diff --git a/pycona/benchmarks/exam_timetabling.py b/pycona/benchmarks/exam_timetabling.py index bb6cca4..a82ca4f 100644 --- a/pycona/benchmarks/exam_timetabling.py +++ b/pycona/benchmarks/exam_timetabling.py @@ -8,7 +8,7 @@ def day_of_exam(course, slots_per_day): return course // slots_per_day -def construct_examtt_simple(nsemesters=9, courses_per_semester=6, slots_per_day=9, days_for_exams=14): +def construct_examtt_simple(nsemesters=6, courses_per_semester=3, slots_per_day=3, days_for_exams=10): """ :return: a ProblemInstance object, along with a constraint-based oracle """ diff --git a/pycona/benchmarks/job_shop_scheduling.py b/pycona/benchmarks/job_shop_scheduling.py index 7e65b50..b59f28b 100644 --- a/pycona/benchmarks/job_shop_scheduling.py +++ b/pycona/benchmarks/job_shop_scheduling.py @@ -8,7 +8,7 @@ from ..problem_instance import ProblemInstance, absvar -def construct_job_shop_scheduling_problem(n_jobs, machines, horizon, seed=0): +def construct_job_shop_scheduling_problem(n_jobs=10, machines=2, horizon=15, seed=0): """ :return: a ProblemInstance object, along with a constraint-based oracle """ diff --git a/pycona/benchmarks/sudoku.py b/pycona/benchmarks/sudoku.py index 93233a8..aff334e 100644 --- a/pycona/benchmarks/sudoku.py +++ b/pycona/benchmarks/sudoku.py @@ -4,7 +4,7 @@ from ..problem_instance import ProblemInstance, absvar -def construct_sudoku(block_size_row, block_size_col, grid_size): +def construct_sudoku(block_size_row=2, block_size_col=2, grid_size=4): """ :return: a ProblemInstance object, along with a constraint-based oracle """ diff --git a/tests/test_algorithms.py b/tests/test_algorithms.py index 102b631..9e2e880 100644 --- a/tests/test_algorithms.py +++ b/tests/test_algorithms.py @@ -11,7 +11,7 @@ # Modify the problem generators for fast tests fast_problem_generators = [construct_murder_problem()] # Keep only the smallest problem -problem_generators = [construct_murder_problem(), construct_examtt_simple(6, 3, 2, 10), construct_nurse_rostering()] +problem_generators = [construct_murder_problem(), construct_examtt_simple(), construct_nurse_rostering()] classifiers = [DecisionTreeClassifier(), RandomForestClassifier()] algorithms = [ca.QuAcq(), ca.MQuAcq(), ca.MQuAcq2(), ca.GQuAcq(), ca.PQuAcq()]