tlm9p9m9sOoa0FjsQofZnaOpK9K+qCkpZI+YmZL\no60q874u6caoi8ApJyV91t0vlbRS0if5byRSf5Z0nbu/V9Jlkm40s5UR1wTpLkl7oy4CM4tV+JC0\nQtJ+d/+tux+X9G1JayOuKdPc/QVJb0ZdB2rc/TV3/2X95yOq/Q92cbRVZZfXHK3f7Kp/MZEuQmbW\nJ2m1pMeirgUzi1v4WCzp1Um3R8X/WIGGzCwvaUDSS9FWkm31If6dkt6Q9BN35/WI1iZJ/1vS21EX\ngpnFLXxYgzY+RQDTmNkCSd+TdLe7/ynqerLM3f/i7pdJ6pO0wszeE3VNWWVmH5b0hrvviLoWnFnc\nwseopIsm3e6T9PuIagFiycy6VAseFXf/ftT1oMbd/yhpq5gjFaWrJK0xswOqXba/zsz+X7QloZG4\nhY9fSFpiZheb2V9JulXSMxHXBMSGmZmkxyXtdfeNUdeTdWbWa2bn1X+eL+l6Sb+Otqrscvd73b3P\n3fOqvX887+7/I+Ky0ECswoe7n5T0KUk/Vm0i3Xfd/ZVoq8o2M/uWpJ9L+hszGzWz26OuKeOukvRR\n1T7R7ax/fSjqojLsAkk/M7Pdqn14+om7s7wTaIIdTgEAQKhiNfIBAADSj/ABAABCRfgAAAChInwA\nAIBQET4AAECoCB8AACBUhA8AABAqwgcAAAjV/wfZyPHZ2eja1gAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, + "execution_count": 27, "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAGbCAYAAAB6XcIxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df2xc5Z3v8c/XqS9kaOLgxumNnM5M/qgggXCpGDW5wgIVk0LoAgIpErnTy0oUrKVJyo9Iq+UOqAY0oVILhIoFat2i5pKhS8KCKBGINumS7Uqb7jq7dEOUBCrkMYGIJII41JNfjp/7x8ROxj9njs/4nJnzfkmRM0/GZ77OQM5nnuc532POOQEAAFSqIegCAABAbSJEAAAATwgRAADAE0IEAADwhBABAAA8+Uo1Djp37lyXTCarcWgAADDNdu3adcQ51zJyvCohIplMqru7uxqHBgAA08zM8mONs5wBAAA8IUQAAABPCBEAAMATQgQAAPCEEAEAADwhRAAAAE+qcoknAKC+HTt2TIcOHdLp06eDLgVT0NjYqHnz5mn27Nmevp8QAQCoyLFjx/TZZ5+ptbVVM2fOlJkFXRI8cM7p+PHj+uSTTyTJU5BgOQMAUJFDhw6ptbVVsViMAFHDzEyxWEytra06dOiQp2MQIgAAFTl9+rRmzpwZdBnwycyZMz0vSxEiAAAVYwaifkzlvSREAAAATwgRAADAE0IEgFFyu3NKbkiq4dEGJTckldudC7okwHednZ2aO3fulI5hZnr22WenXEtPT4/MTFu3bp3ScU6ePKl169Zp3rx5uuiii/S9731PPT09U65vPIQIACVyu3PqeLND+b68nJzyfXl1vNlBkABqwI9+9CP96le/0s9+9jO9+uqrOnLkiJYvX64TJ05U5fUIEQBKZLZnVDhdKBkrnC4osz0TUEUAynHgwAH98pe/1NNPP60777xTK1as0GuvvaZ8Pq9NmzZV5TUJEQBK9Pb1VjQOTEUuJyWTUkND8WsuJBNe/f39WrNmjS655BLFYjEtXLhQq1ev1rFjx0Y999SpU7rvvvvU3NysOXPmaO3atTp16lTJc3p7e3XHHXeoublZsVhMN9xwg/bv3+9rzb/97W8lSbfffvvwWGtrq9ra2vT222/7+lpDCBEASsSb4hWNA17lclJHh5TPS84Vv3Z0hCNIFAoFnTlzRtlsVm+//bYef/xx/f73v9fKlStHPffJJ5/UgQMHlMvl9PDDD6urq0uZzLmZu88//1xtbW3av3+/XnjhBW3evFn9/f26/vrrdfz48XFrGBwc1MDAwIS/zpw5M/z8ffv2acGCBfrqV79acpxFixZp3759PvytjEbbawAlsu1ZdbzZUbKkEWuMKdueDbAq1KNMRiqUrpypUCiOp9PB1DSkpaVFzz///PDjgYEBLVy4UG1tbert7VU8fi5Uz5o1S1u2bFFDQ4NWrFihkydPKpvN6qGHHlJzc7Oefvpp9ff367333lNzc7Mk6eqrr1YymdSLL76o1atXj1nDXXfdpY0bN05Y57XXXqt3331XkvTFF19ozpw5o55z8cUX64svvqj0r6AshAgAJdJLiv96Z7Zn1NvXq3hTXNn27PA44JfecVbIxhufbi+99JKeeuopffjhh+rv7x8e/+CDD0pCxK233qqGhnMT+7fffrsefvhhvf/++7rmmmu0bds2LV++XLNnz9bAwICkYvC46qqr1N3dPe7rd3Z2as2aNRPWOGvWrJLHYzWOcs5VrTkYIQLAKOklaUIDqi4eLy5hjDUetNdff1133nmn7r33Xq1fv17Nzc06ePCgbrvttlFXOsybN2/MxwcPHpQkHTlyRDt37tQrr7wy6nXa29vHrSEej2vBggUT1nl+OLj44ot19OjRUc85evTomDMUfiBEAAACkc0W90Ccv6QRixXHg7ZlyxYtXbpUzz333PDYjh07xnzuyJtXDT2eP3++JKm5uVm33HKLHnnkkVHfO3Im4XyVLmdceuml+vjjj9Xf36+LLrpo+Dn79u3TpZdeOuFxvCJEAAiF3O4cSygRM7TvIZMpLmHE48UAEfR+CEk6fvy4LrjggpKx3Dg7Pt944w098cQTw0sar732mmbOnKnLL79cUnG2YfPmzbrssssqunFZpcsZ3/3udyUVZ1G+//3vS5I+/fRT/eEPfygJQ34iRAAI3FCDq6HNnEMNriQRJOpcOh1saDh16pReffXVUeNXXnmlOjs7lc1mtXTpUr311lvavn37mMf48ssvtXLlSt1zzz3as2ePHnvsMa1Zs2Z4E+WDDz6oTZs26brrrtPatWvV2tqqzz77TDt27FBbW5tWrVo15nGTyaSSyWTZP8uCBQv0gx/8QPfff7+cc2ppaVFnZ6cSicRwqPAbIQJA4CZqcEWIQDUNBYCRtm3bpnXr1umZZ57RiRMntHz5cr388statmzZqOeuW7dOH330kVatWqXBwUHdfffdWr9+/fCfz507Vzt37lQmk9EDDzygo0ePav78+Wpra9MVV1zh68/z85//XBdddJEefPBBFQoFXXvttfr1r3+tCy+80NfXGWLOOd8Pmkql3EQ7TgHgfA2PNshp9L9FJtPgjwcDqAgT2bt3rxYtWhR0GfDRZO+pme1yzqVGjtNsCkDgaHAF1CZCBIDAZduzijXGSsZocAWEHyECQODSS9LqurlLiaaETKZEU0JdN3exHwIIOTZWAggFGlwBtYeZCAC+ye3OKbkhqYZHG5TckFRudwjupASgapiJAOALej0A0cNMBABfTNTrAUB9IkQA8EVv39i3XhxvHEDtI0QA8AW9HoDoIUQA8AW9HlBrOjs7NXfu3Ckdw8z07LPPTrmWnp4emZm2bt06peM8/vjjuv766zV79myZmXp6eqZc20QIEQB8Qa8HIHi/+MUvNDAwoO985zvT8npcnQHAN/R6AILV29urhoYGbd26Vb/5zW+q/nrMRAAAAhPW3iL9/f1as2aNLrnkEsViMS1cuFCrV6/WsWPHRj331KlTuu+++9Tc3Kw5c+Zo7dq1OnXqVMlzent7dccdd6i5uVmxWEw33HCD9u/f73vdDQ3Te1pnJgIAEIgw9xYpFAo6c+aMstmsWlpa9PHHHyubzWrlypV65513Sp775JNPatmyZcrlctqzZ48ymYwuvPBC/fSnP5Ukff7552pra9PXvvY1vfDCC4rFYvrJT36i66+/Xh988IFmzpw5Zg2Dg4MaHJz4LrZmphkzZvjzQ3tAiAAABGKi3iJBh4iWlhY9//zzw48HBga0cOFCtbW1qbe3V/H4uauOZs2apS1btqihoUErVqzQyZMnlc1m9dBDD6m5uVlPP/20+vv79d5776m5uVmSdPXVVyuZTOrFF1/U6tWrx6zhrrvu0saNGyes89prr9W777479R/YI0IEACAQYe8t8tJLL+mpp57Shx9+qP7+/uHxDz74oCRE3HrrrSXLCLfffrsefvhhvf/++7rmmmu0bds2LV++XLNnz9bAwICkYvC46qqr1N3dPe7rd3Z2as2aNRPWOGvWLK8/ni8IEQCAQMSb4sr35cccD9rrr7+uO++8U/fee6/Wr1+v5uZmHTx4ULfddptOnDhR8tx58+aN+fjgwYOSpCNHjmjnzp165ZVXRr1Oe3v7uDXE43EtWLBgwjrNrKyfp1oIEQCAQGTbsyV7IqTw9BbZsmWLli5dqueee254bMeOHWM+99ChQ2M+nj9/viSpublZt9xyix555JFR3zvRTALLGQAAjGNo30Nme0a9fb2KN8WVbc8Gvh9Cko4fP64LLrigZCyXG/vKkTfeeENPPPHE8JLGa6+9ppkzZ+ryyy+XVJxt2Lx5sy677LJxN1GOheUMAAAmEHRvkVOnTunVV18dNX7llVeqs7NT2WxWS5cu1VtvvaXt27ePeYwvv/xSK1eu1D333KM9e/boscce05o1a4Y3UT744IPatGmTrrvuOq1du1atra367LPPtGPHDrW1tWnVqlVjHjeZTCqZTFb08+zYsUOHDx/Wrl27JElvv/22WlpatHjxYi1evLiiY5WDEAEAiKyhADDStm3btG7dOj3zzDM6ceKEli9frpdfflnLli0b9dx169bpo48+0qpVqzQ4OKi7775b69evH/7zuXPnaufOncpkMnrggQd09OhRzZ8/X21tbbriiit8/Xl+/OMflyy7/PCHPxwe7+zs9PW1JMmcc74fNJVKuYl2nAIAatfevXu1aNGioMuAjyZ7T81sl3MuNXKcjpUAAMATQgQAAPCEEAEAADwhRAAAAE8IEQCAilVjUz6CMZX3suwQYWYzzOw/zWyr51cDUFfCehtnVFdjY6OOHz8edBnwyfHjx9XY2OjpeyuZibhP0l5PrwKg7gzdxjnfl5eTG76NM0Gi/s2bN0+ffPKJCoUCMxI1zDmnQqGgTz75ZNT9P8pVVrMpM1sg6XuSspIe9PRKAOpKmG/jjOqaPXu2JOnTTz/V6dOnA64GU9HY2Kivf/3rw+9ppcrtWLlB0t9KGrdJt5l1SOqQVHKLVAD1Key3cUZ1zZ492/OJB/Vj0uUMM/srSYecc7smep5zrss5l3LOpVpaWnwrEEA4jXe75jDcxhnA9ChnT8TVkm4xsx5J/yDpOjPbVNWqAIRetj2rWGOsZCwst3EGMD0mDRHOuYeccwucc0lJd0j6vXPu+1WvDECopZek1XVzlxJNCZlMiaaEum7uYj8EECHcxROAZ0HfxhlAsCoKEc65dyW9W5VKAABATaFjJQAA8IQQAQAAPCFEAAAATwgRAADAE0IEAADwhBABAAA8IUQAAABPCBEAAMATQgQAAPCEEAEAADwhRAAAAE8IEQAAwBNCBAAA8IQQAQAAPCFEAAAATwgRAADAE0IEAADwhBABAAA8IUQAAABPCBEAAMATQgQAAPCEEAEAADwhRAAAAE8IEQAAwBNCBAAA8IQQAQAAPCFEAAAmldudU3JDUg2PNii5Ianc7lzQJSEECBEAqoqTT+3L7c6p480O5fvycnLK9+XV8WYH7yUIEQCqh5NPfchsz6hwulAyVjhdUGZ7JqCKEBaECABVw8mnPvT29VY0juggRACoGk4+9SHeFK9oHNFBiABQNZx86kO2PatYY6xkLNYYU7Y9G1BFCAtCBICq4eRTH9JL0uq6uUuJpoRMpkRTQl03dym9JB10aQiYOed8P2gqlXLd3d2+HxdA7cntzimzPaPevl7Fm+LKtmc5+QA1xsx2OedSo8YJEQAAYCLjhQiWMwAAgCeECAAA4AkhAgAAeEKIAAAAnhAiAACAJ4QIAADgCSECAAB4QogAAACeECIAAIAnhAgAAOAJIQIAAHhCiAAAAJ4QIgAAgCeECAAA4AkhAgAAeEKIADBKbndOyQ1JNTzaoOSGpHK7c0GXBCCEvhJ0AQDCJbc7p443O1Q4XZAk5fvy6nizQ5KUXpIOsjQAIcNMBIASme2Z4QAxpHC6oMz2TEAVAQgrQgSAEr19vRWNA4guQgSAEvGmeEXjAKKLEAGgRLY9q1hjrGQs1hhTtj0bUEUAwooQAaBEeklaXTd3KdGUkMmUaEqo6+YuNlUCGMWcc74fNJVKue7ubt+PCwAApp+Z7XLOpUaOMxMBAAA8IUQAAABPCBEAAMATQgQAAPCEEAEAADwhRAAAAE8IEQAAwBNCBAAA8IQQAQAAPCFEAAAATyYNEWZ2oZn9m5n9ycz2mNmj01EYAAAIt6+U8ZyTkq5zzv3FzBol/YuZve2c21nl2gAAQIhNGiJc8Q5dfzn7sPHsL//v2gUAAGpKWXsizGyGmb0n6ZCk3znn/jjGczrMrNvMug8fPux3nQAAIGTKChHOuTPOuSslLZD0bTO7fIzndDnnUs65VEtLi991AgCAkKno6gzn3FFJ70q6sSrVAACAmlHO1RktZjbn7O9nSrpe0r5qFwYAAMKtnKsz5kvaaGYzVAwdm51zW6tbFgAACLtyrs74L0nfmoZaAABADaFjJQAA8IQQAQAAPCFEAAAATwgRAADAE0IEAOV255TckFTDow1KbkgqtzsXdEkAagAhAoi43O6cOt7sUL4vLyenfF9eHW92ECSmGUEOtYgQAURcZntGhdOFkrHC6YIy2zMBVRQ9BDnUKkIEEHG9fb0VjcN/XoMcsxcIGiECiLh4U7yicfjPS5Bj9gJhQIgAIi7bnlWsMVYyFmuMKdueDaii6PES5FiGQhgQIoCISy9Jq+vmLiWaEjKZEk0Jdd3cpfSSdNCl1QQ/lhS8BDmWoRAG5dyAC0CdSy9JExo8GFpSGJoRGFpSkFTR3+fQczPbM+rt61W8Ka5se3bCY8Sb4sr35cccR7Tkducq+m/HT+ac8/2gqVTKdXd3+35cAAiT5IbkmCfyRFNCPff3VPW1RwYYqTh7MdEsUpAnG1SHl/8OvDCzXc651MhxljOAGsSu/HAIckmh0mUoNmLWp6D3xjATAdSY6frkgckFORNRqVqqFeVreLRBTqPP4ybT4I8HfXsdZiKAOhH0Jw+cU0tXtrARsz4FfYk2IQKoMZwMwuP8JQVJmmEzhgNd2JYJgj7ZoDqCDrKECKDGVOtkwD4Lb9JL0sP/kJ9xZyQplPsNgj7ZoDqCvkSbPRFAjanGngj2WUxNrew34OoMeDXenghCBFCD/D4Z1MpJMKyma3MbEJTxQgTNpoAa5HdzKPZZTA2NnxBV7IkAwKa7KWK/AaKKEAGAk+AUBb25DQgKeyIASGLTHYDxsbESAAB4QsdKAKgAfTOAyXF1BgCM4NctvoF6x0wEAIzA/UmA8hAiAGAE+mYA5SFEAMAI9M0AykOIAIAR6JsBlIcQAQAj0DwKKA99IgAAwIToEwEAAHxFiAAAAJ4QIgAAgCeECAAA4AkhAgAAeEKIAAAAnhAiAKCKuBso6hl38QSAKuFuoKh3zEQAEcUn5OrjbqCod8xEABHEJ+Tpwd1AUe+YiQAiiE/I04O7gaLeESKACOIT8vTgbqCod4QIIIL4hDw9uBso6h17IoAIyrZnS/ZESHxCrpb0kjShAXWLmQgggviEDMAP5pzz/aCpVMp1d3f7flwAADD9zGyXcy41cpyZCAAA4AkhAgACQsMv1Do2VgJAAGj4hXrATAQABCDIhl/MgMAvzEQAQACCavjFDAj8xEwEAAQgqIZftDyHnwgRACIjTNP4QbXEpuU5/ESIABAJQ9P4+b68nNzwNH5QQSKohl+0PIefaDYFIBKSG5LK9+VHjSeaEuq5v2f6CwrIyD0RUnEGhI6lmAjNpgBEGtP4RbQ8h5+4OgNAJMSb4mPORERxGp+bgsEvzEQAiITxNjLe9M2bQrPZEqg1zEQAiIShT96Z7Rn19vUq3hTXTd+8SRv/tJGeCYBHbKwEEFlstgTKw8ZKABiBzZbA1NREiMjlpGRSamgofs2xZAnAB/RMAKYm9CEil5M6OqR8XnKu+LWjgyAB1Isgu0gG1TUSqBehDxGZjFQobfOuQqE4DqA8YWr3fL6gu0jSMwGYmkk3VprZNyT9P0n/XdKgpC7n3DMTfY+fGysbGoozEKPrkgYHfXkJTFEuVwx1vb1SPC5ls1Kaf4NDI8wdCtnYCNSGqWysHJC0zjm3SNIySavNbLHfBY4nPs7S5HjjmF4sN4VfmO/ayMZGoLZNGiKccwedc/9x9vdfStorqbXahQ3JZqVY6ZKlYrHiOILHclP4hflEzcZGoLZVtCfCzJKSviXpj9UoZizptNTVJSUSxSWMRKL4mOnycOgd5zw03jimX5hP1GxsBGpb2SHCzL4q6R8l3e+cOzbGn3eYWbeZdR8+fNjPGpVOSz09xT0QPT0EiDBhuSn8wnyiZmMjUNvK6lhpZo2Stkp6xzn31GTPp2NldAztiTh/SSMWY7YobHK7cyXtnrPtWU7UAMo23sbKcq7OMEkbJX3unLu/nBcjREQLV2cAQH2bSohok/QHSbtVvMRTkv6Pc+6t8b6HEAEAQP3wfImnc+5fnHPmnLvCOXfl2V/jBghUjrbeAIBaxK3AAzZyT8FQnwWJJQEAQLiFvu11vaPPAgCgVhEiAkafBQBArSJEBIw+CwCAWkWICBhtvQEAtYoQETDaegMAahVXZ4RAOk1oAADUHmYiAACAJ4QIAADgCSECAAB4QogAAACeECIAAIAnhAgAAOAJIQIAAHhCiAAAAJ4QIgAAgCeECAAA4AkhAgAAeEKIAAAAnhAiAACAJ4QIVCSXk5JJqaGh+DWXC7oiAEBQuBU4ypbLSR0dUqFQfJzPFx9L3MocAKKImQiULZM5FyCGFArFcQBA9BAiIsKPZYje3srGAQD1jRARAUPLEPm85Ny5ZYhKg0Q8Xtk4AKC+ESIiwK9liGxWisVKx2Kx4jgAIHoIERHg1zJEOi11dUmJhGRW/NrVxaZKAIgqrs6IgHi8uIQx1nil0mlCAwCgiJmICGAZAgBQDYSICGAZAgBQDSxnRATLEAAAvzETAQAAPCFEAAAATwgRAADAE0IEAADwhBABAAA8IUQAAABPCBEAAMATQgQAAPCEEAEAADwhRIyQy0nJpNTQUPyaywVdEQAA4UTb6/PkclJHh1QoFB/n88XHEi2jAQAYiZmI82Qy5wLEkEKhOA4AAEoRIs7T21vZOAAAUUaIOE88Xtk4AABRRog4TzYrxWKlY7FYcRwAAJQiRJwnnZa6uqREQjIrfu3qYlMlAABj4eqMEdJpQgMAAOVgJgIAAHhCiAAAAJ4QIgAAgCeECAAA4AkhAgAAeEKIAAAAnhAiAACAJ4QIAADgCSECAAB4QogAAACeECIAAIAnhAgAAOAJIQIAAHhCiAAAAJ4QIgAAgCeECAAA4AkhAgAAeEKIAAAAnhAiAACAJ4QIAADgyaQhwsxeNLNDZvb+dBQEAABqQzkzEb+SdGOV6wAAADVm0hDhnPtnSZ9PQy0AAKCG+LYnwsw6zKzbzLoPHz7s12EBAEBI+RYinHNdzrmUcy7V0tLi12EBAEBIcXUGpiyXk5JJqaGh+DWXC7oiAMB0+ErQBaC25XJSR4dUKBQf5/PFx5KUTgdXFwCg+sq5xPPXkv5V0iVmdsDMflD9slArMplzAWJIoVAcBwDUt0lnIpxzq6ajENSm3t7KxgEA9YM9EZiSeLyycQBA/SBEYEqyWSkWKx2LxYrjAID6RojAlKTTUleXlEhIZsWvXV1sqgSAKODqDExZOk1oAIAoisRMBH0MAADwX93PRNDHAACA6qj7mQj6GAAAUB11HyLoYwAAQHXUfYigjwEAANVR9yHC7z4GbNIEAKCo7kOEn30MhjZp5vOSc+c2aRIkAABRZM453w+aSqVcd3e378cNWjJZDA4jJRJST890VwMAwPQws13OudTI8bqfifATmzQBADiHEFEBNmkCAHAOIaIC3GwKAIBzCBEV4GZTAACcU/dtr/3GzaYAAChiJgIAAHhS8yGC5k8AAASjppczuEMnAADBqemZCO7QCQBAcGo6RND8CQCA4NR0iKD5EwAAwanpEEHzJwAAglPTIYLmTwAABKemr86QaP4EAEBQanomolz0kgAAwH81PxMxGXpJAABQHXU/E0EvCf8xswMAkCIQIsbrGZHPc/LzYmhmJ5+XnDs3s8PfJQBET92HiIl6RnDyqxwzOwCAIXUfIsbqJTGEk1/l6BIKABhS9yFiqJfEeDj5VYYuoQCAIXUfIqRikEgkxv4zTn6VoUsoAGBIJEKExMnPL3QJBQAMqfs+EUOGTnKZTHEJIx4vBghOfpWjSygAQIpQiJA4+QEA4KfILGegfDSTAgCUI1IzEZgcbcIBAOViJgIlaCYFACgXIWKa1MoSAc2kAADlIkSUYaoBoJbuN0EzKQBAuQgRk/AjANTSEgH9NAAA5SJETMKPAFBLSwQ0kwIAlIurMybhRwCIx4szGGONhxH9NAAA5WAmYhJ+7BFgiQAAUI8iFyIq3STpRwBgiQAAUI8iFSLG2yT5wx+OHyz8CgDptNTTIw0OFr8SIAAAtc6cc74fNJVKue7ubt+PO1XJ5Nh7E8yKoWJILMZMAQAAQ8xsl3MuNXI8UjMR422GHJmjwnr5JQAAYRKpEFHJZsgwXn4JAECYRCpEjLVJ0mzs54b18ksAAMIiUiFirE2Sf/M3XH4JAIAXkQoR0uirJJ57jssvAQDwgo6VokMjAABeRG4mApWplVuYAwCmHyGihkz3Cb2WbmEOAJh+hIgaEcQJvZZuYQ4AmH41GSKiOMUexAm9lm5hDgCYfjUXIqI6xR7ECd2PO5gCAOpXzYWIqE6xB3FC5xbmAICJ1FyIiOoUexAn9KjcwjyKy2MA4Iea6xMRj499J856n2IfOnFnMsXAFI8XA0S1T+j13kNjaHlsaHZraHlMqu+fGwD8UHMzEVGeYh/ZbXOik1y1Pl3X26f2qC6PAYAfam4mIqhP5LWkWp+u6/FTe1SXxwDAD+ac8/2gqVTKdXd3+35clCeZHHvJJ5EozmCE7bhBqsefCQD8Zma7nHOpkeM1t5yByVXr03U9fmqP8vIYAEwVIaIOVety0HrsGzHWFSh//dfF5bJ62fcBANVSVogwsxvNbL+Z/dnM/q7aRWFqqvXpul4/tZ+/YTWblTZujF4zMwDwYtIQYWYzJP29pBWSFktaZWaLq10YvKtWf4co9I3gag0AKN+kGyvN7H9K6nTO3XD28UOS5Jx7YrzvYWMlalVDQ3EGYiSz4kwFAETRVDZWtkr6+LzHB86OjXyBDjPrNrPuw4cPe68UCFA97vsAgGopJ0TYGGOjPqs557qccynnXKqlpWXqlQEBqNd9HwBQDeWEiAOSvnHe4wWSPq1OOUCworDvAwD8Uk7Hyn+X9E0zWyjpE0l3SPpfVa0KCFC93y8EAPwyaYhwzg2Y2RpJ70iaIelF59yeqlcGAABCrax7Zzjn3pL0VpVrAQAANYSOlQAAwBNCBAAA8IQQAQAAPCFEAAAATwgRAADAE0IEAADwhBABAAA8IUQAAABPCBEAAMATQgQAAPDEnBt1V++pH9TssKS8j4ecK+mIj8dD5XgPgsd7EA68D8HjPZh+Cedcy8jBqoQIv5lZt3MuFXQdUcZ7EDzeg3DgfQ860wAAAAKESURBVAge70F4sJwBAAA8IUQAAABPaiVEdAVdAHgPQoD3IBx4H4LHexASNbEnAgAAhE+tzEQAAICQIUQAAABPQh8izOxGM9tvZn82s78Lup6oMbMXzeyQmb0fdC1RZWbfMLN/MrO9ZrbHzO4LuqaoMbMLzezfzOxPZ9+DR4OuKarMbIaZ/aeZbQ26FoQ8RJjZDEl/L2mFpMWSVpnZ4mCripxfSbox6CIibkDSOufcIknLJK3m/4Npd1LSdc65/yHpSkk3mtmygGuKqvsk7Q26CBSFOkRI+rakPzvnPnLOnZL0D5JuDbimSHHO/bOkz4OuI8qccwedc/9x9vdfqvgPaGuwVUWLK/rL2YeNZ3+xK32amdkCSd+T9H+DrgVFYQ8RrZI+Pu/xAfGPJyLMzJKSviXpj8FWEj1np9Hfk3RI0u+cc7wH02+DpL+VNBh0ISgKe4iwMcZI/4gkM/uqpH+UdL9z7ljQ9USNc+6Mc+5KSQskfdvMLg+6pigxs7+SdMg5tyvoWnBO2EPEAUnfOO/xAkmfBlQLEBgza1QxQOScc68FXU+UOeeOSnpX7BWabldLusXMelRc2r7OzDYFWxLCHiL+XdI3zWyhmf03SXdI+k3ANQHTysxM0i8l7XXOPRV0PVFkZi1mNufs72dKul7SvmCrihbn3EPOuQXOuaSK54LfO+e+H3BZkRfqEOGcG5C0RtI7Km4m2+yc2xNsVdFiZr+W9K+SLjGzA2b2g6BriqCrJf1vFT95vXf2101BFxUx8yX9k5n9l4ofbn7nnOMSQ0Qeba8BAIAnoZ6JAAAA4UWIAAAAnhAiAACAJ4QIAADgCSECAAB4QogAAACeECIAAIAn/x+yWIpoAmQ/xwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ "# Plot out labelled data\n", "fig = plt.figure(figsize=[9, 7])\n", - "plt.plot(dat[0:n_dat_1, 0], dat[0:n_dat_1, 1], 'b.', ms=12, label=\"Label=0\")\n", - "plt.plot(dat[n_dat_2:, 0], dat[n_dat_2:, 1], 'g.', ms=12, label=\"Label=1\")\n", - "plt.legend();" + "plt.plot(data[0:n_data_1, 0], data[0:n_data_1, 1],\n", + " 'b.', ms=12, label=\"Label=0\")\n", + "plt.plot(data[n_data_2:, 0], data[n_data_2:, 1],\n", + " 'g.', ms=12, label=\"Label=1\")\n", + "plt.legend(fontsize=15)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see above, we have two fairly distinct groups of data. \n", + "\n", + "Now we want to learn a mathematical procedure that can learn the labels of these datapoints." ] }, { @@ -141,21 +182,22 @@ "source": [ "### Scikit-Learn Objects\n", "\n", - "As we can see above, we have two fairly distinct groups of data. Now we want to learn a mathematical procedure that can label these data into two groups, and we want it to learn a general procedure, that we can apply to new datapoints.\n", + "The SVM implementation we are using is from `sklearn`.\n", + "\n", + "Scikit-learn, as we have seen before, is object oriented. \n", "\n", - "Here we will use the typical scikit-learn approach:\n", - "- Initialize an sklearn object for the model object we are using, setting the desired parameters\n", - "- Train the model on our labelled training data\n", - "- Check our performance on our labelled data (typically both the train set, and a separate, labelled, test set)\n", + "Here, we will again use the typical scikit-learn approach, which is to:\n", + "\n", + "- Initialize a sklearn object for the model we want to use, setting the desired parameters\n", + "- Train the model on our labeled training data\n", + "- Check performance of our model (in real applications, using a separate, labeled, test set)\n", "- Apply the model to make predictions about new datapoints" ] }, { "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": true - }, + "execution_count": 35, + "metadata": {}, "outputs": [], "source": [ "# Initialize an SVM classifer object\n", @@ -164,55 +206,55 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", - " decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',\n", - " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", - " tol=0.001, verbose=False)" + " decision_function_shape='ovr', degree=3, gamma='auto_deprecated',\n", + " kernel='linear', max_iter=-1, probability=False, random_state=None,\n", + " shrinking=True, tol=0.001, verbose=False)" ] }, - "execution_count": 6, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Fit our classification model to our training data\n", - "classifier.fit(dat, labels)" + "classifier.fit(data, labels)" ] }, { "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": true - }, + "execution_count": 37, + "metadata": {}, "outputs": [], "source": [ "# Calculate predictions of the model on the training data\n", - "train_predictions = classifier.predict(dat)" + "train_predictions = classifier.predict(data)" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " precision recall f1-score support\n", + " precision recall f1-score support\n", "\n", - " 0 1.00 1.00 1.00 25\n", - " 1 1.00 1.00 1.00 25\n", + " 0 1.00 1.00 1.00 25\n", + " 1 1.00 1.00 1.00 25\n", "\n", - "avg / total 1.00 1.00 1.00 50\n", + " accuracy 1.00 50\n", + " macro avg 1.00 1.00 1.00 50\n", + "weighted avg 1.00 1.00 1.00 50\n", "\n" ] } @@ -226,74 +268,74 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Predicting New Data Points\n", + "Now we have a trained classifier!\n", + "\n", + "We have trained our classifier on our data, and also checked it's performance. \n", "\n", - "Once we have a trained model, we can predict labels for new data points - data for which we do not know the answer." + "For this example, we have set up a simple example that is easy to predict, so our predictions are very accurate. \n", + "\n", + "Note that above all we doing is checking if our classifier can predict the labels of the training data - the data that is has already seen. This is _not_ a valid way to properly measure performance of machine learning algorithms. If you wish to continue to explore and use classification and other machine learning algorithms, you will need to look into how to properly test for accuracy, which is outside of the scope of these materials. " ] }, { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": true - }, - "outputs": [], + "cell_type": "markdown", + "metadata": {}, "source": [ - "# Set a new point - to predict a label for\n", - "new_point = np.array([[3, 3]])" + "### Predicting New Data Points\n", + "\n", + "Now that we have a trained model, we can use it to predict labels for new data points, including for data points for which we do not know already know the correct label." ] }, { "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": true - }, + "execution_count": 39, + "metadata": {}, "outputs": [], "source": [ - "# Add our new point to figure (in red)\n", - "fig.gca().plot(new_point[0][0], new_point[0][1], '.r', ms=12);" + "# Define a new data point, that we will predict a label for\n", + "new_point = np.array([[3, 3]])" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGfCAYAAAD/BbCUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X1snOWZ7/HfZeJtYoFMlRgtxHgG\niWhFtknxniEEAVUhqKVNSf7YIChzuu0R1bB7Wgql0mlZixIqjdTyks32sNpqeFHp7vRNtCpkRVXa\n0IhFakidnpBA0ypRmzGmCNKwdRO8KUm5zh8zDrYzzszEzzyv349kjeeeOzOXbcH85n7uF3N3AQAA\nhKUn6gIAAEC2ED4AAECoCB8AACBUhA8AABAqwgcAAAgV4QMAAISK8AEAAEJF+AAAAKEifAAAgFAt\niOqFlyxZ4vl8PqqXBwAAAdq5c+fv3X2gnb6RhY98Pq/R0dGoXh4AAATIzGrt9uWyCwAACBXhAwAA\nhIrwAQAAQhXZnI9mjh07pvHxcR09ejTqUhJj4cKFGhwcVG9vb9SlAADQlliFj/HxcZ111lnK5/My\ns6jLiT1316FDhzQ+Pq4LLrgg6nIAAGhLrC67HD16VIsXLyZ4tMnMtHjxYkaKAACJEqvwIYng0SF+\nXwCApIld+AAAAOlG+JjlzDPPbLvvxo0bdf/993ft+X/729/q0ksv1bJly3TDDTforbfe6ui1AACI\no0SHj2pVyuelnp76bbUadUXB+vznP6/Pfvaz2rdvn9797nfrkUceibokAADmLbHho1qVSiWpVpPc\n67elUncCyJYtW3TppZdqeHhY11xzjV577bUTj73wwgu6+uqrtWzZMj300EMn2u+77z5dcsklWrly\npe6+++6OX9Pd9cwzz2jDhg2SpI9//OP6wQ9+MP8fBgCAiMVqqW0nRkakycmZbZOT9fZiMdjXuuKK\nK7R9+3aZmR5++GHde++9euCBByRJu3fv1vbt2/Xmm29qeHhYa9eu1Ysvvqh9+/Zpx44dcnetW7dO\nzz77rN73vvedeM7Dhw/ryiuvbPp63/zmN3XOOefo7LPP1oIF9T/R4OCgXnnllWB/MAAAIpDY8DE2\n1ln7fIyPj+uGG27Qq6++qrfeemvGnhrr16/XokWLtGjRIl111VXasWOHnnvuOT399NMaHh6WJB05\nckT79u2bET7OOuss7dq1a87XPHjw4EltrGwBAKRBYsPH0FD9Ukuz9qDdeuutuuOOO7Ru3Tpt27ZN\nGzduPPHY7EBgZnJ33XnnnbrlllvmfM5WIx8XXXSR/vCHP+j48eNasGCBxsfHdd555wXy8wCtVPdU\nNbJ1RGMTYxrqH1J5TVnFFQEPKQLIrMTO+SiXpb6+mW19ffX2oE1MTGjp0qWSpMcee2zGY0888YSO\nHj2qQ4cOadu2bbrkkkv0wQ9+UI8++qiOHDkiSXrllVf0+uuvz/h3UyMfzb6WL18uM9NVV12lxx9/\n/MTrrl+/PvgfDpiluqeq0paSahM1uVy1iZpKW0qq7knZjG4AkUls+CgWpUpFyuUks/ptpTL/+R6T\nk5MaHBw88bVp0yZt3LhR119/va688kotWbJkRv9Vq1Zp7dq1Wr16te666y6dd955+sAHPqCbbrpJ\nl112mVasWKENGzbo8OHDHdfyla98RZs2bdKFF16oQ4cO6eabb57fDwe0YWTriCaPzZxQNXlsUiNb\nRyKqCEDamLtH8sKFQsFHR0dntO3du1cXXXRRJPUkGb83BKnnnh65Tv7/gsn09t1vR1ARgCQws53u\nXminb2JHPgB0x1B/84lTc7UDQKcIHwBmKK8pq6935oSqvt4+ldd0YUIVgEwifAAJU91TVX5zXj33\n9Ci/OR/4RNDiiqIq11WU68/JZMr151S5rsJqFwCBSexSWyCLplaiTE0InVqJIinQcFBcUSRsAOga\nRj6ABGElCoA0IHwACTI20XwL37naw9Dty0AA0ofwMUsnR95v3LhR999/f9ee/8EHH9SFF14oM9Pv\nf//7jl4H6RS3lShsSAbgdCQ6fKT9E9fll1+un/zkJ8rlclGXgpiI20oULgMBOB2JDR9hfuLasmWL\nLr30Ug0PD+uaa67Ra6+9duKxF154QVdffbWWLVumhx566ET7fffdp0suuUQrV67U3XfffVqvOzw8\nrHw+P9/ykSJxW4kSx8tAAOIvsatdTvWJK+j/EV9xxRXavn27zEwPP/yw7r33Xj3wwAOSpN27d2v7\n9u168803NTw8rLVr1+rFF1/Uvn37tGPHDrm71q1bp2effXbGqbatDpZbvnx5oD8D0iNOK1GG+odU\nmzj5hMdOLgNxiB2QPYkNH2F+4hofH9cNN9ygV199VW+99ZYuuOCCE4+tX79eixYt0qJFi3TVVVdp\nx44deu655/T0009reHhYknTkyBHt27dvRviYOlgOSLLymvKMpb9SZ5eBwlo6DCBeEhs+gvjE1a5b\nb71Vd9xxh9atW6dt27Zp48aNJx4zsxl9zUzurjvvvFO33HLLnM/JyAfSYCognO7IRZgjmADiI7Hh\nY76fuDoxMTGhpUuXSqofbT/dE088oTvvvFNvvvmmtm3bpi9/+ctatGiR7rrrLhWLRZ155pl65ZVX\n1Nvbq3POOefEv2PkA2kxn8tAzBkBwhOnS5yJnXDarYl3k5OTGhwcPPG1adMmbdy4Uddff72uvPJK\nLVmyZEb/VatWae3atVq9erXuuusunXfeefrABz6gm266SZdddplWrFihDRs26PDhwx3X8tWvflWD\ng4MaHx/XypUr9clPfnJePxsQN3FbOgykVdyWxZv7yUdnh6FQKPjo6OiMNo6GPz383pBUs+d8SPUR\nTM6SAYKV35xvOlUh15/TgdsPBPIaZrbT3Qvt9E3syAeA5Ivb0mEgreJ2iTOxcz4ApEOclg4DaRXm\nIo12xG7kI6rLQEnF7yvb0r7LL4BgxG135FiFj4ULF+rQoUO8obbJ3XXo0CEtXLgw6lIQgbhNIAMQ\nX3G7xNlywqmZLZT0rKR3qX6Z5nF3v3tWn09Iuk/SK42mB9394VM9b7MJp8eOHdP4+LiOHj3ayc+Q\naQsXLtTg4KB6e3ujLgUhC2MCGQC0q5MJp+3M+fiTpKvd/YiZ9Up6zsx+6O7bZ/X7jrt/utNip+vt\n7Z2xeyiAucVtAhkAtKvlZRevO9K429v44roIEDH2yACQVG3N+TCzM8xsl6TXJf3Y3Z9v0u1vzWy3\nmT1uZucHWiWAk8RtAhkAtKut8OHuf3b3iyUNSlplZu+Z1WWLpLy7r5T0E0mPzX4OSTKzkpmNmtno\nwYMH51M3kHlxm0AGAO3qeIdTM7tb0pvufv8cj58h6Q137z/V8zSbcAoAAJIp0B1OzWzAzM5ufL9I\n0jWSfjWrz7nT7q6TtLf9cgEAQJa0s9rlXEmPNUY0eiR9193/w8y+JGnU3Z+U9BkzWyfpuKQ3JH2i\nWwUDAIBki9XBcgAAIJk4WA4AAMQW4QMAAISK8AEAAEJF+AAAAKEifAAAgFARPgAAQKgIHwAAIFSE\nDwAAECrCBwB0WXVPVfnNefXc06P85ryqe6pRlwREqp3t1QEAp6m6p6rSlpImj01KkmoTNZW2lCSJ\nE4iRWYx8AEAXjWwdORE8pkwem9TI1pGIKgKiR/gAgC4amxjrqB3IAsIHAHTRUP9QR+1AFhA+AKCL\nymvK6uvtm9HW19un8ppyRBUB0SN8AEAXFVcUVbmuolx/TiZTrj+nynUVJpsi08zdI3nhQqHgo6Oj\nkbw2AAAIlpntdPdCO30Z+QAAAKEifAAAgFARPgAAQKgIHwAAIFSEDwAAECrCBwAACBXhAwAQS5wG\nnF6cagsAiB1OA043Rj4AALHDacDpRvgAAMQOpwGnG+EDABA7nAacboQPAEDscBpwuhE+AACxw2nA\n6captgAAYN441RYAAMQW4QMAAISK8AEAAEJF+AAAAKEifAAAgFARPgAAQKgIHwAAIFSEDwAAEKqW\n4cPMFprZDjN7wcxeMrN7mvR5l5l9x8z2m9nzZpbvRrEAEDvVqpTPSz099dtqNeqKgNhrZ+TjT5Ku\ndvf3SrpY0rVmtnpWn5sl/Ze7XyjpnyR9JdgyASCGqlWpVJJqNcm9flsqEUCAFlqGD6870rjb2/ia\nvSf7ekmPNb5/XNIaM7PAqgSAOBoZkSYnZ7ZNTtbbAcyprTkfZnaGme2S9LqkH7v787O6LJX0siS5\n+3FJE5IWN3mekpmNmtnowYMH51c5AERtbKyzdgCS2gwf7v5nd79Y0qCkVWb2nlldmo1ynHRinbtX\n3L3g7oWBgYHOqwWAOBka6qwdgKQOV7u4+x8kbZN07ayHxiWdL0lmtkBSv6Q3AqgPADpS3VNVfnNe\nPff0KL85r+qeLs6/KJelvr6ZbX199XYAc2pntcuAmZ3d+H6RpGsk/WpWtyclfbzx/QZJz7j7SSMf\nANBN1T1VlbaUVJuoyeWqTdRU2lLqXgApFqVKRcrlJLP6baVSbwcwJ2uVEcxspeqTSc9QPax8192/\nZGZfkjTq7k+a2UJJ/yZpWPURjxvd/Tenet5CoeCjo6NB/AwAIEnKb86rNlE7qT3Xn9OB2w+EXxCQ\nIWa2090L7fRd0KqDu+9WPVTMbv/itO+PSrq+kyIBIGhjE80nes7VDiAa7HAKIDWG+ptP9JyrHUA0\nCB8AUqO8pqy+3pkTQPt6+1RewwRQIE4IHwC6JtSVJ5KKK4qqXFdRrj8nkynXn1PluoqKK5gACsRJ\nywmn3cKEUyDdplaeTB57ZwfQvt4+wkAT1T1VjWwd0djEmIb6h1ReU+Z3hMTpZMIpIx8AumJk68iM\n4CFJk8cmNbKVrcenC315MBADhA8AXcHKk/YQ0pBFhA8AXRHFypOw55gEgZCGLCJ8AOiKsFeeJPXy\nBcuDkUWEDwAtnc6IQtgrT5J6+YLlwciiljucAsi22atWpkYUJLUMEsUVxdBWbST18sXU74fVLsgS\nltoCOKWknJeSlDqBtGKpLYDAJGVEgcsXQHIQPgCcUlImRLK7KZAczPkAcErlNeWmO5XGcUQhzDkm\nAE4fIx8ATrmahREFAEFjwimQcZzBAiAITDgF0Lak7o8BILkIH0DGJWU1C4D0IHwAGZeU1SwA0oPw\nAWQc+2MACBvhA8g4VrMACBurXQAAwLyx2gUAAMQW4QMAAISK8AEAAEJF+AAAAKEifACI1KnOlQGQ\nTpxqCyAys8+VqU3UVNpSkiSW+gIpxsgHgMhwrgyQTYQPAJHhXBkgmwgfACLDuTJANhE+AESGc2WA\nbCJ8AIgM58oA2cTZLgAAYN442wUAAMQW4QMAAISK8AEAAELVMnyY2flm9lMz22tmL5nZbU36vN/M\nJsxsV+Pri90pFwDQLrauR1y1s736cUmfc/dfmNlZknaa2Y/d/Zez+v2nu38k+BIBAJ1i63rEWcuR\nD3d/1d1/0fj+sKS9kpZ2uzAAmI+sf+pn63rEWUdzPswsL2lY0vNNHr7MzF4wsx+a2V/P8e9LZjZq\nZqMHDx7suFgAdVl/Y21l6lN/baIml5/41J+l3xNb1yPO2g4fZnampO9Jut3d/zjr4V9Iyrn7eyX9\nX0k/aPYc7l5x94K7FwYGBk63ZiDTeGNtjU/9bF2PeGsrfJhZr+rBo+ru35/9uLv/0d2PNL5/SlKv\nmS0JtFIAknhjbQef+tm6HvHWzmoXk/SIpL3uvmmOPn/Z6CczW9V43kNBFgqgjjfW1vjUz9b1iLd2\nVrtcLuljkvaY2a5G2z9KGpIkd/+apA2S/sHMjkv6b0k3elT7tgMpN9Q/pNpErWk76spryjNWekjZ\n/NRfXFEkbCCWWoYPd39OkrXo86CkB4MqCsDceGNtbeoNd2TriMYmxjTUP6TymjJvxEBMcLAckEDV\nPVXeWAHESicHyxE+AADAvHGqLQAAiC3CBwAACBXhA0BqsPMrkAztLLUFgNjjIDUgORj5AJAK7PwK\nJAfhA0AqsPMr0iTtlxAJHwBSgS3VkRZZODyS8AEgFThIDWmRhUuIhA8AqcBBakiLLFxCZLULgNTg\nIDWkQRYOj2TkAwCAGMnCJUTCBwAAMZKFS4gcLAcAAOaNg+UAAEBsET4AAECoCB8AACBUhA8AABAq\nwgcAAAgV4QMAAISK8AEAAEJF+AAAAKEifAAAgFARPgAAXVfdU1V+c1499/Qovzmv6p5q1CUhQoQP\nAAgQb7Inq+6pqrSlpNpETS5XbaKm0pYSv5sMI3wAQEB4k21uZOuIJo9NzmibPDapka0jEVWEqBE+\nAMzAJ/fTx5tsc2MTYx21I/0IHwBO4JP7/PAm29xQ/1BH7Ug/wgeAE/jkPj+8yTZXXlNWX2/fjLa+\n3j6V15QjqghRI3wAOIFP7vPDm2xzxRVFVa6rKNefk8mU68+pcl1FxRXFqEtDRBZEXQCA+BjqH1Jt\nota0Ha1NvZmObB3R2MSYhvqHVF5T5k1W9d8NvwdMYeQDwAmdfHJnYmpzxRVFHbj9gN6++20duP0A\nb7hAE4QPACe0OzzOxFQA82HuHskLFwoFHx0djeS1AcxPfnO+6eWZXH9OB24/EH5BmFN1T5XLQAiF\nme1090I7fZnzAaBjTExNhqkRqqkVTFMjVJIIIIgUl10AdIwlpcnA0mnEVcvwYWbnm9lPzWyvmb1k\nZrc16WNm9lUz229mu83sb7pTLoA4YElpMjBChbhqZ+TjuKTPuftFklZL+pSZLZ/V50OSljW+SpL+\nNdAqAcQK+zYkAyNUiKuWcz7c/VVJrza+P2xmeyUtlfTLad3WS/qG12evbjezs83s3Ma/BZBC7NsQ\nf+U15RlzPiRGqBAPHc35MLO8pGFJz896aKmkl6fdH2+0AQAiwggV4qrt1S5mdqak70m63d3/OPvh\nJv/kpDW8ZlZS/bKMhoYY9gOAbmOECnHU1siHmfWqHjyq7v79Jl3GJZ0/7f6gpN/N7uTuFXcvuHth\nYGDgdOoFAAAJ185qF5P0iKS97r5pjm5PSvq7xqqX1ZImmO8BAACaaeeyy+WSPiZpj5ntarT9o6Qh\nSXL3r0l6StKHJe2XNCnpfwVfKgAASIN2Vrs8p+ZzOqb3cUmfCqooAACQXuxwCgAAQkX4AAAAoSJ8\nAACAUBE+AABAqAgfAAAgVIQPAAAQKsIHAAAIFeEDAACEivABAABCRfgAAAChInwAAIBQET4AAECo\nCB8AACBUhA8AABAqwgcAAAgV4QMAAISK8AEAAEJF+AAAAKEifAAAgFARPgAAQKgIHwAAIFSEDwAA\nECrCBwAACBXhAwAAhIrwAQAAQpXp8FGtSvm81NNTv61Wo64IAID0WxB1AVGpVqVSSZqcrN+v1er3\nJalYjK4uAADSLrMjHyMj7wSPKZOT9XYAANA9mQ0fY2OdtQMAgGBkNnwMDXXWDgAAgpHZ8FEuS319\nM9v6+urtAACgezIbPopFqVKRcjnJrH5bqTDZFACAbsvsahepHjQIGwAAhCuzIx8AACAahA8AABAq\nwgcAAAgV4QMAAISqZfgws0fN7HUze3GOx99vZhNmtqvx9cXgywQAAGnRzmqXr0t6UNI3TtHnP939\nI4FUBAAAUq3lyIe7PyvpjRBqAQAAGRDUnI/LzOwFM/uhmf11QM8JAABSKIhNxn4hKefuR8zsw5J+\nIGlZs45mVpJUkqQhDlEBACCT5j3y4e5/dPcjje+fktRrZkvm6Ftx94K7FwYGBub70gAAIIHmHT7M\n7C/NzBrfr2o856H5Pi8AAEinlpddzOxbkt4vaYmZjUu6W1KvJLn71yRtkPQPZnZc0n9LutHdvWsV\nAwCARGsZPtz9oy0ef1D1pbgAAAAtscMpAAAIFeEDAACEivABAABCRfgAAAChInwAAIBQET4AAECo\nCB9AzFSrUj4v9fTUb6vVqCsCgGAFcbYLgIBUq1KpJE1O1u/XavX7klQsRlcXAASJkQ8gRkZG3gke\nUyYn6+0AkBaEDyBGxsY6aweAJCJ8ADEyNNRZOwAkEeEDiJFyWerrm9nW11dvB4C0IHwAMVIsSpWK\nlMtJZvXbSoXJpgDShdUuQMwUi4QNAOnGyAcAAAgV4QMAAISK8AEAAEJF+AAAAKEifAAAgFARPgAA\nQKgIHwAAIFSEDwAAECrCBwAACBXhAwAAhIrwAQAAQkX4AAAAoSJ8AACAUBE+AABAqAgfAAAgVISP\nlKhWpXxe6ump31arUVcEAEBzC6IuAPNXrUqlkjQ5Wb9fq9XvS1KxGF1dAAA0w8hHCoyMvBM8pkxO\n1tsBAIgbwkcKjI111g4AQJQIHykwNNRZOwAAUSJ8pEC5LPX1zWzr66u3B4lJrQCAIBA+UqBYlCoV\nKZeTzOq3lUqwk02nJrXWapL7O5NaCSAAgE6Zu0fywoVCwUdHRyN5bXQun68HjtlyOenAgbCrAQDE\njZntdPdCO31bjnyY2aNm9rqZvTjH42ZmXzWz/Wa228z+ptOCEX9MagUABKWdyy5fl3TtKR7/kKRl\nja+SpH+df1mIGya1AgCC0jJ8uPuzkt44RZf1kr7hddslnW1m5wZVIOIhrEmtAID0C2LC6VJJL0+7\nP95oizVWbnQmjEmtAIBsCGJ7dWvS1nQWq5mVVL80o6EIx+vZjvz0FIv8fgAA8xfEyMe4pPOn3R+U\n9LtmHd294u4Fdy8MDAwE8NKnp9V25IyKAADQPUGEjycl/V1j1ctqSRPu/moAz9s1p1q5wX4WAAB0\nVztLbb8l6WeS/srMxs3sZjP7ezP7+0aXpyT9RtJ+SQ9J+t9dqzYgp1q5wSFtAAB0V8s5H+7+0RaP\nu6RPBVZRCMrlmXM+pHdWbnzsY83/DftZAAAQjExur36qlRth7mfB3BIAQBZlMnxI9aBx4ID09tv1\n26lVHM32s5CkI0eCDQdJnltCaAIAzEdmw8dcpkZFFi+e2X7oULDhIKlzS5IcmgAA8UD4aKJYlM48\n8+T2IMNBUs9KSWpo6gQjOwDQXYSPOXQ7HCT1rJSkhqZ2MbIDAN1H+JhDt8NBUs9KSWpoalcWRnYA\nIGqEjzl0Oxwk9ayUpIamdqV9ZAcA4oDwMYcwwsFcK27iLKmhqV1pH9kBgDiw+h5h4SsUCj46OhrJ\nawNzmX3ooFQf2UlTwAKAbjCzne5eaKcvIx/ANGkf2QGAOGi5vTqQNcUiYQMAuomRDwAAECrCBwAA\nCFUmwwc7WAIAEJ3MzfmYvZphagdLiev8AACEIXMjH7fdxg6WAABEKVPho1qtn07bDDtYdo7LVwCA\n05Gpyy6nGt1gB8vOcPkKAHC6MjXycarRjbScTRIWDmADAJyuTIWPuUY3Fi/m03qnOIANAHC6MhU+\n5jqR9Z//OZp6kiyNB7AxhwUAwpGp8MG5HcGZK8gl9fLV1ByWWk1yf2cOCwEEAILHqbY4bdVqfY7H\n2Fh9xKNcTm6Qy+frgWO2XE46cCDsagAgeTo51ZbwAah+qaXZfwpm0ttvh18PACRNJ+EjU5ddgLmk\ncQ4LAMQV4QNQ+uawAECcET5SLqgVHGlfCcJkZAAID3M+Umz2LqRS/dN8p2+qQT0PACC9mHAKScGt\n4GAlCACgFSacQlJwu5CymykAIEiZCx9pn7swXVArOFgJAgAIUqbCR9Z2sQxqBQcrQQAAQcpU+Mja\nSaxBreBgJQgAIEiZmnDKLpYAAHQHE07nwNwFAACil6nwwdwFAACil6nwwdwFAACityDqAsJWLBI2\nAACIUlsjH2Z2rZn92sz2m9kXmjz+CTM7aGa7Gl+fDL5UAACQBi3Dh5mdIelfJH1I0nJJHzWz5U26\nfsfdL258PRxwnYmWpY3NAABopZ3LLqsk7Xf330iSmX1b0npJv+xmYWkx+1C2qY3NJC7/AACyqZ3L\nLkslvTzt/nijbba/NbPdZva4mZ3f7InMrGRmo2Y2evDgwdMoN3mytrEZAACttBM+rEnb7K26tkjK\nu/tKST+R9FizJ3L3irsX3L0wMDDQWaUJxaFsAADM1E74GJc0fSRjUNLvpndw90Pu/qfG3Yck/Y9g\nyks+NjYDAGCmdsLHzyUtM7MLzOwvJN0o6cnpHczs3Gl310naG1yJycbGZgAAzNQyfLj7cUmflvQj\n1UPFd939JTP7kpmta3T7jJm9ZGYvSPqMpE90q+CkYWMzAABmytTBcgAAoDs4WC4B2PsDAJBVmdte\nPQ7Y+wMAkGWMfESAvT8QBUbbAMQFIx8RYO8PhI3RNgBxwshHBNj7A2FjtA1AnKQqfCRlWJm9PxA2\nRtsAxElqwsfUsHKtJrm/M6wcxwDC3h8IG6NtAOIkNft85PP1wDFbLicdOBDYywCJNHvOh1QfbSP0\nAghKJvf5YFgZmBujbQDiJDWrXYaGmo98MKwM1BWLhA0A8ZCakQ8mcQIAkAypCR8MKwMAkAypuewi\nMawMAEASpGbkAwAAJAPhAwAAhIrwAQAAQkX4AAAAoSJ8AACAUBE+AABAqAgfAAAgVIQPAAAQKsIH\nAAAIVebCR7Uq5fNST0/9tlqNuiIAALIlVdurt1KtSqWSNDlZv1+r1e9LbMsOAEBYMjXyMTLyTvCY\nMjlZbwcAAOHIVPgYG+usHQAABC9T4WNoqLN2AAAQvEyFj3JZ6uub2dbXV2/PknYn3TI5FwDQDZma\ncDo1qXRkpH6pZWioHjyyNNm03Um3TM4FAHSLuXskL1woFHx0dDSS186yfL4eJGbL5aQDBzrvBwCA\nJJnZTncvtNM3U5dd0P6kWybnAgC6hfCRMe1OumVyLgCgWwgfGdPupFsm5wIAuoXwkTHFolSp1Odu\nmNVvK5WTJ5G22w8AgE4x4RQAAMwbE04BAEBsET4ixkZeAICsaSt8mNm1ZvZrM9tvZl9o8vi7zOw7\njcefN7N80IWm0dRGXrWa5P7ORl4EEABAmrUMH2Z2hqR/kfQhScslfdTMls/qdrOk/3L3CyX9k6Sv\nBF1oGnHKLgAgi9oZ+Vglab+7/8bd35L0bUnrZ/VZL+mxxvePS1pjZhZcmenERl4AgCxqJ3wslfTy\ntPvjjbamfdz9uKQJSYtnP5GZlcxs1MxGDx48eHoVpwgbeQEAsqid8NFsBGP2+tx2+sjdK+5ecPfC\nwMBAO/WlGht5AQCyqJ3wMS7WbmXOAAADgklEQVTp/Gn3ByX9bq4+ZrZAUr+kN4IoMM3YyAsAkEUL\n2ujzc0nLzOwCSa9IulHSTbP6PCnp45J+JmmDpGc8qt3LEqZYJGwAALKlZfhw9+Nm9mlJP5J0hqRH\n3f0lM/uSpFF3f1LSI5L+zcz2qz7icWM3iwYAAMnVzsiH3P0pSU/NavvitO+PSro+2NIAAEAascMp\nAAAIFeEDAACEivABAABCRfgAAAChInwAAIBQET4AAECoCB8AACBUhA8AABAqwgcAAAgV4QMAAITK\nojr/zcwOSqqdossSSb8PqRy0xt8jXvh7xA9/k3jh7xG+nLsPtNMxsvDRipmNunsh6jpQx98jXvh7\nxA9/k3jh7xFvXHYBAAChInwAAIBQxTl8VKIuADPw94gX/h7xw98kXvh7xFhs53wAAIB0ivPIBwAA\nSKHYhQ8zu9bMfm1m+83sC1HXk3Vm9qiZvW5mL0ZdCyQzO9/Mfmpme83sJTO7LeqasszMFprZDjN7\nofH3uCfqmiCZ2Rlm9v/M7D+irgXNxSp8mNkZkv5F0ockLZf0UTNbHm1Vmfd1SddGXQROOC7pc+5+\nkaTVkj7FfyOR+pOkq939vZIulnStma2OuCZIt0naG3URmFuswoekVZL2u/tv3P0tSd+WtD7imjLN\n3Z+V9EbUdaDO3V919180vj+s+v9gl0ZbVXZ53ZHG3d7GFxPpImRmg5LWSno46lowt7iFj6WSXp52\nf1z8jxVoyszykoYlPR9tJdnWGOLfJel1ST92d/4e0dos6f9IejvqQjC3uIUPa9LGpwhgFjM7U9L3\nJN3u7n+Mup4sc/c/u/vFkgYlrTKz90RdU1aZ2Uckve7uO6OuBacWt/AxLun8afcHJf0uolqAWDKz\nXtWDR9Xdvx91Pahz9z9I2ibmSEXpcknrzOyA6pftrzazf4+2JDQTt/Dxc0nLzOwCM/sLSTdKejLi\nmoDYMDOT9Iikve6+Kep6ss7MBszs7Mb3iyRdI+lX0VaVXe5+p7sPunte9fePZ9z9f0ZcFpqIVfhw\n9+OSPi3pR6pPpPuuu78UbVXZZmbfkvQzSX9lZuNmdnPUNWXc5ZI+pvonul2Nrw9HXVSGnSvpp2a2\nW/UPTz92d5Z3Ai2wwykAAAhVrEY+AABA+hE+AABAqAgfAAAgVIQPAAAQKsIHAAAIFeEDAACEivAB\nAABCRfgAAACh+v8vNhyVZOE8EQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAGbCAYAAAB6XcIxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df4xUZZ7v8c+3sa9SDjT20MwlzVQXf0wUFK8TKwM3djRjwyjOqtGERG7NdRNHOys/xh8km/WWZlpN4SQzKk5cdCp3zHClnBVcjSPROAOzsrPJMrvNrrNIAJ2YrhYlAlHA6eJ3P/ePohuqf1adPtXnVJ33KyFNPVSf+jalnE89z3O+x5xzAgAAqFRD0AUAAIDaRIgAAACeECIAAIAnhAgAAOAJIQIAAHhyUTUOOnPmTJdIJKpxaAAAMMl27tx52DnXMnS8KiEikUiou7u7GocGAACTzMzyI42znAEAADwhRAAAAE8IEQAAwBNCBAAA8IQQAQAAPCFEAAAAT6pyiScAoL4dO3ZMBw8e1OnTp4MuBRPQ2NioWbNmafr06Z6+nxABAKjIsWPH9Pnnn6u1tVVTp06VmQVdEjxwzun48eP69NNPJclTkGA5AwBQkYMHD6q1tVWxWIwAUcPMTLFYTK2trTp48KCnYxAiAAAVOX36tKZOnRp0GfDJ1KlTPS9LESIAABVjBqJ+TOS9JEQAAABPCBEAAMATQgSAYXK7ckqsS6jh8QYl1iWU25ULuiTAd11dXZo5c+aEjmFmev755ydcS09Pj8xMW7ZsmdBxTp48qTVr1mjWrFm69NJL9f3vf189PT0Trm80hAgAJXK7cup8q1P5o3k5OeWP5tX5VidBAqgBP/rRj/SrX/1KP/vZz/Taa6/p8OHDWrJkiU6cOFGV1yNEACiR3pZW4XShZKxwuqD0tnRAFQEox/79+/XLX/5Szz77rO6++24tXbpUr7/+uvL5vDZu3FiV1yREACjRe7S3onFgInI5KZGQGhqKX3MhmfDq6+vTqlWrdPnllysWi2nu3LlauXKljh07Nuy5p06d0gMPPKDm5mbNmDFDq1ev1qlTp0qe09vbq7vuukvNzc2KxWK66aabtG/fPl9r/u1vfytJuvPOOwfHWltb1d7ernfeecfX1xpAiABQIt4Ur2gc8CqXkzo7pXxecq74tbMzHEGiUCjo7NmzymQyeuedd/Tkk0/q97//vZYtWzbsuU8//bT279+vXC6nRx99VNlsVun0+Zm7L774Qu3t7dq3b59efPFFbdq0SX19fVq8eLGOHz8+ag39/f06c+bMmL/Onj07+Py9e/dqzpw5+trXvlZynHnz5mnv3r0+/K0MR9trACUyHRl1vtVZsqQRa4wp05EJsCrUo3RaKpSunKlQKI6nUsHUNKClpUUvvPDC4OMzZ85o7ty5am9vV29vr+Lx86F62rRp2rx5sxoaGrR06VKdPHlSmUxGjzzyiJqbm/Xss8+qr69P77//vpqbmyVJ1113nRKJhF566SWtXLlyxBruuecebdiwYcw6b7jhBr333nuSpC+//FIzZswY9pzLLrtMX375ZaV/BWUhRAAokVpQ/Nc7vS2t3qO9ijfFlenIDI4DfukdZYVstPHJ9vLLL+uZZ57RRx99pL6+vsHxDz/8sCRE3H777WpoOD+xf+edd+rRRx/VBx98oOuvv15bt27VkiVLNH36dJ05c0ZSMXhce+216u7uHvX1u7q6tGrVqjFrnDZtWsnjkRpHOeeq1hyMEAFgmNSCFKEBVRePF5cwRhoP2htvvKG7775b999/v9auXavm5mYdOHBAd9xxx7ArHWbNmjXi4wMHDkiSDh8+rB07dujVV18d9jodHR2j1hCPxzVnzpwx67wwHFx22WU6cuTIsOccOXJkxBkKPxAiAACByGSKeyAuXNKIxYrjQdu8ebMWLlyo9evXD45t3759xOcOvXnVwOPZs2dLkpqbm3XbbbfpscceG/a9Q2cSLlTpcsYVV1yhTz75RH19fbr00ksHn7N3715dccUVYx7HK0IEgFDI7cqxhBIxA/se0uniEkY8XgwQQe+HkKTjx4/r4osvLhnLjbLj880339RTTz01uKTx+uuva+rUqbrqqqskFWcbNm3apCuvvLKiG5dVupzxve99T1JxFuUHP/iBJOmzzz7TH/7wh5Iw5CdCBIDADTS4GtjMOdDgShJBos6lUsGGhlOnTum1114bNn7NNdeoq6tLmUxGCxcu1Ntvv61t27aNeIyvvvpKy5Yt03333afdu3friSee0KpVqwY3UT788MPauHGjbrzxRq1evVqtra36/PPPtX37drW3t2v58uUjHjeRSCiRSJT9s8yZM0c//OEP9eCDD8o5p5aWFnV1damtrW0wVPiNEAEgcGM1uCJEoJoGAsBQW7du1Zo1a/Tcc8/pxIkTWrJkiV555RUtWrRo2HPXrFmjjz/+WMuXL1d/f7/uvfderV27dvDPZ86cqR07diidTuuhhx7SkSNHNHv2bLW3t+vqq6/29ef5+c9/rksvvVQPP/ywCoWCbrjhBv3617/WJZdc4uvrDDDnnO8HTSaTbqwdpwBwoYbHG+Q0/N8ik6n/x/0BVISx7NmzR/PmzQu6DPhovPfUzHY655JDx2k2BSBwNLgCahMhAkDgMh0ZxRpjJWM0uALCjxABIHCpBSllb82qralNJlNbU5uyt2bZDwGEHBsrAYQCDa6A2sNMBADf5HbllFiXUMPjDUqsSyi3KwR3UgJQNcxEAPAFvR6A6GEmAoAvxur1AKA+ESIA+KL36Mi3XhxtHEDtI0QA8AW9HoDoIUQA8AW9HlBrurq6NHPmzAkdw8z0/PPPT7iWnp4emZm2bNkyoeM8+eSTWrx4saZPny4zU09Pz4RrGwshAoAv6PUABO8Xv/iFzpw5o+9+97uT8npcnQHAN/R6AILV29urhoYGbdmyRb/5zW+q/nrMRAAAAhPW3iJ9fX1atWqVLr/8csViMc2dO1crV67UsWPHhj331KlTeuCBB9Tc3KwZM2Zo9erVOnXqVMlzent7ddddd6m5uVmxWEw33XST9u3b53vdDQ2Te1pnJgIAEIgw9xYpFAo6e/asMpmMWlpa9MknnyiTyWjZsmV69913S5779NNPa9GiRcrlctq9e7fS6bQuueQS/fSnP5UkffHFF2pvb9fXv/51vfjii4rFYvrJT36ixYsX68MPP9TUqVNHrKG/v1/9/WPfxdbMNGXKFH9+aA8IEQCAQIzVWyToENHS0qIXXnhh8PGZM2c0d+5ctbe3q7e3V/H4+auOpk2bps2bN6uhoUFLly7VyZMnlclk9Mgjj6i5uVnPPvus+vr69P7776u5uVmSdN111ymRSOill17SypUrR6zhnnvu0YYNG8as84YbbtB777038R/YI0IEACAQYe8t8vLLL+uZZ57RRx99pL6+vsHxDz/8sCRE3H777SXLCHfeeaceffRRffDBB7r++uu1detWLVmyRNOnT9eZM2ckFYPHtddeq+7u7lFfv6urS6tWrRqzxmnTpnn98XxBiAAABCLeFFf+aH7E8aC98cYbuvvuu3X//fdr7dq1am5u1oEDB3THHXfoxIkTJc+dNWvWiI8PHDggSTp8+LB27NihV199ddjrdHR0jFpDPB7XnDlzxqzTzMr6eaqFEAEACESmI1OyJ0IKT2+RzZs3a+HChVq/fv3g2Pbt20d87sGDB0d8PHv2bElSc3OzbrvtNj322GPDvnesmQSWMwAAGMXAvof0trR6j/Yq3hRXpiMT+H4ISTp+/LguvvjikrFcbuQrR95880099dRTg0sar7/+uqZOnaqrrrpKUnG2YdOmTbryyitH3UQ5EpYzAAAYQ9C9RU6dOqXXXntt2Pg111yjrq4uZTIZLVy4UG+//ba2bds24jG++uorLVu2TPfdd592796tJ554QqtWrRrcRPnwww9r48aNuvHGG7V69Wq1trbq888/1/bt29Xe3q7ly5ePeNxEIqFEIlHRz7N9+3YdOnRIO3fulCS98847amlp0fz58zV//vyKjlUOQgQAILIGAsBQW7du1Zo1a/Tcc8/pxIkTWrJkiV555RUtWrRo2HPXrFmjjz/+WMuXL1d/f7/uvfderV27dvDPZ86cqR07diidTuuhhx7SkSNHNHv2bLW3t+vqq6/29ef58Y9/XLLssmLFisHxrq4uX19Lksw55/tBk8mkG2vHKQCgdu3Zs0fz5s0Lugz4aLz31Mx2OueSQ8fpWAkAADwhRAAAAE8IEQAAwBNCBAAA8IQQAQCoWDU25SMYE3kvyw4RZjbFzP7TzLZ4fjUAdSWst3FGdTU2Nur48eNBlwGfHD9+XI2NjZ6+t5KZiAck7fH0KgDqzsBtnPNH83Jyg7dxJkjUv1mzZunTTz9VoVBgRqKGOedUKBT06aefDrv/R7nKajZlZnMkfV9SRtLDnl4JQF0J822cUV3Tp0+XJH322Wc6ffp0wNVgIhobG/WNb3xj8D2tVLkdK9dJ+ltJozbpNrNOSZ2SSm6RCqA+hf02zqiu6dOnez7xoH6Mu5xhZn8l6aBzbudYz3POZZ1zSedcsqWlxbcCAYTTaLdrDsNtnAFMjnL2RFwn6TYz65H0D5JuNLONVa0KQOhlOjKKNcZKxsJyG2cAk2PcEOGce8Q5N8c5l5B0l6TfO+d+UPXKAIRaakFK2Vuzamtqk8nU1tSm7K1Z9kMAEcJdPAF4FvRtnAEEq6IQ4Zx7T9J7VakEAADUFDpWAgAATwgRAADAE0IEAADwhBABAAA8IUQAAABPCBEAAMATQgQAAPCEEAEAADwhRAAAAE8IEQAAwBNCBAAA8IQQAQAAPCFEAAAATwgRAADAE0IEAADwhBABAAA8IUQAAABPCBEAAMATQgQAAPCEEAEAADwhRAAAAE8IEQAAwBNCBAAA8IQQAQAAPCFEAAAATwgRAADAE0IEAGBcuV05JdYl1PB4gxLrEsrtygVdEkKAEAGgqjj51L7crpw63+pU/mheTk75o3l1vtXJewlCBIDq4eRTH9Lb0iqcLpSMFU4XlN6WDqgihAUhAkDVcPKpD71HeysaR3QQIgBUDSef+hBvilc0juggRACoGk4+9SHTkVGsMVYyFmuMKdORCagihAUhAkDVcPKpD6kFKWVvzaqtqU0mU1tTm7K3ZpVakAq6NATMnHO+HzSZTLru7m7fjwug9uR25ZTellbv0V7Fm+LKdGQ4+QA1xsx2OueSw8YJEQAAYCyjhQiWMwAAgCeECAAA4AkhAgAAeEKIAAAAnhAiAACAJ4QIAADgCSECAAB4QogAAACeECIAAIAnhAgAAOAJIQIAAHhCiAAAAJ4QIgAAgCeECAAA4AkhAgAAeEKIADBMbldOiXUJNTzeoMS6hHK7ckGXBCCELgq6AADhktuVU+dbnSqcLkiS8kfz6nyrU5KUWpAKsjQAIcNMBIAS6W3pwQAxoHC6oPS2dEAVAQgrQgSAEr1HeysaBxBdhAgAJeJN8YrGAUQXIQJAiUxHRrHGWMlYrDGmTEcmoIoAhBUhAkCJ1IKUsrdm1dbUJpOpralN2VuzbKoEMIw553w/aDKZdN3d3b4fFwAATD4z2+mcSw4dZyYCAAB4QogAAACeECIAAIAnhAgAAOAJIQIAAHhCiAAAAJ4QIgAAgCeECAAA4AkhAgAAeEKIAAAAnowbIszsEjP7NzP7k5ntNrPHJ6MwAAiVFSukiy6SzIpfV6wIuiIgcBeV8ZyTkm50zv3FzBol/YuZveOc21Hl2gAgHFaskF544fzjs2fPP16/PpiagBAYdybCFf3l3MPGc7/8v2sXAIRVNlvZOBARZe2JMLMpZva+pIOSfuec++MIz+k0s24z6z506JDfdQJAcM6erWwciIiyQoRz7qxz7hpJcyR9x8yuGuE5Wedc0jmXbGlp8btOAAjOlCmVjQMRUdHVGc65I5Lek3RzVaoBgDDq7KxsHIiIcq7OaDGzGed+P1XSYkl7q10YAITG+vXS/fefn3mYMqX4mE2ViLhyrs6YLWmDmU1RMXRscs5tqW5ZABAy69cTGoAhxg0Rzrn/kvTtSagFAADUEDpWAgAATwgRAADAE0IEAADwhBABAAA8IUQAUG5XTol1CTU83qDEuoRyu3JBlwSgBhAigIjL7cqp861O5Y/m5eSUP5pX51udBIlJRpBDLSJEABGX3pZW4XShZKxwuqD0tnRAFUUPQQ61ihABRFzv0d6KxuE/r0GO2QsEjRABRFy8KV7ROPznJcgxe4EwIEQAEZfpyCjWGCsZizXGlOnIBFRR9HgJcixDIQwIEUDEpRaklL01q7amNplMbU1tyt6aVWpBKujSaoIfSwpeghzLUAiDcm7ABaDOpRakCA0eDCwpDMwIDCwpSKro73PgueltafUe7VW8Ka5MR2bMY8Sb4sofzY84jmjJ7cpV9N+On8w55/tBk8mk6+7u9v24ABAmiXWJEU/kbU1t6nmwp6qvPTTASMXZi7FmkYI82aA6vPx34IWZ7XTOJYeOs5wB1CB25YdDkEsKlS5DsRGzPgW9N4aZCKDGTNYnD4wvyJmIStVSrShfw+MNchp+HjeZ+n/c79vrMBMB1ImgP3ngvFq6soWNmPUp6Eu0CRFAjeFkEB4XLilI0hSbMhjowrZMEPTJBtURdJAlRAA1plonA/ZZeJNakBr8h/ysOytJodxvEPTJBtUR9CXa7IkAakw19kSwz2JiamW/AVdnwKvR9kQQIoAa5PfJoFZOgmE1WZvbgKCMFiJoNgXUIL+bQ7HPYmJo/ISoYk8EADbdTRD7DRBVhAgAnAQnKOjNbUBQ2BMBQBKb7gCMjo2VAADAEzpWAkAF6JsBjI+rMwBgCL9u8Q3UO2YiAGAI7k8ClIcQAQBD0DcDKA8hAgCGoG8GUB5CBAAMQd8MoDyECAAYguZRQHnoEwEAAMZEnwgAAOArQgQAAPCEEAEAADwhRAAAAE8IEQAAwBNCBAAA8IQQAQBVxN1AUc+4iycAVAl3A0W9YyYCiCg+IVcfdwNFvWMmAoggPiFPDu4GinrHTAQQQXxCnhzcDRT1jhABRBCfkCcHdwNFvSNEABHEJ+TJwd1AUe/YEwFEUKYjU7InQuITcrWkFqQIDahbzEQAEcQnZAB+MOec7wdNJpOuu7vb9+MCAIDJZ2Y7nXPJoePMRAAAAE8IEQAQEBp+odaxsRIAAkDDL9QDZiIAIABBNvxiBgR+YSYCAAIQVMMvZkDgJ2YiACAAQTX8ouU5/ESIABAZYZrGD6olNi3P4SdCBIBIGJjGzx/Ny8kNTuMHFSSCavhFy3P4iWZTACIhsS6h/NH8sPG2pjb1PNgz+QUFZOieCKk4A0LHUoyFZlMAIo1p/CJansNPXJ0BIBLiTfERZyKiOI3PTcHgF2YiAETCaBsZb/nWLaHZbAnUGmYiAETCwCfv9La0eo/2Kt4U1y3fukUb/rSBngmAR2ysBBBZbLYEysPGSgAYgs2WwMTURIjI5aREQmpoKH7NsWQJwAf0TAAmJvQhIpeTOjulfF5yrvi1s5MgAdSLILtIBtU1EqgXoQ8R6bRUKG3zrkKhOA6gPGFq93yhoLtI0jMBmJhxN1aa2Tcl/T9J/11Sv6Ssc+65sb7Hz42VDQ3FGYjhdUn9/b68BCYolyuGut5eKR6XMhkpxb/BoRHmDoVsbARqw0Q2Vp6RtMY5N0/SIkkrzWy+3wWOJj7K0uRo45hcLDeFX5jv2sjGRqC2jRsinHMHnHP/ce73X0naI6m12oUNyGSkWOmSpWKx4jiCx3JT+IX5RM3GRqC2VbQnwswSkr4t6Y/VKGYkqZSUzUptbcUljLa24mOmy8Ohd5Tz0GjjmHxhPlGzsRGobWWHCDP7mqR/lPSgc+7YCH/eaWbdZtZ96NAhP2tUKiX19BT3QPT0ECDChOWm8AvziZqNjUBtK6tjpZk1Stoi6V3n3DPjPZ+OldExsCfiwiWNWIzZorDJ7cqVtHvOdGQ4UQMo22gbK8u5OsMkbZD0hXPuwXJejBARLVydAQD1bSIhol3SHyTtUvEST0n6P865t0f7HkIEAAD1w/Mlns65f3HOmXPuaufcNed+jRogUDnaegMAahG3Ag/Y0D0FA30WJJYEAADhFvq21/WOPgsAgFpFiAgYfRYAALWKEBEw+iwAAGoVISJgtPUGANQqQkTAaOsNAKhVXJ0RAqkUoQEAUHuYiQAAAJ4QIgAAgCeECAAA4AkhAgAAeEKIAAAAnhAiAACAJ4QIAADgCSECAAB4QogAAACeECIAAIAnhAgAAOAJIQIAAHhCiAAAAJ4QIlCRXE5KJKSGhuLXXC7oigAAQeFW4ChbLid1dkqFQvFxPl98LHErcwCIImYiULZ0+nyAGFAoFMcBANFDiIgIP5YhensrGwcA1DdCRAQMLEPk85Jz55chKg0S8Xhl4wCA+kaIiAC/liEyGSkWKx2LxYrjAIDoIUREgF/LEKmUlM1KbW2SWfFrNsumSgCIKq7OiIB4vLiEMdJ4pVIpQgMAoIiZiAhgGQIAUA2EiAhgGQIAUA0sZ0QEyxAAAL8xEwEAADwhRAAAAE8IEQAAwBNCBAAA8IQQAQAAPCFEAAAATwgRAADAE0IEAADwhBABAAA8IUQMkctJiYTU0FD8mssFXREAAOFE2+sL5HJSZ6dUKBQf5/PFxxItowEAGIqZiAuk0+cDxIBCoTgOAABKESIu0Ntb2TgAAFFGiLhAPF7ZOAAAUUaIuEAmI8VipWOxWHEcAACUIkRcIJWSslmprU0yK37NZtlUCQDASLg6Y4hUitAAAEA5mIkAAACeECIAAIAnhAgAAOAJIQIAAHhCiAAAAJ4QIgAAgCeECAAA4AkhAgAAeEKIAAAAnhAiAACAJ4QIAADgCSECAAB4QogAAACeECIAAIAnhAgAAOAJIQIAAHhCiAAAAJ4QIgAAgCeECAAA4AkhAgAAeDJuiDCzl8zsoJl9MBkFAQCA2lDOTMSvJN1c5ToAAECNGTdEOOf+WdIXk1ALAACoIb7tiTCzTjPrNrPuQ4cO+XVYAAAQUr6FCOdc1jmXdM4lW1pa/DosAAAIKa7OwITlclIiITU0FL/mckFXBACYDBcFXQBqWy4ndXZKhULxcT5ffCxJqVRwdQEAqq+cSzx/LelfJV1uZvvN7IfVLwu1Ip0+HyAGFArFcQBAfRt3JsI5t3wyCkFt6u2tbBwAUD/YE4EJiccrGwcA1A9CBCYkk5FisdKxWKw4DgCob4QITEgqJWWzUlubZFb8ms2yqRIAooCrMzBhqRShAQCiKBIzEfQxAADAf3U/E0EfAwAAqqPuZyLoYwAAQHXUfYigjwEAANVR9yGCPgYAAFRH3YcIv/sYsEkTAICiug8RfvYxGNikmc9Lzp3fpEmQAABEkTnnfD9oMpl03d3dvh83aIlEMTgM1dYm9fRMdjUAAEwOM9vpnEsOHa/7mQg/sUkTAIDzCBEVYJMmAADnESIqwM2mAAA4jxBRAW42BQDAeXXf9tpv3GwKAIAiZiIAAIAnNR8iaP4EAEAwano5gzt0AgAQnJqeieAOnQAABKemQwTNnwAACE5NhwiaPwEAEJyaDhE0fwIAIDg1HSJo/gQAQHBq+uoMieZPAAAEpaZnIspFLwkAAPxX8zMR46GXBAAA1VH3MxH0kvAfMzsAACkCIWK0nhH5PCc/LwZmdvJ5ybnzMzv8XQJA9NR9iBirZwQnv8oxswMAGFD3IWKkXhIDOPlVji6hAIABdR8iBnpJjIaTX2XoEgoAGFD3IUIqBom2tpH/jJNfZegSCgAYEIkQIXHy8wtdQgEAA+q+T8SAgZNcOl1cwojHiwGCk1/l6BIKAJAiFCIkTn4AAPgpMssZKB/NpAAA5YjUTATGR5twAEC5mIlACZpJAQDKRYiYJLWyREAzKQBAuQgRZZhoAKil+03QTAoAUC5CxDj8CAC1tERAPw0AQLkIEePwIwDU0hIBzaQAAOXi6oxx+BEA4vHiDMZI42FEPw0AQDmYiRiHH3sEWCIAANSjyIWISjdJ+hEAWCIAANSjSIWI0TZJrlgxerDwKwCkUlJPj9TfX/xKgAAA1Dpzzvl+0GQy6bq7u30/7kQlEiPvTTArhooBsRgzBQAADDCznc655NDxSM1EjLYZcmiOCuvllwAAhEmkQkQlmyHDePklAABhEqkQMdImSbORnxvWyy8BAAiLSIWIkTZJ/s3fcPklAABeRCpESMOvkli/nssvAQDwgo6VokMjAABeRG4mApWplVuYAwAmHyGihkz2Cb2WbmEOAJh8hIgaEcQJvZZuYQ4AmHw1GSKiOMUexAm9lm5hDgCYfDUXIqI6xR7ECd2PO5gCAOpXzYWIqE6xB3FC5xbmAICx1FyIiOoUexAn9KjcwjyKy2MA4Iea6xMRj498J856n2IfOHGn08XAFI8XA0S1T+j13kNjYHlsYHZrYHlMqu+fGwD8UHMzEVGeYh/abXOsk1y1Pl3X26f2qC6PAYAfam4mIqhP5LWkWp+u6/FTe1SXxwDAD+ac8/2gyWTSdXd3+35clCeRGHnJp62tOIMRtuMGqR5/JgDwm5ntdM4lh47X3HIGxletT9f1+Kk9ystjADBRhIg6VK3LQeuxb8RIV6D89V8Xl8vqZd8HAFRLWSHCzG42s31m9mcz+7tqF4WJqdan63r91H7hhtVMRtqwIXrNzADAi3FDhJlNkfT3kpZKmi9puZnNr3Zh8K5a/R2i0DeCqzUAoHzjbqw0s/8pqcs5d9O5x49IknPuqdG+h42VqFUNDcUZiKHMijMVABBFE9lY2Srpkwse7z83NvQFOs2s28y6Dx065L1SIED1uO8DAKqlnBBhI4wN+6zmnMs655LOuWRLS8vEKwMCUK/7PgCgGsoJEfslffOCx3MkfVadcoBgRWHfBwD4pZyOlf8u6VtmNlfSp5LukvS/qloVEKB6v18IAPhl3BDhnDtjZqskvStpiqSXnHO7q14ZAAAItbLuneGce1vS21WuBQAA1BA6VgIAAE8IEQAAwBNCBAAA8IQQAQAAPCFEAAAATwgRAADAE0IEAADwhBABAAA8IaH0iK4AAALPSURBVEQAAABPCBEAAMATc27YXb0nflCzQ5LyPh5ypqTDPh4PleM9CB7vQTjwPgSP92DytTnnWoYOViVE+M3Mup1zyaDriDLeg+DxHoQD70PweA/Cg+UMAADgCSECAAB4UishIht0AeA9CAHeg3DgfQge70FI1MSeCAAAED61MhMBAABChhABAAA8CX2IMLObzWyfmf3ZzP4u6HqixsxeMrODZvZB0LVElZl908z+ycz2mNluM3sg6JqixswuMbN/M7M/nXsPHg+6pqgysylm9p9mtiXoWhDyEGFmUyT9vaSlkuZLWm5m84OtKnJ+JenmoIuIuDOS1jjn5klaJGkl/x9MupOSbnTO/Q9J10i62cwWBVxTVD0gaU/QRaAo1CFC0nck/dk597Fz7pSkf5B0e8A1RYpz7p8lfRF0HVHmnDvgnPuPc7//SsV/QFuDrSpaXNFfzj1sPPeLXemTzMzmSPq+pP8bdC0oCnuIaJX0yQWP94t/PBFhZpaQ9G1Jfwy2kug5N43+vqSDkn7nnOM9mHzrJP2tpP6gC0FR2EOEjTBG+kckmdnXJP2jpAedc8eCridqnHNnnXPXSJoj6TtmdlXQNUWJmf2VpIPOuZ1B14Lzwh4i9kv65gWP50j6LKBagMCYWaOKASLnnHs96HqizDl3RNJ7Yq/QZLtO0m1m1qPi0vaNZrYx2JIQ9hDx75K+ZWZzzey/SbpL0m8CrgmYVGZmkn4paY9z7pmg64kiM2sxsxnnfj9V0mJJe4OtKlqcc4845+Y45xIqngt+75z7QcBlRV6oQ4Rz7oykVZLeVXEz2Sbn3O5gq4oWM/u1pH+VdLmZ7TezHwZdUwRdJ+l/q/jJ6/1zv24JuqiImS3pn8zsv1T8cPM75xyXGCLyaHsNAAA8CfVMBAAACC9CBAAA8IQQAQAAPCFEAAAATwgRAADAE0IEAADwhBABAAA8+f+xfaPT/NNXNwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 11, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# Redraw figure\n", + "# Add our new point to figure, in red, and redraw the figure\n", + "fig.gca().plot(new_point[0][0], new_point[0][1], '.r', ms=12);\n", "fig" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Predicted class of new data point is: 1\n" + "Predicted class of new data point is: 1\n" ] } ], "source": [ "# Predict the class of the new data point\n", "prediction = classifier.predict(new_point)\n", - "print('Predicted class of new data point is: ', prediction[0])" + "print('Predicted class of new data point is: {}'.format(prediction[0]))" ] }, { @@ -302,52 +344,50 @@ "source": [ "### Support Vectors\n", "\n", - "One of the key features of SVMs are that they use 'support vectors', meaning they prioritise using information from data points close to the decision boundary, and use them to try to find the widest margin - the distance between the two groups. Here we can briefly explore the support vectors for our trained model." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Add the support vectors to plot\n", - "# Support vectors will be indicated by being highlighted with black circles\n", - "for row in classifier.support_vectors_:\n", - " fig.gca().plot(row[0], row[1], 'ok', ms=14, mfc='none')" + "As we mentioned befor, SVMs use 'support vectors', which are the points closest to the decision boundary, to try and learn the decision boundary with the highest margin (or separation) between the classes. \n", + "\n", + "Now that we have a trained model, we can have a look at the support vectors, and the decision boundary learned from them. " ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGfCAYAAAD/BbCUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X1wnOV57/HfJVvFUtFIHeQMASMt\nc5BaqEzjWrxkEuOCsSGhkcgUhiQ6PclhM0pqJyWNO22xxsXJREPesGkOohkheUqbbV6GtLLdk7h2\nSJBhpoRKOYCgBKFJLUeECZYDiozqF6rr/LGSkOSVtEKr53l2n+9nRrPae292L0mD97f3c7+YuwsA\nACAoRWEXAAAA4oXwAQAAAkX4AAAAgSJ8AACAQBE+AABAoAgfAAAgUIQPAAAQKMIHAAAIFOEDAAAE\namVYL1xZWemJRCKslwcAADnU29s77O6rs+kbWvhIJBLq6ekJ6+UBAEAOmdlgtn257AIAAAJF+AAA\nAIEifAAAgECFNucjk7Nnz2poaEinTp0Ku5S8sWrVKq1Zs0bFxcVhlwIAQFYiFT6GhoZUVlamRCIh\nMwu7nMhzd504cUJDQ0O69NJLwy4HAICsROqyy6lTp3TBBRcQPLJkZrrgggsYKQIA5JVIhQ9JBI9F\n4vcFAMg3kQsfAACgsBE+Zjn//POz7rtr1y599atfXbbn/8///E9dc801qqmp0R133KEzZ84s6rUA\nAIiivA4fqZSUSEhFRenbVCrsinLrL//yL/Vnf/Zneumll/Rbv/Vb6uzsDLskAACWLG/DRyolNTdL\ng4OSe/q2uXl5AsiBAwd0zTXXaN26dbrxxhv1y1/+cuqxZ555RjfccINqamr00EMPTbV/5Stf0VVX\nXaUrr7xS99xzz6Jf0931wx/+ULfddpsk6aMf/ai6urqW/sMAABCySC21XYyWFmlsbGbb2Fi6vakp\nt6/13ve+V08++aTMTB0dHfryl7+s++67T5L07LPP6sknn9Qbb7yhdevW6ZZbbtFzzz2nl156SU89\n9ZTcXQ0NDTpy5Iiuu+66qeccHR3Vhg0bMr7eP/7jP+od73iHKioqtHJl+k+0Zs0avfzyy7n9wQAA\nCEHeho9jxxbXvhRDQ0O644479Morr+jMmTMz9tRobGxUSUmJSkpKdP311+upp57SE088oUOHDmnd\nunWSpJMnT+qll16aET7Kysr09NNPz/max48fP6eNlS0AgEKQt+Gjqip9qSVTe659+tOf1mc/+1k1\nNDToscce065du6Yemx0IzEzurrvvvluf+MQn5nzOhUY+Lr/8cr3++ut68803tXLlSg0NDemiiy7K\nyc8DLCTVl1LLoy06NnJMVeVVat3Uqqa1OR5SBBBbeTvno7VVKi2d2VZamm7PtZGREV188cWSpIcf\nfnjGY/v27dOpU6d04sQJPfbYY7rqqqt00003ae/evTp58qQk6eWXX9arr74647+bHPnI9HXFFVfI\nzHT99dfrkUcemXrdxsbG3P9wwCypvpSaDzRrcGRQLtfgyKCaDzQr1VdgM7oBhCZvw0dTk9TeLlVX\nS2bp2/b2pc/3GBsb05o1a6a+du/erV27dun222/Xhg0bVFlZOaP/1VdfrVtuuUXXXnutdu7cqYsu\nukhbtmzRRz7yEb373e/W2rVrddttt2l0dHTRtXzpS1/S7t27ddlll+nEiRNKJpNL++GALLQ82qKx\nszMnVI2dHVPLoy0hVQSg0Ji7h/LC9fX13tPTM6PthRde0OWXXx5KPfmM3xtyqehzRXKd+++CyTR+\nz3gIFQHIB2bW6+712fTN25EPAMujqjzzxKm52gFgsQgfAGZo3dSq0uKZE6pKi0vVumkZJlQBiCXC\nB5BnUn0pJe5PqOhzRUrcn8j5RNCmtU1q/0C7qsurZTJVl1er/QPtrHYBkDN5u9QWiKPJlSiTE0In\nV6JIymk4aFrbRNgAsGwY+QDyCCtRABQCwgeQR46NZN7Cd672ICz3ZSAAhYfwMctijrzftWuXvvrV\nry7b8z/wwAO67LLLZGYaHh5e1OugMEVtJQobkgF4O/I6fBT6J673vOc9+sEPfqDq6uqwS0FERG0l\nCpeBALwdeRs+gvzEdeDAAV1zzTVat26dbrzxRv3yl7+ceuyZZ57RDTfcoJqaGj300ENT7V/5yld0\n1VVX6corr9Q999zztl533bp1SiQSSy0fBSRqK1GieBkIQPTl7WqX+T5x5fof4ve+97168sknZWbq\n6OjQl7/8Zd13332SpGeffVZPPvmk3njjDa1bt0633HKLnnvuOb300kt66qmn5O5qaGjQkSNHZpxq\nu9DBcldccUVOfwYUjiitRKkqr9LgyLknPC7mMhCH2AHxk7fhI8hPXENDQ7rjjjv0yiuv6MyZM7r0\n0kunHmtsbFRJSYlKSkp0/fXX66mnntITTzyhQ4cOad26dZKkkydP6qWXXpoRPiYPlgPyWeum1hlL\nf6XFXQYKaukwgGjJ2/CRi09c2fr0pz+tz372s2poaNBjjz2mXbt2TT1mZjP6mpncXXfffbc+8YlP\nzPmcjHygEEwGhLc7chHkCCaA6Mjb8LHUT1yLMTIyoosvvlhS+mj76fbt26e7775bb7zxhh577DF9\n8YtfVElJiXbu3Kmmpiadf/75evnll1VcXKx3vOMdU/8dIx8oFEu5DMScESA4UbrEmbcTTpdr4t3Y\n2JjWrFkz9bV7927t2rVLt99+uzZs2KDKysoZ/a+++mrdcsstuvbaa7Vz505ddNFF2rJliz7ykY/o\n3e9+t9auXavbbrtNo6Oji67la1/7mtasWaOhoSFdeeWV+vjHP76knw2ImqgtHQYKVdSWxZv7uUdn\nB6G+vt57enpmtHE0/NvD7w35avacDyk9gslZMkBuJe5PZJyqUF1eraOfOZqT1zCzXnevz6Zv3o58\nAMh/UVs6DBSqqF3izNs5HwAKQ5SWDgOFKshFGtmI3MhHWJeB8hW/r3gr9F1+AeRG1HZHjlT4WLVq\nlU6cOMEbapbcXSdOnNCqVavCLgUhiNoEMgDRFbVLnAtOODWzVZKOSDpP6cs0j7j7PbP6fEzSVyS9\nPNH0gLt3zPe8mSacnj17VkNDQzp16tRifoZYW7VqldasWaPi4uKwS0HAgphABgDZWsyE02zmfJyW\ndIO7nzSzYklPmNn33f3JWf2+7e6fWmyx0xUXF8/YPRTA3KI2gQwAsrXgZRdPOzlxt3jii+siQMjY\nIwNAvspqzoeZrTCzpyW9Kumwu/84Q7c/MrNnzewRM7skp1UCOEfUJpABQLayCh/u/t/u/i5JayRd\nbWZ1s7ockJRw9ysl/UDSw7OfQ5LMrNnMesys5/jx40upG4i9qE0gA4BsLXqHUzO7R9Ib7v7VOR5f\nIelX7l4+3/NkmnAKAADyU053ODWz1WZWMfF9iaQbJf10Vp93TrvbIOmF7MsFAABxks1ql3dKenhi\nRKNI0nfc/V/M7POSetx9v6Q/NbMGSW9K+pWkjy1XwQAAIL9F6mA5AACQnzhYDgAARBbhAwAABIrw\nAQAAAkX4AAAAgSJ8AACAQBE+AABAoAgfAAAgUIQPAAAQKMIHACyzVF9KifsTKvpckRL3J5TqS4Vd\nEhCqbLZXBwC8Tam+lJoPNGvs7JgkaXBkUM0HmiWJE4gRW4x8AMAyanm0ZSp4TBo7O6aWR1tCqggI\nH+EDAJbRsZFji2oH4oDwAQDLqKq8alHtQBwQPgBgGbVualVpcemMttLiUrVuag2pIiB8hA8AWEZN\na5vU/oF2VZdXy2SqLq9W+wfamWyKWDN3D+WF6+vrvaenJ5TXBgAAuWVmve5en01fRj4AAECgCB8A\nACBQhA8AABAowgcAAAgU4QMAAASK8AEAAAJF+AAARBKnARcuTrUFAEQOpwEXNkY+AACRw2nAhY3w\nAQCIHE4DLmyEDwBA5HAacGEjfAAAIofTgAsb4QMAEDmcBlzYONUWAAAsGafaAgCAyCJ8AACAQBE+\nAABAoAgfAAAgUIQPAAAQKMIHAAAIFOEDAAAEivABAAACtWD4MLNVZvaUmT1jZs+b2ecy9DnPzL5t\nZgNm9mMzSyxHsQAQOamUlEhIRUXp21Qq7IqAyMtm5OO0pBvc/fckvUvSzWZ27aw+SUmvuftlkvZI\n+lJuywSACEqlpOZmaXBQck/fNjcTQIAFLBg+PO3kxN3iia/Ze7I3Snp44vtHJG0yM8tZlQAQRS0t\n0tjYzLaxsXQ7gDllNefDzFaY2dOSXpV02N1/PKvLxZJ+Lknu/qakEUkXZHieZjPrMbOe48ePL61y\nAAjbsWOLawcgKcvw4e7/7e7vkrRG0tVmVjerS6ZRjnNOrHP3dnevd/f61atXL75aAIiSqqrFtQOQ\ntMjVLu7+uqTHJN0866EhSZdIkpmtlFQu6Vc5qA8AFiXVl1Li/oSKPlekxP0JpfqWcf5Fa6tUWjqz\nrbQ03Q5gTtmsdlltZhUT35dIulHST2d12y/poxPf3ybph+5+zsgHACynVF9KzQeaNTgyKJdrcGRQ\nzQealy+ANDVJ7e1SdbVklr5tb0+3A5iTLZQRzOxKpSeTrlA6rHzH3T9vZp+X1OPu+81slaR/kLRO\n6RGPD7n7z+Z73vr6eu/p6cnFzwAAkqTE/QkNjgye015dXq2jnzkafEFAjJhZr7vXZ9N35UId3P1Z\npUPF7Pa/nvb9KUm3L6ZIAMi1YyOZJ3rO1Q4gHOxwCqBgVJVnnug5VzuAcBA+ABSM1k2tKi2eOQG0\ntLhUrZuYAApECeEDwLIJdOWJpKa1TWr/QLuqy6tlMlWXV6v9A+1qWssEUCBKFpxwulyYcAoUtsmV\nJ2Nn39oBtLS4lDCQQaovpZZHW3Rs5JiqyqvUuqmV3xHyzmImnDLyAWBZtDzaMiN4SNLY2TG1PMrW\n49MFvjwYiADCB4BlwcqT7BDSEEeEDwDLIoyVJ0HPMckFQhriiPABYFkEvfIkXy9fsDwYcUT4ALCg\ntzOiEPTKk3y9fMHyYMTRgjucAoi32atWJkcUJC0YJJrWNgW2aiNfL19M/n5Y7YI4YaktgHnly3kp\n+VInUKhYagsgZ/JlRIHLF0D+IHwAmFe+TIhkd1MgfzDnA8C8Wje1ZtypNIojCkHOMQHw9jHyAWDe\n1SyMKADINSacAjHHGSwAcoEJpwCylq/7YwDIX4QPIObyZTULgMJB+ABiLl9WswAoHIQPIObYHwNA\n0AgfQMyxmgVA0FjtAgAAlozVLgAAILIIHwAAIFCEDwAAECjCBwAACBThA0Co5jtXBkBh4lRbAKGZ\nfa7M4Migmg80SxJLfYECxsgHgNBwrgwQT4QPAKHhXBkgnggfAELDuTJAPBE+AISGc2WAeCJ8AAgN\n58oA8cTZLgAAYMk42wUAAEQW4QMAAASK8AEAAAK1YPgws0vM7Edm9oKZPW9md2Xo8wdmNmJmT098\n/fXylAsAyBZb1yOqstle/U1J2939J2ZWJqnXzA67+3/M6ve4u/9h7ksEACwWW9cjyhYc+XD3V9z9\nJxPfj0p6QdLFy10YACxF3D/1s3U9omxRcz7MLCFpnaQfZ3j43Wb2jJl938x+d47/vtnMesys5/jx\n44suFkBa3N9YFzL5qX9wZFAun/rUH6ffE1vXI8qyDh9mdr6k70r6jLv/etbDP5FU7e6/J+n/SOrK\n9Bzu3u7u9e5ev3r16rdbMxBrvLEujE/9bF2PaMsqfJhZsdLBI+Xu/zT7cXf/tbufnPj+e5KKzawy\np5UCkMQbazb41M/W9Yi2bFa7mKROSS+4++45+lw40U9mdvXE857IZaEA0nhjXRif+tm6HtGWzWqX\n90j6Y0l9Zvb0RNsOSVWS5O5fl3SbpD8xszcl/ZekD3lY+7YDBa6qvEqDI4MZ25HWuql1xkoPKZ6f\n+pvWNhE2EEkLhg93f0KSLdDnAUkP5KooAHPjjXVhk2+4LY+26NjIMVWVV6l1UytvxEBEcLAckIdS\nfSneWAFEymIOliN8AACAJeNUWwAAEFmEDwAAECjCB4CCwc6vQH7IZqktAEQeB6kB+YORDwAFgZ1f\ngfxB+ABQENj5FYWk0C8hEj4AFAS2VEehiMPhkYQPAAWBg9RQKOJwCZHwAaAgcJAaCkUcLiGy2gVA\nweAgNRSCOBweycgHAAAREodLiIQPAAAiJA6XEDlYDgAALBkHywEAgMgifAAAgEARPgAAQKAIHwAA\nIFCEDwAAECjCBwAACBThAwAABIrwAQAAAkX4ACBJGh8f18GDB9XQ0KCKigqtWLFCFRUVamho0MGD\nBzU+Ph52iQAKBOEDgPr7+1VXV6cdO3aosbFRAwMDOn36tAYGBtTY2KgdO3aorq5O/f39YZeKPJXq\nSylxf0JFnytS4v6EUn2psEtCiAgfQMz19/dr48aN2r59u3p7e5VMJlVZWamVK1eqsrJSyWRSvb29\n2r59uzZu3EgAWQBvsudK9aXUfKBZgyODcrkGRwbVfKCZ302McbYLEGPj4+Oqq6vT9u3blUwmF+zf\n0dGhPXv2qK+vT0VFfHaZbfJNduzs2FRbaXFpwR0KtliJ+xMZj4ivLq/W0c8cDb4gLAvOdgGQlUOH\nDqmkpER33nnnVNt8n9yTyaTOO+88HT58OIxyI6/l0ZYZwUOSxs6OqeXRlpAqioZjI8cW1Y7CR/gA\nYuzBBx/U1q1bZWaSFh4eNzN98pOf1D333MPE1Ax4k82sqrxqUe0ofIQPIMaOHDmixsbGqfsLfXLv\n7+/Xfffdp56eHiamZsCbbGatm1pVWlw6o620uFStm1pDqghhI3wAMTY6OqqKioqp+/N9cp8+MdXd\nmZiaAW+ymTWtbVL7B9pVXV4tk6m6vDr282DijgmnQIxVVFRoYGBAlZWVkuaeGFhVVqXf7PhNbd++\nXY2NjaqpqdFrr7025/PGeWJqqi+llkdbdGzkmKrKq9S6qZU3WcQCE04BZOW6667Tvn37pu7P9cn9\njpI7piamdnV1acOGDUxMnUPT2iYd/cxRjd8zrqOfOUrwADIgfAAxtnXrVrW1tWlyBHSu4fGffv+n\n2rp1qySpra1Nl7//8gUnpk4+NwDMxmUXIMay3edj8vJMV1eX9uzZo5PJkzo2eu78kOn7NgwPDy94\neQbLj8tACMpiLrusXO5iAERXUVGRurq6tHHjxqlJpJPLbqcbHR3Vd7/7Xe3atUvd3d36nW/+Tsbn\nmz5htby8XKOjo8tWOxY2e9OzyREqSQQQhIrLLkDM1dbWqru7W7t379b69evV0dGh4eFhnT17VsPD\nw+ro6JCZaffu3eru7lZtbW1WS0pHRkZUVlYW1I+BDNj0DFG1YPgws0vM7Edm9oKZPW9md2XoY2b2\nNTMbMLNnzez3l6dcAMuhtrZWzz33nO69917t379fNTU1KikpUU1Njfbv36/6+nr9+Z//uWprayVl\nt6R0cmIqwsOmZ4iqbC67vClpu7v/xMzKJPWa2WF3/49pfd4nqWbi6xpJfztxCyBPFBUV6aabbtJN\nN910zmMHDx7Ujh079PGPf1xmNjVkP9dcAndXW1ubvvjFLwb6M2CmqvKqzEunY77pGcK34MiHu7/i\n7j+Z+H5U0guSLp7VrVHS33vak5IqzOydOa8WQCi2bNmiU6dOae/evVNt8y0p7ezs1JkzZ7R58+Yw\nysUENj1DVC1qwqmZJSStk/TjWQ9dLOnn0+4PTbS9soTaAEREthNT3V2dnZ3auXOnuru7Y7fBWNQs\nNEIFhCXrpbZmdr6kbkmt7v5Psx77v5LudfcnJu4/Kukv3L13Vr9mSc2SVFVVtX5w8NzhQADR1d/f\nr1tvvVWrVq3S1q1bdeutt6q8vFwjIyPq6urSgw8+qNOnT+uf//mfp+aHAIiHnO9wambFkr4rKTU7\neEwYknTJtPtrJP1idid3b3f3enevX716dTYvDSBCFpqYeu+996qvr4/gAWBeC152sfTYaqekF9x9\n9xzd9kv6lJl9S+mJpiPuziUXoADNNzEVALKRzZyP90j6Y0l9Zvb0RNsOSVWS5O5fl/Q9Se+XNCBp\nTNL/zn2pAACgECwYPibmcZw7s2xmH5e0LVdFAQCAwsVUdAAAECjCBwAACBThAwAABIrwAQAAAkX4\nAAAAgSJ8AACAQBE+AABAoAgfAAAgUIQPAAAQKMIHAAAIFOEDAAAEivABAAACRfgAAACBInwAAIBA\nET4AAECgCB8AACBQhA8AABAowgcAAAgU4QMAAASK8AEAAAJF+AAAAIGKZfgYHx/XwYMH1dDQoIqK\nCq1YsUIVFRVqaGjQwYMHNT4+HnaJAAAUrNiFj/7+ftXV1WnHjh1qbGzUwMCATp8+rYGBATU2NmrH\njh2qq6tTf39/2KUCAFCQYhU++vv7tXHjRm3fvl29vb1KJpOqrKzUypUrVVlZqWQyqd7eXm3fvl0b\nN24kgAAAsAxWhl1AUMbHx3XrrbfqC1/4gpLJ5Jz9zEzJZFLurg9+8IPq6+tTUVGsMhoAAMsqNu+q\nhw4dUklJie68886ptlRKSiSkoqL0bSr1Vv9kMqnzzjtPhw8fDrxWAAAKWWzCx4MPPqitW7fKzCSl\ng0ZzszQ4KLmnb5ub3wogZqatW7eqra0txKoBACg85u6hvHB9fb339PQE9noVFRUaGBhQZWWlpPRI\nx+Dguf2qq6WjR9PfDw8Pq6amRq+99lpgdQIAkI/MrNfd67PpG5uRj9HRUVVUVEzdP3Ysc7/p7eXl\n5RodHV3mygAAiJfYhI+ysjK9/vrrU/erqjL3m94+MjKisrKyZa4MAIB4iU34uO6667Rv376p+62t\nUmnpzD6lpen2SV1dXdqwYUNAFQIAEA+xCR+Tk0cn57g0NUnt7ek5Hmbp2/b2dLskubva2tq0bdu2\nEKsGAKDwxCZ8bNmyRadOndLevXun2pqa0pNLx8fTt5PBQ5I6Ozt15swZbd68OfBaAQAoZLHZZKyo\nqEhdXV3auHGj3F3JZHJq2e107q7Ozk7t3LlT3d3dbDAGAECOxeqdtba2Vt3d3dq9e7fWr1+vjo4O\nDQ8P6+zZsxoeHlZHR4fWr1+vPXv2qLu7W7W1tWGXDABAwYnNPh/TjY+P6/Dhw2pra9Pjjz+u0dFR\nlZWVacOGDdq2bZs2b97MiAcAAIuwmH0+Yhk+AABAbuV0kzEz22tmr5rZc3M8/gdmNmJmT098/fVi\nCwYAAPGRzYTTv5P0gKS/n6fP4+7+hzmpCAAAFLQFRz7c/YikXwVQCwAAiIFczap8t5k9Y2bfN7Pf\nzdFzAgCAApSLfT5+Iqna3U+a2fsldUmqydTRzJolNUtS1VyHqwAAgIK25JEPd/+1u5+c+P57korN\nrHKOvu3uXu/u9atXr17qSwMAgDy05PBhZhfaxFahZnb1xHOeWOrzAgCAwrTgZRcz+6akP5BUaWZD\nku6RVCxJ7v51SbdJ+hMze1PSf0n6kIe1eQgAAIi8BcOHu394gccfUHopLgAAwILYQxwAAASK8AEA\nAAJF+AAiYnx8XAcPHlRDQ4MqKiq0YsUKVVRUqKGhQQcPHtT4+HjYJQJAThA+gAjo7+9XXV2dduzY\nocbGRg0MDOj06dMaGBhQY2OjduzYobq6OvX394ddKgAsGeEDCFl/f782btyo7du3q7e3V8lkUpWV\nlVq5cqUqKyuVTCbV29ur7du3a+PGjQQQAHkvFzucAnibxsfHdeutt+oLX/iCksnknP3MTMlkUu6u\nD37wg+rr61NREZ8dAOQn/vUCQnTo0CGVlJTozjvvnGpLpaREQioqSt+mUm/1TyaTOu+883T48OHA\nawWAXCF8ACF68MEHtXXrVk1sEqxUSmpulgYHJff0bXPzWwHEzLR161a1tbWFWDUALI2FtRlpfX29\n9/T0hPLaQFRUVFRoYGBAlZXp45ASiXTgmK26Wjp6NP398PCwampq9NprrwVWJwAsxMx63b0+m76M\nfAAhGh0dVUVFxdT9Y8cy95veXl5ertHR0WWuDACWD+EDCFFZWZlef/31qftVVZn7TW8fGRlRWVnZ\nMlcGAMuH8AGE6LrrrtO+ffum7re2SqWlM/uUlqbbJ3V1dWnDhg0BVQgAuUf4AEI0OXl0cu5VU5PU\n3p6e42GWvm1vT7dLkrurra1N27ZtC7FqAFgawgcQoi1btujUqVPau3fvVFtTU3py6fh4+nYyeEhS\nZ2enzpw5o82bNwdeKwDkCpuMASEqKipSV1eXNm7cKHdXMpmcWnY7nburs7NTO3fuVHd3NxuMAchr\n/AsGhKy2tlbd3d3avXu31q9fr46ODg0PD+vs2bMaHh5WR0eH1q9frz179qi7u1u1tbVhlwwAS8I+\nH0BEjI+P6/Dhw2pra9Pjjz+u0dFRlZWVacOGDdq2bZs2b97MiAeAyFrMPh+EDwAAsGRsMgYAACKL\n8AEAAAJF+AAAAIEifAAAgEARPgAAQKAIHwAAIFCEDwAAECjCBwAACBThAwAABIrwAQAAAkX4AAAA\ngSJ8FIhUSkokpKKi9G0qFXZFAABktjLsArB0qZTU3CyNjaXvDw6m70tSU1N4dQEAkAkjHwWgpeWt\n4DFpbCzdDgBA1BA+CsCxY4trBwAgTISPAlBVtbh2AADCRPgoAK2tUmnpzLbS0nR7LjGpFQCQC4SP\nAtDUJLW3S9XVkln6tr09t5NNJye1Dg5K7m9NaiWAAAAWy9w9lBeur6/3np6eUF4bi5dIpAPHbNXV\n0tGjQVcDAIgaM+t19/ps+i448mFme83sVTN7bo7Hzcy+ZmYDZvasmf3+YgtG9DGpFQCQK9lcdvk7\nSTfP8/j7JNVMfDVL+tull4WoYVIrACBXFgwf7n5E0q/m6dIo6e897UlJFWb2zlwViGgIalIrAKDw\n5WLC6cWSfj7t/tBEW6SxcmNxgpjUCgCIh1xsr24Z2jLOYjWzZqUvzagqxPF6tiN/e5qa+P0AAJYu\nFyMfQ5IumXZ/jaRfZOro7u3uXu/u9atXr87BS789C21HzqgIAADLJxfhY7+k/zWx6uVaSSPu/koO\nnnfZzLdyg/0sAABYXtkstf2mpH+T9NtmNmRmSTP7pJl9cqLL9yT9TNKApIckbV22anNkvpUbHNIG\nAMDyyma1y4fd/Z3uXuzua9wUTojmAAAMHklEQVS9092/7u5fn3jc3X2bu/8Pd1/r7pHfOWy+lRvs\nZxFf4+PjOnjwoBoaGlRRUaEVK1aooqJCDQ0NOnjwoMbHx8MuEQAKQiy3V59v5UaQ+1kwtyQ6+vv7\nVVdXpx07dqixsVEDAwM6ffq0BgYG1NjYqB07dqiurk79/f1hlwoA+c/dQ/lav369R9E3vuFeWuqe\nnvHx1tcFF6QfW87XKS3N7Wssl298w7262t0sfZsPNc/nxRdf9AsvvNA7Ojp8fHw8Y5/x8XHv6Ojw\nCy+80F988cWAKwSA6JPU41lmAM52ySCVku66SzpxYmZ7aWnu9rbI17NSZi9TlnL7ewna+Pi46urq\ntH37diWTyQX7d3R0aM+ePerr61NRUSwHDgEgo5ye7RJHTU3S+eef257Liaf5Orek0CbkHjp0SCUl\nJbrzzjun2ua7HJZMJnXeeefp8OHDgdcKAIWC8DGH5Q4H+XpWSr6Gprk8+OCD2rp1q8zSe+UttNTa\nzLR161a1tbWFWDUA5DfCxxyWOxzk61kp+Rqa5nLkyBE1NjZO3c9mZOfWW2/V448/HlCFAFB4CB9z\nWO5wkK9npeRraJrL6OioKioqpu5nM7JTXl6u0dHRZa4MAAoX4WMOQYSDpqb05NLx8fRt1IOHlL+h\naS5lZWV6/fXXp+5nM7IzMjKisrKyZa4MAAoX4WMe+RgOglBIv5frrrtO+/btm7qfzchOV1eXNmzY\nEFCFAFB4CB+ItcnJo5NLzhca2XF3tbW1adu2bSFWDQD5jfCBWNuyZYtOnTqlvXv3TrXNN7LT2dmp\nM2fOaPPmzYHXCgCFYmXYBQBhKioqUldXlzZu3Ch3VzKZnFp2O527q7OzUzt37lR3dzcbjAHAEvAv\nKGKvtrZW3d3d2r17t9avX6+Ojg4NDw/r7NmzGh4eVkdHh9avX689e/aou7tbtbW1YZcMAHktluGD\nA90wW21trZ577jnde++92r9/v2pqalRSUqKamhrt379f9957r/r6+ggeAJADsTvbpdDOJgEAIAo4\n22Ued91VWGeTAACQb2IVPlKpc0+qnZSvZ5OEictXAIC3I1arXeYb3cjXs0nCMvvy1eQBbBKXrwAA\n84vVyMd8oxv5ejZJWLI5gA0AgExiFT7mGt244AI+rS9WNgewAQCQSazCx1zndvzN34RTTz7L5gC2\nfMMcFgAIRqzCR6GdyBqmbA5gyyeTc1gGByX3t+awEEAAIPdit88HcieVSs/xOHYsPeLR2pq/QS6R\nSAeO2aqr0+e7AADmt5h9PggfgNKXWjL9r2CWPmAOADA/NhkDFqkQ57AAQFQRPgAV3hwWAIgywkeB\ny9UKjkJfCcJkZAAIDnM+CliuDtHjMD4AwEKYcApJuVvBwUoQAMBCmHAKSbnbhZTdTAEAuRS78FHo\ncxemy9UKDlaCAAByKVbhI267WOZqBQcrQQAAuRSr8BG3k1hztYKDlSAAgFyK1YRTdrEEAGB5MOF0\nDsxdAAAgfLEKH8xdAAAgfLEKH8xdAAAgfCvDLiBoTU2EDQAAwpTVyIeZ3WxmL5rZgJn9VYbHP2Zm\nx83s6Ymvj+e+VAAAUAgWDB9mtkJSm6T3SbpC0ofN7IoMXb/t7u+a+OrIcZ15LU4bmwEAsJBsLrtc\nLWnA3X8mSWb2LUmNkv5jOQsrFLMPZZvc2Ezi8g8AIJ6yuexysaSfT7s/NNE22x+Z2bNm9oiZXZLp\nicys2cx6zKzn+PHjb6Pc/BO3jc0AAFhINuHDMrTN3qrrgKSEu18p6QeSHs70RO7e7u717l6/evXq\nxVWapziUDQCAmbIJH0OSpo9krJH0i+kd3P2Eu5+euPuQpPW5KS//sbEZAAAzZRM+/l1SjZldama/\nIelDkvZP72Bm75x2t0HSC7krMb+xsRkAADMtGD7c/U1Jn5L0r0qHiu+4+/Nm9nkza5jo9qdm9ryZ\nPSPpTyV9bLkKzjdsbAYAwEyxOlgOAAAsDw6WywPs/QEAiKvYba8eBez9AQCIM0Y+QsDeHwgDo20A\nooKRjxCw9weCxmgbgChh5CME7P2BoDHaBiBKCip85MuwMnt/IGiMtgGIkoIJH5PDyoODkvtbw8pR\nDCDs/YGgMdoGIEoKZp+PRCIdOGarrpaOHs3ZywB5afacDyk92kboBZArsdzng2FlYG6MtgGIkoJZ\n7VJVlXnkg2FlIK2pibABIBoKZuSDSZwAAOSHggkfDCsDAJAfCuayi8SwMgAA+aBgRj4AAEB+IHwA\nAIBAET4AAECgCB8AACBQhA8AABAowgcAAAgU4QMAAASK8AEAAAJF+AAAAIGKXfhIpaREQioqSt+m\nUmFXBABAvBTU9uoLSaWk5mZpbCx9f3AwfV9iW3YAAIISq5GPlpa3gseksbF0OwAACEaswsexY4tr\nBwAAuRer8FFVtbh2AACQe7EKH62tUmnpzLbS0nR7nGQ76ZbJuQCA5RCrCaeTk0pbWtKXWqqq0sEj\nTpNNs510y+RcAMByMXcP5YXr6+u9p6cnlNeOs0QiHSRmq66Wjh5dfD8AACTJzHrdvT6bvrG67ILs\nJ90yORcAsFwIHzGT7aRbJucCAJYL4SNmsp10y+RcAMByIXzETFOT1N6enrthlr5tbz93Emm2/QAA\nWCwmnAIAgCVjwikAAIgswkfI2MgLABA3WYUPM7vZzF40swEz+6sMj59nZt+eePzHZpbIdaGFaHIj\nr8FByf2tjbwIIACAQrZg+DCzFZLaJL1P0hWSPmxmV8zqlpT0mrtfJmmPpC/lutBCxCm7AIA4ymbk\n42pJA+7+M3c/I+lbkhpn9WmU9PDE949I2mRmlrsyCxMbeQEA4iib8HGxpJ9Puz800Zaxj7u/KWlE\n0gWzn8jMms2sx8x6jh8//vYqLiBs5AUAiKNswkemEYzZ63Oz6SN3b3f3enevX716dTb1FTQ28gIA\nxFE24WNI0iXT7q+R9Iu5+pjZSknlkn6ViwILGRt5AQDiaGUWff5dUo2ZXSrpZUkfkvSRWX32S/qo\npH+TdJukH3pYu5flmaYmwgYAIF4WDB/u/qaZfUrSv0paIWmvuz9vZp+X1OPu+yV1SvoHMxtQesTj\nQ8tZNAAAyF/ZjHzI3b8n6Xuz2v562venJN2e29IAAEAhYodTAAAQKMIHAAAIFOEDAAAEivABAAAC\nRfgAAACBInwAAIBAET4AAECgCB8AACBQhA8AABAowgcAAAiUhXX+m5kdlzQ4T5dKScMBlYOF8feI\nFv4e0cPfJFr4ewSv2t1XZ9MxtPCxEDPrcff6sOtAGn+PaOHvET38TaKFv0e0cdkFAAAEivABAAAC\nFeXw0R52AZiBv0e08PeIHv4m0cLfI8IiO+cDAAAUpiiPfAAAgAIUufBhZjeb2YtmNmBmfxV2PXFn\nZnvN7FUzey7sWiCZ2SVm9iMze8HMnjezu8KuKc7MbJWZPWVmz0z8PT4Xdk2QzGyFmf0/M/uXsGtB\nZpEKH2a2QlKbpPdJukLSh83sinCrir2/k3Rz2EVgypuStrv75ZKulbSN/0dCdVrSDe7+e5LeJelm\nM7s25Jog3SXphbCLwNwiFT4kXS1pwN1/5u5nJH1LUmPINcWaux+R9Kuw60Cau7/i7j+Z+H5U6X9g\nLw63qvjytJMTd4snvphIFyIzWyPpFkkdYdeCuUUtfFws6efT7g+Jf1iBjMwsIWmdpB+HW0m8TQzx\nPy3pVUmH3Z2/R7jul/QXksbDLgRzi1r4sAxtfIoAZjGz8yV9V9Jn3P3XYdcTZ+7+3+7+LklrJF1t\nZnVh1xRXZvaHkl51996wa8H8ohY+hiRdMu3+Gkm/CKkWIJLMrFjp4JFy938Kux6kufvrkh4Tc6TC\n9B5JDWZ2VOnL9jeY2TfCLQmZRC18/LukGjO71Mx+Q9KHJO0PuSYgMszMJHVKesHdd4ddT9yZ2Woz\nq5j4vkTSjZJ+Gm5V8eXud7v7GndPKP3+8UN3/58hl4UMIhU+3P1NSZ+S9K9KT6T7jrs/H25V8WZm\n35T0b5J+28yGzCwZdk0x9x5Jf6z0J7qnJ77eH3ZRMfZOST8ys2eV/vB02N1Z3gksgB1OAQBAoCI1\n8gEAAAof4QMAAASK8AEAAAJF+AAAAIEifAAAgEARPgAAQKAIHwAAIFCEDwAAEKj/DyjACzqo9BD8\nAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAGbCAYAAAB6XcIxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df2xU15338c8Zw4InNXZdmy2C2sMfISU1ebKLtcmjANaGmDTtxoZIkYLcphJurY1NNmksrTYMKKTJJJV2C3RVO63XWI3KtNskG0wSJTSEbhxW2nTX3s2W8CQ4VmQ7P1DASjBeDLZhzvPHYIN/j69n5s7Mfb8ky9zD5c7XmdbnM+ece66x1goAAGCufG4XAAAA0hMhAgAAOEKIAAAAjhAiAACAI4QIAADgyIJEXLSgoMAGAoFEXBoAACRZR0dHn7W2cGJ7QkJEIBBQe3t7Ii4NAACSzBjTM1U70xkAAMARQgQAAHCEEAEAABwhRAAAAEcIEQAAwBFCBAAAcCQht3gCADLbuXPndPr0aY2MjLhdCuZh4cKFWrp0qZYsWeLo3xMiAABzcu7cOX322Wdavny5srOzZYxxuyQ4YK3VhQsX9Mknn0iSoyDBdAYAYE5Onz6t5cuXy+/3EyDSmDFGfr9fy5cv1+nTpx1dgxABAJiTkZERZWdnu10G4iQ7O9vxtBQhAgAwZ4xAZI75vJeECAAA4AghAgAAOEKIADBJ+HhYgX0B+R73KbAvoPDxsNslAXG3e/duFRQUzOsaxhj97Gc/m3ct3d3dMsbolVdemdd1hoaGVF9fr6VLl+q6667Tt7/9bXV3d8+7vukQIgCMEz4eVs3LNerp75GVVU9/j2periFIAGngb/7mb/TLX/5S//AP/6AXXnhBfX19Ki8v18WLFxPyeoQIAOMEjwY1ODI4rm1wZFDBo0GXKgIQi48//lj79+/X3r17df/99+uuu+7Siy++qJ6eHh04cCAhr0mIADBOb3/vnNqB+QiHpUBA8vmi38MpMuB1/vx5bd++XTfccIP8fr9Wrlypuro6nTt3btK5w8PDeuihh5Sfn6+8vDw9+OCDGh4eHndOb2+v7rvvPuXn58vv9+vOO+/UyZMn41rz66+/Lkm65557xtqWL1+udevW6bXXXovra40iRAAYpyi3aE7tgFPhsFRTI/X0SNZGv9fUpEaQGBwc1OXLlxUKhfTaa6/piSee0O9//3vde++9k879yU9+oo8//ljhcFg7d+5UU1OTgsGrI3eff/651q1bp5MnT+rnP/+5nnvuOZ0/f1533HGHLly4MG0NkUhEly5dmvHr8uXLY+e///77WrFihb70pS+Nu87q1av1/vvvx+G/ymRsew1gnNDGkGperhk3peFf6FdoY8jFqpCJgkFpcPzMmQYHo+1VVe7UNKqwsFDPPPPM2PGlS5e0cuVKrVu3Tr29vSoquhqqc3Jy9Pzzz8vn8+muu+7S0NCQQqGQHn30UeXn52vv3r06f/683nnnHeXn50uSbrvtNgUCAbW0tKiurm7KGrZt26Znn312xjrLysr05ptvSpK++OIL5eXlTTrny1/+sr744ou5/ieICSECwDhVa6K/vYNHg+rt71VRbpFCG0Nj7UC89E4zQzZde7L96le/0p49e/TBBx/o/PnzY+2dnZ3jQkRlZaV8vqsD+/fcc4927typd999Vxs2bNAbb7yh8vJyLVmyRJcuXZIUDR5r165Ve3v7tK+/e/dubd++fcYac3Jyxh1PtXGUtTZhm4MRIgBMUrWmitCAhCsqik5hTNXutoMHD+r+++/XAw88oKeeekr5+fk6deqUtmzZMulOh6VLl055fOrUKUlSX1+f3n77bf32t7+d9DobN26ctoaioiKtWLFixjqvDQdf/vKXdfbs2UnnnD17dsoRinggRAAAXBEKRddAXDul4fdH2932/PPP65ZbblFjY+NYW1tb25TnTnx41ejxsmXLJEn5+fmqqKjQrl27Jv3biSMJ15rrdMbXv/51ffTRRzp//ryuu+66sXPef/99ff3rX5/xOk4RIgCkhPDxMFMoHjO67iEYjE5hFBVFA4Tb6yEk6cKFC1q0aNG4tvA0Kz4PHTqkp59+emxK48UXX1R2drZKSkokRUcbnnvuOX3jG9+Y04PL5jqdsWnTJknRUZTvfOc7kqRPP/1Ux44dGxeG4okQAcB1oxtcjS7mHN3gShJBIsNVVbkbGoaHh/XCCy9Mar/55pu1e/duhUIh3XLLLXr11Vd19OjRKa8xMDCge++9Vz/4wQ904sQJ/ehHP9L27dvHFlE+8sgjOnDggG6//XY9+OCDWr58uT777DO1tbVp3bp12rp165TXDQQCCgQCMf8sK1asUHV1tR5++GFZa1VYWKjdu3eruLh4LFTEGyECgOtm2uCKEIFEGg0AE73xxhuqr6/XT3/6U128eFHl5eX69a9/rVtvvXXSufX19frwww+1detWRSIRff/739dTTz019vcFBQV6++23FQwG9cMf/lBnz57VsmXLtG7dOt10001x/Xn+8R//Udddd50eeeQRDQ4OqqysTL/5zW+0ePHiuL7OKGOtjftFS0tL7UwrTgHgWr7HfbKa/LvIyCjyWMSFijCT9957T6tXr3a7DMTRbO+pMabDWls6sZ3NpgC4jg2ugPREiADgutDGkPwL/ePa2OAKSH2ECACuq1pTpaa7m1ScWywjo+LcYjXd3cR6CCDFsbASQEpggysg/TASASBuwsfDCuwLyPe4T4F9AYWPp8CTlAAkDCMRAOKCvR4A72EkAkBczLTXA4DMRIgAEBe9/VM/enG6dgDpjxABIC7Y6wHwHkIEgLhgrwekm927d6ugoGBe1zDG6Gc/+9m8a+nu7pYxRq+88sq8rvPEE0/ojjvu0JIlS2SMUXd397xrmwkhAkBcsNcD4L5f/OIXunTpkv7yL/8yKa/H3RkA4oa9HgB39fb2yufz6ZVXXtFLL72U8NdjJAIA4JpU3Vvk/Pnz2r59u2644Qb5/X6tXLlSdXV1Onfu3KRzh4eH9dBDDyk/P195eXl68MEHNTw8PO6c3t5e3XfffcrPz5ff79edd96pkydPxr1uny+53TojEQAAV6Ty3iKDg4O6fPmyQqGQCgsL9dFHHykUCunee+/V7373u3Hn/uQnP9Gtt96qcDisEydOKBgMavHixfr7v/97SdLnn3+udevW6Stf+Yp+/vOfy+/368c//rHuuOMOdXZ2Kjs7e8oaIpGIIpGZn2JrjFFWVlZ8fmgHCBEAAFfMtLeI2yGisLBQzzzzzNjxpUuXtHLlSq1bt069vb0qKrp611FOTo6ef/55+Xw+3XXXXRoaGlIoFNKjjz6q/Px87d27V+fPn9c777yj/Px8SdJtt92mQCCglpYW1dXVTVnDtm3b9Oyzz85YZ1lZmd588835/8AOESIAAK5I9b1FfvWrX2nPnj364IMPdP78+bH2zs7OcSGisrJy3DTCPffco507d+rdd9/Vhg0b9MYbb6i8vFxLlizRpUuXJEWDx9q1a9Xe3j7t6+/evVvbt2+fscacnBynP15cECIAAK4oyi1ST3/PlO1uO3jwoO6//3498MADeuqpp5Sfn69Tp05py5Ytunjx4rhzly5dOuXxqVOnJEl9fX16++239dvf/nbS62zcuHHaGoqKirRixYoZ6zTGxPTzJAohAgDgitDG0Lg1EVLq7C3y/PPP65ZbblFjY+NYW1tb25Tnnj59esrjZcuWSZLy8/NVUVGhXbt2Tfq3M40kMJ0BAMA0Rtc9BI8G1dvfq6LcIoU2hlxfDyFJFy5c0KJFi8a1hcNT3zly6NAhPf3002NTGi+++KKys7NVUlIiKTra8Nxzz+kb3/jGtIsop8J0BgAAM3B7b5Hh4WG98MILk9pvvvlm7d69W6FQSLfccoteffVVHT16dMprDAwM6N5779UPfvADnThxQj/60Y+0ffv2sUWUjzzyiA4cOKDbb79dDz74oJYvX67PPvtMbW1tWrdunbZu3TrldQOBgAKBwJx+nra2Np05c0YdHR2SpNdee02FhYW68cYbdeONN87pWrEgRAAAPGs0AEz0xhtvqL6+Xj/96U918eJFlZeX69e//rVuvfXWSefW19frww8/1NatWxWJRPT9739fTz311NjfFxQU6O2331YwGNQPf/hDnT17VsuWLdO6det00003xfXneeyxx8ZNu9TW1o617969O66vJUnGWhv3i5aWltqZVpwCANLXe++9p9WrV7tdBuJotvfUGNNhrS2d2M6OlQAAwBFCBAAAcIQQAQAAHCFEAAAARwgRAIA5S8SifLhjPu9lzCHCGJNljPlvY8wrjl8NQEZJ1cc4I7EWLlyoCxcuuF0G4uTChQtauHCho387l5GIhyS95+hVAGSc0cc49/T3yMqOPcaZIJH5li5dqk8++USDg4OMSKQxa60GBwf1ySefTHr+R6xi2mzKGLNC0rclhSQ94uiVAGSUVH6MMxJryZIlkqRPP/1UIyMjLleD+Vi4cKH+9E//dOw9natYd6zcJ+lvJU27SbcxpkZSjaRxj0gFkJlS/THOSKwlS5Y47niQOWadzjDG/JWk09bajpnOs9Y2WWtLrbWlhYWFcSsQQGqa7nHNqfAYZwDJEcuaiNskVRhjuiX9s6TbjTEHEloVgJQX2hiSf6F/XFuqPMYZQHLMGiKstY9aa1dYawOS7pP0e2vtdxJeGYCUVrWmSk13N6k4t1hGRsW5xWq6u4n1EICH8BRPAI65/RhnAO6aU4iw1r4p6c2EVAIAANIKO1YCAABHCBEAAMARQgQAAHCEEAEAABwhRAAAAEcIEQAAwBFCBAAAcIQQAQAAHCFEAAAARwgRAADAEUIEAABwhBABAAAcIUQAAABHCBEAAMARQgQAAHCEEAEAABwhRAAAAEcIEQAAwBFCBAAAcIQQAQAAHCFEAAAARwgRAADAEUIEAABwhBABAAAcIUQAAABHCBEAAMARQgQAYFbh42EF9gXke9ynwL6AwsfDbpeEFECIAJBQdD7pL3w8rJqXa9TT3yMrq57+HtW8XMN7CUIEgMSh88kMwaNBDY4MjmsbHBlU8GjQpYqQKggRABKGzicz9Pb3zqkd3kGIAJAwdD6ZoSi3aE7t8A5CBICEofPJDKGNIfkX+se1+Rf6FdoYcqkipApCBICEofPJDFVrqtR0d5OKc4tlZFScW6ymu5tUtabK7dLgMmOtjftFS0tLbXt7e9yvCyD9hI+HFTwaVG9/r4pyixTaGKLzAdKMMabDWls6qZ0QAQAAZjJdiGA6AwAAOEKIAAAAjhAiAACAI4QIAADgCCECAAA4QogAAACOECIAAIAjhAgAAOAIIQIAADhCiAAAAI4QIgAAgCOECAAA4AghAgAAOEKIAAAAjhAiAACAI4QIAJOEj4cV2BeQ73GfAvsCCh8Pu10SgBS0wO0CAKSW8PGwal6u0eDIoCSpp79HNS/XSJKq1lS5WRqAFMNIBIBxgkeDYwFi1ODIoIJHgy5VBCBVESIAjNPb3zundgDeRYgAME5RbtGc2gF4FyECwDihjSH5F/rHtfkX+hXaGHKpIgCpihABYJyqNVVqurtJxbnFMjIqzi1W091NLKoEMImx1sb9oqWlpba9vT3u1wUAAMlnjOmw1pZObGckAgAAOEKIAAAAjhAiAACAI4QIAADgCCECAAA4QogAAACOECIAAIAjhAgAAOAIIQIAADhCiAAAAI7MGiKMMYuNMf9hjPkfY8wJY8zjySgMAFJKba20YIFkTPR7ba3bFQGuWxDDOUOSbrfW/q8xZqGkfzPGvGatfTvBtQFAaqitlZ555urx5ctXjxsb3akJSAGzjkTYqP+9crjwylf8n9oFAKmqqWlu7YBHxLQmwhiTZYx5R9JpSUestX+Y4pwaY0y7Mab9zJkz8a4TANxz+fLc2gGPiClEWGsvW2tvlrRC0l8YY0qmOKfJWltqrS0tLCyMd50A4J6srLm1Ax4xp7szrLVnJb0p6ZsJqQYAUlFNzdzaAY+I5e6MQmNM3pU/Z0u6Q9L7iS4MAFJGY6P0wANXRx6ysqLHLKqEx8Vyd8YySc8aY7IUDR3PWWtfSWxZAJBiGhsJDcAEs4YIa+0fJf1ZEmoBAABphB0rAQCAI4QIAADgCCECAAA4QogAAACOECIAKHw8rMC+gHyP+xTYF1D4eNjtkgCkAUIE4HHh42HVvFyjnv4eWVn19Peo5uUagkSSEeSQjggRgMcFjwY1ODI4rm1wZFDBo0GXKvIeghzSFSEC8Lje/t45tSP+nAY5Ri/gNkIE4HFFuUVzakf8OQlyjF4gFRAigDQSiUR0+PBhVVRUKC8vT1lZWcrLy1NFRYUOHz6sSCQy52uGNobkX+gf1+Zf6FdoYyheZWMWToIc01BIBYQIIE10dnaqpKREO3bsUGVlpbq6ujQ0NKSuri5VVlZqx44dKikpUWdn55yuW7WmSk13N6k4t1hGRsW5xWq6u0lVa6oS9JNklnhMKTgJckxDIRUYa23cL1paWmrb29vjfl3Aqzo7O1VWVqYnn3xS27ZtkzFm0jnWWrW0tGjnzp1qa2vTqlWrXKjUW0anFK4dEfAv9DsKYeHjYQWPBtXb36ui3CKFNoZmvEZgX0A9/T2T2otzi9X9cPecXhvpba7/23HCGNNhrS2d1E6IAFJbJBJRSUmJ6uvrVV1dPev5zc3N2rt3r44fPy6fj8HGRHKzI3cSYJLR2SC54hlkZzJdiOA3DJDiXn/9dWVnZ2vbtm1jbTMNoVdXV2vRokU6cuSIG+V6iptTCnOdhmIhZmZye20MIxFAiquoqFBlZeXYKEQsnzyam5v10ksv6aWXXnKlZq9IpymFdKoVsfM97pPV5H7cyCjy2NwXWk+HkQggTb311luqrKwcO47lk8fmzZt17NixpNXoVel0ZwsLMTOT27doEyKAFDcwMKC8vLyx41g6g9zcXA0MDCS8Nq+7dkpBkrJM1ligS7VpArc7GySG20GWEAGkuJycHJ09e3bsOJbOoL+/Xzk5OXN6HXY/dKZqTdXYL/LL9rIkpeR6A7c7GySG27doEyKAFLdhwwYdOnRo7DiWzqC1tVXr16+P+TVYdDc/bi9ui4XbnQ0Sp2pNlbof7lbksYi6H+5O6nvKwkogxR0+fFg7duxQR0fH2P4QM92qZ63Vn//5n+vHP/6x7rzzzpheg0V385OsxW2AW1hYCaSpTZs26eLFi2ppaRlrm+mTx/79+zU8PKzy8vKYX4NFd/PDegN4FSECSHE+n0+tra3auXOnmpubNd3oobVWzc3N2rVrlw4ePDinjaboBOeH9QbwKkIEkAZWrVqltrY27dmzR2vXrlVzc7P6+vo0MjKivr4+NTc3a+3atdq7d6+jLa/pBOeH9QbwKtZEAGkkEonoyJEjamho0LFjxzQwMKCcnBytX79edXV1Ki8vd7zVNVsiA5gOz84AAACOsLASAOaAfTOA2S1wuwAASDUTn08yum+GJKZ4gGswEgEAE6TD5lFAKiBEAMAE7JsBxIYQAQATsG8GEBtCBABMwL4ZQGwIEQAwAZtHAbFhnwgAADAj9okAAABxRYgAAACOECIAAIAjhAgAAOAIIQIAADhCiAAAAI4QIgAggXgaKDIZT/EEgAThaaDIdIxEAB7FJ+TE42mgyHSMRAAexCfk5OBpoMh0jEQAHsQn5OTgaaDIdIQIwIP4hJwcPA0UmY4QAXgQn5CTg6eBItOxJgLwoNDG0Lg1ERKfkBOlak0VoQEZi5EIwIP4hAwgHoy1Nu4XLS0tte3t7XG/LgAASD5jTIe1tnRiOyMRAADAEUIEALiEDb+Q7lhYCQAuYMMvZAJGIgDABW5u+MUICOKFkQgAcIFbG34xAoJ4YiQCAFzg1oZfbHmOeCJEAPCMVBrGd2tLbLY8RzwRIgB4wugwfk9/j6zs2DC+W0HCrQ2/2PIc8cRmUwA8IbAvoJ7+nkntxbnF6n64O/kFuWTimggpOgLCjqWYCZtNAfA0hvGj2PIc8cTdGQA8oSi3aMqRCC8O4/NQMMQLIxEAPGG6hYzfuv5bKbPYEkg3jEQA8ITRT97Bo0H19veqKLdI37r+W3r2f55lzwTAIUYigAwWiUR0+PBhVVRUKC8vT1lZWcrLy1NFRYUOHz6sSCTidolJVbWmSt0PdyvyWETdD3fr1Q9eZc8EYB4IEXCMDiq1dXZ2qqSkRDt27FBlZaW6uro0NDSkrq4uVVZWaseOHSopKVFnZ6fbpbqGxZbA/KRFiAiHpUBA8vmi38NMWbqODiq1dXZ2qqysTPX19ero6FB1dbUKCgq0YMECFRQUqLq6Wh0dHaqvr1dZWZln3yf2TADmyVob96+1a9faeDlwwFq/31rp6pffH22HO06ePGm/+tWv2ubmZhuJRKY8JxKJ2ObmZvvVr37Vnjx5MskVetvly5ft6tWrbXNzc0zn/9M//ZO98cYb7eXLlxNc2dQO/PGALd5bbM1uY4v3FtsDf0ze/7kP/PGA9Yf8Vrs19uUP+ZNaA5AOJLXbKfr7lB+JCAalwfFTlhocjLYj+SKRiDZv3qwnn3xS1dXVMsZMeZ4xRtXV1XriiSe0ZcsWpjaS6PXXX1d2dra2bds21jbTds/V1dVatGiRjhw5kvRa3d5Fkj0TgPmZNUQYY75mjPlXY8x7xpgTxpiHklHYqN5ppiana0diTdlBzTDd5GYH5VWNjY2qra0dC3izddTGGNXW1qqhoSHptabCw6AmLrYkQACxi2Uk4pKkemvtakm3SqozxtyY2LKuKppmanK6diTWpA4qLNXUSD090cmmnp7o8WiQcLOD8qq33npLlZWVY8exdNSbN2/WsWPHklbjKBY2Ault1hBhrT1lrf2vK38ekPSepOWJLmxUKCT5x+8PI78/2o7km9RBxTDd5FYH5VUDAwPKy8sbO46lo87NzdXAwEDCa5uIhY1AepvTmghjTEDSn0n6QyKKmUpVldTUJBUXS8ZEvzc1RduRfJM6qBimm9zqoLwqJydHZ8+eHTuOpaPu7+9XTk5OwmubyK3HYQOIj5hDhDHmS5L+RdLD1tpzU/x9jTGm3RjTfubMmXjWqKoqqbtbikSi3wkQ7pnUQcUw3eRWB+VVGzZs0KFDh8aOY+moW1tbtX79+qTVOIqFjUB6iylEGGMWKhogwtbaF6c6x1rbZK0ttdaWFhYWxrNGpJBJHVQM001udVBeNboGJXpX1uwdtbVWDQ0Nqqurc6VeFjYC6SuWuzOMpP2S3rPW7kl8SUhlkzqoWaab3O6gvGjTpk26ePGiWlpaxtpm6qj379+v4eFhlZeXu1EugDQWy0jEbZK+K+l2Y8w7V76+leC6kKKm7KBmmG6ig0o+n8+n1tZW7dy5U83NzWOBbyJrrZqbm7Vr1y4dPHhQPl/KbxsDIMXEcnfGv1lrjbX2JmvtzVe+Xk1GcV6RTtt600Glh1WrVqmtrU179uzR2rVr1dzcrL6+Po2MjKivr0/Nzc1au3at9u7dq7a2Nq1atcrtkgGkITNdJzAfpaWltr29Pe7XzUSj+yxce5uk35/6d6B0dnZq8+bNWrx4sWpra7V582bl5uaqv79fra2tamxs1NDQkA4ePEgH5aJIJKIjR46ooaFBx44d08DAgHJycrR+/XrV1dWpvLycgAdgVsaYDmtt6aR2QoS7AoHoBk0TFRdHpwZSGR0UAHgDISJF+XzRnR4nMia6xgAAALdNFyL4mOgytvUGAKQrQoTL2NYbAJCuCBEuY1tvAEC6WuB2AYgGBkIDACDdMBIBAAAcIUQAAABHCBEAAMARQgQAAHCEEAEAABwhRAAAAEcIEQAAwBFCBAAAcIQQAQAAHCFEICaRSESHDx9WRUWF8vLylJWVpby8PFVUVOjw4cOK8MhRAPAcQgRm1dnZqZKSEu3YsUOVlZXq6urS0NCQurq6VFlZqR07dqikpESdnZ1ulwoASCJCBGbU2dmpsrIy1dfXq6OjQ9XV1SooKNCCBQtUUFCg6upqdXR0qL6+XmVlZQQJAPAQHsCFaUUiEW3evFlPPvmkqqurpz3PGKPq6mpZa7VlyxYdP35cPh/5FAAyHb/pMa3XX39d2dnZ2rZt21hbOCwFApLPF/0eDl89v7q6WosWLdKRI0eSXisAIPkIEZhWY2OjamtrZYyRFA0MNTVST49kbfR7Tc3VIGGMUW1trRoaGlysGgCQLMZaG/eLlpaW2vb29rhfF8mVl5enrq4uFRQUSIqOPPT0TD6vuFjq7o7+ua+vT9dff72++OKLpNUJAEgsY0yHtbZ0YjsjER4x0zTEdAYGBpSXlzd23Ns79XnXtufm5mpgYGBetQIA0gMhwgNmm4aYTk5Ojs6ePTt2XFQ09XnXtvf39ysnJycOVQMAUh0hwgOCQWlwcHzb4GC0fSYbNmzQoUOHxo5DIcnvH3+O3x9tH9Xa2qr169fPs2IAQDogRHhALNMQUxldJDm6bqaqSmpqiq6BMCb6vakp2i5J1lo1NDSorq4ujtUDAFIVIcIDYpmGmMqmTZt08eJFtbS0jLVVVUUXUUYi0e+jAUKS9u/fr+HhYZWXl8+7ZgBA6mOzKQ8IhaJrIK6d0pg4DTEVn8+n1tZWlZWVyVqr6urqsds9r2Wt1f79+7Vr1y61tbWx0RQAeAS/7T1gtmmImaxatUptbW3as2eP1q5dq+bmZvX19WlkZER9fX1qbm7W2rVrtXfvXrW1tWnVqlWJ/4EAACmBfSIQk0gkoiNHjqihoUHHjh3TwMCAcnJytH79etXV1am8vJwRCADIUNPtE0GIAAAAM2KzKQAAEFeECAAA4AghAgAAOEKIAAAAjhAiAACAI4QIAADgCCECAAA4QogAAACOECImCIelQEDy+aLfw2G3KwIAIDXxAK5rhMPjH1TV0xM9lmJ7zgQAAF7CSMQ1gsHxT7qUosfBoDv1AACQyggR1+jtnVs7AABeRoi4RlHR3NoBAPAyQsQ1QiHJ7x/f5vdH2wEAwHiEiGtUVUlNTVJxsWRM9HtTE4sqAQCYCndnTFBVRWgAACAWjEQAAABHCBEAAMARQgQAAHCEEGZv9oIAAAsoSURBVAEAABwhRAAAAEcIEQAAwBFCBAAAcIQQAQAAHCFEAAAARwgRAADAEUIEAABwhBABAAAcIUQAAABHCBEAAMARQgQAAHCEEAEAABwhRAAAAEcIEQAAwBFCBAAAcIQQAQAAHJk1RBhjWowxp40x7yajIAAAkB5iGYn4paRvJrgOAACQZmYNEdbatyR9noRaAABAGonbmghjTI0xpt0Y037mzJl4XRYAAKSouIUIa22TtbbUWltaWFgYr8sCAIAUxd0ZmLdwWAoEJJ8v+j0cdrsiAEAyLHC7AKS3cFiqqZEGB6PHPT3RY0mqqnKvLgBA4sVyi+dvJP27pBuMMR8bY6oTXxbSRTB4NUCMGhyMtgMAMtusIxHW2q3JKATpqbd3bu0AgMzBmgjMS1HR3NoBAJmDEIF5CYUkv398m98fbQcAZDZCBOalqkpqapKKiyVjot+bmlhUCQBewN0ZmLeqKkIDAHiRJ0Yi2McAAID4y/iRCPYxAAAgMTJ+JIJ9DAAASIyMDxHsYwAAQGJkfIhgHwMAABIj40NEvPcxYJEmAABRGR8i4rmPwegizZ4eydqrizQJEgAALzLW2rhftLS01La3t8f9um4LBKLBYaLiYqm7O9nVAACQHMaYDmtt6cT2jB+JiCcWaQIAcBUhYg5YpAkAwFWEiDngYVMAAFxFiJgDHjYFAMBVGb/tdbzxsCkAAKIYiQAAAI6kfYhg8ycAANyR1tMZPKETAAD3pPVIBE/oBADAPWkdItj8CQAA96R1iGDzJwAA3JPWIYLNnwAAcE9ahwg2fwIAwD1pfXeGxOZPAAC4Ja1HImLFXhIAAMRf2o9EzIa9JAAASIyMH4lgL4n4Y2QHACB5IERMt2dETw+dnxOjIzs9PZK1V0d2+G8JAN6T8SFipj0j6PzmjpEdAMCojA8RU+0lMYrOb+7YJRQAMCrjQ8ToXhLTofObG3YJBQCMyvgQIUWDRHHx1H9H5zc37BIKABjliRAh0fnFC7uEAgBGZfw+EaNGO7lgMDqFUVQUDRB0fnPHLqEAAMlDIUKi8wMAIJ48M52B2LGZFAAgFp4aicDs2CYcABArRiIwDptJAQBiRYhIknSZImAzKQBArAgRMZhvAEin502wmRQAIFaEiFnEIwCk0xQB+2kAAGJFiJhFPAJAOk0RsJkUACBW3J0xi3gEgKKi6AjGVO2piP00AACxYCRiFvFYI8AUAQAgE3kuRMx1kWQ8AgBTBACATOSpEDHdIsna2umDRbwCQFWV1N0tRSLR7wQIAEC6M9bauF+0tLTUtre3x/268xUITL02wZhoqBjl9zNSAADAKGNMh7W2dGK7p0YiplsMOTFHpertlwAApBJPhYi5LIZMxdsvAQBIJZ4KEVMtkjRm6nNT9fZLAABShadCxFSLJP/6r7n9EgAAJzwVIqTJd0k0NnL7JQAATrBjpdihEQAAJzw3EoG5SZdHmAMAko8QkUaS3aGn0yPMAQDJR4hIE2506On0CHMAQPKlZYjw4hC7Gx16Oj3CHACQfGkXIrw6xO5Ghx6PJ5gCADJX2oUIrw6xu9Gh8whzAMBM0i5EeHWI3Y0O3SuPMPfi9BgAxEPa7RNRVDT1kzgzfYh9tOMOBqOBqagoGiAS3aFn+h4ao9Njo6Nbo9NjUmb/3AAQD2k3EuHlIfaJu23O1Mkl6tN1pn1qHz89FpF0WIODFfrud/OUlZWlvLw8VVRU6PDhw4pEIi5WCgCpJ+1ChFeG2OcjUYtPM3FR69VpsE5JJZJ2SKqUtV0aGhpSV1eXKisrtWPHDpWUlKizs9O1WgEg1RhrbdwvWlpaatvb2+N+XcQmEJh6yqe4ODqCkWrXdVP0Z+qUVCbpSUnbJJlJP5O1Vi0tLdq5c6fa2tq0atUqN8oFAFcYYzqstaUT29NuTQRml6jFp5m4qPWJJyL63vc2y9onJVVLmnp6zBij6upqWWu1ZcsWHT9+XD5f2g3kAUBc8VswAyXqdtBM3DeisPB1FRdnq6ho29j02Pe+F10rMdW6j+rqai1atEhHjhxxrWYASBUxhQhjzDeNMSeNMV3GmL9LdFGYn0QtPs3ERa2NjY3aubNWPT1GkUj0Z3n22enXfRhjVFtbq4aGBncLB4AUMOuaCGNMlqKrzsolfSzpPyVttdb+v+n+DWsi3BcOJ+Z20ERd1y15eXnq6upSQUGBpNjWffT19en666/XF198kbQ6AcBN062JiCVE/F9Ju621d145flSSrLVPT/dvCBFIF1lZWRoaGtKCBdHlQT5fdARiImOit9ZK0sjIiLKzs3Xp0qUkVgoA7pkuRMQynbFc0kfXHH98pW3iC9QYY9qNMe1nzpxxXimQRDk5OTp79uzYcSzrPvr7+5WTk5PgygAg9cUSIswUbZM+q1lrm6y1pdba0sLCwvlXBiTBhg0bdOjQobHjWNZ9tLa2av369UmqEABSVywh4mNJX7vmeIWkTxNTDpBco4skR6f1ZtvMzFqrhoYG1dXVuVg1AKSGWELEf0q63hiz0hjzJ5Luk/RSYssCkmPTpk26ePGiWlpaxtpm2l58//79Gh4eVnl5edJrBYBUM+tmU9baS8aY7ZJ+JylLUou19kTCKwOSwOfzqbW1VWVlZbLWqrq6WsZMnsGz1mr//v3atWuX2tra2GgKAMS214AkqbOzU5s3b9bixYtVW1urzZs3Kzc3V/39/WptbVVjY6OGhoZ08OBBtrwG4DmOb/F0ghCBdBSJRHTkyBE1NDTo2LFjGhgYUE5OjtavX6+6ujqVl5czAgHAkwgRAADAkfnsEwEAADAJIQIAADhCiAAAAI4QIgAAgCOECAAA4AghAgAAOEKIAAAAjhAiAACAIwnZbMoYc0ZSTxwvWSCpL47Xw9zxHriP9yA18D64j/cg+YqttYUTGxMSIuLNGNM+1U5ZSB7eA/fxHqQG3gf38R6kDqYzAACAI4QIAADgSLqEiCa3CwDvQQrgPUgNvA/u4z1IEWmxJgIAAKSedBmJAAAAKYYQAQAAHEn5EGGM+aYx5qQxpssY83du1+M1xpgWY8xpY8y7btfiVcaYrxlj/tUY854x5oQx5iG3a/IaY8xiY8x/GGP+58p78LjbNXmVMSbLGPPfxphX3K4FKR4ijDFZkhok3SXpRklbjTE3uluV5/xS0jfdLsLjLkmqt9aulnSrpDr+f5B0Q5Jut9b+H0k3S/qmMeZWl2vyqockved2EYhK6RAh6S8kdVlrP7TWDkv6Z0mVLtfkKdbatyR97nYdXmatPWWt/a8rfx5Q9Bfocner8hYb9b9XDhde+WJVepIZY1ZI+rakZrdrQVSqh4jlkj665vhj8csTHmaMCUj6M0l/cLcS77kyjP6OpNOSjlhreQ+Sb5+kv5UUcbsQRKV6iDBTtJH+4UnGmC9J+hdJD1trz7ldj9dYay9ba2+WtELSXxhjStyuyUuMMX8l6bS1tsPtWnBVqoeIjyV97ZrjFZI+dakWwDXGmIWKBoiwtfZFt+vxMmvtWUlvirVCyXabpApjTLeiU9u3G2MOuFsSUj1E/Kek640xK40xfyLpPkkvuVwTkFTGGCNpv6T3rLV73K7Hi4wxhcaYvCt/zpZ0h6T33a3KW6y1j1prV1hrA4r2Bb+31n7H5bI8L6VDhLX2kqTtkn6n6GKy56y1J9ytyluMMb+R9O+SbjDGfGyMqXa7Jg+6TdJ3Ff3k9c6Vr2+5XZTHLJP0r8aYPyr64eaItZZbDOF5bHsNAAAcSemRCAAAkLoIEQAAwBFCBAAAcIQQAQAAHCFEAAAARwgRAADAEUIEAABw5P8DxnAxAp+bTW4AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 14, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# Redraw the figure\n", + "# Add the support vectors to plot, and redraw the figure\n", + "# Support vectors will be indicated by being highlighted with black circles\n", + "for row in classifier.support_vectors_:\n", + " fig.gca().plot(row[0], row[1], 'ok', ms=14, mfc='none')\n", "fig" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, the support vectors, which are identified with some meta-data that is stored in the model object, are some datapoints at the end of the classes - those closest to the boundary. " + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Drawing the decision boundary\n", "\n", - "Let's now draw the decision boundary - the boundary at which our learned model thinks the labels switch between groups." + "We can also draw the decision boundary - the boundary at which our model thinks the labels switch between groups." ] }, { @@ -362,10 +402,8 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": true - }, + "execution_count": 43, + "metadata": {}, "outputs": [], "source": [ "# Grab the current plot, and find axis sizes\n", @@ -387,17 +425,17 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 44, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGfCAYAAAD/BbCUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl4lfWd///nnZCQBLKwbyEJSxCQ\nsIawhEByjuBUWqCO1rY41ZFKFar4bb/Xd65K/Wmn5Wqnm1IHxyLYsdMMY7WK4LSInOxIiIBsArIn\n7Dsh+3Y+vz9iTlkSSDTJfc7J63FdXMm5z51zvw9izvv+LO+3ZYxBREREpL0E2B2AiIiIdCxKPkRE\nRKRdKfkQERGRdqXkQ0RERNqVkg8RERFpV0o+REREpF0p+RAREZF2peRDRERE2pWSDxEREWlXney6\ncM+ePU1cXJxdlxcREZFWtH379ovGmF7NOde25CMuLo5t27bZdXkRERFpRZZlFTb3XE27iIiISLtS\n8iEiIiLtSsmHiIiItCvb1nw0pqamhpMnT1JZWWl3KD4jJCSE6OhogoKC7A5FRESkWbwq+Th58iTh\n4eHExcVhWZbd4Xg9YwyXLl3i5MmTDBo0yO5wREREmsWrpl0qKyvp0aOHEo9msiyLHj16aKRIRER8\nilclH4ASjxbS35eIiPgar0s+RERExL8p+bhJ165dm33uCy+8wK9//es2e/1jx44xadIk4uPjeeih\nh6iurm7RtURERLyRTycf6ekQFwcBAfVf09Ptjqh1/cu//Av/5//8Hw4dOkS3bt1YvXq13SGJiIh8\naT6bfKSnw8KFUFgIxtR/XbiwbRKQ9evXM2nSJMaNG8c999zDuXPnPM/t2rULh8NBfHw8r732muf4\nr371KyZOnMjo0aN5/vnnW3xNYwwZGRk88MADADzyyCOsXbv2y78ZERERm3nVVtuWWLoUystvPFZe\nXn98/vzWvda0adPIz8/HsixWrVrFL3/5S37zm98AsHv3bvLz8ykrK2PcuHHMnj2bvXv3cujQIQoK\nCjDGMGfOHHJycpg+fbrnNUtKSkhJSWn0ev/93/9N7969iYqKolOn+v9E0dHRnDp1qnXfmIiIiA18\nNvkoKmrZ8S/j5MmTPPTQQ5w5c4bq6uobamrMnTuX0NBQQkNDSUtLo6CggLy8PDZu3Mi4ceMAKC0t\n5dChQzckH+Hh4ezcubPJa164cOGWY9rZIiIi/sBnk4+YmPqplsaOt7annnqKH/zgB8yZM4esrCxe\neOEFz3M3JwSWZWGM4Uc/+hHf+973mnzNO418jBgxgqtXr1JbW0unTp04efIk/fv3b5X3I3In6XvS\nWepaSlFxETGRMSxzLmN+QisPKYpIh+Wzaz6WLYOwsBuPhYXVH29txcXFDBgwAIA33njjhufee+89\nKisruXTpEllZWUycOJF7772X119/ndLSUgBOnTrF+fPnb/i5hpGPxv6MHDkSy7JIS0vj7bff9lx3\n7ty5rf/mRG6SviedhesXUlhciMFQWFzIwvULSd/jZyu6RcQ2Ppt8zJ8PK1dCbCxYVv3XlSu//HqP\n8vJyoqOjPX9++9vf8sILL/Dggw+SkpJCz549bzg/KSmJ2bNnM3nyZJ577jn69+/PrFmz+Pa3v82U\nKVNISEjggQceoKSkpMWx/Nu//Ru//e1vGTp0KJcuXWLBggVf7s2JNMNS11LKa25cUFVeU85S11Kb\nIhIRf2MZY2y5cGJiotm2bdsNx/bv38+IESNsiceX6e9NWlPATwIw3Pp7wcLC/bzbhohExBdYlrXd\nGJPYnHN9duRDRNpGTGTjC6eaOi4i0lJKPkTkBsucywgLunFBVVhQGMucbbCgSkQ6JCUfIj4mfU86\ncS/FEfCTAOJeimv1haDzE+az8msriY2MxcIiNjKWlV9bqd0uItJqfHarrUhH1LATpWFBaMNOFKBV\nk4P5CfOVbIhIm9HIh4gP0U4UEfEHSj5EfEhRceMlfJs63h7aehpIRPyPko+btKTl/QsvvMCvf/3r\nNnv9f//3f2fo0KFYlsXFixdbdB3xT962E0UFyUTki/Dp5MPf77iSk5PZtGkTsbGxdociXsLbdqJo\nGkhEvgifTT7a845r/fr1TJo0iXHjxnHPPfdw7tw5z3O7du3C4XAQHx/Pa6+95jn+q1/9iokTJzJ6\n9Gief/75L3TdcePGERcX92XDFz/ibTtRvHEaSES8n8/udrndHVdr/yKeNm0a+fn5WJbFqlWr+OUv\nf8lvfvMbAHbv3k1+fj5lZWWMGzeO2bNns3fvXg4dOkRBQQHGGObMmUNOTs4NXW3v1Fhu5MiRrfoe\nxH94006UmMgYCotv7fDYkmkgNbET6Xh8NvlozzuukydP8tBDD3HmzBmqq6sZNGiQ57m5c+cSGhpK\naGgoaWlpFBQUkJeXx8aNGxk3bhwApaWlHDp06Ibko6GxnIgvW+ZcdsPWX2jZNFB7bR0WEe/is8lH\na9xxNddTTz3FD37wA+bMmUNWVhYvvPCC5znLsm4417IsjDH86Ec/4nvf+16Tr6mRD/EHDQnCFx25\naM8RTBHxHj6bfHzZO66WKC4uZsCAAUB9a/vrvffee/zoRz+irKyMrKwsfvGLXxAaGspzzz3H/Pnz\n6dq1K6dOnSIoKIjevXt7fk4jH+Ivvsw0kNaMiLQfb5ri9NkFp2218K68vJzo6GjPn9/+9re88MIL\nPPjgg6SkpNCzZ88bzk9KSmL27NlMnjyZ5557jv79+zNr1iy+/e1vM2XKFBISEnjggQcoKSlpcSy/\n+93viI6O5uTJk4wePZrvfve7X+q9iXgbb9s6LOKvvG1bvGXMra2z20NiYqLZtm3bDcfUGv6L0d+b\n+Kqb13xA/QimesmItK64l+IaXaoQGxnL8WeOt8o1LMvaboxJbM65PjvyISK+z9u2Dov4K2+b4vTZ\nNR8i4h+8aeuwiL9qz00azeF1Ix92TQP5Kv19dWz+XuVXRFqHt1VH9qrkIyQkhEuXLukDtZmMMVy6\ndImQkBC7QxEbeNsCMhHxXt42xXnHBaeWZYUAOUBn6qdp3jbGPH/TOY8CvwJOfX7o340xq273uo0t\nOK2pqeHkyZNUVla25D10aCEhIURHRxMUFGR3KNLO2mMBmYhIc7VkwWlz1nxUAQ5jTKllWUFAnmVZ\nfzPG5N903pvGmO+3NNjrBQUF3VA9VESa5m0LyEREmuuO0y6mXunnD4M+/6N5ERGbqUaGiPiqZq35\nsCwr0LKsncB54ENjzNZGTvtHy7J2W5b1tmVZA1s1ShG5hbctIBMRaa5mJR/GmDpjzFggGkiyLGvU\nTaesB+KMMaOBTcAbN78GgGVZCy3L2mZZ1rYLFy58mbhFOjxvW0AmItJcLa5walnW80CZMebXTTwf\nCFw2xkTe7nUaW3AqIiIivqlVK5xaltXLsqyoz78PBe4BDtx0Tr/rHs4B9jc/XBEREelImrPbpR/w\nxucjGgHAn40x71uW9a/ANmPMOuBpy7LmALXAZeDRtgpYREREfJttjeXGjRtnduzYgWVZtlxfRERE\nWo9PNJa7dOkSr776KocOHbIrBBEREbGBbclHeHg4NTU1HD161K4QRERExAa2dbUNDQ1l8eLF1NXV\nAXD06FE2b96Mw+FgwIABdoUlIiIibczWxnKBgYEEBwcDUF5ezpkzZ3jttdd48803UR0QERER/2Tb\nyMfNRo0aRXx8PFu2bGHLli0cOHCAyZMnc++999odmoiIiLQir0k+ADp37kxqaipJSUnk5eXRvXt3\nANxuN+Xl5XTt2tXmCEVEROTL8qrko0FYWBizZs3yPN61axd//etfmTRpEsnJyYSGhtoYnYiIiHwZ\nXpl83Cw2Npbhw4ezefNmtm3bRnJyMpMmTfKsFxERERHfYeuC0+bq3r07//iP/8gTTzxBbGwsLpeL\nNWvW2B2WiEizpO9JJ+6lOAJ+EkDcS3Gk70m3OyQRW/nEyEeDPn368K1vfYuTJ096tuhWVlZy4MAB\nRo8eTUCAT+RSItKBpO9JZ+H6hZTXlANQWFzIwvULAdSBWDosn/y0jo6OJjY2FoA9e/awdu1aXnnl\nFT799FPsKhcvItKYpa6lnsSjQXlNOUtdS22KSMR+PjXy0ZjExETCw8NxuVy89dZb9OvXD4fDQXx8\nvN2hiYhQVFzUouMiHYFPjnxcz7Ishg8fzpNPPsnXv/51Kisr2bp1q91hiYgAEBMZ06LjIh2Bzycf\nDQICAhgzZgzf//73mTdvHgBXr15lzZo1nDlzxuboRKSjWuZcRlhQ2A3HwoLCWOZcZlNEIvbzm+Sj\nQWBgoKcY2YULFygqKuL3v/89b731FhcvXrQ5OhHpaOYnzGfl11YSGxmLhUVsZCwrv7ZSi02lQ7Ps\nWqCZmJhotm3b1ubXqays9JRsr6mpYcKECcyePRvLstr82iIiIh2FZVnbjTGJzTnX5xec3klISAhp\naWmeku1ut9uTeFRWVhISEmJzhCIiIh2L3ycfDbp06XJDk7oTJ07wX//1X0yePJmpU6cqCREREWkn\nHSb5uFmXLl0YNmwYOTk5fPzxxyQnJ5OUlKSS7SIiIm3M79d83MnZs2dxuVwcOnSIXr16sWjRIq0H\nERERaSGt+WiBvn37Mn/+fIqKiiguLsayLIwxHDhwgLvuuksl20VERFpZh08+GsTE/L3gz6FDh3jz\nzTfp1asXDoeD4cOHazRERESklei2vhHx8fF84xvfwBjDm2++yWuvvcaRI0fUN0ZEpB2pG7D/UvLR\nCMuyGDlyJIsWLWLevHmUlZXx/vvvK/kQEWknDd2AC4sLMRhPN2AlIP6hwy84bY7a2lquXr1Kz549\nqamp4f3332fq1Kn06dPH7tBERPxS3EtxFBYX3nI8NjKW488cb/+A5I604LSVderUiZ49ewJw7tw5\nPvvsM3bv3s2oUaNITU2lR48eNkcoIuJf1A3Yv2napYWio6NZsmQJ06ZN48CBA6xYsYL169dTW1tr\nd2giIn5D3YD9m5KPLyA0NBSn08mSJUtITEzkypUrBAYGAigJERFpBeoG7N807fIldO3alfvuuw9j\nDJZlUVJSwquvvkpiYiJTp06lc+fOdocoIuKTGrr+LnUtpai4iJjIGJY5l6kbsJ/QgtNWVFxczAcf\nfMC+ffsIDQ0lJSWFiRMnEhQUZHdoIiIibaolC06VfLSB06dPk5GRweHDh4mIiOD73/++esaIiIhf\n024Xm/Xv35+HH36YwsJCioqKPIlHYWEhAwcOVMl2ERHp0JR8tKHY2FhiY2MBOH/+PH/4wx/o3bs3\nDoeDu+66SyXbRUSkQ9IteDvp1asXDz74IHV1dfzP//wPq1ev5tixY3aHJSIi0u6UfLQTy7K4++67\nWbx4MXPmzOHatWusWbOGiooKu0MTERFpV5p2aWcBAQGMHz+e0aNHc+bMGUJDQzHG4HK5GD16NL17\n97Y7RBERkTal5MMmnTp1YuDAgQBcuXKFjz/+mM2bN5OQkEBaWhrdunWzOUIREZG2oa22XqK8vJzN\nmzezdetW3G43EyZMwOl0EhISYndoIiIid9SSrbZ3XPNhWVaIZVkFlmXtsizrU8uyftLIOZ0ty3rT\nsqzDlmVttSwrruVhd2xhYWHMnDmTJUuWMGHCBA4fPuwp2W5XgigizZCeDnFxEBBQ/zVdLd9F7qQ5\n0y5VgMMYU2pZVhCQZ1nW34wx+dedswC4YowZalnWN4F/Ax5qg3j9Xnh4OLNnz6a2tpZOnTpRW1vL\nqlWrGDFiBJMnT1bJdhFvkp4OCxdCeXn948LC+scA81UGXKQpdxz5MPVKP38Y9Pmfm2/F5wJvfP79\n24DTUhGLL6VTp/q8sKqqiqioKDIzM/nd735Hfn6+mteJeIulS/+eeDQoL68/LiJNataaD8uyAoHt\nwFBghTHmX256fi/wD8aYk58/PgJMMsZcvOm8hcBCgJiYmAmFhYWt8iY6glOnTuFyuTh69CgRERE8\n9thjREVF2R2WSMcWEACN/Q61LHC72z8eERu16poPAGNMnTFmLBANJFmWNermazb2Y428zkpjTKIx\nJrFXr17NubR8bsCAAXznO9/hkUceYejQoURGRgJw4cIFrQkRsUtMTMuOiwjQwiJjxpirQBbwDzc9\ndRIYCGBZVicgErjcCvHJTQYNGsScOXOwLIvy8nJWrVrF73//ew4ePKgkRARI35NO3EtxBPwkgLiX\n4kjf04YLQJctg7CwG4+FhdUfF5EmNWe3Sy/LsqI+/z4UuAc4cNNp64BHPv/+ASDD6JOwzYWEhPDV\nr36V6upq/vu//5vXX38dTWVJR5a+J52F6xdSWFyIwVBYXMjC9QvbLgGZPx9WroTY2PqpltjY+sda\nbCpyW3dc82FZ1mjqF5MGUp+s/NkY86+WZf0rsM0Ys86yrBDgv4Bx1I94fNMYc/R2r6s6H62nrq6O\nnTt3kpWVRUlJCd///vfp2bOn3WGJtLu4l+IoLL41AY+NjOX4M8fbPyCRDqQlaz5UZMyP1NTUcPjw\nYUaMGAHAtm3biI2NRetrpKMI+EkA5tblZlhYuJ/XAlCRttSS5EPl1f1IUFCQJ/GorKxk06ZNVFVV\nMWbMGFJTU7U7RvxeTGRMoyMfMZFaACriTdTV1k+FhITw9NNPM2XKFPbu3cvLL7/MX//6V8rKyuwO\nTaTNLHMuIyzoxgWgYUFhLHNqAaiIN1Hy4cfCwsKYNWsWTz/9NGPHjmXnzp0qUCbtql13ngDzE+az\n8msriY2MxcIiNjKWlV9byfwELQAV8SZa89GBVFZWehrV/fnPf6Zfv35MmjSJ4OBgmyMTf9Sw86S8\n5u8VQMOCwpQMNCJ9TzpLXUspKi4iJjKGZc5l+jsSn9PqRcbEPzQkHjU1NdTV1eFyuVi+fDlbt27V\niIi0uqWupTckHgDlNeUsdan0+PXafXuwiBfQyEcHduLECVwuF8ePHycyMpJvfetb9O3b1+6wxE9o\n50nzaHuw+AuNfEizDBw4kEceeYR/+qd/olevXnTr1g2AkpISVUuVL62pHSZtufOkvdeYtIai4qIW\nHRfxB0o+OjjLshgyZAgPP/wwnTt3xu1288Ybb7By5UoOHz6sJES+sPbeeeKr0xd2JGkidlPyIbdI\nSUmhoqKCP/3pT/znf/4nRUW6A+vovsiIQnvvPPHVNSbaHiwdkdZ8SKPq6urYvn07OTk5lJaW8k//\n9E8MGTLE7rDEBr6ya8WX15hot4v4A5VXl1ZTXV3Nrl27mDBhAgEBARw8eJAePXrQo0cPu0OTduIr\nCyJ9JU4Rf6UFp9JqgoODmThxIgEBAbjdbv7617+yYsUK1q1bR3Fxsd3hSTvwlQWRmr4Q8R1KPqTZ\nAgIC+O53v0tSUhK7du3id7/7HRs2bFDJdj/nKwsiVd1UxHdo2kW+kOLiYrKzs9m5cyePPPIIsbGx\ndockbcRX1nyIiL007SJtLjIykjlz5rBkyRJP4pGZmUleXh41NTU2RyctdbvdLBpREJHWppEPaRXG\nGP785z+zf/9+unbtyowZMxg/fjyBgYF2hyZ3oJENEWkN2u0itikqKsLlclFYWEi3bt2YN2+epmS8\nnHaJiEhr0LSL2CYmJoZHH32Uhx9+mLCwMMLDwwGoqqpStVQv5Su7WUTEf3SyOwDxP5ZlMXToUIYO\nHeo59s4771BaWorT6WTQoEFYlmVjhHK9mMiYRkc+vG03i4j4D418SJszxjB8+HBKS0v54x//yB//\n+EdOnDhhd1jyOdXHEJH2puRD2pxlWYwbN46nnnqKr3zlK5w/f57Vq1ezc+dOu0MTtJtFRNqfFpxK\nu6uurmbr1q0kJiYSGhrK6dOnCQkJoXv37naHJiIiX1BLFpxqzYe0u+DgYFJSUjyP//a3v3Hq1CnG\njx/P9OnTiYiIsDE6ERFpa0o+xHbf+MY3yM3NZfv27ezcuZOkpCSmTZtGWFjYnX9YRER8jpIPsV14\neDj33XcfU6dOJSsriy1bttC9e3cSE5s1eiciIj5GyYd4jaioKObNm0dycrJn/ceuXbsoKytj4sSJ\nBAUF2RyhiIi0Btt2u6jglDSlV69enrLsx44dY+PGjbz88sts376duro6m6OT1na7vjIi4p9s2+0S\nGxtrli1bhsPhoH///rbEIL7h+PHjuFwuTpw4Qffu3bnvvvtuKGAmvkt9ZUT8h0/0dhk+fLj553/+\nZyoqKhg5ciRpaWn06tXLlljE+xljOHToEC6Xi5kzZzJ06FDq6uoICAhQtVQfpr4yIv7DJ5KPxMRE\nk5eXx5YtW9iyZQs1NTWMGTOG1NRUoqKibIlJvF/Dv1fLsti0aRPHjx/3lGwX3xPwkwAMt/4OsrBw\nP++2ISIR+aJ8ps5HSEgIaWlpJCUlkZeXx8cff8yePXtITEwkJSWFrl272hmeeKHrRzl69erF7t27\neeONNxg8eDBOp5MBAwbYGJ20lPrKiHRMXlXhtLi4mJycHD755BMCAwOZPHkyU6dOJTQ01JYYxfvV\n1tby8ccfk5ubS3l5OTNnziQ5OdnusKSZtOZDxH/4zLRLU+XVL126RFZWFnv27CEkJITk5GQmTZpE\ncHBwO0cpvqKqqor8/HxGjBhB7969KS4uxu12061bN7tDkztI35POUtdSioqLiImMYZlzmRIPER/k\n88lHg7Nnz5KRkcHBgwfp2rUr06dPZ/z48XTqpPIkcnvvvvsue/fu9ZRsDw8PtzskERG/5jfJR4MT\nJ07gcrk4fvw4UVFRpKamMnr0aAIC1JRXGldSUkJ2djY7duwgMDCQSZMmkZycrCk8EZE24nfJB9Tv\ncjh69Cgul4vTp0/Ts2dPHA4HI0aM0FZLadLly5c9U3hTpkxh1qxZdockIuKX/DL5aGCM4cCBA2Rk\nZHDhwgX69++Pw+FgyJAhSkKkSefPn6dLly506dKFoqIiTp8+TWJioqbwRERaSUuSjzvOW1iWNdCy\nrEzLsvZblvWpZVlLGjkn1bKsYsuydn7+5//7IoE3h2VZjBgxgieffJJ58+ZRXl7On/70J/7zP/+T\noqKitrqs+LjevXvTpUsXAPbv38+GDRt4+eWX2bFjB2636kmIf1LpevFWdxz5sCyrH9DPGLPDsqxw\nYDswzxiz77pzUoH/a4z5anMv/EVHPm5WW1vLjh07yMnJobS0lPj4eJxOJ3379v3Sry3+q2EK79Sp\nU/To0YNZs2Zx11132R2WSKvRNmZpb6068mGMOWOM2fH59yXAfsBrKjl16tSJpKQknn76ae655x5O\nnDjBq6++yttvv82lS5fsDk+81ODBg/nud7/LN7/5TQIDAz3/VowxanroJzr6Xf9S19IbEg+A8ppy\nlrqW2hSRyN+1aM2HZVlxQA4wyhhz7brjqcBfgJPAaepHQT5t5OcXAgsBYmJiJhQW3lrZ8MuqrKzk\no48+Ij8/n9raWsaOHcuMGTOIjIxs9WuJf3C73RhjCAwMZOfOnezYsQOn00lsbKzdoTVJtTFuT3f9\nKl0v7a9NFpxaltUVyAaWGWPeuem5CMBtjCm1LOs+YLkxJv52r9da0y5NKS0t9ZRsB5g4cSIpKSme\neX+Rxuzdu5cPPviAkpIShg4ditPppF+/fnaHdQN9sN6ZGtbp70DaX6snH5ZlBQHvAx8YY37bjPOP\nA4nGmItNndPWyUeDq1evkp2dzc6dOwkKCmLKlClMmTKFkJCQNr+2+KaamhoKCgrIy8ujoqKC5ORk\nZs6caXdYHvpQuTPd9StJlfbXqo3lrPr9q6uB/U0lHpZl9QXOGWOMZVlJ1K8l8YoFF1FRUcydO5fk\n5GQyMzPJzs6moKCAadOmkZSURFBQkN0hipcJCgoiOTmZCRMmsGXLFs/IR1VVFRUVFbZ3XS4qbnxX\nV1PHOyI1rMOTYGh6TrxRc3a7TANygT1Awy3Ds0AMgDHmVcuyvg88CdQCFcAPjDEf3e5122vk42Zn\nzpwhIyODQ4cOER4e7inZHhgY2O6xiG/Jzs4mJyfH9q7LGvm4M931i7Q/vy4y1loKCwtxuVwUFRXR\nrVs30tLSGDVqlEq2S5Ma67qcnJzc7lN4+mBtHi3KFWlfSj6ayRjD4cOHcblcnD17lt69e+NwOLjr\nrrtULVWadH3X5REjRvDQQw+1ewz6YBURb6Pko4WMMezbt4+MjAwuXbrEgAEDcDqdDB482O7QxIud\nPXuWgIAAevfuTXFxMQcOHGDChAkq2S4iHZKSjy/I7Xaza9cusrKyKC4uZtCgQTidTqKjo+0OTbxc\nXl4emzZtUtdlEemwlHx8SbW1tWzbto3c3FzKysoYPnw4aWlp9OnTx+7QxEs11nXZ6XQyYsQIu0MT\nEWkXSj5aSXV1Nfn5+WzevJnq6moSEhJITU2le/fudocmXur6rssDBw5kzpw5dofUoWgtjIh9lHy0\nsoqKCjZv3szWrVupq6tj/PjxTJ8+nYiICLtDEy/ldrupqamhc+fOnDp1ig8//BCn08nAgQPtDs1v\naReQiL2UfLSRkpIScnNz2b59O5ZlkZSUxLRp0wgLC7M7NPFin332GevXr6e0tJRhw4bhcDjUdbkN\nqP6JiL2UfLSxK1eukJWVxe7duwkODmbq1KlMnjyZzp072x2aeKnq6mpPyfbKykoSExP56le/andY\nfkUl1cWf+OIUopKPdnL+/HkyMzPZv38/YWFhpKSkMHHiRG21lCY1dF0OCQlh6tSpGGMoLS0lPDzc\n7tB8nkY+xF/46hSiko92durUKTIyMjhy5AgRERHMmDGDsWPHqmS73NG+fft45513mDhxItOmTVPX\n5S/BV39hi9zMVxNpJR82OXbsGBkZGZw4cYLu3bt7SrarWqo0pbi4mKysLHVdbiW+OFQtcjNfnUJU\n8mEjYwyHDh3C5XJx7tw5+vTpg9PpJD4+XkmINOnixYtkZmby6aef0r9/fx5//HH9exHpoDTy0Yb8\nNfloYIxh7969ZGZmcvnyZQYOHIjT6SQuLs7u0MSLnTlzhoqKCgYPHkxNTQ179uxhzJgxmsIT6UB8\ndQpRyYcXqaurY+fOnWRnZ3Pt2jWGDBmC0+mkf//+docmXm737t2888476ros0gH54hSikg8vVFNT\n4ynZXl5ezogRI3A4HPTq1cuzryEFAAAgAElEQVTu0MRLqeuyiPgSJR9erKqqii1btrBlyxaqq6sZ\nPXo0qampdOvWze7QxEtd33U5LCyMxx57TMmHiHgdJR8+oLy8nLy8PAoKCjDGMGHCBFJSUlTvQZrk\ndrspKysjPDyc0tJS1q1bx/Tp09V1WUS8gpIPH3Lt2jVycnLYsWMHgYGBTJo0ieTkZEJDQ+0OTbzY\n8ePHeeutt9R1WUS8hpIPH3T58mUyMzPZu3cvnTt3Jjk5mUmTJhEcHGx3aOKlGuu6PG/ePC1KFRFb\nKPnwYefOnSMzM5MDBw7QpUsXpk+fzoQJE1SyXZrU0HW5vLycOXPmAPVl3FWoTETak5IPP3Dy5Elc\nLhfHjh0jMjKS1NRUxowZo7tauaNz586xevVqJk6cSHJysroui0i7UPLhR44ePYrL5eLUqVP07NmT\ntLQ0Ro4cqd0O0qTi4mIyMjLUdVlE2pWSDz9jjOGzzz4jIyOD8+fP069fPxwOB0OHDlUSIk26vuty\nZGQkTz/9tCqlikibUfLhp9xuN3v27CErK4srV64QGxuLw+EgNjbW7tDEi506dYoLFy4wduxYjDEc\nOHCAYcOG3ZKIuN1uNm7cyCuvvEJOTg4lJSWEh4czffp0Fi1axKxZszTtJyJNUvLh5+rq6tixY4fn\nAyI+Ph6Hw0G/fv3sDk28XGFhIX/4wx9u6bp88OBB5s2bR0hICIsXL2bu3LlERUVx9epV3nvvPVas\nWEFlZSVr165l2LBhdr8N8UG+WC5cWkbJRwdRU1NDQUEBeXl5VFRUcPfdd5OWlkbPnj3tDk28lDGG\ngwcPkpGR4em6PHjwYB599FF+9rOfNVk91RjD66+/zo9//GOys7OVgNyGPmRv5auN0qRllHx0MJWV\nlZ6S7TU1NYwdO5bU1FQiIyPtDk28VEPXZZfLxc9//nN++tOfsnDhwjv+3KpVq3jxxRfZs2ePpmAa\noQ/Zxvlqi3hpmZYkH/rt4QdCQkJIS0tjyZIlTJo0iT179vC73/2ODRs2UFZWZnd44oUsyyIhIYH4\n+Hj69u3L448/Tl1dHWvXruXfc/6duJfiCPhJAHEvxZG+J93zcwsWLKBz5858+OGHNkbvvZa6lt6Q\neACU15Sz1LXUpoi8Q1FxUYuOi/9T8uFHunTpwj/8wz/w1FNPMWbMGAoKCli+fDkZGRlUVlbaHZ54\nod///vc8/fTTWJbFxYsX+Z99/8MPMn5AYXEhBkNhcSEL1y/0JCCWZfHEE0/w/PPPM2fOHKKioggM\nDCQqKoo5c+awYcMG3G63ze/KPvqQbVxMZEyLjov/U/LhhyIjI5kzZw6LFy9m2LBh5OTksHz5cvLy\n8qipqbE7PPEiOTk5zJ07F4A+ffqwJXQLNdaN/0auv3M/ePAgv/nNb9i2bRtz587l8OHDVFVVcfjw\nYebOncuzzz7LqFGjOHjwYLu/F2+gD9nGLXMuIyzoxmJ3YUFhLHMusykisZuSDz/Wo0cPHnjgAZ54\n4gmio6PZtGkTy5cvp6CggLq6OrvDEy9QUlJCVFSU5/GJaycaPa+ouIh9+/YxY8YMfvjDH2KMYcGC\nBfTs2ZNOnTrRs2dPFixYwPbt2/nhD3/IjBkzOmQCog/Zxs1PmM/Kr60kNjIWC4vYyNgOvw6mo9OC\n0w6kqKgIl8tFYWEhUVFRpKWlkZCQoIWDHVhUVBSHDx/27JBqamFgdNdoqn9ZzcMPP8wzzzzD6NGj\nuXLlSpOv25EXpmq3i3RUWnAqjYqJieHRRx/l4YcfJjQ0lHfffZf/+I//YP/+/diVhIq9pk+fznvv\nved53NSd+wNBD9C1a1fCw8N55plnGDlyJG988oYWpjZifsJ8jj9zHPfzbo4/c1yJh0gjNPLRQRlj\n2L9/PxkZGVy8eJH+/fvjdDoZPHiwSrZ3IBs2bODZZ59l+/btnv/ujd25v7n0TebOncvs2bOZPHky\n0dOiKYgvoIa/rw+5eUvpqlWrWLduHevWrbPlvYlI+1KdD2k2t9vN7t27yczMpLi4mLi4OJxOJwMH\nDrQ7NGkHbrebUaNG8cMf/pAFCxY0eV7D9MzatWt58cUXufrIVU5XnL7lvOvrNly8eJH4+PjbTs9I\n29M0kLSXliQfndo6GPFuAQEBjB07llGjRnlKtq9evZphw4bhcDjo27ev3SFKGwoICGDt2rXMmDHD\ns4i0sZGvkpIS/vKXv/DCCy+QnZ3N8DXDG329ouIijDFYlkVkZCQlJSVt/RbkNm4uetawdRpQAiK2\n0siH3KC6upqtW7eyefNmKisrSUhIIDU1lR49etgdmrSh63u7LFq0iHnz5hEZGUlxcTFr167liSee\nYMiQIaxfv55hw4Y1uTA10kTyb/3+DYfDQVRUFMOGDdPIh41UWVTaU6tOu1iWNRD4I9AXcAMrjTHL\nbzrHApYD9wHlwKPGmB23e10lH96toqKCjz76iPz8fOrq6hg3bhwzZswgIiLC7tCkjbjdbj788ENW\nrFhBbm6up6ttSkoK58+fZ8GCBTz++ONA02XEfzz6x4QdCePatWt069aNjRs3as2HjQJ+EoDh1t/x\nFhbu5ztuMThpG62dfPQD+hljdliWFQ5sB+YZY/Zdd859wFPUJx+TgOXGmEm3e10lH76htLSU3Nxc\ntm3bhmVZTJw4kWnTptGlSxe7Q5N21NyFqfMT5lNXV8eJEyf4+te/zi9+8QuCg4MZPny4ui7bQCMf\n0p5adautMeZMwyiGMaYE2A8MuOm0ucAfTb18IOrzpEV8XNeuXfnKV77CU089xahRo8jPz2f58uVk\nZmZSVVVld3jSTmbNmkVlZSWvv/6651hTW0oDAwPZtGkT1dXVTJ48mYKCAn7/+9/z1ltvcfHiRbve\nQoekomfirVq04NSyrDhgHLD1pqcGANeXRjz5+bEzXyI28SJRUVHMmzeP5ORkMjMzyc7OpqCggJSU\nFCZOnEhQUJDdIUobau7CVGMMq1ev5rnnniM7O5vIyEiWLFni6bq8b98+xo4dy8yZMwkLC2vkStKa\nGhJC7XYRb9PsBaeWZXUFsoFlxph3bnruf4GfG2PyPn/sAv6fMWb7TectBBYCxMTETCgsvHU4UHzD\n6dOnycjI4PDhw4SHhzNjxgzGjRtHYGCg3aFJG7rTwtRXXnmFqqoq3n33XYYNG3bDz5aVlZGbm8u+\nfftYvHgxnTt39uyMERHf1+p1PizLCgLeBz4wxvy2ked/D2QZY9Z8/vgzINUY0+TIh9Z8+Ifjx4/j\ncrk4ceIE3bp1Iy0tjVGjRnW4ktodye0Wpi5evJiZM2fe9r9/bW0tnTp1wu12s3r1aoYMGcLUqVMJ\nCQlpx3chIq2ttRecWsAbwGVjzDNNnDMb+D5/X3D6O2NM0u1eV8mH/zDGcOjQITIyMjh79iy9e/fG\n4XBw11136a5WmlRZWcn777/P3r17CQ0NJTk5maSkJIKDg+0OTUS+gNZOPqYBucAe6rfaAjwLxAAY\nY179PEH5d+AfqN9q+8/GmNtmFko+/I8xhk8//ZTMzEwuXbpEdHQ0TqeTQYMG2R2aeLGzZ8/icrk4\ndOgQXbt25dFHH/U0uhMR36Hy6mIrt9vNzp07yc7Opri4mMGDB+NwOIiOjrY7NPFiRUVF7Nixgzlz\n5hAQEMCFCxfo0aOHpvBEfISSD/EKtbW1bNu2jdzcXMrKyhg+fDgOh4PevXvbHZp4uerqapYvX05Y\nWBgOh4Phw4drCk/Eyyn5EK9SVVXlKdleXV3tKdnevXt3u0MTL6WuyyK+R8mHeKWKigry8vIoKCig\nrq6O8ePHM2PGDMLDw+0OTbxUQ9flrKwsrl69ysKFC+nfv7/dYYlII5R8iFcrKSkhJyeH7du3ExAQ\nwKRJk0hOTlbRKWlSbW0tBw8eZOTIkQB88skn9O/fnz59+tgcmYg0UPIhPuHKlStkZWWxe/dugoOD\nmTp1KpMnT6Zz5852hyZerKamhuXLl1NWVsaoUaPUdVnESyj5EJ9y/vx5MjMz2b9/P2FhYZ6S7Z06\ntaj6v3QgjXVdTk1N1RSeiI2UfIhPOnXqFBkZGRw5coSIiAhSU1MZO3astlpKk0pLS8nJyeGTTz7h\ne9/7nuqDiNhIyYf4tGPHjuFyuTh58iQ9evQgLS2Nu+++W7scpEkVFRWEhoYCsHbtWiIjI5k6daqm\n8ETakZIP8XnGGA4ePEhGRgbnzp2jb9++OBwO4uPjlYRIk+rq6vjLX/7Cvn37CA0NVddlkXbkE8lH\nXFycWbNmDVOmTLHl+uIbjDHs3buXzMxMLl++zMCBA3E6ncTFxdkdmnixm7suf+Mb32DgwIF2hyXi\n13wi+Rg2bJhxuVwMHDiQsrIyALp06WJLLOL96urq+OSTT8jOzqakpIShQ4ficDhU80Fu6/jx4+Tl\n5XH//fcTFhZGSUkJXbp00ToikTbgE8nH9dMu77//Prt372by5MlqrS23VVNTw8cff0xubi4VFRWM\nHDmStLQ0evXqZXdo4uWMMaxcuZK6ujqcTifDhg3TFJ5IK/K55OPixYtkZmby6aefelprT5o0SfO0\n0qSqqiq2bNnCRx99RE1NDWPGjCE1NZWoqCi7QxMvpa7LIm3L55KPBmfOnCEjI4NDhw6RlJTEfffd\nZ0ts4jvKysrYvHkzBQUFGGOYMGEC06dPp2vXrnaHJl6qoetyVlYW165d46GHHmLEiBF2hyXi83w2\n+WhQVFREREQEUVFRnD17lnPnzpGQkKB5WmnStWvXyM7O5pNPPiEwMNAzhdew/VLkZrW1tezcuZNx\n48YRGBjIkSNHCA8PV9dlkS/I55OP6/3tb39j69at9OrVS6215Y4uX75MZmYme/fupXPnzp4pvODg\nYLtDEy9mjOGVV17h4sWLJCQkkJaWRrdu3ewOS8Sn+FXycXNr7QEDBnDPPfdonlZu69y5c2RkZPDZ\nZ5/RpUsXpk+fzoQJE1SyXZrU0HV569atuN1uzxSeSraLNI9fJR8N3G43u3btIisri7Fjx5KWltaG\n0Ym/OHHiBC6Xi+PHjxMZGUlqaipjxozRFJ406fquy9/85jcZNmyY3SGJ+AS/TD4a1NbWYowhKCiI\nzz77jB07duBwONRaW5pkjPGUbD916hQ9e/bE4XAwYsQITeFJk4qLi4mIiMCyLPLy8qirq1PXZZHb\n8Ovk43qffPIJH3zwAVVVVYwaNYq0tDS6d+/eShGKvzHGcODAATIyMrhw4QL9+vXD6XQyZMgQJSFy\nW++88w67d+9W12WR2+gwyQfUz9Nu3ryZrVu3UldXR0pKiqZk5Lbcbjd79uwhMzOTq1evEhsbi9Pp\nJCYmxu7QxIudOnUKl8vF0aNHiYiIYM6cOQwdOtTusES8RodKPhqUlJSQm5tL//79GTt2LLW1tVRX\nVxMWFnbLuW63m40bN/LKK6+Qk5NDSUkJ4eHhTJ8+nUWLFjFr1iytCegA6urq2LFjB9nZ2ZSWlhIf\nH4/D4aBfv352hyZe7NixY2RkZDB79mz69u1LVVUVwcHBGj2TDq9DJh8327p1KxkZGUyZMoUpU6Z4\n5mkPHjzIvHnzCAkJYfHixcydO5eoqCiuXr3Ke++9x4oVK6isrGTt2rVaaNZB1NTUsHXrVjZv3kxF\nRQV33303DoeDHj162B2a+IB33nmH8+fPq+uydHhKPoALFy6QmZnJvn37PPO0ERER3HPPPfzsZz/j\nsccea/SXhDGG119/nR//+MdkZ2crAelAKisr+eijj8jPz6e2tpaxY8cyY8YMIiMj7Q5NvFjDFJ66\nLktHp+TjOqdPn8blcnH48GFWr17NT37yExYsWHDHn1u1ahUvvvgie/bs0RRMB1NaWkpeXh4ff/wx\nABMnTiQlJUVdl6VJN3ddvu+++0hKSrI7LJF2peSjEW+88Qa/+c1v2LVrF+Xl5Rw9epTdu0exdKlF\nURHExMCyZTB/fv35DX1Cfv7zn3Pvvfe2W5ziPYqLi8nKymLnzp0EBQWp67LcUUPX5YSEBMLDwzl3\n7hwBAQHquiwdgpKPRsyZM4e5c+eyYMECNm/ezG9/e5b3359DdfXfO+eGhcHKlX9PQFatWsW6detY\nt25du8Up3ufixYtkZWWxd+9edV2WFvnTn/7EkSNH1HVZOgQlH42Iiori8OHD9OzZE2MMAwbUcObM\nrf0+YmPh+PH67y9evEh8fDxXrlxptzjFe13fdblr167MmDGD8ePHExgYaHdo4qXKy8vJy8tT12Xp\nEJR8NCIwMJCqqipPYaCAAGjsrVsWuN3139fU1BAaGkptbW27xSner6ioCJfLRWFhId26dSM1NVVd\nl+W2ru+67HQ6SU5OtjskkVan5KMR1498AMTFQWHhredFR9fx61+/TVpaGgEBARr5kEYZYzhy5Agu\nl4szZ86o67I0y6VLl4iIiCAoKIh9+/Zx6dIldV0Wv9GS5KPD1AeePn067733nmeny7JlsHAhlJf/\n/ZywMHjqqTMcPXqUAwcOcO7cOSZPnmxTxOLNLMti6NChDBkyhH379pGZmcmbb75J//79cTqdDB48\nWEmI3OL62jGFhYVs3bqV/Px8dV2WDqfDjHxs2LCBZ599lu3bt3s+FNLTYelSbtnt0jBP+8gjjzBz\n5kzmz5+vHS9yW9d3XS4uLiYuLg6n08nAgQPtDk282M1dl7/yla8wfPhwu8MS+UJaMvLRYSapZ82a\nRWVlJa+//rrn2Pz59YtL3e76rw27XMLCwigqKiIqKooHH3zQs6DQGENVVVX7By9eLyAggHHjxvHU\nU0/xla98hQsXLrB69WrWrFnDuXPn7A5PvNTAgQN55JFH+M53vkPXrl2pq6sD6uuG2HVjKNIeOszI\nB9SXVp8xYwY//elPWbBgQZMVTlevXs1zzz13S4XTo0eP8uabb5KcnMzkyZM1TytNqq6u9pRsV9dl\naY6G38WWZZGbm8u+ffvUdVl8ihac3sb1vV0WLVrEvHnziIyMpLi4mLVr1/LKK69QVVXFu+++e0tp\n9YsXL7Jp0yYOHDhAly5dSElJITExUfO00qSKigpPyfa6ujrGjRvHjBkziIiIsDs08WKffvopmzZt\n4sqVK+q6LD5DyccduN1uPvzwQ1asWEFubq6nq21KSgqLFy9m5syZt902efLkSTIyMjh69Cj9+/fn\n8ccf152J3FZpaSk5OTmeNUdJSUlMmzat0a7LInBr1+Xp06fjcDjsDkukSUo+2smxY8eoqKhg5MiR\nuN1uDh48yF133aVERJp09epVsrKy2LVrF8HBwbd0XRa5WU1NDQUFBcTGxhIdHU1JSQnV1dXquixe\np1WTD8uyXge+Cpw3xoxq5PlU4D3g2OeH3jHG/OudLuwPycf19u7dy9tvv03fvn1xOp0MHTpUSYg0\n6eauy9OmTWPixIkq2S539L//+79s375dXZfF67R28jEdKAX+eJvk4/8aY77akiD9Lflwu93s3buX\nzMxMrly5QkxMDE6nk9jYWLtDEy92+vRpMjIyOHz4MBEREcyYMYOxY8eqZLs0qaysjNzcXHVdFq/T\n6tMulmXFAe8r+biz61trh4aG8uSTT2oERO7o+PHjuFwuTpw4Qffu3UlLS2PUqFH6tyNNKi4u9pRs\nHz9+PF/72tfsDkk6ODuSj78AJ4HT1Ccin97pNf01+WhQU1PDtWvX6NGjB5WVlWzYsIHk5GS11pYm\nGWM4dOgQGRkZnD17lj59+uBwOBg2bJiSEGnSxYsXCQ4OJiIigjNnznDkyBF1XRZbtHfyEQG4jTGl\nlmXdByw3xsQ38ToLgYUAMTExEwoba67ih44dO8aaNWuoqalRa225I2MMn376KRkZGVy+fJno6Gic\nTieDBg2yOzTxcllZWWRlZanrstiiXZOPRs49DiQaYy7e7jx/H/m4WVlZGXl5eXz88ccYY0hMTOTe\ne+9VJ1RpUl1dnadk+7Vr1xg8eDBOp5MBAwbYHZp4scLCQlwuF0VFRXTr1o177rmHu+++2+6wpANo\n75GPvsA5Y4yxLCsJeBuINXd44Y6WfDQoLi4mJyeH0tJSvvWtbwH1HzK6O5Gm1NbWsm3bNnJycigv\nL2fEiBGkpaXRu3dvu0MTL3V91+W77rqL1NTUGyqoirSF1t7tsgZIBXoC54DngSAAY8yrlmV9H3gS\nqAUqgB8YYz6604U7avLRwBiDZVlcuXKFVatWMXnyZLXWltuqqqoiPz+fjz76iOrqakaPHk1qaird\nunWzOzTxUsYY6urq6NSpE/v37ycvL88zhackRFqbioz5kMuXL7NhwwYOHjxI165dSUlJUWttua3y\n8nI2b97M1q1bMcYwfvx4pk+fTnh4uN2hiRc7cOAAf/vb3yguLmbQoEE4HA51XZZWpeTDB13fWrt7\n9+4sWrRICYjcVklJiadke2BgoKdke2hoqN2hiZeqra1l+/bt5OTkUFZWxsSJE5k9e7bdYYmfUPLh\no4wxHD16lHPnzjF16lSgfvFYTEyMhkilSZcvXyYrK4s9e/YQHBysrstyRw1dl6OiokhISKC2tpZr\n166p67J8KUo+/MSpU6d47bXX6N+/P06nk8GDBysJ8WNut5uNGzfyyiuvkJOT42l4OH36dBYtWsSs\nWbNuuzvq/PnzZGRkqOuytFh+fj4bN270TOGp67J8EUo+/ITb7Wb37t1kZWVx9epV4uLicDgcaq3t\nhw4ePMi8efMICQlh8eLFzJ07l6ioKK5evcp7773HihUrqKysZO3atQwbNuy2r3V91+XIyEhPyXZt\n65amlJSUkJubq67L8qUo+fAztbW17Nixg5ycHGpra/nBD36gIXU/cvDgQWbMmMHPfvYzHnvssUZH\nt4wxvP766/z4xz8mOzv7jgkIwNGjR8nIyODkyZP06NGDtLQ07r77bo2eSZOu77o8aNAgvvOd79gd\nkvgQJR9+qrq6mvPnzxMdHY0xhk2bNjF+/Hi11vZhbrebUaNG8cMf/pAFCxbc8fxVq1bx4osvsmfP\nnmaNZBhj+Oyzz8jIyOD8+fPquizNcuHCBWpra+nXrx9lZWXs3r2bxMRElWyX22pJ8qFxWB8SHBxM\ndHQ0UD+/X1BQwIoVK1i/fj3FxcU2RydfxMaNGwkNDeWxxx7zHEtPh7g4CAio/5qe/vfzFyxYQOfO\nnfnwww+b9fqWZTF8+HCeeOIJ7r//fqqqqkhPT+cPf/gDHaW9gbRcr1696NevHwD79u3jgw8+4OWX\nX2b79u3U1dXZHJ34A418+LDS0lJyc3PZtm0blmUxceJE0tLSNCXjQ+bMmcPcuXM9ox7p6bBwIZSX\n//2csDBYuRLmz69/vGrVKtatW8e6detafL3ruy6XlJQwdOhQnE6n54NGpDGNdV1OSEiwOyzxMpp2\n6WCuXr1KdnY2J06c4MknnyQwMNBTQVW8W1RUFIcPH6Znz55A/UhHYwMSsbFw/Hj99xcvXiQ+Pp4r\nV6584evW1NTw8ccfk5ubS0VFBSNHjsThcHjiELlZQ9dll8tFz549efDBB+0OSbyMko8Oqra2lk6d\nOlFdXc2qVasYM2YMSUlJmqf1YoGBgVRVVXm2wwYEQGP/S1oWuN3139fU1BAaGkptbe2Xvn5lZSVb\ntmxhy5Yt1NTUMHbsWGbMmKGuy9IkYwxVVVWEhIRw4cIF1q9fT1pamrouS4uSDxUA8CMNH2CVlZVE\nRkby4Ycfkp+fz/Tp09Va20uFh4dz9epVz4hDTEzjIx/X764uLi5utVLqISEhpKWlkZSU5Om63LC4\nMCUlha5du7bKdcR/WJZFSEgIUL9F9+rVq7zxxhvquiwtopEPP3Zza+0FCxbow8TLtPeajztp6Lr8\nySefEBgYyOTJk0lOTvZ82IjcrLa21jOFV15eTkJCAvfff7+mfTsgTbuIhzGGw4cPc/DgQe677z4s\ny+LChQv07NlTvxy8wIYNG3j22Wc9xZ2gPgFZuhSKiupHPJYt+3vi0dBI7he/+AX33ntvm8V16dIl\nT8n2kJAQpk2bRlJSkhYzS5Maui4DzJgxA2MMJSUlqpbagSj5kCaVlJSwfPly+vTp4ynZLvZp6zof\nX9bZs2fJyMjwdF1umMJTyXa5kyNHjpCens6ECRPUdbmDUPIhTXK73ezatYusrCxPa22n0+mpHyLt\nr6HC6U9/+lMWLFjQZIXT1atX89xzzzW7wmlrur7rclRUFKmpqYwePVol26VJjXVdTk5OVsl2P6bk\nQ+7o+tba5eXlPPPMM0RGRtodVod1fW+XRYsWMW/ePCIjIykuLmbt2rW88sorVFVV8e6777Z74tGg\noeuyy+Xi9OnT9OrVi7S0NEaMGKEpPGnS9V2Xe/ToweLFi/XvxU8p+ZBmq66u5ujRowwfPhyAgoIC\nhg4dqtbaNnC73Xz44YesWLGC3NxcT1fblJQUFi9ezMyZM71ipMEYw4EDB8jIyODChQv0798fh8PB\nkCFD9KEiTTp//jzFxcXEx8dTV1fHzp07GTNmjKbw/IiSD/lCysrKeOmll6irq1Nrbbmjm7sux8bG\n4nQ61XVZ7uizzz5jzZo16rrsZ5R8yBfWWGvtlJQUQkND7Q5NvNT1XZdLS0sZNmwYDoeDvn372h2a\neDF1XfY/Sj7kS7ty5QrZ2dkcOHCAp556ii5dutgdkni56upqCgoK2Lx5MxUVFYwaNYq0tDR1XZYm\nGWM4ePAgLpcLy7J44oknlHz4MCUf0moqKioIDQ3FGMOaNWsYNGgQEydO1DytNKmyspKPPvqI/Px8\namtrPSXbtaBZmuJ2uyktLSUiIoLKykreeecdkpOTiY2NtTs0aQElH9LqKisreeuttzhy5AgRERGe\neVqVbJemlJaWekq2N3RdnjZtmkbR5LZOnjzJm2++qa7LPkjJh7SZY8eO4XK5OHnyJN27d+fb3/62\nOqHKbTV0Xd65cydBQUFMmTKFKVOmqGS7NKmmpoaCggLy8vI8XZfvv/9+jbh6OSUf0qYa5mm3bdvG\nQw89RKdOnSgpKaFr16xylMYAACAASURBVK6ar5UmXbx4kczMTD799FNCQ0M9JdvVdVma0tB1+dKl\nSzzwwAOeY0pcvZOSD2lXtbW1vPzyy0REROB0OomLi7M7JPFiZ86cISMjg0OHDhEeHq6uy9JsV65c\n4T/+4z8YN26cui57ISUf0q7cbjeffPIJ2dnZXLt2jSFDhuB0Ounfv7/doYkXu7nrcmpqKgkJCar3\nIE0qLS0lMzNTXZe9lJIPsUVNTQ3btm3ztNZesGABAwcOtDss8WINXZddLhdnz56ld+/eOBwO7rrr\nLk3hSZOu77rcpUsXlixZoo7LXkDJh9iqqqqK3bt3k5iYiGVZHDhwgD59+tCtWze7QxMvZYxh3759\nZGRkcOnSJQYMGKCuy3JHZ8+e5dSpU0yYMAGAAwcOMHToUC1MtYmSD/EatbW1vPjii1RWVjJhwgRS\nUlLUWluapK7L8kWdPXuWV199VV2XbaTkowNKT4elS6GoCGJiYNkymD/f7qjqXbt2jZycHHbs2EFg\nYCCTJk0iOTlZJdulSdd3XS4rK2P48OGkpaXRp08fu0MTL6Wuy/ZT8tHBpKfDwoVQXv73Y2FhsHKl\n9yQgcGNr7ccff1wLUuWOqquryc/P56OPPqKqqoqEhARSU1PVdVmadH3X5dLSUpYsWaIFqe1EyUcH\nExcHhYW3Ho+NhePH2zuaOysuLvaU2t64cSMREREkJiZqnlaaVFFRwebNm9m6dau6LkuzuN1uLl68\nSO/evXG73bz//vuMHTtWXZfbkJKPDiYgABr7z2hZ4Ha3fzzN5Xa7SU9P58iRI2qtLc3SWNfladOm\nERYWZndo4sUuXbrEH/7wB0pLS4mPj8fpdKrrchtQ8tHB+NrIx80a5mlPnTpFjx49uP/++xkwYIDd\nYYkXu3LlCllZWezevZvg4GBPyfbOnTvbHZp4qca6Ls+ePVtrz1pRS5IP3WL6gWXL6td4XC8srP54\na0pPr090AgLqv6ant87rDh48mO9+97t885vfpHPnzp7dMFVVVdiVHIt369atG1//+td58sknGTx4\nMFlZWSxfvpwtW7ZQU1Njd3jihYKDg5k2bRpLlixh+vTpXLp0yZOs1tX9/+3de3DU9f3v8ecnVyAE\nyIWLXJJACHdIIAQC5LLZVbFYkVrbWi2trb/pWBE9zpn5ndPr+Z22jr+Z38xR9KdDlTL1kqnIqFTF\nanE3F66BBMI1gSAkIRAhIXdy3d3P+SPJNo3ZEDDk+032/ZhxYJcvu+91dfPez+3lMrg63yMjHyPE\nnd7tYsSi1jfffBOXy4XNZpNobdGvy5cv43A4JHVZDJjWGqUU7e3tvPbaa8yfP19Sl78hmXYRg26o\np3a01hQUFJCTk0NjYyNxcXFYrVaJ1hb96p26nJGRwaJFi2SrpfCqubmZPXv2SOryIBjU5kMptR34\nNnBNa72ojz9XwBZgHdAMPK61PnqzJ5bmY3gxalFr72jt73//+yxYsODOPaEY9rpTlx0OB1evXmXy\n5MnYbDbi4uKkCRFe9U5dfvLJJz278sTADHbzkQY0AW95aT7WAZvpbD5WAlu01itv9sTSfAwvRi9q\nbW1t5fDhwyQnJxMUFERFRQWhoaHy4SC80lpz6tQpsrKyqKmpYcaMGZK6LG6qsrKSM2fOYLVaUUpx\n6dIlpk6dKlN4AzDo0y5KqRjgEy/Nx5+AbK31X7tunwUsWuvK/h5Tmo/hxUwHmWmt2bp1K9XV1SQl\nJZGSkiLR2sIrl8tFYWGhpC6LW9bU1MRLL71EaGioZwpPjgLwbqh3u0wDLvW4XdF1n6ndqZ0bI9Vj\nj3U2GtHRnVMt0dHGnaCqlOLRRx8lPj6ew4cP8/LLL+NwOGhtbR36YoTp+fv7k5iYyObNm1m7di2V\nlZW8/vrr7Nixg6qqKqPLEyYWEhLCD37wA4KDg/nggw/YunUrxcXFsgtvEAzGyMdu4AWt9b6u23bg\n37XWBX1c+3Pg5wBRUVGJZX2N4w8BM32LF9/M9evXycrK4tSpUzz00EMsWbLE6JKEybW1tXHw4EEO\nHjxIe3s78fHxWCwWJkyYYHRpwqR6pi7X1NSwefNmOeK/DzLtchM3W79g5pA20berV68yceJE/Pz8\nKCgowOVykZiYKPO0wqvm5mb27dvH4cOH0VqTmJhIWlqaTOEJr9xuN+Xl5Z51Q7m5ucyaNUtSl7sM\ndfNxP/A0/1xw+rLWesXNHtPI5qO/nRtvvy2jIsPdjh07KCoqkmhtMSCSuixuR0tLC6+++ipNTU2S\nutxlsHe7/BWwAJHAVeD/AIEAWuutXVtt/xu4j86ttj/VWt+0qzDryAcM76PKRecQ6ZdffonD4fBE\na99///2yy0H0q2fqcnBwMKtXr/bsrhKiL32lLt9zzz2eU5p9jRwydhP9rfnYuHF4hrSJr9NaU1RU\nhMPh4IEHHiA6OhqXy4Wfn1+f5z243W7+8Y9/8Nprr5Gbm0tjYyOhoaGkpaXx1FNPce+998oIig+4\nevUqWVlZFBcXExISQmpqqqQui351py4fO3aMp556ipCQEM8Jqr5Emo8B8LauYyjPs5C1JUOj54fA\np59+yrVr17DZbMyYMcNzzblz59iwYQOjRo1i06ZNPPjgg0yYMIG6ujr+9re/8eqrr9La2squXbuY\nM2eOUS9FDKGKigrsdjsXL15k/PjxWCwW4uPjpQEVXjmdTgICAtBa85e//IVp06b5VOqyNB/fQF+j\nIgAREbBly+A1B8N5x81wbpry8/PJzs6mqamJOXPmYLVaaWhoID09nT/+8Y/87Gc/6/Pbitaa7du3\n85vf/IacnBxpQHxI79Rlq9XKggULfO5brRi49vZ2Pv30U44fP+5TqcvSfHxDmZnw7LNw/fq/3j+Y\nzYHRJ4beruHcNHXrjtbuPrL97bff5te//jVPPPHETf/utm3bePHFFzl58qR8A/YhWmvOnj2Lw+Hg\n2rVr3HXXXVitVmbPni1NiPCqqqoKh8NBUVERY8aMYePGjSM6n0qaj0Fwp5sDo7JSvqnh2jT1paWl\nhZdeeokdO3Zw7Ngx6urq8Pf35+OPx3kd2enekvnCCy+wdu1aY1+AGHJut5uTJ0+SnZ1NbW0tUVFR\nkrosbury5cvk5eWxfv16AgICuH79OhMmTBhxRwFI8zEI7nRzMFx/iA/Xpsmb9evX8+CDD/LEE0/w\n7rvv8v77wXz88Xra2v75odB7ZGfbtm189NFHfPTRRwZVLYzmcrk4evSoZ2GypC6LgXI6nbzyyiv4\n+/uPuNRlaT4GwZ1uDobr9MVwbZq8mTBhAufPnycyMpK6ujrmzAmiqurri8N6vr7q6mri4uKora0d\n2mKF6fROXV64cCEZGRlERkYaXZowKa01JSUl2O32EZe6LM3HIBiK5mA4Ltwcrk2TN/7+/rS1tXm2\nUQ5kZKejo4PRo0fjdDqHsFJhZq2trZ4j2zs6OkhISMBisUjqsvCqd+ryj3/8Y2bNmmV0Wd+INB+D\nZDg2B0NhJP176TnyAd5HdqZO7eBvfzvO0qVLqa2tlZEP0acbN26wd+9e8vPz0VqTlJREamoqISEh\nRpcmTMrlclFcXOzZQXXixAkiIyOHZeqyNB9CDFDPNR/gfWTnyScLCA39mLCwMGpraykoKODjjz82\nqGphdvX19eTk5FBYWEhAQADJycmsXr2aUaNGGV2aMDG3280rr7xCbW0t8+fPx2q1MnHiRKPLGjBp\nPoQYoM8++4xf/epXFBQUeOZb+xrZefRRzfnz5/niiy/4/e9/z3e/+12ee+45YmNjDX4Fwsx6pi6P\nGjWKlJQUVqxYIUe2C6/6Sl3OyMgYFlN4t9J8yEEFwqfde++9tLa2sn37ds99jz3WubjU7e789bHH\nQClFXFwcAQEBhISEEBcXR11dHdA5dytEXyIiInj44Yd58skniYqK4osvvuDll1/m8OHDuFwuo8sT\nJhQcHIzFYuHZZ59l1apVnD59mubep16OADLyIXzeuXPnSE9P5w9/+ANPPPGE1xNO//znP/Pb3/6W\nnJwcZs+eDYCfnx9HjhyhqKgIq9Uq0dqiX+Xl5djtdsrKyiR1WQxIS0uLJ2F59+7dBAcHmzZ1WaZd\nhLhFPbNdnnrqKTZs2MD48eOpr69n165dvPbaa7S1tfHhhx9+7Wj1wsJC9uzZw40bN5g3bx5Wq5VJ\nkyYZ9EqE2WmtPUe2d6cuW61W5s2bN+y3Woo7R2vNrl27OHHihGlTl6X5uImRtFtDDB63282ePXt4\n9dVX2bt3ryfVNjU1lU2bNnHPPfd4/Yba1tZGXl4e+/fvp729HYvFQnp6+hC/AjGc9Exdrq6uZurU\nqdhsNmbNmiVNiPCqd+ryww8/zMyZM40uC5Dmo18j7ZwKYS7d0dozZ84kNjaWlpYWOjo6GDdunNGl\nCZNyu92cOHGC7Oxs6urqiImJ+VrqshC9VVRUkJOTwwMPPMC4ceNoampizJgxhk7hSfPRj8jIrwfG\nwfA9oVOY2549e8jLy2PFihU+Fa0tbp3T6fQc2d7U1MTcuXOxWq1MnjzZ6NKEyWmtefPNN2lsbDQ0\ndVl2u3iRmdl34wGdUzDi1mRmdh7K5efX+WtmptEVmc/y5ctZuHAhBw8eZMuWLeTk5NDW1mZ0WcKE\nAgICWLFiBc888ww2m42ysjK2bt3K+++/z3VvH1xCdElOTsbf35+dO3fy+uuvU1JSYuqdeD418uHt\n9EqQkY9bJdNXt+batWtkZWVRVFREfHw83/nOd4wuSZhcS0sLBw4c4NChQ7hcLpYuXUp6erpM4Qmv\n3G6358j22tpaNmzYQEJCwpA9v0y7eOEttwPgnXfkh+atGGkBc0Pl8uXLjBo1ioiICK5fv05ZWRkJ\nCQmy1VJ41dTU5DmyXSlFUlISKSkpcmS78MrlclFYWMjixYsJCgqitLSU4ODgO566LM2HF95+YEZE\nQHX1kJYy7A0kgE30z+FwkJubS0REBBkZGSxcuFB2OQiv6urqPEe2BwYGsmrVKlavXk1wcLDRpQmT\n27ZtGxUVFXc8dVmaDy9kqmDwjMSRj6Hegq215ty5c9jtdq5du8bkyZO5++67iYuLu3NPKoa96upq\nHA4HZ86cYfTo0aSmppKUlERgYKDRpQmTGqrUZWk++iFnfAyOkdbIGfl63G43p0+fJisrizlz5nDf\nfffd2ScUI8KVK1dwOBycP3+e0NBQ0tPTWbp0Kf7+/kaXJkyqO3X5yJEjbNiwgcWLFw/q40vzIYbE\nSGrkzDCS43K5cDqdBAcHc/HiRfbv34/Vah2W0dpi6JSVlWG32ykvLycsLIyMjAwWLVok64iEVw0N\nDYSGhqKUIi8vjxs3bgxK6rI0H0LcIrOtYTl16hSffvopzc3NLFiwgIyMjGEVrS2Gltadqct2u52v\nvvqKSZMmYbVamTt3rqwjEv365JNPyM/PH5TUZWk+hLhFZhj56K13tHZycjJr1641phgxLGitOXPm\nDA6Hg+vXrzN9+nRsNptpjt8W5vTVV1/hcDg4d+4cY8eO5dvf/jbz5s275ceR5kOIW2TmNSzNzc3s\n27ePsLAwkpKScLvdNDc3M3bsWGMLE6bldrspLCwkOzubhoYGZs2aJanL4qa6U5dtNhtRUVG0t7cT\nEBAw4Ck8aT6Ex2CtyxhJ6zu8GS6vsbCwkN27d5OcnMzq1atNGa0tzMHpdJKfn09ubi7Nzc2Suixu\nye7duyktLR1w6rI0HwIYvG/zZh4V8EU1NTVkZWVx6tQpgoODWbNmDStXrjRVtLYwl7a2Ng4dOsSB\nAwdob29n8eLFZGRkEBYWZnRpwsSKi4v54osvBpy6LM2HAAZvHYMZ10OIzmhth8PB2bNniYmJ4fHH\nHze6JGFyzc3N7N+/n7y8PNxuN4mJiaSlpREaGmp0acKkeqcu22w2UlNT+7xWmg8BDN4ODrPtBBH/\nqqKiApfLRXR0NG1tbRQVFbFkyRLZaim8amxsJDc3l4KCAvz8/Fi5ciVr1qyR1GXhVXfqclxcHGFh\nYVRXV+N0OpkyZYrnGmk++jFc5vUHg4x8+J78/Hw++eQTIiMjycjIMCxaWwwPtbW1ZGdnc+LECYKC\ngli9ejXJyclyZLu4qZ07d3L69GkWL16MxWIhIiJCmg9vfG3tgqz58D1aa86ePYvdbqeqqoq77roL\nm83G7NmzjS5NmFjP1OUxY8Z4jmwPCAgwujRhUn2lLq9fv16aj7744jd42e3im9xuNydPniQ7O5vw\n8HA2btxodEliGLh8+TJ2u50LFy4wbtw4LBaLpC6LfvVMXf7d734nzUdfZO2C8DUul4uWlhbGjh1L\nXV0dn332GRaL5V/maYXo7eLFi9jtdioqKiR1WQxIXV0dYWFh0nz0xRdHPoToVlJSwgcffEBLSwuL\nFi0iIyODiIgIo8sSJtWduuxwOLh69SpTpkzBarUSFxcnTYjok6z58ELWLghf19ra6pmndTqdLFu2\njPvvv19+mAivtNacOnWKrKwsampqmDFjBjabjZiYGKNLEyYjzUc/ZO2CEP+M1na73axbtw7oPIhK\ndjkIb1wuF4WFheTk5NDQ0EBsbCw2m01Sl4WHNB9CiAHRWqOUoqKigrfeestzZPs3jdYWI1dHRwf5\n+fns3btXUpfFvxj05kMpdR+wBfAHtmmt/7PXnz8O/Bdwueuu/9Zab+vvMaX5EMI8ampqsNvtnD59\nmtGjR3uitQMDA40uTZhU79Tl+Ph4LBYLEyZMMLo0YZBBbT6UUv7AOeAeoAI4AvxQa32mxzWPA8u1\n1k8PtEhfaj5kqkcMF5WVlTgcDkpKSoiMjGTTpk2yHkT0qzt1+fDhw2itPUe2S+qy77mV5mMgJ8is\nAM5rrS90Pfi7wIPAmX7/lgC+vsi1rKzzNkgDIsznrrvu4rHHHqO8vJy6ujqUUmitKS4uZu7cuXLe\ng/iaMWPGcO+995KcnExubi75+fkcO3ZMUpdFvwYy8vEwcJ/W+t+6bm8EVvYc5ega+XgBqKJzlOQ5\nrfWlPh7r58DPAaKiohLL+tr3OsLI9l4x3JWUlJCZmcnEiRMHHK0tfJekLvuuwZ52+R6wtlfzsUJr\nvbnHNRFAk9a6TSn1JPB9rbW1v8f1lWkXOdhMDHdaa4qKinA4HFRXVzNt2jRsNhszZ86UJkR41TN1\nOSQkhLS0NBITE+XI9hFssJuPVcB/aK3Xdt3+JYDW+gUv1/sDNVrr8f09rq80HzLyIUYKt9vN8ePH\nyc7Oxs/Pj6effhp/f3+jyxImd+nSJex2O6WlpYwfPx6LxUJ8fLxM4Y1Ag918BNA5lWKjczfLEeBR\nrfXpHtfcpbWu7Pr9d4D/pbVO7u9xfaX5kIPNxEjjdDqpq6sjMjKSjo4Odu/ezapVq5g8ebLRpQmT\n0lp7jmy/fPkykZGRWK1W5s+fL6NnI8igLjjVWjuVUk8Dn9O51Xa71vq0Uur3QL7W+iPgGaXUesAJ\n1ACP33b1I0x3gyG7XcRIERAQQGRkJNA5tF5cXMzx48dZtGiRJ1pbiJ6UUsyaNYuZM2dSXFyMw+Hg\nvffe86Qux8bGShPiY+SQMSHEN9JXtPa3vvUtmdsXXnWnLmdlZVFXV0d0dDQ2m42oqCijSxPfwK2M\nfMikm0EyMzvXg/j5df6amWl0RULcntGjR2Oz2Xj22WdZvnw5NTU1nrUgLpfL4OqEGfn5+REfH8/m\nzZu5//77uX79Otu3byczM5PKykqjyxNDQEY+DCDrQMRI1n1ke1NTE1u3bmX58uWsWrVKcmOEVx0d\nHeTl5bF//35aWlpYuHAhGRkZnuk9MTxItovJyQ4YYYShPmm3vr6ezz//nDNnzjBmzBhSUlJISkqS\nI9uFVz1Tlzs6OkhISMBisTB+fL+bJ4VJSPNhcnL2hxhqRo62XblyBbvdzpdffsm4cePYtGmTjIKI\nfjU1NbFv3z6OHDkCQFJSEqmpqYSEhBhcmeiPNB8mJyMfYqiZ4b+50tJSLl26RGpqKgDl5eXMmDFD\ndjkIr+rr68nOzqawsJDAwEBJXTY5n11wOlwWcT7/fOe3zp7GjOm8X4g7obz81u6/E2JiYjyNR1VV\nFdu3b2fr1q2cPXsWo74ECXMbP348Dz74IJs2bSIuLo7c3Fy2bNnC/v376ejoMLo88Q2MmJGP4baI\nU5JuxVAyw8hHT1prTp8+jcPhoKamhunTp3uObBfCm56py2PHjiU9PZ1ly5bJSbsm4ZPTLmb7cBXC\nTMzanLtcLgoLC8nJyaGlpYXnnnuOMb2HBYXopby8HLvdTllZGWFhYVgsFhYvXixHthvMJ5sPWcQp\nRP/MPNrmdDq5cuUKUVFRaK1xOBwsXryYSZMmGV2aMCmtNV9++SV2u53KykpJXTYBn2w+ZORDiJGh\npqaGP/3pT7S3t7NkyRIsFgthYWFGlyVMSmvNmTNnyMrKktRlg/lk82HWYWUhxK1rbm5m//795OXl\nobVm2bJl2Gw22eUgvOqZulxfX8/MmTOx2WxMnz7d6NJ8hk82H2DuYWUhxK1rbGwkNzeXkpISNm3a\nRGBgoOcEVSH64nQ6KSgoIDc3lxs3bjB37lysVqukLg8Bn20+hBAjk9PpJCAgAJfLxbZt25g/fz4r\nV66Uw8qEV+3t7Z4j29va2li0aBEZGRmEh4cbXdqIJc2HEGJEunHjBh9//DHFxcWEhISQmprK8uXL\nJUFXeNXS0uKZwnO5XCxbtoy0tDTGjRtndGkjjjQfQogR7fLly9jtdi5cuMD48eP56U9/yoQJE4wu\nS5hYY2Mje/fupaCgAKUUK1asICUlRbZ2DyJpPoQQPuHixYucOHGC9evXo5SiqqqKyMhIWRMivKqr\nqyM7O5vjx48TFBTEqlWrJHV5kEjzIYTwOS0tLbz00kuEhYVhs9mYPXu2NCHCq6qqKrKysjypy91T\neJK6fPuk+RBC+By3282pU6fIysqitraWqKgobDYb0dHRRpcmTKx36nJ6ejoJCQlyZPttkOZDCOGz\nXC4Xx44dIycnh8bGRjZt2sTEiRONLkuYXGlpKXa7nUuXLhEeHk5GRgaLFi2S0bNbIM2HEMLndXR0\ncP78eebPnw9AQUEB0dHRREZGGlyZMCutNSUlJdjtdq5evcrkyZOxWq3MmTNHmpABkOZDCCF6aGtr\n48UXX6StrY2EhATS09Nld4zwSlKXb480H0II0cuNGzfYt28fR44cQWvN8uXLSU9Pl62WwqueqcsN\nDQ3ExsZitVqZNm2a0aWZ0q00Hz6XP5yZ2RlC5+fX+WtmptEVCSGGQkhICGvXrmXz5s0kJCRw9OhR\n2tvbjS5LmJi/vz+JiYk888wzrF27lsrKSt544w127NjBtWvXjC5vWPOpkQ8JnxNCdGtpaWH06NEA\n7Ny5kylTprBy5UqCgoIMrkyYVVtbG4cOHeLAgQOSutwHmXbxIiYGysq+fn90NJSWDmkpQgiT6Ojo\nYOfOnZw7d46xY8eSmppKYmKiHNkuvOordTktLY3Q0FCjSzOUNB9e+PlBXy9XKXC7h7QUIYTJXLp0\nCbvdTmlpKRMmTOCRRx5hypQpRpclTKyxsZGcnByOHj2Kv7+/58j27hE1XyPNhxcy8iGE6I/WmgsX\nLnDw4EG+973vERwcTGNjI2PHjpWtlsKrmpoasrOzOXnyJEFBQaxZs4bk5GSfm8KTBadePP985xqP\nnsaM6bzflwx00a0szhW+RilFbGwsP/rRjwgODsbtdvPWW2/xxhtvcP78eYz6sibMLTw8nIceeohf\n/OIXzJw5E4fDwZYtWzh06BBOp9Po8kzJp0Y+oPMH6K9/DeXlEBXV2Xj40mLTgS66lcW5QnQe2X7y\n5EmysrKoq6sjOjqau+++mxkzZhhdmjCxiooKHA6HJ3W5+8h2P7+R/X1fpl2EVwOdepIpKiH+yel0\ncvToUXJzc2lqamLjxo3ExsYaXZYwuYsXL2K326moqCAiIoKMjAwWLlw4YqfwpPkQXg100a0szhXi\n69rb2zl+/DiJiYn4+flRUlJCeHg4ERERRpcmTEprzblz57Db7Vy7do0pU6aM2NTlW2k+ZC+Zj4mK\n6ntEIyrq9q4TwpcEBQWRlJQEdE7J7N69m4aGBs+R7ePHjze4QmE2Sinmzp1LXFycJ3U5MzPT51OX\nZeTDx8iaDyEGT1NTE3v37qX7sywpKYnU1FRCQkIMrkyYVe/U5dmzZ2O1Wpk6darRpX1jMu0i+jXQ\nRbe+vjhXiIGqq6sjJyeHwsJCfvKTnxATE2N0ScLkOjo6OHLkCHv37qWlpYUFCxaQkZHBxIkTjS7t\ntknzIYQQBqivr/dMvWRnZxMYGMiKFSsIDAw0uDJhVq2trRw8eJCDBw/S0dFBfHw8FotlWKYuS/Mh\nhBAG0lqzY8cOiouLCQ0NJS0tjWXLluHv7290acKk+kpdTk1NZezYsUaXNmDSfAwjMrUhxMhVVlaG\n3W6nvLycsLAwNmzY4LMLDMXANDQ0kJOTw7Fjx/D39yc5OZnVq1cPiyPbB735UErdB2wB/IFtWuv/\n7PXnwcBbQCJwHfiB1rq0v8eU5kMWdQrhC7TWnD9/nuzsbB566CEiIiJoa2sjKChoxG21FIPn+vXr\nniPbR40axZo1a0yfujyozYdSyh84B9wDVABHgB9qrc/0uOYpYInW+kml1CPAd7TWP+jvcaX5kIO8\nhPAlWmtPs/Huu+/S2NiIzWZj1qxZBlcmzOyrr77C4XAMi9TlwW4+VgH/obVe23X7lwBa6xd6XPN5\n1zUHlVIBwFfARN3Pg0vzIQd5CeGLtNYUFhaSnZ1NfX09M2fOxGazMX36dKNLEybWO3XZYrGwZMkS\nUx3ZPtjNx8PAfVrrf+u6vRFYqbV+usc1p7quqei6/WXXNdW9HuvnwM8BoqKiEsv6+trvQ2TkQwjf\n5XQ6KSgoIDc3lxs3brBhwwYSEhKMLkuYWHfqst1u58qVK0RGRmK1Wpk/f74ppvAG+4TTvl5R745l\nINegtX4deB069t6/SgAABkFJREFURz4G8Nwj2vPP973mw9dSdoXwRQEBAaxcuZKlS5eSl5fHnDlz\nAKisrCQ4OJjw8HCDKxRm0526PGvWLIqLi3E4HLz33ntMnToVq9VKbGysKZqQgRhI81EB9IxwnA5c\n8XJNRde0y3igZlAqHMG6F5XKbhchfFdQUBCpqame23//+9+pqKhg2bJlpKWlMW7cOAOrE2aklGL+\n/PnMnTvXk7r8zjvvEBMTg81mGxapywOZdgmgc8GpDbhM54LTR7XWp3tcswlY3GPB6UNa6+/397iy\n5kMIIb6usbGR3Nxcjh49ilKKFStWkJKSwpgxY4wuTZhU79TlOXPmYLVamTJlypDWcSe22q4DXqJz\nq+12rfXzSqnfA/la64+UUqOAt4GldI54PKK1vtDfY0rzIYQQ3tXW1pKTk8Px48dZt26dJ9BOCG/a\n29s5fPgw+/bto7W1lUWLFpGRkTFkqctyyJgQQowQVVVVhIeH4+/vz4kTJ2hqaiIpKUmObBdetba2\ncuDAAQ4dOoTT6Ryy1GVpPoQQYgTatWsXhYWFjBs3jvT0dBISEuTIduFVU1OT58h2pRRJSUmkpKTc\nsdRlaT6EEGKEKi0txW63c+nSJcLDw1m3bh2zZ882uixhYj1TlwMDA1m1ahWrVq1i1KhRg/o80nwI\nIcQIprWmpKQEu92OzWZjzpw5uFwu/Pz8hs1WSzH0qqurycrK4vTp04wePZqUlJRBTV2W5kMIIXxA\n9+e3Uspz+qXNZiMmJsbYwoSpVVZW4nA4KCkpGdTUZWk+hBDCxxQWFuJwOGhoaCA2NhabzcbUqVON\nLkuYWO/UZYvFwuLFi2/7yHZpPoQQwgd1dHSQn5/P3r17aW5u5p577mHNmjVGlyVMrDt12eFwUFlZ\nyaRJk7BarcydO/eWp/Ck+RBCCB/W1tbGoUOHmDdvHpMnT6a+vh63201YWJjRpQmT0lpz5swZsrKy\nqK6uZtq0abecuizNhxBCCI8PP/yQU6dOkZiYSGpqKqGhoUaXJEzK7XZz/Pjx20pdluZDCCGER0ND\ng+fIdn9/f1auXMmaNWsYPXq00aUJk+qdujxv3jwyMjKYPHmy178jzYcQQoivqampITs7m5MnT5Kc\nnMzatWuNLkmYXHt7O4cOHeLAgQOEhITw9NNPe10LMiyaD6VUFVDWzyWRQPUQlSNuTt4Pc5H3w3zk\nPTEXeT+GXrTWeuJALjSs+bgZpVT+QDsocefJ+2Eu8n6Yj7wn5iLvh7nd3mZeIYQQQojbJM2HEEII\nIYaUmZuP140uQPwLeT/MRd4P85H3xFzk/TAx0675EEIIIcTIZOaRDyGEEEKMQKZrPpRS9ymlziql\nziul/rfR9fg6pdR2pdQ1pdQpo2sRoJSaoZTKUkoVKaVOK6WeNbomX6aUGqWUOqyUOt71fvxfo2sS\noJTyV0odU0p9YnQtom+maj6UUv7Aq8C3gAXAD5VSC4ytyuf9BbjP6CKEhxP4n1rr+UAysEn+HzFU\nG2DVWscDCcB9Sqlkg2sS8CxQZHQRwjtTNR/ACuC81vqC1rodeBd40OCafJrWOheoMboO0UlrXam1\nPtr1+0Y6P2CnGVuV79KdmrpuBnb9IwvpDKSUmg7cD2wzuhbhndmaj2nApR63K5APViH6pJSKAZYC\necZW4tu6hvgLgWvAHq21vB/Gegn4d8BtdCHCO7M1H30dGC/fIoToRSk1Fngf+B9a6waj6/FlWmuX\n1joBmA6sUEotMromX6WU+jZwTWtdYHQton9maz4qgBk9bk8HrhhUixCmpJQKpLPxyNRaf2B0PaKT\n1roOyEbWSBlpDbBeKVVK57S9VSn1jrElib6Yrfk4AsQppWYqpYKAR4CPDK5JCNNQnXGSfwaKtNb/\nz+h6fJ1SaqJSakLX70cDdwPFxlblu7TWv9RaT9dax9D588Ohtf6RwWWJPpiq+dBaO4Gngc/pXEj3\nntb6tLFV+Tal1F+Bg8BcpVSFUuoJo2vycWuAjXR+oyvs+med0UX5sLuALKXUCTq/PO3RWsv2TiFu\nQk44FUIIIcSQMtXIhxBCCCFGPmk+hBBCCDGkpPkQQgghxJCS5kMIIYQQQ0qaDyGEEEIMKWk+hBBC\nCDGkpPkQQgghxJCS5kMIIYQQQ+r/A6rS91r46T9GAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAGbCAYAAAB6XcIxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXRUVbo3/u+pylQVKnNiQpJKBcgAmVOVqaowLYhcHBjs1eu2nb6+/YJmdYOo3az1e1cbXc1tO/rH263gbVAj+mq38bZDN4NeQSVohExkIAgIGQiZICREyECqMlWd3x+pioEkkHnvqno+a2XFOp5UfUPOqv3UOfvsRxBFEYQQQggh0yVhHYAQQgghtomKCEIIIYTMCBURhBBCCJkRKiIIIYQQMiNURBBCCCFkRpzm40n9/PxElUp1x31EUYTJZIKT07xEsDkGgwEGgwF+fn6so3CDjhFCCOFDZWVlpyiK/rdvn5d3Z5VKhYqKijvu8+6776Kvrw9bt26FIAjzEcOmnD17Fp988gn+/d//HcuXL2cdhwtvvfUWzGYzsrOz6RghhBCGBEFommg7s8sZycnJuHbtGmpra1lF4MqKFSvg4+ODEydOgNbuGJGcnIy2tjY0NDSwjkIIIWQCzIqI2NhYeHl54cSJE6wicEUikUCr1eLy5ctoapqw4HM4CQkJWLRoEYqKilhHIYQQMgFmRYREIkFGRgZaWlrQ3NzMKgZXEhIS4O7uToWVhZOTE9LT09HQ0IArV66wjkMIIeQ2TO/OSEpKglwup0saFs7OzkhPT0d9fT2uXr3KOg4XNBoNXF1dUVdXxzoKIYSQ2wjzcf1do9GId5tYadXb2wuFQjHnGWyV0WjEq6++iqioKPz0pz9lHYcLdIwQQghbgiBUiqKouX0783UirIPD4OAg4yR8kMlk0Gg0OHfuHLq6uljH4QIdI4QQwicubsA/d+4cDh48iG3btsHT05N1HObS09NRVlaG4uJiPPjgg6zjcOH06dP4/PPPsX37dixatIh1HEIcXk9PDzo6OjA0NMQ6CpkFZ2dnBAQEwMPDY0Y/z0URERwcjOHhYZSWlmLt2rWs4zDn4eGB+Ph4nDp1CpmZmXB3d2cdibmQkBAMDg6irKwMq1evZh2HEIfW09OD9vZ2BAcHQyaT0TouNkoURRiNRly+fBkAZlRIML+cAQBeXl6IjY1FZWUljEYj6zhc0Gq1GBoawsmTJ1lH4YKvry+WL1+O8vJyDAwMsI5DiEPr6OhAcHAw5HI5FRA2TBAEyOVyBAcHo6OjY0bPwUURAQA6nQ6Dg4M0aFr4+/sjOjoaJ0+epLkAFjqdDv39/aisrGQdhRCHNjQ0BJlMxjoGmSMymWzGl6W4KSLuueceREREoLy8HCaTiXUcLuh0OhiNRlRVVbGOwoXg4GCEh4ejrKwMZrOZdRxCHBqdgbAfs/lbcjEnwuqBBx6ARCKBVCplHYULoaGhCAsLQ0lJCVJSUujfBcC6devg7OwMiYSb+pcQQhwWV+/E/v7+8PX1ZR2DKzqdDt3d3Th79izrKFwICAiAt7c36xiEEELAWREBjCy29I9//IMGTYuIiAgEBASgqKiIGnNZ9PX1IT8/HxcuXGAdxW7ln8mHapcKkv+UQLVLhfwz+awjETLndu7cCT8/v1k9hyAI+Otf/zrrLI2NjRAEAZ999tmsnmdgYAA7duxAQEAA3N3d8dBDD6GxsXHW+SbDXRHh5uaGzs5O6mZpIQgCdDodOjo6aOlnC5lMRsfIPMo/k4/sT7PR1N0EESKaupuQ/Wk2FRKE2ICnn34a7777Lv785z/jk08+QWdnJ9asWYP+/v55eT3uigjroHn16lVcvHiRdRwuxMbGwtPTkxpzWVibt7W2tlLztnmQU5ADw5Dhlm2GIQNyCnIYJSKETEVrayvefvttvPrqq3j88cexbt06/Otf/0JTUxPef//9eXlN7ooIAIiPj4eHhwe1gLaQSqXIyMhAc3MzWlpaWMfhgrV5GxVWc6+5e+LCbLLthMxGfj6gUgESycj3fE5OePX19eGpp55CVFQU5HI5wsPDsW3bNvT09Izbd3BwEM888wx8fHzg5eWF7du3j7s1v7m5GT//+c/h4+MDuVyOtWvXoqamZk4zf/nllwCARx99dHRbcHAw9Ho9Dh8+PKevZcVlESGVSpGeno5Lly6NrqTl6JKTkyGTyWjQtLB2PK2rq0N7ezvrOHZF6amc1nZCZio/H8jOBpqaAFEc+Z6dzUchYTAYYDKZkJubi8OHD+PFF1/EsWPH8LOf/Wzcvn/5y1/Q2tqK/Px8PP/888jLy0NOzo9n7q5fvw69Xo+amhq88cYb+Oijj9DX14f777//jgssms1mDA8P3/Fr7JIIFy5cQEhIyLjWAMuXL5+3OWRc3eI5llqtxtDQEM3Et3BxcUFqaioKCwtx7do1+Pv7s47EXEpKCoCZLdVKJpe7OhfZn2bfcklD7ixH7upchqmIPcrJAQy3XjmDwTCyPSuLTSYrf39/vP7666OPh4eHER4eDr1ej+bmZiiVPxbVCoUCH3/8MSQSCdatW4eBgQHk5ubi97//PXx8fPDqq6+ir68P1dXV8PHxATBy551KpcI777yDbdu2TZhh8+bNeO+99+6YMzMzE9988w0A4MaNG/Dy8hq3j7e3N27cuDHdf4Ip4baIcHV1RWZmJusYXElLS0NxcTGKioqwceNG1nGYk8lkuPfee1nHsDtZcSPv3jkFOWjubobSU4nc1bmj2wmZK5NNaeJlqtPf//53vPLKK6irq0NfX9/o9tra2luKiA0bNtyyds2jjz6K559/HmfPnsW9996Lo0ePYs2aNfDw8MDw8DCAkcJDrVajoqJi0tffuXMnnnrqqTtmtHY5tppo4ShRFOdtcTBuiwirmpoa/PDDD9BqtayjMCeXy5GUlITKykqsWrWKPoFbnD9/Ht3d3UhPT2cdxW5kxWVR0UDmnVI5cgljou2s7d+/H48//jh+85vf4KWXXoKPjw/a2tqwadOmcXc6BAQETPi4ra0NANDZ2YnS0lJ8+OGH417nTg0FlUolQkJC7phzbHHg7e2Nrq6ucft0dXVNeIZiLnA5J2Ksuro6FBQUoLe3l3UULmi1WoiiiJKSEtZRuFFTU4OCggIYbj8vSgjhWm4uIJffuk0uH9nO2scff4y0tDTs3bsX69atQ1pa2qSX129vXmV9HBQUBADw8fHB+vXrUV5ePu5rz549k2bYvHkznJ2d7/g1tgiJjo5GS0vLLWdNgJG5EtHR0TP6d7gb7osIrVYLs9mM0tJS1lG44OXlhZiYGOp4OoZOp6OOp3aAFrhyPFlZQF4eEBYGCMLI97w89vMhgJGFD11dXW/Zlj/JjM+DBw/e0s/nX//6F2QyGWJjYwGMnG04d+4cYmJioNFobvmKioqaNMPOnTsnLDzGfr355puj+z/wwAMARs6iWF25cgXHjx/HunXrpv+PMAXcX87w8fHBihUrUFFRgZUrV8LNzY11JOZ0Oh3OnDmD8vJymhOAkQlQUVFROHnyJLRaLVxcXFhHItNkXeDKOpnTusAVALqsYueystgWDYODg/jkk0/GbU9MTMTOnTuRm5uLtLQ0fP755ygoKJjwOXp7e/Gzn/0MTz75JM6dO4c//vGPeOqpp0YnUf7ud7/D+++/j1WrVmH79u0IDg5Ge3s7CgsLodfr8dhjj034vCqVCiqVasq/S0hICLZs2YJnn30WoijC398fO3fuRFhYGH75y19O+Xmmg/siAgD0ej3OnTuHiooK6PV61nGYCwwMxLJly1BWVoaMjAw4OzuzjsScTqfDO++8g1OnTiEtLY11HDJNd1rgiooIMp+sBcDtjh49ih07dmD37t3o7+/HmjVr8MEHH0w492rHjh1oaGjAY489BrPZjCeeeAIvvfTS6P/38/NDaWkpcnJy8Nvf/hZdXV0ICgqCXq9HfHz8nP4+r732Gtzd3fG73/0OBoMBmZmZ+O///u95+wAuzMeywRqNRrzTjNOZOHToEFQq1Zz/g9uqxsZGvPvuu3jooYdGb3V0dPv370dkZCRiYmJYRyHTJPlPCUSMfy8SIMD8B2r7zpvz589j+fLlrGOQOXS3v6kgCJWiKGpu324TZyIAYP369awjcCUsLAwhISEoLi6GWq2m1tgANm3axDoCmSGlpxJN3eOn6dMCV4TwzaZGnqGhIVRXV98ygcVRWXuM3LhxA99//z3rONwYHBzE6dOnqTGXjcldnQu5863T9GmBK0L4Z1NFRF1dHQ4cOEAtoC2io6Ph5+dHbcLHOH/+PPbv34/6+nrWUcg0ZMVlIe+RPIR5hkGAgDDPMOQ9kkfzIQjhnE0VEdHR0fDx8aFB00IQBGi1WrS1taGhoYF1HC7ExsZS8zYblRWXhcZnG2H+gxmNzzZSAUGIDbCpIkIikUCr1eLy5ctobGxkHYcL8fHxUCgUNGhaWDueNjY2orW1lXUch0NrPRDiWGyqiABG7t1dtGgRDZoWTk5OSE9PR0NDA65cucI6DhfUajV1PGXAutZDU3cTRIijaz1QIUGI/bK5IsLJyQlpaWkwGo0YGhpiHYcLGo0Gbm5uVFhZuLi4ICUlBQaDYbTZDZl/d1rrgRBin2zmFs+xdDod9Hr9vHUlszWurq7QaDQoKirC9evXR1dJc2Q/+clP6LbXBdbcPXHrxcm2E0Jsn02+y0okEgiCAIPBMK7RiKNKT0+HVCpFcXEx6yhcsBYQN2/epMZcC2SyNR1orQdC7JdNFhHAyHoAr732GgoLC1lH4cKiRYuQkJCA6upq3Lx5k3UcLvT39+O1116juRELhNZ6ILZm586d8PPzm9VzCIKAv/71r7PO0tjYCEEQ8Nlnn83qeV588UXcf//98PDwgCAI834Tgs0WES4uLli+fDlOnTpFZyMstFotTCYTdTy1cHNzQ2RkJCorK9Hf3886jt2jtR4IYe/NN9/E8PAw7rvvvgV5PZstIoCRuRHDw8MoKytjHYULvr6+WL58OSoqKjAwMMA6Dhd0Oh0GBgZQXl7OOopDoLUeCGGrubkZ33zzDZ588skFeT2bLiL8/PwQFRWF8vJyDA4Oso7DBb1ej/7+fsx1AzRbFRQUNNrxlO7UIIQ/vK4t0tfXh6eeegpRUVGQy+UIDw/Htm3b0NPTM27fwcFBPPPMM/Dx8YGXlxe2b98+bkxqbm7Gz3/+c/j4+EAul2Pt2rWoqamZ89wLPaHcposIYGTQNBqNtGKjxeLFixEeHo7S0lIaNC10Oh36+vpogTJCOMPz2iIGgwEmkwm5ubk4fPgwXnzxRRw7dmzCtuF/+ctf0Nraivz8fDz//PPIy8tDTs6PtzZfv34der0eNTU1eOONN/DRRx+hr68P999/P4xG46QZzGYzhoeH7/hlMpnm5fefKpu8xXOskJAQPPPMM/D29mYdhRt6vR5///vf8d133yE5OZl1HOZUKhWefvppOkYI4cyd1hZhfSnM398fr7/++ujj4eFhhIeHQ6/Xo7m5GUrlj3cdKRQKfPzxx5BIJFi3bh0GBgaQm5uL3//+9/Dx8cGrr76Kvr4+VFdXj96Cr9PpoFKp8M4772Dbtm0TZti8eTPee++9O+bMzMzEN998M/tfeIZsvogAMDo4DA8Pw8nJLn6lWVmyZAmCgoJQXFyMpKQkh19PQxAEOkYI4RDva4v8/e9/xyuvvIK6urpbJvDX1tbeUkRs2LDhlssIjz76KJ5//nmcPXsW9957L44ePYo1a9bAw8Nj9AyxQqGAWq2+46XnnTt34qmnnrpjRoVCMdNfb07YzbtpQUEBamtr8etf/5oGTUub8E8++QQXLlzA8uXLWUfiwhdffIGmpiY8+eSTDn+MEMIDpacSTd1NE25nbf/+/Xj88cfxm9/8Bi+99BJ8fHzQ1taGTZs2jbvbKyAgYMLHbW1tAIDOzk6Ulpbiww8/HPc6q1evnjSDUqlESEjIHXOyfi+z+TkRVv7+/mhvb0dtbS3rKFxYsWIFvL29qePpGH5+frhy5QouXbrEOgohBHyvLfLxxx8jLS0Ne/fuxbp165CWljbpJdGOjo4JHwcFBQEAfHx8sH79epSXl4/72rNnz6QZNm/eDGdn5zt+3akIWQh2cyYiJiYGBQUFKCoqQlRUFOs4zFk7nv7P//wPmpqaoFKpWEdiLiEhAV9//TVOnDiBJUuWsI5DiMOzznvIKchBc3czlJ5K5K7OZT4fAgCMRiNcXV1v2ZafP/GEz4MHD+Lll18evaTxr3/9CzKZDLGxsQBGzjZ89NFHiImJgUwmm3IGupyxgKRSKbRaLQ4fPjxu0oujSkxMxDfffIOioiIqIvBjx9OjR4/iypUrWLx4MetIhDi8rLgspkXD4OAgPvnkk3HbExMTsXPnTuTm5iItLQ2ff/45CgoKJnyO3t5e/OxnP8OTTz6Jc+fO4Y9//COeeuqp0UmUv/vd7/D+++9j1apV2L59O4KDg9He3o7CwkLo9Xo89thjEz6vSqWa9nt3YWEhrl27hsrKSgDA4cOH4e/vjxUrVmDFihXTeq6psJsiAgCSkpJQWFiIkpISKiIAODs7Iy0tDceOHcPVq1cRGBjIOhJzGo0Gx48fR0lJCX7605+yjkMIYcxaANzu6NGj2LFjB3bv3o3+/n6sWbMGH3zwAdLT08ftu2PHDjQ0NOCxxx6D2WzGE088gZdeemn0//v5+aG0tBQ5OTn47W9/i66uLgQFBUGv1yM+Pn5Of58//OEPt7SD2Lp16+j2nTt3zulrAYAwH9fLNRqNyGqxo4aGBvj7+zM/xcMLo9GIV199FVFRUTRoWly8eBGBgYFwd3dnHYUQm3T+/HmasG1n7vY3FQShUhRFze3b7WZipdWSJUuogBhDJpNBrVbj3Llz6OrqYh2HC0uXLqUCghBC5oDdFREA0N7ejvfeew/d3d2so3AhIyMDgiBQm/Ax2tra8N5771HHU0IImQW7LCJcXV3R1NRE3SwtPDw8EBcXRx1Px3BxcUFjYyM1byOEkFmwyyLCy8sLsbGxqKysvOO65I5Ep9NhaGgIJ0+eZB2FC9aOp+Xl5dTxlBBCZsguiwhgZNAcHBykQdPC398fUVFROHnyJHU8tdDpdOjv7x+9FYoQMnW0iJ39mM3fcspFhCAIUkEQTgmC8NmMX20B3XPPPYiIiEBZWRmGhoZYx+GCteNpVVUV6yhcCA4OHu14yroTnq3itY0zmV/Ozs50lteOGI1GODs7z+hnp7NOxDMAzgPwmNErMZCZmYnW1lbWMbgRGhoKpVKJkpISpKSkQCqVso7E3E9+8hO0t7fTp6oZsLZxtnZhtLZxBsDFioNk/gQEBODy5csIDg6GTCZj3r+BzIwoijAajbh8+TLuueeeGT3HlNaJEAQhBMB7AHIB/E4UxYfvtD/LdSLIndXW1uKDDz7Apk2bkJCQwDoOsWGqXaoJmyeFeYah8dnGhQ9EFlRPTw86OjroTK+Nc3Z2RkBAADw87nx+YLJ1IqZ6JmIXgP8PwKQLMAiCkA0gGwBXq0WazWacPn0aixYtQkREBOs4zEVERCAgIABFRUWIj4+nTxAATCYTTp06BR8fH+qpMQ28t3Em88vDw+OuAw+xf3edEyEIwsMAOkRRvOPsM1EU80RR1IiiqPH395+zgLNlXR+hoKCATlnjxzbhHR0dqKurYx2HC4IgoKioCF9//TUdI9MwWbtmHto4E0IWxlQmVuoArBcEoRHAPwCsEgTh/XlNNYcEQYBWq8XVq1dx8eJF1nG4EBsbC09PTxQVFbGOwgWJRIKMjAy0tLSguZk+RU8Vz22cCSEL465FhCiKvxdFMUQURRWAnwM4JoriL+c92RyKj4+Hh4cHDZoWUqkUGRkZaGpqQktLC+s4XEhKSoJcLqdjZBqy4rKQ90gewjzDIEBAmGcY8h7Jo0mVhDgQu10nYiypVIr09HRcunQJly9fZh2HC8nJyZDJZDRoWlg7ntbW1qK9vZ11HJuRFZeFxmcbYf6DGY3PNlIBQYiDmVYRIYriN3e7M4NXarUaKpUKw8PDrKNwwcXFBampqbhw4QKuXbvGOg4XUlNToVKpaLY5IYRMkUOciQBG+mn86le/QlhYGOso3EhLS4OzszOdjbCQyWT41a9+hZCQENZRCCHEJjhMEWHV399PdyVYyOVyJCUl4cyZM+jp6WEdhxsGgwH19fWsYxBCCPccrog4duwY/vGPf6C3t5d1FC5otVqIooiSkhLWUbhx9OhRfPjhhzAYDKyjEEII1xyuiEhPT4fZbKYW0BZeXl6IiYmhjqdjpKenU8dTQgiZAocrInx8fLBixQqUl5ejv7+fdRwuWDuelpeXs47ChYCAAOp4SgghU+BwRQQw0s1yYGCAWkBbBAYGYtmyZdTxdAydTgeDwYBTp06xjkIIIdxyyCIiKCgIS5cupVsbx9Dr9ejr60N1dTXrKFxQKpVQKpV0jBBCyB1MpxW4XXnsscfg5OSwv/44YWFhCAkJQXFxMdRqNSQSh6wvb/H444/TMUIIIXfgsCOFdXDo7u6G2WxmnIY9a2OuGzdu4Pvvv2cdhwvWY6Srq4sacxFCyAQctogAgNbWVuzevRs1NTWso3AhOjoafn5+KCoqokHTorGxEbt376Z1IwghZAIOXUQsXrwYXl5eOHHiBA2a+LHjaVtbGxoaGljH4UJoaCgUCgWt6kkIIRNw6CJCIpFAq9Xi8uXLaGpqYh2HC/Hx8TRojmHteNrY2IjW1lbWcQghhCsOXUQAQEJCAtzd3XHixAnWUbjg5OSE9PR0NDQ04MqVK6zjcEGtVlPHU0IImYDDFxHOzs6jbcKpf8QIjUYDNzc3GjQtXFxckJKSgrq6OvT19bGOQwgh3KD71wCkpKQgPj4eHh4erKNwwdXVFRqNBkVFRbh+/Tp8fHxYR2IuIyMDKSkpcHd3Zx2FEEK44fBnIgDAzc0Nnp6eAEC3e1qkp6dDKpWiuLiYdRQuyGQyKBQKAHSMEEKIFRURFqIoIj8/H0eOHGEdhQuLFi1CQkICqqurcfPmTdZxuGA2m/G3v/0NR48eZR2FEEK4QEWEhSAIWLRoEU6dOkXXvS20Wi1MJhN1PLWQSCSQy+WorKyk5m2EEAIqIm6h1WqpBfQYvr6+WL58OcrLyzEwMMA6Dhd0Oh0GBgZQUVHBOgohhDBHRcQY/v7+iI6OphbQY+j1evT391PHUwtr87bS0lIMDw+zjkMIIUxREXEbnU4Ho9GIqqoq1lG4sHjxYoSHh6OkpIQGTQu9Xo+bN2/i9OnTrKMQQghTVETcJjQ0FJs2bUJiYiLrKNzQ6/Xo7e3Fd999xzoKF1QqFTZu3IjY2FjWUQghhCkqIiaQkJAANzc31jG4sWTJEgQFBaG4uJh6jGBkEm5iYiJcXV1ZRyGEEKaoiJhEXV0dPv74Yxo08WOb8M7OTly4cIF1HG5cuHAB//znP+kYIYQ4LCoiJmE0GnHu3DnU1tayjsKFFStWwNvbm9qEj9HX14czZ87g0qVLrKMQQggTVERMIiYmBp6entQ/wsLa8bS1tZU6nlokJCRg0aJFdIwQQhwWFRGTkEql0Gq1aG5uRnNzM+s4XEhMTIS7uzsNmhbWjqcXL15EW1sb6ziEzKv8M/lQ7VJB8p8SqHapkH8mn3UkwgEqIu4gKSkJcrmcBk0LZ2dnpKWloa6uDu3t7azjcEGj0cDV1ZWOkTugwcf25Z/JR/an2WjqboIIEU3dTcj+NJv+loSKiDtxcXHB6tWrsWLFCtZRuJGSkgIXFxcaNC3c3NywevVqREdHs47CJRp87ENOQQ4MQ4ZbthmGDMgpyGGUiPCCioi7UKvVSEhIYB2DGzKZDGq1GmfPnkVXVxfrOFxITU2lNSMmQYOPfWjunviS7mTbieOgImIKBgYGUFxcjO7ubtZRuJCRkQFBEFBSUsI6Cjf6+/tx4sQJ6nh6Gxp87IPSUzmt7cRxUBExBUajEUePHkVpaSnrKFzw8PBAXFwcqqqqYDAY7v4DDqCvrw8FBQXU8fQ2NPjYh9zVuZA7y2/ZJneWI3d1LqNEhBdUREyBl5cXYmNjUVlZCaPRyDoOF3Q6HXU8HcPX1xfR0dHU8fQ2NPjYh6y4LOQ9kocwzzAIEBDmGYa8R/KQFZfFOhphjIqIKdLpdBgcHER5eTnrKFzw9/dHVFQUysrKqOOpBXU8HY8GH/uRFZeFxmcbYf6DGY3PNtLfkACgImLK7rnnHkRERKCsrAxDQ0Os43BBr9fDaDTi1KlTrKNwITg4GOHh4SgtLYXJZGIdhxs0+BBiv6iImAa9Xo+AgAD09fWxjsKF0NBQKJVKFBcX06Bpodfr4e/vT3NFCCEOQZiPPggajUasqKiY8+cl/KmtrcUHH3yARx99FPHx8azjEEIImQeCIFSKoqi5fTudiZiBnp4eWubYIiIiAgEBAdSY6zbd3d20qichxO5RETFNoigiPz8fBw8epEETP7YJb29vR319Pes4XBBFEX/729/w2Wef0TFCCLFrVERMkyAISE9Px9WrV9HQ0MA6DhdiY2Ph6emJEydOsI7CBUEQkJaWhpaWFmreRgixa1REzEBcXBwUCgUNmhZSqRQZGRloampCS0sL6zhcoOZthBBHQEXEDDg5OSEjIwOXLl3ClStXWMfhQnJyMmQyGQ2aFtaOp7W1tejo6GAdhxBC5gUVETOkVqshl8vpk7eFi4sLUlNTceHCBVy7do11HC6kpKTAzc2NjhFCiN2iWzxnYWBgAK6urqxjcKOvrw+7du1CbGwsNmzYwDoOF+gYIYTYA7rFcx5YBwfq3DjC3d0dSUlJ+O6779DT08M6DhfoGCGE2DMqImbp5MmT2LVrFw0SFhkZGRBFkTqejlFUVITXXnuNVrEkhNgdKiJmadmyZTCZTDRoWnh7eyMmJgYVFRXU8dQiIiKCmrcRQuwSFRGz5OPjgxUrVqCiooJaQFtYO546wryYqQgICEBkZCQ1byOE2B0qIuaATqdDf38/DZoWgYGBWLZsGUpLS2nQtNDr9TAYDNTxlBBiV6iImAOLFy/GkiVLUFVVRcscW+h0OvT19eH06dOso8nuEO8AACAASURBVHBBqVQiNDQUlZWVdIwQQuyGE+sA9uLhhx+GTCaDIAiso3BBpVIhODgYxcXFSE5OhkRC9erGjRvh7u5uE8dI/pl85BTkoLm7GUpPJXJX5yIrLot1LEIIZ+idfY74+PhAJpNBFEX6pImR/hF6vR7Xr1/H+fPnWcfhgq+vL9zc3Lg/RvLP5CP702w0dTdBhIim7iZkf5qN/DP5rKMRQjhDRcQc6unpQV5eHi5cuMA6CheioqLg6+uLEydOcD1oLqQbN27gjTfewMWLF1lHmVROQQ4MQ7fejmoYMiCnIIdRIkIIr6iImEOLFi3CwMAADZoWEokEOp0ObW1tuHTpEus4XPDw8IDRaOS6eVtz98SdRyfbTghxXFREzCGJRAKtVovLly+jqamJdRwuxMfHU8fTMawdTxsbG9Ha2so6zoSUnsppbSeEOC4qIuZYQkIC3N3dadC0cHJyQnp6OhoaGqjjqYVarea642nu6lzIneW3bJM7y5G7OpdRIkIIr6iImGPOzs5IT09HfX09rl69yjoOF9RqNVxdXbkdNBeai4sLUlJScOHCBXR2drKOM05WXBbyHslDmGcYBAgI8wxD3iN5dHcGIWQcusVzHqSkpEAul8PPz491FC64ubkhJSUFRUVFuH79Onx8fFhHYi4tLQ3e3t7w9vZmHWVCWXFZVDQQQu6KzkTMAzc3N6jVajg5UY1mlZaWBolEguLiYtZRuGDteCqVSllHIYSQGaMiYh5VVFTg22+/ZR2DCwqFAomJiaiurqaOp2OUlZVRYUUIsVlURMyjy5cv4/jx4+jr62MdhQtarRYmkwllZWWso3CjpaUFhYWF6O/vZx2FEEKmjYqIeaTVajE0NISTJ0+yjsIFX19fLF++HOXl5dTx1EKn02FgYICatxFCbBIVEfPI398f0dHROHnyJAYHB1nH4YK142llZSXrKFwICgrC0qVLUVpaiuHhYdZxCCFkWqiImGc6nQ5GoxFVVVWso3AhODgY4eHhKCkpoUHTQqfT4ebNm9TxlBBic6iImGehoaFIS0tDQEAA6yjc0Ol06O3txZkzZ1hH4UJ4eDhSUlLg6+vLOgohhEwL3YO4ANatW8c6AleWLl2KwMBAFBUVITEx0SZaY88nQRDw0EMPsY5BCCHTRmciFsjNmzdRXFxMjbkwMmjqdDp0dnaipqaGdRxu9Pb2oqSkhI4RQojNoCJigVy8eBFffvkl6urqWEfhQkxMDLy9vanj6Ri1tbX44osvqOMpIcRm3LWIEATBTRCEk4IgnBYE4ZwgCP+5EMHsTWxsLDw9Pakxl4W142lrayuam6nFNDDSvG3RokXUY4RXW7cCTk6AIIx837qVdSJCmJvKmYgBAKtEUUwAkAjg3wRBSJ/fWPZHKpVCq9WiubkZLS0trONwITExkTqejmHteHrx4kW0tbWxjkPG2roVeP11wGQaeWwyjTymQoI4uLsWEeII6zrFzpYvOv88A0lJSZDL5TRoWjg7OyMtLQ11dXVob29nHYcLGo2GOp7yKC9vetsJcRBTmhMhCIJUEIRqAB0AvhJFcdy6xYIgZAuCUCEIQsW1a9fmOqddcHFxQVpaGpycnGA2m1nH4UJKSgpcXFxo0LRwc3NDamoqBEGguSI8sZ6BmOp2QhyEMJ03KkEQvADsB7BdFMWzk+2n0WhEWsZ3YqIoOvwtjbf74osvUFZWhqeffhpeXl6s4zBHxwiHnJwmLhikUoAWTSMOQBCESlEUNbdvn9bdGaIodgH4BsC/zVEuh2MdHDo7O6mbpUV6+sgUm5KSEsZJ+GA9Rjo6OmAwGBinIQCA7OzpbSfEQUzl7gx/yxkICIIgA3A/gAvzHcyeGQwGvP7663QK38LT0xPx8fGoqqqiQdOip6cHr7/+OkpLS1lHIQCwdy/wm9+MnHkARr7/5jcj2wlxYFM5ExEE4GtBEL4DUI6RORGfzW8s+yaXy7FixQpUVlbCaDSyjsMFnU5HHU/H8PDwGG3eRh1PObF378ilC1Ec+U4FBCFTujvjO1EUk0RRjBdFMVYUxT8uRDB7p9PpMDg4iPLyctZRuODv74+oqCjqeDqGteMpNW8jhPCKVqxkJDAwEBERESgrK8PQ0BDrOFzQ6/UwGAw4deoU6yhcCAkJgUqlQklJCUx0FwAhhENURDCk0+kwMDCAK1eusI7ChdDQUCiVShQXF9OgaaHX62E0GnH16lXWUQghZJxp3eI5VXSL59SIogij0Qi5XM46Cjdqa2vxwQcf4NFHH0V8fDzrOMyJooj+/n7IZDLWUQghDmxObvEkc0sQBMjl8tFiggAREREICAhAUVERLbaEkWNEJpPRMUII4RIVERw4cOAA3nvvPRo08WOb8Pb2dtTX17OOw42PP/4YH3zwwbw9f/6ZfKh2qSD5TwlUu1TIP5M/b69FCLEfVERwICwsDFevXkVDQwPrKFygjqfjqVQqtLS0zEvH0/wz+cj+NBtN3U0QIaKpuwnZn2ZTIbHAqJAjtoiKCA7Ex8dDoVDQoGkhlUqRkZGBpqYmtLa2so7Dhfls3pZTkAPD0K2LfBmGDMgpyJnz1yITo0KO2CoqIjhgbQF96dIlulPDIjk5GTKZjAorC2vH09raWnR0dMzpczd3T3x2Y7LtZO7NtJCjsxeENSoiOKHRaODm5kYrNlq4uLggNTUVNTU16OzsZB2HCykpKXB2dp7zBcqUnsppbSdzbyaFHJ29IDygIoITrq6u+OUvf4mHHnqIdRRupKamwsnJiXqMWMjlcvzyl78EAKxfvx5eXl6QSqXw8vLC+vXrceTIkRm1mM9dnQu58623Gcud5chdnTsnucndzaSQo8tQhAdURHAkJCQEzs7OdJeGhbu7O5KSkvDdd9+hp6eHdRzmamtrsW7dOrzwwgtYv3496uvrMTAwgPr6emzYsAHPPfccYmNjUVtbO63nzYrLQt4jeQjzDIMAAWGeYch7JA9ZcVnz9JvYl7m4pDCTQo4uQxEeUBHBmaamJrz++uvUJtwiIyMDoig6fDfL2tpaZGZmYseOHfj4448xODgIuVwOJycn+Pn5YcuWLaisrMSOHTuQmZk5o0Ki8dlGmP9gRuOzjVRATNFcXVKYSSFHl6GIFcu5MVREcEahUODatWsOP2haeXt7IyYmBpWVlejv72cdhwmz2YyNGzfiT3/6E7Zs2QKFQoGOjo5xcyMEQcCWLVvw4osvYtOmTTO6tEGmZy4vKUy3kJvJ2QuaiGl/WM+NoSKCMz4+PlixYgUqKiqoBbSFtceIo3Y8/fLLLyGTybB582YAQEBAAK4FXsPGwo0TDgZbtmyBq6srvvrqK1aRHQbLSwrTPXvBerAh84P13BgqIjhkbQFN/UdGBAYGYtmyZSgrK8Pw8DDrOAtu79692Lp1KwRBADAyGPy/zv+HLrFrwsFAEARs3boVe/bsYRnbIbC+pDCdsxesBxsyP1jPjaEigkOLFy/GkiVLUFpa6pCD5kR0Oh1u3ryJ6upq1lEW3LfffosNGzaMPs4pyIHRdGsfjdsHg40bN+L48eMLltFR2dKdLawHGzI/WBeyVERwatWqVVi3bh0kEvoTASPLPgcHB6O4uNjhrvX39vbCy8tr9PFUBgNPT0/09vbOezZHN/aSAgBIBeloQcfbZQLWgw2ZH6wLWRqhOBUSEoIVK1ZQEWFhbcx1/fp1nD9/nnWcBaVQKNDV1TX6eCqDQXd3NxQKxbRehybdzUxWXNboG7lJNAEAl/MNWA82ZH6wvkWbRiiODQ0NobCwEHV1dayjcCE6Ohq+vr4O1yb83nvvxcGDB0cfTzQYyKSyWwaDAwcOYOXKlVN+DZp0Nzu2MN+A9WBD5g/LW7SpiOCYVCpFdXU1CgsLHWrQnIxEIoFWq8WVK1dw6dIl1nEWjHWSpPUYuH0w8Ba88R9e/zH6xiGKIvbs2YNt27ZN+TVsYRDkma3MN6D1QMhcoyKCY9ZBs7W1FU1NTazjcCEhIQGLFi1yqMZcDzzwAPr7+/HOO++Mbhs7GPzPmv9BUGcQLl++DAB4++23MTg4iDVr1kz5NWxlEOQVzTcgjoqKCM4lJibC3d2d+kdYWDueNjQ0OEzHU4lEggMHDuD555/Hvn37xp2VSk5OhpubG44fP459+/bhhRdewP79+6c1n4YGwdmh+QbEUVERwTlrC+i6ujq0t7ezjsMFjUYDV1dXhyqsIiMjUVhYiFdeeQVqtRr79u1DZ2cnhoaG0Nvbi2vXruG3v/0t/vznP6OwsBCRkZHTen4aBGeH5hsQRyXMx7V2jUYj0kJJc8doNOLTTz/FT37yEwQEBLCOw4WjR4+iqKgI27dvh4+PD+s4C8ZsNuOrr77Cnj17cPz4cfT29kKhUECr1SIxMRHPPPPMjI+R/DP5yCnIQXN3M5SeSuSuzqVBkBACABAEoVIURc247VREEFvU29uLXbt2ISkpCQ8//DDrOIQQYtcmKyLocoYNuX79Os6dO8c6BhcUCgUSExNRXV1NHU/H+OGHH/D999+zjmEXaN0MQu6Oiggbcvz4cRw4cAB9fX2so3BBq9XCZDKhrKyMdRRufP311zh48KDDdjydK7RuBiFTQ0WEDdFqtRgaGsLJkydZR+GCr68vli9fjvLycup4amHteEqXE2eH1s0gZGqoiLAh/v7+iI6OxsmTJzE4OMg6DhesHU8rKytZR+FCUFAQli5dSs3bZonWzSBkaqiIsDE6nQ5GoxFVVVWso3AhODgY4eHhKCkpoUHTwtrx9PTp06yj2CxaN4OQqaEiwsaEhoZiyZIlMBqNd9/ZQeh0OvT29uLMmTOso3AhPDwcYWFhMBgMd9+ZTIjWzSBkapxYByDT9x//8R8QBIF1DG4sXboUgYGBKCoqQmJiosP/2wiCgF/96lcO/+8wG9b1MWjdDELujIoIG2QdHNra2hAYGOjwg4W1Tfg///lP1NTUIDo6mnUk5qzHxJUrVxAUFOTwx8hMZMVlUdFAyF3Q5QwbVVdXhzfffJPahFvExMTA29sbJ06coI6nFufPn0deXh4aGxtZRyGE2CkqImzUkiVL4Onp6VD9I+5EIpEgIyMDra2taG6mGfQAEBER4XAdTwkhC4uKCBsllUqRkZGBpqYmtLS0sI7DhaSkJMjlcho0LawdTy9evIi2tjbWcQghdoiKCBuWnJwMmUxGZyMsqOPpeI7Y8ZQQsnCoiLBhLi4uSE1NRVNTE93yaZGamgoXFxcaNC3c3Nyg0WjQ2NhIC5QRQuYcdfG0cdblnl1dXRkn4ceRI0dw8uRJPP300/Dy8mIdh7n+/n5IJBK4uLiwjkIIsVHUxdNOubq6wtXVFaIoYmhoiHUcLmRkZAAASkpKGCfhg5ubG1xcXGA2m+kYYYC6gRJ7RkWEHTCZTHjjjTdw7Ngx1lG44Onpibi4OFRVVdGqjRZDQ0PYu3cvjh8/zjqKQ6FuoMTeURFhB6RSKQICAlBZWUlzIyx0Oh11PB3D2dkZ/v7+KC8vH50bQZ+Q5x91AyX2jooIO6HT6TA4OIjy8nLWUbgQEBCAqKgo6ng6hrV5W2VlJX1CXiDUDZTYOyoi7ERgYCCWLVuGsrIyuu5todPpYDAYcOrUKdZRuBASEgKVSoWSkhI8V/AcfUJeANQNlNg7KiLsiF6vR19fH86ePcs6CheUSiWUSiVKSkpgMplYx+GCTqdDT08PWronXqCMPiHPLeoGSuwdFRF2JCwsDL/4xS+QkJDAOgo3dDodurq6cO7cOdZRuLBs2TL84he/QKhn6IT/nz4hz62suCzkPZKHMM8wCBAQ5hmGvEfyqLEXsRvUxdOOCIKAyMhI1jG4EhkZCX9/fxQVFSEuLs7hu1laj5GXBl5C9qfZt1zSoE/I84O6gRJ7Rmci7NCpU6eQn59P3SzxY5vw9vZ21NfXs47DjaiBKPxv3/9Nn5AJIbNCZyLskCiKqKurQ0NDA5YuXco6DnNxcXE4duwYTpw4gYiICNZxuGAymeDX5odvN38LpZIuYRBCZobORNih+Ph4KBQK6h9hMbbjaWtrK+s4XKCOp4SQuUBFhB2ytoBuaGjAlStXWMfhglqthkwmo0HTwtq8rba2Fh0dHazjOCxa8IvYOioi7JRGo4GbmxudjbBwcXFBSkoKampq0NnZyToOF1JTU+Hs7EzHCCO04BexB1RE2ClXV1f827/9GzSacU3XHFZaWhqkUikNmhZyuRzr1q1DcnIy6ygOieWS2HQGhMwVmlhpxxITE1lH4Iq7uzuSkpJQVVWF++67Dx4eHqwjMUcFBDuslsS2ngGxFjDWMyAA6O4cMm10JsLO3bx5E1988QVu3rzJOgoXtFotzGYzSktLWUfhRk9PDw4fPkzN2xYYqyWxqSkYmUtURNi5gYEBlJaWoqysjHUULnh7eyMmJgaVlZXo7+9nHYcL/f39KCsrc4iOpzydxme1JDY1BSNziYoIO+fr64vly5ejvLwcAwMDrONwQa/XY2BggDqeWgQEBCAyMtLum7fxNpGR1ZLY1BSMzCUqIhyAXq9Hf38/KisrWUfhQmBgIJYuXYqysjIMDw+zjsMFR+h4yuNp/Ky4LDQ+2wjzH8xofLZxQeYkUFMwMpeoiHAAixcvRnh4OEpKSmjQtNDr9bh58yaqq6tZR+GCUqlEaGgoiouLYTabWceZF3QafwQ1BSNzie7OcBArV67E6dOnMTg4CCcn+rOrVCosXrwYxcXFSE5OhkTi2PW0IAhYuXIlzp8/j8HBQbi5ubGONOeUnko0dTdNuN3RUFMwMlcc+53TgSxZsgSbNm2CXC6/+84OQBAE6PV6XL9+HefPn2cdhwuRkZHYsGGDXRYQwOSn8R+MeJCbyZaE2BoqIhxMW1sb9Y+wiI6Ohq+vL4qKiqjj6RiXL1+2y+XSJzqN/78S/hfeO/0eN5MtCbE1VEQ4EFEU8dFHH+HIkSM0aAKQSCTQarW4cuUKLl26xDrOvDCbzThy5AjWr18PLy8vSKVSeHl5Yf369Thy5Mi4+Q9msxkffvghvvrqK0aJ59ftExk/r/ucu8mWhNgSKiIciCAI0Gq1aG1tRVPT+GvD0zXdAYpHCQkJWLRokV0uhV1bW4vY2Fg899xz2LBhA+rr6zEwMID6+nps2LABzz33HGJjY1FbWzv6MxKJBOnp6bh06RIuX77MMP3CoMmWhMyOTRQR+fmASgVIJCPf8+lM44wlJibC3d191oPmTAYoHlk7nl68eBFtbW2s48yZ2tpaZGZmYseOHaisrMSWLVvg5+cHJycn+Pn5YcuWLaisrMSOHTuQmZl5y99JrVbDzc3NITqe0poJhMwO90VEfj6QnQ00NQGiOPI9O5sKiZlydnZGWloa6urq0N7ePqPnmM0AxSONRgNXV1e7GTTNZjM2btyIP/3pT9iyZQsEQZhwP0EQsGXLFrz44ovYtGnT6JkjV1dXpKSk4MKFCwvS8ZTlKpK0ZgIhs8N9EZGTAxhuvWQJg2FkO5mZlJQUKBQKXLt2bdo/O9sBikdubm7QaDT4/vvvcf36ddZxZu3LL7+ETCbD5s2bR7fdaaDesmULXF1db5kHkZaWBnd393kvIlivIklrJhAyO8LdJtgJghAK4G8AAgGYAeSJorj7Tj+j0WjEioqKOQkokYycgRifC+B4XOKeyWSCVCqd9s8dOXIEOTk5qKioGC0g8vNHirrmZkCpBHJzgSzLe7AoilCr1Xj55Zexdu3aufwV5lRvby927dqFpKQkPPzww6zjzMr69euxYcMGbNmyBcD4ro3AyKftsYPlvn37cOjQIRw6dGh0n5keI9Oh2qWacO2GMM8wND7bOK+vTQiZOkEQKkVR1Ny+fSpnIoYB7BBFcTmAdADbBEFYMdcBJ6Oc5NLkZNvJ1EilUoiiOO1Pmnv37sXWrVtvKSDudLlJEARs3boVe/bsmetfYU4pFAokJCSgurra5juefvvtt9iwYcPo46ks97xx40YcP378ln1meoxMB01sJMS23bWIEEWxTRTFKst/9wI4DyB4voNZ5eYCt6+PJJePbCez8/XXX+PNN99EX1/flH9m3AA1hctNEw1QPNLpdDCZTDbf8bS3txdeXl6jj6cyUHt6eqK3t3fcPl9++SXeeuuteet4ShMbCbFt05oTIQiCCkASgAV7l83KAvLygLCwkUsYYWEjj7PokuWsxcXFYWhoaFotoMcNUJN8YBy7fbIBije+vr6Ijo62+Y6nCoUCXV1do4+nMlB3d3dDoVCM2yc+Ph4DAwOYq8uTt6OJjYTYtikXEYIgLALwTwDPiqLYM8H/zxYEoUIQhIqZTNi7k6wsoLFxZA5EYyMVEHPF398fUVFROHnyJAYHB6f0M+MGqClcbppsgOKRPXQ8vffee3Hw4MHRx1MZqA8cOICVK1eOe66goCAsWbIEpaWl89K8jSY2EmLbplRECILgjJECIl8UxX9NtI8oinmiKGpEUdT4+/vPZUYyj/R6PYxGI6qqqqa0/7gBagqXmyYboHgUHBwMlUqF0tJSmEwm1nFmxDoHxTpp+m4DtSiK2LNnD7Zt2zbh81k7np4+fXpe8rJoh00ImRt3LSKEkRl0bwM4L4riK/MfiSyk0NBQKJVKnDt3bkr7jxug7nK56W4DFI/0ej16enrw3XffsY4yIw888AD6+/vxzjvvjG6700D99ttvY3BwEGvWrJnw+cLDwxEUFDTlY4QQ4kBEUbzjFwA9ABHAdwCqLV8P3uln1Gq1SGxHV1eXODw8PKV9TSaTuHz5cnHfvn1T2v+tt94SV6xYIZpMptlEXFBms1l8/fXXxf/6r/8SzWYz6zgzUlNTIwYGBopvvfXWpL+D2WwW33rrLTEwMFCsqam54/NN5xghhNgfABXiBOP9VO7OOCGKoiCKYrwoiomWr8/ns7BxNKyX9fb09IRUKoXJZLprYy6JRIIDBw7g+eefx759+ybdXxRF7Nu3Dy+88AL2798PiYT7dc1GCYIAnU6Hzs5O1NTUsI4zI5GRkSgsLMQrr7wCtVqNffv2obOzE0NDQ+js7MS+ffugVqvx6quvorCwEJGRkXd8PusxMjw8TM3bCCGjbOed3U7xsqx3Z2cndu/ejbq6urvuO9cDFI9iYmLg5eVl023CIyMjcfbsWbz88ss4dOgQIiIiIJPJEBERgUOHDuHll1/GmTNnpvz3uXr1Knbv3o3Gxsb5DU4IsRlURDDGy7Le3t7eEARhyo255nqA4o21TXhLSwuaJ7uP1QZIJBKsXbsWhw4dwo0bNzA8PIwbN27g0KFDWLt27bTOEPn5+UEURbvpMUIImT0qIhibyjoLC0EqlSIjIwNNTU1oaWmZ0s/M5QDFo6SkJMjlcrtsEz4TTk5OSEtLs7uOp4SQmbPtd3k7wNOy3snJyZDJZDRoWlg7ntbW1s6446m9SUlJgaurKx0jhBAAVEQwx9Oy3i4uLkhNTcWFCxfwww8/LHwADqWkpMDZ2ZkGTQs3Nzeo1WqcO3cO3d3drOMQQhhzYh3A0VnXU5isC+ZCS0tLQ0hICHx8fNgE4IxcLodarcbJkyexatWqW5b8dlQZGRlYtmwZPDw8WEchhDBGZyI4wNOy3nK5HBEREaNdOsnIoAkAJSUljJPwQaFQYMmSJXSMEEKoiCDjiaKIgoICfPPNN6yjcMHT0xNxcXGoqqqC4fZbaRyUKIr48ssv6U4NQhwcFRFkHEEQ0NXVheLiYhiNRtZxuKDT6abd8dSeCYKAGzduoKioaMrN2wgh9oeKCDIhnU6HwcHBeWsBbWsCAgIQGRk5rY6n9k6n08FoNNp0x1NCyOxQEUEmFBgYiGXLlqG0tBRDQ0Os43BBr9fDYDDg1KlTrKNwISQkBCqVCiUlJTbb8ZQQMjtURJBJ6fV69PX1zVsLaFujVCoRGhpKg+YYOp0OPT09OHPmDOsohBAGqIggkwoLC8PKlSsRGhrKOgo39Ho9urq6qC22xbJly6DX67F48WLWUQghDFARQSYlCAJWr16Ne+65h3UUbkRGRsLf39+mG3PNJUEQcP/99yMgIIB1FEIIA1REkLu6du0ajh07RoMmfmwT3t7ejvr6etZxuNHR0UG3BBPigKiIIHfV0tKCb7/9FpcuXWIdhQtxcXHw8PCgpbDHuHTpEr755hub7nhKCJk+KiLIXcXHx8Pd3R179+7F+vXr4eXlBalUCi8vL6xfvx5HjhyB2WxmHXPBWDueNjY2orW1lXUcLlDHU0IcExUR5K4aGhqwd+9e5OfnIzMzE/X19RgYGEB9fT02bNiA5557DrGxsaitrWUddcGo1WrqeDqGtXlbTU0NOjo6WMchhCwQKiLIHdXW1iIzMxP/5//8H2zfvh1KpRJ+fn5wcnKCn58ftmzZgsrKSuzYsQOZmZkOU0i4uLggJSUFFy5cQGdnJ+s4XEhNTaWOp4Q4GCoiyKTMZjM2btyIP/3pT/j1r38NnU4HDw+PcRMsBUHAli1b8OKLL2LTpk0Oc2kjLS0NUqkUxcXFrKNwQS6XIyMjAwqFgibhEuIgqIggk/ryyy8hk8mwefNmAEBmZiY6O9ciPFyARAKoVEB+/o/7b9myBa6urvjqq6/YBF5g7u7uSEpKwunTp9Hb28s6DhdWrVqF+++/nzp8EuIgqIggk9q7dy+2bt06OiDk5wPZ2SKamgBRBJqagOzsHwsJQRCwdetW7Nmzh2HqhaXVamE2m1FaWso6CjdEUUR9fT01byPEAVARQSb17bffYsOGDaOPc3IAg+HWT5gGw8h2q40bN+L48eMLFZE5b29vxMTEoKKiAv39/azjcOGHH37A+++/Tx1PCXEAVEQ4iPz8kcsPE12GmExvby+8vLxGH0+2BMDY7Z6eng53al+n02FgYADl5eWso3DBz88PERERKCsro+ZthNg5KiIcwMhlCEx6GWIyCoUCXV1do4+Vyon3G7u9u7sbCoVie4m6fwAAIABJREFUDlLbjqCgICxduhRlZWUYHh5mHYcL1PGUEMdARYQDGLkMceu22y9DTOTee+/FwYMHRx/n5gJy+a37yOUicnN/fHzgwAGsXLlyloltj16vx82bN1FdXc06CheUSiVCQkJQXFzsMHfrEOKIqIhwAFO5DDER6yRJ6+16WVlAXh4QFgYIgggvr2783//bg6yskf1FUcSePXuwbdu2OUxvG1QqFRYvXkyDpoUgCNDr9TCZTLh+/TrrOISQeUJFhAOYymWIiTzwwAPo7+/HO++8M7otKwtobARMJuDaNXds3eo5+v/efvttDA4OYs2aNXOQ2rZYB83r16/j/PnzrONwISoqCs888wz8/PxYRyGEzBMqIhzAxJchcMtliIlIJBIcOHAAzz//PPbt23fLAkKCIMDJyQlmsxnd3d3Yt28fXnjhBezfvx8SiWMeVtHR0fD19aU24RbWY8RkMqGnp4d1HELIPHDMd3sHc+tliJHveXkYvQxxJ5GRkSgsLMQrr7wCtVqNffv2obOzE0NDQ+js7MQTTzyB+Ph4vPrqqygsLERkZOT8/0Kckkgk0Gq1uHLlCnU8HePdd9/F/v37WccghMwDKiIchPUyhNk88n0qBYRVZGQkzp49i5dffhmHDh1CREQEZDIZIiIiUF9fj5UrV+LTTz916ALCKiEhAYsWLaL+EWMsX74cly5dwuXLl1lHIYTMMSoiyJRIJBKsXbsWhw4dwo0bNzA8PIwbN26goKAACQkJKCkpYR2RC05OTkhPT8fFixfR1tbGOg4X1Go13NzcqLAixA5REUFmxdnZGWlpaairq0N7ezvrOFzQaDRwdXWlQdPC1dUVKSkpOH/+PH744QfWcQghc4iKCDJrKSkpcHFxwenTp1lH4YKbmxs0Gg3OnTtHtzdaWDue0jFCiH2hIoLMmkwmwxNPPOGQt3ZOJj09HRKJhC7zWCxatAjZ2dm47777WEchhMwhKiLInAgICIAgCLTQkoVCoUBCQgJOnTqFmzdvso7DBTpGCLE/VESQOXP+/Hns2rULhtvX2HZQOp0OJpMJZWVlrKNw4+zZs9i9ezd1PCXETlARQeaMn58fenp6qAW0ha+vL6Kjo1FeXo6BgQHWcbjg4+OD7u5uVFRUsI5CCJkDVESQOePv74+oqCiUlZVhcHCQdRwu6PV69Pf3o7KyknUULixevBhLlixBaWkpdTwlxA5QEUHmlF6vh9FopBbQFsHBwVCpVCgtLYXJZGIdhwvWjqd0pwYhto+KiNvk5wMqFSCRjHzPz2edyLaEhoZCqVRSN8sx9Ho9enp68N1337GOwoXw8HAEBQWhuLiYeowQYuOcWAfgSX4+kJ0NWOcFNjWNPAamt0y0o1u7di1EUXTYRly3W7p0KQIDA1FUVITExEQIgsA6ElOCIODBBx+EVCp1+H8LQmwdvcuPkZPzYwFhZTCMbCdTFxwcjJCQENYxuCEIAnQ6HTo7O1FTU8M6DhdCQ0OxePFi1jEIIbNERcQYzc3T204mZzQacejQIdTX17OOwoWYmBh4eXlRm/AxDAYDDhw4gMbGRtZRCCEzREXEGErl9LaTybm4uODixYs4fvw46yhcsLYJb2lpQTNVpQBGjpH6+nqcOHGCdRRCyAxRETFGbi4gl9+6TS4f2U6mRyqVIiMjA01NTWhtbWUdhwtJSUmQy+XUmMvCyckJaWlpqK+vx9WrV1nHIYTMABURY2RlAXl5QFgYIAgj3/PyaFLlTCUnJ0Mmk9EnTQtrx9Pa2lp0dHSwjsOFlJQU6nhKiA2jIuI2WVlAYyNgNo98pwJi5lxcXJCamoqamhp0dnayjsOFlJQUODs706Bp4ebmBrVajbNnz+LGjRus4xBCpolu8STzKjU1FUajES4uLqyjcEEul0OtVuPkyZNYtWoVPD09WUdiLj09HSaTCU5O9HZEiK2hMxFkXrm7u+PBBx+Eh4cH6yjcyMjIAABqE27h4eGBdevWQaFQsI5CCJkmKiLIgmhubkZ1dTXrGFzw9PREXFwcKisrqePpGI2NjbSqJyE2hooIsiDKy8tx+PBhagFtodPpMDQ0hPLyctZRuFFaWorDhw9T8zZCbAgVEWRB6HQ6DAwM0KBpERAQgMjISJSVlWFoaIh1HC5Ym7dVVVWxjkIImSIqIsiCCAwMxLJly1BaWkqDpoVer4fBYKCOpxYhISEICwtDSUkJdTwlxEZQEUEWjE6nQ19fH7WAtlAqlQgNDaWOp2Po9Xp0d3fj7NmzrKMQQqaAigiyYFQqFSIiIljH4Iper0dXVxfOnTvHOgoXli1bhiVLllBRRYiNoBuzyYIRBAFZtHrXLSIjI+Hv748TJ04gNjbW4VtjC4KAxx9/nHUMQsgU0ZkIsuDMZjPq6+upmyV+bBPe3t5OHU/HsB4jhBC+URFBFtzZs2fx/vvvo6GhgXUULsTFxcHDw4OWwh7j1KlTeP/996njKSGcoyKCLLgVK1ZAoVDQoGlh7Xja2NhIHU8t4uLiqOMpITaAigiy4JycnJCeno6GhgZcuXKFdRwuWDue0qA5YmzzNup4Sgi/qIggTKjVamoBPYarqytSUlJw4cIF6nhqkZqaCmdnZxQXF7OOQgiZBBURhAk3NzekpKSgvb2dFp+ySEtLg1QqpUHTQi6XIzk5GW1tbbT4FCGcols8CTOZmZlYtWoVJBKqZYGRjqdJSUmoqqrCfffdR10tAfz/7d1rbJTXmQfw/zNmbM/YgAM4xBd8wWBDMAHjYTzMTEibLG26uwrph0qJ2KpSaYGGVtlqtdtumi/bbFWpH2hSiWiVJqhKQ1NtSZpYyTZNqmUh+G5z8QUMGDDhYrANNjbgu89+mBliHBN8mzln5v3/JGQ8IaO/mcHn8XnP+zxPPPEE7Ha75W99JTIVv3uTNna7HTabDUNDQxgYGNAdxwherxejo6OorKzUHcUI8fHxEBEMDg5yMBeRgVhEkFYDAwN45ZVXcOjQId1RjPDAAw9g1apVqK2t5cTToL6+Pvz6179GRUWF7ihENA6LCNIqISEBWVlZqKmp4W5EUGjiaW1tre4oRnA4HMjMzOTEUyIDsYgg7Xw+H/r7+1FXV6c7ihHS0tKQl5eHyspKDA8P645jBE48JTLTfYsIEdkjIu0iwrF6FBYZGRnIzc3lCOgx/H4/bt68yYmnQVlZWcjMzERFRQWHcxEZZDI7Eb8D8GSYc5DF+Xw+9Pb24vTp07qjGCEnJwfp6ekoKyvjoonAjBG/34+uri62SycyyH2LCKXUQQDXI5CFLCwvLw/f+973UFBQoDuKEUKL5vXr19Hc3Kw7jhEKCgrw/e9/H8uWLdMdhYiCZu1MhIhsE5FaEant6OiYraclixARZGZmQkQ43TNoxYoVWLhwIQ4dOsS/EwTeIxkZGQDAvw8iQ8xaEaGUek0p5VJKuVJTU2fracliDh48iDfffJOLBACbzQav14vLly+jtbVVdxxj7N+/H3/4wx90xyAi8O4MmgV79wI5OYDNFvi4d+/0nysxMRHnzp3jCOigNWvWIDk5mX00xkhISMDp06dx6dIl3VGILI9FBM3I3r3Atm3A+fOAUoGP27ZNv5AoKiqC0+nkohkUmnh65swZtLW16Y5jhOLiYiQmJnJ4G5EBJnOL59sAKgAUiMhFEdka/lgULX72M+D27bsfu3078Ph02O12lJSU4PTp07h69erMA8YAl8vFiadjhCaenjhxAteuXdMdh8jSJnN3xrNKqTSllF0plamUeiMSwSg63Ouqw0yuRrjdbsTHx3PRDEpMTITL5UJTUxO6urp0xzECJ54SmYGXM2hGsrKm9vhkOBwOPPXUU9i4ceP0nyTGeDwe2Gw2LppBycnJ2Lx5M7xer+4oRJbGIoJm5Be/AJzOux9zOgOPz0RhYSEWLVo0syeJIXPnzsWaNWtw5MgR3Lp1S3ccI6xevRoLFy7UHYPI0lhE0Ixs2QK89hqQnQ2IBD6+9lrg8Znq7OzEvn37cHv8oQuL8nq9GBkZQVVVle4oxmhvb8e+ffs48ZRIExYRNGNbtgCtrcDoaODjbBQQQKChUGNjI6qrq2fnCaPcokWLsGLFClRXV3PiadDIyAgaGxs5vI1IE0sUEbPZx4AiJzU1FQUFBaiursbg4KDuOEYITTw9fPiw7ihGSEtLw9KlSznxlEiTmC8iZruPAUWWz+fjCOgxMjMzkZOTw4mnY/j9fvT29qK+vl53FCLLifkiYrb7GFBkZWVlISsrC+Xl5Vw0g3w+H3p6etDQ0KA7ihFyc3ORlpbGiadEGsR8ERGOPgYUWRs3bsQjjzzCIiJo2bJlWLx4McrKyjhjBIHBXF/5yldQWFjI9whRhMV8ERGOPgYUWcuWLcMTTzyB+Ph43VGMEBoT3tHRgVOnTumOY4SCggJ89atfhd1u1x2FyFJivoiY7T4GPKSph1IKJ0+exIULF3RHMcKqVauQkpLCGSNjKKVw4sQJDuYiiqCYLyJms48BD2nqMzo6ig8//BB/+9vfdEcxQmhM+IULFzjxNGh4eBgffPAB9u/frzsKkWXEfBEBzF4fAx7S1CcuLg4bNmzA+fPncfHiRd1xjMCJp3ez2+3weDxoaWnBlStXdMchsgRLFBGzhYc09SouLobD4eCiGRSaeHrq1Cm0t7frjmMEl8vF4W1EEcQiYgp4SFOv+Ph4uN1unDx5Ep2dnbrjGGH9+vWw2+1cNIMcDsediafd3d264xDFPBYRUxCuYVM0eW63GwsXLkRPT4/uKEZwOp0oLi5GQ0MDbty4oTuOETweDxYsWMC/D6IIYBExBeEcNkWTk5SUhJ07d2Lp0qW6oxhjw4YNAICKigrNScwwb9487Ny5E9nZ2bqjEMU8FhFTFK5hUzR5IoLh4WEesAyaP38+Vq9ejbq6Ok48DRIRDA0N8XZPojBjEUFR6aOPPsLvf/97joAO8vl8GBoaQk1Nje4oxvjggw/w1ltvcXgbURhFfRHB5k/W5HK5MDAwwEUz6MEHH0R+fj6qqqowNDSkO44RXC4X+vr6OPGUKIyiuohg8yfreuihh7Bs2TJUVVVxBHQQJ57ebcmSJcjOzubEU6Iwiuoigs2frM3n8+HmzZs4evSo7ihGyMrKwpIlS1BeXs5plkF+vx83btxAY2Oj7ihEMSmqiwg2f7K2nJwcZGRk4Ny5c7qjGCE0mKu7uxtNTU264xghNPH07NmzuqMQxaQ5ugPMRFZW4BLGRI9T7BMRbNmyBQ6HQ3cUY+Tn5yM1NRVlZWUoLCyEiOiOpJWI4Dvf+Q7fI0RhEtU7EWz+RE6nEyKC/v5+KKV0x9FORODz+XDlyhWcOXNGdxwjhN4jfX19uqMQxZyoLiLY/IkA4OLFi9i1axcvawStXr0a8+bNYyvsMVpbW7Fr1y5OPCWaZVFdRABs/kSBOzU4dOlzoYmn586dY7OloPT0dM4YIQqDqC8iJoO9JGLbnDlz4PF4cObMGbS1temOY4R169YhMTGRE0+Dxg5v6+jo0B2HKGbEfBHBXhLW4HK5kJCQwJ80gxISEuB2u9Hc3MyJp0Fut5u7EUSzLOaLCPaSmH0m7uwkJibC5XLh+PHj6O3t1R3HCCUlJYiLi0N5ebnuKEZwOp1Yt24dGhoaOGOEaJbEfBFxr3NU58+bsfhFG5N3drxeL7Zv3465c+fqjmKEpKQkFBUV4dixYyysgvx+P3bs2AHn+Nu6iGhaYr6I+LKeEaYsftHE5J2dpKQkLF68GAB4u2eQ1+vF6OgoKisrdUcxwty5c5GamgqA7xGi2RDzRcREvSRCTFn8oonpXUJHR0fx7rvv4sCBA7qjGOGBBx7AqlWrUFtby4mnQSMjI/jTn/7EsxFEsyDmi4hQL4l7MWXxixb32tkxpUuozWbD0NAQKisrMTAwoDuOEXw+HwYGBlBbW6s7ihHi4uIwODiIiooKTjwlmqGYLyKAQCGRnT3xfzNl8YsW0dAl1O/3o7+/nyOgg9LS0pCXl4fKykpOPA3y+/24desWh7cRzZAligggOha/aBANXUIzMjKQm5vLEdBjhCaeHjt2THcUI2RlZSEzM5MTT4lmyDJFRDQsftEiGrqE+nw+9PT0oL6+XncUI+Tm5iI9PR1lZWVcNPH5xNOuri4cP35cdxyiqGWZIgKIjsWPZkdeXh42bdqEvLw83VGMEBrMdf36dTQ3N+uOY4SCggJs2rQJOTk5uqMQRS1LFRE0OSY2k5qq0KI5b9483VGMsXLlSixYsACHDh3i7Y34/D2SnJysOwpR1GIRQXcxuZnUdJw/fx5/+ctfuGgicOeK1+vF5cuX0draqjuOMc6dO4ePP/5YdwyiqMQigu5icjOp6bh69Sqqqqo4Ajpo7dq1SE5O5mCuMdra2lBeXo7Lly/rjkIUdVhEREi0XCIwvZnUVBUVFcHpdHLRDJozZw5KSko48XSM4uJiTjwlmiYWEZMw0wIgmi4RmN5MaqrsdjtKSkpw+vRpXL16VXccI6xfv54TT8dISEjA+vXrceLECVy7dk13HKKowiLiPmajAIimSwSx2E/D7XYjPj6ei2ZQYmIiiouL0dTUhK6uLt1xjMCJp0TTwyLiPmajAIimSwSx2E/D4XDg0UcfRXp6uu4oxvB4PLDZbFw0g5KTk+H3+/HQQw/pjkIUVSQcp9ZdLpeKlT79NltgB2I8kUC/icnIyQnsYIyXnR3oV0GkQ2lpKerr6/HjH/8YSUlJuuMQkcFEpE4p5Rr/OHci7mM2zgjE4iWCaDQyMoJjx47h9vitJYvyer0YGRlBVVWV7ijGGB4expEjRzi8jWiSLFdETPWQ5GwUALF4iSAaXb9+HX/+859RXV2tO4oRFi1ahBUrVqCmpgaDg4O64xihvb0d77//PieeEk2SpYqIex2SfO65excWs1UAsOW2fqmpqcjPz0d1dTUXzSCfz4e+vj7U1dXpjmKE9PR0LF26lBNPiSbJUkXEvQ5J/td/ffndFywAYoff78ft27dx5MgR3VGMkJmZiZycHE48HcPn86G3t5fD24gmwVJFxL3uhhh/cNLU2y9p5rKysrBkyRIummOEJp42NDTojmKEpUuXIi0tjRNPiSbBUkXEVA5Dmnj7Jc0Ov9+P+Ph49Pb26o5ihGXLlmHx4sUoKyvjjBF8PpjLbrfj5s2buuMQGc1SRcREhyRFJv6z0dqhke4vPz8fP/jBD5CSkqI7ihFCi2ZHRwdOnTqlO44RVq1ahe3bt3MKLNF9WKqImOiQ5I4dvP3SakQEIoL+/n5cv35ddxwjFBYWIiUlhV09g0Lvkb6+Pnb1JPoSlioigC8eknz1Vd5+aUVKKezZswelpaW6oxjBZrNhw4YN+OyzzzjxNEgphd/+9rf48MMPdUchMpblioiJ8O4L6xERFBUVobW1FRcvXtQdxwihiafcjQgIvUdaWlpw5coV3XGIjMQigr5UtIwwn47i4mI4HA4umkHx8fFwu904efIk2tvbdccxgsvl4vA2oi/BIiKKRHpBj6YR5tMRHx+P9evXo7m5GZ2dnbrjGMHtdsNut3PRDHI4HHC5XGhqakJ3d7fuOETGYRERJXQs6NE0wny6SkpKMGfOHN6VEOR0OrFu3To0NDTgxo0buuMYwePxQET4HiGaQFQWEbG8xX4vOhb0aBphPl1JSUn40Y9+BK/XqzuKMTZs2AAAqKio0JzEDPPmzcPzzz8Pt9utOwqRcaKuiIj1LfZ70bGgz8YE02gQ6gXAeRoBKSkpKCwsxOHDh9HX16c7jhH4HiGaWNQVEVbYYp+IjgXdSiPM6+rq8PLLL6O/v193FCP4fD4MDg5y4ukYVVVVeOWVV1hIEI0RdUWEFbbYJ6JjQbfKCPO9e4HNm9fgJz/5V8tcHrufxYsXY/ny5aiqqsLQ0JDuOEZIT0/HrVu3cPjwYd1RiIwRdUWEVbbYx9O1oMd6D43Q5bFLl+YAEFy9moht2xQLCXDi6XhLlixBdnY2h7cRjRF1RYSVttjHm8qCHq7Dp7F2qPXuy2OjAD7C7dub8e1vpyAuLg4pKSl46qmn8NFHH1luomNo4ml5ebnlvvZ78fl8uHHjBhobG3VHITJC1BURVtlin4lwHT6NxUOtn18GOwWgEMALADZDqdMYGBhAS0sLNm/ejBdeeAGFhYWWus0vNJiru7sbTU1NuuMYYfny5XjwwQdRWVmpOwqRESQco39dLpeqra2d9eelycnJCSzw42VnB3YwTHtenQJf0ykAjwH4TwDfBSBf+JpCszZefPFFHDhwAPn5+TriRpxSCq+++iri4uKwfft2yL3G3lrIpUuXkJycjPnz5+uOQhQxIlKnlHKNfzzqdiLo/sJ1+DQWD7W+9NIoRJ5GoIDYCkAmvDwmIti6dSteeuklfPOb37TM9r6IwOv14sqVKzhz5ozuOEbIyMhgAUEUxCIiBoXr8GksHmpNTf0Y2dkOZGV9987lsWefHcDzz9+Ezaa+cO5j69atSEhIwCeffKItc6Q98sgjmDdvHlthj9Hd3Y0333wTFy5c0B2FSKtJFREi8qSInBSRFhH5abhD0cyE6/BpLB5qffXVV/Hii8/h/HnB6Gjga3n77Xhcu5YMpeQL5z5EBM899xx2796tN3gExcXFwePx4Ny5c7h06ZLuOEZwOp1oa2tjYUWWd98iQkTiAOwG8A0ADwN4VkQeDncwmr5wHT6NxUOtBw8exObNm+98Hrhb4+7r/uObmT399NP49NNPIxXRCMXFxUhMTOSiGRSaeNrc3IyOjg7dcYi0mcxOhBtAi1LqrFJqEMAfAWy+z/9DmoWrv0Os9Y3o7e1FSkrKnc8nc+5j/vz56O3tDXMysyQkJGD9+vU4ceIErl27pjuOEUpKSmC321FeXq47CpE2kykiMgCMvfB3MfjYXURkm4jUikgtK3OKFnPnzr1rxPNkzn3cuHEDc+fODXMy85SUlCAuLo6LZpDT6URRURHq6+vR09OjOw6RFpMpIia6p+sL94UqpV5TSrmUUq7U1NSZJyOKgI0bN+L999+/8/nE5z7UXec+3nvvPTz66KMRSmiO5ORkrF27FkePHrXcTsy9eL1ePP7440hISNAdhUiLyRQRFwEsGfN5JoDL4YlDFFmhQ5KhfikTn/uQO5dtlFLYvXs3du7cqTG1Pl6vF6Ojo6iqqtIdxQgpKSnw+XwsIsiyJlNE1ABYLiK5IhIP4BkApeGNRRQZX/va19Df3489e/bceWz8uY+1a5sQap72xhtvYHBwEJs2bdITWLMFCxbg4YcfRk1NDSeejlFfX88ZI2RJc+73B5RSwyLyQwB/BRAHYI9Sij1wKSbYbDa89957eOyxx6CUwtatW7/QlbGxsRFnz55FTU0Nfv7zn+PAgQOw2azbYsXv96OpqQl1dXXw+Xy64xihvr4ebW1tKCwshN1u1x2HKGIm9Z1QKfU/Sql8pVSeUiqKuwIQfVF+fj4OHDiAXbt2obi4GK+//jo6OzsxNDSEzs5OfPbZZ/jNb36DX/3qV5ZqeX0vaWlpWLp0KSorKzE8PKw7jhH8fj9u3bqFo0eP6o5CFFHW/XGKaIz8/Hw0Njbil7/8JUpLS7F8+XI4HA4sX74cn376KbZs2YKdO3ciLy9Pd1Qj+P1+9Pb2or6+XncUI2RnZyMzM5MTT8lyWEQQBdlsNnz9619HaWkpurq6MDw8jK6uLpSWlmLHjh24efMmF82g3NxcpKWloaysjIsmPp942tXVhePHj+uOQxQxLCKIJiEvLw+rVq2Cw+HQHcUIIgK/349r166hublZdxwjrFixAitWrOCdGmQp9z1YSUSBRfNb3/qW7hhGWblyJRYsWICysjKsXLnS8mPCRQTPPPOM7hhEEcWdCKIpGBwcRENDw52+ElZms9ng9Xpx6dIltLa26o5jjIGBATQ2NuqOQRQRLCKIpuDYsWN455138Nm9hmxYzJo1a5CUlMTBXGPU1dVh3759uHyZPfko9rGIIJqCtWvXwul0ctEMstvt8Hg8aGlpwZUrV3THMUJo4umhQ4d0RyEKOxYRRFNgt9tRUlKCU6dOob29XXccI7hcLsTHx7OwCkpISIDL5eLEU7IEFhFEU+R2u7lojuFwOOByudDY2Iiuri7dcYzg8Xg48ZQsgUUE0RQ5HA6sW7cOPT097JEQ5PF4kJSUhI6ODt1RjBCaeNrT08NDuBTTJBxvcBHpAHB+Fp9yEYDOWXw+mjq+BvrxNTADXwf9+BpEXrZSKnX8g2EpImabiNQqpVy6c1gZXwP9+BqYga+DfnwNzMHLGURERDQtLCKIiIhoWqKliHhNdwDia2AAvgZm4OugH18DQ0TFmQgiIiIyT7TsRBAREZFhWEQQERHRtBhfRIjIkyJyUkRaROSnuvNYjYjsEZF2EeFYQk1EZImI7BeREyLSJCLP685kNSKSKCLVInIs+Br8h+5MViUicSJyREQ+0J2FDC8iRCQOwG4A3wDwMIBnReRhvaks53cAntQdwuKGAfyLUmolAA+Anfx3EHEDAB5XSq0BsBbAkyLi0ZzJqp4HcEJ3CAowuogA4AbQopQ6q5QaBPBHAJs1Z7IUpdRBANd157AypVSbUupw8Pe9CHwDzdCbylpUwM3gp/bgL55KjzARyQTwDwBe152FAkwvIjIAXBjz+UXwmydZmIjkACgCUKU3ifUEt9GPAmgH8IlSiq9B5L0M4N8AcGiNIUwvImSCx1j9kyWJSDKAdwD8s1KqR3ceq1FKjSil1gLIBOAWkULdmaxERP4RQLtSqk53Fvqc6UXERQBLxnyeCeCypixE2oiIHYECYq9S6l3deaxMKdUN4P/As0KR5gPwlIi0InBp+3EReUtvJDK9iKgBsFxEckUkHsAzAEo1ZyKKKBERAG8AOKGU2qU7jxWJSKqIpAR/7wDwdwCa9aayFqXUvyulMpVSOQisBf+rlPonzbEsz+gT7wAFAAAAhklEQVQiQik1DOCHAP6KwGGy/1ZKNelNZS0i8jaACgAFInJRRLbqzmRBPgDfRuAnr6PBX3+vO5TFpAHYLyL1CPxw84lSircYkuWx7TURERFNi9E7EURERGQuFhFEREQ0LSwiiIiIaFpYRBAREdG0sIggIiKiaWERQURERNPCIoKIiIim5f8B6XRubjkOWd0AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 16, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -411,17 +449,41 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Explorations\n", + "In the above plot, the solid line is the decision boundary that the model has learned. \n", + "\n", + "The dashed lines are the margins - the separation between the classes that the algorithm is trying to maximize. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### SVMs in more dimensions\n", + "\n", + "Note that, for simplicity, in this example we have used SVMs to learn a decision boundary in two dimensional data. \n", + "\n", + "In this case, with 2D data, the decision boundary is a line. \n", + "\n", + "SVMs also generalize to higher dimensions, and can be applied to data of any dimensionality. In higher dimensional data, the algorithm works the same, and the solution learned is a hyperplane that attempts the separate the data into categories in whatever dimensionality if lives. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Conclusions\n", + "\n", + "The example above is a simplified example of an SVM application. With the code above, your are also encouraged to explore SVMs - investigate what happens as you change the data, change some settings, and predict different data points. \n", "\n", - "With the code above, your are encouraged to explore SVMs. \n", + "This example is meant as a brief example for using classification models with scikit-learn. Much more information can be found in the `scikit-learn` documentation. \n", "\n", - "Investigate what happens as you change the data, change the kernel, and predict different data points. " + "Classification is a vast area of machine learning, with many tools, algorithms, and approaches that can be applied to data within the realm of data science. This example seeks merely to introduce the basic idea. If you are interested in classification algorithms, then you are recommended to look into resources and classes that focus on machine learning. " ] } ], "metadata": { "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -435,7 +497,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/18-NaturalLanguageProcessing.ipynb b/18-NaturalLanguageProcessing.ipynb index 5a3373f..73990de 100644 --- a/18-NaturalLanguageProcessing.ipynb +++ b/18-NaturalLanguageProcessing.ipynb @@ -4,7 +4,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Natural Language Processing" + "# Natural Language Processing\n", + "\n", + "Most of the data we have encountered so far has been numerical (or at least, numerically encoded).\n", + "\n", + "However, one of the most powerful aspects of data science is acknowledging and considering that there are vasts amounts of data available in many other modalities, with potentially valuable information, if the data can be leveraged and analyzed. \n", + "\n", + "Here, we will introduce natural language processing (NLP), or the computational analysis of text." ] }, { @@ -25,7 +31,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## NTLK: Natural Language Tool Kit" + "## NTLK: Natural Language Tool Kit\n", + "\n", + "There are many tools for analyzing text data in Python. Here, we will use one of biggest and most prominent ones: NLTK.\n", + "\n", + "NLTK provides interfaces to over 50 corpora and lexical resources, as well as a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning.\n", + "\n", + "In this notebook, we will walk through some basic text-analysis using the `NLTK` package." ] }, { @@ -33,7 +45,7 @@ "metadata": {}, "source": [ "
\n", - "NLTK is the main Python module for text-analysis. \n", + "The Natural Language Tool Kit, or NLTK, is a Python module for text-analysis. \n", "
\n", "\n", "
\n", @@ -41,52 +53,56 @@ "here\n", "and they have a whole book of tutorials \n", "here.\n", - "
\n", - "\n", - "#### NLTK\n", - "\n", - "NLTK provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP libraries, and an active discussion forum. " + "
" ] }, { "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, + "execution_count": 1, + "metadata": {}, "outputs": [], "source": [ "# Import NLTK\n", "import nltk" ] }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Set an example sentence of 'data' to play with\n", + "sentence = \"UC San Diego is a great place to study cognitive science.\"" + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "In this notebook, we will walk through some basic text-analysis using some useful functions from the NLTK package.\n", + "### Downloading Corpora\n", + "\n", + "To work with text-data, you often need corpora - text datasets to compare to. \n", "\n", - "To work with text-data, you often need corpora - text datasets to compare to. NLTK has many such datasets available, but doesn't install them by default (as the full set of them would be quite large). Below we will download some of these datasets. " + "NLTK has many such datasets available, but doesn't install them by default (as the full set of them would be quite large). Below we will download some of these datasets. " ] }, { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# If you hit an error downloading things in the cell below, come back to this cell, uncomment it, and run this code.\n", "# This code gives python permission to write to your disk (if it doesn't already have persmission to do so).\n", - "import ssl\n", + "# import ssl\n", "\n", - "try:\n", - " _create_unverified_https_context = ssl._create_unverified_context\n", - "except AttributeError:\n", - " pass\n", - "else:\n", - " ssl._create_default_https_context = _create_unverified_https_context" + "# try:\n", + "# _create_unverified_https_context = ssl._create_unverified_context\n", + "# except AttributeError:\n", + "# pass\n", + "# else:\n", + "# ssl._create_default_https_context = _create_unverified_https_context" ] }, { @@ -95,7 +111,7 @@ "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ "[nltk_data] Downloading package punkt to /Users/tom/nltk_data...\n", @@ -136,18 +152,6 @@ "nltk.download('treebank')" ] }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Set some test sentences of data to play with\n", - "sentence = \"UC San Diego is a great place to study cognitive science.\"" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -173,10 +177,8 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": true - }, + "execution_count": 5, + "metadata": {}, "outputs": [], "source": [ "# Tokenize our sentence, at the word level\n", @@ -185,7 +187,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -224,10 +226,8 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": true - }, + "execution_count": 7, + "metadata": {}, "outputs": [], "source": [ "# Apply part-of-speech tagging to our sentence\n", @@ -236,7 +236,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -254,157 +254,34 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": {}, + "execution_count": 40, + "metadata": { + "scrolled": false + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "$: dollar\n", - " $ -$ --$ A$ C$ HK$ M$ NZ$ S$ U.S.$ US$\n", - "'': closing quotation mark\n", - " ' ''\n", - "(: opening parenthesis\n", - " ( [ {\n", - "): closing parenthesis\n", - " ) ] }\n", - ",: comma\n", - " ,\n", - "--: dash\n", - " --\n", - ".: sentence terminator\n", - " . ! ?\n", - ":: colon or ellipsis\n", - " : ; ...\n", - "CC: conjunction, coordinating\n", - " & 'n and both but either et for less minus neither nor or plus so\n", - " therefore times v. versus vs. whether yet\n", - "CD: numeral, cardinal\n", - " mid-1890 nine-thirty forty-two one-tenth ten million 0.5 one forty-\n", - " seven 1987 twenty '79 zero two 78-degrees eighty-four IX '60s .025\n", - " fifteen 271,124 dozen quintillion DM2,000 ...\n", + "NNP: noun, proper, singular\n", + " Motown Venneboerger Czestochwa Ranzer Conchita Trumplane Christos\n", + " Oceanside Escobar Kreisler Sawyer Cougar Yvette Ervin ODI Darryl CTCA\n", + " Shannon A.K.C. Meltex Liverpool ...\n", "DT: determiner\n", " all an another any both del each either every half la many much nary\n", " neither no some such that the them these this those\n", - "EX: existential there\n", - " there\n", - "FW: foreign word\n", - " gemeinschaft hund ich jeux habeas Haementeria Herr K'ang-si vous\n", - " lutihaw alai je jour objets salutaris fille quibusdam pas trop Monte\n", - " terram fiche oui corporis ...\n", - "IN: preposition or conjunction, subordinating\n", - " astride among uppon whether out inside pro despite on by throughout\n", - " below within for towards near behind atop around if like until below\n", - " next into if beside ...\n", "JJ: adjective or numeral, ordinal\n", " third ill-mannered pre-war regrettable oiled calamitous first separable\n", " ectoplasmic battery-powered participatory fourth still-to-be-named\n", - " multilingual multi-disciplinary ...\n", - "JJR: adjective, comparative\n", - " bleaker braver breezier briefer brighter brisker broader bumper busier\n", - " calmer cheaper choosier cleaner clearer closer colder commoner costlier\n", - " cozier creamier crunchier cuter ...\n", - "JJS: adjective, superlative\n", - " calmest cheapest choicest classiest cleanest clearest closest commonest\n", - " corniest costliest crassest creepiest crudest cutest darkest deadliest\n", - " dearest deepest densest dinkiest ...\n", - "LS: list item marker\n", - " A A. B B. C C. D E F First G H I J K One SP-44001 SP-44002 SP-44005\n", - " SP-44007 Second Third Three Two * a b c d first five four one six three\n", - " two\n", - "MD: modal auxiliary\n", - " can cannot could couldn't dare may might must need ought shall should\n", - " shouldn't will would\n", - "NN: noun, common, singular or mass\n", - " common-carrier cabbage knuckle-duster Casino afghan shed thermostat\n", - " investment slide humour falloff slick wind hyena override subhumanity\n", - " machinist ...\n", - "NNP: noun, proper, singular\n", - " Motown Venneboerger Czestochwa Ranzer Conchita Trumplane Christos\n", - " Oceanside Escobar Kreisler Sawyer Cougar Yvette Ervin ODI Darryl CTCA\n", - " Shannon A.K.C. Meltex Liverpool ...\n", - "NNPS: noun, proper, plural\n", - " Americans Americas Amharas Amityvilles Amusements Anarcho-Syndicalists\n", - " Andalusians Andes Andruses Angels Animals Anthony Antilles Antiques\n", - " Apache Apaches Apocrypha ...\n", - "NNS: noun, common, plural\n", - " undergraduates scotches bric-a-brac products bodyguards facets coasts\n", - " divestitures storehouses designs clubs fragrances averages\n", - " subjectivists apprehensions muses factory-jobs ...\n", - "PDT: pre-determiner\n", - " all both half many quite such sure this\n", - "POS: genitive marker\n", - " ' 's\n", - "PRP: pronoun, personal\n", - " hers herself him himself hisself it itself me myself one oneself ours\n", - " ourselves ownself self she thee theirs them themselves they thou thy us\n", - "PRP$: pronoun, possessive\n", - " her his mine my our ours their thy your\n", - "RB: adverb\n", - " occasionally unabatingly maddeningly adventurously professedly\n", - " stirringly prominently technologically magisterially predominately\n", - " swiftly fiscally pitilessly ...\n", - "RBR: adverb, comparative\n", - " further gloomier grander graver greater grimmer harder harsher\n", - " healthier heavier higher however larger later leaner lengthier less-\n", - " perfectly lesser lonelier longer louder lower more ...\n", - "RBS: adverb, superlative\n", - " best biggest bluntest earliest farthest first furthest hardest\n", - " heartiest highest largest least less most nearest second tightest worst\n", - "RP: particle\n", - " aboard about across along apart around aside at away back before behind\n", - " by crop down ever fast for forth from go high i.e. in into just later\n", - " low more off on open out over per pie raising start teeth that through\n", - " under unto up up-pp upon whole with you\n", - "SYM: symbol\n", - " % & ' '' ''. ) ). * + ,. < = > @ A[fj] U.S U.S.S.R * ** ***\n", - "TO: \"to\" as preposition or infinitive marker\n", - " to\n", - "UH: interjection\n", - " Goodbye Goody Gosh Wow Jeepers Jee-sus Hubba Hey Kee-reist Oops amen\n", - " huh howdy uh dammit whammo shucks heck anyways whodunnit honey golly\n", - " man baby diddle hush sonuvabitch ...\n", - "VB: verb, base form\n", - " ask assemble assess assign assume atone attention avoid bake balkanize\n", - " bank begin behold believe bend benefit bevel beware bless boil bomb\n", - " boost brace break bring broil brush build ...\n", - "VBD: verb, past tense\n", - " dipped pleaded swiped regummed soaked tidied convened halted registered\n", - " cushioned exacted snubbed strode aimed adopted belied figgered\n", - " speculated wore appreciated contemplated ...\n", - "VBG: verb, present participle or gerund\n", - " telegraphing stirring focusing angering judging stalling lactating\n", - " hankerin' alleging veering capping approaching traveling besieging\n", - " encrypting interrupting erasing wincing ...\n", - "VBN: verb, past participle\n", - " multihulled dilapidated aerosolized chaired languished panelized used\n", - " experimented flourished imitated reunifed factored condensed sheared\n", - " unsettled primed dubbed desired ...\n", - "VBP: verb, present tense, not 3rd person singular\n", - " predominate wrap resort sue twist spill cure lengthen brush terminate\n", - " appear tend stray glisten obtain comprise detest tease attract\n", - " emphasize mold postpone sever return wag ...\n", - "VBZ: verb, present tense, 3rd person singular\n", - " bases reconstructs marks mixes displeases seals carps weaves snatches\n", - " slumps stretches authorizes smolders pictures emerges stockpiles\n", - " seduces fizzes uses bolsters slaps speaks pleads ...\n", - "WDT: WH-determiner\n", - " that what whatever which whichever\n", - "WP: WH-pronoun\n", - " that what whatever whatsoever which who whom whosoever\n", - "WP$: WH-pronoun, possessive\n", - " whose\n", - "WRB: Wh-adverb\n", - " how however whence whenever where whereby whereever wherein whereof why\n", - "``: opening quotation mark\n", - " ` ``\n" + " multilingual multi-disciplinary ...\n" ] } ], "source": [ - "# Check the documentation that describes what all of the abbreviations mean\n", - "nltk.help.upenn_tagset()" + "# Check out the documentation for describing the abbreviations\n", + "nltk.help.upenn_tagset(tagpattern='NNP')\n", + "nltk.help.upenn_tagset(tagpattern='DT')\n", + "nltk.help.upenn_tagset(tagpattern='JJ')" ] }, { @@ -430,10 +307,8 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": true - }, + "execution_count": 10, + "metadata": {}, "outputs": [], "source": [ "# Apply named entity recognition to our POS tags\n", @@ -442,7 +317,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -492,7 +367,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": { "scrolled": true }, @@ -514,25 +389,27 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Text Encoding\n", + "## Text Encoding\n", + "\n", + "In order to analyze text _as_ data, we often need to encode it in some way. \n", "\n", - "One of the key components of NLP, is deciding how to encode the text data. \n", + "By encoding here, we just mean choosing a representation of the data, and for text data the goal is to choose a representation that is more amenable for computational analysis. There are many possibilities, and which approach works best depends largely on the context of the data and the analyses to be performed. Choosing how to encode text data is a key topic in NLP. \n", "\n", - "Common encodings are:\n", + "Here, we will explore a couple simple encoding approaches, which in this case are basically ways to count the words and measure occurrences in text data. By measuring how often certain words occur, we can characterize the text as numerical data, and open up access to numerical analysis of the data. \n", + "\n", + "Some common encodings for text data are:\n", "- Bag of Words (BoW)\n", " - Text is encoded as a collection of words & frequencies\n", "- Term Frequency / Inverse Document Frequency (TF/IDF)\n", " - TF/IDF is a weighting that stores words with relation to their commonality across a corpus.\n", "\n", - "We will walk through an example of encoding text as BoW and TF-IDF." + "Next we will walk through an example of encoding text as BoW and TF-IDF." ] }, { "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true - }, + "execution_count": 13, + "metadata": {}, "outputs": [], "source": [ "# Imports\n", @@ -555,27 +432,29 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "### Load some Data\n", + "\n", "The data we will be looking at is a small subset of the BookCorpus dataset. The original dataset can be found here: http://yknzhu.wixsite.com/mbweb.\n", "\n", - "The original dataset was collected from more than 11,000 books, and has already been tokenised at both the sentence and word level. The small subset provided and used here contains the first 10,000 sentences." + "The original dataset was collected from more than 11,000 books, and has already been tokenised at both the sentence and word level. \n", + "\n", + "The small subset provided and used here contains the first 10,000 sentences." ] }, { "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": true - }, + "execution_count": 14, + "metadata": {}, "outputs": [], "source": [ "# Load the data\n", - "with open('files/book10k.txt', 'r') as f:\n", - " sents = f.readlines()" + "with open('files/book10k.txt', 'r') as file:\n", + " sents = file.readlines()" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -595,15 +474,22 @@ "print(sents[-1])" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Pre-Processing\n", + "\n", + "First, let's do some standard text pre-processing." + ] + }, { "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": true - }, + "execution_count": 16, + "metadata": {}, "outputs": [], "source": [ - "# Preprocessing: Strip all extra whitespace from the sentences\n", + "# Preprocessing: strip all extra whitespace from the sentences\n", "sents = [sent.strip() for sent in sents]" ] }, @@ -611,15 +497,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We first take a look at the word frequency in the document, and print out top 10 most frequently appeared words with their frequencies." + "Let's first take a look at the word frequencies in this data.\n", + "\n", + "To do so, we can tokenize the text, count occurences, and then we can have a look at the most frequent words in the dataset. " ] }, { "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": true - }, + "execution_count": 17, + "metadata": {}, "outputs": [], "source": [ "# Tokenize all the sentences into words\n", @@ -631,14 +517,14 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Number of words in the data: \t 140060\n", + "Number of words in the data: \t 140094\n", "Number of unique words: \t 8221\n" ] } @@ -649,31 +535,92 @@ "print('Number of unique words: \\t', len(set(tokens)))" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bag-of-Words\n", + "\n", + "Next, let's try a 'bag-of-words' representation of the data. \n", + "\n", + "After tokenization, a 'bag-of-words' can be computed by counting how often each token occurs, which we can do with the `Counter` object. \n", + "\n", + "
\n", + "A 'bag of words' model, of representation, is way to represent text data by counting occurences of tokens.\n", + "
\n", + "\n", + "
\n", + "Bag of words on \n", + "wikipedia.\n", + "
" + ] + }, { "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": true - }, + "execution_count": 19, + "metadata": {}, "outputs": [], "source": [ "# Use the 'counter' object to count how many times each word appears\n", "counts = Counter(tokens)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we can explore the counter object, which is basically a 'bag-of-words' representation of the data. \n", + "\n", + "Note that in this encoding we have lost word order and grammar. All we have is a collection of words. \n", + "\n", + "This representation is quite different from how humans interact with language, but can be useful for some analyses. \n", + "\n", + "What we do have is a list of all the words present, and how often they appear. Basically, we have turned the text into a _distribution_ and we can try and analyze this distribution to try and programmatically analyze the text. " + ] + }, { "cell_type": "code", - "execution_count": 30, - "metadata": { - "collapsed": true - }, - "outputs": [], + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[('.', 8601),\n", + " (',', 6675),\n", + " ('the', 6062),\n", + " ('and', 3382),\n", + " ('to', 3328),\n", + " ('``', 2852),\n", + " ('i', 2747),\n", + " ('a', 2480),\n", + " ('of', 2122),\n", + " ('was', 1752),\n", + " ('he', 1678),\n", + " ('in', 1616),\n", + " ('you', 1483),\n", + " ('her', 1353),\n", + " ('his', 1349),\n", + " ('?', 1153),\n", + " ('she', 1153),\n", + " ('that', 1134),\n", + " ('it', 1050),\n", + " (\"'s\", 1023),\n", + " ('had', 898),\n", + " ('with', 894),\n", + " ('alejo', 890),\n", + " ('wara', 875),\n", + " ('at', 818)]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Check out the counts object\n", - "# This is basically a 'bag-of-words' representation of this corpus\n", - "# We have lost word order and grammar - it's just a collection of words\n", - "# What we do have is a list of all the words present, and how often they appear\n", - "counts" + "# Check out the counts object, printing out some of the most common tokens\n", + "counts.most_common(25)" ] }, { @@ -704,9 +651,7 @@ { "cell_type": "code", "execution_count": 22, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Drop all punction markers from the counts object\n", @@ -718,9 +663,7 @@ { "cell_type": "code", "execution_count": 23, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Get the top 10 most frequent words\n", @@ -730,9 +673,7 @@ { "cell_type": "code", "execution_count": 24, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Extract the top words, and counts\n", @@ -747,12 +688,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEWCAYAAACHVDePAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAFxxJREFUeJzt3Xu8XWV95/HPl4BcDFeJiMoYsVgK\nLXIJaAoytFgqTh21RQFRuWjTqTfQEV5Qxnas46uMONRqOyqltuowlotikVoVQQqDckkgIFEZQKKg\n3CnBEOQSfvPHWkc2Z06Sc5K9z97nrM/79TqvvfZaa6/1PMk+3/2cZ639PKkqJEmz20bDLoAkafAM\ne0nqAMNekjrAsJekDjDsJakDDHtJ6gDDXpI6wLDXQCVZ2fPzVJJHe54fNYTynJbkiXHleu90l0Oa\nbhsPuwCa3apq7thykuXAO6rqW+tzrCQbV9WTfSjW56rqHes410YAVfVUH84nDZ0tew1VkjlJPpjk\nR0nuT3J2km3abbsmeTLJHya5A/haz7q3J/lpkgeSHJdkYZKbkjyU5Iz1LMtVSf48ydXAKuD5SbZL\n8vkkdye5I8mfjX0QJNk4yV+1Zbg1yXuSPNlzvLuTHNDz/LQkZ/U8f2WSq9syX5dk/3Fl+bP28eEk\nX0uybc/2g9ptK5L8JMmb2+PdMVa+dr+jkly1Pv8eml0Mew3bicAhwAHAC4EngL/s2T4HeDnwq8Dr\netbtAewMHAt8EvgA8O/b9ccmefl6luctwNuALYG7gbOBFe259gNeD7y13ffdwG8DvwEsBA6f7EmS\nzAe+ApwKbAf8F+ArvYEOvBk4CtgR2AY4vn3trwAXAacDzwH2AZZV1RXA4zT/Dr31+cJky6XZy7DX\nsP0RcHJV/ayqfgF8CDg8SXr2+dOqWlVVj/as+/OqeqyqLmyff76qHqiqnwDfAfZayznf2ramx362\n69l2VlXdXFVPAC8ADgTe357/LuATwBHtvm8C/kdb9vuAj06h3kcDX66qb1XVU1X1NeD7NB98Y/62\nqm6rqkeA84E9x8oPfLWqvlRVT1bVfVV1w9i/A03Ak2QHmuA/Zwrl0ixln72Gpg30nWi6Z3pH5NuI\npsUK8FRV/WzcS1dX1QM9zx8F7hn3fC5r9oW19Nnf0bP8ImAz4L6ez56NgFvb5eeP2//HaznneC8C\njkzyxp51m7THHHN3z/Iqnq7TTsBtazju54HrkrwLOBK4uKrun0K5NEsZ9hqaqqokPwV+v6qWjN+e\nZHtguodl7T3fHcBKYNuaeHjYu2iCd8y/G7f9EWCLnufPA8b69O+g+SviPetRxjuAl060oapuT3Ij\n8FqavwD+Yj2Or1nIbhwN26eB05LsBJDkuUleO+QyAU1wAlcBH02yZZKNkuzSc9H1XOB9SXZsP5hO\nGneIpTSt942TvIKnrzkAfA54Y5KD24vUm7fLz5tE0T4P/F6SN7SvnZdkj3HbP0hzneGrU6+5ZiPD\nXsP2UeBbwKVJfk7T3773cIv0DEfSXBz9IfAgTf/3Du22vwauAJYBV9OEf68/obl4+xBwCvCPYxuq\n6kfAH9Bco7ifpgvoeCbxO1lVt9F8cPwJ8G/AYmD3nl3OA34FOLeqHpt0TTWrxclLpP5IsitwU1UN\ntXu0vfXyJ8ARVfV/hlkWjQ5b9tLscyTwsEGvXl6glWaR9gtU82nu0Zd+yW4cSeoAu3EkqQNGphtn\n++23r/nz5w+7GJI0oyxZsuT+qpq3rv1GJuznz5/P4sWLh10MSZpRkkzqm9t240hSBxj2ktQBhr0k\ndYBhL0kdYNhLUgcY9pLUAYa9JHWAYS9JHTAyX6r63k9XMP/kfx52MWac5af9h2EXQdIMYMtekjrA\nsJekDjDsJakDDHtJ6gDDXpI6wLCXpA6YVNgn+XCS43uefyTJ8UlOT3JTku8lObzddlCSi3r2/esk\nx/S95JKkSZtsy/7vgKMBkmwEHAHcCewJvAx4FXB6kh2ncvIki5IsTrJ49aoVU3mpJGkKJhX2VbUc\neCDJXsAhwPXAAcAXq2p1Vd0D/Cuw71ROXlVnVtWCqlowZ4utp1ZySdKkTeUbtGcBxwDPAz5LE/oT\neZJnfohstl4lkyT1zVQu0F4AvJqm9f4N4HLg8CRzkswDDgSuAX4M7JZk0yRbAwf3ucySpCmadMu+\nqh5P8m3goapaneQCYCFwA1DASVV1N0CSc4EbgVtounwkSUM06bBvL8y+AngjQFUVcGL78wxVdRJw\nUp/KKEnaQJO99XI34Fbgkqq6ZbBFkiT126Ra9lX1fWDnAZdFkjQgIzOe/W+8YGsWOza7JA2EwyVI\nUgcY9pLUAYa9JHXAyPTZOwft9HLuWqlbbNlLUgcY9pLUAYa9JHWAYS9JHWDYS1IHGPaS1AHrDPsk\nJyV5b7v8l0kubZcPTvK/knyqnVpwWZIP9bzutCTfT3Jjko8NrgqSpHWZzH32lwP/GfgEsADYNMkm\nNNMSXgGcV1UPJpkDXJJkD5r5ad8A7FpVlWSbiQ6cZBGwCGDOVvM2uDKSpIlNphtnCbBPki2Bx4Dv\n0oT+K2nC/k1JrqOZpGR3YDfgYeAXwFlJfh9YNdGBnYNWkqbHOsO+qp4AlgPHAt+hCfjfAl4CPAp8\nADi4qvYA/hnYrKqeBPYDvgS8Hvj6IAovSZqcyV6gvZwm1C+nCfv/BCwFtgIeAVYk2QE4FCDJXGDr\nqvoacAKwZ5/LLUmagsmOjXMFcCrw3ap6JMkvgCuq6oYk1wPLgB8BV7b7bwn8U5LNgADv63O5JUlT\nMNmZqi4BNul5/tKe5WPW8LL9NqhkkqS+8T57SeoAw16SOsCwl6QOGJnJS5xwXJIGx5a9JHWAYS9J\nHWDYS1IHjEyfvROOa6Zy8nbNBLbsJakDDHtJ6gDDXpI6oC9hn2SbJO/sx7EkSf3Xr5b9NoBhL0kj\nql9345wGvCTJUuDidt2hQAH/rarO6dN5JEnroV8t+5OB26pqT+AqmslKXga8Cjg9yY59Oo8kaT0M\n4gLtAcAXq2p1Vd0D/Cuw70Q7JlmUZHGSxatXrRhAUSRJMJiwz2R3dMJxSZoe/Qr7n9NMRQjNPLWH\nJ5mTZB5wIHBNn84jSVoPfblAW1UPJLkyyU3AvwA3AjfQXKA9qaru7sd5JEnrp29j41TVm8etOrFf\nx5YkbRi/QStJHWDYS1IHGPaS1AEjM569c9BK0uDYspekDjDsJakDDHtJ6oCR6bN3DlpJXTRdcxjb\nspekDjDsJakDDHtJ6gDDXpI6YEph3zuxeJKDklw0mGJJkvppqi17JxaXpBloqrde9k4s/gTwSJLz\ngV8HlgBvqapKsg9wBjAXuB84pqru6mO5JUlTMNWWfe/E4icCewEnALsBOwP7J9kE+CRwWFXtA3wW\n+MhEB3MOWkmaHhv6paprqupOgLa1Px94iKalf3ESgDnAhK36qjoTOBNg0x13qQ0siyRpDTY07B/r\nWV7dHi/AsqpauIHHliT1yVS7cXonFl+Tm4F5SRYCJNkkye7rUzhJUn9MqWU/bmLxR4F7Jtjn8SSH\nAZ9IsnV7jo8Dy/pRYEnS1E25G2eCicXH1r+7Z3kpcOAGlEuS1Ed+g1aSOsCwl6QOGJnx7J2DVpIG\nx5a9JHWAYS9JHWDYS1IHjEyfvXPQzlzTNYempPVny16SOsCwl6QOMOwlqQMMe0nqgIGHfZL3JvlB\nkrMHfS5J0sSm426cdwKHVtXt03AuSdIE+tqyT/L+JDe1Pyck+TTNdIUXJnlfP88lSZq8vrXs20nG\njwVeTjNb1dXAW4BXA79VVfdP8JpFwCKAOVvN61dRJEnj9LNlfwBwQVU9UlUrgS8Dr1zbC6rqzKpa\nUFUL5myxdR+LIknq1c+wTx+PJUnqo36G/eXA65NskeTZwBuAK/p4fEnSeupbn31VXZfkH4Br2lVn\nVdX1iQ1+SRq2vt56WVVnAGeMWze/n+eQJE2d36CVpA4w7CWpA0ZmPHvnoJWkwbFlL0kdYNhLUgcY\n9pLUASPTZ+8ctP3n3LCSxtiyl6QOMOwlqQMMe0nqAMNekjqgb2Gf5Dv9OpYkqb/6FvZV9Zv9OpYk\nqb/62bJf2T4elOSyJOcn+WGSs+M4x5I0VIPqs98LOAHYjWbC8f0n2inJoiSLkyxevWrFgIoiSRpU\n2F9TVXdW1VPAUmD+RDs5B60kTY9Bhf1jPcurGaFv6kpSF3nrpSR1gGEvSR3QzwnH57aPlwGX9ax/\nd7/OIUlaP7bsJakDDHtJ6oCRuUvGOWglaXBs2UtSBxj2ktQBhr0kdcDI9Nk7B602hPPtSmtny16S\nOsCwl6QOMOwlqQMMe0nqgGkJe+enlaThmpawd35aSRqu6WrZr5yO80iSJjbUPnvnoJWk6THUsHcO\nWkmaHt6NI0kdYNhLUgcY9pLUAdN16+Xc6TiPJGlituwlqQMMe0nqgJEZz945aCVpcGzZS1IHGPaS\n1AGGvSR1wMj02TsH7WA5R6vUbbbsJakDDHtJ6gDDXpI6wLCXpA7YoLBPMj/JTf0qjCRpMGzZS1IH\n9CPs5yT52yTLknwzyeZJXpLk60mWJLkiya59OI8kaT31I+x3Af6mqnYHHgL+ADgTeE9V7QN8APif\nfTiPJGk99eNLVbdX1dJ2eQkwH/hN4LwkY/tsOtELkywCFgHM2WpeH4oiSZpIP8L+sZ7l1cAOwENV\ntee6XlhVZ9L8FcCmO+5SfSiLJGkCg7hA+zBwe5I3AqTxsgGcR5I0SYO6G+co4O1JbgCWAa8b0Hkk\nSZOwQd04VbUc+PWe5x/r2fzqDTm2JKl/vM9ekjrAsJekDjDsJakDRmbyEiccl6TBsWUvSR1g2EtS\nBxj2ktQBI9Nn74Tjmg2c2F2jypa9JHWAYS9JHWDYS1IHGPaS1AEDD/skKwd9DknS2tmyl6QOmFTY\nJ/lKO3n4snYqQZKsTPKRJDckuSrJDu36Fyf5bpJrk3x4kIWXJE3OZFv2x7WThy8A3pvkOcCzgauq\n6mXA5cAftvv+FfCpqtoXuHttB02yKMniJItXr1qxfjWQJK3TZMP+ve2sU1cBOwG7AI8DF7XbxyYa\nB9gf+GK7/IW1HbSqzqyqBVW1YM4WW0+l3JKkKVjnN2iTHAS8ClhYVauSXAZsBjxRVWOThK8edywn\nD5ekETKZlv3WwL+1Qb8r8Ip17H8lcES7fNSGFE6S1B+TCfuvAxsnuRH4ME1XztocD7wrybU0HxSS\npCFbZzdOVT0GHDrBprk9+5wPnN8u3w4s7NnvtA0soyRpA3mfvSR1gGEvSR0wMuPZOwetJA2OLXtJ\n6gDDXpI6wLCXpA4YmT5756AVOIerNCi27CWpAwx7SeoAw16SOsCwl6QOMOwlqQMMe0nqgIGF/UTz\n1kqShmOQ99kfV1UPJtkcuDbJl6rqgd4d2g+BRQBztpo3wKJIUrcNshtnonlrn8E5aCVpegykZb+W\neWslSUMwqJb9VOetlSQN0KDCfqrz1kqSBmgg3ThrmbdWkjQE3mcvSR1g2EtSB4zMePbOQStJg2PL\nXpI6wLCXpA4w7CWpAwx7SeoAw16SOsCwl6QOMOwlqQMMe0nqAMNekjogVTXsMgCQ5OfAzcMuRx9t\nD9w/7EL02Wyr02yrD1inmaDf9XlRVa1zqr+RGS4BuLmqFgy7EP2SZPFsqg/MvjrNtvqAdZoJhlUf\nu3EkqQMMe0nqgFEK+zOHXYA+m231gdlXp9lWH7BOM8FQ6jMyF2glSYMzSi17SdKAGPaS1AFDD/sk\nr05yc5Jbk5w87PKsTZLPJrk3yU0967ZLcnGSW9rHbdv1SfKJtl43Jtm75zVHt/vfkuToYdSlLcdO\nSb6d5AdJliU5fhbUabMk1yS5oa3Th9r1L05ydVu+c5I8q12/afv81nb7/J5jndKuvznJ7w6nRr8s\ny5wk1ye5qH0+0+uzPMn3kixNsrhdN5Pfd9skOT/JD9vfp4UjV5+qGtoPMAe4DdgZeBZwA7DbMMu0\njvIeCOwN3NSz7qPAye3yycB/b5dfA/wLEOAVwNXt+u2AH7WP27bL2w6pPjsCe7fLWwL/F9hthtcp\nwNx2eRPg6ras5wJHtOs/Dfxxu/xO4NPt8hHAOe3ybu37cVPgxe37dM4Q33vvB/43cFH7fKbXZzmw\n/bh1M/l99zngHe3ys4BtRq0+Q/mP7vkHWgh8o+f5KcApwyzTJMo8n2eG/c3Aju3yjjRfDgP4DHDk\n+P2AI4HP9Kx/xn5Drts/Ab8zW+oEbAFcB7yc5huLG49/3wHfABa2yxu3+2X8e7F3vyHU44XAJcBv\nAxe15Zux9WnPv5z/P+xn5PsO2Aq4nfaGl1Gtz7C7cV4A3NHz/M523UyyQ1XdBdA+Prddv6a6jWSd\n2z/396JpCc/oOrVdHkuBe4GLaVqxD1XVkxOU75dlb7evAJ7DaNXp48BJwFPt8+cws+sDUMA3kyxJ\nsqhdN1PfdzsD9wF/33a1nZXk2YxYfYYd9plg3Wy5F3RNdRu5OieZC3wJOKGqHl7brhOsG7k6VdXq\nqtqTpkW8H/BrE+3WPo50nZL8HnBvVS3pXT3BrjOiPj32r6q9gUOBdyU5cC37jnqdNqbp3v1UVe0F\nPELTbbMmQ6nPsMP+TmCnnucvBH42pLKsr3uS7AjQPt7brl9T3Uaqzkk2oQn6s6vqy+3qGV2nMVX1\nEHAZTb/oNknGxoLqLd8vy95u3xp4kNGp0/7Af0yyHPhHmq6cjzNz6wNAVf2sfbwXuIDmQ3mmvu/u\nBO6sqqvb5+fThP9I1WfYYX8tsEt7Z8GzaC4oXTjkMk3VhcDYVfOjafq9x9a/rb3y/gpgRfun3DeA\nQ5Js216dP6RdN+2SBPg74AdVdUbPpplcp3lJtmmXNwdeBfwA+DZwWLvb+DqN1fUw4NJqOkwvBI5o\n7255MbALcM301OJpVXVKVb2wqubT/H5cWlVHMUPrA5Dk2Um2HFumeb/cxAx931XV3cAdSX61XXUw\n8H1GrT7TfTFjgosbr6G5C+Q24NRhl2cdZf0icBfwBM2n8Ntp+kMvAW5pH7dr9w3wN229vgcs6DnO\nccCt7c+xQ6zPATR/Jt4ILG1/XjPD67QHcH1bp5uAP23X70wTbrcC5wGbtus3a5/f2m7fuedYp7Z1\nvRk4dATefwfx9N04M7Y+bdlvaH+Wjf3ez/D33Z7A4vZ99xWau2lGqj4OlyBJHTDsbhxJ0jQw7CWp\nAwx7SeoAw16SOsCwl6QOGKUJx6UpS7Ka5va1Ma+vquVDKo40srz1UjNakpVVNXct2zeup8eQkTrL\nbhzNOkmOSXJekq8C32zXnZjk2nb88A/17HtqO777t5J8MckH2vWXJVnQLm/fDlcwNsja6T3H+qN2\n/UHta8bGND+7/YYySfZN8p00Y+xfk2TLJFck2bOnHFcm2WO6/o3UPXbjaKbbvB3hEuD2qnpDu7wQ\n2KOqHkxyCM3wAPvRfHvxwnbgrUdohiDYi+Z34TpgCWv3dpqvt++bZFPgyiTfbLftBexOM57JlcD+\nSa4BzgEOr6prk2wFPAqcBRwDnJDkpTTfgL1xg/4lpLUw7DXTPVrNCJfjXVxVD7bLh7Q/17fP59KE\n/5bABVW1CiDJZMZlOgTYI8nYuDRbt8d6HLimqu5sj7WUZu6DFcBdVXUtQLWjiiY5D/hgkhNpviL/\nD5OtsLQ+DHvNVo/0LAf4i6r6TO8OSU5gzUPIPsnT3ZybjTvWe6rqGQNUJTkIeKxn1Wqa369MdI6q\nWpXkYuB1wJuABeuoj7RB7LNXF3wDOK4dt58kL0jyXOBy4A1JNm9HYXxtz2uWA/u0y4eNO9Yft0ND\nk+Sl7ciNa/JD4PlJ9m3337JnaOKzgE8A1/b8FSINhC17zXpV9c0kvwZ8t71muhJ4S1Vdl+QcmtE+\nfwxc0fOyjwHnJnkrcGnP+rNoumeuay/A3ge8fi3nfjzJ4cAn2yGXH6UZdnllVS1J8jDw932qqrRG\n3noptZL8V5oQ/tg0ne/5NJOr7FpVT61jd2mD2I0jDUGSt9HM93uqQa/pYMtekjrAlr0kdYBhL0kd\nYNhLUgcY9pLUAYa9JHXA/wMQLIj2ab+GkgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEWCAYAAACdaNcBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAWQUlEQVR4nO3dfbxdVX3n8c/XBAElEhCkqIwRi6XQIgg+RKhDq6Xi1BFaFBCftXTqA1JHfWEZ27FOp4w61OJ0VMq0VYexCCpFahXUMjAoDwkkmKiMIKmgIAKChiDy8Osfe185XG+Sm+Sce85d+bxfr/u6e6+9z95r3Zz7vStr77NXqgpJUlseMe4KSJKGz3CXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcNVJJ1g58PZjknoH148ZQn1OS3DetXifMdT2kUVs47gqobVW1w9RykjXA66vqi5tzrCQLq+r+IVTro1X1+o2c6xEAVfXgEM4nzTl77hqrJAuSvCvJt5PcluTMJIv7bXsnuT/J7yW5EfjcQNnrknw3ye1JXptkaZJVSe5Mcupm1uWyJH+a5HJgHfD4JDsn+ViSW5LcmORPpoI/ycIkf9nX4bokb05y/8DxbklyyMD6KUnOGFj/tSSX93W+KsnB0+ryJ/33HyX5XJKdBrYf2m+7K8l3krysP96NU/Xr9zsuyWWb8/PQ/Ga4a9zeDhwGHAI8EbgP+IuB7QuAZwG/BLx4oGw/YE/gNcAHgbcB/7Yvf02SZ21mfV4OvBJYBNwCnAnc1Z/rmcARwCv6fd8E/Abwq8BS4OjZniTJEuBc4GRgZ+A/AecOBjjwMuA4YHdgMfCW/rW/CJwPvA94LHAgsLqqLgF+SvdzGGzPx2dbL7XDcNe4/T5wUlV9r6p+ArwbODpJBvb546paV1X3DJT9aVXdW1Xn9esfq6rbq+o7wFeAAzZwzlf0veWpr50Htp1RVddW1X3AE4DnAm/tz38zcBpwTL/vS4H/3tf9B8B7N6HdrwI+XVVfrKoHq+pzwNfp/tBN+euqur6q7gbOAfafqj/w2ar6VFXdX1U/qKqVUz8HukAnyW50QX/WJtRLjXDMXWPTB/gedMMtg0+wewRdjxTgwar63rSXPlBVtw+s3wN8f9r6Dqzfxzcw5n7jwPKTgO2AHwz8rXkEcF2//Php+//LBs453ZOAY5O8ZKBsm/6YU24ZWF7HQ23aA7h+Pcf9GHBVkjcCxwIXVtVtm1AvNcJw19hUVSX5LvA7VbV8+vYkuwBz/djSwfPdCKwFdqqZH596M13QTvk307bfDTxqYP0XgKkx+Rvp/pfw5s2o443AU2faUFU3JLkGeBFdD//PN+P4aoDDMhq3DwOnJNkDIMnjkrxozHUCuqAELgPem2RRkkck2WvgIukngT9Msnv/h+gd0w6xgq53vjDJs3nomgHAR4GXJHlef1F5+375F2ZRtY8Bv53kyP61uybZb9r2d9FdJ/jsprdcLTDcNW7vBb4IfDnJj+nGy58+3io9zLF0FzO/CdxBN369W7/tfwCXAKuBy+nCftAf0V1svRN4J/D3Uxuq6tvA79JdY7iNbkjnLczid7Kqrqf7Q/FHwA+BZcC+A7ucDfwi8MmqunfWLVVT4mQd0nAk2RtYVVVjHe7sb4X8DnBMVf2/cdZF42PPXWrPscCPDPatmxdUpYb0H1haQnePvLZiDstIUoMclpGkBk3MsMwuu+xSS5YsGXc1JGleWb58+W1Vtev08okJ9yVLlrBs2bJxV0OS5pUkM34y2mEZSWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMm5kNMX/vuXSw56R/HXY2mrDnl3427CpLGxJ67JDXIcJekBhnuktQgw12SGjS0cE/ylWEdS5K0ZYYW7lX1nGEdS5K0ZYbZc1/bfz80yUVJzknyzSRnJsmwziNJ2rhRjbkfAJwI7APsCRw8005Jjk+yLMmyB9bdNaKqSNLWZ1ThfkVV3VRVDwIr6GZj/zlVdXpVHVRVBy141I4jqookbX1GFe73Diw/wAR9ElaStgbeCilJDTLcJalBQxsuqaod+u8XARcNlL9pWOeQJM2OPXdJapDhLkkNmpi7WH71CTuyzOePS9JQ2HOXpAYZ7pLUIMNdkho0MWPuzqE6Ws6nKm1d7LlLUoMMd0lqkOEuSQ0y3CWpQVsU7kmWJFk1rMpIkobDnrskNWgY4b4gyV8nWZ3kgiTbJ3lKks8nWZ7kkiR7D+E8kqRZGka47wX8VVXtC9wJ/C5wOvDmqjoQeBvwP2d6oXOoStJoDONDTDdU1Yp+eTndfKnPAc5OMrXPtjO9sKpOp/tDwLa771VDqIskieGE+/T5UncD7qyq/YdwbEnSZhjFBdUfATckeQlAOk8bwXkkSesxqrtljgNel2QlsBp48YjOI0mawRYNy1TVGuBXBtbfP7D5BVtybEnS5vM+d0lqkOEuSQ0y3CWpQRMzWYcTZEvS8Nhzl6QGGe6S1CDDXZIaNDFj7k6QPbecMFtqmz13SWqQ4S5JDTLcJalBhrskNchwl6QGbTTck7wjyQn98l8k+XK//Lwk/zvJh/qp8lYneffA605J8vUk1yR5//qOL0kavtncCnkx8B+B04CDgG2TbAMcAlwCnF1VdyRZAHwpyX7ATcCRwN5VVUkWj6b6kqSZzGZYZjlwYJJFdFPqfZUu5H+NLtxfmuQq4GpgX2AfutmYfgKckeR3gHUzHdgJsiVpNDYa7lV1H7AGeA3wFbpA/3XgKcA9wNuA51XVfsA/AttV1f3AM4FPAUcAn1/PsU+vqoOq6qAFj9pxy1sjSQJmf0H1YroQv5gu3P8DsAJ4DHA3cFeS3YDDAZLsAOxYVZ8DTgScLFuS5tBsHz9wCXAy8NWqujvJT4BLqmplkqvp5kn9NnBpv/8i4B+SbAcE+MMh11uStAGzCveq+hKwzcD6UweWX72elz1zi2omSdps3ucuSQ0y3CWpQYa7JDVoYp7n7hyqkjQ89twlqUGGuyQ1yHCXpAZNzJi7c6jOX87HKk0ee+6S1CDDXZIaZLhLUoMMd0lq0MjDPckJSb6R5MxRn0uS1JmLu2XeABxeVTfMwbkkSQy5557krUlW9V8nJvkwsCdwXhKf6S5Jc2RoPfckB9JNxfcsugk6LgdeDrwA+PWqum2G1xwPHA+w4DG7DqsqkrTVG2bP/RDgM1V1d1WtBT5NN4n2ejmHqiSNxjDDPUM8liRpCwwz3C8GjkjyqCSPBo6km3tVkjTHhjbmXlVXJfk74Iq+6IyqujqxQy9Jc22ot0JW1anAqdPKlgzzHJKkjfMTqpLUIMNdkho0Mc9zdw5VSRoee+6S1CDDXZIaZLhLUoMmZszdOVQFzscqDYs9d0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktSgkYV7knOTLE+yup9OT5I0R0Z5n/trq+qOJNsDVyb5VFXdPriDc6hK0miMcljmhCQrgcuAPYC9pu/gHKqSNBoj6bknORR4PrC0qtYluQjYbhTnkiT9vFH13HcEftgH+97As0d0HknSDEYV7p8HFia5BngP3dCMJGmOjGRYpqruBQ4fxbElSRvnfe6S1CDDXZIaNDHPc3cOVUkaHnvuktQgw12SGmS4S1KDJmbM3TlUtSWce1V6OHvuktQgw12SGmS4S1KDDHdJatCchHuSr8zFeSRJnTkJ96p6zlycR5LUmaue+9q5OI8kqTPWMfckxydZlmTZA+vuGmdVJKkpYw1351CVpNHwbhlJapDhLkkNMtwlqUFzdSvkDnNxHklSx567JDXIcJekBk3M89ydQ1WShseeuyQ1yHCXpAYZ7pLUoIkZc3cOVY2Cc6tqa2XPXZIaZLhLUoMMd0lq0NDCPcnCJBck2XemdUnS3BlauFfV/cDLgf+aZJvp68M6jyRp44Z6t0xV3Qq8eH3rkqS54Zi7JDXIOVQlqUHOoSpJDXJYRpIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDVoYp7n7hyqkjQ89twlqUGGuyQ1yHCXpAZNzJi7c6hqvnKeVk0ie+6S1CDDXZIaZLhLUoMMd0lq0FDCPcniJG8YxrEkSVtuWD33xYDhLkkTYli3Qp4CPCXJCuDCvuxwoID/UlVnDek8kqRZGFbP/STg+qraH7gM2B94GvB84H1Jdh/SeSRJszCKC6qHAJ+oqgeq6vvA/wWeMdOOTpAtSaMxinDPbHd0gmxJGo1hhfuPgUX98sXA0UkWJNkVeC5wxZDOI0mahaFcUK2q25NcmmQV8E/ANcBKuguq76iqW4ZxHknS7AztwWFV9bJpRW8f1rElSZvGT6hKUoMMd0lqkOEuSQ2amMk6nCBbkobHnrskNchwl6QGGe6S1KCJGXN3gmy1wMmyNSnsuUtSgwx3SWqQ4S5JDTLcJalBIw/3JGtHfQ5J0sPZc5ekBs0q3JOcm2R5ktVJju/L1ib5syQrk1yWZLe+/MlJvprkyiTvGWXlJUkzm23P/bVVdSBwEHBCkscCjwYuq6qn0c2+9Hv9vn8JfKiqngFscJIO51CVpNGYbbifkGQlcBmwB7AX8FPg/H77cmBJv3ww8Il++eMbOqhzqErSaGz0E6pJDgWeDyytqnVJLgK2A+6rqup3e2DasQpJ0tjMpue+I/DDPtj3Bp69kf0vBY7pl4/bkspJkjbPbML988DCJNcA76EbmtmQtwBvTHIl3R8GSdIc2+iwTFXdCxw+w6YdBvY5BzinX74BWDqw3ylbWEdJ0ibyPndJapDhLkkNmpjnuTuHqiQNjz13SWqQ4S5JDTLcJalBEzPm7hyqkrZGo5p31567JDXIcJekBhnuktQgw12SGrRJ4Z5kcZI39MuHJjl/Y6+RJM29Te25LwbeMIqKSJKGZ1NvhTwFeEqSFcB9wN1JzgF+hW42ppdXVSU5EDiV7smRtwGvrqqbh1hvSdIGbGrP/STg+qraH3g7cABwIrAPsCdwcJJtgA8CR/Xzrv4N8GczHcw5VCVpNLb0Q0xXVNVNAH1vfglwJ11P/sIkAAuAGXvtVXU6cDrAtrvv5dR8kjQkWxru9w4sT82jGmB1VS2d+SWSpFHb1GGZHwOLNrLPtcCuSZYCJNkmyb6bUzlJ0ubZpJ57Vd2e5NIkq4B7gO/PsM9PkxwFnJZkx/4cHwBWD6PCkqSN2+Rhmap62XrK3zSwvAJ47hbUS5K0BfyEqiQ1yHCXpAZNzPPcnUNVkobHnrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDUoVZMxR0aSH9M9LrgVu9BNMdiS1trUWnvANs0Hw27Pk6pq1+mFE/P4AeDaqjpo3JUYliTLWmoPtNem1toDtmk+mKv2OCwjSQ0y3CWpQZMU7qePuwJD1lp7oL02tdYesE3zwZy0Z2IuqEqShmeSeu6SpCEx3CWpQWMP9yQvSHJtkuuSnDTu+mxIkr9JcmuSVQNlOye5MMm3+u879eVJclrfrmuSPH3gNa/q9/9WkleNoy19PfZI8s9JvpFkdZK3NNCm7ZJckWRl36Z39+VPTnJ5X7+zkjyyL9+2X7+u375k4Fjv7MuvTfJb42nRz+qyIMnVSc7v1+d7e9Yk+VqSFUmW9WXz+X23OMk5Sb7Z/z4tHXt7qmpsX8AC4HpgT+CRwEpgn3HWaSP1fS7wdGDVQNl7gZP65ZOA/9YvvxD4JyDAs4HL+/KdgW/333fql3caU3t2B57eLy8C/j+wzzxvU4Ad+uVtgMv7un4SOKYv/zDwB/3yG4AP98vHAGf1y/v078dtgSf379MFY3zvvRX4P8D5/fp8b88aYJdpZfP5ffdR4PX98iOBxeNuz1j+YQd+IEuBLwysvxN45zjrNIs6L+Hh4X4tsHu/vDvdh7EAPgIcO30/4FjgIwPlD9tvzG37B+A3W2kT8CjgKuBZdJ8IXDj9fQd8AVjaLy/s98v09+LgfmNoxxOBLwG/AZzf12/etqc//xp+Ptzn5fsOeAxwA/0NKpPSnnEPyzwBuHFg/aa+bD7ZrapuBui/P64vX1/bJrLN/X/fD6Dr6c7rNvVDGCuAW4EL6Xqpd1bV/TPU72d177ffBTyWyWrTB4B3AA/2649lfrcHoIALkixPcnxfNl/fd3sCPwD+th86OyPJoxlze8Yd7pmhrJV7M9fXtolrc5IdgE8BJ1bVjza06wxlE9emqnqgqvan6/E+E/jlmXbrv090m5L8NnBrVS0fLJ5h13nRngEHV9XTgcOBNyZ57gb2nfQ2LaQbrv1QVR0A3E03DLM+c9KecYf7TcAeA+tPBL43prpsru8n2R2g/35rX76+tk1Um5NsQxfsZ1bVp/vied2mKVV1J3AR3bjm4iRTz1IarN/P6t5v3xG4g8lp08HAv0+yBvh7uqGZDzB/2wNAVX2v/34r8Bm6P8Lz9X13E3BTVV3er59DF/Zjbc+4w/1KYK/+yv8j6S4AnTfmOm2q84Cpq9qvohu3nip/ZX9l/NnAXf1/zb4AHJZkp/7q+WF92ZxLEuB/Ad+oqlMHNs3nNu2aZHG/vD3wfOAbwD8DR/W7TW/TVFuPAr5c3YDnecAx/d0nTwb2Aq6Ym1Y8pKreWVVPrKoldL8fX66q45in7QFI8ugki6aW6d4vq5in77uqugW4Mckv9UXPA77OuNszrgsqAxcNXkh3l8b1wMnjrs9G6voJ4GbgPrq/sq+jG8/8EvCt/vvO/b4B/qpv19eAgwaO81rguv7rNWNszyF0/+27BljRf71wnrdpP+Dqvk2rgD/uy/ekC7PrgLOBbfvy7fr16/rtew4c6+S+rdcCh0/A++9QHrpbZt62p6/7yv5r9dTv/Tx/3+0PLOvfd+fS3e0y1vb4+AFJatC4h2UkSSNguEtSgwx3SWqQ4S5JDTLcJalBkzRBtrTJkjxAdzvZlCOqas2YqiNNDG+F1LyWZG1V7bCB7QvroWewSFsNh2XUnCSvTnJ2ks8CF/Rlb09yZf/87HcP7Hty/3zzLyb5RJK39eUXJTmoX96l//j/1EPJ3jdwrN/vyw/tXzP1TO8z+08Ak+QZSb6S7hnzVyRZlOSSJPsP1OPSJPvN1c9I7XNYRvPd9v0TIAFuqKoj++WlwH5VdUeSw+g+bv9Muk8Hntc/qOpuuo/0H0D3u3AVsJwNex3dx8WfkWRb4NIkF/TbDgD2pXseyKXAwUmuAM4Cjq6qK5M8BrgHOAN4NXBikqfSfcL0mi36SUgDDHfNd/dU9wTI6S6sqjv65cP6r6v79R3own4R8JmqWgeQZDbPNToM2C/J1HNdduyP9VPgiqq6qT/WCrpn/98F3FxVVwJU/9TNJGcD70rydrqPnP/dbBsszYbhrlbdPbAc4M+r6iODOyQ5kfU/UvV+Hhq23G7asd5cVQ97oFOSQ4F7B4oeoPv9ykznqKp1SS4EXgy8FDhoI+2RNolj7toafAF4bf/cepI8IcnjgIuBI5Ns3z+l8EUDr1kDHNgvHzXtWH/QPyqZJE/tn2y4Pt8EHp/kGf3+iwYe1XsGcBpw5cD/MqShsOeu5lXVBUl+Gfhqf41zLfDyqroqyVl0T8P8F+CSgZe9H/hkklcAXx4oP4NuuOWq/oLpD4AjNnDunyY5Gvhg/wjie+geQ7y2qpYn+RHwt0NqqvQz3gop9ZL8Z7rQff8cne/xdJOJ7F1VD25kd2mTOCwjjUGSV9LNV3uywa5RsOcuSQ2y5y5JDTLcJalBhrskNchwl6QGGe6S1KB/BVVCN+YAqPcGAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -769,15 +712,17 @@ "source": [ "As we can see, 'the', 'was', 'a', etc. appear a lot in the document. \n", "\n", - "These frequently appearing words aren't really that useful to figure out what these documents are about, or as a way to use and understand this text data. " + "However, these frequently appearing words aren't particularly useful for figuring out what these documents are about.\n", + "\n", + "They do not really help us to understand this text data. \n", + "\n", + "These words are all 'stop words', so let's drop them from the dataset. " ] }, { "cell_type": "code", "execution_count": 26, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Drop all stop words\n", @@ -789,9 +734,7 @@ { "cell_type": "code", "execution_count": 27, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Get the top 20 most frequent words, of the stopword-removed data\n", @@ -805,12 +748,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xm4XfPZ//H3R2IICaFBY6igZiIk\nKamhpkdbpQ01Nmal7dNS7YWHqg5+T59W61f9oU9RJUFa81TVmorEFBnIYFaiQZQUMYRI4v79sb47\nWY599t7nZA/rnPN5Xde5zhq+a617r+ucc5813N+vIgIzM7NKlml1AGZmVnxOFmZmVpWThZmZVeVk\nYWZmVTlZmJlZVU4WZmZWlZOFmZlV5WRhhSbpndzXh5Ley82PakE8v5C0oE1cJzQ7DrNm693qAMwq\niYi+pWlJM4GvR8SdndmXpN4RsbAOYY2JiK9XOdYyABHxYR2OZ9ZyvrKwLk1SL0lnSHpO0hxJYyX1\nT+s2lbRQ0rGSZgG35pYdI+klSf+WdLSkEZJmSHpT0q87GctDks6UNAGYB6wlaTVJl0l6RdIsST8u\nJRJJvSX9vxTDs5KOl7Qwt79XJO2Ym/+FpItz8ztJmpBiniJphzax/Dh9f0vSrZJWza3fJa2bK+mf\nkr6W9jerFF9qN0rSQ505H9a9OFlYV3cysCewI7AOsAA4J7e+F7AdsAnwldyywcAGwFHAecBJwOfS\n8qMkbdfJeA4FDgf6Aa8AY4G56VifAUYCh6W23wF2A7YCRgAH1XoQSYOAG4HTgdWAHwI35hMC8DVg\nFDAQ6A98N237aeAW4FfAJ4ChwGMRMR74gOw85D/P5bXGZd2Xk4V1dd8ATo2IlyPifeCnwEGSlGvz\no4iYFxHv5ZadGRHzI+LmNH9ZRPw7Iv4JPABsU+GYh6X/5ktfq+XWXRwRT0XEAmBtYGfg++n4s4Fz\ngYNT2wOB/5tifw34ZQc+9xHA9RFxZ0R8GBG3Ao+TJc6S30fEPyLiXeBaYEgpfuDPEXFdRCyMiNci\nYmrpPJAlCCStSZY4rupAXNZN+ZmFdVkpIaxLdnsp3yPmMmT/MQN8GBEvt9l0UUT8Ozf/HvCvNvN9\nad/lFZ5ZzMpNrwesALyWy13LAM+m6bXatH+hwjHbWg84RNIBuWXLpn2WvJKbnseSz7Qu8I929nsZ\nMEXSt4FDgDsiYk4H4rJuysnCuqyICEkvAftFxOS26yUNAJrdrXL+eLOAd4BVo3z3zrPJ/nCXfKrN\n+neBFXPznwRKzzRmkV3FHN+JGGcBG5dbERHPS5oG7EN2BfLzTuzfuiHfhrKu7gLgF5LWBZC0hqR9\nWhwTkP3hBR4Cfimpn6RlJG2Ue2h9NfA9SQNTYjulzS4eJbt66C1pe5Y8cwEYAxwgaff0kL9Pmv5k\nDaFdBuwtad+07eqSBrdZfwbZc5Y/d/yTW3fkZGFd3S+BO4G/S3qb7HnDtq0N6SMOIXu4/CTwOtn9\n/zXTuvOB8cBjwASy5JH3A7KH328CpwFXllZExHPAV8me0cwhu4X1XWr4nY6If5Alnh8AbwCTgC1y\nTa4BPg1cHRHza/6k1q3Jgx+ZFYOkTYEZEdHS28Pp1dl/AgdHxH2tjMWKw1cWZtbWIcBbThSW5wfc\nZrZYKsAbRFajYbaYb0OZmVlVvg1lZmZVdZvbUAMGDIhBgwa1Ogwzsy5j8uTJcyJi9VradptkMWjQ\nICZNmtTqMMzMugxJNfca4NtQZmZWlZOFmZlV5WRhZmZVOVmYmVlVThZmZlaVk4WZmVXlZGFmZlU5\nWZiZWVXdpihv+ktzGXTqX1odRpc08xdfanUIZlZwhbiykPQTSSeVWT5I0oxWxGRmZksUIlmYmVmx\ndSpZSDpF0glp+hxJf0/Tu0u6QtIhkqZLmiHprNx27+Sm95c0usy+h0qaKulB4Nudic/MzOqrs1cW\n44Cd0vQwoK+kZYEdgWeAs4DdgCHAcEkjO7DvS4ETImJEtYaSjpM0SdKkRfPmdugDmJlZ7TqbLCYD\nQyX1A+YDD5IljZ3IBpe/JyJei4iFwFhg51p2KmkVoH9E3JsWXV6pfURcFBHDImJYrxVX6eRHMTOz\najqVLCJiATATOAp4ABgP7ApsSDbQe7ub5qZXKLNebdqYmVkBLM0D7nHASen7eOCbwKPAQ8DnJA2Q\n1Its8PfSlcK/JG0maRlg37Y7jIg3gbmSdkyLRi1FfGZmVidLU2cxHjgdeDAi3pX0PjA+ImZLOg24\nm+xK4daIuCltcypwCzALmAH0LbPfo4BLJM0Dbqs1mK3WXoVJrhcwM2sIRXSPuz7Dhg0Lj5RnZlY7\nSZMjYlgtbV3BbdaNuBrfGsVFeWZmVlWhkkV6IG5mZgVTt9tQkk4B3o+IcyWdA2wdEbtJ2p3sofXb\nwHCgD3BtRPw4bTcTuATYEzg/1W4cBywHPAscFhHz6hWnmZl1XD2vLCpVdY8HTk8PUgaTvVo7OLft\n+xGxY0RcCVwfEcMjYmvgCeCY9g7oCm4zs+aoZ7KoVNU9HjhQ0hTgEWALYPPctlflpreUNF7SdLI6\niy3aO6AruM3MmqNut6EiYkG6pVSq6p7Gkqru98gK+IZHxBupA8F8Bfe7uenRwMiImCrpSGCXesVo\nZmadU+8H3O1Vda9MlhDmSloT+GKFffQDZqdbWK7gNjMrgHrXWbRX1T1V0iPAY8BzwP0V9nEGMAF4\nAZhOljyqcgW3mVnjuILbzKyHcgV3N+YKXTNrhUIV5ZmZWTE5WZiZWVUtvw0laRBwS0RsmeZPIuu6\n/HWyt6kWAo9HxMGtitHMrKdrebKo4FRg/YiYL6l/uQaSjiPrGoReK6/ezNjMzHqUIt+GmgaMlXQo\n2dXFx7iC28ysOYqQLBby0ThKld1fAn4LDAUmSyryVZCZWbdWhGTxL2ANSZ+QtDywN1lc60bE3cAp\nQH/KD8FqZmZN0PL/1lOfUmeSVW0/DzwJ9AKukLQK2Tje50TEm5X24wpuM7PGaXmyAIiIc4FzWx2H\nmZmVV4hkUQ89pYK7SFxNbtZzFOGZBZKOlLRWbn6mpAGtjMnMzJYoRLIAjgTWqtbIzMxao2HJQtJK\nkv4iaaqkGZIOkjRU0r2SJku6TdJASfuTjag3VtKjkvqkXRwvaYqk6ZI2bVScZmZWXSOvLL4AvBwR\nW6euPP4GnAfsHxFDgUuAn0XEtcAkYFREDImI99L2cyJiW+B3ZAMqfYzH4DYza45GPuCeDpwt6Szg\nFuANYEvgDkmQvR47u8L216fvk4H9yjWIiIuAiwCWH7hR9xiYw8ysgBqWLCLiaUlDgb2AnwN3AI9F\nxIgadzE/fV9EN3pry8ysK2rkM4u1gHkRcQVwNrAdsLqkEWn9spK2SM3fpsbhU83MrPka+R/7VsCv\nJH0ILAC+RdYP1LmpMrs38BuycblHAxdIeg+o9crjowdzBbeZWcN4DG4zsx7KY3Bbl+fqcLNiKUpR\nHpLOlLRHmeW7SLqlFTGZmVmmMFcWEfGjVsdgZmblNTRZSFoJuBpYh6yu4v8AmwD7AH2AB4BvRERI\nGk02Fve1kr5A9vB7DjClkTGamVl1jb4NVa6K+/yIGJ7m+5ANdrSYpBWA35MllJ2AT7a3c1dwm5k1\nR6OTxXRgD0lnSdopIuYCu0qaIGk6sBuwRZttNgWej4hnIntV64r2du4xuM3MmqOht6HaVnFLuh34\nNjAsImZJ+glLxtz+yKaNjMvMzDqmoVcWZaq4t02r5kjqC+xfZrMngfUlbZjmD2lkjGZmVl2j34Yq\nV8U9kuz21ExgYtsNIuJ9SccBf5E0B7iPrAPCygdyBbeZWcO4gtvMrIdyBbc1lKurzXqewlRwm5lZ\ncTlZmJlZVU1LFpK+n8biniHpREmDJD0h6feSHpN0e2n8bUkbSvpbGqt7vMfgNjNrraYki1RrcRTZ\nAEjbA8cCqwIbAb+NiC2AN4Gvpk0uAo5PY3WfBPxvO/t1BbeZWRM06wH3jsANEfEugKTrybryeD4i\nHk1tJgODUv3FZ4Fr0ljdAMuX26nH4DYza45mJQu1s3x+bnoRWV9RywBvRsSQhkdlZmY1adYzi3HA\nSEkrpp5o9wXGl2sYEW8Bz0s6AECZrZsUp5mZldGUK4uImJK6IH84LboYeKPCJqOA30n6IbAscCUw\ntdIxXMFtZtY4ruA2M+uhXMFtNXM1tpnVopBFeZJGSyrXI62ZmbVAIZOFmZkVS12TRXtV2ZKGSHpI\n0jRJN0haNbU/VtJESVMlXSdpxdzudpb0gKTnfJVhZtZajbiyKFeVfRnwXxExmGwsix+ntten8bi3\nBp4AjsntZyBZMd/ewC/KHcgV3GZmzdGIZNG2KntDoH9E3JuWjQF2TtNbpr6fppO9Lpsfj/vGiPgw\nIh4H1ix3II/BbWbWHI1IFm2rsvtXaDsa+E5EbAX8lI+Ox53fT3sV4GZm1gTNeMA9F3hD0k5p/jCg\ndJXRD5gtaVmyKwszMyugZtVZHAFckB5gP0fWAy3AGcAE4AWyZxn9OnsAV3CbmTWOK7jNzHooV3Cb\ntYgr4q27KlxRXqre3iVNn9im9sLMzFqgcMmijRMBJwszsxZrWbKoMAb3XOADSScAawF3S7q7VXGa\nmVnrryw+Vu0dEd+NiAci4lzgZWDXiNi13Mau4DYza45WJ4uPjcHdkY1dwW1m1hytThZtq727zdtZ\nZmbdSauTRTVvsxSFemZmVh9F/0/+IuCvkma399yixBXcZmaN07JkEREzgS1z82eXaXMecF4TwzIz\nszKKfmVRM1dwV+fqYjPrrKY9s5D0Tvq+lqRr0/SRks5vVgxmZtY5Tb+yiIiXAQ+TambWhTT9bahU\nuT2jzPIvSXpQ0gBJq6cxuSemrx2aHaeZmS1RiGcWkvYFvg/sFRFvSPojcE5E3CfpU8BtwGZltjsO\nOA6g18qrNzNkM7MepQjJYldgGLBnRLyVlu0BbC4tHk11ZUn9IuLt/IYRcRHZ67UsP3Cj7jEwh5lZ\nARUhWTwHbABsDJRGL1oGGBER77UsKjMzW6wIFdwvAPsBl0naIi27HfhOqYGkIa0IzMzMMkW4siAi\nnpI0CrhG0j7ACcBvJU0ji3Ec8M1K+3AFt5lZ43gMbjOzHspjcPdgrtI2s0aoyzOL9monzMyseyjC\nA24zMyu4uicLSRtIekTSyZKul/Q3Sc9I+mWuzSGSpkuaIemstOxASb9O09+V9Fya3lDSffWO08zM\nalfXZxaSNgGuBI4ChqSvbchGxHtK0nlkI+KdBQwF3gBulzSS7I2nk9OudgL+LWltYEdgfDvHcwW3\nmVkT1PPKYnXgJuDQ3Ljad0XE3Ih4H3gcWA8YDtwTEa9FxEJgLLBzRLwC9JXUD1gX+COwM1niKJss\nPAa3mVlz1DNZzAVmAflO/8qNsS3a9yDZVclTZAliJ2AEcH8d4zQzsw6qZ7L4ABgJHC7paxXaTQA+\nl3qX7QUcAtyb1o0DTkrfHyHrN2p+RMytY5xmZtZBdX1mERHvStobuAO4op02syWdBtxNdpVxa0Tc\nlFaPJ7sFNS4iFkmaBTxZy7FdwW1m1jiu4DYz66Fcwd3DuGrbzBqtEXUWoyVVHTY1PxZ3hTauDDcz\nK4CWXFlI6u2xuM3Muo6ariwknSHpSUl3SPqTpJMkHZvGx56axsteMbfJHpLGS3o6PfBG0pGSrpH0\nZ7JCvMVXDZJ6SfpV2t80Sd+o/0c1M7POqposJA0DvkpWib0f2RCoANdHxPCI2Bp4Ajgmt9kg4HPA\nl4ALJK2Qlo8AjoiI3doc5hhgbkQMJyvaO1bS+jXEdpykSZImLZrnt2vNzBqllttQOwI3lYY4TVcG\nAFtK+m+gP9AXuC23zdUR8SHwTOrjadO0/I6IeL3MMfYEBueedawCbAQ8XSkwj8FtZtYctSSL9iqu\nRwMjI2KqpCOBXXLr2v7hLs2/W+EYx0fEbR9ZKA2qIT4zM2uwWp5Z3AfsI2kFSX3Jbi0B9ANmS1oW\nGNVmmwMkLSNpQ2ADsu47KrkN+FbaF5I2lrRSzZ/CzMwaquqVRURMlHQzMBV4AZhE1g/UGWRdd7wA\nTCdLHiVPkXXhsSbwzYh4X6rUJRQXkz3nmKKs4WtkXYfUzBXcZmaNU1MFt6S+EfFOeuNpHHBcRExp\neHQd4ApuM7OOaUQF90WSNgdWAMYULVFAz67gbgRXhZtZXk3JIiIq9SJrZmbdnMfgNjOzqhqSLCQd\nKulhSY9KulDSMZLOya0/Njfedtu2vdLX6DRG93RJ32tEnGZmVptGdCS4GXAQsENEDCEbIW8h8OXS\nq7Fko+Fd2k7bUWRjd68dEVtGxFbApe0cyxXcZmZN0IiOBHcHhgIT0+uyfYBXgb8De0t6Alg2IqZL\n+k47bf8MbCDpPOAvwO3lDuQKbjOz5mhEshDZG1OnfWShtB3wA7KR7y6t1Da13xr4PPBt4EDg6AbE\namZmNWjEM4u7gP0lrQEgaTVJ60XEBLIhU78G/KlSW0kDgGUi4jqy4r9tGxCnmZnVqO5XFhHxuKQf\nknVDvgywgOzq4AXgamBIRLxRpe17ZM80SsnsY1cebbmC28yscRoy+FFEXAVcVWbVjsA5Nbb11YSZ\nWUE0ZaQ8Sf2Bh4GpEXFXI47hCu7KXJFtZkujKUV5EfFmRGwcEQfkl0saJuncNH2kpPObEY+ZmXVM\nS8bgLomISWS92JqZWYHV5cqinSrsdySdJWmypDslfUbSPZKek/TltN0ukm5ps69+kp7PjW2xsqSZ\nuYI+MzNrsqVOFhWqsFcC7omIocDbwH8D/wHsC5zZ3v4i4m3gHpYMsnQwcF1ELChzbFdwm5k1QT1u\nQ7VXsf0B8LfUZjowPyIWSJpONtBRJRcDpwA3knUNcmy5Rq7gNjNrjnoki/Yqtk+KJSMrfQjMB4iI\nDyVVPG5E3C9pkKTPAb0iYkYd4jQzs06qxzOLslXYddjvZWSV3mU7ETQzs+ZZ6iuLClXYS2ss2XOO\nP1VrCK7gNjNrpJrG4G4FSfsDX4mIw2pp7zG4zcw6phFjcDdV6pr8i8BetW7jCu7GcfW3mRViWNX0\nMHvxQ+yIOD4iPh0RT6fajJoyn5mZNUYhkoWZmRVbvSq4D5c0TdJUSZenMSnuSsvukvSp1G50ehZR\n2u6dMvvqI+nKtO1VZHUbZmbWQkv9zELSFsDpZBXccyStBowBLouIMZKOBs4FRta4y28B8yJisKTB\nwJQKxz4OOA6g18qrL83HMDOzCupxZbEbcG1EzAGIiNeBEcAf0/rLycaxqNXOwBVpX9OAae01jIiL\nImJYRAzrteIqnYndzMxqUI9kIaDa+7el9QtLx1TWN8hyVdqbmVkB1KuC+0BJn4Csght4gKwDQMg6\nFbwvTc8k60cK4CtAuZ5kx6VtkLQlMLgOMZqZ2VKoRwX3Y5J+BtwraRHwCHACcImkk4HXyDoDBPg9\ncJOkh8mSzLtldvk7svG3pwGPko2wV5UruM3MGqewFdwd5QpuM7OO6fIV3J3hCu7uwdXiZsVU96K8\nttXYndzHx0bQMzOz1nEFt5mZVdWoZNFb0phUhX2tpBUl/UjSREkzJF2UXp1F0qfTGN1TJU2RtGF+\nR5KGS3pE0gYNitXMzKpoVLLYBLgoIgYDbwH/CZwfEcMjYkuyLjz2Tm3HAr+NiK2BzwKzSzuR9Fng\nArKuyp9rexCPwW1m1hyNShazIuL+NH0FWQX3rpImpDG4dwO2kNQPWDsibgCIiPcjYl7abjOy8bX3\niYh/ljuIK7jNzJqjUcmi7fu4AfwvsH9EbEVWb7ECWfV3e2YD7wPbNCRCMzOrWaOSxackjUjTh7Ck\ngnuOpL7A/gAR8RbwoqSRAJKWl7Riavsm8CXgfyTt0qA4zcysBo2qs3gCOELShcAzZFXZqwLTybr8\nmJhrexhwoaQzycbvPqC0IiL+JWkf4K+Sjo6ICe0d0BXcZmaN4wpuM7MeyhXcPYgrns2sGQpflCfp\nJ5JOanUcZmY9Wb2GVe1Vj/2YmVkx1ZQsJN0oabKkx9JQpkh6R9KZkiYAIyTtniqtp0u6RNLyqd1M\nSQPS9DBJ96Tpn6R290h6TtIJueOdLukpSXeSFfiZmVkL1XplcXREDAWGASekgY5WAmZExHbAJGA0\ncFCqo+hNNpZ2NZsCnwc+A/xY0rKShpINnLQNsB8wvL2NXcFtZtYctSaLEyRNBR4C1gU2AhYB16X1\nmwDPR8TTaX4M2Vja1fwlIuan8btfBdYEdgJuiIh5qQ7j5vY2dgW3mVlzVH0bKhXE7QGMiIh56TbS\nCsD7EbGo1KzCLhaPu522y5ufm16Ui6d7vM9rZtZN1HJlsQrwRkoUmwLbl2nzJDBI0qfT/GHAvWl6\nJkvG3f5qDccbB+wrqU/qO2qfGrYxM7MGqqXO4m/AN9OY2E+R3Yr6iIh4X9JRwDWSepNVaF+QVv8U\n+IOkHwDtVmDn9jVF0lVk42+/AIyv5YO4gtvMrHFcwW1m1kO5gtvMXN1vddWUCu58rUWFNrdK6t+M\neMzMrGMKc2UREXu1OgYzMyuv7lcW5aq926w/VNLDkh6VdGGpq5A2ld7fT2N1z5B0Yr1jNDOzjmnE\nbahy1d4ASNoMOAjYISKGkNVWjMpvnCq4jwK2I3tN91hJZUfLcwW3mVlzNOI21AmS9k3TpWrvkt3J\nai4mSgLoQ1a5nbcjWQX3uwCSrier6n6k7YEi4iKycbpZfuBG3eO1LjOzAqprsqhQ7b24CTAmIk6r\ntJt6xmRmZkuv3rehqlV73wXsL2kNAEmrSVqvTZtxwEhJK0paCdiXGgvzzMysMep9G6pitXdEPC7p\nh8DtkpYhG3P722SV2qlJTJE0Gng4Lbs4Ij52C6otV3CbmTVOISq40xtRrwKfjIgFndmHK7jNzDqm\nK1ZwPwa8BWwMPJb6l7oV+F5EPFbLDlzBbWY9TTOr9AsxBndEbEr2quz/SFo2IhYCh5bmWxudmZkV\n5cqCiHgV+Ep782Zm1jqFuLIwM7Ni69LJwhXcZmbN0aWThcfgNjNrji6dLMzMrDmcLMzMrKrCvA21\ntFzBbWbWOL6yMDOzqrrNlYUruM2KwWN/d0+FurKQNLPVMZiZ2ccVKlmYmVkxFS1ZvAYgaaCkcWmc\n7hmSdmp1YGZmPVmhnllExPA0+TXgtoj4Weq+fMVy7SUdBxwH0Gvl1ZsTpJlZD1SoZJEzEbgk9Th7\nY0Q8Wq6Rx+A2M2uOot2GAiAixgE7Ay8Bl0s6vMUhmZn1aIVMFmlc7lcj4vfAH4BtWxySmVmPVtTb\nULsAJ0taALwDVL2ycAW3mVnjFDJZRMQYYEyr4zAzs0whk0VnuILbzLq7VlbHF/KZhZmZFUthk0Wp\n6w9JgyTd09pozMx6tsImCzMzK44iJ4vX0vdFwOvlGngMbjOz5ihssih1/RERsyJiv3baeAxuM7Mm\nKGyyMDOz4nCyMDOzqrpNnYUruM3MGsdXFmZmVpWThZmZVeVkYWZmVTlZmJlZVU4WZmZWlZOFmZlV\n5WRhZmZVOVmYmVlVThZmZlaVIqLVMdSFpLeBp1odRwcMAOa0OogO6GrxQteL2fE2XleLudHxrhcR\nq9fSsNt09wE8FRHDWh1ErSRNcryN1dVidryN19ViLlK8vg1lZmZVOVmYmVlV3SlZXNTqADrI8TZe\nV4vZ8TZeV4u5MPF2mwfcZmbWON3pysLMzBrEycLMzKrq8slC0hckPSXpWUmntjoeAEnrSrpb0hOS\nHpP03bR8NUl3SHomfV81LZekc9NnmCZp2xbF3UvSI5JuSfPrS5qQ4r1K0nJp+fJp/tm0flCL4u0v\n6VpJT6ZzPaLI51jS99LPwwxJf5K0QtHOsaRLJL0qaUZuWYfPqaQjUvtnJB3R5Hh/lX4mpkm6QVL/\n3LrTUrxPSfp8bnnT/o6Uizm37iRJIWlAmm/5OV4sIrrsF9AL+AewAbAcMBXYvABxDQS2TdP9gKeB\nzYFfAqem5acCZ6XpvYC/AgK2Bya0KO7vA38EbknzVwMHp+kLgG+l6f8ELkjTBwNXtSjeMcDX0/Ry\nQP+inmNgbeB5oE/u3B5ZtHMM7AxsC8zILevQOQVWA55L31dN06s2Md49gd5p+qxcvJunvxHLA+un\nvx29mv13pFzMafm6wG3AC8CAopzjxfE14wewgSd9BHBbbv404LRWx1UmzpuA/yCrMB+Ylg0kKyQE\nuBA4JNd+cbsmxrgOcBewG3BL+uGck/ulW3yu0w/0iDTdO7VTk+NdOf3xVZvlhTzHZMliVvrl7p3O\n8eeLeI6BQW3++HbonAKHABfmln+kXaPjbbNuX2Bsmv7I34fSOW7F35FyMQPXAlsDM1mSLApxjiOi\ny9+GKv0ClryYlhVGun2wDTABWDMiZgOk72ukZkX4HL8BTgE+TPOfAN6MiIVlYlocb1o/N7Vvpg2A\n14BL062ziyWtREHPcUS8BJwN/BOYTXbOJlPsc1zS0XNahJ/nkqPJ/jOHAscr6cvASxExtc2qwsTc\n1ZOFyiwrzLvAkvoC1wEnRsRblZqWWda0zyFpb+DViJicX1ymadSwrll6k13K/y4itgHeJbtF0p5W\nn+NVga+Q3f5YC1gJ+GKFmIpwjqtpL8ZCxC7pdGAhMLa0qEyzlscraUXgdOBH5VaXWdaSmLt6sniR\n7D5fyTrAyy2K5SMkLUuWKMZGxPVp8b8kDUzrBwKvpuWt/hw7AF+WNBO4kuxW1G+A/pJK/YflY1oc\nb1q/CvB6E+MtxfBiRExI89eSJY+inuM9gOcj4rWIWABcD3yWYp/jko6e01afa9ID372BUZHu01SI\nq9Xxbkj2T8TU9Du4DjBF0icrxNb0mLt6spgIbJTeKFmO7EHgzS2OCUkC/gA8ERG/zq26GSi9tXAE\n2bOM0vLD05sP2wNzS5f9zRARp0XEOhExiOwc/j0iRgF3A/u3E2/pc+yf2jf1P8eIeAWYJWmTtGh3\n4HEKeo7Jbj9tL2nF9PNRirew5zino+f0NmBPSaumK6o907KmkPQF4L+AL0fEvNyqm4GD05tm6wMb\nAQ/T4r8jETE9ItaIiEHpd/BFshdkXqFI57iRD0Sa8UX2tsDTZG8znN7qeFJMO5JdEk4DHk1fe5Hd\nc74LeCZ9Xy21F/Db9BmmA8OFLmYcAAADDklEQVRaGPsuLHkbagOyX6ZngWuA5dPyFdL8s2n9Bi2K\ndQgwKZ3nG8neCinsOQZ+CjwJzAAuJ3srp1DnGPgT2TOVBWR/tI7pzDkle1bwbPo6qsnxPkt2P7/0\nu3dBrv3pKd6ngC/mljft70i5mNusn8mSB9wtP8elL3f3YWZmVXX121BmZtYEThZmZlaVk4WZmVXl\nZGFmZlU5WZiZWVW9qzcx674kLSJ7JbFkZETMbFE4ZoXlV2etR5P0TkT0rbC+dyzpu8msx/JtKLM2\nJB0p6RpJfwZuT8tOljQxjSnw01zb09M4CHcqG6PipLT8HknD0vSA1I1DacyQX+X29Y20fJe0TWl8\njrGp0htJwyU9IGmqpIcl9ZM0XtKQXBz3SxrcrHNkPY9vQ1lP10fSo2n6+YjYN02PAAZHxOuS9iTr\nGuIzZBW1N0vamazzwoPJehXuDUwh60m2kmPIumwYLml54H5Jt6d12wBbkPXxcz+wg6SHgauAgyJi\noqSVgfeAi8nGwzhR0sZkld/TlupMmFXgZGE93XsRMaTM8jsiotRx357p65E035csefQDbojU/5Ck\nWvoT2hMYLKnUH9QqaV8fAA9HxItpX4+SjXkwF5gdERMBIvVeLOka4AxJJ5N1+zC61g9s1hlOFmbl\nvZubFvDziLgw30DSibTfLfRCltzmXaHNvo6PiI90+iZpF2B+btEist9PlTtGRMyTdAdZt+cHAsOq\nfB6zpeJnFmbV3QYcncYnQdLaktYAxgH7SuojqR+wT26bmcDQNL1/m319K3Vhj6SN06BN7XkSWEvS\n8NS+X65L84uBc4GJuasgs4bwlYVZFRFxu6TNgAfTM+d3gEMjYoqkq8h6Nn0BGJ/b7GzgakmHAX/P\nLb+Y7PbSlPQA+zVgZIVjfyDpIOA8SX3InlfsAbwTEZMlvQVcWqePatYuvzprVieSfkL2R/zsJh1v\nLeAeYNOI+LBKc7Ol4ttQZl2QpMPJxnU/3YnCmsFXFmZmVpWvLMzMrConCzMzq8rJwszMqnKyMDOz\nqpwszMysqv8PFYxaFm6xXIIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEWCAYAAACNJFuYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5hcVZ3u8e9LQG4JN7kIDBJBFAQhkKAyXAThoKIMoCggILch6lGR8QkOiChy5iLqyDmgIwQGEy4DKHITGa6KCfeQEJIgIApBFBQQCHdI4D1/7NWk6KrudKeruqq738/z1FO79l5777VSnf712nv/1pJtIiIiai3T7gpERETnSXCIiIg6CQ4REVEnwSEiIuokOERERJ0Eh4iIqJPgEBERdRIcoqNJer7m9bqkl2o+H9iG+nxH0sJu9TpqsOsR0WrLtrsCEb2xPbprWdJ84B9tX780x5K0rO1FTajWVNv/uIRzLQNg+/UmnC9i0KXnEEOapFGSTpD0oKQnJZ0vabWybVNJiyQdKekR4KqadUdI+rOkv0k6XNJ2kuZJekbSD5ayLrdJOknS7cCLwHqS1pB0jqS/SHpE0re6AoekZSX9v1KH30v6sqRFNcf7i6Qdaj5/R9JZNZ93lHR7qfMsSdt3q8u3yvuzkq6StHrN9p3LtgWS/ijpM+V4j3TVr5Q7UNJtS/PvEUNbgkMMdccAuwM7AH8HLAROqdk+Cng/8G5gr5p1WwIbAYcBpwGTgA+W9YdJev9S1ucg4LPAGOAvwPnAgnKu9wF7AweXsl8CPgS8F9gO2K+vJ5E0FrgMOB5YA/gGcFltAAA+AxwIrAusBnyl7PtO4Erge8BbgfHAPbanA69S/TvUtufcvtYrho8EhxjqPgcca/tR2y8D3wb2k6SaMt+0/aLtl2rWnWT7FdtXlM/n2P6b7T8CtwBb93LOg8tf612vNWq2nWX7ftsLgfWBnYCvlvM/BpwK7F/Kfhr4j1L3J4Dv9qPdhwCX2L7e9uu2rwJ+SxUou5xp+w+2XwAuBsZ11R/4he2f215k+wnbd3f9O1AFBCStQxUoLupHvWKYyD2HGLJKANiA6nJR7QiSy1D9RQzwuu1Hu+36mu2/1Xx+Cfhrt8+j6dm5vdxzeKRmeUNgBeCJmli1DPD7srxet/IP93LO7jYEDpD0qZp1y5VjdvlLzfKLLG7TBsAfejjuOcAsSV8EDgCus/1kP+oVw0SCQwxZti3pz8AnbM/svl3SmsBgDztce75HgOeB1d14+OPHqH5Rd3l7t+0vACvVfH4b0HVP4hGqXsqXl6KOjwDvarTB9kOS5gB7UvUw/n0pjh/DQC4rxVB3OvAdSRsASFpb0p5trhNQ/aIFbgO+K2mMpGUkbVJzk/mnwD9JWrcEsq91O8Rsqt7BspI+wOJ7JgBTgU9J2rXclF+xLL+tD1U7B/i4pH3KvmtJ2rLb9hOo7pP8ov8tj+EgwSGGuu8C1wO/kvQc1f2CbdpbpTc5gOpm8H3AU1TX79cp234ITAfuAW6nCha1vk51s/oZ4Djgwq4Nth8EPkl1j+VJqktSX6EP/6dt/4Eq0HwdeBq4E9i8psjPgHcCP7X9Sp9bGsOKMtlPRGeQtCkwz3ZbL/eWR1n/COxv+6Z21iXaJz2HiOjuAODZBIaRLTekI+INJeFtLFWORIxguawUERF1clkpIiLqDJvLSmuuuabHjh3b7mpERAwZM2fOfNL2Wo22DZvgMHbsWO688852VyMiYsiQ1GNWfi4rRUREnQSHiIiok+AQERF1EhwiIqJOgkNERNRJcIiIiDoJDhERUSfBISIi6gybJLi5f17A2GN/2fLzzP/Ox1p+joiIdhvUnoOkkyTtNpjnjIiI/hvUnoPtbw7m+SIiYukMuOcg6QRJ90m6TtIFkiZJGifpNklzJF0qafVSdoqkfcvyfEnfljRL0twyCxZlPtvryvozJD1c5teNiIhBMqDgIGkC1Ty2WwOfACaUTecA/2x7S2Au8K0eDvGk7W2AHwOTyrpvAb8q6y8F3t7L+SdKulPSna+9uGAgTYmIiBoD7TnsAFxu+yXbzwG/AFYGVrP9m1JmKrBTD/tfUt5nUs0+1XXMCwFsX001AXpDtifbnmB7wqiVVh1QQyIiYrGBBgcNcP9XyvtrLL7/MdBjRkTEAA00ONwE7ClpBUmjgY8BLwBPS9qxlDkY+E1PB+jhmJ8GkLQ7sPoA6xgREf00oKeVbM+QdAVwN/AwcCewADgEOF3SSsCDwGH9OOy3gQsk7UcVVB4DnlvSTu9df1XuTA5CRERTyPbADiCNtv18CQTTgIm2Zw3geMsDr9leJGk74Me2xy1pvwkTJjgzwUVE9J2kmbYnNNrWjDyHyZLeA6wATB1IYCjeDvxU0jLAq8CRfdlpsDKkayVbOiKGqwEHB9ufaUZFao73ANWjsRER0SYZeC8iIuq0feA9SWOBK21vUT5PAkYDTwGfBxYBv7W9f7vqGBEx0rQ9OPTiWOAdtl+RtFqjApImAhMBRq2y1mDWLSJiWOvky0pzgPMlHUTVe6iTDOmIiNbohOCwiDfXY4Xy/jHgR8B4YKakTu7lREQMK50QHP4KrC3prSXH4eNU9drA9q+BrwGrUd2HiIiIQdD2v8ZtL5R0EnA78BBwHzAKOE/SqlRjLZ1i+5nejpMM6YiI5ml7cACwfSpwarvrERERlY4IDs3QjgzpLsmUjojhphPuOfRK0okl9yEiIgZJU4KDpFHNOE5ERHSGPgUHSZdJminpnpJ4hqTnJZ0k6XZgO0m7SrqrzAd9dnnyqGuu6DXL8gRJN5blE0u5GyU9KOmomvMdL+l+SdcD725ymyMiYgn62nM43PZ4qjmij5L0VqrpQOfZfj/VPA5TgP1sv5fqXsYX+nDcTYEPA+8DviVpOUnjgf1ZPC/1tj3tnDmkIyJao6/B4ShJdwO3ARsAm1BN7fnzsv3dwEO2f1c+9zZvdK1f2n7F9pPA48A6wI7ApbZftP0scEVPOydDOiKiNZb4tJKknYHdgO1sv1guC60AvGz7ta5ivRyiNgN6hW7bXqlZrp1HemAzEEVExID0peewKvB0CQybAh9oUOY+YKykd5bPtfNGz6caAgPgk3043zRgH0krShoD7NmHfSIioon6kudwNfB5SXOA+6kuLb2J7ZclHQb8rIyBNAM4vWz+NvBfkr5OlQXdK9uzJF0EzKaal3p6XxqSDOmIiOYZ8BzSnSJzSEdE9E+r55DuCO3MkIZkSUfE8NL0DGlJUyTt24dy60m6eAllxkqa17zaRUREX7Sl5yBpWduPAksMIhERMfj6miF9gqT7JF0n6QJJkyQdKWmGpLsl/VzSSjW77CZpuqTfSfp4Ocahkn4m6RfAtbW9AkmjJH2vHG+OpM81v6kREdFXSwwOkiZQPYLalbHcdfPiEtvb2t4KuBc4oma3scAHqWZzO11SV37DdsAhtj/U7TRHAAtsb0uVEX2kpHf0oW7JkI6IaIG+XFbaAbjc9ksA5S9/gC0k/QuLZ2m7pmafn9p+HXhA0oNUw2QAXGf7qQbn2B3YsuZexapUWdi/a1D2DbYnA5MBll93k+Hx2FVERAfoS3DoKft5CrC37bslHQrsXLOt+y/qrs8v9HKOL9u+5k0rpbF9qF9ERDRZX+453ATsKWkFSaOpLhUBjAEek7QccGC3fT4laRlJGwMbUSXP9eYa4AvlWEh6l6SV+9yKiIhoqiX2HGzPkHQFcDdVxvKdwALgBKqM54eBuVTBosv9VMNnrAN8vmRQ93aas6juU8xSVfAJYO/+NCQZ0hERzdOnDGlJo20/X55ImgZMtD2r5bXrh2RIR0T0TzMypCdLeg/VqKpTOy0wQPszpCFZ0hExfPQpONj+TG/by43jK21v0YQ6RUREmzV9+IyIiBj6WjG20kZlLuljJF0i6WpJD0j6bk2ZA8pc0/MknVzWfVrSD8ryV0p+BJI2lnRTs+sZERE9a+rYSpLeDVwIHAaMK6+tqWZ8u1/SaVQzvp1MNQHQ01RDaexNdaP7mHKoHYG/SVqfKgmv4ZwOkiYCEwFGrbJWM5sSETGiNbPnsBZwOXCQ7dll3Q22F9h+GfgtsCHV8Bg32n7C9iLgfGAn238BRpfZ3zYA/ptqHuod6SE4ZA7piIjWaGZwWAA8Amxfs67RHNG9JTzcStXruJ8qIOxINR7TzU2sZ0RELEEzg8OrVIlrn5XU29NNtwMflLSmpFHAASyeb3oaMKm83wXsArxiO6PqRUQMoqbec7D9Qhmi+zrgvB7KPCbpOODXVL2Iq2xfXjZPp7qkNM32a5IeAe7ry7mTIR0R0TyZQzoiYoTKHNJtkGzpiBjK2poEJ2mCpFPL8qGSftjO+kRERKWtPQfbd1KN8hoRER2kKT0HSQdJukPSbElnlDmhn5d0sqSZkq6X9D5JN0p6UNI/lP12lnRlt2ONkfRQzdwOq0ia3/U5IiJab8DBQdJmwH7A9rbHUeUzHAisTJXsNh54DvgX4H8B+wAn9XQ8288BN7J4UqH9gZ/bXtjg3JlDOiKiBZpxWWlXqqEwZpQJfVYEHqfKe7i6lJlLla+wUNJcqol9enMW8DXgMqqkuCMbFcoc0hERrdGM4CCqOR6Oe9NKaZIXPyf7OiVb2vbrkno9r+2bJY2V9EFglO15TahnRET0UTPuOdwA7CtpbQBJa0jasAnHPQe4APhJE44VERH9MOCeg+3fSvoG1eiqywALgS8OuGbVgHz/QhUgligZ0hERzdOxGdKS9gX2sn1wX8onQzoion+GXIZ0mffho8Aefd0nGdIREc0zaBnSkp4v7+tJurgsN8yKtv1l2++0/bvBql9ERCw26D0H248C+w72eSMiou8GfWyl8ohq3aOpkj4m6dYyz8Nakn4uaUZ5bd/oWBER0Rodcc9B0j7AV4E9bD8t6b+BU2zfJOntwDXAZg32yxzSEREt0AnBYRdgArC77WfLut2A95SMa4BVJI0pQ2u8IRnSERGt0QnB4UFgI+BdLB6hdRlgO9svta1WEREjWFvncygeBj4BnCNp87LuWuBLXQUkjWtHxSIiRqpO6Dlg+35JBwI/k7QncBTwI0lzqOo4Dfh8b8dIhnRERPN0bIZ0fyVDOiKif4ZchvTS6LQM6VrJlo6IoaYT7jnUkTSljK0UERFt0JHBISIi2qupwaFkP98r6UxJ90i6VtKKksZJuk3SHEmXSlq9lD+yZEDfXTKiV6o53E6SbilzTqcXERExiFrRc9gE+JHtzYFngE9STdzzz7a3pJoy9Ful7CW2t7W9FXAvcETNcdYFdgA+Dnyn0Ykyh3RERGu0Ijg8ZHt2WZ4JbAysZvs3Zd1UYKeyvIWk6WVe6QOBzWuOc5nt123/Flin0YlsT7Y9wfaEUSut2vyWRESMUK0IDq/ULL8GrNZL2SnAl2y/F/g2sEIPxxERETFoBuOG9ALgaUk7ls8HA129iDHAY5KWo+o5REREBxisPIdDgNPLDecHgcPK+hOA26mG0JhLFSyWSjKkIyKaJxnSEREjVDKk2ywZ0hEx1HREEpykEyVNarC+4axxERHRWh0RHCIiorMsVXCQ9DVJR5XlUyT9qizvKuk8SQdImitpnqSTa/Z7vmZ5X0lTGhx7fMmYvhX44tLULyIiBmZpew7TgK5HUycAo8vjqDsADwAnAx8CxgHbStq7H8f+CXCU7e2WVDAZ0hERrbG0wWEmMF7SGKpktVupgsSOVENm3Gj7CduLgPNZnBHdK0mr8uZs6nN7K58M6YiI1liq4GB7ITCfKl/hFmA6sAvVUBl/7G3XmuUVGmxXtzIREdEGA7khPQ2YVN6nU03jORu4DfigpDUljQIOYHFG9F8lbSZpGWCf7ge0/QywQNIOZVWypiMi2mAgeQ7TgeOBW22/IOllYLrtxyQdB/yaqidwle3Lyz7HAlcCjwDzgNENjnsYcLakF4Fr+lqZZEhHRDRPMqQjIkaoZEh3kGRLR8RQkCS4iIiok+AQERF1WhIcJB0k6Q5JsyWdIekISafUbD9S0g96KDuqvKaUDOu5kv6pFfWMiIjGmh4cJG0G7Adsb3sc1Wxwi4B/KFnUUD2R9JMeyh5IlVm9vu0tyixxP+nhXMmQjohogVbckN4VGA/MkASwIvA48Cvg45LuBZazPVfSl3oo+wtgI0mnAb8Erm10ItuTgckAy6+7yfB47CoiogO0IjgImGr7uDetlN4PfB24j8U9gYZlS/mtgA9TDb73aeDwFtQ1IiIaaMU9hxuAfSWtDSBpDUkb2r4d2AD4DHBBb2UlrQksY/vnVFOJbtOCekZERA+a3nOw/VtJ3wCuLcNkLKT66/9h4KfAONtPL6HsS1T3JLqCV13PortkSEdENE9LkuBsXwRc1GDTDsApfSyb3kJERJsMSoa0pNWAO4C7bd/QinMMlQzpLsmUjohONihJcLafsf0u259qtL23uaIl3Sip4dgfERHRGsmQjoiIOk0JDpI+K2lOmfv53PLE0Q1l3Q2S3l7KTZG0b81+zzc41oqSLiz7XkSV+xAREYNowPccJG1ONa/D9raflLQGMBU4x/ZUSYcDpwJ9nUf6C8CLtreUtCUwq5dzTwQmAoxaZa2BNCMiImo0o+fwIeBi208C2H4K2A7477L9XKqnlPpqJ+C8cqw5wJyeCmYO6YiI1mhGcOjLvM9d2xd1nVPVeBlvWUL5iIhog2YEhxuAT0t6K1RZzsAtwP5l+4HATWV5PtVYSgB7ActRb1rZB0lbAFs2oY4REdEPA77nYPseSf8K/EbSa8BdwFFU80AfAzxBNQorwJnA5ZLuoAoqLzQ45I+psqPnALOp8iOWKBnSERHNkzmkIyJGqMwh3cGSKR0RnShJcBERUSfBISIi6gxacJD01TIn9DxJR5fxlO6VdKakeyRdK2nFUnZjSVdLmilpuqRNB6ueERExSMFB0niqJ5beD3wAOBJYHdgE+JHtzYFngE+WXSYDX7Y9HpgE/GcPx80c0hERLTBYN6R3AC61/QKApEuAHYGHbM8uZWYCYyWNBv4e+FmZVxpg+UYHzRzSERGtMVjBQT2sf6Vm+TWqQfaWAZ6xPa7ltYqIiIYG657DNGBvSStJWhnYB5jeqKDtZ4GHJH0KqmE2JG01SPWMiAgGqedge5akKSzOdj4LeLqXXQ4Eflzml14OuBC4u7dzJEM6IqJ5kiEdETFCJUO6wyVLOiI6TUckwUk6VNJ6NZ/nS1qznXWKiBjJOiI4AIcC6y2pUEREDI6WBQdJK0v6ZZlXep6k/SSNl/Sbkvl8jaR1y5zSE4DzJc3uypIGvixplqS5yZCOiBhcrew5fAR41PZWtrcArgZOA/Ytmc9nA/9q+2LgTuBA2+Nsv1T2f9L2NlTzO0xqdIJkSEdEtEYrb0jPBb4v6WTgSqpHV7cAriuZz6OAx3rZ/5LyPhP4RKMCyZCOiGiNlgUH278rYyrtAfw7cB1wj+3t+niIruzp1xhGT1VFRAwFrbznsB7wou3zgO9TDbq3lqTtyvblJG1eij8HjGlVXSIion9a+Rf5e4HvSXodWAh8AVgEnCpp1XLu/wvcA0wBTpf0EtDXnsWbT5YM6YiIpkmGdETECJUM6WEimdQRMViafs+hzPA2b4DH2FnSlc2qU0RE9E+nZEhHREQHaVVwWFbSVElzJF1c5nH4pqQZJVt6skqyg6R3Srq+ZFLPkrRx7YEkbSvpLkkbtaiuERHRTauCw7uByba3BJ4F/jfwQ9vblmzpFYGPl7LnU80jvRXV9KBvJMZJ+nvgdGAv2w92P0kypCMiWqNVweER2zeX5fOo5pDeRdLtkuYCHwI2lzQGWN/2pQC2X7b9YtlvM6rs5z1t/7HRSWxPtj3B9oRRK63aoqZERIw8rQoO3Z+PNfCfVOMqvRc4E1iBnueWhqoH8TKwdUtqGBERPWpVcHh7VyY0cABwU1l+UtJoYF94Y77oP0naG0DS8pJWKmWfAT4G/JuknVtUz4iIaKBVeQ73AodIOgN4gGpk1dWpBuObD8yoKXswcIakk6gyqT/VtcH2XyXtCfyPpMNt397TCZMhHRHRPMmQjogYoZIhPYwkSzoiBkPHJMFJOknSbg3WJ1s6ImKQdUzPwfY3212HiIiotDQ4SFoZ+Cnwd1Qzv/0fqgS5PakS4W4BPmfbkqYAV9q+WNJHqIbzfhKY1co6RkREvVZfVmo0j3RPmdIASFqBKg9iT2BH4G09HTwZ0hERrdHq4DAX2E3SyZJ2tL2ABpnS3fbZFHjI9gOuHqU6r6eDJ0M6IqI1WnpZqfs80pKuBb4ITLD9iKQTqTKl63ZtZb0iIqJ3Le05NJhHepuy6U2Z0t3cB7yjZnTWA1pZx4iIqNfqp5UazSO9N40zpYFq8D1JE4FfSnqSauiNLZZ4omRIR0Q0TTKkIyJGqGRIR58k+zoiunRMhnQXSVO6RmGVdHTNKK0RETFIOi44dHM0kOAQETHI2hYcJI2VdK+kMyXdI+laSSsCC4BXJR0FrAf8WtKv21XPiIiRqN09h02o5o/enGpyn0/a/ortW2yfCjwK7GJ7l0Y7J0M6IqI12h0cHrI9uyzPBMb2Z+dkSEdEtEa7g8MrNcuvMYyenoqIGMraHRyW5DlgTLsrEREx0nT6X+qTqeaPfqyn+w5dkiEdEdE8bQsOtudTMyyG7e83KHMacNogVisiIuj8nkOfJUO6/ZJhHTF8dPo9h4iIaIOOCg6SRrW7DhER0cTLSpK+Brxs+1RJpwBb2f6QpF2Bw6iePNqWamrQi21/q+w3Hzgb2B34oaQxwETgLcDvgYNtv9isekZExJI1s+cwjWrOZ4AJwGhJywE7ANOB48vQsFsCH5S0Zc2+L9vewfaFwCVljumtgHuBI3o6YTKkIyJao5nBYSYwvvzl/wpwK1WQ2JEqOHxa0izgLqp5o99Ts+9FNctbSJpe5pg+kPo5pt+QDOmIiNZo2mUl2wvLJaLDgFuAOcAuwMbAS8AkYFvbT0uawpvnjn6hZnkKsLftuyUdCuzcrDpGRETfNPuG9DSqIDCNqrfweWA2sApVAFggaR3go70cYwzwWLkkdWCT6xcREX3Q7DyH6cDxwK22X5D0MjC99ALuAu4BHgRu7uUYJwC3Aw9TzTXdp+EzkiEdEdE8mUM6ImKEyhzSMaiSKR0x9A1KEpyk+ZLWXEKZqyStNhj1iYiI3nVMz8H2Hu2uQ0REVJrec5B0maSZZV7oiQ22HyTpDkmzJZ3RNWRGbe9C0lclzSuvo5tdx4iI6F0rLisdbns8VQLcUZLe2rVB0mbAfsD2tsdRzf72psdVJY2nypV4P/AB4EhJWzc6UTKkIyJaoxWXlY6StE9Z3gDYpGbbrsB4YIYkqMZZerzb/jsAl9p+AUDSJVRZ1nd1P5HtyVQTArH8upsMj8euIiI6QFODg6Sdgd2A7Wy/KOlG3pwJLWCq7eN6O0wz6xQREf3X7MtKqwJPl8CwKdVloVo3APtKWhtA0hqSNuxWZhqwt6SVJK0M7EOVXBcREYOk2ZeVrgY+L2kOcD9wW+1G27+V9A3gWknLAAuBL1JlQ5cinlXGXrqjrDvLdt0lpe6SIR0R0TwdkSFdnlh6HHib7YVLc4xkSEdE9M9QyJC+h6qHsFSBAZIhPVwkuzqiM3REcLC9KVS5DrbHtrk6EREjXkfNIR0REZ2h04LDEwCS1pU0rWRRz5O045J2jIiI5umIy0pdbG9bFj8DXGP7X8vN6pUalS/Dc0wEGLXKWoNTyYiIEaCjgkONGcDZZTa4y2zPblQoGdIREa3RaZeVALA9DdgJ+DNwrqTPtrlKEREjSkcGh5I1/bjtM4H/ArZpc5UiIkaUTr2stDNwjKSFwPPAEnsOyZCOiGiejgwOtqcCU9tdj4iIkaojgoOkZYGrgH+yfU/3z305RjKkI2KkaeWIAh1xz8H2IuAg4N8kLdf9c3trFxEx8nREzwHA9uPAXj19joiIwdMRPYeIiOgsQzo4ZA7piIjWGNLBwfZk2xNsTxi10qrtrk5ExLAxpINDRES0RoJDRETU6ZinlQYqGdIREc2TnkNERNRJcIiIiDoJDhERUSfBISIi6iQ4REREnQSHiIiok+AQERF1EhwiIqJOgkNERNSR7XbXoSkkPQfc3+56tMiawJPtrkQLpX1DW9o3dG1oe61GG4bN8BnA/bYntLsSrSDpzuHaNkj7hrq0b3jKZaWIiKiT4BAREXWGU3CY3O4KtNBwbhukfUNd2jcMDZsb0hER0TzDqecQERFNkuAQERF1hnxwkPQRSfdL+r2kY9tdn6Ulab6kuZJmS7qzrFtD0nWSHijvq5f1knRqafMcSdu0t/b1JJ0t6XFJ82rW9bs9kg4p5R+QdEg72tJID+07UdKfy3c4W9IeNduOK+27X9KHa9Z33M+vpA0k/VrSvZLukfSVsn5YfH+9tG9YfH9NY3vIvoBRwB+AjYC3AHcD72l3vZayLfOBNbut+y5wbFk+Fji5LO8B/A8g4APA7e2uf4P27ARsA8xb2vYAawAPlvfVy/Lq7W5bL+07EZjUoOx7ys/m8sA7ys/sqE79+QXWBbYpy2OA35U2DIvvr5f2DYvvr1mvod5zeB/we9sP2n4VuBDYq811aqa9gKlleSqwd836c1y5DVhN0rrtqGBPbE8Dnuq2ur/t+TBwne2nbD8NXAd8pPW1X7Ie2teTvYALbb9i+yHg91Q/ux3582v7MduzyvJzwL3A+gyT76+X9vVkSH1/zTLUg8P6wCM1n/9E719yJzNwraSZkiaWdevYfgyqH2hg7bJ+qLa7v+0Ziu38Urm0cnbXZReGcPskjQW2Bm5nGH5/3doHw+z7G4ihHhzUYN1QfTZ3e9vbAB8Fvihpp17KDqd2Q8/tGWrt/DGwMTAOeAz4j7J+SLZP0mjg58DRtp/trWiDdUOxfcPq+xuooR4c/gRsUPP574BH21SXAbH9aHl/HLiUqsv6167LReX98VJ8qLa7v+0ZUu20/Vfbr9l+HTiT6juEIdg+SctR/eI83/YlZfWw+f4atW84fX/NMNSDwwxgE0nvkPQWYH/gijbXqd8krSxpTNcysDswj6otXU94HAJcXkuHJhAAAANkSURBVJavAD5bnhL5ALCgq7vf4frbnmuA3SWtXrr4u5d1HanbfZ99qL5DqNq3v6TlJb0D2AS4gw79+ZUk4L+Ae23/oGbTsPj+emrfcPn+mqbdd8QH+qJ6UuJ3VE8NHN/u+ixlGzaietLhbuCernYAbwVuAB4o72uU9QJ+VNo8F5jQ7jY0aNMFVF3zhVR/YR2xNO0BDqe6Afh74LB2t2sJ7Tu31H8O1S+JdWvKH1/adz/w0U7++QV2oLo8MgeYXV57DJfvr5f2DYvvr1mvDJ8RERF1hvplpYiIaIEEh4iIqJPgEBERdRIcIiKiToJDRETUWbbdFYhoJ0mvUT2+2GVv2/PbVJ2IjpFHWWNEk/S87dG9bF/W9qLBrFNEJ8hlpYhuJB0q6WeSfgFcW9YdI2lGGZTt2zVljy/j+V8v6QJJk8r6GyVNKMtrSppflkdJ+l7NsT5X1u9c9rlY0n2Szi+ZvEjaVtItku6WdIekMZKmSxpXU4+bJW05WP9GMfzlslKMdCtKml2WH7K9T1neDtjS9lOSdqcaMuF9VNnAV5SBEV+gGjJha6r/S7OAmUs43xFUw0tsK2l54GZJ15ZtWwObU43PczOwvaQ7gIuA/WzPkLQK8BJwFnAocLSkdwHL254zoH+JiBoJDjHSvWR7XIP119numq9h9/K6q3weTRUsxgCX2n4RQFJfxtXZHdhS0r7l86rlWK8Cd9j+UznWbGAssAB4zPYMAJfRUSX9DDhB0jFUQ1RM6WuDI/oiwSGisRdqlgX8u+0zagtIOpqeh2hexOLLtit0O9aXbb9pADpJOwOv1Kx6jer/pxqdw/aLkq6jmlzm08CEJbQnol9yzyFiya4BDi/j/yNpfUlrA9OAfSStWEbV3bNmn/nA+LK8b7djfaEMGY2kd5WReHtyH7CepG1L+TGSuv6oOws4FZhR08uJaIr0HCKWwPa1kjYDbi33iJ8HDrI9S9JFVKN6PgxMr9nt+8BPJR0M/Kpm/VlUl4tmlRvOT7B4us1G535V0n7AaZJWpLrfsBvwvO2Zkp4FftKkpka8IY+yRjSJpBOpfml/f5DOtx5wI7CpqwlqIpoml5UihiBJn6Wa9/j4BIZohfQcIiKiTnoOERFRJ8EhIiLqJDhERESdBIeIiKiT4BAREXX+P8h1mEmxzJucAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -825,54 +770,98 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "This looks potentially more relevant / useful. We could continue exploring this BoW model, but let's instead pivot now, and explore using TFIDF." + "This looks potentially more relevant / useful! \n", + "\n", + "As a distribution of meaningful word, bag-of-word representations can be used to analyze text data in various ways.\n", + "\n", + "If you are interested in further analysis of this data, look through the `nltk` tutorials for further analyses." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Term Frequency - Inverse Document Frequency (TF-IDF)\n", + "\n", + "Finally, let's look at another approach for encoding text data - term frequency / inverse document frequency.\n", + "\n", + "Note that TF-IDF is a similar kind of word counting to bag-of-words. \n", + "\n", + "First, let's consider a difficulty with bag-of-words encodings, which is it's difficult to interpret the word counts. For example, knowing a word occurs 10 times isn't itself really enough information to understand something about the document the word come from. If that document is 100 words long, that word seems like it must be quite important. But if the document is 10,000 words long, then this word seems less important. \n", + "\n", + "TF-IDF tries to address this, and does so by scaling the counts of words by the typical occurrence. \n", + "\n", + "- The term-frequency is the count of the term in the document, which is the same as in the bag-of-words. \n", + "\n", + "- The inverse-document-frequency is a measurement of how commonly the term occurs across a corpus. \n", + " - Since it's calculated as an inverse, a higher IDF score is a rarer word. \n", + "\n", + "The TF-IDF score is calculated by multiplying the TF by the IDF. One way to think of this is that it normalizes, or scales, term occurrences in a document by a population measure of the occurrence of the term. \n", + "\n", + "This allows for a representation of the text data which indicates if terms in the document of interest occur more or less frequently than expected (given a corpus). A high TF-IDF score could occur, for example, due to a relatively large number of occurrences of a typically rare term. This may be an interesting and useful feature to describe the text.\n", + "\n", + "Here, we will briefly examine applying TF/IDF to text data. Note that in this case, we are using an object from `sklearn` that can be used to compute the TF/IDF. \n", + "\n", + "
\n", + "Term Frequency - Inverse Document Frequency is representation of text data that scales term occurrences by corpus statistics.\n", + "
\n", + "\n", + "
\n", + "TF-IDF on \n", + "wikipedia.\n", + "
" ] }, { "cell_type": "code", "execution_count": 29, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "# Initialize a TFIDF object\n", + "# Initialize a TFIDF object, applying some settings\n", "tfidf = TfidfVectorizer(analyzer='word',\n", " sublinear_tf=True,\n", " max_features=5000,\n", " tokenizer=nltk.word_tokenize)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The TfidfVectorizer will calculate the inverse document frequency (IDF) for each word across our corpus of words. \n", + "\n", + "The TFIDF for each term, for a particular document, can then be calculated as TF * IDF. " + ] + }, { "cell_type": "code", "execution_count": 30, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "# Apply the TFIDF transformation to our data\n", - "# Note that this takes the sentences, and tokenizes them, then applies TFIDF\n", - "tfidf_books = tfidf.fit_transform(sents).toarray()" + "# Learn the TFIDF representation of our data\n", + "# Note that this takes the raw sentences, tokenizes them, and learns the TF/IDF representation\n", + "tdidf = tfidf.fit(sents)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The TfidfVectorizer will calculate the inverse document frequency (IDF) for each word. \n", + "Before we apply this representation to our data, let's explore what the data object and calculated scores. \n", "\n", - "The TFIDF is then calculated as the TF * IDF, working to down-weight frequently appearing words. This TFIDF is stored in 'tfidf_books' variable, which is a n_documents x n_words matrix that encodes the documents in a TFIDF representation. \n", + "If you explore the tfidf object you'll see it includes attributes:\n", + "- `vocabulary_`, which maps the terms to their indices\n", + "- `idf_`, which has the IDF values for each term. \n", "\n", - "Let's first plot out the IDF for each of the top 10 most frequently appeared words (from the first analysis). " + "Let's now plot out the IDF for each of the top 10 most frequently appeared words (from the first analysis). " ] }, { "cell_type": "code", "execution_count": 31, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Get the IDF weights for the top 10 most common words\n", @@ -886,12 +875,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEWCAYAAACHVDePAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGDlJREFUeJzt3Xm0ZWV95vHvQ4kMotBKtSKihUgk\ngAKCCE7BBSuB2K0mUUHUtoyxWm1FiILG7qUrMaSNsqQbbaOoKBhDGJwIUeOI4IBQpUzlEBFQEEEB\nKWaQ4td/7F3kcL1V95x7z3Rrfz9rnVX7nj2979nw7Pe8e5/9pqqQJG3cNpl0ASRJo2fYS1IHGPaS\n1AGGvSR1gGEvSR1g2EtSBxj2ktQBhv1GIMlVSQ6adDnmK8nHk9yT5Nb2dVmS/51k60mXbViSHJDk\nmjmWWfc53NbzOnRcZdTGzbDXvCR50JA3+e6qeiiwFHglsB/wrSQPGfJ+pt27q2qrntdpMxcYwWev\nDjDsNzJJlif5ZpLjkvwmyZVJDmnnHZZk5Yzlj0pyVju9Wbvez5Ncn+SDSbZo5x2Q5Jokb0lyHfCx\nJNsmOTvJzUluSnJekk3a5R+d5FNJft2W4Yh+yl9Vd1XVhcDzgEfQBD9JNknyv5L8LMmvkpzS2/JP\n8swk327LcnWS5e375yT5i5mfT8/fleR1SX7Sfqt4Z5KdknwnyS1JTk/y4J7l/0uSi9r9fDvJk3vm\nXZXkzUkuSbImyWlJNm9PWF8AHt3TYn90Xwf0gdt+S5JLgNuTPGhDn3GSLdpvCr9J8oMkR/d+s2jr\n/YSevz+e5G8XUs+e+c9v170lyU+THJzkRUlWzajTm5J8dpDPQfNn2G+cngb8GNgWeDfw0SQBzgKe\nmGTnnmUPB/6pnf574PeAPYEnANsDb+9Z9lHAw4HHASuANwHX0LTGHwm8Dag28P8FuLjdxoHAkUn+\nqN8KVNWtwJeBZ7VvLW9fzwEeD2wFvB8gyWNpwvR9bVn2BC7qd1/AwcDeNN8mjgFOBF4K7ADsDryk\n3c9TgJOA/05zIvoQcFaSzXq29eJ2ezsCTwaWV9XtwCHAtT0t9msHKN86LwGeC2wD3MeGP+N3ADu1\nrz8CXtHvTuZbz3bdfYFTgKPbcj4buIrmv70dk/x+zzZeBnyi33JpYQz7jdPPqurDVbUWOBnYDnhk\nVd0BfI7/CK+dgV1o/kcO8GrgqKq6qQ3bvwMO69nufcA7quruqroT+G277cdV1W+r6rxqHrb0VGBp\nVf1NVd1TVVcAH56xrX5cS3NygSZ831tVV1TVbcBfAYel6dJ4KfCVqjq1LceNVTVI2P99Vd1SVauB\ny4AvtftZQ3MS2atd7tXAh6rqu1W1tqpOBu6mOUmsc0JVXVtVN9GE8Z4D1vnNbWv65iQ3zJh3QlVd\n3X72c33GLwaObY/l1cAJA5RhIfV8FXBSVX25qu6rql9U1Y+q6m7gNJqAJ8luwDLg7AHKpQUw7DdO\n162baAMempYwNK34l7TThwOfbZdZCmwJrFoXNsAX2/fX+XVV3dXz93uAy4EvJbkiyVvb9x9H02Vx\nc8+23kbT+h/E9sBN7fSjgZ/1zPsZ8KB2mzsAPx1w272u75m+c5a/1312jwPeNKNeO7RlW+e6nuk7\netbt13FVtU372nbGvKt7puf6jB89Y/nez24uC6nnho7FycDhbcPi5cDp7UlAY+CFnu75ErBtkj1p\nQv+o9v0baIJtt6r6xXrWfcAjUtvW/5togmE34OtJLqQJmSuraudZttGXJFsBBwHHtm9dSxNC6zwW\nuJcmmK8G9l3Ppm6nOYmt86j5lqndz7FVdeycS/6uYTxetncbc33Gv6QJ3tXt34+dMf8OfvdzWden\nv5B6Xk3TdfQ7qur8JPfQdM0d3r40JrbsO6aq7gXOpGmVP5ymX5yquo+mG+D4JP8ZIMn2G+pnby/i\nPaFtqd0CrG1fFwC3tBcUt0iyJMnuSZ46V/nSXCTeG/gs8BvgY+2sU4GjkuzYngj+Djitrc8ngYOS\nvLi9cPmI9mQGTd/9nybZsr0g+aoBPq6ZPgy8JsnT0nhIkucmeWgf614PPCLDu510rs/4dOCvkvyn\nJI8B3jBj/YtoWtlLkhwM/EHPvIXU86PAK5McmOai+vZJdumZfwrNtZZ7q+qbs29Co2DYd9M/0bSa\nz2jDcp230HTLnJ/kFuArwBM3sJ2d22VuA74DfKCqzmmvFfxXmn7cK2m+NXwE2FDQHZPkVppum1OA\nVcDT24ub0Fww/ARwbrvNu2gDrKp+DvwxzbeMm2iCbI92veOBe2jC9mSaE8O8VNVKmv7s99OciC6n\nvTDZx7o/ojlhXdF2jQx0N84s25vrM/5rmq6bK2m+zc28EPrGdv2baa553H9XzALreQHNHVTHA2uA\nb/DAb2SfoLno7YXZMYuDl0gbvyQHAP9YVY+ZcDm2AH4FPKWqfjLJsnSNLXtJ4/Ra4EKDfvy8QCtp\nLJJcBQR4wYSL0kl240hSB9iNI0kdMDXdONtuu20tW7Zs0sWQpEVl1apVN1TV0rmWm5qwX7ZsGStX\nrpx7QUnS/ZL09etou3EkqQMMe0nqAMNekjrAsJekDjDsJakDDHtJ6gDDXpI6wLCXpA6Ymh9VXfqL\nNSx7679OuhiSNFZXveu5Y9mPLXtJ6gDDXpI6wLCXpA4w7CWpAwx7SeoAw16SOqCvsE/yziRv7Pn7\n2CRvTPKeJJcluTTJoe28A5Kc3bPs+5MsH3rJJUl967dl/1HgFQBJNgEOA64B9gT2AA4C3pNku0F2\nnmRFkpVJVq69Y80gq0qSBtBX2FfVVcCNSfYC/hD4PvBM4NSqWltV1wPfAJ46yM6r6sSq2qeq9lmy\n5daDlVyS1LdBfkH7EWA58CjgJJrQn829PPAksvm8SiZJGppBLtB+BjiYpvX+b8C5wKFJliRZCjwb\nuAD4GbBrks2SbA0cOOQyS5IG1HfLvqruSfJ14OaqWpvkM8D+wMVAAcdU1XUASU4HLgF+QtPlI0ma\noL7Dvr0wux/wIoCqKuDo9vUAVXUMcMyQyihJWqB+b73cFbgc+GpV/WS0RZIkDVtfLfuq+gHw+BGX\nRZI0IlPzPPsnbb81K8f0XGdJ6hoflyBJHWDYS1IHGPaS1AFT02fvGLSSptW4xokdJVv2ktQBhr0k\ndYBhL0kdYNhLUgcY9pLUAYa9JHXAnGGf5JgkR7TTxyf5Wjt9YJJ/TPIP7dCCq5P8dc9670rygySX\nJDludFWQJM2ln/vszwXeBJwA7ANslmRTmmEJzwPOqKqbkiwBvprkyTTj0/4JsEtVVZJtZttwkhXA\nCoAlD1u64MpIkmbXTzfOKmDvJA8F7ga+QxP6z6IJ+xcn+R7NICW7AbsCtwB3AR9J8qfAHbNt2DFo\nJWk85gz7qvotcBXwSuDbNAH/HGAn4E7gzcCBVfVk4F+BzavqXmBf4FPAC4AvjqLwkqT+9HuB9lya\nUD+XJuxfA1wEPAy4HViT5JHAIQBJtgK2rqrPA0cCew653JKkAfT7bJzzgP8JfKeqbk9yF3BeVV2c\n5PvAauAK4Fvt8g8FPpdkcyDAUUMutyRpAP2OVPVVYNOev3+vZ3r5elbbd0ElkyQNjffZS1IHGPaS\n1AGGvSR1wNQMXuKA45I0OrbsJakDDHtJ6gDDXpI6YGr67B1wXFrcNoZBuTdmtuwlqQMMe0nqAMNe\nkjpgKGGfZJskrxvGtiRJwzeslv02gGEvSVNqWHfjvAvYKclFwJfb9w4BCvjbqjptSPuRJM3DsFr2\nbwV+WlV7AufTDFayB3AQ8J4k2w1pP5KkeRjFBdpnAqdW1dqquh74BvDU2RZMsiLJyiQr196xZgRF\nkSTBaMI+/S7ogOOSNB7DCvtbaYYihGac2kOTLEmyFHg2cMGQ9iNJmoehXKCtqhuTfCvJZcAXgEuA\ni2ku0B5TVdcNYz+SpPkZ2rNxqurwGW8dPaxtS5IWxl/QSlIHGPaS1AGGvSR1wNQ8z94xaCVpdGzZ\nS1IHGPaS1AGGvSR1wNT02TsGrTQ3x3nVfNmyl6QOMOwlqQMMe0nqAMNekjpgoLDvHVg8yQFJzh5N\nsSRJwzRoy96BxSVpERr01svegcV/C9ye5Exgd2AV8LKqqiR7A+8FtgJuAJZX1S+HWG5J0gAGbdn3\nDix+NLAXcCSwK/B44BlJNgXeB7ywqvYGTgKOnW1jjkErSeOx0B9VXVBV1wC0rf1lwM00Lf0vJwFY\nAszaqq+qE4ETATbbbudaYFkkSeux0LC/u2d6bbu9AKurav8FbluSNCSDduP0Diy+Pj8GlibZHyDJ\npkl2m0/hJEnDMVDLfsbA4ncC18+yzD1JXgickGTrdh//B1g9jAJLkgY3cDfOLAOLr3v/9T3TFwHP\nXkC5JElD5C9oJakDDHtJ6oCpeZ69Y9BK0ujYspekDjDsJakDDHtJ6oCp6bN3DFpJo9T18Xtt2UtS\nBxj2ktQBhr0kdYBhL0kdMPKwT3JEkh8m+eSo9yVJmt047sZ5HXBIVV05hn1JkmYx1JZ9kr9Mcln7\nOjLJB2mGKzwryVHD3JckqX9Da9m3g4y/EngazWhV3wVeBhwMPKeqbphlnRXACoAlD1s6rKJIkmYY\nZsv+mcBnqur2qroN+DTwrA2tUFUnVtU+VbXPki23HmJRJEm9hhn2GeK2JElDNMywPxd4QZItkzwE\n+BPgvCFuX5I0T0Prs6+q7yX5OHBB+9ZHqur7iQ1+SZq0od56WVXvBd47471lw9yHJGlw/oJWkjrA\nsJekDpia59k7Bq0kjY4te0nqAMNekjrAsJekDpiaPnvHoJW0WC2G8W1t2UtSBxj2ktQBhr0kdYBh\nL0kdMLSwT/LtYW1LkjRcQwv7qnr6sLYlSRquYbbsb2v/PSDJOUnOTPKjJJ+MzzmWpIkaVZ/9XsCR\nwK40A44/Y7aFkqxIsjLJyrV3rBlRUSRJowr7C6rqmqq6D7gIWDbbQo5BK0njMaqwv7tnei1T9Etd\nSeoib72UpA4w7CWpA4Y54PhW7b/nAOf0vP/6Ye1DkjQ/tuwlqQMMe0nqgKm5S8YxaCVpdGzZS1IH\nGPaS1AGGvSR1wNT02TsGraTFMJbrYmXLXpI6wLCXpA4w7CWpAwx7SeqAsYS949NK0mSNJewdn1aS\nJmtcLfvbxrEfSdLsJtpn7xi0kjQeEw17x6CVpPHwbhxJ6gDDXpI6wLCXpA4Y162XW41jP5Kk2dmy\nl6QOMOwlqQOm5nn2jkErSaNjy16SOsCwl6QOMOwlqQOmps/eMWglLUaLZdxcW/aS1AGGvSR1gGEv\nSR1g2EtSBywo7JMsS3LZsAojSRoNW/aS1AHDCPslST6cZHWSLyXZIslOSb6YZFWS85LsMoT9SJLm\naRhhvzPw/6pqN+Bm4M+AE4E3VNXewJuBDwxhP5KkeRrGj6qurKqL2ulVwDLg6cAZSdYts9lsKyZZ\nAawAWPKwpUMoiiRpNsMI+7t7ptcCjwRurqo951qxqk6k+RbAZtvtXEMoiyRpFqO4QHsLcGWSFwGk\nsccI9iNJ6tOo7sZ5KfCqJBcDq4Hnj2g/kqQ+LKgbp6quAnbv+fu4ntkHL2TbkqTh8T57SeoAw16S\nOsCwl6QOmJrBSxxwXJJGx5a9JHWAYS9JHWDYS1IHTE2fvQOOS9NnsQymrbnZspekDjDsJakDDHtJ\n6gDDXpI6YORhn+S2Ue9DkrRhtuwlqQP6Cvskn20HD1/dDiVIktuSHJvk4iTnJ3lk+/6OSb6T5MIk\n7xxl4SVJ/em3Zf/n7eDh+wBHJHkE8BDg/KraAzgXeHW77P8F/qGqngpct6GNJlmRZGWSlWvvWDO/\nGkiS5tRv2B/Rjjp1PrADsDNwD3B2O3/dQOMAzwBObac/saGNVtWJVbVPVe2zZMutBym3JGkAc/6C\nNskBwEHA/lV1R5JzgM2B31bVukHC187YloOHS9IU6adlvzXwmzbodwH2m2P5bwGHtdMvXUjhJEnD\n0U/YfxF4UJJLgHfSdOVsyBuB/5HkQpoThSRpwubsxqmqu4FDZpm1Vc8yZwJnttNXAvv3LPeuBZZR\nkrRA3mcvSR1g2EtSB0zN8+wdg1aSRseWvSR1gGEvSR1g2EtSB0xNn71j0Erqh+Pizo8te0nqAMNe\nkjrAsJekDjDsJakDDHtJ6gDDXpI6YGRhP9u4tZKkyRjlffZ/XlU3JdkCuDDJp6rqxt4F2pPACoAl\nD1s6wqJIUreNshtntnFrH8AxaCVpPEbSst/AuLWSpAkYVct+0HFrJUkjNKqwH3TcWknSCI2kG2cD\n49ZKkibA++wlqQMMe0nqgKl5nr1j0ErS6Niyl6QOMOwlqQMMe0nqAMNekjrAsJekDjDsJakDDHtJ\n6gDDXpI6wLCXpA5IVU26DAAkuRX48aTLMUTbAjdMuhBDZH2mm/WZbqOsz+Oqas6h/qbmcQnAj6tq\nn0kXYliSrLQ+08v6TDfrM3x240hSBxj2ktQB0xT2J066AENmfaab9Zlu1mfIpuYCrSRpdKapZS9J\nGhHDXpI6YKxhn+TgJD9OcnmSt84yf7Mkp7Xzv5tk2TjLN6g+6rM8ya+TXNS+/mIS5exXkpOS/CrJ\nZeuZnyQntPW9JMlTxl3GQfRRnwOSrOk5Pm8fdxkHkWSHJF9P8sMkq5O8cZZlFs0x6rM+i+YYJdk8\nyQVJLm7r89ezLDO5jKuqsbyAJcBPgccDDwYuBnadsczrgA+204cBp42rfCOqz3Lg/ZMu6wB1ejbw\nFOCy9cz/Y+ALQID9gO9OuswLrM8BwNmTLucA9dkOeEo7/VDg32f5b27RHKM+67NojlH7mW/VTm8K\nfBfYb8YyE8u4cbbs9wUur6orquoe4J+B589Y5vnAye30mcCBSTLGMg6in/osKlV1LnDTBhZ5PnBK\nNc4Htkmy3XhKN7g+6rOoVNUvq+p77fStwA+B7WcstmiOUZ/1WTTaz/y29s9N29fMO2AmlnHjDPvt\ngat7/r6G3z2w9y9TVfcCa4BHjKV0g+unPgB/1n6dPjPJDuMp2sj0W+fFZP/2a/cXkuw26cL0q/36\nvxdN67HXojxGG6gPLKJjlGRJkouAXwFfrqr1Hp9xZ9w4w362s9fMs14/y0yLfsr6L8Cyqnoy8BX+\n44y+WC2m49OP79E8V2QP4H3AZydcnr4k2Qr4FHBkVd0yc/Ysq0z1MZqjPovqGFXV2qraE3gMsG+S\n3WcsMrHjM86wvwbobdk+Brh2fcskeRCwNdP7NXzO+lTVjVV1d/vnh4G9x1S2UennGC4aVXXLuq/d\nVfV5YNMk2064WBuUZFOaYPxkVX16lkUW1TGaqz6L8RgBVNXNwDnAwTNmTSzjxhn2FwI7J9kxyYNp\nLk6cNWOZs4BXtNMvBL5W7ZWMKTRnfWb0lT6Ppk9yMTsL+G/tHR/7AWuq6peTLtR8JXnUuv7SJPvS\n/P9w42RLtX5tWT8K/LCq3ruexRbNMeqnPovpGCVZmmSbdnoL4CDgRzMWm1jGje2pl1V1b5LXA/9G\ncyfLSVW1OsnfACur6iyaA/+JJJfTnO0OG1f5BtVnfY5I8jzgXpr6LJ9YgfuQ5FSaux+2TXIN8A6a\ni0xU1QeBz9Pc7XE5cAfwysmUtD991OeFwGuT3AvcCRw2xY0LgGcALwcubfuFAd4GPBYW5THqpz6L\n6RhtB5ycZAnNSen0qjp7WjLOxyVIUgf4C1pJ6gDDXpI6wLCXpA4w7CWpAwx7SeoAw14bhSS3tf8u\nS3Jnku+3T1O8IMkrepab+STSU2bZ1hOTnNPO/2GSiY8yJC3U2O6zl8bop1W1F0CSxwOfTrJJVX2s\nnX9aVb1+A+ufABxfVZ9rt/GkhRYoyZKqWrvQ7UjzZcteG7WqugL4S+CIAVbbjuZn7eu2cSnc/5Cr\n45Jc2j7c7g3t+we23yQuTfMM/c3a969K8vYk3wRelGSnJF9MsirJeUl2GVpFpTkY9uqC7wG9wXpo\nTzfObL8wPR74WvuUxaPW/QQeWAHsCOzVPtzuk0k2Bz4OHFpVT6L5tvzanm3dVVXPrKp/phl0+g1V\ntTfwZuADw6yktCGGvbpg5pMGT6uqPdvXx2Yu3L73+8AZNI9bOL9trR9EM/DEve1yNwFPBK6sqn9v\nVz+ZZtCU+/cF9z/Z8enAGe2jAT5E8w1CGgv77NUFezHgQ+iq6lrgJOCkNMMa7k5z0ujnsdy9bm//\n3QS4uX38rTR2tuy1UWsHxTiO5lno/a5zcPvoXZI8imZwiV8AXwJe0z6aliQPp3mq4bIkT2hXfznw\njZnbbJ/TfmWSF7XrJske86yWNDDDXhujndbdegmcDrxvtu6aDfhD4LIkF9M81fToqroO+Ajwc+CS\ndt7hVXUXzZMlz0hyKXAf8MH1bPelwKvadVezyIex1OLiUy8lqQNs2UtSBxj2ktQBhr0kdYBhL0kd\nYNhLUgcY9pLUAYa9JHXA/wdWh5/9QoLg1AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAXg0lEQVR4nO3de7RkZX3m8e9jg4BCYARGEZEGJBJBuYqgxMEFawJxRkziBVFHjJFRRhEiqHFm6TIGxxiWTNAYRUXBGMNFBwlRBo1B8ILQrc2lgybcFMQryP0Ov/lj74byeLpPnT5Vdc55+/tZq9bZVfv2vrW7n3rr3bv2m6pCktSex8x3ASRJ42HAS1KjDHhJapQBL0mNMuAlqVEGvCQ1yoCXpEYZ8A1Icn2SA+e7HGsryaeT3J/kjv5xZZL/nWTT+S7bqCTZP8mNMyyz6n24c+Dx8kmVUe0x4LVWkqw34k1+oKo2AbYEXgvsA3wzyeNHvJ+F7gNVtfHA4/SpC4zhvVejDPjGJDk8yTeSnJDkV0muS3JwP+/QJMumLH9MknP66Q369X6U5GdJPppko37e/kluTPL2JD8FPpVkiyTnJrk1yS1JLkrymH75Jyf5fJJf9GU4apjyV9W9VXUp8CJgc7qwJ8ljkvyvJD9M8vMkpw228JPsl+RbfVluSHJ4//oFSf5k6vsz8LySHJnk3/tvD+9NskOSbye5PckZSR47sPx/SbKi38+3kjxrYN71SY5NcnmS25KcnmTD/kPqy8CTB1rmTx7qgP76tt+e5HLgriTrrek9TrJR/43gV0n+Nclxg98g+no/beD5p5P8xVzqOTD/kH7d25Nck+SgJC9NsnxKnd6a5OzZvA+aHQO+Tc8BfgBsAXwA+GSSAOcAT0+y48CyhwF/30//JfDbwG7A04CtgXcNLPsk4AnAtsARwFuBG+la3U8E3glUH/L/CFzWb+MA4OgkvzdsBarqDuArwO/2Lx3eP14AbA9sDHwYIMlT6QL0Q31ZdgNWDLsv4CBgT7pvDW8DTgZeCWwD7AK8ot/PHsApwH+n+/D5GHBOkg0GtvWyfnvbAc8CDq+qu4CDgZsGWuY3zaJ8q7wCeCGwGfAwa36P3w3s0D9+D3jNsDtZ23r26+4NnAYc15fz+cD1dP/2tkvyOwPbeBXwmWHLpdkz4Nv0w6r6eFU9BJwKbAU8saruBr7Io4G1I7AT3X/eAK8HjqmqW/qAfR9w6MB2HwbeXVX3VdU9wAP9tretqgeq6qLqbm70bGDLqvrzqrq/qq4FPj5lW8O4ie4DBbrA/WBVXVtVdwJ/BhyarrvilcBXq+pzfTlurqrZBPxfVtXtVbUSuBI4v9/PbXQfHLv3y70e+FhVfaeqHqqqU4H76D4YVjmpqm6qqlvoAni3Wdb52L7VfGuSX06Zd1JV3dC/9zO9xy8Dju+P5Q3ASbMow1zq+TrglKr6SlU9XFU/rqrvV9V9wOl0oU6SnYGlwLmzKJdmyYBv009XTfShDl2LF7rW+iv66cOAs/tltgQeByxfFTDAef3rq/yiqu4deP5XwNXA+UmuTfKO/vVt6bojbh3Y1jvpWvmzsTVwSz/9ZOCHA/N+CKzXb3Mb4JpZbnvQzwam75nm+ar3blvgrVPqtU1ftlV+OjB998C6wzqhqjbrH1tMmXfDwPRM7/GTpyw/+N7NZC71XNOxOBU4rG9MvBo4ow9+jYkna9Y95wNbJNmNLuiP6V//JV2Y7VxVP17Nur9269G+lf9WujDYGfiXJJfSBct1VbXjNNsYSpKNgQOB4/uXbqILnlWeCjxIF8Y3AHuvZlN30X1wrfKktS1Tv5/jq+r4GZf8TaO4bevgNmZ6j39CF7Yr++dPnTL/bn7zfVnVRz+Xet5A1y30G6rq4iT303W7HdY/NEa24NcxVfUgcBZd6/sJdP3cVNXDdF/xT0zyHwGSbL2mfvP+RNzT+hbZ7cBD/eMS4Pb+pOBGSZYk2SXJs2cqX7oTvXsCZwO/Aj7Vz/occEyS7frwfx9wel+fzwIHJnlZf/Jx8/4DDLq++D9M8rj+pOLrZvF2TfVx4A1JnpPO45O8MMkmQ6z7M2DzjO7Sz5ne4zOAP0vyH5I8BXjzlPVX0LWmlyQ5CPhPA/PmUs9PAq9NckC6E+NbJ9lpYP5pdOdOHqyqb0y/CY2KAb9u+nu61vGZfUCu8na6LpeLk9wOfBV4+hq2s2O/zJ3At4GPVNUFfd//f6Xrl72O7tvBJ4A1hdvbktxB1yVzGrAceG5/ghK6k36fAS7st3kvfWhV1Y+A36f7NnELXXjt2q93InA/XcCeSvdhsFaqahld//SH6T58rqY/uTjEut+n+5C6tu/2mNVVNNNsb6b3+D103TLX0X1rm3oy8y39+rfSncN45GqWOdbzErorn04EbgO+zq9/8/oM3YlrT65OQBzwQ2pfkv2Bv6uqp8xzOTYCfg7sUVX/Pp9lWRfYgpc0SW8ELjXcJ8OTrJImIsn1QIAXz3NR1hl20UhSo+yikaRGLZgumi222KKWLl0638WQpEVl+fLlv6yqLaebt2ACfunSpSxbtmzmBSVJj0iy2l8p20UjSY0y4CWpUQa8JDXKgJekRhnwktQoA16SGmXAS1KjDHhJatSC+aHTFT++jaXv+Kf5LoYkTdT173/h2LZtC16SGmXAS1KjDHhJapQBL0mNGlnAJ/nWqLYlSZq7kQV8VT13VNuSJM3dKFvwd/Z/909yQZKzknw/yWeTZFT7kSQNZ1x98LsDRwPPALYHnjfdQkmOSLIsybKH7r5tTEWRpHXTuAL+kqq6saoeBlYAS6dbqKpOrqq9qmqvJY/bdExFkaR107gC/r6B6YdYQL+YlaR1hZdJSlKjDHhJatTIuk6qauP+7wXABQOvv2lU+5AkDc8WvCQ1yoCXpEYtmKtbnrn1piwb432RJWldYwtekhplwEtSowx4SWrUgumDd0xWSeuScY7FuooteElqlAEvSY0y4CWpUQa8JDVqTgGfZGmSK0dVGEnS6NiCl6RGjSLglyT5eJKVSc5PslGSHZKcl2R5kouS7DSC/UiSZmEUAb8j8DdVtTNwK/BHwMnAm6tqT+BY4CPTreiYrJI0PqP4odN1VbWin15ON/7qc4Ezk6xaZoPpVqyqk+k+DNhgqx1rBGWRJPVGEfBTx199InBrVe02gm1LktbSOE6y3g5cl+SlAOnsOob9SJLWYFxX0bwSeF2Sy4CVwCFj2o8kaTXm1EVTVdcDuww8P2Fg9kFz2bYkaW68Dl6SGmXAS1KjDHhJatSCGfDDQbclabRswUtSowx4SWqUAS9JjVowffAOui2pNZMYWHtNbMFLUqMMeElqlAEvSY0y4CWpUQa8JDVqxoBP8rYkR/XTJyb5Wj99QJK/S/K3/bB7K5O8Z2C99yf51ySXJzlhdduXJI3HMJdJXgi8FTgJ2AvYIMn6wH7ARcCZVXVLkiXAPyd5FnAj8AfATlVVSTYbT/ElSaszTBfNcmDPJJvQDc/3bbqg/126gH9Zku8C3wN2Bp5BN6rTvcAnkvwhcPd0G3bQbUkanxkDvqoeAK4HXgt8iy7UXwDsANwDHAscUFXPAv4J2LCqHgT2Bj4PvBg4bzXbPrmq9qqqvZY8btO510aS9IhhT7JeSBfkF9IF/BuAFcBvAXcBtyV5InAwQJKNgU2r6kvA0YADcEvShA17q4KLgP8JfLuq7kpyL3BRVV2W5Ht0465eC3yzX34T4ItJNgQCHDPickuSZjBUwFfVPwPrDzz/7YHpw1ez2t5zKpkkaU68Dl6SGmXAS1KjDHhJatSCuR+8Y7JK0mjZgpekRhnwktQoA16SGrVg+uAdk1XSQjPfY6rOlS14SWqUAS9JjTLgJalRBrwkNWrsAZ/kqCRXJfnsuPclSXrUJK6iORI4uKqum8C+JEm9kbbgk/xpkiv7x9FJPgpsD5yTxHvCS9IEjawFn2RPumH9nkM3yMd3gFcBBwEvqKpfTrPOEcARAEt+a8tRFUWSxGhb8PsB/7eq7qqqO4Ev0A3MvVqOySpJ4zPKgM8ItyVJmqNRBvyFwIuTPC7J44E/oBvLVZI0D0bWB19V303yaeCS/qVPVNX3Ehv2kjQfRnqZZFV9EPjglNeWjnIfkqTh+EtWSWqUAS9JjVow94N3TFZJGi1b8JLUKANekhplwEtSoxZMH7xjskoal8U+turasgUvSY0y4CWpUQa8JDXKgJekRhnwktQoA16SGjW2gE9ydpLlSVb2Q/NJkiZonNfB/3FV3ZJkI+DSJJ+vqpsHF3BMVkkan3F20RyV5DLgYmAbYMepCzgmqySNz1ha8En2Bw4E9q2qu5NcAGw4jn1JkqY3rhb8psCv+nDfCdhnTPuRJK3GuAL+PGC9JJcD76XrppEkTdBYumiq6j7g4HFsW5I0HK+Dl6RGGfCS1KgFcz94x2SVpNGyBS9JjTLgJalRBrwkNWrB9ME7Jquk2VpXx1odli14SWqUAS9JjTLgJalRBrwkNWoiAZ/kW5PYjyTpURMJ+Kp67iT2I0l61KRa8HdOYj+SpEfNax98kiOSLEuy7KG7b5vPokhSc+Y14B2TVZLGx6toJKlRBrwkNcqAl6RGTeoyyY0nsR9J0qNswUtSowx4SWrUgrkfvGOyStJo2YKXpEYZ8JLUKANekhq1YPrgHZNV0kLQ0jivtuAlqVEGvCQ1yoCXpEaNLOCTrJfk/CQ7T/dckjRZIwv4qnoQeBXwviTrT30+qv1IkoYz0qtoqurnwCGrey5Jmhz74CWpUY7JKkmNckxWSWqUXTSS1CgDXpIaZcBLUqMMeElqlAEvSY0y4CWpUQvmfvCOySpJo2ULXpIaZcBLUqMMeElq1ILpg3dMVmnd0dK4pwuZLXhJapQBL0mNMuAlqVEGvCQ1aiQBn2SzJEeOYluSpNEYVQt+M8CAl6QFZFSXSb4f2CHJCuAr/WsHAwX8RVWdPqL9SJKGNKoW/DuAa6pqN+BiYDdgV+BA4K+SbDWi/UiShjSOk6z7AZ+rqoeq6mfA14FnT7egg25L0viMI+Az7IIOui1J4zOqgL8D2KSfvhB4eZIlSbYEng9cMqL9SJKGNJKTrFV1c5JvJrkS+DJwOXAZ3UnWt1XVT0exH0nS8EZ2s7GqOmzKS8eNatuSpNnzl6yS1CgDXpIaZcBLUqMWzIAfDrotSaNlC16SGmXAS1KjDHhJatSC6YN30G1p8XIQ7YXJFrwkNcqAl6RGGfCS1CgDXpIaNfaAT3LnuPchSfpNtuAlqVFDBXySs5MsT7IyyRH9a3cmOT7JZUkuTvLE/vXtknw7yaVJ3jvOwkuSVm/YFvwfV9WewF7AUUk2Bx4PXFxVu9KN4vT6ftm/Bv62qp4NrHGgD8dklaTxGTbgj0pyGXAxsA2wI3A/cG4/fzmwtJ9+HvC5fvoza9qoY7JK0vjM+EvWJPsDBwL7VtXdSS4ANgQeqKrqF3toyrYKSdK8GqYFvynwqz7cdwL2mWH5bwKH9tOvnEvhJElrb5iAPw9YL8nlwHvpumnW5C3A/0hyKd2HgyRpHszYRVNV9wEHTzNr44FlzgLO6qevA/YdWO79cyyjJGkteB28JDXKgJekRi2Y+8E7JqskjZYteElqlAEvSY0y4CWpUQumD94xWaXRcYxUgS14SWqWAS9JjTLgJalRBrwkNWpWAZ9ksyRH9tP7Jzl3pnUkSfNjti34zYAjx1EQSdJozfYyyfcDOyRZATwA3JXkLGAXulGdXlVVlWRP4IN0d5z8JXB4Vf1khOWWJM1gti34dwDXVNVuwHHA7sDRwDOA7YHnJVkf+BDwkn4c11OA46fbmGOyStL4zPWHTpdU1Y0Afat+KXArXYv+K0kAlgDTtt6r6mTgZIANttrRYf4kaYTmGvD3DUyvGpc1wMqq2nf6VSRJkzDbLpo7gE1mWOYHwJZJ9gVIsn6SndemcJKktTerFnxV3Zzkm0muBO4BfjbNMvcneQlwUpJN+338H2DlKAosSRrOrLtoquqw1bz+poHpFcDz51AuSdIc+UtWSWqUAS9JjVow94N3TFZJGi1b8JLUKANekhplwEtSowx4SWqUAS9JjTLgJalRBrwkNcqAl6RGGfCS1KhULYxxNpLcQXer4dZsQTdsYYtarVur9YJ269ZqvWDmum1bVVtON2PB3KoA+EFV7TXfhRi1JMtarBe0W7dW6wXt1q3VesHc6mYXjSQ1yoCXpEYtpIA/eb4LMCat1gvarVur9YJ269ZqvWAOdVswJ1klSaO1kFrwkqQRMuAlqVETDfgkByX5QZKrk7xjmvkbJDm9n/+dJEsnWb65GKJuhyf5RZIV/eNP5qOcs5XklCQ/T3LlauYnyUl9vS9Psseky7g2hqjX/kluGzhe75p0GddWkm2S/EuSq5KsTPKWaZZZdMdtyHotyuOWZMMklyS5rK/be6ZZZvb5WFUTeQBLgGuA7YHHApcBz5iyzJHAR/vpQ4HTJ1W+CdTtcODD813Wtajb84E9gCtXM//3gS8DAfYBvjPfZR5RvfYHzp3vcq5l3bYC9uinNwH+bZp/j4vuuA1Zr0V53PrjsHE/vT7wHWCfKcvMOh8n2YLfG7i6qq6tqvuBfwAOmbLMIcCp/fRZwAFJMsEyrq1h6rYoVdWFwC1rWOQQ4LTqXAxslmSryZRu7Q1Rr0Wrqn5SVd/tp+8ArgK2nrLYojtuQ9ZrUeqPw5390/X7x9QrYGadj5MM+K2BGwae38hvHpxHlqmqB4HbgM0nUrq5GaZuAH/Ufx0+K8k2kyna2A1b98Vo3/4r85eT7DzfhVkb/df43elahIMW9XFbQ71gkR63JEuSrAB+DnylqlZ7zIbNx0kG/HSfNFM/oYZZZiEaptz/CCytqmcBX+XRT+LFbrEes5l8l+4eH7sCHwLOnufyzFqSjYHPA0dX1e1TZ0+zyqI4bjPUa9Eet6p6qKp2A54C7J1klymLzPqYTTLgbwQGW61PAW5a3TJJ1gM2ZXF8jZ6xblV1c1Xd1z/9OLDnhMo2bsMc10Wnqm5f9ZW5qr4ErJ9ki3ku1tCSrE8Xgp+tqi9Ms8iiPG4z1WuxHzeAqroVuAA4aMqsWefjJAP+UmDHJNsleSzdSYJzpixzDvCafvolwNeqP6OwwM1Ytyn9my+i6z9swTnAf+uvytgHuK2qfjLfhZqrJE9a1b+ZZG+6/ys3z2+phtOX+5PAVVX1wdUstuiO2zD1WqzHLcmWSTbrpzcCDgS+P2WxWefjxO4mWVUPJnkT8P/orjo5papWJvlzYFlVnUN38D6T5Gq6T6ZDJ1W+uRiybkcleRHwIF3dDp+3As9Cks/RXZmwRZIbgXfTnQCiqj4KfInuioyrgbuB185PSWdniHq9BHhjkgeBe4BDF0ljA+B5wKuBK/o+XYB3Ak+FRX3chqnXYj1uWwGnJllC96F0RlWdO9d89FYFktQof8kqSY0y4CWpUQa8JDXKgJekRhnwktQoA15NSHJn/3dpknuSfK+/6+AlSV4zsNzUu3qeNs22np7kgn7+VUlaHi1IDZvYdfDSBF1TVbsDJNke+EKSx1TVp/r5p1fVm9aw/knAiVX1xX4bz5xrgZIsqaqH5rodaTZswatpVXUt8KfAUbNYbSu6n4Wv2sYV8MjNoE5IckV/07g3968f0H9juCLdfeY36F+/Psm7knwDeGmSHZKcl2R5kouS7DSyikrTMOC1LvguMBimLx/oopnuF5wnAl/r70Z4zKqfkANHANsBu/c3jftskg2BTwMvr6pn0n0rfuPAtu6tqv2q6h/oBk9+c1XtCRwLfGSUlZSmMuC1Lph6F77Tq2q3/vGpqQv3r/0OcCbd7Qwu7lvlB9INuPBgv9wtwNOB66rq3/rVT6UbTOSRfcEjd0B8LnBm/zP7j9F9U5DGxj54rQt2Z5Y3d6uqm4BTgFPSDeu3C90HxTC3uB50V//3McCt/e1gpYmwBa+m9QNDnEB3b/Bh1zmovy0tSZ5EN6jCj4HzgTf0t2olyRPo7vi3NMnT+tVfDXx96jb7+5Zfl+Sl/bpJsutaVksaigGvFu2w6jJJ4AzgQ9N1xazBfwauTHIZ3R1Cj6uqnwKfAH4EXN7PO6yq7qW7E+OZSa4AHgY+uprtvhJ4Xb/uShoZ1lELl3eTlKRG2YKXpEYZ8JLUKANekhplwEtSowx4SWqUAS9JjTLgJalR/x86qmnSRg2J3AAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -911,13 +902,11 @@ }, { "cell_type": "code", - "execution_count": 34, - "metadata": { - "collapsed": true - }, + "execution_count": 33, + "metadata": {}, "outputs": [], "source": [ - "# Get the words with the highest IDF score\n", + "# Get the terms with the highest IDF score\n", "inds = np.argsort(tfidf.idf_)[::-1][:10]\n", "top_IDF_tokens = [list(tfidf.vocabulary_)[ind] for ind in inds]\n", "top_IDF_scores = tfidf.idf_[inds]" @@ -925,22 +914,24 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAEWCAYAAAA3h9P4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XmYHmWd9fHvIWgghASQ6IQgNEIA\nIZEAkUFBBczF4L6AgriAOmZ0FERFxR0XVJQXcB0NyKZMBnFBhqiAsiNLOhDSAVEUgpCowAAhENbk\nvH/U3eah7aTXdFW6z+e6nqvrqeWuXxXQh7uqum7ZJiIioqnWq7uAiIiINUlQRUREoyWoIiKi0RJU\nERHRaAmqiIhotARVREQ0WoIqIiIaLUEVtZC0SNKMuuvoL0lnSHpC0rLyWSjpK5LG113bYJG0j6S7\ne1in8zw83PI5eKhqjJEhQRUjhqT1B7nJr9neGJgAvBPYE7ha0kaDvJ+m+5rtsS2fc7qusBbOfYwg\nCaqonaTDJV0l6QRJD0i6Q9IryrJDJLV3Wf9Dks4v06PLdn+R9HdJ35O0YVm2j6S7JX1c0t+A0yVt\nLukCSQ9Kul/SlZLWK+tvIemnku4tNRzZm/ptP2Z7LvBa4FlUoYWk9SR9WtKdku6RdFZrj0vS3pJ+\nV2q5S9LhZf5lkv696/lp+W5J/ynpttKb+6KkbSVdI+khST+W9MyW9V8taX7Zz+8kvaBl2SJJR0ta\nIGmppHMkbVDC9lfAFi09pS169Q/06W1/XNIC4BFJ66/pHEvasPTQHpB0i6SPtvboynFv1/L9DElf\nGshxtix/Xdn2IUl/lnSApDdJmtflmD4i6by+nIcYuARVNMW/An8ANge+BvxAkoDzgR0kTW5Z91Dg\nv8v08cD2wDRgO2AS8NmWdf8F2AzYGpgJfAS4m6oX9Bzgk4BLWP0vcFNp4+XAUZL+rbcHYHsZcDHw\nkjLr8PLZF3geMBb4NoCkraiC4FullmnA/N7uCzgA2J2qF/cxYBbwVuC5wBTgLWU/uwGnAf9BFaLf\nB86XNLqlrTeX9rYBXgAcbvsR4BXAkpae0pI+1NfpLcCrgE2Alaz5HH8O2LZ8/g04rLc76e9xlm33\nAM4CPlrqfCmwiOrfvW0kPb+ljbcBP+xtXTE4ElTRFHfaPsX2CuBMYCLwHNvLgV+w6hfvZGBHql9C\nAt4DfMj2/SUovgwc0tLuSuBzth+3/SjwZGl7a9tP2r7S1QsvXwhMsP0F20/Yvh04pUtbvbGEKhih\nCo4Tbd9u+2HgE8Ahqi6DvRX4je3ZpY7/s92XoDre9kO2bwYWAheV/SylCsBdy3rvAb5v+zrbK2yf\nCTxOFXCdvml7ie37qYJkWh+P+ejSi3lQ0n1dln3T9l3l3Pd0jt8MHFf+Wd4FfLMPNQzkON8NnGb7\nYtsrbS+2favtx4FzqMIJSTsDbcAFfagrBkGCKprib50TJZyg6oFA1Xt6S5k+FDivrDMBGAPM6/xF\nCfy6zO90r+3HWr5/HfgTcJGk2yUdU+ZvTXWZ68GWtj5J1evqi0nA/WV6C+DOlmV3AuuXNp8L/LmP\nbbf6e8v0o9187zx3WwMf6XJczy21dfpby/Tylm176wTbm5TP5l2W3dUy3dM53qLL+q3nricDOc41\n/bM4Ezi0/E/R24EflwCLIZQbnLEuuAjYXNI0qsD6UJl/H9Uv5Z1tL17Ntk8bHqD0uj5C9UttZ+BS\nSXOpfkHeYXtyN230iqSxwAzguDJrCdUv0E5bAU9RhcpdwB6raeoRqgDu9C/9rans5zjbx/W45j8b\njKEVWtvo6Rz/lSo0bi7ft+qyfDn/fF4672EN5Djvorrc+E9sXyvpCarLuYeWTwyx9Kii8Ww/BfyE\nqje0GdV9IGyvpLp0dJKkZwNImrSm+0rlhvt25f+QHwJWlM/1wEPl5v+GkkZJmiLphT3Vp+qBjt2B\n84AHgNPLotnAhyRtU0Lsy8A55XjOBmZIenN5yOBZJYihulf1RkljysMD7+7D6erqFOC9kv5VlY0k\nvUrSxr3Y9u/AszR4j9z3dI5/DHxC0qaStgSO6LL9fKrezShJBwAva1k2kOP8AfBOSS9X9QDMJEk7\ntiw/i+re4lO2r+q+iVibElSxrvhvqt7KueUXfaePU13Ku1bSQ8BvgB3W0M7kss7DwDXAd21fVu6N\nvYbqvsUdVL21U4E1/ZL+mKRlVJf6zgLmAS8uDyJAdXP/h8AVpc3HKL98bf8FeCVV7+5+ql/Cu5Tt\nTgKeoAqKM6lCrV9st1Pdv/k2VYj+ifIQQS+2vZUqbG8vl9P69NRfN+31dI4/T3W57w6qXnTXhxY+\nWLZ/kOoe3z+evhvgcV5P9aTmScBS4HKe3hP+IdUDKnmIoibKwIkR0USS9gF+ZHvLmuvYELgH2M32\nbXXWMlKlRxURsWbvA+YmpOqThykiIlZD0iJAwOtrLmVEy6W/iIhotFz6i4iIRsulv37afPPN3dbW\nVncZERHrlHnz5t1ne0LPa66SoOqntrY22tvbe14xIiL+QVJf3jgC5NJfREQ0XIIqIiIaLUEVERGN\nlqCKiIhGS1BFRESjJagiIqLRElQREdFoCaqIiGi0/MFvP3UsXkrbMXPqLiMiYkgt+uqrhnyf6VFF\nRESjJagiIqLRElQREdFoCaqIiGi0YRdUks6QdFCZPkrSmJZlD9dXWURE9MewC6oujgLG9LhWREQ0\nVu1BJeljko4s0ydJuqRMv1zSjyTtL+kaSTdIOlfS2LL8s5LmSlooaZYkdWn3SGAL4FJJl7bMP07S\nTZKulfQcSRtLukPSM8rycZIWdX6PiIh61R5UwBXAS8r0dGBsCYm9gQ7g08AM27sB7cCHy7rftv1C\n21OADYFXtzZq+5vAEmBf2/uW2RsB19repez3PbaXAZcBnX8ccAjwU9tPdi1U0kxJ7ZLaVyxfOgiH\nHhERPWlCUM0Ddpe0MfA4cA1VYL0EeBTYCbha0nzgMGDrst2+kq6T1AHsB+zci309AVzQst+2Mn0q\n8M4y/U7g9O42tj3L9nTb00eNGd/7I4yIiH6r/c0Utp+UtIgqIH4HLAD2BbYF7gAutv2W1m0kbQB8\nF5hu+y5JxwIb9GJ3T9p2mV5BOX7bV0tqk/QyYJTthQM/soiIGAxN6FFBdRnu6PLzSuC9wHzgWmAv\nSdsBSBojaXtWhdJ95Z7VQatpdxmwcS9rOAuYzWp6UxERUY+mBNWVwETgGtt/Bx4DrrR9L3A4MFvS\nAqrg2tH2g8ApVPewzgPmrqbdWcCvWh+mWIOzgU2pwioiIhpCq66EjWzlb69eZ/vtvVl/9MTJnnjY\nyWu5qoiIZhnoS2klzbM9vS/b1H6PqgkkfQt4BfDKumuJiIinS1ABto+ou4aIiOhegqqfpk4aT3sN\n47JERIw0TXmYIiIiolsJqoiIaLQEVURENFruUfVTx+KltB0zp+4yIiKG1EAfT++P9KgiIqLRElQR\nEdFoCaqIiGi0BFVERDTaiAsqSb+UtEkP6yyStPlQ1RQREas34p76s533+UVErEMa2aOStJGkOZJu\nkrRQ0sGll3O8pOvLp3OMqgmSfippbvnsVeaPlXS6pA5JCyQdWOb/o7ck6TxJ8yTdLGlmfUccERGr\n09Qe1QHAEtuvApA0HjgeeMj2HpLeAZwMvBr4BnCS7askbQVcCDwf+Ayw1PbU0sam3eznXbbvl7Qh\nMFfST23/3+qKKmE2E2DUuAmDdawREbEGTQ2qDuAESccDF9i+UhKsGtRwNnBSmZ4B7FSWA4yTtHGZ\nf0jnTNsPdLOfIyW9oUw/F5gMrDaobM+iGoyR0RMnZyCviIgh0Migsv1HSbtTjQ/1FUkXdS5qXa38\nXA94ke1HW9tQlVyrDRNJ+1CF2YtsL5d0GauGuI+IiIZo6j2qLYDltn8EnADsVhYd3PLzmjJ9EfCB\nlm2nrWZ+10t/44EHSkjtCOw5qAcRERGDopFBBUwFrpc0H/gU8KUyf7Sk64APAh8q844EppcHJm4B\n3lvmfwnYtDyMcROwb5d9/BpYX9IC4IvAtWvvcCIior+aeunvQqqHIv6h3IP6ju3Pd1n3Plb1tFrn\nPwwc1s38tpavr1jN/tu6mx8REUOvqT2qiIgIoKE9qu6klxMRMTKlRxUREY22zvSommbqpPG01zCA\nWETESJMeVURENFqCKiIiGi1BFRERjZZ7VP3UsXgpbcfMqbuMiIghtaiGe/PpUUVERKMlqCIiotES\nVBER0WgJqoiIaLQEVURENFpjgkrSRpLmSLqpDM1xsKTdJV0uaZ6kCyVNlPRsSfPKNrtIchmCHkl/\nljRG0mskXSfpRkm/kfScsnyCpIsl3SDp+5LulLR5WfY2SddLml+WjarvbERERKfGBBVwALDE9i62\np1CNF/Ut4CDbuwOnAcfZvgfYQNI44CVAO/ASSVsD99heDlwF7Gl7V+B/gI+VfXwOuMT2bsDPgc6A\nez7VUCF72Z4GrADeOiRHHRERa9Skv6PqAE6QdDxwAfAAMAW4uIxFNQr4a1n3d8BewEuBL1OFnIAr\ny/ItgXMkTQSeCdxR5u8NvAHA9q8lPVDmvxzYHZhb9rUhcE/XAiXNBGYCjBo3YTCOOSIietCYoLL9\nR0m7A68EvgJcDNxs+0XdrH4lVW9qa+AXwMcBUwUcVD2xE22fL2kf4NgyX6vZvYAzbX+ihxpnAbMA\nRk+c7N4dWUREDERjLv1J2gJYbvtHwAnAvwITJL2oLH+GpJ3L6lcAbwNus70SuJ8q4K4uy8cDi8t0\n6yi/VwFvLu3tD2xa5v8WOEjSs8uyzcqlxIiIqFljelTAVODrklYCTwLvA54CvilpPFWtJ1P1shaV\nS3RXlG2vAra03Xkp71jgXEmLgWuBbcr8zwOzJR0MXE51KXGZ7fskfRq4SNJ6Zf/vB+5cmwccERE9\nkz1yrmBJGg2ssP1U6an9V3l4os9GT5zsiYedPLgFRkQ03EDf9Sdpnu3pfdmmST2qobAV8OPSa3oC\neE/N9URERA9GVFDZvg3Yte46IiKi9xrzMEVERER3RlSPajBNnTSe9hrGZYmIGGnSo4qIiEZLUEVE\nRKMlqCIiotFyj6qfOhYvpe2YOXWXERExpAb6d1T9kR5VREQ0WoIqIiIaLUEVERGNlqCKiIhGG7ZB\nJekySX168WFERDTPsA2qiIgYHtapoJK0kaQ5km6StFDSwZI+K2lu+T5LZaCqlm3Wk3SmpC+V7/tL\nukbSDZLOlTS2zP+qpFskLZB0Qh3HFxER/2ydCirgAGCJ7V1sTwF+DXzb9gvL9w2BV7esvz5wNvBH\n25+WtDnwaWCG7d2AduDDkjYD3gDsbPsFwJe627mkmZLaJbWvWL50rR1kRESssq4FVQcwQ9Lxkl5i\neymwr6TrJHUA+wE7t6z/fWCh7ePK9z2BnYCrJc2nGqZ+a+Ah4DHgVElvBJZ3t3Pbs2xPtz191Jjx\na+UAIyLi6dapoLL9R2B3qsD6iqTPAt8FDrI9FTgF2KBlk99RBVnnPAEX255WPjvZfrftp4A9gJ8C\nr6fqqUVERAOsU0ElaQtgue0fAScAu5VF95V7TQd12eQHwC+BcyWtD1wL7CVpu9LeGEnbl23H2/4l\ncBTQr+HpIyJi8K1r7/qbCnxd0krgSeB9VD2gDmARMLfrBrZPlDQe+CHwVuBwYLak0WWVTwPLgF+U\nnpeAD63dw4iIiN6S7bprWCeNnjjZEw87ue4yIiKG1EBfSitpnu0+/Y3rOnXpLyIiRp4EVURENNq6\ndo+qMaZOGk97DeOyRESMNOlRRUREoyWoIiKi0RJUERHRaLlH1U8di5fSdsycusuIiBhSA308vT/S\no4qIiEZLUEVERKMlqCIiotESVBER0WgJqoiIaLQEVURENFrtQSWpTdKtkk6VtFDS2ZJmSLpa0m2S\n9pC0maTzJC2QdK2kF5RtXyZpfvncKGljVb4t6RZJcyT9UtJBZf1FZTh6JE2XdFmZ3kjSaZLmlnZe\nV9sJiYiIp2nK31FtB7wJmEk1ptShwN7Aa4FPAncBN9p+vaT9gLOoBjc8Gni/7avL4IePAW8AdqAa\nu+o5wC3AaT3s/1PAJbbfJWkT4HpJv7H9SOtKkmaWGhk1bsLAjzoiInpUe4+quMN2h+2VwM3Ab10N\nlNUBtFGF1g8BbF8CPKsMhng1cKKkI4FNypDyLwVm215hewlwSS/2vz9wjKT5wGVUw9lv1XUl27Ns\nT7c9fdSY8QM74oiI6JWm9Kgeb5le2fJ9JVWNT3WzjW1/VdIc4JXAtZJmdC5bzX6eYlU4b9AyX8CB\ntv/Qn+IjImLtaUqPqidXUA0jj6R9gPtsPyRp29ITOx5oB3Ys6x4iaZSkicC+Le0sAnYv0we2zL8Q\nOEKSyj52XZsHExERvdeUHlVPjgVOl7QAWA4cVuYfJWlfYAXVvahfAU8A+1FdNvwjcHlLO58HfiDp\nk8B1LfO/CJwMLChhtQh49do6mIiI6L3ag8r2ImBKy/fDV7Psn57Es33Eapr9QOeEpDNa1r8S2L6b\ndh4F/qMvdUdExNBYVy79RUTECFV7j2pta+2hRUTEumfYB9XaMnXSeNprGJclImKkyaW/iIhotARV\nREQ0WoIqIiIaLfeo+qlj8VLajplTdxkREUNqUQ335tOjioiIRktQRUREoyWoIiKi0RJUERHRaAmq\nFpKmSXpl3XVERMQqCaqnm0Y1tlVERDTEsAsqSW2SbpV0qqSFks6WNEPS1ZJuk7RH+fxO0o3l5w6S\nngl8AThY0nxJB9d9LBERMXz/jmo74E3ATGAucCjVcPavBT4JvAN4qe2nyqjAX7Z9oKTPAtNtf6C7\nRiXNLG0yatyEtX8UERExbIPqDtsdAJJuBn5r25I6gDZgPHCmpMlUw9Y/ozeN2p4FzAIYPXHy6oa7\nj4iIQTTsLv0Vj7dMr2z5vpIqnL8IXGp7CvAaYIOhLS8iInpruAZVT8YDi8v04S3zlwEbD3k1ERGx\nWiM1qL4GfEXS1cColvmXAjvlYYqIiOYYdveobC8CprR8P3w1y7Zv2ewzZfn9wAvXdo0REdF7I7VH\nFRER64gEVURENNqwu/Q3VKZOGk97DeOyRESMNOlRRUREoyWoIiKi0RJUERHRaLlH1U8di5fSdsyc\nusuIiBhSi2q4N58eVURENFqCKiIiGi1BFRERjZagioiIRhtWQSXp4fJzC0k/qbueiIgYuGH51J/t\nJcBBddcREREDNyyDSlIbcIHtKZIOB15PNZzHFOD/Ac8E3k41oOIrbd8v6TJgPrAHMA54l+3rh7z4\niIh4mmF16W8NpgCHUoXQccBy27sC1wDvaFlvI9svBv4TOK1rI5JmSmqX1L5i+dIhKDsiIkZKUF1q\ne5nte4GlwP+W+R1AW8t6swFsXwGMk7RJayO2Z9mebnv6qDHjh6DsiIgYKUH1eMv0ypbvK3n65U93\n2a7r94iIGGIjJah662AASXsDS23n+l5ERM2G5cMUA/CApN9RHqaou5iIiBhmQWV7bPm5iOoBCmyf\nAZzRsk5by/TTlgE/tf2JtV1nRET0Xi79RUREow2rHtVA2N6n7hoiIuKfJaj6aeqk8bTXMC5LRMRI\nk0t/ERHRaAmqiIhotARVREQ0Wu5R9VPH4qW0HTOn7jIiIobUohruzadHFRERjZagioiIRktQRURE\noyWoIiKi0YZlUElqk7Swm/lfkDSjjpoiIqJ/RtRTf7Y/W3cNERHRN8OyR1WMknSKpJslXSRpQ0ln\nSDoIQNIiSV+WdE0ZXn43SRdK+rOk99ZdfEREVIZzUE0GvmN7Z+BB4MBu1rnL9ouAK6mG+zgI2BP4\nwlAVGRERazacL/3dYXt+mZ4HtHWzzvnlZwcw1vYyYJmkxyRtYvvB1pUlzQRmAowaN2HtVB0REU8z\nnHtUj7dMr6D7UO5cZ2WX9Vd2t77tWban254+asz4QSs0IiJWbzgHVUREDAMJqoiIaLRheY/K9iJg\nSsv3E7pZp61l+gyqhyn+aVlERNQrPaqIiGi0BFVERDRagioiIhptWN6jGgpTJ42nvYYBxCIiRpr0\nqCIiotESVBER0WgJqoiIaLTco+qnjsVLaTtmTt1lREQMqUU13JtPjyoiIhotQRUREY2WoIqIiEZL\nUEVERKOts0El6VhJR3czfx9JFwyg3QFtHxERg6vRQSUpTyVGRIxwtQaVpM9IulXSxZJmSzpa0mWS\nvizpcuCDkl4j6TpJN0r6jaTntDSxi6RLJN0m6T0t88dJ+rmkWyR9T9J6ZX/7S7pG0g2SzpU0tsw/\noNRxFfDGoTsDERHRk9p6LJKmAwcCu5Y6bgDmlcWb2H5ZWW9TYE/blvTvwMeAj5T1XgDsCWwE3Cip\n8w+b9gB2Au4Efg28UdJlwKeBGbYfkfRx4MOSvgacAuwH/Ak4Zw01zwRmAowaN2HA5yAiInpW56W1\nvYFf2H4UQNL/tixrDYstgXMkTQSeCdzRsqxz+0clXUoVUA8C19u+vbQ7u+zrMarwuloSpa1rgB2B\nO2zfVtb/ESWMurI9C5gFMHriZPf/0CMiorfqvPSnNSx7pGX6W8C3bU8F/gPYoGVZ17DwGuYLuNj2\ntPLZyfa7V7N+REQ0RJ1BdRXwGkkblHtFq3svx3hgcZk+rMuy15XtnwXsA8wt8/eQtE25N3Vw2de1\nwF6StgOQNEbS9sCtwDaSti3bvmUQji0iIgZJbUFley5wPnAT8DOgHVjazarHAudKuhK4r8uy64E5\nVCH0RdtLyvxrgK8CC6kuFf7c9r3A4cBsSQvKNjvafozqUt+c8jDFnYN1jBERMXCy67vqJWms7Ycl\njQGuAGbavqG2gvpg9MTJnnjYyXWXERExpAb6UlpJ82xP78s2df+d0ixJO1HddzpzXQmpiIgYOrUG\nle1D69x/REQ0X909qnXW1Enjaa9hXJaIiJGm0a9QioiISFBFRESjJagiIqLRco+qnzoWL6XtmDk9\nrxgRMYwM9PH0/kiPKiIiGi1BFRERjZagioiIRktQRUREozUyqCTtI+mCGve/SNLmde0/IiJWGXBQ\nScqTgxERsdb0KmQkvQM4mmqAwQXACuB+qmHkb5B0HHAa8DxgOdVb0BdIehnwjdKMgZcCY6lG8B1X\n9v8+21euYd8bUQ2eOLWsf6ztX5Q3rp9BNULv74E24P222yW9G/g4sAS4DXjc9gckTQC+B2xVmj/K\n9tVlPKvZwASqoUPWNKhjREQMoR6DStLOwKeAvWzfJ2kz4ERge2CG7RWSvgXcaPv1kvYDzgKmUYXb\n+0sYjKUaDn4mcKHt4ySNAsb0UMKngEtsv0vSJsD1kn4DvA94wPYLJE0B5pd6twA+A+wGLAMuoRrz\nCqrQPMn2VZK2Ai4Eng98DrjK9hckvYrVDEUvaWbnslHjJvR06iIiYhD0pke1H/AT2/cB2L5fEsC5\ntleUdfYGDizLL5H0LEnjgauBEyWdDfzM9t2S5gKnSXoGcJ7t+T3sf3/gtZKOLt83oOoR7U3prdle\nWAZDBNgDuNz2/QCSzqUKVYAZwE6lfoBxkjam6um9sbQ1R9ID3RViexYwC6rxqHqoOyIiBkFvgkpU\nl+26eqTLOl3Z9lclzQFeCVwraYbtKyS9lGro+R9K+jpVz+dzZbt/72b/B9r+w9NmtqRNN+uvznrA\ni2w/2qUt6P4YIyKiZr15mOK3wJvLfRzKpb+urgDeWpbvA9xn+yFJ29rusH081VDzO0raGrjH9inA\nD4DdbP/c9rTyae/S9oXAEZ3BJGnXMv8q4M1l3k5U97Cgusf0Mkmblgc9Dmxp6yLgA51fJE3rpv5X\nAJv24rxERMQQ6LFHZfvm8rDE5ZJWADd2s9qxwOnl8tty4LAy/yhJ+1I9fHEL8CvgEOCjkp4EHgbe\n0UMJXwROBhaUsFoEvBr4LnBm2eeNVA95LLW9WNKXgeuoHqa4BVha2joS+E7ZZn2qgHov8HlgtqQb\ngMuBv/R0XiIiYmjIXjeveJUHMZ5h+zFJ21L1/La3/YSksbYfLj2qnwOn2f75YO5/9MTJnnjYyYPZ\nZERE4w30pbSS5tme3pdt1uW/gRoDXFoeyhDVY+5PlGXHSppB9eDFRcB5NdUYEREDtM4Gle1lQLep\nbPvo7uZHRMS6Z50NqrpNnTSe9hrGZYmIGGka+a6/iIiITgmqiIhotARVREQ0WoIqIiIaLUEVERGN\nlqCKiIhGS1BFRESjJagiIqLRElQREdFo6+xLaesmaRnwhx5XHBk2B+6ru4iGyLlYJedilZyLVXaw\nvXFfNsgrlPrvD319A/BwJak956KSc7FKzsUqORerSOo65mCPcukvIiIaLUEVERGNlqDqv1l1F9Ag\nORer5FysknOxSs7FKn0+F3mYIiIiGi09qoiIaLQEVURENFqCqh8kHSDpD5L+JOmYuuupi6TnSrpU\n0u8l3Szpg3XXVDdJoyTdKOmCumupk6RNJP1E0q3l348X1V1TXSR9qPz3sVDSbEkb1F3TUJF0mqR7\nJC1smbeZpIsl3VZ+btpTOwmqPpI0CvgO8ApgJ+Atknaqt6raPAV8xPbzgT2B94/gc9Hpg8Dv6y6i\nAb4B/Nr2jsAujNBzImkScCQw3fYUYBRwSL1VDakzgAO6zDsG+K3tycBvy/c1SlD13R7An2zfbvsJ\n4H+A19VcUy1s/9X2DWV6GdUvo0n1VlUfSVsCrwJOrbuWOkkaB7wU+AGA7SdsP1hvVbVaH9hQ0vrA\nGGBJzfUMGdtXAPd3mf064MwyfSbw+p7aSVD13STgrpbvdzOCfzl3ktQG7ApcV28ltToZ+Biwsu5C\navY84F7g9HIZ9FRJG9VdVB1sLwZOAP4C/BVYavuiequq3XNs/xWq/9kFnt3TBgmqvlM380b0M/6S\nxgI/BY6y/VDd9dRB0quBe2zPq7uWBlgf2A34L9u7Ao/Qi8s7w1G5//I6YBtgC2AjSW+rt6p1T4Kq\n7+4GntvyfUtGUFe+K0nPoAqps23/rO56arQX8FpJi6guB+8n6Uf1llSbu4G7bXf2rn9CFVwj0Qzg\nDtv32n4S+Bnw4pprqtvfJU0EKD/v6WmDBFXfzQUmS9pG0jOpboyeX3NNtZAkqvsQv7d9Yt311Mn2\nJ2xvabuN6t+JS2yPyP9ztv2kEWTcAAACz0lEQVQ34C5JO5RZLwduqbGkOv0F2FPSmPLfy8sZoQ+W\ntDgfOKxMHwb8oqcN8vb0PrL9lKQPABdSPcFzmu2bay6rLnsBbwc6JM0v8z5p+5c11hTNcARwdvmf\nuduBd9ZcTy1sXyfpJ8ANVE/J3sgIep2SpNnAPsDmku4GPgd8FfixpHdTBfmbemwnr1CKiIgmy6W/\niIhotARVREQ0WoIqIiIaLUEVERGNlqCKiIhGS1BF1ETSw+Vnm6RHy+uGfi/pekmHtax3uKR7Jc0v\nn7O6aWsHSZeV5b+XNGIegY7hL39HFdEMfy6vG0LS84CfSVrP9ull+Tm2P7CG7b8JnGT7F6WNqQMt\nSNIo2ysG2k7EQKVHFdEwtm8HPkw1PERvTaR6dVFnGx3wj/GxTpDUIWmBpCPK/JeXHlxHGTNodJm/\nSNJnJV0FvEnStpJ+LWmepCsl7ThoBxrRSwmqiGa6AWgNhYNbLv1195aHk4BLJP2qDNS3SZk/k+qF\nqLvafgHV2yI2oBon6GDbU6murLyvpa3HbO9t+3+o3qJwhO3dgaOB7w7mQUb0RoIqopm6vqX/HNvT\nyuf0riuXec8HzqV6Zc21pZc0A/ie7afKevcDO1C9KPWPZfMzqcaP+se+4B9vxX8xcG55Rdb3qXpu\nEUMq96gimmlX+vjyUttLgNOA08rQ31OoAq/re9K6G6qm1SPl53rAg7an9aWOiMGWHlVEw5RBKE8A\nvtWHbQ4oQ64g6V+AZwGLgYuA95bRZZG0GXAr0CZpu7L524HLu7ZZxha7Q9KbyraStEs/Dyui3xJU\nEc2wbefj6cCPgW91d4lvDfYHFkq6ierN/h8tw22cSvWG6gVl2aG2H6N6m/m5kjqoRiT+3mrafSvw\n7rLtzVSDAEYMqbw9PSIiGi09qoiIaLQEVURENFqCKiIiGi1BFRERjZagioiIRktQRUREoyWoIiKi\n0f4/mjqpWFNYm2IAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEWCAYAAAA6maO/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5xd473H8c83Q0OEBFGNFEOkVISQVF1TxUu12urFXVXUaY6eXlSrGr3QOtVW6xxO9UK0mrgcJYoiLdEigrjMRJJJXNskLqHKIROkCUl+54/1TLONPTN7MrNnzZr9fb9e+zVrnvWsZz1rYb6etdZejyICMzOz3q5f3h0wMzOrhAPLzMwKwYFlZmaF4MAyM7NCcGCZmVkhOLDMzKwQHFhmZlYIDizrlSQtlnRw3v1YV5ImS3pD0qvpM1/SjyQNyrtv3UXSAZKe7aBOy3l4reRzdE/10foWB5ZZImm9bm7yJxGxMbAFcBKwF3CvpI26eT+93U8iYmDJ55rWFapw7q0PcmBZrydpvKR7JJ0v6RVJiyR9OK07RlJDq/qnSbopLfdP2z0t6QVJF0vaMK07QNKzkr4p6e/AbyUNkXSLpKWSXpY0U1K/VH8rSb+X9GLqw1cq6X9ErIiIh4CPA5uThReS+kn6jqSnJP1D0uWlIzBJ+0m6L/XlGUnjU/ldkv6t9fkp+T0k/YekJ9Po7j8lDZc0S9IySddKekdJ/Y9KmpP2c5+kXUvWLZZ0uqR5kpolXSNpgxS6fwK2Khk5bVXRP9C3tv1NSfOA1yWt1945lrRhGrG9IukRSd8oHeGl496h5PfJkn7QleMsWX942naZpL9JOlTSkZIaWx3T1yXd2JnzYJVzYFlRvB94HBgC/AT4jSQBNwE7ShpRUvc44H/T8nnAe4DRwA7AMOCskrrvAjYDtgUmAF8HniUbFW0JfAuIFFo3A3NTGwcBX5X0oUoPICJeBW4H9k9F49Png8D2wEDg5wCStiELhItSX0YDcyrdF3AoMIZsVHcGMAk4Htga2AU4Nu1nD+Ay4N/JwvQS4CZJ/UvaOiq1tx2wKzA+Il4HPgw8VzJyeq4T/WtxLHAYMBhYQ/vn+GxgePp8CDix0p2s63GmbfcELge+kfo5DlhM9u/edpLeW9LGZ4ArKu2XdY4Dy4riqYi4NCJWA1OAocCWEbEc+ANr/wCPAHYi+2Mk4PPAaRHxcgqMHwLHlLS7Bjg7IlZGxD+BN1Pb20bEmxExM7IXbr4P2CIizomINyJiIXBpq7Yq8RxZQEIWIP8dEQsj4jXgTOAYZZfHjgf+HBFXp378X0R0JrDOi4hlEbEAmA9MT/tpJgvC3VO9zwOXRMQDEbE6IqYAK8mCrsXPIuK5iHiZLFBGd/KYT0+jmqWSXmq17mcR8Uw69x2d46OAc9M/y2eAn3WiD105zpOByyLi9ohYExFLIuKxiFgJXEMWUkgaCdQDt3SiX9YJDiwrir+3LKSQgmxEAtlo6ti0fBxwY6qzBTAAaGz5gwncmspbvBgRK0p+/ynwV2C6pIWSJqbybckufy0taetbZKOwzhgGvJyWtwKeKln3FLBeanNr4G+dbLvUCyXL/yzze8u52xb4eqvj2jr1rcXfS5aXl2xbqfMjYnD6DGm17pmS5Y7O8Vat6peeu4505Tjb+2cxBTgu/c/RCcC1KcisCnyj0/qC6cAQSaPJguu0VP4S2R/nkRGxpI1t3zJdQRqFfZ3sj9tI4E5JD5H9oVwUESPKtFERSQOBg4FzU9FzZH9IW2wDrCILl2eAPdto6nWyIG7xrnXtU9rPuRFxboc13647pnoobaOjc/w8WXgsSL9v02r9ct5+XlrucXXlOJ8huwz5NhFxv6Q3yC7zHpc+ViUeYVnhRcQq4Dqy0dFmZPeJiIg1ZJeULpD0TgBJw9q775RuzO+Q/o95GbA6fR4ElqWHBDaUVCdpF0nv66h/yh78GAPcCLwC/Datuho4TdJ2Kcx+CFyTjucq4GBJR6WHETZPgQzZvaxPSRqQHjI4uROnq7VLgVMkvV+ZjSQdJmnjCrZ9Adhc3feofkfn+FrgTEmbSno38OVW288hG+3USToU+EDJuq4c52+AkyQdpOxBmWGSdipZfznZvcdVEXFP+SasOziwrK/4X7LRy9T0B7/FN8ku8d0vaRnwZ2DHdtoZkeq8BswCfhkRd6V7Zx8ju6+xiGz09mugvT/WZ0h6lewS4OVAI7BPemABsocArgDuTm2uIP0RjoingY+QjfZeJvtjvFva7gLgDbLAmEIWbuskIhrI7u/8nCxM/0p62KCCbR8jC92F6TJbp54SLNNeR+f4+2SXAReRjapbP9xwatp+Kdk9wH89rdfF43yQ7MnOC4BmYAZvHRlfQfYgix+2qDJ5AkczKyJJBwBXRsS7c+7HhsA/gD0i4sk8+9LXeYRlZtY1XwAeclhVnx+6MDNbR5IWAwI+kXNXaoIvCZqZWSH4kqCZmRWCLwlWyZAhQ6K+vj7vbpiZFUpjY+NLEbFFuXUOrCqpr6+noaGh44pmZvYvktp8g4kvCZqZWSE4sMzMrBAcWGZmVggOLDMzKwQHlpmZFYIDy8zMCsGBZWZmheDAMjOzQvAXh6ukaUkz9ROn5d0NM7MetfjHh1WtbY+wzMysEBxYZmZWCA4sMzMrBAeWmZkVQqECS1K9pPm9oB+TJR2Rdz/MzGpJoQLLzMxqVxEDaz1JUyTNk3SdpAGSxkiaIalR0m2ShgJIGi7p1lQ+U9JOqXyypItT2ROSPprK6yT9VNJDqf1/T+WS9HNJj0iaBrwzt6M3M6tRRfwe1o7AyRFxr6TLgC8CnwQOj4gXJR0NnAt8DpgEnBIRT0p6P/BL4MDUTj3wAWA4cKekHYDPAs0R8T5J/YF7JU0Hdk/7HQVsCTwCXNa6Y5ImABMA6jYpO2GmmZmtoyIG1jMRcW9avhL4FrALcLskgDrgeUkDgX2AqakcoH9JO9dGxBrgSUkLgZ2AQ4BdS+5PDQJGAOOAqyNiNfCcpDvKdSwiJpGFJP2HjojuOFgzM8sUMbBaB8GrwIKI2Lu0UNImwNKIGF1hOwEI+HJE3NaqrY+UqW9mZj2oiPewtpHUEk7HAvcDW7SUSVpf0siIWAYsknRkKpek3UraOVJSP0nDge2Bx4HbgC9IWj9t8x5JGwF3A8eke1xDgQ/2xIGamdlaRQysR4ETJc0DNgMuAo4AzpM0F5hDdikQ4Hjg5FS+ADi8pJ3HgRnAn8juc60Afk12f2p2enz+ErJR6A3Ak0AT8Ku0nZmZ9aBCXRKMiMXAzmVWzSG7z9S6/iLg0DaauzciTmtVfw3ZPbFvlan/pU511szMulURR1hmZlaDCjXC6i4RMT7vPpiZWefUZGD1hFHDBtFQxXlhzMxqjS8JmplZITiwzMysEBxYZmZWCL6HVSVNS5qpnzgt726YmfWoxVW8d+8RlpmZFYIDy8zMCsGBZWZmheDAMjOzQlinwEoz9h7Rcc2K2nqtO9qpJkkHSLol736YmdUyj7DMzKwQKgosSZ+VNE/SXElXpOJxku6TtLB0tCXpG5IeSvW/X1L+GUkPSpoj6RJJda32MUTSLElveyZS0pGS5qf9353Kxku6UdLNkhZJ+pKkr0l6WNL9kjZL9Uan3+dJukHSph2U7yDpz2lfs9N8WQADJV0n6TFJV6lkGmMzM6u+DgNL0kjg28CBEbEbcGpaNRTYD/go8ONU9xCyKeX3BEYDYySNk/Re4Ghg3zQD8Gqyuapa9rElMA04KyLKfXnpLOBDaf8fLynfBTgu7e9cYHlE7A7MAj6b6lwOfDMidiWbz+rsDsqvAn6R9rUP8Hwq3x34Ktn0JtsD+5Y5VxMkNUhqWL28udzpNDOzdVTJF4cPBK6LiJcAIuLlNLi4Mc0f9UgKHIBD0ufh9PtAsgDbFRgDPJS23RD4R6qzPvAX4IsR0dbEiPcCkyVdC1xfUn5nRLwKvCqpGbg5lTcBu0oaBAwuaXcKMLWd8o2BYRFxQzrWFQCpzw9GxLPp9zlAPXBPaScjYhIwCaD/0BHRxrGYmdk6qCSwBJT747uyVZ2Wnz+KiEve0oD0ZWBKRJxZpp1VQCPwIdJMvpLOBQ4DiIjREXGKpPensjmSRpfpw5qS39dUeGyttXeZr3Rfq9exfTMzW0eV3MP6C3CUpM0BWu4NteE24HOSBqa6wyS9M7VxRFpG0maStk3bBPA5YCdJEwEi4tspqEan+sMj4oGIOAt4Cdi6koOLiGbgFUn7p6ITgBntlC8DnpX0ibTf/pIGVLIvMzOrrg5HCRGxII14ZkhazdrLfeXqTk/3q2aly2ivAZ+JiEckfQeYLqkf8CbwReCptN1qSccAN0taFhG/bNX0TyWNIBsB/QWYS3aPrBInAhen4FkInNRB+QnAJZLOSf08ssL9mJlZFSnCt1qqof/QETH0xAvz7oaZWY/q6stvJTVGxNhy6/w9LDMzKwQHlpmZFYIDy8zMCsGPZlfJqGGDaKjiRGZmZrXGIywzMysEB5aZmRWCA8vMzArB97CqpGlJM/UTy73H18ys7+rq97Da4xGWmZkVggPLzMwKwYFlZmaF4MAyM7NCcGBVQJIfTjEzy1lugSWpXtKjki6VtEDSdEkbShou6VZJjZJmStop1d9S0g2S5qbPPqn8M5IelDRH0iWS6tJnsqT5kpoknZbqfkXSI5LmSfpdKttT0n2SHk4/d0zl4yVNlXQz2bQoV0g6vKT/V0n6eI+fODOzGpX3yGEEcGxEfF7StcCnyealOiUinkyzDP8SOBD4Gdkki5+UVAcMTHNvHQ3sGxFvSvolcDywgGyq+10AJA1O+5sIbBcRK0vKHgPGRcQqSQcDP0z9ANgb2DUiXpb0AeA04A+SBgH7kM2pZWZmPSDvwFoUEXPSciNQTxYEU9MEkAD9088Dgc9CNuEj0CzpBGAM8FCqvyHwD+BmYHtJFwHTgOmpjXnAVZJuBG5MZYOAKWmCyADWL+nf7RHxctrnDEm/SLMmfwr4fUSsKj0YSROACQB1m2yxrufEzMzKyDuwVpYsrwa2BJZGRKWzCQuYEhFnvm2FtBvwIbKZjY8CPgccBowDPg58V9JI4D+BO9PIrR64q6SZ11s1ewXZCO6Y1N5bRMQkYBJkEzhWeAxmZlaB3vbQxTJgkaQjAZTZLa37C/CFVF4naZNUdkQa9SBpM0nbShoC9IuI3wPfBfaQ1A/YOiLuBM4ABgMDyUZYS9I+xnfQv8nAVwEiYkE3HK+ZmVWotwUWZCOYkyXNJbsX1fKgw6nAByU1kV0+HBkRjwDfIXsoYh5wOzAUGAbcJWkOWcicCdQBV6btHwYuiIilwE+AH0m6N9VpU0S8ADwK/LYbj9fMzCqgCF+5qpSkAUATsEdENLdXt//QETH0xAt7pmNmZr1EV98lKKkxIsaWW9cbR1i9UnqC8DHgoo7CyszMul/eD10URkT8Gdgm736YmdUqj7DMzKwQPMKqklHDBtFQxXlhzMxqjUdYZmZWCA4sMzMrBAeWmZkVgu9hVUnTkmbqJ07LuxtmZj2qq9/Dao9HWGZmVggOLDMzKwQHlpmZFYIDy8zMCqHPBJakuySVfWFiF9tdnKYrMTOzHPWZwDIzs74tt8CSdIakr6TlCyTdkZYPknSlpEMkzZI0W9JUSQPT+jGSZkhqlHSbpKGt2u0naYqkH6Tf22pnsaTvp/ImSTul8s0lTZf0sKRLyGY1RtJGkqZJmitpvqSje+xkmZlZriOsu4H90/JYYKCk9YH9yOac+g5wcETsATQAX0vrLwKOiIgxwGXAuSVtrgdcBTwREd9Jl/Le1k5J/ZdS+a+A01PZ2cA9EbE7cBNr39B+KPBcROwWEbsAt7Y+IEkTJDVIali93DOQmJl1pzy/ONwIjJG0MbASmE0WXPuTBcXOwL2SAN4BzAJ2BHYBbk/ldcDzJW1eAlwbES0htlcb7bS4vqQvn0rL41qWI2KapFdSeRNwvqTzgFsiYmbrA4qIScAkyCZw7NzpMDOz9uQWWBHxpqTFwEnAfcA84IPAcGARcHtEHFu6jaRRwIKI2LuNZu8DPijpvyJiBdnlvLe1U2Jl+rmat56Lt4VNRDwhaQzwEeBHkqZHxDkVHKqZmXWDvB+6uJvsUtzdwEzgFGAOcD+wr6QdIJuaXtJ7gMeBLSTtncrXlzSypL3fAH8Epkpar512OurT8an+h4FN0/JWwPKIuBI4H9ijqwdvZmaVyzuwZgJDgVkR8QKwApgZES8C44GrJc0jC56dIuIN4AjgPElzycJtn9IGI+K/yS4vXgH8X7l2OujT94FxkmYDhwBPp/JRwIOS5gDfBn7QheM2M7NOUoRvtVRD/6EjYuiJF+bdDTOzHtXVl99KaoyIst+pzXuEZWZmVhEHlpmZFYLnw6qSUcMG0VDFeWHMzGqNR1hmZlYIDiwzMysEB5aZmRWC72FVSdOSZuonTsu7G2ZmPaqrj7W3xyMsMzMrBAeWmZkVggPLzMwKwYFlZmaFUBOBJekuSWPT8h8lDa60fqvy0ZI+Uq1+mplZ22oisEpFxEciYuk6bj6abD4sMzPrYX0usCRtJGmapLmS5ks6utX6xZKGpOXvSnpM0u2SrpZ0eknVIyU9KOkJSftLegdwDnC0pDmt2zUzs+rqi9/DOhR4LiIOA5A0CPhC60rpkt+ngd3JzsNsoLGkynoRsWe6BHh2RBws6SxgbER8qdyOJU0AJgDUbbJFNx6SmZn1uREW0AQcLOk8SftHRHMb9fYD/hAR/4yIV4GbW62/Pv1sBOor2XFETIqIsRExtm7AoHXpu5mZtaHPjbAi4glJY8juNf1I0vQ2qqqDplamn6vpg+fJzKxo+twIS9JWwPKIuBI4H9ijjar3AB+TtIGkgUAl7xN5Fdi4e3pqZmad0ecCCxgFPChpDvBt4AflKkXEQ8BNwFyyy38NQFuXD1vcCezshy7MzHpen7vUFRG3Abe1Kj6gZH19Sfn5EfE9SQOAu4H/SnVK679EuocVES8D76tCt83MrAN9LrA6aZKknYENgCkRMTvvDpmZWXk1HVgRcVzefTAzs8rUdGBV06hhg2io4rwwZma1pi8+dGFmZn2QA8vMzArBgWVmZoXge1hV0rSkmfqJ0/LuhplZj1pcxXv3HmGZmVkhOLDMzKwQHFhmZlYIDiwzMyuEmgwsSfWS5pcpP0fSwXn0yczM2uenBEtExFl598HMzMqryRFWUifpUkkLJE2XtKGkyZKOAJC0WNIPJc2S1CBpD0m3SfqbpFPy7ryZWa2p5cAaAfwiIkYCS4FPl6nzTETsDcwEJgNHAHsB55RrUNKEFG4Nq5d3NLWWmZl1Ri0H1qKImJOWG0lzXrVyU/rZBDwQEa9GxIvACkmDW1eOiEkRMTYixtYNGFSVTpuZ1apaDqyVJcurKX8/r6XOmlb117RR38zMqqSWA8vMzArEgWVmZoVQk5e1ImIxsEvJ7+eXqVNfsjyZ7KGLt60zM7Oe4RGWmZkVggPLzMwKoSYvCfaEUcMG0VDFeWHMzGqNR1hmZlYIDiwzMysEB5aZmRWC72FVSdOSZuonTsu7G2ZmPWpxFe/de4RlZmaF4MAyM7NCcGCZmVkhOLDMzKwQaiqwJH1P0unrsN0Bkm6pRp/MzKwyNRVYZmZWXH06sCR9VtI8SXMlXdFq3WhJ96f1N0jaNJXvIOnPaZvZkoa32u59kh6WtH1PHouZWa3rs4ElaSTwbeDAiNgNOLVVlcuBb0bErkATcHYqvwr4RdpmH+D5kjb3AS4GDo+IhWX2OUFSg6SG1cubu/2YzMxqWZ8NLOBA4LqIeAkgIl5uWSFpEDA4ImakoinAOEkbA8Mi4oa0zYqIWJ7qvBeYBHwsIp4ut8OImBQRYyNibN2AQdU5KjOzGtWXA0tArMM2bXkeWAHsvs49MjOzddaXA+svwFGSNgeQtFnLiohoBl6RtH8qOgGYERHLgGclfSJt01/SgFRnKXAY8ENJB/TQMZiZWdJn3yUYEQsknQvMkLQaeBhYXFLlRODiFEgLgZNS+QnAJZLOAd4Ejixp8wVJHwP+JOlzEfFADxyKmZnRhwMLICKmkN2fKrduDrBXmfInye5/lVoI3JXWPw2M7NaOmplZh/ryJUEzM+tDHFhmZlYIffqSYJ5GDRtEQxXnhTEzqzUeYZmZWSE4sMzMrBAcWGZmVgi+h1UlTUuaqZ84Le9umJn1qMVVvHfvEZaZmRWCA8vMzArBgWVmZoXgwDIzs0Los4El6XuSTi9TfoCkW7rQbpe2NzOzdVPowJLkpxzNzGpErw4sSd+V9Jik2yVdLel0SXdJ+qGkGcCpkj4m6QFJD0v6s6QtS5rYTdIdkp6U9PmS8k0k3SDpEUkXS+qX9neIpFmSZkuaKmlgKj809eMe4FM9dwbMzKxFrx2hSBoLfJpsht/1gNlAY1o9OCI+kOptCuwVESHp34AzgK+neruSTSGyEfCwpJYvRu0J7Aw8BdwKfErSXcB3gIMj4nVJ3wS+JuknwKVkU478FbimekdtZmZt6bWBBewH/CEi/gkg6eaSdaWh8W7gGklDgXcAi0rWtWz/T0l3kgXVUuDBiFiY2r067WsFWYjdK4nU1ixgJ2BRmicLSVcCE8p1WNKElnV1m2yx7kduZmZv05svCaqdda+XLF8E/DwiRgH/DmxQsi5abRftlAu4PSJGp8/OEXFyG/XLiohJETE2IsbWDRhUySZmZlah3hxY9wAfk7RBupfU1vs+BgFL0vKJrdYdnrbfHDgAeCiV7ylpu3Tv6ui0r/uBfSXtACBpgKT3AI8B20kanrY9thuOzczMOqnXBlZEPATcBMwFrgcagOYyVb8HTJU0E3ip1boHgWlkYfSfEfFcKp8F/BiYT3YJ8YaIeBEYD1wtaV7aZqeIWEF2mW9aeujiqe46RjMzq5wiKrralQtJAyPiNUkDgLuBCRExO+9+VaL/0BEx9MQL8+6GmVmP6urLbyU1RsTYcut680MXAJMk7Ux2X2pKUcLKzMy6X68OrIg4Lu8+mJlZ79Br72GZmZmV6tUjrCIbNWwQDVWcyMzMrNZ4hGVmZoXgwDIzs0JwYJmZWSH4HlaVNC1ppn7itI4rmpn1IV39HlZ7PMIyM7NCcGCZmVkhOLDMzKwQHFhmZlYIDqx1IGmypCPy7oeZWS1xYJmZWSEUOrAknSHpK2n5Akl3pOWDJF0p6VhJTZLmSzqvZLvXSpaPkDQ5LU+W9DNJ90la2DKKUubnkh6RNA14Z08ep5mZFTywyObI2j8tjwUGSlof2A94EjgPOBAYDbxP0icqaHNo2v6jZJM8AnwS2BEYBXwe2KfchpImSGqQ1LB6ebm5Js3MbF0VPbAagTGSNgZWks0kPJYsxJYCd0XEixGxCrgKGFdBmzdGxJqIeATYMpWNA66OiNVp1uI7ym0YEZMiYmxEjK0bMKhrR2ZmZm9R6MCKiDeBxcBJwH3ATOCDwHDg6fY2LVneoNW6lSXLamMbMzPrYYUOrORu4PT0cyZwCjAHuB/4gKQhkuqAY4EZaZsXJL1XUj+yy32V7OMYSXWShpKFopmZ9aC+EFgzye47zYqIF4AVwMyIeB44E7gTmAvMjog/pG0mAreQXdp7voJ93EB2T6wJ+BVrg8/MzHqIInylqxr6Dx0RQ0+8MO9umJn1qK6+/FZSY0SMLbeuL4ywzMysBjiwzMysEDwfVpWMGjaIhirOC2NmVms8wjIzs0JwYJmZWSE4sMzMrBB8D6tKmpY0Uz9xWt7dMDPrUV19rL09HmGZmVkhOLDMzKwQHFhmZlYIDiwzMyuEXhVYkgZL+o+0fICkW6q8v3pJ89tYN17SVtXcv5mZVa5XBRYwGPiPvDuRjAccWGZmvURvC6wfA8MlzQF+Sjbl/XWSHpN0lSQBSDpI0sOSmiRdJql/Kl8saUhaHivprrS8haTbJc2WdImkp1rqAXWSLpW0QNJ0SRtKOoJs5uKrJM1JZT+W9IikeZLO7+HzYmZW83pbYE0E/hYRo4FvALsDXwV2BrYH9pW0ATAZODoiRpF9l+wLHbR7NnBHROxBNrfVNiXrRgC/iIiRwFLg0xFxHdAAHJ/6siHZRI8jI2JX4AfldiJpgqQGSQ2rlzd3/ujNzKxNvS2wWnswIp6NiDVkswjXAzsCiyLiiVRnCjCug3b2A34HEBG3Aq+UrFsUEXPScmPaR2vLyCaG/LWkTwHLy+0kIiZFxNiIGFs3YFBHx2ZmZp3Q2wNrZcnyarLRlNqpv4q1x7RBSXl725Tbx1tExCpgT+D3wCeAW9tpz8zMqqC3BdarwMYd1HkMqJe0Q/r9BNZOWb8YGJOWP12yzT3AUQCSDgE27UxfJA0EBkXEH8kuUY6uYHszM+tGvSqwIuL/gHvTo+Y/baPOCuAkYKqkJmANcHFa/X3gfyTNJBstUVJ+iKTZwIeB58kCqT2TgYvTAyAbA7dImkcWjqetw+GZmVkXKCLy7kPVpacIV0fEKkl7A79KD1NUTf+hI2LoiRdWcxdmZr1OV19+K6kxIsaWW1crb2vfBrhWUj/gDeDzOffHzMw6qSYCKyKeJHtE3szMCqomAisPo4YNoqGK88KYmdWaXvXQhZmZWVscWGZmVggOLDMzKwQHlpmZFYIDy8zMCsGBZWZmheDAMjOzQnBgmZlZITiwzMysEGri5bd5kPQq8Hje/eglhgAv5d2JXsLnYi2fi7V8LtbaNiK2KLfCr2aqnsfbeuNwrZHU4HOR8blYy+diLZ+LyviSoJmZFYIDy8zMCsGBVT2T8u5AL+JzsZbPxVo+F2v5XFTAD12YmVkheIRlZmaF4MAyM7NCcGBVgaRDJT0u6a+SJubdn7xI2lrSnZIelbRA0ql59ylvkuokPSzplrz7kidJgyVdJ+mx9O/H3nn3KS+STkv/fcyXdLWkDfLuU2/lwOpmkuqAXwAfBnYGjpW0c769ys0q4OsR8V5gL+CLNXwuWpwKPJp3J3qB/wFujYidgN2o0XMiaRjwFWBsROwC1AHH5Nur3suB1f32BP4aEQsj4g3gd8DhOfcpFxHxfETMTsuvkv1RGpZvr/Ij6d3AYcCv8+5LniRtArBuKK0AAAPKSURBVIwDfgMQEW9ExNJ8e5Wr9YANJa0HDACey7k/vZYDq/sNA54p+f1ZaviPdAtJ9cDuwAP59iRXFwJnAGvy7kjOtgdeBH6bLo/+WtJGeXcqDxGxBDgfeBp4HmiOiOn59qr3cmB1P5Upq+nvDkgaCPwe+GpELMu7P3mQ9FHgHxHRmHdfeoH1gD2AX0XE7sDrQE3e65W0KdkVmO2ArYCNJH0m3171Xg6s7vcssHXJ7++mhof4ktYnC6urIuL6vPuTo32Bj0taTHaZ+EBJV+bbpdw8CzwbES2j7evIAqwWHQwsiogXI+JN4Hpgn5z71Gs5sLrfQ8AISdtJegfZDdSbcu5TLiSJ7D7FoxHx33n3J08RcWZEvDsi6sn+nbgjImry/6Qj4u/AM5J2TEUHAY/k2KU8PQ3sJWlA+u/lIGr0AZRK+G3t3SwiVkn6EnAb2RM/l0XEgpy7lZd9gROAJklzUtm3IuKPOfbJeocvA1el/6lbCJyUc39yEREPSLoOmE32VO3D+DVNbfKrmczMrBB8SdDMzArBgWVmZoXgwDIzs0JwYJmZWSE4sMzMrBAcWGa9lKTX0s96Sf9MrzF6VNKDkk4sqTde0ouS5qTP5WXa2lHSXWn9o5L86LQVjr+HZVYMf0uvMULS9sD1kvpFxG/T+msi4kvtbP8z4IKI+ENqY1RXOySpLiJWd7Uds0p5hGVWMBGxEPga2bQUlRpK9kqkljaa4F/zc50vqUnSPElfTuUHpRFdk6TLJPVP5YslnSXpHuBIScMl3SqpUdJMSTt124GateLAMium2UBpOBxdckmw3FsjLgDukPSnNGHg4FQ+gezFq7tHxK5kb5/YAJgMHB0Ro8iuxHyhpK0VEbFfRPyO7K0MX46IMcDpwC+78yDNSjmwzIqp9awA10TE6PT5bevKqey9wFTgAOD+NGo6GLg4Ilalei8DO5K9kPWJtPkUsvmr/rUv+Ndb+PcBpqZXb11CNpIzqwrfwzIrpt3p5EtSI+I54DLgMknzgV3Igq/1+9nKTZFT6vX0sx+wNCJGd6YfZuvKIyyzgkmTYZ4PXNSJbQ5NU70g6V3A5sASYDpwSprtFkmbAY8B9ZJ2SJufAMxo3Waa22yRpCPTtpK02zoellmHHFhmxTC85bF24FrgonKX/tpxCDBf0lyymQS+kab5+DXZFBfz0rrjImIF2dvTp0pqIpsh+eI22j0eODltu4BsMkKzqvDb2s3MrBA8wjIzs0JwYJmZWSE4sMzMrBAcWGZmVggOLDMzKwQHlpmZFYIDy8zMCuH/AaHX4pnB9rhJAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "# Get the words with the highest IDF score\n", + "# Plot the terms with the highest IDF score\n", "plt.barh(top_IDF_tokens, top_IDF_scores)\n", "plt.title('Inverse Document Frequency');\n", "plt.xlabel('IDF Score');" @@ -950,15 +941,81 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As we can see, the frequently appearing words in the document get very low IDF scores, as compared to much rarer words. \n", + "As we can see, comparing across the two plots, the frequently appearing words have much lower values for their IDF scores, as compared to much rarer words. This is basically by definition, for the IDF score. \n", + "\n", + "What this means for TF-IDF is that the weighting helps account for which words in a document are specific to that document. Because the TF and IDF values are multiplied, rare terms get a higher TF-IDF score, per occurrence, than common words, which helps to compare across terms and documents. Ultimately, this allows us to represent a document by distribution of terms that are most unique to the particular document, as compared to the average across the corpus. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Applying TF-IDF\n", + "\n", + "Now that we have learned the frequencies, we can apply this representation to our data. \n", + "\n", + "In the next line, we will apply the TF-IDF representation to our data, and convert this to an array. \n", + "\n", + "This array is an `n_documents` x `n_terms` matrix that encodes the documents in a TFIDF representation.\n", + "\n", + "Note that in our TFIDF object above we set the number of features to use as 5000, which is the number of terms. " + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# Apply TF/IDF representation to our data\n", + "tfidf_books = tdidf.transform(sents).toarray()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of documents: \t\t 10000\n", + "Number of terms: \t\t 5000\n", + "TFIDF representation shape: \t (10000, 5000)\n" + ] + } + ], + "source": [ + "print(\"Number of documents: \\t\\t\", len(sents))\n", + "print(\"Number of terms: \\t\\t\", len(tfidf.vocabulary_))\n", + "print(\"TFIDF representation shape: \\t\", tfidf_books.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the TFIDF array, each row stores a representation of the document based on the TF-IDF score of our 5000 terms. \n", + "\n", + "This is a new representation of our text data, a numerical one, that we could now use for analysis and comparison of text data. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion\n", + "\n", + "Text analysis and NLP is itself a huge field, and an area in which one can take whole classes or research programs. \n", "\n", - "After TF-IDF, we successfully down-weight the frequently appearing words in the document. This allows us to represent a document by the words that are most unique to it, which can be a more useful way to represent text data. " + "Here, we have introduced some of the core idea related to NLP. For more information on these topics, look into NLP focused resources and classes." ] } ], "metadata": { "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -972,7 +1029,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/A1-PythonPackages.ipynb b/A1-PythonPackages.ipynb index ee420eb..547fb37 100644 --- a/A1-PythonPackages.ipynb +++ b/A1-PythonPackages.ipynb @@ -7,7 +7,7 @@ "# Useful Python Packages for Data Science\n", "\n", "
\n", - "The following is general overview of packages availabe in Python that may be useful for data science.\n", + "The following is general overview of packages available in Python that may be useful for data science.\n", "
\n", "\n", "
\n", @@ -20,9 +20,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Data-Science Modules\n", + "## Data-Science Modules\n", "\n", - "These packages are all included in the anaconda distribution.\n", + "These are all external (non-standard library) packages. Many of them are available in the Ananconda distribution. \n", "\n", "### Core Packages\n", "\n", @@ -43,15 +43,17 @@ "\n", "### Web Scraping\n", "\n", - "- [requests](http://docs.python-requests.org/en/master/) - HTTP requests.\n", + "- [requests](https://requests.readthedocs.io/) - HTTP requests.\n", "- [scrapy](https://scrapy.org) - web scraping.\n", " \n", "### Plotting / Vizualization Libraries\n", + "\n", "- [matplotlib](https://matplotlib.org) - 2D plotting library.\n", "- [seaborn](https://seaborn.pydata.org/) - visualization (based on matplotlib).\n", "- [bokeh](http://bokeh.pydata.org/en/latest/) - interactive visualizations.\n", " \n", "### Graph Theory / Networks\n", + "\n", "- [networkx](https://networkx.github.io/) - network analysis.\n", "- [graph-tool](https://graph-tool.skewed.de/) - manipulation and analysis of graphs.\n", " \n", @@ -66,40 +68,44 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Useful parts of the standard library\n", - "\n", - "\n", - "The full list of packages in the standard library is available [here](https://docs.python.org/3.6/library/index.html).\n", + "## Useful parts of the standard library\n", "\n", + "The full list of packages in the standard library is available [here](https://docs.python.org/3/library/index.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "### Basic Utilities\n", "\n", - "- [os](https://docs.python.org/3.6/library/os.html) - miscellaneous operating system operations.\n", - "- [sys](https://docs.python.org/3.6/library/sys.html) - system operations.\n", - "- [datetime](https://docs.python.org/3.6/library/datetime.html) - manipulating dates & times.\n", - "- [glob](https://docs.python.org/3.6/library/glob.html) - searching path names.\n", + "- [os](https://docs.python.org/3/library/os.html) - miscellaneous operating system operations.\n", + "- [sys](https://docs.python.org/3/library/sys.html) - system operations.\n", + "- [datetime](https://docs.python.org/3/library/datetime.html) - manipulating dates & times.\n", + "- [glob](https://docs.python.org/3/library/glob.html) - searching path names.\n", "\n", "### Useful Functions\n", "\n", - "- [math](https://docs.python.org/3.6/library/math.html) - mathematical functions.\n", - "- [random](https://docs.python.org/3.6/library/random.html) - (pseudo) random number generators.\n", - "- [re](https://docs.python.org/3.6/library/re.html) - regular expressions.\n", + "- [math](https://docs.python.org/3/library/math.html) - mathematical functions.\n", + "- [random](https://docs.python.org/3/library/random.html) - (pseudo) random number generators.\n", + "- [re](https://docs.python.org/3/library/re.html) - regular expressions.\n", "\n", "### File Formats\n", "\n", - "- [json](https://docs.python.org/3.6/library/json.html) - support for working with JSON files.\n", - "- [csv](https://docs.python.org/3.6/library/csv.html) - support for working with CSV files.\n", + "- [json](https://docs.python.org/3/library/json.html) - support for working with JSON files.\n", + "- [csv](https://docs.python.org/3/library/csv.html) - support for working with CSV files.\n", "\n", "### Data Objects\n", "\n", - "- [collections](https://docs.python.org/3.6/library/collections.html) - container data types.\n", - "- [pickle](https://docs.python.org/3.6/library/pickle.html) - serializing & de-serializing (saving and loading complex objects)." + "- [collections](https://docs.python.org/3/library/collections.html) - container data types.\n", + "- [pickle](https://docs.python.org/3/library/pickle.html) - serializing & de-serializing (saving and loading complex objects)." ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -113,7 +119,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.4" } }, "nbformat": 4, diff --git a/A2-Git.ipynb b/A2-Git.ipynb index abc64e9..b789d5f 100644 --- a/A2-Git.ipynb +++ b/A2-Git.ipynb @@ -4,7 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Version Control with git/Github" + "# Version Control\n", + "\n", + "This notebook explores version control, and using git & Github." ] }, { @@ -37,11 +39,12 @@ "
\n", "Git is a version control system: a tool to track changes in files, across multiple locations. \n", "
\n", - "
\n", "\n", - "Click through to \n", - "git.\n", - "Git is an open-source software project. \n", + "
\n", + "Information for using git is available in the \n", + "official documentation, \n", + "as well as in many external resources, collected in \n", + "this list.\n", "
\n", "
" ] @@ -58,12 +61,13 @@ "metadata": {}, "source": [ "
\n", - "Github is a web based version of Git, and version control repository or internet hosting service. It's a place to put code that is tracked with git. \n", + "Github is company that offers version control services, using git.\n", + " \n", + "Github is a hosting service, with git built in, or basically, a place on the internet to put code that is tracked with git. \n", "
\n", "
\n", "Click through to \n", "Github.\n", - "Note that Github is a company. \n", "
\n", "
" ] @@ -72,7 +76,31 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Git Graphical User Interfaces (GUIs)" + "## Using Git" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are several ways to use git, including:\n", + "- from the command line, typing in commands directly\n", + "- using a graphical program to launch git commands\n", + " - This kind of program is referred to as a 'graphical user interface' (GUI).\n", + " - It basically just means you can click buttons to do things, rather than writing out commands\n", + " \n", + "Either way the underlying commands, and code that gets executed, are the same. Behind the scenes, it all reduces to the same thing. \n", + "\n", + "You should use whichever approach you are most comfortable with. If you already know some command line programming, using git from command line can be useful, as generally slightly more functionality is available to you, with more specific control. Using a GUI is much more straight forward if you are not very familiar with the command line." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Git Graphical User Interfaces (GUIs)\n", + "\n", + "If you plan to use a GUI, one option is SourceTree." ] }, { @@ -86,17 +114,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "There are several ways to use git, including:\n", - "- from the command line, typing in commands\n", - "- using a graphical program to launch git commands\n", - " - This kind of program is referred to as a 'graphical user interface' (GUI).\n", - " - It basically just means you can click buttons to do things, rather than writing out commands\n", "\n", - "Either way the underlying commands, and code that gets executed, are the same. Behind the scenes, it all reduces to the same thing. \n", "\n", - "You should use whichever approach you are most comfortable with. If you already know some command line programming, using git from command line can be useful, as generally slightly more functionality is available to you, with more specific control. Using a GUI is much more straight forward if you are not very familiar with the command line.\n", "\n", - "If you plan to use a GUI, we recommend SourceTree." + "\n" ] }, { @@ -104,8 +125,8 @@ "metadata": {}, "source": [ "
\n", - "Source Tree tutorial documentation is available \n", - "here.\n", + "See the Source Tree\n", + "documentation.\n", "
" ] }, @@ -113,19 +134,27 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Local vs. Remote\n", - "\n", - "What git is mainly doing is keeping two (or more) versions of the same repository consistent.\n", + "## Git repositories\n", "\n", "A repository is simply a collection of files, like a folder on a computer. \n", "\n", - "We will refer to these copies as:\n", + "What git is mainly doing is keeping two (or more) versions of the same repository consistent." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Local vs. Remote\n", + "\n", + "Given a repository with multiple copies (or versions), we can refer to these copies:\n", + "\n", "- the 'local' copy, which is a copy of the repository on your computer (the one 'local' to you)\n", "- the 'remote' copy, which is a copy of the repository somewhere else, such as on Github\n", "\n", "There is often a particular copy of the code that is referred to as the 'master', which just means it is the master version of the repository in question. Most typically, this is the copy of the code on Github - so there is one 'master' copy of the code on Github, and one or more people also have local copies of the code, with local updates. When local updates want to be shared, they can be sent to master, to update the main version of the code, for everyone.\n", "\n", - "Here we will consider the case, descriped above, of having two copies of the repository. What is described here can all be extended to multiple copies of the code, including multiple different remote copies of the repository.\n", + "Here we will consider the case of having two copies of the repository. What is described here can all be extended to multiple copies of the code, including multiple different remote copies of the repository.\n", "\n", "The main function of git, as a version control system, is to automatically check all of the files in each copy of the repository, tracking any changes that happen. It then provides tools to synchronize between different copies when there are changes." ] @@ -136,58 +165,78 @@ "source": [ "## Getting Code from Github\n", "\n", - "Most typically, there is code available on Github, and you want to get a local copy, to use the code, and potentially update it, and then send your updates back to Github. \n", + "As a starting point, it if often the case that there is code available on Github, and you want to get a local copy. This allows you to access the code, to use, and potentially update it. Then, if you want, you can contribute your code updates back to the main version of the code up on Github. \n", "\n", - "First you need to get a local copy of the code. Git calls making a copy of a repository 'cloning'.\n", + "First, you need to get a local copy of the code. Git calls making a copy of a repository 'cloning'.\n", "\n", "From command line, to clone a Github repository to your computer, use the clone command with the URL to the repository.\n", - "- $ git clone 'repo_url'" + "- $ ``git clone 'repo_url'``\n", + " - For example, you can clone these materials with:\n", + " - ``git clone https://github.com/COGS108/Tutorials``" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Tracking & Propagating Changes\n", + "## Tracking & Propagating Changes\n", "\n", "Once you have a local copy, connected to a remote repository, changes can go in two directions:\n", + "\n", "- sending changes you make locally to the remote\n", - "- updating your local copy with changes from the remote" + " - this is called a `push`\n", + "- updating your local copy with changes from the remote\n", + " - this is called a `pull`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Tracking and Sending Changes from local -> remote\n", + "### Tracking and Sending Changes from local -> remote\n", "\n", - "When working on local files, git has multiple 'levels'. These multiple levels are useful to organize groups of changes into well organized actions. \n", + "When working on local files, git has hierarchical 'levels' of how it is tracking files (or, of what it is paying attention to). These multiple levels are useful to organize groups of changes into well organized actions.\n", + "\n", + "The repository can have many files in it, within which there are:\n", + "- tracked files\n", + " - these are files that git is tracking\n", + " - any files that are not tracked by git are untracked, and won't be version controlled\n", + "- staged files\n", + " - these are tracked files that have been indicated to be added to an update of the code\n", + " - staging allows for specifying which files to save updates to, and how to group files\n", "\n", "The typical workflow is:\n", - "- add: select which changes, on which files, you would like git to \n", + "- ``add``: select which changes, on which files, you would like git to add to staging area\n", " - You can add multiple files together, each with their own changes\n", - "- commit: make a checkpoint, saving all files that have been added together\n", + " - If a file is untracked, this adds it to tracking\n", + "- ``commit``: make a checkpoint, saving all files that have been added together\n", " - These changes will be 'saved' together with a message (a commit log) about what the changes are\n", - "- push: send the changes to the remote\n", + "- ``push``: send the changes to the remote\n", + " - These changes will now be available in the remote copy of the repository" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Example Workflow\n", "\n", "First, in a local git repository, you make some changes to a file, or perhaps many files. \n", "\n", - "You can now add files. This needs to be done for each file you changed, that we want to log:\n", - "- $ git add 'f_name'\n", + "You can now add files. This needs to be done for each file you changed, that we want to add to staging:\n", + "- $ ``git add 'f_name'``\n", "\n", "After you've added one or more files, you use a commit to save the status of these files:\n", - "- $ git commit -m 'Commit message'\n", + "- $ ``git commit -m 'Commit message'``\n", "\n", "The '-m' flag is an option to write your commit message directly with the command. If you don't add it, git will send you into a text editor for you to write a commit message there. You should always add an informative message about what you have changed / added.\n", "\n", - "Making small, incremental changes and commiting often, with detailed messages means that your Github log can serve as a history for your project, keeping track of what you've done. \n", - "\n", - "This also allows you to step back to an older version of the code if everything suddenly breaks.\n", + "Making small, incremental changes and commiting often, with detailed messages means that your Github log can serve as a history for your project. This is useful as a way to use version control to keep track of a projects history. This also allows you to step back to an older version of the code if everything suddenly breaks.\n", "\n", "A committed change is still only stored in your local copy. To update the remote repostory, you have to push:\n", - "- $ git push\n", + "- $ ``git push``\n", "\n", - "You do not have to push after each commit, git push can push many commits at once. \n", + "You do not have to push after each commit, you can push many commits at once. \n", "\n", "Once you have pushed, you should see your updates have been added to the remote repository, on Github." ] @@ -196,13 +245,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Getting Changes from remote -> local\n", + "### Getting Changes from remote -> local\n", "\n", "Git refers to updating a local copy with changes from a remote copy as 'pulling'\n", "\n", "On command line, if there are changes on the remote branch, use the 'git pull' to copy those changes to your local: copy.\n", "\n", - "- $ git pull" + "- $ ``git pull``" ] }, { @@ -213,20 +262,22 @@ "\n", "The most common git functions are:\n", "\n", - "- git status\n", + "- ``git status``\n", " - Check the status of a git repository\n", - "- git add 'file'\n", + "- ``git add 'file'``\n", " - Add a file to staging area\n", - "- git commit -m 'message'\n", + "- ``git commit -m 'message'``\n", " - Log a 'save point' of all changes in the staging area.\n", - "- git push\n", + "- ``git push``\n", " - Copy commits to remote\n", - "- git diff 'file'\n", + "- ``git diff 'file'``\n", " - Check what has changed in file since last commit\n", - "- git clone 'repo'\n", + "- ``git clone 'repo'``\n", " - Create a local copy of a git repository\n", - "- git pull\n", - " - Update your local copy of a git repository from the remote" + "- ``git pull``\n", + " - Update your local copy of a git repository from the remote\n", + "- ``git log``\n", + " - Check the log of git commits" ] }, { @@ -252,14 +303,14 @@ "
\n", "There are many tutorials for working with Github, including an \n", "interactive tutorial, \n", - "and a \n", + "and\n", "Hello World,\n", - "both made by Github\n", - "
\n", - "There are also several other useful guides and tutorials, including these ones available on\n", + "made by Github, and many other guides and tutorials, for example those available from\n", "LifeHacker, \n", "Atlassian, and\n", - "neuroplausible.\n", + "Neuroplausible.\n", + "For a list of many resources, see\n", + "this list.\n", "
" ] }