-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathindex.html
555 lines (430 loc) · 27.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>COINtoolbox</title>
<style type="text/css">
body {
font-family: Helvetica, arial, sans-serif;
font-size: 14px;
line-height: 1.6;
padding-top: 10px;
padding-bottom: 10px;
background-color: white;
padding: 30px; }
body > *:first-child {
margin-top: 0 !important; }
body > *:last-child {
margin-bottom: 0 !important; }
a {
color: #4183C4; }
a.absent {
color: #cc0000; }
a.anchor {
display: block;
padding-left: 30px;
margin-left: -30px;
cursor: pointer;
position: absolute;
top: 0;
left: 0;
bottom: 0; }
h1, h2, h3, h4, h5, h6 {
margin: 20px 0 10px;
padding: 0;
font-weight: bold;
-webkit-font-smoothing: antialiased;
cursor: text;
position: relative; }
h1:hover a.anchor, h2:hover a.anchor, h3:hover a.anchor, h4:hover a.anchor, h5:hover a.anchor, h6:hover a.anchor {
background: url() no-repeat 10px center;
text-decoration: none; }
h1 tt, h1 code {
font-size: inherit; }
h2 tt, h2 code {
font-size: inherit; }
h3 tt, h3 code {
font-size: inherit; }
h4 tt, h4 code {
font-size: inherit; }
h5 tt, h5 code {
font-size: inherit; }
h6 tt, h6 code {
font-size: inherit; }
h1 {
font-size: 28px;
color: black; }
h2 {
font-size: 24px;
border-bottom: 1px solid #cccccc;
color: black; }
h3 {
font-size: 18px; }
h4 {
font-size: 16px; }
h5 {
font-size: 14px; }
h6 {
color: #777777;
font-size: 14px; }
p, blockquote, ul, ol, dl, li, table, pre {
margin: 15px 0; }
hr {
background: transparent url() repeat-x 0 0;
border: 0 none;
color: #cccccc;
height: 4px;
padding: 0;
}
body > h2:first-child {
margin-top: 0;
padding-top: 0; }
body > h1:first-child {
margin-top: 0;
padding-top: 0; }
body > h1:first-child + h2 {
margin-top: 0;
padding-top: 0; }
body > h3:first-child, body > h4:first-child, body > h5:first-child, body > h6:first-child {
margin-top: 0;
padding-top: 0; }
a:first-child h1, a:first-child h2, a:first-child h3, a:first-child h4, a:first-child h5, a:first-child h6 {
margin-top: 0;
padding-top: 0; }
h1 p, h2 p, h3 p, h4 p, h5 p, h6 p {
margin-top: 0; }
li p.first {
display: inline-block; }
li {
margin: 0; }
ul, ol {
padding-left: 30px; }
ul :first-child, ol :first-child {
margin-top: 0; }
dl {
padding: 0; }
dl dt {
font-size: 14px;
font-weight: bold;
font-style: italic;
padding: 0;
margin: 15px 0 5px; }
dl dt:first-child {
padding: 0; }
dl dt > :first-child {
margin-top: 0; }
dl dt > :last-child {
margin-bottom: 0; }
dl dd {
margin: 0 0 15px;
padding: 0 15px; }
dl dd > :first-child {
margin-top: 0; }
dl dd > :last-child {
margin-bottom: 0; }
blockquote {
border-left: 4px solid #dddddd;
padding: 0 15px;
color: #777777; }
blockquote > :first-child {
margin-top: 0; }
blockquote > :last-child {
margin-bottom: 0; }
table {
padding: 0;border-collapse: collapse; }
table tr {
border-top: 1px solid #cccccc;
background-color: white;
margin: 0;
padding: 0; }
table tr:nth-child(2n) {
background-color: #f8f8f8; }
table tr th {
font-weight: bold;
border: 1px solid #cccccc;
margin: 0;
padding: 6px 13px; }
table tr td {
border: 1px solid #cccccc;
margin: 0;
padding: 6px 13px; }
table tr th :first-child, table tr td :first-child {
margin-top: 0; }
table tr th :last-child, table tr td :last-child {
margin-bottom: 0; }
img {
max-width: 100%; }
span.frame {
display: block;
overflow: hidden; }
span.frame > span {
border: 1px solid #dddddd;
display: block;
float: left;
overflow: hidden;
margin: 13px 0 0;
padding: 7px;
width: auto; }
span.frame span img {
display: block;
float: left; }
span.frame span span {
clear: both;
color: #333333;
display: block;
padding: 5px 0 0; }
span.align-center {
display: block;
overflow: hidden;
clear: both; }
span.align-center > span {
display: block;
overflow: hidden;
margin: 13px auto 0;
text-align: center; }
span.align-center span img {
margin: 0 auto;
text-align: center; }
span.align-right {
display: block;
overflow: hidden;
clear: both; }
span.align-right > span {
display: block;
overflow: hidden;
margin: 13px 0 0;
text-align: right; }
span.align-right span img {
margin: 0;
text-align: right; }
span.float-left {
display: block;
margin-right: 13px;
overflow: hidden;
float: left; }
span.float-left span {
margin: 13px 0 0; }
span.float-right {
display: block;
margin-left: 13px;
overflow: hidden;
float: right; }
span.float-right > span {
display: block;
overflow: hidden;
margin: 13px auto 0;
text-align: right; }
code, tt {
margin: 0 2px;
padding: 0 5px;
white-space: nowrap;
border: 1px solid #eaeaea;
background-color: #f8f8f8;
border-radius: 3px; }
pre code {
margin: 0;
padding: 0;
white-space: pre;
border: none;
background: transparent; }
.highlight pre {
background-color: #f8f8f8;
border: 1px solid #cccccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px; }
pre {
background-color: #f8f8f8;
border: 1px solid #cccccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px; }
pre code, pre tt {
background-color: transparent;
border: none; }
sup {
font-size: 0.83em;
vertical-align: super;
line-height: 0;
}
* {
-webkit-print-color-adjust: exact;
}
@media screen and (min-width: 914px) {
body {
width: 854px;
margin:0 auto;
}
}
@media print {
table, pre {
page-break-inside: avoid;
}
pre {
word-wrap: break-word;
}
}
</style>
</head>
<body>
<p><xmp theme="spacelab" style="display:none;">
<meta name="description" content=""></p>
<h1 class="title">COINtoolbox</h1>
<p><a href="https://doi.org/10.5281/zenodo.16376"><img src="https://zenodo.org/badge/7175/COINtoolbox/COINtoolbox.github.io.svg" alt="DOI"></a>
<img src="www/COIN.png", class="inline", align="right"/></br></br></br></br></br></p>
<h2 id="toc_0">Methodology and software for cosmology</h2>
<blockquote>
The COsmostatistics INitiative ([COIN](https://asaip.psu.edu/organizations/iaa/iaa-working-group-of-cosmostatistics/)), a working group built within the International Astrostatistics Association
([IAA](http://iaa.mi.oa-brera.inaf.it/IAA/home.html)), aims to create a friendly environment where hands-on collaboration between astronomers,
cosmologists, statisticians and machine learning experts can flourish. COIN is designed to
promote the development of a new family of tools for data exploration in cosmology.
</blockquote>
<h2 id="toc_10">Active Learning for Supernova Photometric Classification</h2>
<p><a href="https://arxiv.org/abs/1804.03765"><img src="http://img.shields.io/badge/arXiv-1804.03765-lightgrey.svg?style=plastic" alt="arxiv"></a></p>
<blockquote>
<p>We report a framework for spectroscopic follow-up design for optimizing supernova photometric classification. The strategy accounts for the unavoidable mismatch between spectroscopic and photometric samples, and can be used even in the beginning of a new survey - without any initial training set. The framework falls under the umbrella of active learning (AL), a class of algorithms that aims to minimize labelling costs by identifying a few, carefully chosen, objects which have high potential in improving the classifier predictions. As a proof of concept, we use the simulated data released after the Supernova Photometric Classification Challenge (SNPCC) and a random forest classifier. Our results show that, using only 12% the number of training objects in the SNPCC spectroscopic sample, this approach is able to double purity results. Moreover, in order to take into account multiple spectroscopic observations in the same night, we propose a semi-supervised batch-mode AL algorithm which selects a set of N=5 most informative objects at each night. In comparison with the initial state using the traditional approach, our method achieves 2.3 times higher purity and comparable figure of merit results after only 180 days of observation, or 800 queries (73% of the SNPCC spectroscopic sample size). Such results were obtained using the same amount of spectroscopic time necessary to observe the original SNPCC spectroscopic sample, showing that this type of strategy is feasible with current available spectroscopic resources. </p>
</blockquote>
<p><a href="http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1804.03765" class="btn btn-primary">Link to ADS</a>
<a href="https://github.com/COINtoolbox/ActSNClass" class="btn btn-primary">Code</a>
<h2 id="toc_10">Spatial modelling for IFU data with INLA</h2>
<p><a href="https://arxiv.org/abs/1802.06280"><img src="http://img.shields.io/badge/arXiv-1802.06280-lightgrey.svg?style=plastic" alt="arxiv"></a></p>
<blockquote>
<p>Astronomical observations of extended sources, such as cubes of integral field spectroscopy (IFS), encode auto-correlated spatial structures that cannot be optimally exploited by generic methods that fall short to account for topological information. Here we introduce a novel technique to model IFS datasets, which treats the observed galaxy properties as manifestations of an unobserved Gaussian Markov random field. The method is computationally efficient, resilient to the presence of low-signal-to-noise regions, and uses an alternative to Markov Chain Monte Carlo for fast Bayesian inference - the Integrated Nested Laplace Approximation. As a case study, we analyse 721 IFS data cubes of nearby galaxies from the CALIFA and PISCO surveys, for which we retrieved the following physical properties: age, metallicity, mass, and extinction. The proposed Bayesian approach, built on a generative representation of the galaxy properties, enables the creation of synthetic images, recovery of areas with bad pixels, and an increased power to detect structures in datasets subject to substantial noise and/or sparsity of sampling.</p>
</blockquote>
<p><a href="http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1802.06280" class="btn btn-primary">Link to ADS</a>
<a href="https://github.com/COINtoolbox/Galaxies_INLA" class="btn btn-primary">Catalogues</a>
<h2 id="toc_10">Gaussian Mixture Models and galaxy classification</h2>
<p><a href="https://arxiv.org/abs/1703.07607"><img src="http://img.shields.io/badge/arXiv-1703.07607-lightgrey.svg?style=plastic" alt="arxiv"></a></p>
<blockquote>
<p>This work employs a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and W_H-alpha vs. [NII]_H-alpha (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT datasets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log [OIII]/H-beta, log [NII]/H-alpha, and log EW(H-alpha) optical parameters. The best-fit GMM based on several statistical criteria consists of four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's Active Galaxy Nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence -- based on GMMs -- for the existence of a Seyfert/LINER dichotomy in our sample. We demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical datasets, without lacking the ability to convey physically interpretable results; hence being a precious tool for maximum exploitation of the ever-increasing astronomical surveys.</p>
</blockquote>
<p><a href="http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1703.07607" class="btn btn-primary">Link to ADS</a>
<a href="https://cointoolbox.github.io/GMM_Catalogue/" class="btn btn-primary">Catalogue</a>
<a href="https://github.com/COINtoolbox/GMM_Catalogue/blob/master/Tutorial/GMM_Python.ipynb" class="btn btn-primary">Tutorial</a>
<h2 id="toc_10">Representativeness in photometric redshift estimation</h2>
<p><a href="https://arxiv.org/abs/1701.08748"><img src="http://img.shields.io/badge/arXiv-1701.08748-lightgrey.svg?style=plastic" alt="arxiv"></a></p>
<blockquote>
<p>We present two galaxy catalogues built to enable a more demanding and realistic test of photo-z methods. Using photometry from the Sloan Digital Sky Survey and spectroscopy from a collection of sources, we constructed datasets which mimic the biases between the underlying probability distribution of the real spectroscopic and photometric sample while also possessing spectroscopic measurements. We demonstrate the potential of these catalogues by submitting them to the scrutiny of different photo-z methods, including machine learning (ML) and template fitting approaches. We were able to recognize the superiority of global models in cases with incomplete coverage in feature space and the general failure across all types of methods when incomplete coverage is convoluted with the presence of photometric errors - a data situation which photo-z methods were not trained to deal with up to now and which must be addressed by future large scale surveys. Our catalogues represent the first controlled environment allowing a straightforward implementation of such tests.</p>
</blockquote>
<p><a href="http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1701.08748" class="btn btn-primary">Link to ADS</a>
<a href="https://github.com/COINtoolbox/photoz_catalogues" class="btn btn-primary">Catalogues</a>
<h2 id="toc_10">Hierarchical Bayesian Models: logistic regression and AGN activity</h2>
<p><a href="https://arxiv.org/abs/1603.06256"><img src="http://img.shields.io/badge/arXiv-1603.06256-lightgrey.svg?style=plastic" alt="arxiv"></a></p>
<blockquote>
<p>We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster-centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control for the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g., whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, i.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in a unified framework. In elliptical galaxies, our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.</p>
</blockquote>
<p><a href="http://adsabs.harvard.edu/abs/2016MNRAS.461.2115D" class="btn btn-primary">Link to ADS</a>
<h2 id="toc_8">Dimensionality Reduction And Clustering for Unsupervised Learning in Astronomy (DRACULA)</h2>
<p><a href="http://arxiv.org/abs/1512.06810"><img src="http://img.shields.io/badge/arXiv-1512.06810-lightgrey.svg?style=plastic" alt="arxiv"></a></p>
<blockquote>
<p>DRACULA classifies objects using dimensionality reduction and clustering. The code has an easy interface and can be applied to separate several types of objects. It is based on tools developed in scikit-learn, with Deep Learning usage requiring also the H2O package.</p>
</blockquote>
<p><a href="http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1512.06810" class="btn btn-primary">Link to ADS</a>
<a href="http://ascl.net/1512.009" class="btn btn-primary">Package</a> </p>
<h2 id="toc_4">Approximate Bayesian Computation</h2>
<p><a href="http://arxiv.org/abs/1504.06129"><img src="http://img.shields.io/badge/arXiv-1504.06129-lightgrey.svg?style=plastic" alt="arxiv"></a></p>
<blockquote>
<p>Approximate Bayesian Computation (ABC) enables the statistical analysis of
stochastic models for complex physical systems in cases where the true
likelihood function is unknown, unavailable, or computationally expensive.
ABC relies on the forward simulation of mock data rather than the
specification of a likelihood function. The CosmoABC code was originally designed for cosmological parameter inference from galaxy clusters number counts based on Sunyaev-Zel’dovich measurements.
Nevertheless, the user can easily take advantage of the ABC sampler along with his/her own simulator, as well as test personalized prior distributions, summary statistics and distance functions.</p>
</blockquote>
<p><a href="http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1504.06129" class="btn btn-primary">Link to ADS</a>
<a href="http://cosmoabc.readthedocs.org/en/latest/" class="btn btn-primary">Tutorial</a>
<a href="https://pypi.python.org/pypi/CosmoABC" class="btn btn-primary">Package</a> </p>
<h2 id="toc_9">Analysis of Muldimensional Astronomical DAtasets (AMADA)</h2>
<p><a href="http://arxiv.org/abs/1503.07736"><img src="http://img.shields.io/badge/arXiv-1503.07736-lightgrey.svg?style=plastic" alt="arxiv"></a></p>
<blockquote>
<p>AMADA allows an iterative exploration and information retrieval of high-dimensional data sets. This is done by performing a hierarchical clustering analysis for different choices of correlation matrices and by doing a principal components analysis in the original data. Additionally, AMADA provides a set of modern visualization data-mining diagnostics. The user can switch between them using the different tabs.</p>
</blockquote>
<p><a href="http://adsabs.harvard.edu/abs/2015arXiv150307736D" class="btn btn-primary">Link to ADS</a>
<a href="http://rafaelsdesouza.github.io/AMADA/" class="btn btn-primary">Package</a>
<a href="https://cosmostatisticsinitiative.shinyapps.io/AMADA/" class="btn btn-primary">Web App</a> </p>
<h2 id="toc_4">Generalized Linear Models in Astronomy</h2>
<blockquote>
<p>Statistical methods play a central role to fully exploit astronomical catalogues and an efficient data analysis requires astronomers to go beyond the traditional Gaussian-based models. This projects illustrates the power of generalized linear models (GLMs) for astronomical community, from a Bayesian perspective. Applications range from modelling star formation activity (logistic regression), globular cluster population (negative binomial regression), photometric redshifts (gamma regression), exoplanets multiplicity (Poisson regression), and so forth.</p>
</blockquote>
<h3 id="toc_7">Negative Binomial Regression</h3>
<p><a href="http://arxiv.org/abs/1506.04792"><img src="http://img.shields.io/badge/arXiv-1409.7699-lightgrey.svg?style=plastic" alt="arxiv"></a></p>
<blockquote>
<p>Suited to handle non-negative discrete variables. Such as number of exoplanets, globular cluster population, richness of galaxy clusters, etc. </p>
</blockquote>
<p><a href="http://adsabs.harvard.edu/abs/2015MNRAS.453.1928D" class="btn btn-primary">Link to ADS</a> </p>
<h3 id="toc_6">Gamma Regression</h3>
<p><a href="http://arxiv.org/abs/1409.7699"><img src="http://img.shields.io/badge/arXiv-1409.7699-lightgrey.svg?style=plastic" alt="arxiv"></a></p>
<blockquote>
<p>Suited to handle non-negative continuous variables. Such as photometric redshifts, star formation rate, galaxy mass. The method naturally accounts for heteroskedasticity (non-constant variability). </p>
</blockquote>
<p><a href="http://adsabs.harvard.edu/abs/2015A%26C....10...61E" class="btn btn-primary">Link to ADS</a>
<a href="http://cosmophotoz.readthedocs.org/en/latest/" class="btn btn-primary">Tutorial</a>
<a href="http://ascl.net/1408.018" class="btn btn-primary">Package</a>
<a href="https://cosmostatisticsinitiative.shinyapps.io/CosmoPhotoz" class="btn btn-primary">Web App</a> </p>
<h3 id="toc_5">Binomial Regression</h3>
<p><a href="http://arxiv.org/abs/1409.7696"><img src="http://img.shields.io/badge/arXiv-1409.7696-lightgrey.svg?style=plastic" alt="arxiv"></a></p>
<blockquote>
<p>Suited to handle binary or proportional data, also called absence and presence data. For example AGN activity, star-galaxy separation, fraction of bars in a galaxy, scape fraction, etc. </p>
</blockquote>
<p><a href="http://adsabs.harvard.edu/abs/2014arXiv1409.7696D" class="btn btn-primary">Link to ADS</a> </p>
<hr>
<h4 id="toc_10">COIN Residence Programs:</h4>
<p><a href="https://asaip.psu.edu/organizations/iaa/iaa-working-group-of-cosmostatistics/iaa-2013-working-group-on-cosmostatistics-summer-residence-program-2013-2014-2013-lisbon" class="btn btn-default">CRP #1: August/2014 - Lisbon, Portugal</a>
<p><a href="http://iaacoin.wixsite.com/crp2015" class="btn btn-default">CRP #2: October/2015 - Isle of Wight, UK</a>
<p><a href="http://iaacoin.wixsite.com/crp2016" class="btn btn-default">CRP #3: August/2016 - Budapest, Hungary</a>
<p><a href="http://iaacoin.wixsite.com/crp2017" class="btn btn-default">CRP #4: August/2017 - Clermont Ferrand, France</a>
<p><a href="https://cosmostatistics-initiative.org/" class="btn btn-default">CRP #5: September/2018 - Chania, Greece</a>
<p>
<p>
<hr>
<h4 id="toc_10">COIN Progress Report:</h4>
<p><a href="https://github.com/COINtoolbox/COINtoolbox.github.io/blob/master/COINnew2.jpg" class="btn btn-default">Infographic</a>
<p><a href="https://github.com/COINtoolbox/COINtoolbox.github.io/blob/master/coin-tables-report.pdf" class="btn btn-default">Tables</a>
<p>
<p>
<hr>
<h4 id="toc_10">COIN Members on GitHub:</h4>
<p><a href="https://github.com/algolkm" class="btn btn-default">Alberto Krone-Martins</a>
<a href="https://github.com/andrevitorelli" class="btn btn-default">Andre Vitorelli</a>
<a href="https://github.com/drArli" class="btn btn-default">Arlindo Trindade</a>
<a href="https://github.com/bbuelens" class="btn btn-default">Bart Buelens</a>
<a href="https://github.com/b1quint" class="btn btn-default">Bruno Quint</a>
<a href="https://github.com/Linc-tw" class="btn btn-default">Chieh-An Lin</a>
<a href="https://github.com/emilleishida" class="btn btn-default">Emille Ishida</a>
<a href="https://github.com/efeigelson" class="btn btn-default">Eric Feigelson</a>
<a href="https://github.com/gieseke" class="btn btn-default">Fabian Gieseke</a>
<a href="https://github.com/fabriciojm" class="btn btn-default">Fabricio Jimenez</a>
<a href="https://github.com/hocamachoc" class="btn btn-default">Hugo Camacho</a>
<a href="https://github.com/grburgess" class="btn btn-default">J Michael Burgess</a>
<a href="https://github.com/jimbarrett27" class="btn btn-default">Jim Barrett</a>
<a href="https://github.com/jonnybazookatone" class="btn btn-default">Jonny Elliott</a>
<a href="https://github.com/JHilbe" class="btn btn-default">Joseph Hilbe</a>
<a href="https://github.com/DrMud" class="btn btn-default">Madhura Killedar</a>
<a href="https://github.com/mvcduarte" class="btn btn-default">Marcos Vinicius Costa Duarte</a>
<a href="https://github.com/mdastro" class="btn btn-default">Maria Luiza Dantas</a>
<a href="https://github.com/pennalima" class="btn btn-default">Mariana Penna-Lima</a>
<a href="https://github.com/Naminoshi" class="btn btn-default">Michel Aguena</a>
<a href="https://github.com/sasdelli" class="btn btn-default">Michele Sasdelli</a>
<a href="https://github.com/migueldvb" class="btn btn-default">Miguel de Val-Borro</a>
<a href="https://github.com/mwhattab" class="btn btn-default">Mohammad Hattab</a>
<a href="https://github.com/NobleKennamer" class="btn btn-default">Noble Kennamer</a>
<a href="https://github.com/prtc" class="btn btn-default">Paula Coelho</a>
<a href="https://github.com/pylablanche" class="btn btn-default">Pierre-Yves Lablanche</a>
<a href="https://github.com/RafaelSdeSouza" class="btn btn-default">Rafael S. de Souza</a>
<a href="https://github.com/astronomy-eagle" class="btn btn-default">Ricardo Vilalta</a>
<a href="https://github.com/beckrob" class="btn btn-default">Robert Beck</a>
<a href="https://github.com/rsmiljanic" class="btn btn-default">Rodolfo Smiljanic</a>
<a href="https://github.com/vitenti" class="btn btn-default">Sandro Vitenti</a>
<a href="https://github.com/gongsale" class="btn btn-default">Santiago Gonzalez-Gaitan</a>
<a href="https://github.com/vbusti" class="btn btn-default">Vinicius C. Busti</a>
<a href="https://github.com/yabebalFantaye" class="btn btn-default">Yabebal Fantaye</a></p>
<h4 id="toc_11">Contact: <a href="mailto:rafael.2706@gmail.com">rafael.2706@gmail.com</a></h4>
<p></xmp>
<a href="https://github.com/COINtoolbox/COINtoolbox.github.io"><img style="position: fixed; top: 0; right: 0; border: 0; width: 149px; height: 149px; z-index: 1000; margin: 0;" src="images/right-cerulean.png" alt="Fork me on GitHub"></a></p>
<script src="http://strapdownjs.com/v/0.2/strapdown.js"></script>
</body>
</html>