diff --git a/.buildinfo b/.buildinfo
index 5b9450b..f2168ea 100644
--- a/.buildinfo
+++ b/.buildinfo
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
-config: d628a5059c7c9908d767a69c7f5c30c2
+config: cfb055ff857797bb1dc79c85df5a5e35
tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/.ipynb_checkpoints/LICENSE-checkpoint b/.ipynb_checkpoints/LICENSE-checkpoint
deleted file mode 100644
index 62bab0b..0000000
--- a/.ipynb_checkpoints/LICENSE-checkpoint
+++ /dev/null
@@ -1,29 +0,0 @@
-BSD 3-Clause License
-
-Copyright (c) 2007-2021 The scikit-learn developers.
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-* Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
-
-* Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-* Neither the name of the copyright holder nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
-FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/.ipynb_checkpoints/README-checkpoint.md b/.ipynb_checkpoints/README-checkpoint.md
deleted file mode 100644
index d64b65d..0000000
--- a/.ipynb_checkpoints/README-checkpoint.md
+++ /dev/null
@@ -1,78 +0,0 @@
-# `robustica`
-
-
-
-Fully customizable robust Independent Component Analysis (ICA).
-
-[](https://pypi.python.org/pypi/robustica)
-[](https://opensource.org/licenses/BSD-3-Clause)
-
-## Description
-This package contains 3 modules:
-- `RobustICA`
-
- Defines the most important class that allows to perform and customize robust independent component analysis.
-
-- `InferComponents`
-
- Retrieves the number of components that explain a user-defined percentage of variance.
-
-- `examples`
-
- Contains handy functions to quickly create or access example datasets.
-
-## Requirements
-In brackets, versions of packages used to revelop `robustica`.
-- `numpy` (1.19.2)
-- `pandas` (1.1.2)
-- `scipy` (1.6.2)
-- `scikit-learn` (0.23.2)
-- `scikit-learn-extra` (0.2.0)
-- `joblib` (1.0.1)
-- `tqdm` (4.59.0)
-
-## Installation
-### pip
-```shell
-pip install robustica
-```
-### local
-```shell
-git clone https://github.com/MiqG/robustica.git
-cd robustica
-pip install -e .
-```
-
-## Usage
-```python
-from robustica import RobustICA
-from robustica.examples import make_sampledata
-
-X = make_sampledata(ncol=300, nrow=2000, seed=123)
-
-rica = RobustICA(n_components=10)
-S, A = rica.fit_transform(X)
-```
-
-## Tutorials
-- [Basic pipeline for exploratory analysis](https://github.com/CRG-CNAG/robustica/blob/main/tutorials/basics.ipynb)
-- [Using a custom clustering class](https://github.com/CRG-CNAG/robustica/blob/main/tutorials/customize_clustering.ipynb)
-- [Inferring the number of components](https://github.com/CRG-CNAG/robustica/blob/main/tutorials/infer_components.ipynb)
-
-
-## Contact
-This project has been fully developed at the [Centre for Genomic Regulation](https://www.crg.eu/) within the group of [Design of Biological Systems](https://www.crg.eu/en/luis_serrano)
-
-Please, report any issues that you experience through this repository's ["Issues"](https://github.com/CRG-CNAG/robustica/issues) or email:
-- [Miquel Anglada-Girotto](mailto:miquel.anglada@crg.eu)
-- [Sarah A. Head](mailto:sarah.dibartolo@crg.eu)
-- [Luis Serrano](mailto:luis.serrano@crg.eu)
-
-## License
-
-`robustica` is distributed under a BSD 3-Clause License (see [LICENSE](https://github.com/CRG-CNAG/robustica/blob/main/LICENSE)).
-
-## References
-- *Himberg, J., & Hyvarinen, A.* "Icasso: software for investigating the reliability of ICA estimates by clustering and visualization". IEEE XIII Workshop on Neural Networks for Signal Processing (2003). DOI: https://doi.org/10.1109/NNSP.2003.1318025
-- *Sastry, Anand V., et al.* "The Escherichia coli transcriptome mostly consists of independently regulated modules." Nature communications 10.1 (2019): 1-14. DOI: https://doi.org/10.1038/s41467-019-13483-w
-- *Kairov, U., Cantini, L., Greco, A. et al.* Determining the optimal number of independent components for reproducible transcriptomic data analysis. BMC Genomics 18, 712 (2017). DOI: https://doi.org/10.1186/s12864-017-4112-9
diff --git a/.ipynb_checkpoints/env-checkpoint.yml b/.ipynb_checkpoints/env-checkpoint.yml
deleted file mode 100644
index c9a6003..0000000
--- a/.ipynb_checkpoints/env-checkpoint.yml
+++ /dev/null
@@ -1,13 +0,0 @@
-name: robustica
-channels:
- - bioconda
- - conda-forge
- - anaconda
-dependencies:
- - numpy
- - pandas
- - scipy
- - scikit-learn
- - sckikit-learn-extra
- - joblib
- - tqdm
\ No newline at end of file
diff --git a/.ipynb_checkpoints/examples-checkpoint.ipynb b/.ipynb_checkpoints/examples-checkpoint.ipynb
deleted file mode 100644
index f0b5340..0000000
--- a/.ipynb_checkpoints/examples-checkpoint.ipynb
+++ /dev/null
@@ -1,697 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {},
- "outputs": [],
- "source": [
- "from robustica import RobustICA, InferComponents, sampledata\n",
- "import numpy as np\n",
- "import matplotlib.pyplot as plt\n",
- "import seaborn as sns"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [],
- "source": [
- "from sklearn.datasets import fetch_openml\n",
- "mice = fetch_openml(name='miceprotein', version=4)\n",
- "X = mice['data']\n",
- "X[np.isnan(X)] = 0"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [],
- "source": [
- "inference = InferComponents()\n",
- "inference.fit(X)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "*E. coli* dataset"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## with Sastry method"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n"
- ]
- }
- ],
- "source": [
- "rica = RobustICA(n_components=inference.inferred_components_,\n",
- " n_jobs=10,\n",
- " robust_method='sastry', \n",
- " robust_kws={'min_samples':5, 'n_jobs':10})\n",
- "rica.fit(X)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " cluster_id \n",
- " cluster_size \n",
- " S_mean_std \n",
- " A_mean_std \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 0.0 \n",
- " 1300.0 \n",
- " 0.028939 \n",
- " 1.073877 \n",
- " \n",
- " \n",
- " 1 \n",
- " 1.0 \n",
- " 100.0 \n",
- " 0.001445 \n",
- " 0.059388 \n",
- " \n",
- " \n",
- " 2 \n",
- " 2.0 \n",
- " 100.0 \n",
- " 0.003927 \n",
- " 0.176134 \n",
- " \n",
- " \n",
- " 3 \n",
- " 3.0 \n",
- " 100.0 \n",
- " 0.004286 \n",
- " 0.185919 \n",
- " \n",
- " \n",
- " 4 \n",
- " 4.0 \n",
- " 100.0 \n",
- " 0.000550 \n",
- " 0.022831 \n",
- " \n",
- " \n",
- " 5 \n",
- " 5.0 \n",
- " 100.0 \n",
- " 0.003159 \n",
- " 0.131605 \n",
- " \n",
- " \n",
- " 6 \n",
- " 6.0 \n",
- " 100.0 \n",
- " 0.004975 \n",
- " 0.238966 \n",
- " \n",
- " \n",
- " 7 \n",
- " 7.0 \n",
- " 100.0 \n",
- " 0.000761 \n",
- " 0.027054 \n",
- " \n",
- " \n",
- " 8 \n",
- " 8.0 \n",
- " 100.0 \n",
- " 0.001853 \n",
- " 0.071220 \n",
- " \n",
- " \n",
- " 9 \n",
- " 9.0 \n",
- " 100.0 \n",
- " 0.001752 \n",
- " 0.061133 \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " cluster_id cluster_size S_mean_std A_mean_std\n",
- "0 0.0 1300.0 0.028939 1.073877\n",
- "1 1.0 100.0 0.001445 0.059388\n",
- "2 2.0 100.0 0.003927 0.176134\n",
- "3 3.0 100.0 0.004286 0.185919\n",
- "4 4.0 100.0 0.000550 0.022831\n",
- "5 5.0 100.0 0.003159 0.131605\n",
- "6 6.0 100.0 0.004975 0.238966\n",
- "7 7.0 100.0 0.000761 0.027054\n",
- "8 8.0 100.0 0.001853 0.071220\n",
- "9 9.0 100.0 0.001752 0.061133"
- ]
- },
- "execution_count": 29,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "rica.clustering_stats_"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 43,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAAI4CAYAAABdv5MxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAACJQ0lEQVR4nO29eZhcV3Wv/a4ae56k1ixZgyVZkgd5ko0NNp6IDQQDCQRIwIADcWICZLiAAwlcEu4lE7lk+EIIECDBOA4G4zAZGzAYsDzPlmRLliy1NbXU81Rdw/r+qBI0ortPq7p/R614v8/TT3dXnVr71LTO3muv9Vvm7gQCgUDg+JM43icQCAQCgTLBIQcCgcAsITjkQCAQmCUEhxwIBAKzhOCQA4FAYJYQHHIgEAjMElKT3fnN9NoZyYl7RX6bzYSdQCAQ+J/MpA7Z0sGPBgKBQFxM6pCTtcm4ziMQCARe8EQ45BBiDgQCgbgIDnmGOeeccz4A1Bzv85gmIw888MDHj/dJBAIvNCZ3yNngkKug5oEHHviIcoAYnP4p55xzzkeE9iE4/UDgl5jcIaeDQ56lSJ1+TLP8151zzjlXCu3vqvyoCBeUwIwzeZZFMjjkFyhxzPI5wS8q6lVEcPgvQCZ1yOmakGUROGGRX1SUxBAyCsxCImbIIQ85EJgI8Sx8udAph9n3LGVSh5zKTnp3IPBC54SchYfZ9+xl8hlyIsyQA4FAIC7CDDkQmKUIQyKKcEgIg8wAYYYcCMxeTpiQSAiDzAyT5yFnwgw5EAgE4mLSRGNL2Iz8TAUzu9LMtpnZdjP7wDj3m5n9feX+x8zsrDH37TKzx83sETN7YMztbWZ2h5k9U/ndegyvTSAQCMTKrIghm1kS+CfgCqADuN/MbnP3p8YcdhWwuvJzHvDPld9HuMTdDx1l+gPA99z94xUn/wHg/aKnEQiccMxgnHqm4tIv6Fh0RAw5tkq9TcB2d38WwMxuAq4Gxjrkq4EvursDm82sxcwWuvu+SexeDby08vcXgLsIDjkQGMusilO/0GPRscSQzeydwDvH3PRpd//0mP8XA3vG/N/BL85+JzpmMbAPcOC7ZubAv4yxPf+Iw3b3fWY2b9pPJhAIBETEkmVRcZCfnuSQ8QY6un3UZMdc6O57Kw73DjPb6u4/quJUA4FA4LgxqUNOpGPLsugAlo75fwmwd6rHuPuR3wfN7GuUQyA/Ag4cCWuY2ULgoOj8A4FAYNpEZFkkZuRnCtwPrDazFWaWAd4A3HbUMbcBb6lkW5wP9FYcbb2ZNQKYWT3wMuCJMY+5pvL3NcDXp3IygUAgcDyYFXnI7l4ws3cBtwNJ4HPu/qSZXVe5/1PAt4CXA9uBIeBtlYfPB75mZlB+Pje6+3cq930cuNnMrgV2A6+L5QkFAoFAFcyaSj13/xZlpzv2tk+N+duB68d53LPAGRPYPAxcNrNnGggEAhoi5DeDHnIgEAjExeSbeqngkAOBQCAuJp8hB4ccCAQCsRFCFoFAIDBLCCGLQCAQmCWEGXIgEAjMEoJDDgQCgVlC2NQLBAIyqpD3PFYZz/9Rcp2Tl+KFGXIgEJgeUnnP/2lynSFkEQgEArOE4JADgUBglhBCFoFAIDBLiJghh67TgUAgEBchZBEIBAKzhMnV45PJmfmZAmZ2pZltM7PtlQ7RR99vZvb3lfsfM7OzKrcvNbMfmNkWM3vSzN4z5jEfMbPnzeyRys/Lj+3lCQQCgfiYFTFkM0sC/wRcQblV0/1mdpu7j+06fRWwuvJzHvDPld8F4I/c/aFK55AHzeyOMY/9O3f/m1ieSCAQCEyDWeGQKffA214Rm8fMbgKuBsY65KuBL1aE6jebWcuRfnmUO0/j7v1mtoVyN+qnCAQCgROIyUMWieTM/ESzGNgz5v+Oym3HdIyZLQfOBO4dc/O7KiGOz5lZ61ROJhAIBI4HscSQzeydZvbAmJ93HjXSeL2i/FiOMbMG4Bbgve7eV7n5n4FVwEbKs+i/nfT5BgKBwHEkImQxM2lv7v5p4NOTHNIBLB3z/xJg71SPMbM0ZWf8JXf/6phxDxz528z+FfhGNecfCAQCcTBbQhb3A6vNbIWZZYA3ALcddcxtwFsq2RbnA73uvs/K7aY/C2xx90+MfYCZLRzz72uAJ6ZyMoFAIHA8mBWbeu5eMLN3AbcDSeBz7v6kmV1Xuf9TlDtSvxzYDgwBb6s8/ELgzcDjZvZI5bY/qXSx/isz20g5tLEL+J1YnlAgEAhUwaQO2ac2u50RKg70W0fd9qkxfztw/TiP+zHjx5dx9zfP8GkGAoGAjFnjkAOBQOCFzuQhi+CQA4FAIDYmnyEHLYtAIBCIjYiQRVB7CwQCgbgIMeRAIBCYJYQYciAQCMwSwgw5EAgEZgmTOuSSBYccCAQCcRFmyIFAIDBLmNwh2+RSF4FAIBCYOSYPWYS0t0AgEIiNMEMOBAKBWUKYIQcCgcAsIcyQA4FAYJYwqUMuhhlyIBAIxMakU2DHZuRnKpjZlWa2zcy2m9kHxrnfzOzvK/c/ZmZnRT3WzNrM7A4ze6byOzQ5DQQCs5ZJHXIxkZ6RnyjMLAn8E3AVsB54o5mtP+qwq4DVlZ93Um5gGvXYDwDfc/fVwPcq/wcCgcCsZLbMkDcB2939WXcfBW4Crj7qmKuBL3qZzUBLpWfeZI+9GvhC5e8vAK+eyskEAoHA8SCWGLKZvZPyrPYIn650oj7CYmDPmP87gPOOMjPeMYsjHjvf3fcBVBqizqv6SQQCgYCYybMsfGrx3ygqzvfTkxwy3kA+xWOm8thAIBCY9Uw+Q45Q55xBOoClY/5fAuyd4jGZSR57wMwWVmbHC4GDM3rWgUAgMIPMlhjy/cBqM1thZhngDcBtRx1zG/CWSrbF+UBvJRwx2WNvA66p/H0N8PWpnEwgEAgcDyafIXs8am/uXjCzdwG3A0ngc+7+pJldV7n/U8C3gJcD24Eh4G2TPbZi+uPAzWZ2LbAbeF0sTygQCASqYPIY8hRziGcCd/8WZac79rZPjfnbgeun+tjK7YeBy2b2TAOBQEDDpA65ENMMORAIBAKzaIYcCAQCL3QmV3vzIC4UCAQCcREcciAQCMwSIrIsQsgiEAgE4iLMkAOBQGCWEBxyIBAIzBJCyCIQCARmCZPPkEvBIQcCgUBcRMyQQ8giEAgE4iIihhxmyIFAIBAXk8+QQ8giEAgEYiNs6gUCgcAsIWzqBQKBwCxh8q7TpZn5mQ5m1mZmd5jZM5XfrRMcd6WZbTOz7Wb2gTG3/7WZbTWzx8zsa2bWUrl9uZkNm9kjlZ9PjWc3EAgE4mJyh+w2Iz/T5APA99x9NfC9yv+/gJklgX8CrgLWA280s/WVu+8ATnX304GngRvGPHSHu2+s/Fw33RMNBAKB6TCpQy6VZuZnmlwNfKHy9xeAV49zzCZgu7s/6+6jwE2Vx+Hu33X3QuW4zZR77gUCgcCsIyJkYTPyM03mV3rnUfk9b5xjFgN7xvzfUbntaN4OfHvM/yvM7GEz+6GZvWS6JxoIBALTISLtbWYGMbN3Au8cc9On3f3TY+6/E1gwzkM/ONUhxrnNjzqHDwIF4EuVm/YBy9z9sJmdDdxqZhvcvW+KYwYCgcCMEkuWRcX5fnqS+y+f6D4zO2BmC919n5ktBA6Oc1gHsHTM/0uAvWNsXAO8Eris0psPd88BucrfD5rZDmAN8MCUn1ggEAjMILM+ywK4Dbim8vc1wNfHOeZ+YLWZrTCzDPCGyuMwsyuB9wOvcvehIw8ws/bKZiBmthJYDTw77bMNBAKBKoklZDFNPg7cbGbXAruB1wGY2SLgM+7+cncvmNm7gNuBJPA5d3+y8vh/BLLAHWYGsLmSUXER8FEzKwBF4Dp374rziQUCgcBYJnfIxbhOY2Lc/TBw2Ti37wVePub/bwHfGue4kyewewtwy8ydaSAQCEyPiBhyXKcRCAQCgYiQhU929zEQSrADgUAgilkfsggEAoEXCifCpl4gEAi8IJg8hlwMIYtAIBCIizBDDgQCgVlCRAx5pmbIgUAgEIgipiyLQCAQCEQRUww5EAgEAlGEkEUgEAjMEiZ1yB+9JhPSIwKBQCAmJlV7CwQCgUB8WEUeOBAIBALHmTBDDgQCgTFM1ME+lrHDDDkQCATKVJpWPA1cQbkT0f3AG939qTjGDzPkQCAQ+DkTdrCPg0mzLALwue8jXUJcsVR/4a0Z7Zfa78wujT5ommzvmS+1f3rLDqn9xpFDUvsAz2fH7cUwY+zub5PaB1jS2C0f48w1836HiZsuj9fB/jz5SVUIDjmCNQsGpfZ7bI7UPsBC75XaX9L7uNT+/ZmLqc/mpWMM0CS1P6/7Ual9gANNZ0vtN2ZHpfYBmhL6pu8RTZcjO9grCQ45gpPSz0nt99MitQ/QVztPar+lVJDaj4O9g9rZ39x27ewVoDCsjUBm0b/PtXntam4KTNrBXk1wyBEMJrQzJ3d97c2h/Fyp/TmFnVL785q0M3yAJNpuDMPWKLUPMNiblNpvqdF3rNjDCvkYCye/+2cd7IHnKXewf5P8pCoEhxzBSCkrtd+QGJDaB8glMlL7/Q0LpPZHitr3ACBhWq3ZRFKvZZtJalfWSdOv3E8efUw+BrxkwnsiOtjLCQ45guGC1hnUZHJS+wBF186cOhNah1ybGJHaB3BxE4WWfKfUPsCBniVS+3Pr9UlZNT375GNEMVEH+zgIDjmCMzq/I7VfeOCnUvsAT1z151L7o0Xtx2hF8lmpfYCSaZ3Nk/l1UvsA2bTWfltGHzrKNWuzaQDq5CNUT3DIEeQbtJs96XMukNoHvcM8OaNNGetJaGPgAN2j2r2CbFIffz1p7pDUfgptpgtAsqjP5JjNBIccgfmJ33pbXYxZTGinZgXXf0znZrX5r7sHtJkuAAvqe6T21RufALePXiYf43XyEaonOOQIiqkaqf3hdv3sL1nSbijV5Xqk9g8ktTFqgFxJu/HZPSSOJwCnZbXZWQXxhRegf+iFXTwcHHIEnQ3aNJym/GGpfYCGtHZTbDDRKrWfdv1SWb1x2FKnj1x2pbTx16ZSl9Q+QO6FHbEIDjmKWx/R7lz/9mpt4QlAXf2w1P43n14jtQ/w1pZbpfZ3zztXan9pQ6d8Fr5z3SVS+2u3aje4AVYsiMMjT/w+mFkN8CMgS9k/fsXdP2xmHwHeARxJl/mTSjbGjBIccgSplDYdarBWXzqt3oy5etUTUvuNA/sp0CAdY7ioDU01JgdIJU7sisY4Ysg/1VeYc+XGSe/OAZe6+4CZpYEfm9m3K/f9nbv/jfLcgkOO4GUbDkjtpwr6GcFh2qX280lx4UlzK8uf+750jIHsi6T2l4/oRaRe/H9eJrU/UNSutAAuOyeOi9bEn1cv6xEfqdZKV36ClsVsIS/e4e9N6zf1atAWn6gzCNbVbefQUq1wTgtaEaniqPaiBTB09e9I7Wfz2tcI4qkGNLN3MrHa2xFN5AeBk4F/cvd7zewq4F1m9hbgAeCP3H3GU3OCQH0EP93SL32B5mR6lOYB6C9ol/sDee1yH2BZrTaDoK+kzUNu9/1S+wAjqXqp/daB56X2Ae4tni8f46oz01OKQ5pZC/A14Pcpx44PUZ4t/zmw0N3fPtPnFmbIEXzrXm3p9K9fqHdm+ZK2dLpvRDv7O6tpC+rw5WBBm6FQk9VmogAs6H1aaj9X0yy1D9DTP3tckrv3mNldwJVjY8dm9q/ANxRjzp5nP0v5tQu1+qytpk8lSqZbpPbrm7UpY13MY80zt0rH2LdKm03TMaiN4wN0/OpVUvtLf6iXd3hV4uvyMeDVE95jZu1AvuKMa4HLgb80s4XufkRo4zWAZCc7OOQI+ka1+aOFlP4tyCa0G4eLctrS6YYDz0BWu5LoGamV2l9Tv0tqH+C5Fu1nqb6o17IoJfXFJxEsBL5QiSMngJvd/Rtm9u9mtpFyyGIXIAnYB4ccwfwa7Qx2z4B+5tQijorUde2JPmgaeEIbcomD5/OL5GNs+uhbpfZ7SvoCncEm/es0mTK1uz8GnDnO7W/WndHPCQ45ArWOQiJx4m+qPjlfm261ZvABqX2AnmHtzOzQgD7LYu0abXGLWqIU4FAqQj5+BtAX4ldPcMgRHM5pd9+LJX3t/r5+bbeK5w9pZ7Ctq1dJ7QM8erc2/3X5Ur1Drtt5l9R+/hxtjBqgLqFPrZvNBIccwd4ebWxx9dweqX2AzpI27W1Ju3aW7+gvWrU12ovK3CZ9ldvAAq1SWi6l1+OoG9U3OZ3NBIccwaVtD0nt72Gl1D7AukZtz7sR035Rl267XWof4JqztLrUCde3cGrccq/U/sFT9cKVKx/6qnwMTtmoH6NKgkOOIJ8Ut3BK6Fs4FUwbH5ULlyf0M+RsQSvu3lejr8j0Fv0GsRpfqu/OPZsJDjkC9Re1VyyaA9Aobr2j1kMu1esLEvJJbSpKuqi/8B5afIbUfsr0OhPd80+RjxG1njOztcB/jrlpJfBnwBcrty+nnPr2+pkunw6l0xFs3dEhfYHiSHtbXa+V+EyX9M6mblibfvhc3XqpfYDGZL/Uflde224MoDWl7axSV9C+RgCL1p4+5XSRSj7y88B5wPVAl7t/3Mw+ALS6+/tn8tzCDDkCtcOMI+0tZ9qNyTt2a/WQX7Kig/4Gbenx7m6tM1va3E1fUZuxo5b3bEgMyjdYe5L60M4xZjpfBuxw9+fM7GrgpZXbvwDcBQSHHCfq1jvtDfrZZV9Bm/Z28JA2g+CWQwu5duNj0jHSSa2WRc+IVvgHoDmrDa+lXf9Z/eojS+VjbFg9udrbUbwB+HLl7/lHyqfdfZ+ZzbjMYQhZRKAOWSzr+LHSPAAPtf+q1P5wXntdP4fNUvsAoxltLP97h8+S2gdovkQbf1299Q6pfYBFnY/Ix2g4/1VTVXvLAHuBDe5+wMx63L1lzP3d7j6jS7cwQ45gUe8Wqf18o36JVp/WCounxM0vt7GRtblHpGM0dmr1OJa369tcbfzMb0rt742hY0gxo891PgauAh5y9yNdKg4cERkys4XAwZkeMDjkCKwoTumKQUxFnVp3eFgbEjkj+QgFcffv2kP7og+aBo2LtOEEgMSS5VL7mZJW1Q+gmNKmmR4jb+Tn4QqA24BrgI9Xfs+4NF1wyBEkR7SlnLkmbbcNABN3oGnIaL+oOziFVaVt0jFK7VpRm45+fQZE7fKXyMdQU7d/u36Q06NfJzOrA67gF1XdPg7cbGbXAruBGa+UCQ45gpFmrRRJPq1fog0VtVkWW/Zp84QvWfo0g7RIx+hfpG02mxzQ79Wosziakvqy5tLe3fIxpoK7DwFzjrrtMOWsCxlhUy+C3ofulL5A+5r1ifDfe1orvr7vgL5R6zterC3//kHHWqn9pjp96XRbnTY0VZfSv8+9OX0HnSvOyOpl66okOOQIHnmmU/oC5Uv6GPKc1GGp/dq8Npl/R2m11D7AGd/7iNT+XzZ+TGof4PcevUZqf9c7J8oMmznaxFWlAKesWjJrHXIIWUTQxiGp/ft6tDMzgPY5M74Z/AskS9qChIU1B6IPmiaJjFYe8/S1+q9a/enXSu3XpvR5yOr9jtlOcMgR1IrlAIdG9MI5Sdc6zJK4o0eupF/GJlu0cfDWOn23DRdra2dNH7KIQwR/NhMccgRD2Rap/ZqMPrZYNHXXE21+ao1p86gB8is2SO0XXe9o+hq03TZKMehSLxx4Rj4GaPdUpkNwyBE0De6X2i8U9QUD/WhnfwXTzpDbi9r3AGCoUZtN09+r/6odrtfqrqTRq73NBszsc8ArgYPufmrltjbGUXozs+XAFuBIXuZmd7+u2rGDQ47AxJue6ZQ+ZpYRLzWfOKCdcTQt1KdbqeUx5zfqZ/n7B7QX3uVN2r0IgJrDsyLt7fPAP1KW2zzCB4DvjVF6+wA/Fxba4e4bZ2Lg4JAjUMdH5zXqq59ac9pNsXMWaMMuB3J6idIFPVrxol2jZ0vtA1y68Amp/T7XF7c8teQV8jGi3gl3/1Fl5jsWudIbBIccSd2eJ6X2G1frdXiTo9oZcseQttpwbq1+hlzMaItnWtJ6HYjuhPbCVWP6ycP80V3yMcwuPBa1tyNMpvS2wsweBvqAD7n73dWeW3DIUaS0ecJdI/qOIYvEzqbGtRkEA/laasRFCV3NK6T2T2cHdz6n3S9Y2KjVgcjEUBjSVbtYPkbF+c5UUvU+YJm7Hzazs4FbzWyDu1c1iwgOOYoubR4y2o1xAAbSLVL7qYI2ZJEvJRkuaJ2NJ7Wl0/fs0NoHWN91l9T+nnnnSO0DHMjp1Q+rLDMaV+nN3XNArvL3g2a2A1gDPFDNIMEhR5A/+bTjfQrTJu3amY26U0UqUWCkoC3cyBW1K6GkPmOM/taTpPblzWyJp/gEqmoWMK7Sm5m1U27rVDSzlZT9/bPVnllwyBF0tGkbR5YG9PmpvTOrof1LqHf3Uwl9rnYmpY3xDgzqn4OaBPrnUPIYrlwRmNmXKW/gzTWzDuDDTKz0dhHwUTMrAEXgOnevugFk0LKIYOR7X9S+QMNaeU+AG+t+V2r/smVaaUyA9r2PSu0nxHrIj61/q9Q+QPOHXy+1n/3YP0jtA2wf0s7yAS4/ffaKC4UZcgQuTnsrzNd/AFtdO/t7tOdkqf0XZ37KSIs22F7X+bzUflta2zUbYOF7tRfevaYXj+8feWG7pBf2s58ChfoWqf1SUhsbBSiMaicEZ7Vpy137mUfjkL4oQUlXXp/DOzT3Aqn9RvTph+0N+tS6KmPIsRAccgSp7dqCgf6NV0jtA6SL2qhL3rQXlZTn6avTdoXuO0NbkGDi9wBgzc5vSu3vX3mh1D7EI78ZHPIJTGG1dlNvJK3/cBzo1oZd1rRql7I1JX2cvWZUq+k8XKt/n0fateGvhDj0BbC1W6spAqAvxaqe4JAj6G1eJrXvpt9V7u3X7o535lqk9hszPVL7AA17t0rt71+pLTwB2NlwutR+Y0J70QIYGJ4VWRa/JC405r4/Bv4aaHf3Q5XbbgCupZxl8W53v73asYNDjqDTtFfsVd/4P1L7AC9/5fuk9m/6sTY++orz9HKJt4ysk9q/yjqk9gGeW3ex1P7qrXdI7QO8eMkO+RiwKuqAz/PL4kKY2VLKjU93j7ltPfAGYAOwCLjTzNa4V7ecCA45AnVjx/TpZ0rtA+Rd+zZfca62MGSkoG9z1dunfQ71RX1s9Izf0c6Qh2Po5rF/VN+FfWXE/ROICwH8HfA+KkUhFa4GbqpU7O00s+3AJuCeas4tOOQImoY7pfZHxelcAHlxFdrapDYPebBWW3gCkMlo46/FRAy9E9/8Fqn9wRgE6udntd+3Mo3H/AgzexXwvLs/avYLWUuLgc1j/u+o3FYVwSFHkCxqy46znc9J7QMUl22S2r9vUDszW9OqLdoAGBzSbljVijcNAUopbbZLHJV68zu16ooAtmrVMam9mVkd8EHgZePdPc5tVS8lgkOOQJ1ulW3SdoQG6B/V9qRLJ7Vf1IMj2tLvODic1a+Elh8Utz9q0ZoH2NaqT62rQu1tFbACODI7XgI8ZGabKM+Il445dgmwt9pzCw45AnX7o5aaJql9gNGidqmZETvkkUKakxrUnae1F94v3d3Or1+ojSM/ufBKqX0K0JTSzvRPOXSX1D4Aa157TIe7++PAz4LbZrYLOMfdD5nZbcCNZvYJypt6q4H7qj21oGURQddjd0tfoP11kTu+02akpM0Tbkn2SO3H0Rq+tV+bBfH53doMCIAl87Wv06lzq574TZk4wiJrVi2btHR1rLgQcAD4sLt/dsz9u6g45Mr/HwTeDhSA97r7t6s9tzBDjsK0ZceDxTqpfdB3PC4k9RtWGdeW1O5v1OpxxMHK1m6p/ST6wpDOUX2JeVSbAHd/Y8T9y4/6/2PAx6Z5WkBwyJH014rb4qDXfx0uaGPIjXm9cI6aGrTVgIe69OlcPu7+0sxRRFvxCXDfM/oOOhdoU86nRXDIEQygjfGmTS/6PSJW6UoV9BeVnLjEPJ/UXrRqa/TObAFaxbpB8X4KwKEu/fcB9IJe1RIccgRDRW0/urkpcYsokL/LB5LaHN6Wkv41qhvVbrjV1+lzeLfmqmxONEVOqtOnH85t04e/ZjPBIUegbu0TxzvQNaqd2agVugaSLTQWtfHRfFK7iohl5ieWyxh1vR7yC32GHLIsIti39RHpCxRHBoE6trhH7AniEHffdoo2Zaz50Yek9gG+c5928nDtS3ZHHzRNmof2y8doO+3FoWPIiUoxoX2J4nDIKXG1YUNauyE26tlYYu1K+kb0szJ1WCQO+c3RGORooxhP7c3M/hNYWzmkBehx940VzYstwBH9gM3ufl21YweHHMHuojY+ujS1R2ofIFHSCucs3/cTqf3di14k3+Gfd562GvCJXn1stFW85xaHQ1ZLFUyRz3OU2pu7/8aRv83sb4Gxcbod7r5xJgYODjmCwVHtzKbGB6T2ATI5sfh6a9VaKlMijvbzlhTnaut9GQ112tVW0fTuonbg+LfqmkTtDSvXTr8euFQxdnDIEdRntFfsXFJfGOI12qXsQPbE15rINmrT3rIxJA+UStqLShzNFDrn6pOEG82OSVzoKF4CHHD3scIhK8zsYaAP+JC7313tuQWHHMH+fm1Ma11WLy40ktWuZdVL2STakAtAPqv9KtTV6EuCS+Ih4igMOZDTFmJBVeJCY3kj8OUx/+8Dlrn7YTM7G7jVzDa4e1VC6sEhRzCU0846tjVtlNoHqE9py44ffl4rzNNYq1/vL+saktq/pH5z9EHT5O8eOEdqf1O7PnR09q4b5WOw/p3Rx4yDmaWA1wJnH7mtIkyfq/z9oJntoFyd/UA1YwSHHMGyNu0XtS+nLTwBmJPukdpf2a7NsmjJ6LWEm9ZqLyq13doqOoD2OS+S2s+Z/rM6y7kc2OruP1OiMrN2oMvdi2a2krLa27PVDhAccgTLstov0tOF5VL7AHVFbRuq5ow2/trk2qIQgHmvEktXDmnfA4DGerGWhetDFt6jD+FFMVbtzcw6+Lna2xv4xXAFwEXAR82sQLnJ6XXuXnXifHDIEajjo2qtYoDakR7tAHVa4Zw42h+NLNSqvdUc0hdVLGzVhhQSpo+DFzpjkBKIYCK1N3d/6zi33QLcMlNjB4ccwVDi2PtvHQuFor5oKJvTzjoa6vUhBXW14VDdXK39ZXNpe0zbtbl5iXavIA7237dFPob2Gz09gkOOQC0uFAfDjdr4aLqodQQJ18/M2p7RFreQzkBTi3SI3d1a6cr2+foS9vl/+B75GLOZ4JAjaEhqN6zObdZ3YRgRzwnu7twgtQ9w5gJtLH//mtdL7S8p7JTaB2jLa0MWNSXtdwGgt2lp9EHTRN80rXqCQ45g1LWVenFU7mfz2i/SopZhqf2lNXrZxwHXvhOZnH5Tb1GjdgabKOnTDxsG1L0TAdbHMEZ1BIccQcm1m275hF7SsLbYI7U/v17rCEbJ0pbTqoA9W1gitd/bqC0vB2hEK4MaR1Vp62Pi0BHAWZfrx6iS4JAj2N6t3ex5ScMuqX2AvjptDHlrl7bF/TnNWxhNaVPrasTVgHnTq73lXJx+WNKnHx6+8HXyMSa7rJjZUsqiQguAEuWy6k+a2euAjwDrgE3u/sCYx9wAXEs57e3d7n57tecWHHIEz4izlc7eqG+LM2za5fh5jY9L7VPSpx/257QOc0Nen/bWW6+9MBYS+otKbV6fsRNBAfgjd3/IzBqBB83sDuAJylV6/zL2YDNbTzk/eQOwCLjTzNa4V/eBDQ45grpabbpVtqCtBAQoZLR5vA0D2nBCrkZ/0Zpbp42zp/q1cXaAVEkshJXShyzq+/X7BXDmhPe4+z7K+hS4e7+ZbQEWu/sdAPbLXeivBm6qlFDvNLPtwCbgnmrOLDjkCK46ZZfU/sGSPrZYj1bi87mWjVL7PaP6zNGzDn1Hav+hVnElILCnU+swX9L+pNQ+wOg3vyofwza9YkpqbxUJzjOBeycxtxgYK1TSUbmtKoJDjmDviLYKbX6NPrczL84UqTHt7K81o++qUqjVJkPF0Rlm1RxtJkfJ9KXT9Zs2ycdw/0yk2puZNVCuwHtvhHLbeEvoqt/s4JAjSCW0RQl515cFZ0y7lK0tamfgA6YteADIZbUOOV/SO7P2rPjirq/PIf/MtuiDpknU1qeZpSk74y+5e9SUvQMYmzy9BKi6uCA45AiePqBdLl+6uCP6oGny1MAqqf2V4ohCgzjkApDOa2f5IzFoCXfm2qT2l2T0cfDnXvG/5GOcOsl9lY4gnwW2uPsnpmDuNuBGM/sE5U291cB91Z5bcMgRpJLapWbToD4RvimrzbFtFecI92b1ouWZB78vtb/ypSul9gGe7V8gtd+f0W+uduWOu9LEhcCbgcfN7JHKbX8CZIF/ANqBb5rZI+7+K+7+pJndDDxFOUPj+mozLCA45Ej2HtQ65FKL/i1Qxy8bn39Kar935cVS+wCJdm2udhzdNpY3avvRxSG/Oa9Gn+s8WX2su/+Y8ePCAF+b4DEfAz42/fMCc9dvNpzIbN7aK32BWtP6ktquUe3MZn6mU2o/jg2xEbQiUs8PaguMAObWaj9LtQm9mtyCr/6VfIzm//UPeonFKgkz5AjUasVDJb2a3MK0NqSQLOl73h0oaYseGlLaPOQl9Z1s79WGFNoQawmX9NrUo736/YLZTHDIEdQkc1L76YS+T5m6fXuTWBBmb91q+fvQk9fGLjt69bFR9UoiDt2Vvt3asAuUg8CzleCQIxgoaGewczJaRwNQN6oPiyhZNPQMh+pPko7RltamBu4s6EUf48gTVjM6qH0fZjvBIUewv1+rA9HQqk8lyie1M5umwV1S+3vmabspA6TFudotdfqwzoBY6bcOvR7yitdfIR9jNhMccgTLmrWShoUYdq4Pm3aRNm/ofqn95bu+zz3ztCpg2ZTWYf7kUf3G5E+YI7V//fn6FE3P6y9ckzGR2tuY+/8Y+Gug3d0PVcqrtwBHKlo2u/t11Y4fHHIEqYT2AxJHKlFLokdq/+Cyc6X29+SXkkGr9tY7opWunEY17ZQ5dY12w60vrXX4AE2rjrt4/Lhqb+7+VMVZXwEcLd23w903zsTgwSFH0JjUygE+P6zNfwVYkYtDQUvHOg7zbEbbJqq9Tr25qu8N096o3Y9IijWjAXL1eqc/2Tsxkdob5cKPvwPeB3xddW7BIUcwWNTqKIwW9W/BUE2L1H5zn7b8e1fLmWTRxnj1uc56hzw0qv0spWr1GUFd9dqqUoA5Zses9mZmrwKed/dHx5HgXGFmDwN9wIfc/e5qzy045AieH2g93qcwbdQ99QYbtLP89sJeulLaMXzC4qyZIZ3S1yLUpLRhnTgKdIZK+gtXxflOWe2Nchjjg8DLxjl0H7DM3Q+b2dnArWa2IUIhbkKCQ46gKatdBh4e0heGDGVbpPbVIvt7bAXiEDLtSW3+a76gX4o3iFMoa0f13TxyWf33IYqj1d7M7DRgBXBkdrwEeMjMNrn7fiAH4O4PmtkOYA3wwPjWI8YOpdOT85V7S9IXaGWrvna/N6cVLldnKCzM6Hf3HzykFf85Y+4eqX0AE+tjJtVXReCZgWXyMV52RmbC5UpF7e0LQJe7v3eCY3YB51SyLNorxxbNbCVwN3Cau1elhRpmyBEkTXvBGinq+5T9cshrZpmb0V5UzPVCvAe6tEXymTl6HYiCuKw5VdQXbSxt0OqilJm0oce4am/u/q0Jjr8I+KiZFSiv466r1hlDcMiRZFNigfoYhMtNfFFRK5kl/fjmps4EcSz3D2UWSe0nxM0aADpHWuRjrJvkvgi1tyPHLB/z9y2UwxszQnDIERRK2plTOqFfBmbEudT9eW0mSptrxZEAEuJVxHBGr2Wh1uPIZvWz/EzyxL/4TofgkCMYGtU65ESDftahLm7pG9XGqBMx5L8ODonjryV9ylhTWptNk4ghdNQzcvw39Y4nwSFHkC9op05x5CEP57Vx6qGzNkrt28Ofl9oHyBe0YZ3nCsul9gEWZrWbn+rUQIDHdui/D1dulA9RNSHLIoIntu+XvkB5138AH9ytFUc/7yStI1A3aQU4lNPmm/fl9NKVpzQ9J7XfU2qR2gfoH9XPkC/aUB8E6k9UmqvfMJ0Sna4vnW5r1C41G0y/YZUuauOXAyltQUJNapRcUZsFMeza0FHG9GGXpKk1RWY3wSFH0G8tUvtxVD/1Dmrj4N0t2tnl/Oq7qk+Zojjb5fCw1lkCDIxqZ+FxpKT9ZIv+dbpwEv2iidTezGwj8CmghnLl3u+5+32Vx9wAXEs57e3d7n57tecWHHIEc0e1zuCxwmlS+wA1Ga3TX1rYIbUPkEtpv6i7xR091OmTAKfVb4s+aBoMo88UuWCdXh88QldkXLU34K+A/+3u3zazl1f+f6mZrQfeAGwAFgF3mtmaajtPB4ccwUBWO/triqFx5KOd2k29pFhlDDPqxEUJ6s1bd3V3RhhItkjtx7Gpt3mrPob84klmyJOovTn8rANAM/xs2XY1cJO754CdZrYd2ATcU825BYccwSjaZWB/Xr/Z49rqb4Y/+49S+wD1b/tdqf10SvsanTV3p9Q+QKaonV2qVykAl52m3bMBMGs/ZrU3yiJDt5vZ31DufXxB5bDFwOYxD+sgohRwMoJDjqB7VNsWZ35tj9Q+wItO0RZu7Dzlc1L7Zx+8DXq0ms4vT39Nan+0T68a2N2k1YEoxdBMYaSglxI4VrU3d+8zs78A/sDdbzGz1wOfBS5n/Kq+qq/uwSFHoN6MaUxrldLiGkPJM4svY82O26RjeFrrCLLdz0vtA4w2rZbaz7o+vpuKoTw7iqPV3io3XwO8p/L3fwGfqfzdASwd8/AlUP0udHDIEbTVaj+Ew0V9mk/RtbG/0w98W2qfRJJSfbN0iP0LNkrtzz/4uNQ+QPuQNg95JKPvnD0ndVg+BrRMeE9F7e2zwBZ3/8SYu/YCFwN3AZcCz1Ruvw240cw+QXlTbzVwX7VnFhxyBOpeay01+llHTUq7ITY4d4XUfuOOqqRlj4nRRdpY/oF5+myabFG7EiqZPmTRW9JeeKfAuGpvwDuAT5pZChihEoN29yfN7GbKLZ4KwPXVZlhAqNSL5Kv3aXfEFjXpiypK4h1+tV7xnF79hlhnyyqp/YV7qp40TZkdiy+R2m9x/ez1QGmhfIxz1raGSr0TlYFhrTNrnxvDhzzXLrXfNKzttpE5qF2KA9TWi1tEPf2E1D6ALX6p1L66SArgWw/oc53PWSsfomqCQ45g2RxtSKF1UF+FtrDnQan9m/Kvk9o/bYW+NfyChPZ9KJ59sdQ+wHPrtGOcvPVOqX2A9Sfr87VnM8EhR7Ahod2MSY7oC0Py9dqUqwVoNQ7qkvo4+5780uiDpkFGvDkM8OL/e6XU/h7XanEAtMTQ2RpxbcF0CA45gqK4LU4cDNbPk9pflxLv7qOv3mrPaAsS8kW9E2hev0FqP2V6XequwRP/+zYdgkOOQF0u+nT9OVL7AGsH75fab+nXxsG3L7pUah9gxZZbpfZHtz8TfdA02XX1H0vtt+X0nVse26adPAC8/kX64pNqCQ45gp60dkNsdf8jUvsA+5pPkdpfVHpSan9F70Nsb9ZeuEot2vc5dU47g3NOko5RX+qT2s+l6+Spb+ds0KfWTYaZ1QA/ohzXSAFfcfcPm9nrgI9Qbsm3yd0fqBy/HNgCHFF22uzu11U7fnDIEaTR5vCO1OjzLrtGtWMszWlbBz059zLEHe5JPK9Nres66yqpfYC6XI/Ufn+NttEBQH0mjp56kzr9HHCpuw9UKvZ+bGbfBp4AXgv8yziP2eHuG2fizIJDjqC/pE3Due/Qcql9gFfv+HOp/cQirYbCabtvZWjBydIxvrtau9w/M6GVxgTYfObbpPYXPfUTqX2AxfVxVOpN3J3by4UZA5V/05Ufd/ctAOVCPh3BIUcwv6RNh3om2Sa1D5BYslxqP984R2q/u3Wl1D6AjWoLpA6jDYkArHyV9sKozweCRu+Rj2G2eFK1NzNLAg8CJwP/5O73RphcYWYPA33Ah9z97mrPLTjkCNTdguc36T/mA41a0ZkRcYv7hBfJ5rVhkTl12rS0oYJes+SUN71cav8JcVcVgJYYqjKj1N4qpc8bzawF+JqZneruE1X27AOWufthMzsbuNXMNrh7VQH94JAjaDrwtNT+7sTZUvsAZzRpBeTnHNoltX9gydkUstqd8d5+rcNc07xHah+g/+HHpPZrz9BPHrY2Xygf49wpHufuPWZ2F3Al5RjyeMfkKMedcfcHzWwHsAaoSoAlOOQI9i47T2p/yaC+YKC7bonUfrFRmz0A0JDvkdr/yaPakEXN2XqNBv8PbUXmvLfqJSBO232rfAzWvnXCu8ysHchXnHEtZc3jv4w4vsvdi2a2krLa27PVnlpwyBG0Dmh1bPel9F2n53Zvl9p/rmWj1H7SinSntfmpr71AK/K0wPV6yC1/9hqp/V3qVBcg37pAPkbEWmgh8IVKHDkB3Ozu3zCz1wD/ALQD3zSzR9z9V4CLgI+aWYFyk9Pr3KtvVR/U3iL4Znqt9AWa90TUfsH0qU1ql5pzC9puHgD3D2rlK+99XOtsblj7Lal9gM52reaHm15nonlIX3zSdtqLg9pbYHzU4vEAdabdECuIy8t3FVbQWquNg29Yre0MY3ltPjvAfZ3a1MBz51W9Ep8yhaR+83M2ExzycaY+pd8oqc1rl+NWfQuxKdGcGYg+aJrMXdAttf90SatVDNA6pM0IKk5eUDEj1A4dko8xmwkO+QWAultw44j2SzQcFfWbAbqK2tS95ox2lQLQXqctnS7F4JDzmXr5GLOZ4JCPM430ysd4uEvbDePiGm3HkBXFrVL7AMWkNq1uxPSO5plBbbbL6nrtKgLgn558kXyMPz1dPkTVBId8nGkZ0AvUm2kdcjGllZZs3KIv2fWcNnT0+IY/lNoHKJS0m24F00tj5nLHt+v0JOJCH6HcV6+zcuifuPu3Ko+5AbiWcpbFu9399qrHD1kWk6POsmh45GGleQDOyGv7uf1330ul9pfN0TbvBDi3R9s5O9egF+b56TnvjD5oGqza+j2pfYChol77+qw1cybcSa90na4fKy4EvIdycciAu//NUcevB74MbKIsknEnsKbaRqdhhnycKZX0WRZW0ipoLWrVzi7jiL8OtGqX+11ZfX7tuX+sLWI6EEPHkJP79R3G4VcmvGcicaFJjF0N3FSp2NtpZtspO+d7qjmz4JAjOPm1y6X2t4zoxbIHm7RFFZ7TXlSSpl/GWvWd26dmX5yJAtB0/iap/eddv6mXHNVXrkYxnriQmV0FvMvM3kK5LPqP3L0bWAxsHvPwjsptVREc8nEmDv3XoZQ2g2CoX/sx2jk6l7ObnpKOUd/TobVPB7vmazes9m94mdR+Gv1nNTGsTdEEMLNJ1d7GExcC/hn4c8qz5T8H/hZ4O4zbUqjqq29wyMeZOApDmnJajdlMquoJwZQ4te5peSut0TptI9h8toH2Ua3Tz4xo096Gm9dJ7QNYp77qM0rtbcxxPxMXGhs7NrN/Bb5R+bcDGNshdwlQ9U59cMgR7PmJNgtiaFT/FhRqxSldee1S9oHedZzTvEU6RjKvXSqnh3uk9gH2zNeGLJJowzoAzNXH2idjInEhM1vo7keuFq/h5+pvtwE3mtknKG/qrQaq3kUPDjmCkdu0WRDZ8/SzjtzWb0rtX9n1ean9npPOkrdw6pizUWp/2UFto1mAeYNaLeFD9XpVv//gLfIxfnvyuycSF/p3M9tIORyxC/gdAHd/0sxuBp4CCsD11WZYQEh7i2TX9qelL9CT635VaR6AZVt+JLVfb/rS5pqCNtNiVKyh0Nq3W2of4NGsNka9qOag1D7AiOvT3k49eUEQFzpRGY6hwkpNV067qbeq58dS+yON+tbwPXXaPOGDdVOVRa+e/d1aZ7agJoaOIaU4tCyOb1hkMoJDjmBJ16NS+3r9LHDxxmHikHYjpu7QPnrWajtJbOvS6lKvbuuMPmiaPLZN65DPa9enpH1/36nyMd6yRj5E1QSHHEE+q51dxkFzVrvc/4tubYXYO16s77PWVKtVSlvaN1FLtpljycLLpfbV/SUBTp6nT3uD2fudDg45gseT+p53ahoS6kq3Jqn1vXl9+6OT6rSz/AeGXiy1D/CbbVoR/Kc5X2of4Kw9X5GPwbq36ceokrCpF8Gdj+WkL9Bpaf3MSS2/qe4kUT9SdUecKaN+DrtSa6X2AbIJrQj+aElfOr3Yn5OPsfCUjWFT70SlrUabQdCX1IvO5FyrxnZSzyNS+4datZ0wAFIlcUePGETMOvq1xS3LmrQFRgCD1iwfYzImUXvbCHyKcku+AvB77n6fmS0HtgDbKiY2u/t11Y4fHHIEq3s2Rx80DbpbV0rtA3QXW6T2089pizZyrfqNnrRrBZK2HdQ7mnMXaSsB1dWSAJ+/W1v1CfAXk6vR5oBLx6q9mdm3gY8C/9vdv21mLwf+Cnhp5TE73H3jTJxbcMhRmPZDeKCkj4+OFMVvc4M2hhwHzxWWS+3PadDrQCzo3RZ90DTobNbqas8GJlF7c36+WdLMNMqjJyM45Ai2Nl0gtd+b0yfC54va+Ogzq14ptX9gsEVqH6Alq9Zc1oaNAG4b0GZZXNCiT9JMJmKQo40QF5pA7e29wO1m9jeUK/jGOoYVZvYw0Ad8yN3vrvbcgkOOoGdE6zDVXR4A5tZpsywaTJuq1J/WbkoCtKR6pPZ7kvrn0Fyn1ZqozesrMjMZ/fchSlxoArW3dwJ/4O63mNnrgc9S1rnYByxz98NmdjZwq5ltcPeqlJ6CQ47ghw+rr9hOU6P2bbjidO1yuafUwnBBOwM8NKh1aN2nXym1D3DW4/8ptf/Q2b8htf8wcOqW26RjDI/EIGA0xWatY9XegGsodw4B+C/gM5VjcpTjzrj7g2a2A1hDWTP5mAkOOYLLztZ+QDoH9EvZjGkT+vvy9VIB9vbMYeaJdfy10Vc47+HPQ0Fb6XbJv75Jan/bhdfTJc6SXThf37BhMiZSe6McM74YuAu4FHhmzPFd7l40s5WU1d6qju0EhxzB4jptyWvnwBKpfYAS2mVgU1obEsl5DcUYulUoGcnoq8MSZ10qH0PNr6zRV2XCisnunEjtrQf4pJmlgBF+HoO+CPiomRUoNzm9zt2rTpwPDjmCjDgdak6DOP8VvbjQyekdUvt9yTYSMbRxUtKbmCMfY6C+RWo/n9cXhrQNa1P3ykzskN39MeDMcW7/MfBLZbvufgtwy0ydWXDIEdTnuqX23fUas/WpnNT+YdMK81CCVuJQAdOxaPBp+RiPJrUC9fNr9RWTfSnxZwlok49QPcEhR+CmXSqnk/pNjPakVse217UVYs3WTWmKGzGzlWRBu9ICcHGCQhwdQxY8qm2mAMDJs1fuLTjkCJ5G29Gjd1i/qffosLb0+LRWbdyvRJID+XbpGGr6GxfJxzhzsKrO81Omw9dL7QN8Zd575WP8lnyE6gkOOYI42rerGRjRTp0GvUFq33AaU9rCjSXXnSG135XQi+zvr9eWHVtJ/124vP0R+RjjhIhnDcEhR7CarVL7O4f18p5zG7Vpb2lxWh3AYFGbh9y0SpvtkigekNoHOJTQdsKIY2N1KHnil+FPh+CQI8iO9EjtD+f0paLdCe3ueEuN9kuUNP3MLD1PGxJJVN/3csqos2kW1+p76vWVZodDrqS9PQA87+6vNLO/Bn4VGAV2AG9z957KsTcA11JOe3u3u99e7bjBIUfQ3bRMar928MQPidQltVkcSdM7M2vRpqUNpfWOJuPaisxEDO+DuojpGHgPZVnNI2/cHcAN7l4ws78EbgDeb2brgTcAG4BFwJ1mtqbaztPBIUeQM7GWRVE/Q26o0X6R6pNajYOEx5CDXNK+Ruo4O8Dq0lNS+12u35icN6IXqC/7zYkxsyXAK4CPAX8I4O7fHXPIZuDXK39fDdxUKaHeaWbbgU1AVTuswSFHkHVtueu8Jv2MoDatnTkNl7Tx3fb881L7ACNLtNk0dfI2WvDJ+7WbVX9wTlXyDMfEHX0vko/xxgi1N+D/Ae9j4uZ7bweOCJMspuygj9BRua0qgkOOIFPU5o/Gofam1stoymr1B4bT+rJjdQun/SP6LAs1xYReZ+KJp/UTlMnU3szslcDBilDQS8e5/4OUO4Z86chN4w1R7bkFhxzBPtPuvqtT0gAGR7RhkSUt2jzk3a4XRs+J+8X15/TOLCn+KFkMG5Nx6CFHcCHwqkpXkBqgycz+w91/y8yuAV4JXOY/b0baASwd8/glTEO8PjQ5jeA7j4xKX6A4Pn8/elhr/9qX7JbaL8ZQpaduHfRb39SK+AM8e4O2ym1Ns15nIuX6GfLyk9dM6VtXmSH/cSXL4krgE8DF7t455pgNwI2U48aLgO8Bq8Omnoj7t2inHauW6p1NU6P2orvwmbuk9refrHdmjQ3ar8KuD35Dah/g+UPaWf65WX3a25d2aPU4AN5bXeHqP1Ju+3KHldu6bXb369z9STO7GXiKcijj+mqdMYQZciR7tz0mfYEOJvQ99dQUSvrr+vzEPqn9H+zVlwX/euK/pPZLae1ewf7206T2gVg0S9asWnbc4yITEWbIEXQlxZsxMVwPR4ra+OW8tFaJLUcNA2i7NreLs10u7v+a/L1+uu1Cqf02Pyy1D+Ax5DrPZoJDjiBr2qIHp0ZqH/SVbnX5qtqHTd0+faTF3Ta6xdWGiT3aRgcADYu1qXUF9HrI9+9fLh9jxSxunh0ccgSD4hxbHzdrZmapEVfS5V27VG7t0grgAwzXiZ1NUr8UV+fMj5p+8pBNxxFCnbURi+CQo1Av9zMJbdEGQE1Cm0s9aNrZ5eDcM2nOa8MiJbGmSKlxNsuiT404Jg+N2ThKp/WSt9USHHIEHb3aooRFTfoKrhqxuFBTSdtJom5E27UFoD+nfY2KtfrS6cYhbRZErl7f3WbHfr2zvEKrtDotgkOOYE6ddrm/IKNPJXqsa7nUfsm1so8AbeL34ay27VL7Izl9Tz1MO4PtyWs3VgFesVKrx1EmOqNmHLW3jwDvAI5sBvyJu3/LzJZTFiE60rh8s7tfV+2ZBYccwZI6rcNUd4QGGC1ov6jzGrXOck6NdtMQYG9em364MqlfCTUdrrr7/JRItet3w4o2a1zS0WpvAH/n7n8zzrE73H3jTAw6a579bGXOoLYKrbden4fcKFZ7GxjVLvebsyd2Pz2A0aR+Q2z3gvOk9hMlveqeuqnwVBhP7S0ugkOO4JA4bjZS0n9R6zLajZK2bL/UfhM9UvsAneIWS3EI1D/dLZ7lt+hT9+r6tAVAAFa92tu7zOwtlEMZf+TuR64eK8zsYaAP+JC7313tuQWHHEFC3Gm3GEPIIpvUOuQG0zrkYeql9kGfTTOS1T8HE+ebZ2xUah8guWtb9EHTpEq1t38G/pxyec+fA39LWYZzH7DM3Q+b2dnArWa2wd2rirMFhxxBb1G7kZE2fdqburR54a6fSu13LjtHah9gRFx2PGdAG/oCuCCrnV0eRqt8CDC04QL5GBFr0gnV3o4cYGb/CnwDoCJMn6v8/aCZ7QDWUJ5FHzPBIUfQIN6M6S/o06H292u7njy86NVS+22JXql9gJ2HtXnCdX/3f6X2AZZd8+vRB02D3Ar9Z3Vz4Xz5GC+f5D53v4Fye6axam+/ZWYL3f3IFe81wBOVY9qBLncvmtlKYDVQ9e5qcMgRqKufkin9DBmxDsScTI/UfhyZKP3D2o3DpiVzpfYBnl71Kqn9eUV955b1TVpt7TJrqnnQX5nZRsohi13A71Ruvwj4qJkVKDc5vc7dq07MDw45gmJC/BLFUCmaSmgHUesVz83pHcH+Q9p+cYURffy1FXE1o+mzXQ6X9Beu5VM8zt3vAu6q/P3mCY65BbhlJs4LgkOORN0vDmBU3K0iKXbI23vms6SpR2a/I72SloTOPkChoH2NvvjiL/OHqb+XjjEysF9qH2C4VhvaySb1F67ZTHDIETx+YL7U/slz9fHRwZx2ZrO+XZsO1WQ98pVEc5P2NfrNx96FVlEE0otWSO33t56Eid+ILYf0vQdPrU6gPhaCQ46gQVxU0ZzSV6EVxJkii3PasmOAwWyr1P6yedpY/q7vPSq1D3DK8mVS+yPtehH/R7fq91Red76+v2G1BIccwUsSP5Laf6ZwltQ+wKkLtLHFJ0Y3Su13DWZhSDoEvzKs7ebx06d6pPYBdp/zBqn9FHoltpee9cLuYBQccgSZIW0pZ74mhp56KW3hxqGiVn6zsaZAXVobWxyp0TY5XXSufim+tVv7HE5v0etSL6rTdyUp9yKdnQSHHIEntA6zJoZNDLWObdK0GgcNGa14EUBfnXavYLhHHUGGmrQ2vBZHlkWKONJAoxlH7e0M4FNAA+W0t988Uo1nZjcA11JOe3u3u99e7bjBIUdQFJe8DuT1Whbqktr2Wv3GZN5P7I9qKgaBpDNTD0vt54r68u8dw/pqwClmIR+t9vYZykUiPzSztwP/C/hTM1sPvAHYQHnqfaeZram28/SJ/SmPgf4GrdZvk4mDo0BDYkBqf3u/dql8cuPz1KibVYhDl+3rtK8RQEdGK4/ZZvpwQnudfpMb2ie9dwK1t7XAkQ2lO4DbgT8FrgZuqpRQ7zSz7cAm4J5qziw45AiGktr4aL6gbxxZEHcMaavRVjN25duoS4nHyGljvOeetUFqHyA9qo3xqjNdANpdn0ttNq8atbcngFcBXwdeByyt3L4Y2DzmuI7KbVURHHIEm5/Xym+eMr9Hah9gqKjVsug8bZPU/tKn7qbk2vLpZVltNeD33/7vUvsAL75XqwORS+tDFntK2tQ9qFrt7e3A35vZnwG3AUc2f8Zbu1W93goOOYIr594ntZ8zfSXgQLJFPoaS0izuEjxVFj6pVcQDGCnu0tpP6h3yGff9k3wMTvmTye6dTO3tZQBmtoZySAPKM+KlYx6/BNhb7amZ+ws77y+Kn27pl75APcP6TT21YEuqpM0UieOCciinXY63/+/XSu0DLP29t0nt9yzQF4bsKmmrDQEuWNc4pSv8GLW3V5rZPHc/aGYJ4PPAXe7+OTPbANxIOW68CPgesDps6onIl7S740U/8Wd/hYS28qno+gyFnYe0s7/F9fpuyolRbWqdub6FU1Na33vwlxuBTIk3mtn1lb+/CvwbgLs/aWY3A08BBeD6ap0xhBlyJHc8mpO+QIWSXlrynMxDUvu1d82Y2NW47LnyPVL7AN2j2s3bU2//sNQ+QPGSq6X2R7L6rtMDaf3G4epVJ83aWVCYIUdweFA7+2uu1SfCj2SqmhFMmcZVVenLTpmM6QtDDg9pNz4Taf1XbUS86SaXoiUe7evZTHDIEVzYvkVqvxu9/uuzo8ul9osnaz9GP9i5Umof4E012ll+19ZdUvsA2Uu0IYU4YvlPHdaXNa/VpmtPi+CQI6gf1ibD70kvjT5omjRntHE5dUntnEZ9x+bBBu370Hyy/n1+wk6R2m9HXxiyorXqZhvHgH4SVC3BIUeQKGoVrgZdLwWo1rBdc0gbo17AQ9xV/2rpGGpGrvgN6u/7tnQM9QZ0HOSK+kKp2UxwyBGoxYVq0/oYcs+INj76g0s/JLXf/vh9zBXrb7p4c9UoMbjpKukYuw9rc9qXLNJnWawqbpWPAefFMEZ1BIccgdohl2JIcmnKajfFeqTWy5WADY9ohXOKSe1XobF3j9Q+QEu9NrTjpk9OOJDVVsZClJJFGTPbBfRTVnAruPs5ZvbXwK9SrtLbAbzN3XvMbDllIaJtlYdvdvfrqjm34JAjeL52tdS+5/QfchPLY57xO6dL7R9497+AuAGSia+MiS3asA7AnPMultpPlfQC9cNFfaHUMXCJu4/t7nAHcIO7F8zsL4EbgPdX7tvh7hunO2BwyBH854+1eZEvP0+f0qUm9a5JS1GnzeLSczyf0M6cWp68S2qfNv1G0uk935faf3rui6X2YXbHwd39u2P+3Qz8+kyPERzycUYtmgOwKKtV0EoNa2evI5lG5lcvDzAlSnMXSu17Rj/zy9XPkdpPm36/Ix3DnopZU5TaG5QFgr5rZTHxfxnn/rcD/znm/xVm9jDQB3zI3e+u5tyCQ46gtUW76zuc1weRLasdo2ZA23W6hk4OzDtVOoantdku6r0IgOdq10nt18eg3R1HYchkam9juNDd95rZPOAOM9vq7j8CMLMPUi6T/lLl2H3AMnc/bGZnA7ea2YYjHUWOheCQI2hv1cZ469L6uFxPqUVqvyR2lslSgWRJO3PqnqutNmzr3BZ90DTZ1a0Nr61p039WDw63yMeYSra2u++t/D5oZl+jLB70IzO7BnglcJlXdCcq4vS5yt8PmtkOyo1JHjjWcwsOOYJEQju7HMrr8y6XZLRav42D2hny/lp9pd6C3LNS+4mBHql9gJEG7ewyY/r+j2flfyIfAy6f9F4zqwcS7t5f+ftlwEfN7ErKm3gXu/vQmOPbgS53L5rZSmA1UNUHKjjkCJa2aTtVpBP6KrS2Hq38Zl+Ttj1RT16rxQGQqdM+h7qU1uEDzG3QOsy86ycPQ1/6nHyM5rMmd8jAfOBrVk7zSwE3uvt3Ku2ZspRDGPDz9LaLKDvsAuU0uevcvaqSw6D2FsG3H9YGeZc1Hoo+aJrsWvdSqX21+PpzPS1S+wDnNT8ptb/P9M07G5LaEvkE+sKQpVu11YwANa+4Lqi9naikEtoPof8P6IbRlNQ2pjyzTa+hMGJapbS9PVp5T4CTW7SrOXUJPsDgSdqcdii3AZmtBIccQSalDSnE8SFX013QbiYtMn2VW39S+xzSSf3sUj2DjWPyMJzRX7hmM8EhR9A9pO30kLQT/wOYTmh330voU8Yaij1S+6nEVAp2p8dwSTv3m+sHpPYB5ux9XD4Ga7RZQdMhOOQIFjf1S+2PFk/8t0A9c8oltOJIAOX8/xMbdZGROvUQwMTqirOdE98biMkmtDvX2cQoCbHWRI/UOuxdfyHznrhXZr+71MqclDaOPFTSxpAX1HXzdNc86RitNdoL497EMnnFJP09WvtTZDxxocrtvw+8i3JhyDfd/X2V228Arq0c/253v72qcUOWxeRs27FH+gKl0ed25sTbGEu6HpXa/9EFfyC1D3Dwu9rCjRct65DaB8i/581S+7Wf1Kekze1/Tj5Gy8aXRl65Kg75nLHiQmZ2CfBB4BXunhvTiXo98GV+3nn6TmBNNc1Owww5gvpir9R+X6JNah+gwbXPYU/rRqn9FVt+wM51l0jHuGqhVt5zT0Hf3n7x335San84hrBO5pEfysdg40urfeTvAh+vVObh7gcrt18N3FS5fWclX3kTcM+xDhAccgSPDayV2l/XrJ8RjJp2htxS0OZSP3zq66T2AbrT2nBCoqjPsvjq9tOk9l+55hmpfQBWaL9vx8B44kJrgJeY2cco68H+sbvfDyymrP52hI7KbcdMcMgRrGnWLjXN9V/Ugtgh39WpdQT8YCvNl2j7xdWXtLnUqaR+Q2zlAm1FYxxdp3/S8hr5GC8zm4ra2y+JC1H2l63A+cC5wM2VUunxQiBVLSeCQ44g7doYbz/NUvsANWgLBha1aOU3B8/cKLUP0NKvvfD2NyyQ2geoy2hn+dmCXu3t7kf0uc5TUXubQFyoA/hqRVToPit3fphbuX1sF9slUN3uZ3DIEag/hHmx7CPoU7qas9qS3eanfsLe9RdKxyiktKuI/dWtYI+JoVHt17mU1eeDv3ijfIhIJhIXAgaAS4G7zGwNkAEOAbcBN5rZJyhv6q0G7qtm7OCQI7h/ULscv+C/q2q9dUzUr9NKS7avPlNq/6eJi0nery0YeEws8jQypHdmL334z6X297z0HVL7AJmkXmxrCkwkLpQBPmdmT1Duq3dNZbb8pJndDDxFOR3u+moyLCCkvUXy5PZ90hdo5X2fV5oHwOZol7KlGm0OL8A9ba+W2ldrltSl9OmN67vuktrvbF8vtQ/Q5y3yMU5fPW/WCsiEGXIES/q0KmClQe1yH8CWaDd7OhedIbU/QBML6JaO8VyftufdwX69pE127gVS+3Wm/6yu6D5mTfcqeHkMY1RHcMgRFNPaL1K2RStqA5CvbZDaV+std9Tpm2tmUtoZcteg/qvWkNCW+SeqW4Uf2xgF/UpiNhMccgSdddpux0uHtJ2CAZ5v00oaLurdIrUfh4j/4/u0F625Lfr0xu/tXCW1/6Ll2ma5AOk52ucAoA+wVU9wyBEUXbsZk2hukdoHGClpFeu6m5ZJ7bdaj9Q+QG5Uq7qXFc/AARrrtKHRvOvdxZwHvyUfgzXivPlpEDb1Iti6o0P6AsWhMTs3p+2p15HW9ryrS2jzqAE6hrTymC1ZfQ7v+o5vSu3vXa5NPQS4+QHtihTghtcnw6beiUqtazcyRqxOah9gKKMtPhka1cbZ56X2Se0DuGszUfIlfdrbM0t/RWq/1vUXxpYm/es0FcZTezOzM4BPAQ3ALuA33b3PzJYDW4AjClVHeu0dM8EhR5AsafVZPYaLddG0b7O68KQroXWWAGlx/uv2Tn0jgvMW7Zbatxh66p2/St9jslxcNyUuGav2BnyGsn7FD83s7cD/Av60ct8Od9843TMLDjmCrSOrpfYzMWgcFEta4fLlddqQSAF9t+PhvDbbpblOvzG5rVdbDXhKs76V1prOH8nHYPVrq33kWuDICd4B3M7PHfKMEBxyBOqZ07wabX4twBOHFknt16T0M9jFKa3TX954MPqgabJvaI7Ufn9OX4av5jbXiwu9aWriQuOpvT0BvAr4OvA6flG/YoWZPQz0AR9y97urObewqRfB/4RNPXWmSMq0s3z1+QPs7tcWhnT26Wf5Fy1+Wmq/YPrnsHjP5uiDpkntS984FYH6RWPV3oDfBw4Cfw/Moaxf8W53n2NmWaDB3Q+b2dnArcAGdz9mCcHgkCMY+tHN0heob542JALQfL92953F+p3xHcuukNov/J5Wc3nB3/+91D7A4ZRWUa7J9as59X4HwPKT1xzTLMjMPgIMuPvfjLltDfAf7r5pnOPvohxrPuaywxCyiCCR10pLqoXRAVrEWhaD87TJ/Luza6pUl506q69+kdT+cFFfgeYp7WorDmfZ2qfdmCwzudjWRGpvY1o2JYAPUc64wMzagS53L1b0kVcDz1ZzZsEhR3Bo6VlS+/mSfhlIVpuWNpRtkdqfy0EOob2opJZqZ/nFpD6+25XTapY0Z7qk9gFSuQH5GFNgIrW395jZ9ZVjvgr8W+Xviyg77ALlNLnr3L2qFyuELCJ4fPsB6QuUMf3MqWVUu2HVmdbu7g8VaqX2ARYntDOzwaS+EUFvQZta15rShyyWPKvvqVdzxVtDYciJypZObQXXyjZtA1IAz2g/f0N5vcMsuDZ1bzSpfQ6jrp8h9+a0z6EtrZ8hj7Qvl4+h192rnuCQI5jXmJPab0n1SO0DtA1q2xMdSJ4ttV+XGiVt2vTD2rxWKc3T+klZTUobsoiD3oaF8jFa5CNUT3DIEaxLPiW1X/r//lZqH6Dr9z4mtd9a0sb9mmIQF0p98R+l9lt/7S1S+wCZWm1pc1O3NhccYCAGhzybCQ45gpJpc2BbztYrTw2gXe53j2qlK0vikAvAvFXaTb3BtD6s88iAtjP3BWl9DHkwpY+1z2aCQ45gMK39gDStWCe1D5BCq8exJqktSHg2f7LUPkBxnTbs0lejLTwBaEEbXivGEAevLWpDR7Od4JAj6Cm0SO0vKuk1DvpL2t33Q6Z1NmrxIgBPaZ3NqGs1qQH6RrTPIV+vn+XvLuqLjJZE3G9mLZSFhE6lnAH/dsp9n64GSpQr9t7q7nsrx98AXEs55e3d7n57tecWHHIE6tLmfQu1HZsB8gXt2/z48y1S+yva9bKPzzRoZ8htxJDDm9ReuOJo4dSaOeZq4yqI3Pz8JPAdd//1SqfpOuBJd/9TADN7N/BnwHVmth54A7ABWATcaWZrqu06HRxyBHVJrTNIuF7SsCahXcqeukibund4WK8Zvay+R2q/4PoCIBOXMyZjqDacn9f2Zywzcd68mTVRLvR4K4C7jwJHP/F6fl47ejVwk7vngJ1mth3YBNxTzZkFhxyB/EP+1++T2gdYfo12hz/Zr93s+W6bPkOhr6gN6xwe1qekrWzUZkH0oc3JB6gb1c+QbXK1t5VAJ/BvFUH6B4H3uPugmX0MeAvQC1xSOX4xMFYRqYPJPH7UuYVKvcl5dscO+Qs0//v/Fn3QNCht1LaHj4O7k1pxIYuhdiud1K6GVtXr9YqLiJUDXbsBDZOLC5nZOZQd7IXufq+ZfRLoOxKuqBxzA1Dj7h82s38C7nH3/6jc91ngW+5+SzXnFmbIEWSK2pBFyx1fVOvmMFKn1eE9kNVuxOwfaiUj7lax7XntptviuUVyBW364XCdNrSTMH14bV6vNmOnzKTiQh1Ah7vfW/n/K8AHjjrmRuCbwIcrx4/VRV4C7K32zIJDjmAkqW0anlo1ufLUTNBXq11q1oh7rS2vH6ZzVHtR6enVfhXamrTOGKCvoP2stqX1Zf6poTg29SbG3feb2R4zW+vu24DLgKfMbLW7P1M57FXA1srftwE3mtknKG/qrQbuq3b84JAjqClqm5wWWvTym+7a9fiIa9OhDuf0/ehamrVL8UUt+q7TSXF6YMa1UrQAiVF9Rs0U+H3gS5UMi2eBtwGfMbO1lNPengOuA3D3J83sZuApoABcX22GBYQYciSful0bUXjVd96oNA/A3uv+P6n9XFGfQfDwLu3s7217PiS1332J/n1u7nlOan93m1aKFuDLP9auhAD+4q0xlH5WSZghR7B4rrY9UaZRn9LVkNLO8m/brJ3lL16YIS3+pCYXavsOtnTr07lGa1vkYwS0BIccwb2PazcyLl+9Qmof4HFxc813nfuY1D7Adw9rCzcoaTf1DrRvkNoH+LcfRdWgTY83vfiQ1D7A8qUnfqPW6RAccgRXv0gb+/N79NVPI+JKvcdcK5DUlBlhTbt2s2e0XtwxxPVftQ2rtaGj0RiKW85Y0iMfYzYLcAaHHEG+pN3sSSzVz5D7R7TP4fR5B6T2Abb3aht4rqjRikgNFLUxcICWOm14LQ7UIvuzneCQI+jLiUVhSvrczs4ebcpVYp72OewZmkdtWutsciltLD+T0Bc8bNmt/TovP1VfOn1qRqs/XkavH1MtwSFH0HFYHNMa1m64AVy6QVtSu7DrCan90Vb97v5Nj62X2u/p089e//iMH0jtP1PQvw/b+k+Xj/HqiPvHU3tz93vM7PeBd1FOb/umu7/PzJYDW4BtlYdvdvfrqj234JAjyKrDZgl9wcD8Ie0O/8E5WmH0nhG9DsSZq7Wzvx88qH+fPaENTamFtgDqM3GELCJfp19SezOzSygLCZ3u7jkzG5tatMPdN87EmQWHHEHvgDZPe/e6V0jtg34G257XflEba/TSld/v12ZxXHymfrm/NaNdirfbYal9gCUN+kyOatTezOx3gY9XVN1wd0kr9+CQI6ir0eaQx1H9NNio7VNWM6xVe0sV9a/Rzg5tHNwX69O5Gtq0MqsubgUG0JLvlI9htuSY1d4oC2C8pKL4NgL8sbvfX3nMCjN7GOgDPuTud1d7bsEhR9DerI399Xir1D7AArRx6odTL5LaX1WzS2ofYPlirbM5bb4+E+XrD2g1S95xul7450f9+jh1xfl+eoK7U8BZwO+PUXv7QOX2VuB84FzgZjNbCewDlrn7YTM7G7jVzDa4e1V5msEhR1CT0uYJp02/2dOT1n5RTy1qC0P6E/p+dNm0uNuGWK0OYHhE+1nNpfVVpYfEGUFTYCK1tw7gq17WmrjPzErAXHfvBI6EMR40sx2UZ9MPVDN4cMgRNGS0y8Ck6QtDSq79kD9t2iq0+eiXsVcO3yy1//DoK6X2AS5+v3Z2mfvpf0vtA7x41X75GDBxTvtEam/ADuBS4C4zWwNkgENm1g50uXuxMmNeTVmQqCqCQ45gfkbrDIZdP+tImzYHVt13cH9uHnOyPdIxEiPasM7Ze/6T7855q3SMK/7zg1L7u2NwFzU2a9XeBoHPmdkTlFs6XePubmYXAR81swLlJqfXuXvVu9DBIUegbuGkdmYACbSz8IU12vho08ghxB3u8UyN1P59815Ds/hJFMTdxeMIu6ilXKeCuz8CnDPOXb81zrG3AFV1BxmP4JAjqM33S+3n0/rdd/UsvLmkTUsbTjdSMm2ObbpFm4nyzH79SmjVUq0eRz4GLYuVe38kH4OTX68fo0qCQ47gkRFtfHRJSp9je2CoRWq/WKuNUau7ZgPUdGq1hMVhfAAeGdAW6JzaVHVodMokBnrkY8xmgkOOIJvULvfnjXZI7QNsGVJ3JdF39FjRoC3/pld7YewVNzgF2Lh0QGp/IIb3Od+ulRAF0AanpkdwyBEUxVObxoPPRB80TdYuXia139GvzaVe3byXkmtDFl0/rSpLacpceb2ksOsXmD+6W2q/JFY+BLg3e5l8jMvlI1RPcMgRnJ56XGp/tEmbIwyQFiuNrW6uusnulKkravWQs81aecylfdrydYAfli6R2n9R3YNS+wCF0qztrhQLoadeBJ1P3Sd9gZIFfXz0udp1UvtJ8e77vKI4XAHU92kvKr0t2g03gGxB20yhkNBvQJfEAkkAi9ecNqnXrzQz/c8xN60E/gz4YuX25cAu4PXu3l15zA3AtZRT397t7rdXc27BIUfQ8/D3pS9QPtugNA/A02ilJRdltcn8DTn9xmfmm/8utd9/9e9I7QM8m9c2O1ib2Cq1D/C9w/rS6Te92KY8DTezJPA8cB5wPeUikI+b2QeAVnd/v5mtB74MbAIWAXcCa6rpPh1CFhEM1mtDCsmSvnS6a1C7jbEyod1MyorFiwAyq06W2t9p86X2Qd/dppTUz1479W/1sXIZZXnN58zsauClldu/ANwFvJ+yLOdNFSW4nWa2nbJzvudYBwsOOYLehLZB6LxRbboVQGev9m1+KqNNtzrX9KXTxcPaMbpH9Cuhzn5td5viXL276Dys76xilp1M7e1o3kB59gsw3933Abj7vjGayIuBzWMe08FkGp+TEBxyBAnTxkfruvVpbxs+eJ7U/ql/+36p/V3ztGpyAO0XajNFln3816X2Adr/7LNS+0OmT3t7y0v0WhZ/Mbna28+olE6/Crgh6tBxbqsq1BkccgTzBrXdNkYbtDNwgEMP9Ejtm3gfojevn13OEW8mLb7qIql9gIfz2mrAuWKhLYAU+hnyMXAV8JC7H9EGOGBmCyuz44XAkVzGDmDpmMctAaraJQ4OOYLMkDaoNVqn10NWs33eS6T20yW9Il7Twe1S+6VRvTMrinO10x6DQy7pO6scA2/k5+EKgNuAa4CPV35/fcztN5rZJyhv6q0G7qtmwOCQIyhmtLOO/jp1FZ2ehoRW76MpBonSQp12OZ5co2/eqRbCKib07iJx7IkJEsysDrgCGJse83HKwvTXAruB1wG4+5NmdjNlmc4CcH01GRYQ0t4iGbznVvkL1Ne6XGr/odN+Q2ofYP3Wb0rtD7o2bKGucgNIj2rzhPc3ajNFAGpdK1Pa2qd/H5rOumLWVp+EGXIE/a3ahP5CQq+gpeay73wQdv1UZn9g/moaxSL1w9lmqf05e7VdVQDmpLXSlbm0tpoRwIqzKoYcO8EhR1A/oNX6TYhnTQB2r7Zs97lm/c74UEnrbOaIHf4PLv+w1D7Artu2Se1fvFr/Pu9p0OquAOhzdqonOOQICupZR4O+YKBJvFGy9Pljzn8/Jh5pv0pqH+BwSq8poubKtVp5zLzrS6cXZPQiTHGoE1ZLcMgRlJLakEIcHUNSCW01oG/TLsfP2PYY+y69VjqGuhuGXn4JOoYn7hU3Eyyq0RfoHMjrL4zaAvPpERxyBJkRrcrYSFOj1D5Ac1Jb2tz/kl+T2t9jK8p710IKpePe7XjaqB1mEX3p9Ib+n8jHgJdPeu8k4kJzKJdJlyjnIL/V3fea2XJgC3AkZrTZ3a+r5syCQ46gq0V7PU2W9JsY6p3x3vRcqf0m+unNa5eZqYReQF5NQpweaB7Da2TH/8JY6Ta9EX5BXOhrQLe7/2nl9ndTdtJHHO8Od9843bGDQ45AHVJIxeCQ+xJtUvsLB7Qi+/vqV9OQ0l5UhkuzuY/E1FB/lvKmjyFvbx6vt+jMcuaxHf4zcaGjbq+nyvLoyQgOOYK5h7SSgz1tK6X2AXau0wqXl7b8UGof4MBwi9R+vqidmZ265TapfYBHe7R5yGta90ntA9zyE/2G25mrj+nwseJCmNnHgLcAvcDYL9YKM3sY6AM+5O53V3NuwSFHMNhclWjTlDkUgyyjmpN6HpHaf7DmYpKmrc9ZW/e01H4Rfb75okbtfkddSVuRWUZfuWpmU1J7G09cyN0/CHywIkj/LuDDwD5gmbsfNrOzgVvNbIO7H/MbEhxyBGrhnKHC/4Cl8oBW72NRq353f/eotgBoUUI/u5yX0OYJ55Naec+48CmqvfHL4kJjuRH4JvDhig5yrmL7QTPbAawBjrlRY3DIEahbytQm9YItas3vn855jdT++ry+U8Xtzy6NPmganDZPK14E0NusLaroKbRI7c9CfkFcyMxWu/uRDZNXAVsrt7dT7iRSNLOVlMWFqkoKDw45AvWmXqNYmCcO5tRon0NPQp+bOkdbOc3OFv1m1Yru+6X2+9q0m8Nl9FKrU2EicaFKSlwJeI6fZ1hcBHzUzAqUe+pd5+5V9R0LDjmCwbT2mzri2krAOGgQt3Aadf1SuaFGm9KlbnQAkKvTOsyU6duNzRbcfYhy3vHY28ZNuHf3W4BbZmLcoPYWwdM7dktfoB19C5XmATg7+6jU/p6UNlMkk9CnBqZNO0YcwusHR7X54KtLT0ntA3TX6L8Pa1YtC2pvJypzB7U9757Ma7M4ABr6tRoHO7PaTsGb2rSiOQCONu0tDuH157qWS+2vadbP8p84vEQ+xppV8iGqJjjkCGp6tLvjNY36D3ni4GGp/V1iX3PuHH311vZhbZbF2qx+U2/fIa39RKM+ZNFcG0fHkNmb2RQccgTfymqbUy6u0cZfAfpXaGewDR1ah/ntHWs5ban2dXp8pzZO/TgbOHW51tksW6ANPyYL+oygxc3iqwpQbnk3OwkOOYJ8YdaGm6ZMb4022b4onuSfumyIgmudvonf5vlz4NCAtvS4vVHrMC2v328aKp74m9zTITjkCE5q087MalP6WUd77w6p/VesjmHTraR9nRrXLpLan4e+MMTFwjy9Nfr9ju8/rm/6e9aaye+fRO3tRcDaym0tQM8RQaFK5d61lNPe3u3ut1dzbiHLIoJb7y9KX6C59SNK8wB0DmhjZq112qX4vVv1aW/9A9r46Osv7JHaByiIu04vKun73cXR0mzJmlOnvB4ao/Z23liBITP7W6DX3T9qZuspF5Bsotx1+k5gTTWNTsMMOYJCSbuWjWOGXJvRfsjbstrCkKvO6Ofu7dqwy+L52teoNjEstQ/6DIVFTXqHPJScdd08fkntzcwMeD1waeWmq4GbKiXUO81sO2XnfMytdIJDjqAurdWYHSnoJQ3TyRO76OGRffNpbtCu5NR7BYOlOql9gIasdpYfx+x196BebCsiYnE0v6D2VuElwIExZdSLgc1j7u+o3HbMBIccwUBOuwysz+pTun7woHaMt79Eq1V8waJnebBT2yigd0DrkEviTUmAlhr9LFzNXQ/pN9GvOKN6tbcKv6BxAePqK1Q1gwgOOYJMKsTYo+graZeZ+webaazRzv4GarQrleGCPg7++B6tDsTrFusr9RbM08/Cp6P2ZmYp4LXA2WOO6wDGqlMtoco2isEhR/DAk9qQxUVnnvhvwSmP/YfUfs3G10ntAyxu0DqCOHQgarJahxxHC6f9B/UZOzDli+/RM2GAy4Gt7t4x5rbbgBvN7BOUN/VWA/dVc2YhyyKCrTs6pC/Q/uE50QdNE/VbvKhOm8y/e0AvWp5JaS+8d9yvv/CevFw7y7980RNS+wBz9j4uH6P2pW+MjItU1N72ACvdvXfM7Z+n3MT0U0cd/0Hg7ZTb8b7X3b9dzbmd+NMzMRm0WRCZpH7mpN50Gyppk/kX1PdI7QPsG9Tnv6pJiMOvNvMt5H6JQr1YB3WKjKf2Vrn9rRMc/zHgY9MdNzjkCEpi0ZmhvD7LorVGu+nWalVJv06ZxLGncx4zBxNqR6Df1FvUqp08qLXBAbY1vUg+hl6ZunqCQ45gS4+2k0QqoZ91dA5pY4trClWFy6bMrpZj7BNcBYM59WaS/qJSl9YW6CRL+tWcxfB9mM0Eh3ycUccuAdy1M5vDLVo95GQMziyV0G9YqZGvtvSLObKJONTeZi/BIUfQ2at9iTYt06tb9ee1RQmtfdoKLm9eLrUPsKxJK1H6U/Ttj9Sbt3E0OW1ydQdIgAUxjFEdwSFH8Jo5PySfrpfZt9ESJdMWnzzedZb0y7qtcDk54cSmbgAGhnT2Ac5fdYhiSfc+tLWmSYrDyPt6jFRS90avaKjBTFwx6Rn6C7oQW2NKL3c7HYJDjqCYzJAo6XIjcxl9U0d1WfD8Zm3uaE2qAOIkCKUzBqir0W+IrWzXbt4mKVZZfzZ1uke1RUZTsW9mfwD8NuVn+zjwNqCOsgLccmAX8Hp37zaz5cAW4Ehbm83ufh1VEhxyBL112tp6dXwXIJPWfovm1Iqnr0AmqY0tzv15MZaE5oYWqX2AB7ZrQ1PL1umLNmpSxzeGbGaLgXcD69192MxupqxnsR74nrt/3Mw+AHwAeH/lYTuOyHBOl+CQI8i7dicjjlSikVHtGMv//T1S+3uu+QRFsbTkAbR6yId6pOYB+NVTd0rtl8SrCIA0s6KzdQqoNbM85ZnxXsp6Fi+t3P8F4C5+7pBndODAJDxxSPtFPWuu9ksUB02btJmdG7bcyPYN2lZaraVOqf1Tl+k7YTzVvUxqf2PT01L7ADUxyJSaTSwu5O7Pm9nfALuBYeC77v5dM5vv7vsqx+wzs7HloyvM7GGgD/iQu99d7bkFhxxBc412mRZH0YN6M6nUrc1Q2HrBu0CclZYW94s7NKjPUGjIaj9LcWhZ1Bb1m26TiQuZWStlfeMVQA/wX2b2W5OY2wcsc/fDZnY2cKuZbXD3vmrOLTjkCFY0VCXaNGX6XV8qetYibfug+9reJ7XPKPSLCzf+e8sZUvu/dcEuqX2A/35CK1G6br0+ETnpxz1kcTmw0907Aczsq8AFwAEzW1iZHS8EDgJUROlzlb8fNLMdlCWXH6hm8OCQIxh27UZJHJt62YS2TZRaKyOdKJKt065U8gVtm6tsQb/xeahL+xrFoWXRY3qxrYja293A+RVxoWHKHUMeAAaBa4CPV35/HcDM2oEudy+a2UrKSm/PVntuwSFHoHaYamcGUFfQtlg6NHiS1D7A3HptbDGd0r7P/Um9eFEmrY1NJYXpn0foyjfKx5gMd7/XzL4CPERZue1hyuGNBuBmM7uWstM+ogl7EfBRMytQro+/zt2rFncJDjmCkaI29lef0s+cUkVtKtGy5t7og6bBUAxtrvIF7ewvjpXQxRtP/LLjkriH5VRw9w8DHz7q5hzl2fLRx94C3DJTYweHHIF6Bps0/aZePqW9qKj7AsaRGqim4PqvWlJcReemV6zbcVCfjXKJfITqCQ45guZUVZulUybvMbSsETu0Zzt1peUAq9r1O+9NjdqvQjEG+c1CSTuGusQfYNeeOGb5MagkVUlwyBGouwWvff5OqX2An7S9Vmp/bqM2tnjW/q9J7QMUTvk1qf11u74htQ8wMlebh3yw9mSpfYAPLfx3+RhwbQxjVEdwyBGom1MeXnSa1D6Ai3PtlzRqFbpyVlVH9WOiTl2yO6hdaQHcM/clUvur6Yg+aLrEEBaZzQSHHIE6LhfHMlDdHj5X0i4Bi2ltShrEkNJVo11pARwe0H6dV2t1fwDoX7xePob+01Q9wSFHUJPUVnCNJvQfj1rT5iGnTRuyyKFXxCu5dmbmmRi0hGu1G9Ap16e9FWLQXI5iPLU3dx+p3PfHwF8D7e5+qHLbDZTjIEXg3e5+e7VjB4ccQc+odsMqkdXnIQ8XtU5/5cGqS/enRNf8dVL7ADUJ7YXXYujuPjAivqjEEE4oJo6vS5pE7e3zZrYUuIJyHvKR49dX7t8ALALuNLM17tVpIgSHHMGpX/tDqf2+N/yR1D7AgdEWqf39i86S2gfoKbZI7R8a0hYk7J/7Bh7bof26venuN0ntA6Tf8QdS+42P3yW1D8CaU6OOGE/tDeDvgPdRqdKrcDVwU6WEeqeZbQc2AfdUc2rBIUeQatDOkONAXZTQNHxQan9X+hSpfYCVDc9L7X/zqeWkxRmOLWdoX6fhc64AcaPT/KrTpfYBaqtTe3sV8Ly7P2r2C9+nxcDmMf93VG6riuCQI8icot1k6HZ9rzU16VFtp4rVow+yvUE7C0+7NssiJS7NBkgs1pewq1E3zIWq1N7eAlwPvGy8h4w3RLXnFhxyBLl5y6X280V9YYi6o/Jg/bzog6bBA/0bykqzQuY175faP3BQX/DQf44+1q5mTvf2GEZZM9md46m9vY2ygz4yO14CPGRmmyjPiMfqFS3h5yGOYyY45AjUGxl7+/UZBPMatHoZap3ccxse5/4Bbb72A91rpfZLMeheN+55XGpfPTkBSA1qdVGmwHhqb191959VXJvZLuAcdz9kZrcBN5rZJyhv6q0G7qt28OCQI9jTuEFqv31U3yFhKK/NE06JUwO/vv88qX2Ai5c/J7W/pXaJ1D5A93Jt55bsqFY1EKAUQ3rgZEyi9jbR8U9WMjGeqhx/fbUZFgDmMaTjnMj0PHKX9AXqadC2iALoLGpDCgtNX8HVk5grtf/cuoul9rd9ZavUPsBvL9WW4Xc16WPUP92/Wj7Gm15ss1atKsyQI4jDYaopirMs+pLajcm9Q3rRcjXLF+onPoebtR1DUiV9HLzjQBwTxFnrj4NDjmJ3TqujkI+hk+/C2qr1sqfEgqEdUvt1dXq1tyfF9je1PCUeAbYOameX67PbpPYB2lqClkVgEhbWHJLaz7k+ZtZc0jYhVRPHzExNd6JdPkY6qd04HEzp+z+uW6i/+BJDKX61BId8nOnL6wtPnh3UOoOLkj+U2h9JnvjFOdu7tDFwgN4h7Wpr1SL9pl5dOo73OjjkE5aWEW1+am1a/yE/6Nr81FJSm0tdQJ+rrWZOvVbgCaCxRvt1jqMv4JoDP5KPwWqtPvh0CA45gk/ef6bU/msv0DvkSxPa3ffMs+LY4mnazSqAF//fK6X2b96nn/m9oflbUvud9dpcbQB/eHP0QdPlgskd8nhqb8AXgCMvQAvQ4+4bzWw5sAU48iXY7O7XVXtqwSFHsGaFNod3tKR/C3I1LVL7mXqtUG7R9RufQ698m9R+9oDUPAAjX/8vqf3UNe+T2gfY++PH5GOsuX7i+yZSe3P33xhzzN8CYytYdrj7xpk4t+CQIzh5nnYGW5/SL2VHE1px9HyLNs+51vSdudXU1ehlVtO/fo3Ufo/4czSLmEjtDSvXTr8euFQ1cGASalPaKrSMjcpngI39eykldHHY3a1n0lbQTQFHXN+JeMHBBxmcoyt86BtM0FSvdcpPZc9mTqZHZj9BCUP7HGrnNoGyWM0Mq0LtbcyxLwEOuPszY25bYWYPU1Zc+ZC7Vy0QHir1Iti6o0P6Ag0W9bOOxqQ2leiwWG95WVJb1gyQFMtK/rj3DKl9gEJRW/Bw2jztBjfAsu6H5WM0nvvyCV+oitrbLcBvUFF7A77i7v9Ruf+fge3u/reV/7NAg7sfNrOzgVuBDe5elRxWmCFH0F/Qpsi0pbVFGwAL92k/5J2tvyK1v6uwgsWZqgW0pkRtTitqc2ndT9mW0mr9Pt+n/aymTHvRAkgf0F98IxhP7e0C4D/MLAW8Fjj7yMEVYfpc5e8HzWwHZTm5B6oZPDjk40zjv35EPsaB3/4zqf10XluQMD+ln5nVPa/Vmnhixa+RRvs6XVKvzVDIdOs7Zxfa9SJMEYyn9nbEuV4ObHX3n4m3mFk70OXuRTNbSVnt7dlqBw8OOYLmlPZDWBjRN45s7dsdfdA0sEZtXNExRkwb2imINyYbUloRf4Du1EKp/Xk5fYpm+ll9iTnn/eqEd0Wovb0B+PJRD7kI+KiZFSg3Ob3O3ate9gaHHEFjXhtS6N/fLbUPMNqonXX8eJ9WQ2HdfP1r5AntxmrB9V+1Rb1aRY44GrXu2vSb8jGiGl25+4eBD49z+1vHue0WyjHnGSE45AgG09r6/fZT9UUPasnvOBxmQ1I7w7SSNpxQbzEIJNW9SGp//XDVuutTJm0nvm7JdAgOOYKGfI/UfnaJdpkJkClqc53nJjul9g8W59NX0HaF9nZtzz6PQfJxhWlV9xLiTBSABQf0hSGs1Pftq5bgkCPYn9Qu91sa9Qpa/SmtBsH8fq0jaGYfT2TOlY6xvKDtOn0wu0xqH2BrQdt1elOu6r2qKZOv1X8fZjPBIUewoKjthtG14ZLog6bJgRGtgHy7OE94NF3PyTwtHeOeAW37o6UZfVhn8MyNUvsDj35Jah8gVdC3NJvNBIccQdNh7axgS7veIau7TvdltRkK6pBLHLSZXpP68Hyt7kocDNTqZUq105PpERzycSYdQ7J9Jq1NrWvr3Sm1r96sAhgY0XaqSMTQdXre6dpWVxbHc9h9v3wMVk8uR2tm7wHeQbnX07+6+/8zs9cBHwHWAZvc/YExx98AXEs57e3d7n57tacWHHIExaxWNjGd0Ochq7Uy1K3bi7V6tbfajHYVEYdDXvPWV0rtD5X0n9WB+fompzWT3Gdmp1J2xpuAUeA7ZvZN4AnKVXr/ctTx6ynnJ28AFgF3mtmaajtPB4ccwWDDfKn9zpEWqX2ArqHJPoLTJ79QInz1M+rRxxU7J/2aTp/RpF4gaefZb5Tabyrqy/z3lPSbnxFBkXWUNY2HAMzsh8Br3P2vKv8fffzVwE2VEuqdZradsjO/p5pzCw45gsOpBVL7Xf1aRwAwr0ErX3nS8Bap/adS2pQ0gIER/SxczZKuR6X2iyn9Z3V5rT6EZ3bWhGpvlGfCHzOzOZRLp1/O5LoUi4GxNesdlduqIjjkCL6/TeuQLz9FK5oD8P2ntZ2z563RpgauH3xIah/g9AbtxuEzxbOjD5omT13wB1L7a7Z+N/qgaaKujAWoON9PT3DfFjP7S+AOYAB4lHIJ9USMl2BedUljcMgRXLZ2n9R+HN0wFs/Vxi+bRw5K7T+W0KakAZzFj6X256O/8KolmJKT+qWZoWWPdpYPwCmTt2Vz988CnwUws/9DedY7ER3A0jH/L4Hq3+zgkCNYMKxNe1NLMgIM5bQZBL1t2rS3Jeynu6AtbhlKadOtUqU8w2lttWHzeu0G9N7Xvo6ltxytrTPDJLSf1algZvPc/aCZLaO8kTdZms9twI1m9gnKm3qrgaprzINDjiA9olV7yzTHkfamFYXpGNaGdbJJ/e7+UEbbF9CqX8VOmd6ntHofq7fegbZ/Doy2aDfRYfIsiwq3VGLIeeB6d+82s9cA/wC0A980s0fc/Vfc/clK372nKIc2rq82wwJCx5BIuh67W/oC7azZoDQPQPeIdubU2a8vSFjcot2YbMxoMznml/Qhi9b7bpPa33eBNosDYNEzP5CPUXPlb+uFRaokzJAjSOW1jqAbfXv4urRWQevkuVpndmionsFRrdPftEe7FM/PWSS1D1Ac1M6QG0cOSe0D9C3bKB9DnytSPWGGHMEdj+akL9CGmm1K8wCkxaXHyYJ6IQuPJ7VZCkOjuiawAJ19WvsAcy5fK7W/eusdUvsAS3/6RfkYtW/+UJghn6isaNAuNUddf72uEfeLG6rRbrjtyOvlEk9p0gok9QytktoHOOvd2otWzvWaIp7X7xfMZoJDjkCd0jWY1TozgJGsVtLw8UHtzAygPqMNu/SUWqT267Pa0myAzNveJbU/YvoMiM7N+rS3k94uH6JqgkOOIFk88TsYlMRfpNZabZw9DtQiT2b60GBmSCvxWazVN1NYeMVL5GNEMZ640Jj7/hj4a6Dd3Q+Z2XJgC3Ak9rjZ3a+rduzgkCNQywH2oxfkziS1F5XRvPZj1JDWL5Wf6tTmUnf26GeX6dIeqf1Um174p7BUP8ZkTCQu5O7PmNlS4ArKnanHssPdN87E+MEhR9AwotWxHYihQ0JjQTtzStZoZ5edo1pZSYBLmieTK5g+TzWdKrUPkMudLLWfKulXi6kebYhwCowrLgT8FfB3wPuAr6sGDw45gu8NXiC1vyipX+63JLXpStv7tVoZyxpiSLdKaFdCA2snL9edCZ58THtRObmgzwgifdxF9scVFzKzVwHPu/uj4yi+rTCzh4E+4EPufne1gweHHEE6qY39Nab1Drnk2uVyqaTNIkqbfuddXW0YB20ZbTbNaFGfEXTgP78qH2P55ddMqPY2ibjQB4GXjWNuH7DM3Q+b2dnArWa2wd2rKvENDjmCllrtMq0UQzfigWSL1P6CBm15uaHPUPifQPeotvy7JobJw5P/ppVyhcnV3ir3Hy0udAD4TeDI7HgJ8JCZbXL3/VCuKHf3B81sB7CGySU7JyQ45Ajq0/qiBzUF177Nh4a1ojlt9fp+dPUp7fs8ILVepmdEK4K/IKPfmLzsv66XjxHFeOJC7v7JMffvAs6pZFm0A13uXjSzlZTFhapWJAsOOYJCSfshrE3qW/vkxQ45IU7pypm+28b/BDIp7WepgL7a0AfiuHRF8kviQpMcexHwUTMrUO6pd527Vy3qHEqnI9i8tdcLJZ1Dm5PtIY02LOIkKAivvXsG2mW2ARbVd8nV0vYNtdFWo3MGzX/xFp69XVsNaHc8SEEYz1/ZqFZchmdOuYJz36dranv/X93DK/LbZm3pdHDIEdx6f1H6AjVk9fKbQ6PaGfJoUfv5PqlFG6MGaEtrO1XM6Ts6dXXm6WnQChiNWJ3UPkDr6AH5GPPXnT1rHXIIWURwSpu2Y0jXqD4POS0Oi/SNaFOV9g80sK5FW/TQOKJ1yKOZBrIjPdIxelxbhp9CH15rfvZ++Ris07fTqpbgkCNoLGqLKg57i9Q+wGBOG/tz1044zmzehjrRYldCWyG2vPQMuZoW6Ritpr2odHub1D4A6ax+jFlMcMgR5JLiZZo+YkEmpfVmA4PavoD3HDqF89qfkY6hZiAGEakS2g3oOGbIww/qZ8g1L3ubfIxqCQ45AvVmUlE8uwRYUKed5eeL2tLmk5v2MiqWFVfHkAe9QWof9AU0GdOXTm+7VVttCHD+DfIhqiY45AjqRrXVT+mEVtQGIGvaHNvhvHaG/PjhpZw5R9tsdm9OW6nXnNGnc6XFDrPg+rS3ww9pv29TYTy1NzPbCHyKcsORAvB77n5f5fgbgGspp729291vr3rskGUxOV/+ifYF2rhA32vtvx/Ryiaeu0br8Ptzen2DZc3aGfKaffpecYkubVralg1vktoHqE3olf1OWbVkwmVpRe3tJsaovQG/C/wT8Hfu/m0zeznwPnd/qZmtB75cOX4RcCewptpGp2GGHIFaWLzo2tklQH2dNra4oE7rzBbUwf4h7YbSktx2qf2RFr2WcFYszBOHs2zJd8rHKFc+T8hEam8OHKlNbwaOzKSuBm5y9xyw08y2U3bO91RzZsEhR7CwsV9qPyUWRgfo6dVuxizpflxqf1/rehbXab+ohyf/kk6bRd1PSu0DFLPahrnqEnyIpyGEmU0oLsQEam/Ae4HbzexvgARwRAZyMbB5jK2Oym1VERxyBIeGtB/yhiZtp2CAthbtLHx/6zqpfXX2AEAK7YZYb5PW4YN+AzqOyUPNoF5qdTJxoUnU3n4X+AN3v8XMXk9ZfOhyGFcdrOo3IjjkCNStd9Rl0wBzmk9stTS1fChAY14bdsml9FVu6aJYCEsfXSPdrS/PjmIctbcO4P8C76kc8l/AZyp/dwBLxzx8CT8PZxwzYVMvgs1be6Uv0MCoXmN2Vb22ym3egcek9nfO0zYJANhySJvtUp/R5/AubdJeVOLQpd5xymXyMaK0LI5Se/su8CLgp8DvuvtdZnYZ8FfufraZbQBu5Oebet8DVodNPRFqh3lKjb7gYV9Bu1ze0/wrUvv3P6GfXb71kXdI7deff77UPsCzf/5lqf2u/3Or1D7ASVt+KB9jCvyS2puZvQP4pJmlgBEqMWh3f9LMbgaeohzauL5aZwzBIUei1oFIlfSzDnXYpTWrzbGd16aN4wPUX3Ch1H7fktOk9gGWX/281P4jUutlFo5o883LTJ5z7u6/1Pra3X8MjCuC4e4fAz42E2cWHHIEJ6d3SO0XY3gL1FoTy/q0WRaHWrWdMADyw9qQRRxdTxJZ7WquViziD1Df8bR8DE7Vh8CqJTjkCBoGtHKAvY3aBqEAAzmtYMtzjadL7ff36gtDrKRdCdUMaeO7ADvOfYvUfjaGDeh7F71ePsbF8hGqJzjkCIoprTNLuj6VqCk7LLU/UtS+RgsaBthxWDtLThTE/eJyQyRGtCmOy1w/C3+u9Syp/b09L+zuMMEhRzBUo1XpSsTwJVLHkBOmfQ6DhSyLWtQXFe1Kpe7Jn0rtA3Sv1C7FD5YWoBZ8e2Xm29oBgHKtx+wkpL1F8MT2/Sf8C3Q4p51dNqT1JbUHB7WNVJWtjwDm1+sLgBYktbooz4yskNoHSCX0E5SLN9SFjiEnKksGtkrt7288WWofIJ0Ql04Xd0rt706sYm6d1qEdHtam1g0V9HHw4bRW4jOODuzZpD7rCCZ/r83sc8ArgYPufmrltjbgP4HlwC7g9ZV0uDnAV4Bzgc+7+7vG2LkLWEi5BBvgZe5+cLKxg0OOIJfVzszU5a4AA6PaGO9wvfY1auegvJ9bx6j2OZTEM3CAoaw2/qqvl4R0DOXZU+DzwD8CXxxz2weA77n7x83sA5X/3085J/lPgVMrP0fzm+4+ZZHn4JAjqBNnWQy2tUjtAxTFzqCtVztD7mtcTIN4h39OvXavYCiv1xIezGsdcl1KH5qqMe1ewVRw9x+Z2fKjbr4aeGnl7y8AdwHvd/dB4MdmNiNL3eCQIxiu1+anxpFlkUlpQxad9dp+dADJkvZ1Gi1qvwpdA3qHvGyBVpgn5/qwSykGwYwItbeJmO/u+wDcfZ+ZTdUx/JuZFYFbgL/wiE274JAjGM5ol7I506f5ZMXVhs8Pz5faX1x7gGJC+1EdLWgX5MvaxGl1QK1pxxgu6XVXlj6nL52eTO1thvlNd3/ezBopO+Q384thkF8iOOQI7j+snf119+sjc6+b832p/R31G6X27969UmofYPsubUhk06l6Z9Y9vFxqf3nzYal9gI/t/g35GH9R3cMOmNnCyux4ITDp5hyAuz9f+d1vZkcEiIJDng4rWnuk9vsG9a3VTZzrvNA7pPa7WvVaFtt3aePsfcP6C+/J7X1S+4kYyr/ramPQ+KyO24BrgI9Xfn99soMrIkQt7n7IzNKUszbujBokOOQIFqAVbHk8oXfIAw3akELJtF+iuXXari1ltLnah3uk5gE4b5F2kOGSPrw2NKyXKY0SdjazL1PewJtrZh3Ahyk74pvN7FpgN/C6McfvovwBypjZq4GXAc9R7jCSrgx4J/CvUWcWHHIEw0ltbmdOLw9AIaHdjKkf0eo0ZMTVknGQz+vTG7MlbQw5Id6LKNMSwxiT4+5vnOCuccWa3X35BMePqw43GcEhH2fiKJRsGNHG/rprtQ0869BXucEcqfVNa/XpXI1DkWHNadHdoG9D9UInOOQIRly7TGuo03vkZF6bP9oRoS87XRbU6jeT1Bwe1G/qFeu0K6Fh1zcKOO+0OMpPZi/BIUdwUvdDUvuPJ66S2gfY1aAVR19T0nY9eaB7g9R+Ge1y/FdyX5XaByg9pP2sNl32Zql9gCVN+nxtmBvDGNURHHIE6cN7oagrSjhp5QBD+RgS7oWNQg8kFjGHTpn99vpB2jK9MvsAB5cu5eAhnVPeu+gc2ga12ShDl/4mNaO6DdCipUiXtHoWrYku6nPdMvuD2VaCQz6RMYOU9qpdl9bu7I0WtQ6/ITXIAM0y+yeXtpQVA4SsXjCH1cLIS4E0B+u1amlbDmtj+edmtuDjdr2fOXYOL+UXmzjPMMNldaDZSnDIERSbtJs9jWl9BVdHvza1rlCjjfv1JNazwrSttDLiEvbu0Sb6xQ1z80Wts1SnNwIkEsdf7fYY1d6WA1uAbZWHb3b36yqPOZuyUFEt8C3gPaF0epok+7QbSul5erlBtdbvKYVHpfbzqVrUongtGW2uc8fAXLmyX2ud9rMUh0OOY/NzCnyeqau9Aexw943j2PlnypoZmyk75CuBSRX4g0OOoPukY04lPCb2DLRL7QNc/tTHpfa3nn+d1D5A/6g226XNtQ75wt5JC7tmhG0LL5Xaz5tWxhWgtVavuVyesE7Msai9TWSjUl7d5O73VP7/IvBqgkOe3VgMvQtMrFesnvkVSinqUto4+1BB6/CtqF8JqbWESzEoIg/n9S5JoPa2wsweBvqAD7n73cBiYOwubkfltkkJDjmCVEnrCJoyeo1Z6rXVhuqNnmSiSGNCO4NV59gWGvTVhrv6tNkDq5q12uAAy5t02TpHmGG1t33AMnc/XIkZ32pmG2DcL0XkzCU45AiSBe0Sqr5Ov6mnpiahfY1q0Fe5NZjW4R9oWye1DzB0UDuDLbo+hryic7N8DE5+dTWPGlftzd1zQK7y94NmtgNYQ3lGPLa0cQkQ2fQwOOQIBmu1WRZ5j+EtKGiXy2lxN48iSerz2jzkA0lt1+m+UX2Vm3pTLw5yDfoc4Sq1A8dVezOzdqDL3YtmthJYDTzr7l1m1m9m5wP3Am8B/iFqkOCQI0gXxbO/GBpHUoxDFEbH3P7n5GM0NOryqAGGE/oNsRHiqHLTUvfc4/pBTnvxpHcfo9rbRcBHzaxAudzzOnc/orb1u/w87e3bRGzoAVhEWtwLno6nn5C+QM/m9a3VN+2/RWq/f8Faqf3eGm0bLYDmEa0wz3O/916pfYD+f9Q2Ilid1eaCA2zL6buwX3ZaTQxb6dURZsgR1A9r85CT6eVS+3Hg4vxUdbgCoDMrrA4DRgf1vROzKe0YqZI+JDJamLUC9bEQHHIEJl5B1Kf1G1allLZ0ejSlTebPFvQbnwnTdsNY+8ozpPYBvt+r7ayyZI6+aOOkRn2WBSyKYYzqCA45AhN3O06oS9CARI+2G/HAkhap/UwhhvbzrnX69afpFesO9WizLHyuPg+5jgH5GLOZ4JAjKKb0mzFyRrUbh3NGtG2uikm9Gl5SrGWxe+OvSe0DnJ7TOrNkDCGLhq99Sj4G7/9H/RhVEhxyBIfqT5LaT4gbkAKU+rQx2Fxau1RWVwKCPpvmQEmrxAbQO6KdPJQa9fHdn3zoDvkYr5iw4Pn4ExxyBHMHtSlXPfX6eFaiTuswh5Pa0uw5Q3uk9kEvnNNUq2/UOlKjXUnEIS50yb+8QT7GrMbdw88M/gDvPNHHCM9hdowRnsPxtx/3zwu7gZWGd0YfMuvHCM9hdowRnsPxtx8rwSEHAoHALCE45EAgEJglBIc888yUrN/xHCM8h9kxRngOx99+rAQti0AgEJglhBlyIBAIzBKCQw4EAoFZQnDIM4SZfc7MDprZE8Ix3mNmT5jZk2b2XtEYf1Cx/4SZfdnMZlxRxsySZvawmX1DYHutmT0y5qdvJl8rM6sxs/vM7NHK6/S/Z8r2UePsMrPHK8/hAYH9FjP7ipltNbMtZvaiGbZ/pZltM7PtlS7NM4qZLTWzH1TO/Ukze89Mj3FcON6J0P9TfigLVZ8FPCGyfyrwBFBHucLyTmD1DI+xGNgJ1Fb+vxl4q+C5/CFwI/AN8XuSBPYDJ82gTQMaKn+nKXeDOF9w7ruAucLX5gvAb1f+zgAtM/y67wBWVmw/Cqyf4fNfCJxV+bsReHqmxzgeP2GGPEO4+4+ArsgDq2cdsNndh9y9APwQeI1gnBRQa2Ypys4/sg/YsWBmS4BXAJ+ZSbsTcBmww91nrP7dyxxR8UlXfk6onXEza6I8gfgsgLuPunvPDA6xCdju7s+6+yhwE3D1DNrH3fe5+0OVv/uBLUyhq/NsJzjkE4cngIvMbI6Z1QEvB2ZUVd3dnwf+hnKLmn1Ar7t/dybHAP4f8D5Ar6oEbwC+PNNGKyGXRyg3urzD3e+d6TEoO/nvmtmDlbb1M8lKoBP4t0ro6DNmNpOCJ4uBsQIkHQidpZktB86kvFo5oQkO+QTB3bcAfwncAXyH8jJwRjUjzayV8kxmBWUV73oz+60ZtP9K4KC7PzhTNicZKwO8Cvivmbbt7kV330i5k/AmMzt1pscALnT3s4CrgOvN7KIZtJ2iHF77Z3c/ExgEZjLOO16LJMkqwswagFuA97p7n2KMOAkO+QTC3T/r7me5+0WUwyPPzPAQlwM73b3T3fPAV4ELZtD+hcCrzGwX5WXspWb2HzNofyxXAQ+5+wGRfSrL/LuAKwW291Z+HwS+RjkMMFN0AB1jZvZfoeygZ9L+2NXbEmY49AVgZmnKzvhL7v7VmbZ/PAgO+QTCzOZVfi8DXsvML8d3A+ebWZ2ZGeUY7JaZMu7uN7j7EndfTjmc8H13n7EZ+FG8EU24ot3MWip/11K+iG2d4THqzazxyN/AyyiHrGYEd98P7DGzI91pLwOemin7wP3AajNbUVmpvAG4bQbtU/l8fhbY4u6fmEnbx5OghzxDjNc63N0/O8PD3GJmc4A8cL27d8+kcXe/18y+AjxEORzyMCdgaWolxn4F8DsC8wuBL5hZkvKE5mZ3n+n0vfnA18o+hxRwo7t/Z4bH+H3gSxWH+Szwtpky7O4FM3sXcDvljIvPufuTM2W/woXAm4HHK/F8gD9x92/N8DixEkqnA4FAYJYQQhaBQCAwSwgOORAIBGYJwSEHAoHALCE45EAgEJglBIccCAQCs4TgkAOBQGCWEBxyIBAIzBL+f41xgJDD7/83AAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFkCAYAAAA9nc1+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAruUlEQVR4nO3deZhsVXnv8d9b3X36nMOZmA+ToAwigoK2kERUFEPQxCE+5Inh3gRJYifXKGaWXJLrkAkSoyHXGO1oyCVGTTQDGIkyRJyZZBI4JDIcBpmnM5/TXVXv/aM2jytNvatq76rq7iq+n+fZz6mz31prr7332rveXr16l7m7AAAAALTUFrsBAAAAwFJCggwAAAAkSJABAACABAkyAAAAkCBBBgAAABIkyAAAAEBivMybvzjx/CX1TLgfn/tPW+w2AAAAYLSUSpDH15R6OwAAADB0SmW8y/YgQQYAAMBoK5cgryJBBgAAwGgrN8ViOQkyAAAARlupjHdi5cSg2gEAAAAsCeUS5BUkyOhsamrqbEnL+1jlzuuuu+7cPtYHAAAQKjfFYpIpFujK8uuuu+59/apsamqqb3UBAAB0UnIOMiPIAAAAGG1MsQAAAAASJUeQlw2qHQAAAMCSUCpBrk0wBxkAAACjjTnIAAAAQKJUgjw2OVxTLMzsIEkXSlovqSlpxt3Pn/eekyRdJOnuYtU/u/sHFrCZAAAAWEJKTrEYuhHkuqTfcPfrzWy1pO+Y2WXuftu8933d3X9iEdoHAACAJaZcgjxkI8ju/qCkB4vXW8xsg6QDJM1PkLFAKn6JyCEln4XMF4sAAIDKRjpBTpnZIZKOk3R1m/APm9lNkh6Q9JvufutCtu1Zpq9fItIOXywCAAB6USpBtiX2FAszm5Y0nayacfeZNu9bJemfJP2qu2+eF75e0sHuvtXMXi/pXyUdPqAmAwAAYIkb6jnIRTL8jIQ4ZWYTaiXHf+/u/9ymjs3J60vM7KNmtpe7P9b3BgMAAGDJKzeCvGy4pliYmUn6pKQN7v6h4D3rJT3s7m5mx0uqSXp8AZsJAACAJWSkE2RJL5f0s5K+a2Y3Fuv+t6TnSJK7f0zSaZL+l5nVJe2Q9FZ390VoKwAAAJaAcpOKx5fWFItO3P0bkqzDez4i6SML0yIAAAAsdeUS5ImhG0HGkFugx8JJPBoOAAAUyiXIyyYH1AwgNPDHwkk8Gg4AAPxAuQR5bGk95g0AAADot1IZr08wggwAAIDRVjJBZg4yhkuJOczdzFtmnjIAAM8CpRLk5jgJMoZO3+YwM08ZAIBnh3IjyGPD9Zg3AAAAoKxSCXJjjBFkAAAAjDamWAAAAACJciPIteGaYmFmp0o6X9KYpE+4+7nz4lbEXy9pu6S3ufv1C95QAAAALBkjO8XCzMYk/aWkH5V0v6Rrzexid78tedvrJB1eLCdI+qviXwAAADxLlUqQ68M1gny8pDvc/S5JMrPPSnqTpDRBfpOkC93dJV1lZuvMbD93f3Dhm4vgkWzR49d45BoAABiIkgny8IwgSzpA0n3J/+/XM0eH273nAEkkyIuj60ey8cg1AAAwKCXnIC+tr5o2s2lJ08mqGXefeTrcpojPr6KL9wAAAOBZpNwIsi+tKRZFMjwThO+XdFDy/wMlPVDhPRhRJb5l72ndfNteimkgAAAMoXIjyD42qHYMwrWSDjez50r6vqS3Sjp93nsulvTOYn7yCZI2Mf/4WSWc0hEkzxtL1n9kj1NBSLABAFgE5RJkDU+C7O51M3unpC+r9Zi3v3H3W83sl4v4xyRdotYj3u5Q6zFvZy5We7Hk9O0rqqtinjUAAIujVII811xac5A7cfdL1EqC03UfS167pF9Z6HahvDYjuul0hyUz0lph2kZOt1M6TlT+Wt6ozqPfS+YYAgCw2MrNQR6yBBkjJTcdou36RbLgI89TU1Pv63WbS+wYAgCwqEqOIA/PFAsApUa0ux2tZqQZADDySj7FojaodgAYjL6OaDPSDAB4Nig3gtxgBBkAAACjrWSCzAgyMIqYigEAwA+U/CO9dl88B2AElPma726S6W6eAU0SDQBYkhhBBlBWX+Y1M58ZALBUlUqQZ+uMIAMAAGC0lZti0RhUMwCMgpJflNLtfGaJ6RgAgAVUbooFI8gA8nJf6DI/ed5Yot5u5jRHSK4BAKWUm2IxN6hmLDwz+1NJb5A0K+lOSWe6+1Nt3rdR0hZJDUl1d59awGYCo2TBv2VQYq4zAKC8kiPIPqh2VNTTiPZlkn7H3etmdp6k35H0nuC9r3b3x3rZGAAAAIZDuTnI9UE1Y+G5+6XJf6+SdNpitQUAAABLR8kpFktrBNmsNi1pOlk14+4zFar6eUn/EMRc0qVm5pI+XrF+jJAOf4iW+8Mz5sICADAEyk2xWGIJcpGshgmrmV0uaX2b0DnuflHxnnMk1SX9fVDNy939ATPbR9JlZna7u3+tx6ZjuFWaS8tcWAAAhkPJKRbNQbWjorFs1N1fm4ub2RmSfkLSye7eNvt39weKfx8xs3+RdLwkEmQAAIARVW6KxexSS5CrM7NT1fqjvFe5+/bgPbtJqrn7luL1KZI+sIDNxBDKTMGIpl8w9WKeks9T7qTM85a7wfkCgBE35CPIPfmIpEm1pk1I0lXu/stmtr+kT7j76yXtK+lfivi4pE+7+5cWq8EYGqWmYCzW1It5Sej8JHKxk8BFeSRcN5gqAwCjr+QI8uh8lZ67Hxasf0DS64vXd0l68UK2C1hAuS/1aLt+UNqMGKcJe5isVxxpPlEl733zrJuamjqph/JlbVS5L1VZTIv9gxUA9MWzeQQZwNJRNVkv8819T7tfccJZOcHr87SQYdXLNx6OCn5IAEZAuadY7BqdEWQAI69K8twuwes24el6WsgIJ9MbF7sBS8BC/ZDQ629CUN5G0ccXw6L80FkuQZ4doW8KAfBsViaZ7ep9g9r+UjTCCX4/bFyg7eR+E4KFw28M+qzN/eXIbqbc9Vu5KRZzjCADvQgSi3ZPWeCmO2KW+B9FljXUCT7QL0wpGogl8fcxjCADC6vbX/vP/zXtsCVQeKaB3vQXeFS3n4/Oy00V2Kj2o6RcDwPEbwhK6fdjJEdJem1v1H+/lpf8NVxyDvLcoNoBYIn81PxsV/WJGgvYnsgbJG3pstqN6v7X8wPd56mpqfdVnCt+uZ75GbZRQ55QL5Hk9BA98zjmfpB5jqRan9vwVLEslI2qNmWlSplBWjJ9vcO13Xb9UlIqQf7ch59rg2oIACwRS+0Hla6mM0xNTaniV6B3SsjS32a0S5I26plJQr8+pLPnokRi3dUcxgrJ6SHF0o26pG90WefGEm1op+/nqVOyM0xTbhbxh5BD1H1/qWrd1NTUqfPWddv3IkM9ElwVfwELAEOq6rzm+eXU5QdeiaR0sacILdRjAzcW/x4yb327hGT+e54WjcxuVMXEZCmdpw7J6Bsk7RnElkmarRB7Su1HntNzcogGN/Lb6ekiG/XMc9sp/vS6p5X9Ie+QNm0rU+dQjwRXZe6+2G3ACLjtjgfadqQ1zSfCMg/5AWFsciy690mmuM/OeXxfmrS4zidm14ax50zcG8YkaUdtVbxN35EtG3Gr9ttKV/xLnp2+IoxN1naGsVmfDGMT4WdUvtxumZkANY//GDh3rHNtyR2XRuazrGZxW5Y14mMmSfXassw2x7JlI+MeT3NrWlynW7z/lvkMyF1rzUwfzdWZk9terl80LD6HuTpz/WIxVG1r1fPbrDgroqZq34mQa2fN4zqrnqdhOve5Y5NT9VrLqXqecnL3i/FmfF+bs/g+KkmHHTq4mQ39njMEAAAADDUSZAAAACBBggwAAAAkSJABAACABAkyAAAAkCBBBgAAABIkyAAAAECCBBkAAABIkCADAAAACRJkAAAAIJH7vnAAAABg6JjZkZLeJOkASS7pAUkXu/uGbsozggwAAICRYWbvkfRZSSbpGknXFq8/Y2Znd1MHI8gAAAAYOmY2LWk6WTXj7jOSfkHSC919bt77PyTpVknndqqbBBkAAABDp0iGZ9qEmpL2l3TPvPX7FbGOSJABAAAwSn5V0hVm9j1J9xXrniPpMEnv7KYCEmQAAACMDHf/kpkdIel4tf5IzyTdL+lad290UwcJMgAAAEaKuzclXVW1PE+xAAAAABIkyAAAAECCBBkAAABIkCADAAAACRJkAAAAIEGCDAAAACRIkAEAAIAEz0FGX/zuX2xvu/4DZ+0Vljnq4f8IY7f/nw/H5X7pzWHs7pf+TBg75/wdYezja84JY/X/+e4wJkmrdj4exp5auV8YG2/OhrG5Wnxp7nvpX4exK4///TB2wvLrw9gTk3E7D3zyu2Hsgd1fGNc5uzYuV98zjK1ZtjOMHbH1O2Hssl0nhbGD120JY7tPPBXGzD2M3bTliDAmSc9b80gYW+WbwthEY1cY2zwRH7da5ttTx7wextwsjimONTzuozXFz+Hf4SvDWM7K2rYw5h63s6mxuFxm/+qZ/ZuwuTDWyS6frFSu4fF4Vm4/5hoTYcws7t+rx7eGsbHM+c3Jnad6Zh8mFN8rc/23mTlmVeWOWU7uepGkZc34vudWbT/qis/9mOJ7wq7m8rjODvsRmW3GbVkzHt+fxyxu56AxggwAAAAkSJABAACABAkyAAAAkCBBBgAAABIkyAAAAECCBBkAAABIkCADAAAACRJkAAAAIEGCDAAAACRIkAEAAIAECTIAAACQIEEGAADAs4aZndnpPSTIAAAAeDZ5f6c3jC9EKwAAAIB+MrNpSdPJqhl3nyliN0fFJO3bqW4SZAAAAAydIhmeCcL7SvoxSU/OW2+SvtWpbhJkAAAAjJp/k7TK3W+cHzCzKzsVJkEGAADASHH3X8jETu9Unj/SAwAAABIkyAAAAECCBBkAAABIkCADAAAACRJkAAAAIEGCDAAAACRIkAEAAIAECTIAAACQMHdf7DZgBLzlrDv62pFqFv/s1vRmpToPOjT+6vVfuvLNYeyW374sW++GOxth7IePqXZYtu6Kv8PniD0eCWMPbts9jP3VJ++r1JYLT78tjD28z9FhbI8t8fa2rdgzjO218dowdvlePxvGntgSH7PVK+JzdP+jcV/ba10Y0iv2vjUOdmCK+8Udc4eGsbnGWBjL3cqXjcf732xaGNuV2d5cIz5u9UZc51hmWOZ798fB5ZNxnfvvGe/fpu3xPrxo/8fDmFl8QMcU34MaHcad6s24n+b6xVwz3o9cW93j45az17L53877A+t2PRzGNk3uHcZy7bRneS6SO/fNzOfheHMujDUs7ms1j6+ZlbObw9js+PIwtqy+M4xZ5poZn9sRxjyz75K0x4teUa2Dd4ERZAAAACBBggwAAAAkSJABAACABAkyAAAAkCBBBgAAABIkyAAAAECCBBkAAABIkCADAAAACRJkAAAAIEGCDAAAACRIkAEAADBSzOxIMzvZzFbNW39qN+VJkAEAADAyzOwsSRdJepekW8zsTUn4j7qpY3wQDQMAAAAGycymJU0nq2bcfUbS2yW91N23mtkhkj5vZoe4+/mSrJu6SZABAAAwdIpkeKZNaMzdtxbv2WhmJ6mVJB+sLhNkplgAAABglDxkZsc+/Z8iWf4JSXtJOqabCkiQAQAAMEp+TtJD6Qp3r7v7z0l6ZTcVMMUCAAAAI8Pd78/EvtlNHYwgAwAAAAkSZAAAACBBggwAAAAkSJABAACABAkyAAAAkCBBBgAAABIkyAAAAEDC3H2x24AR8O0Nm9t2pCd3rAjL1GqZvvfKF4ehk/72l8PYliN/OIytvus7YezK0/8ijL388g+GMUl6eM+jwthOj/d/RW17GJusx7Ev3Xd0GHvuPjvD2FETt4exNU/cFcae/PRnwtjsr50bl/vFnwtjLzjjlDBWO+DgMHbrwW8MY5O12TB22H9dHMYeOfwVYWy8ORfGto6vC2OSNK647ERzVxgzb4axp2p7hbG6j4Wx3TJ9raG4XE1xW3b5ZBjL2dVYFsZWjW8LY1vqq8LYeK0exurN+HH/e489EsbmrNr+eYdvsa2pEcYaFb+aYJni/lTzeHvL6jvC2Hgzvp52TKwOY/VafH5zbckd7zHF59cUf47kzoVbV982/Ay5e0Jue7njKUljzUwfHouPacPiPpP7HMlxi8dOc8ctt//L6vFn04qtD4exnav2DmOStPdRx1c7kV1gBBkAAABIkCADAAAACRJkAAAAIEGCDAAAACRIkAEAAIAECTIAAACQIEEGAAAAEiTIAAAAQIIEGQAAAEiQIAMAAACJat9rCQAAACxRZna8JHf3a83sKEmnSrrd3S/ppjwJMgAAAEaGmb1X0uskjZvZZZJOkHSlpLPN7Dh3/8NOdZAgAwAAYOiY2bSk6WTVjLvPSDpN0rGSJiU9JOlAd99sZn8q6WpJJMgAAAAYPUUyPNMmVHf3hqTtZnanu28u3r/DzJrd1M0f6QEAAGCUzJrZyuL1S59eaWZrJXWVIDOCDAAAgFHySnffJUnunibEE5LO6KYCEmQAAACMjKeT4zbrH5P0WDd1MMUCAAAASJAgAwAAAAkSZAAAACBBggwAAAAkSJABAACABAkyAAAAkCBBBgAAABIkyAAAAEDC3H2x24AR8NVbt7ftSFuPPS4ss/vN14WxueZYGNtjcksY22fu/jDWqE2EsZt3HBnGVi+bDWOStG5Z3J4Vtj2M7dLyMFbLfBPmprk1YezoR74cxrbteXAYk1kY2jh2RBhbPb41jM15fLxXa1MYm2i2fb67JGnX2MowNtmIj/VcbTKM5TRq8XcpzXq+znHVw9hE+2fYS5LmLK43V65p8TXjmfPb8HgfXXG5Zcq1JR57qXnct3Pbq3kjLpfZXtU6qx7PsWZ83qV8n7LM57EpjuX2MduWzHeFjWX6b9XjVlXueGfLeebcd/dtw6Xakjt/zQ7jkWbVcrGmx8fbMvvYVFxu0neEsXrmczQnd2yeaqwLY8tqc9l6jz5sfbXO0QVGkAEAAIAECTIAAACQIEEGAAAAEiTIAAAAQIIEGQAAAEiQIAMAAAAJEmQAAAAgQYIMAAAAJEiQAQAAgAQJMgAAAJAgQQYAAMBIM7MLy7w//iJ2AAAAYMiY2cXzV0l6tZmtkyR3f2OnOkiQAQAAMHTMbFrSdLJqxt1nJB0o6TZJn5DkaiXIU5L+rNu6SZABAAAwdIpkeKZNaErSuyWdI+m33P1GM9vh7l/ttm4SZAAAAIwMd29K+rCZfa7492GVzHlJkAEAADBy3P1+ST9lZj8uaXOZsiTIAAAAGFnu/kVJXyxThse8AQAAAAkSZAAAACBBggwAAAAkSJABAACABAkyAAAAkCBBBgAAABIkyAAAAECC5yCjL87/+ANt1//81beGZUzbw9idD68MYy9Z87UwNvH9O8LY7EHPD2Obdx0dl6uPhTFJMvMwtkmrwpi7hbEV47vC2H5j3w9jXzn598LYczd8JYxta8THe7YR3yaWj8Xn8JDbrwhjTx32Q2Fs5/hucVs0Gcb23vy9MLZ11fo4NrF7GJtrToQxV3z+JGlC8Tl8pL5vGFs7ET/Lfs7i/c8xb4axmhphbGsz7r9Wi/u9MqGaZuOYx23ZaXEfndTOuCmWOU+5XciUy127dYv7TMdtZvrUWOY85Y5brj3jmgtjuT6Tq9Mz427LPD5P9VqmzszxHvd4HwahYfH90DInt2M7M/0iV289M8xZy5zDXH+as2VhbGsjvifsP3dP3JiMucl4e8s9/oxpie/tvWIEGQAAAEiQIAMAAAAJEmQAAAAgQYIMAAAAJEiQAQAAgAQJMgAAAJAgQQYAAAASJMgAAABAggQZAAAASJAgAwAAAAm+ahoAAAAjy8xOlHS8pFvc/dJuyjCCDAAAgJFhZtckr98u6SOSVkt6r5md3U0dJMgAAAAYOmY2bWbXJct0EZpI3jYt6Ufd/f2STpH0P7qpmykWAAAAGDruPiNppk2oZma7qzUQbO7+aPH+bWZW76ZuEmQAAACMkrWSviPJJLmZrXf3h8xsVbGuIxJkAAAAjAx3PyQINSX9ZDd1kCADAABg5Ln7dkl3d/Ne/kgPAAAASJAgAwAAAAkSZAAAACBBggwAAAAkSJABAACABAkyAAAAkCBBBgAAABIkyAAAAECCLwrBQL32vo+FsStO+79hbN9MnV/LxI5/z4+EsWsy23vBhrjWQ7/58cwW87ZN/VgYW7n5wTA29uA9YeyKn/5oGJv95m1hbM2fvzWMPe8VLwtjD1/xrXh77zk/jGnFbmFo3b03hrFHnvtDYeyOzevD2PrxO8LY8l2bwtiqzd8PY7X6rjB28+6vDWOStHbs8TC22/j2uNzcY2Fs88SeYaymRhjbfUfc1xq1ZWFsVe2peHtz8fbmxifD2BO1fcLYctsZxsY1F8bGmnFsXB7GmjYWxzyO9SK3Hzu1Iow1M+d3VeOpMObj8TjYLi0PY/tuuzOMPbnqwDDWyIy77bJ4/2oe799YZt9zcue3qvFMX/PMNxj30pbcsVkxtzWM5a4Lt/g8bZ9YE8b2UHx/2rJ8jzCWc8AjN4SxHatz2cBgMYIMAAAAJEiQAQAAgAQJMgAAAJAgQQYAAAASJMgAAABAggQZAAAASJAgAwAAAAkSZAAAACBBggwAAAAkSJABAACABAkyAAAARoaZnWBma4rXK8zs/Wb2BTM7z8zWdlMHCTIAAABGyd9I2l68Pl/SWknnFesu6KaC8cG0CwAAABgcM5uWNJ2smnH3GUk1d68X66bc/SXF62+Y2Y3d1E2CDAAAgKFTJMMzbUK3mNmZ7n6BpJvMbMrdrzOzIyTNdVM3UywAAAAwSn5R0qvM7E5JR0n6tpndJemvi1hHjCADAABgZLj7JklvM7PVkp6nVr57v7s/3G0dJMgAAAAYOe6+RdJNVcoyxQIAAABIkCADAAAACRJkAAAAIEGCDAAAACRIkAEAAIAECTIAAACQIEEGAAAAEubui90GjIAvTjy/bUfa9c0NYZlTrj07jPkJrwljG9cdF8be+xdbwtifvTsMab9r/imMXXXMWXFBSXtMxtus+1gY29WYCGOzzfgR5cft/HoYu2/ti8LYborbmfNoY58wdujsLWHs7smjwtiE1cPYZG1XGNtn611hbNuKPcNYvbYsjOWY4vvjeHM2W7bWbISxHROr43Iel3OLxzTMm3Essx+7bEUYm1C8j7ntzdlkGNutviluy/jKMFZXfL2sbGwOYznbx9aEsZrF58Eyn5tult1mrmxOrt6xZnw9NS2+B+XqnKxvD2O5/rRjbFUYG1N8THNccTtz10u2zsy1lNNQfDyr7l8nuWstp+q5z/WnnIlmfO/O9fsdE3GfmWjEdUrScw5/Qf6C6wEjyAAAAECCBBkAAABIkCADAAAACRJkAAAAIEGCDAAAACRIkAEAAIAECTIAAACQIEEGAAAAEiTIAAAAQIIEGQAAAEiQIAMAAGBkmNlZZnZQL3WQIAMAAGCU/L6kq83s62b2DjPbu2wFJMgAAAAYOmY2bWbXJct0EbpL0oFqJcovlXSbmX3JzM4ws9Xd1D0+oDYDAAAAA+PuM5Jm2oe8KelSSZea2YSk10n6GUkflNRxRJkEGQAAAKPE0v+4+5ykiyVdbGYruqmAKRYAAAAYJT8dBdx9RzcVkCADAABgZLj7f/VaBwkyAAAAkCBBBgAAABIkyAAAAECCBBkAAABIkCADAAAACRJkAAAAIEGCDAAAACRIkAEAAICEuftitwEj4C1n3dG2I5148qFhmW9ccWcYG5+IvwW9PleP2/FT8faOXv9YGPv2nfHXsq/eLX+NPPZkHDv2eTvDWMMtjM3Wx8LYXCP+ufaUTX8fxj669WfD2PP2b4axrTvj7e3+miPD2As3fCGMPVLfN4wdULs3jM2Oxd8Quqm5NoyNWbx/dY+P9VM7dwtje63YHMYk6fB7vhzG3OJzf8dzTsnWG1lZ2xbGdjRXhjFT3L+bmTGUCZsLY2NqhLHJ5vYw9rji63B5bVcY88y1NGZxW3Jyx6XqMZOkusf3tlqmn+b2MbdNV1yupnh7OSst7mvjzdkw1rB43wehafG1XfNq/aJuE3GdmeOZu+YlaawZf665xee3mYnl+sysT4axyVr8uZWzbvtDYWzL8r3CWO5c3Dd3UHabLz9qVf7A9oARZAAAACBBggwAAAAkSJABAACABAkyAAAAkCBBBgAAABIkyAAAAECCBBkAAABIkCADAAAACRJkAAAAIEGCDAAAACQW9nsfAQAAgAEys2WS3irpAXe/3MxOl/QjkjZImnH3uU51kCADAABglFygVo670szOkLRK0j9LOlnS8ZLO6FQBCTIAAACGjplNS5pOVs24+4ykY9z9RWY2Lun7kvZ394aZfUrSTd3UTYIMAACAoVMkwzNtQrVimsVuklZKWivpCUmTkia6qZsEGQAAAKPkk5JulzQm6RxJnzOzuyT9kKTPdlMBCTIAAABGhrt/2Mz+oXj9gJldKOm1kv7a3a/ppg4SZAAAAIwUd38gef2UpM+XKc9zkAEAAIAECTIAAACQIEEGAAAAEiTIAAAAQIIEGQAAAEiQIAMAAAAJEmQAAAAgwXOQMVDPP+3IOJYp98oPvTGMfet9l4Sxl+1zYhhbefihYWzT0e8MY1uPPS6MSdLumdi2bMlqDt1wZRi7cvytYewdj/xJGGvU47NRv+qKMHbvhq+Fsdu3xkfmmJX/GcYesf3C2Nxc/A2hB+nuMPbYeFznAXMbw9jz5p4KY1/Z+eowJkl7HBT3mwf9wDC2rz8YxhoW37Ibmdv5XvW4znotPqZzY8vDmHkzjLnFYy+PNNeHsd3Gt8fbk4cxWRyqKW7nhO8KY00bi+v0RhjL7bskrfCtYWyXrQxj4zYXxiYaO8PYzrHdwtiyZlxuthaf+03NtWFsTW1zGKtnvuHXMydxQrNhLNfvc3Va5lrKyfWZnNy1K+X7W07d42O6THFbVyruh+5xH84d043L4s/7ffyhMDabuc8cs/mbYazlxzrEq2MEGQAAAEiQIAMAAAAJEmQAAAAgQYIMAAAAJEiQAQAAgAQJMgAAAJAgQQYAAAASJMgAAABAggQZAAAASJAgAwAAAAm+ahoAAAAjxcwOlfSTkg6SVJf0PUmfcfdN3ZRnBBkAAAAjw8zOkvQxScslvUzSCrUS5W+b2Und1MEIMgAAAIaOmU1Lmk5Wzbj7jKS3SzrW3Rtm9iFJl7j7SWb2cUkXSTquU90kyAAAABg6RTI8E4THJTUkTUpaXbz/XjOb6KZuEmQAAACMkk9IutbMrpL0SknnSZKZ7S3piW4qIEEGAADAyHD3883sckkvkPQhd7+9WP+oWglzRyTIAAAAGCnufqukW6uW5ykWAAAAQIIEGQAAAEiQIAMAAAAJEmQAAAAgQYIMAAAAJEiQAQAAgAQJMgAAAJAgQQYAAABS7s7C0tdF0jTllsY2Kbc0yg1TWym3NMoNU1spx7lf6uWqLIwgYxCmKbdktkm5pVFuMbZJueEutxjbpNzSKLcY2xz1cqWRIAMAAAAJEmQAAAAgQYKMQZih3JLZJuWWRrnF2CblhrvcYmyTckuj3GJsc9TLlWbFpGcAAAAAYgQZAAAA+G9IkAEAAIAECTIAAACQIEFGT8zsLDM7qE91XVix3D792D4Wz6ifQzPbc7HbsFRVPfeDPKZmdoKZrSlerzCz95vZF8zsPDNbO6jtJts/0cx+3cxOGfS2gMWwFK/7+UiQ0avfl3S1mX3dzN5hZnt3U8jMLp63fEHSW57+f6bcHvOWPSVdY2a7m9kemXLrzeyvzOwvzWxPM3ufmX3XzP7RzPYrvded92+tmZ1rZreb2ePFsqFYt66Hes/MxNaY2R+b2d+Z2enzYh8tuZ2ON6Gq+9jDOezb/nXDzKbM7Ctm9ikzO8jMLjOzTWZ2rZkdlyl3rpntldRxl1rXyD1m9qoBtLNyX+vhHF5vZr9rZoeWbGvVc1/pmFY9h5L+RtL24vX5ktZKOq9Yd0Fme6vM7ANmdmuxnUfN7Coze1tmWzKza5LXb5f0EUmrJb3XzM7OlKt0HnoxiHupmf17Jla1r1UtV/WaqHR/6qGP5vah78ezKFu1fy/odd83C/WVfSyjuUi6Qa0ftE6R9ElJj0r6kqQzJK3OlLte0qcknSTpVcW/DxavX5Up15R097xlrvj3rky5L0l6l6SzJd0s6T2SnlOsu6jDPq6VdK6k2yU9XiwbinXrgjJfLraxPlm3vlh3WQ/H+95M7J+KNr1Z0sXF/yefPt6ZcudK2qt4PSXpLkl3SLqnw7motI89nMOq+3fqvHP5yaIPfFrSvply10h6naSfkXSfpNOK9SdL+nam3HeT11+R9LLi9RGSrutwftdI+mNJfyfp9Hmxj/a7r/VwDu+W9EFJ9xbH6dck7d9F/6167isd0x7O4Ybk9fXzYjdmyl0k6W2SDpT065J+T9Lhkv6fpD/KlLsheX2tpL2L17ul+96v81CUnSqO5ackHSTpMkmbiu0flylX6V4q6SXB8lJJDw6gr1UtV/WaqHp/qtpHF/R49ti/F/S679cy0MpZRn+Zf+FLmpD0RkmfkfRoplytuDAvk3RssS68UJJyv1ncoI9J1t3dRbkbktf3zovd2KFs6RumpP/M1BfGivjNwfJdSbsy5W6c9/9zJH1T0p4dbtBVk49K+9jDOay6f9cnrz8h6Q8kHVz0v3+t2GduyJS7XdJ48fqq6FgHZUt/yPbY16qew/SYvkLSRyU9VPSf6QGc+0rHtIdz+DlJZxavL5A0Vbw+QtK1mXI3zfv/tcW/NUm358pJ2r3oy9eVaGel81C8v2piljumN2bKNST9R9G2+cuOAfS1quWqXhM3zvt/t/enqn10QY9nj/17Qa/7fi0DrZxl9JcOF/CKLsofqNaH0Ufm3xy6KPMhtX4N2U1ifVPy+g/mxTolLaVvmJIulfTbSkYoJe2rVlJ9eYftPSzpWLWSuHQ5RNIDmXIbJNXmrTtD0q2S7smUq5p89LKPVc5h1f1LPxBunBe7MVPu22r9ZuSn1BpNf3Ox/lXK/+DwruLYvEbS+yT9uaRXSnq/pL/rsI/z29fxQ7bH81CpbLu2SBqTdKqkCwZw7isd0x7O4VpJfyvpTklXqzXadZekr0p6cabctySdWLx+g6QvJ7HcfWRjUf/dxb/ri/WrOvTRXs7DDcnrMolZ7l56c6bcLZIOD2L39Xsf2+1Dl+WqXhNV709V++iCHk/voX8X8QW77vu1DLRyltFfJB3Rp3p+XJlf0QRl3iDpKkkPdfHeD0ha1Wb9YZI+36Fs6RumWqNB56mVfD4p6YniBnqepD06bO+TT9+E2sQ+nSn3J5Je22b9qZK+lylXNfmovI9JHW8scQ6r7t/9av068DfUSj4sieU+0F+s1m8P/l3SkWrNRX1KrQ+8H+nQ1pMk/YNaU5C+K+kSSdOSJjqUK/0h2+Y8PFnU8ydd9LVK51DSZ7s5vx223fX1W/WYBufwyeJ4vryLba4u6nipMtNx5m3vmqKffEPS84v1e0s6q8IxWinpuYM4D6qemFW6l0o67enj0Sb25n7vYw/lql4TVe9Px1bpowt9PIuyL5rXv48o1nfdvxfiuu/XMtDKWVgGsRQ3kZPVGl1ZIenoYv2p3Zabt75TufSG+cS8G+buHbb32rLb6/HYHK8fTJE4Sq3E8PVdlItuQuMltv0KtZLQU0q2eYWkz1Xc3wu7eM975y1Pz+9c36m8pBdU6TNVj0vVD9k27+96dGVen3lh0dZu+kzVvpaWO0bS71YoV6adJ1QpV3Up+syCXfc93Ncq/QAo6SxJB1VoZ6Vybeo5sehr2eupOO9ritcr1Ersv6DWfXvtUmlnm3Jd3S+q7l9QV8f7aLLNtcXrlWoNopQ+pko+t0vs48piH/+tyj5WWfiqaQwVMztL0q+olaAeK+nd7n5REbve3V8SlHuXpHeWLddFe8509wv61c5emNl71ZpTOK7W3O4TJF2p1of1l939DyvU2Xb/itg17n588foX1drff1VrVOoL7n5uUK7dU0peo9Z8Orn7G7ssZ5Je3alcTof9O0vSO9T6wehYdd/XKh2Xqm2tejyLsvP7zPFqTSPI9pmqfa2P2xtouaqq9pketreg97UitknSNrWmn3xGrR9uH+2izqrl0uvp7WpdT/+izveZW9WaDlM3sxm1nkDyebV+mHixu7+li3Z+umjnYwNs5/xy71B399Gq+1f5PtqnY/oZSf/Y5TGdv71tav1dRnZ7fTPoDJyFpZ+LWqObq4rXh0i6Tq0PBSk/b65SuS7a03be9KC218WxGVPrJ+3N+u+jC+FUgir7N38/VO4v76s+weSGKuV62L+qfa3Scemhr1U6nr30mVEv18M5WtDrflDb63Bd3KBqTy6qXC55XeY+U/VJJAvdzsXYv6r3i4U+ppW2169lXMBwGXP3rZLk7hvN7CRJnzezg9X6Sbjf5WRmN0chteYi93V7Pai7e0PSdjO70903F9vfYWbNqFDF/ZOkmpntrtaNz7wYDXL3bWZWz5SbkvRutf4A7bfc/UYz2+HuX82UkVrzQEuX62H/qp7DqselalurHk+pYp95FpSraqGv+4W+rxWb8qZaf7dwqZlN6AdPw/igWvNR+1mu6vV0SzISfpOZTbn7dWZ2hFp/dNnv/avazoXev0r30R63WfWYVt1efww6A2dh6eei1q+Bjp23blzShZIa/S5XvK/0UyV62V4Px+ZqSSuL17Vk/VrlHzNU9akZG1XhL++T8qWfYFKlXA/7V7WvVT4uVdta9Xj20GdGulzVpWqfWYzt9XBd3JCJhU8u6qFcpetJ1Z9EstDtXND9S8pXuV8s9DHtaR97XQZaOQtLv5fiol4fxHJ/8VupXBEv/VSJXrbXw7GZDNbvpeT5k/3Yvw7tyP7lfZv3l36CSZlyVfev3+ewm+PSj3NR5nj20GdGulzVZaGv+4W+rxWxSk8uqlouU19X9xmVfxLJorRzofavTfkqT5Ba0GPa6z5WXfgjPQAAACBRW+wGAAAAAEsJCTIAAACQIEEGAAAAEiTIAAAAQIIEGQAAAEj8f7Adm+8Ln3l6AAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "sns.clustermap(rica.S, row_cluster=False, cmap='coolwarm', center=0, figsize=(5,8), robust=True)\n",
- "sns.clustermap(rica.A.T, row_cluster=False, cmap='coolwarm', center=0, figsize=(10,5), robust=True)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## with DBSCAN"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n"
- ]
- }
- ],
- "source": [
- "rica = RobustICA(n_components=10,\n",
- " n_jobs=10,\n",
- " tol=1e-3,\n",
- " robust_method='DBSCAN',\n",
- " robust_kws={'min_samples':5, 'n_jobs':10})\n",
- "rica.fit(X)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " cluster_id \n",
- " cluster_size \n",
- " S_mean_std \n",
- " A_mean_std \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " -1.0 \n",
- " 12.0 \n",
- " 0.024416 \n",
- " 1.201806 \n",
- " \n",
- " \n",
- " 1 \n",
- " 0.0 \n",
- " 185.0 \n",
- " 0.021415 \n",
- " 1.025566 \n",
- " \n",
- " \n",
- " 2 \n",
- " 1.0 \n",
- " 40.0 \n",
- " 0.005056 \n",
- " 0.287484 \n",
- " \n",
- " \n",
- " 3 \n",
- " 2.0 \n",
- " 44.0 \n",
- " 0.000639 \n",
- " 0.032251 \n",
- " \n",
- " \n",
- " 4 \n",
- " 3.0 \n",
- " 52.0 \n",
- " 0.007320 \n",
- " 0.325889 \n",
- " \n",
- " \n",
- " 5 \n",
- " 4.0 \n",
- " 50.0 \n",
- " 0.011261 \n",
- " 0.620056 \n",
- " \n",
- " \n",
- " 6 \n",
- " 5.0 \n",
- " 45.0 \n",
- " 0.007917 \n",
- " 0.431110 \n",
- " \n",
- " \n",
- " 7 \n",
- " 6.0 \n",
- " 53.0 \n",
- " 0.006589 \n",
- " 0.379326 \n",
- " \n",
- " \n",
- " 8 \n",
- " 7.0 \n",
- " 47.0 \n",
- " 0.001013 \n",
- " 0.052456 \n",
- " \n",
- " \n",
- " 9 \n",
- " 8.0 \n",
- " 42.0 \n",
- " 0.006564 \n",
- " 0.328500 \n",
- " \n",
- " \n",
- " 10 \n",
- " 9.0 \n",
- " 54.0 \n",
- " 0.008546 \n",
- " 0.467846 \n",
- " \n",
- " \n",
- " 11 \n",
- " 10.0 \n",
- " 46.0 \n",
- " 0.006298 \n",
- " 0.368407 \n",
- " \n",
- " \n",
- " 12 \n",
- " 11.0 \n",
- " 41.0 \n",
- " 0.003217 \n",
- " 0.172054 \n",
- " \n",
- " \n",
- " 13 \n",
- " 12.0 \n",
- " 50.0 \n",
- " 0.008277 \n",
- " 0.469739 \n",
- " \n",
- " \n",
- " 14 \n",
- " 13.0 \n",
- " 52.0 \n",
- " 0.006959 \n",
- " 0.357791 \n",
- " \n",
- " \n",
- " 15 \n",
- " 14.0 \n",
- " 53.0 \n",
- " 0.001059 \n",
- " 0.057398 \n",
- " \n",
- " \n",
- " 16 \n",
- " 15.0 \n",
- " 60.0 \n",
- " 0.004997 \n",
- " 0.273743 \n",
- " \n",
- " \n",
- " 17 \n",
- " 16.0 \n",
- " 56.0 \n",
- " 0.000692 \n",
- " 0.034341 \n",
- " \n",
- " \n",
- " 18 \n",
- " 17.0 \n",
- " 7.0 \n",
- " 0.003925 \n",
- " 0.217330 \n",
- " \n",
- " \n",
- " 19 \n",
- " 18.0 \n",
- " 6.0 \n",
- " 0.006521 \n",
- " 0.414305 \n",
- " \n",
- " \n",
- " 20 \n",
- " 19.0 \n",
- " 5.0 \n",
- " 0.007490 \n",
- " 0.308376 \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " cluster_id cluster_size S_mean_std A_mean_std\n",
- "0 -1.0 12.0 0.024416 1.201806\n",
- "1 0.0 185.0 0.021415 1.025566\n",
- "2 1.0 40.0 0.005056 0.287484\n",
- "3 2.0 44.0 0.000639 0.032251\n",
- "4 3.0 52.0 0.007320 0.325889\n",
- "5 4.0 50.0 0.011261 0.620056\n",
- "6 5.0 45.0 0.007917 0.431110\n",
- "7 6.0 53.0 0.006589 0.379326\n",
- "8 7.0 47.0 0.001013 0.052456\n",
- "9 8.0 42.0 0.006564 0.328500\n",
- "10 9.0 54.0 0.008546 0.467846\n",
- "11 10.0 46.0 0.006298 0.368407\n",
- "12 11.0 41.0 0.003217 0.172054\n",
- "13 12.0 50.0 0.008277 0.469739\n",
- "14 13.0 52.0 0.006959 0.357791\n",
- "15 14.0 53.0 0.001059 0.057398\n",
- "16 15.0 60.0 0.004997 0.273743\n",
- "17 16.0 56.0 0.000692 0.034341\n",
- "18 17.0 7.0 0.003925 0.217330\n",
- "19 18.0 6.0 0.006521 0.414305\n",
- "20 19.0 5.0 0.007490 0.308376"
- ]
- },
- "execution_count": 25,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "rica.clustering_stats_"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/.ipynb_checkpoints/infer_components-checkpoint.ipynb b/.ipynb_checkpoints/infer_components-checkpoint.ipynb
deleted file mode 100644
index 5b9e1d6..0000000
--- a/.ipynb_checkpoints/infer_components-checkpoint.ipynb
+++ /dev/null
@@ -1,940 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "import numpy as np\n",
- "import pandas as pd\n",
- "\n",
- "from sklearn.decomposition import PCA, FastICA\n",
- "\n",
- "import seaborn as sns\n",
- "import matplotlib.pyplot as plt"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "['README',\n",
- " 'Metadata',\n",
- " 'Expression Data',\n",
- " 'S matrix',\n",
- " 'A matrix',\n",
- " 'Media Recipes',\n",
- " 'Gene Information']"
- ]
- },
- "execution_count": 11,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# load data\n",
- "data_file = os.path.join('data','Sastry2019.xlsx')\n",
- "data = pd.ExcelFile(data_file)\n",
- "data.sheet_names"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "['control__wt_glc__1', 'control__wt_glc__2']"
- ]
- },
- "execution_count": 36,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "controls = [c for c in X.columns if 'control' in c]\n",
- "controls"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 148,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " control__wt_glc__1 \n",
- " control__wt_glc__2 \n",
- " fur__wt_dpd__1 \n",
- " fur__wt_dpd__2 \n",
- " fur__wt_fe__1 \n",
- " fur__wt_fe__2 \n",
- " fur__delfur_dpd__1 \n",
- " fur__delfur_dpd__2 \n",
- " fur__delfur_fe2__1 \n",
- " fur__delfur_fe2__2 \n",
- " ... \n",
- " efeU__menFentC_ale29__1 \n",
- " efeU__menFentC_ale29__2 \n",
- " efeU__menFentC_ale30__1 \n",
- " efeU__menFentC_ale30__2 \n",
- " efeU__menFentCubiC_ale36__1 \n",
- " efeU__menFentCubiC_ale36__2 \n",
- " efeU__menFentCubiC_ale37__1 \n",
- " efeU__menFentCubiC_ale37__2 \n",
- " efeU__menFentCubiC_ale38__1 \n",
- " efeU__menFentCubiC_ale38__2 \n",
- " \n",
- " \n",
- " log-TPM \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " b0002 \n",
- " -0.061772 \n",
- " 0.061772 \n",
- " 0.636527 \n",
- " 0.819793 \n",
- " -0.003615 \n",
- " -0.289353 \n",
- " -1.092023 \n",
- " -0.777289 \n",
- " 0.161343 \n",
- " 0.145641 \n",
- " ... \n",
- " -0.797097 \n",
- " -0.791859 \n",
- " 0.080114 \n",
- " 0.102154 \n",
- " 0.608180 \n",
- " 0.657673 \n",
- " 0.813105 \n",
- " 0.854813 \n",
- " 0.427986 \n",
- " 0.484338 \n",
- " \n",
- " \n",
- " b0003 \n",
- " -0.053742 \n",
- " 0.053742 \n",
- " 0.954439 \n",
- " 1.334385 \n",
- " 0.307588 \n",
- " 0.128414 \n",
- " -0.872563 \n",
- " -0.277893 \n",
- " 0.428542 \n",
- " 0.391761 \n",
- " ... \n",
- " -0.309105 \n",
- " -0.352535 \n",
- " -0.155074 \n",
- " -0.077145 \n",
- " 0.447030 \n",
- " 0.439881 \n",
- " 0.554528 \n",
- " 0.569030 \n",
- " 0.154905 \n",
- " 0.294799 \n",
- " \n",
- " \n",
- " b0004 \n",
- " -0.065095 \n",
- " 0.065095 \n",
- " -0.202697 \n",
- " 0.119195 \n",
- " -0.264995 \n",
- " -0.546017 \n",
- " -1.918349 \n",
- " -1.577736 \n",
- " -0.474815 \n",
- " -0.495312 \n",
- " ... \n",
- " -0.184898 \n",
- " -0.225615 \n",
- " 0.019575 \n",
- " 0.063986 \n",
- " 0.483343 \n",
- " 0.452754 \n",
- " 0.524828 \n",
- " 0.581878 \n",
- " 0.293239 \n",
- " 0.341040 \n",
- " \n",
- " \n",
- " b0005 \n",
- " 0.028802 \n",
- " -0.028802 \n",
- " -0.865171 \n",
- " -0.951179 \n",
- " 0.428769 \n",
- " 0.123564 \n",
- " -1.660351 \n",
- " -1.531147 \n",
- " 0.240353 \n",
- " -0.151132 \n",
- " ... \n",
- " -0.308221 \n",
- " -0.581714 \n",
- " 0.018820 \n",
- " 0.004040 \n",
- " -1.228763 \n",
- " -1.451750 \n",
- " -0.839203 \n",
- " -0.529349 \n",
- " -0.413336 \n",
- " -0.478682 \n",
- " \n",
- " \n",
- " b0006 \n",
- " 0.009087 \n",
- " -0.009087 \n",
- " -0.131039 \n",
- " -0.124079 \n",
- " -0.144870 \n",
- " -0.090152 \n",
- " -0.219917 \n",
- " -0.046648 \n",
- " -0.044537 \n",
- " -0.089204 \n",
- " ... \n",
- " 1.464603 \n",
- " 1.415706 \n",
- " 1.230831 \n",
- " 1.165153 \n",
- " 0.447447 \n",
- " 0.458852 \n",
- " 0.421417 \n",
- " 0.408077 \n",
- " 1.151066 \n",
- " 1.198529 \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " b4688 \n",
- " -0.261325 \n",
- " 0.261325 \n",
- " -1.425581 \n",
- " -2.734490 \n",
- " 0.181893 \n",
- " 0.514395 \n",
- " -1.943947 \n",
- " -1.992701 \n",
- " 0.066037 \n",
- " -0.695325 \n",
- " ... \n",
- " -0.885297 \n",
- " -0.462485 \n",
- " -2.734490 \n",
- " -1.451148 \n",
- " -1.379069 \n",
- " -1.567420 \n",
- " -0.999610 \n",
- " -1.726577 \n",
- " -2.734490 \n",
- " -1.189069 \n",
- " \n",
- " \n",
- " b4693 \n",
- " -0.278909 \n",
- " 0.278909 \n",
- " 1.361362 \n",
- " 1.020310 \n",
- " 0.608108 \n",
- " 0.988541 \n",
- " 2.558416 \n",
- " 2.142724 \n",
- " 3.120867 \n",
- " 3.104887 \n",
- " ... \n",
- " -0.374963 \n",
- " 0.856574 \n",
- " -1.147824 \n",
- " -0.814089 \n",
- " 2.054471 \n",
- " 1.853620 \n",
- " 1.957717 \n",
- " 1.943582 \n",
- " 2.233115 \n",
- " 2.023755 \n",
- " \n",
- " \n",
- " b4696_1 \n",
- " 0.050526 \n",
- " -0.050526 \n",
- " 1.166436 \n",
- " 1.043373 \n",
- " -0.531441 \n",
- " -0.581626 \n",
- " 0.914055 \n",
- " 0.731165 \n",
- " -0.127269 \n",
- " -0.164046 \n",
- " ... \n",
- " 0.261604 \n",
- " 0.278426 \n",
- " 0.201089 \n",
- " -0.017780 \n",
- " 0.138178 \n",
- " 0.122287 \n",
- " 0.504402 \n",
- " 0.425213 \n",
- " 0.629383 \n",
- " 0.805945 \n",
- " \n",
- " \n",
- " b4696_2 \n",
- " -0.031653 \n",
- " 0.031653 \n",
- " 0.785573 \n",
- " 0.881353 \n",
- " -0.477271 \n",
- " -0.916095 \n",
- " 0.837603 \n",
- " 0.801393 \n",
- " -0.071710 \n",
- " -0.000540 \n",
- " ... \n",
- " -0.499371 \n",
- " 0.398783 \n",
- " 0.096609 \n",
- " -0.103446 \n",
- " -0.519098 \n",
- " 0.615363 \n",
- " 0.343959 \n",
- " 0.580288 \n",
- " 0.366905 \n",
- " 0.702608 \n",
- " \n",
- " \n",
- " b4705 \n",
- " 0.724324 \n",
- " -0.724324 \n",
- " -4.350151 \n",
- " -4.317498 \n",
- " -0.747489 \n",
- " -1.257045 \n",
- " -3.308337 \n",
- " -4.421970 \n",
- " -2.679693 \n",
- " -1.872713 \n",
- " ... \n",
- " -1.968530 \n",
- " -1.365300 \n",
- " -5.468290 \n",
- " -2.997169 \n",
- " -3.673367 \n",
- " -3.161608 \n",
- " -3.959910 \n",
- " -4.088644 \n",
- " -5.468290 \n",
- " -5.468290 \n",
- " \n",
- " \n",
- "
\n",
- "
3923 rows × 278 columns
\n",
- "
"
- ],
- "text/plain": [
- " control__wt_glc__1 control__wt_glc__2 fur__wt_dpd__1 \\\n",
- "log-TPM \n",
- "b0002 -0.061772 0.061772 0.636527 \n",
- "b0003 -0.053742 0.053742 0.954439 \n",
- "b0004 -0.065095 0.065095 -0.202697 \n",
- "b0005 0.028802 -0.028802 -0.865171 \n",
- "b0006 0.009087 -0.009087 -0.131039 \n",
- "... ... ... ... \n",
- "b4688 -0.261325 0.261325 -1.425581 \n",
- "b4693 -0.278909 0.278909 1.361362 \n",
- "b4696_1 0.050526 -0.050526 1.166436 \n",
- "b4696_2 -0.031653 0.031653 0.785573 \n",
- "b4705 0.724324 -0.724324 -4.350151 \n",
- "\n",
- " fur__wt_dpd__2 fur__wt_fe__1 fur__wt_fe__2 fur__delfur_dpd__1 \\\n",
- "log-TPM \n",
- "b0002 0.819793 -0.003615 -0.289353 -1.092023 \n",
- "b0003 1.334385 0.307588 0.128414 -0.872563 \n",
- "b0004 0.119195 -0.264995 -0.546017 -1.918349 \n",
- "b0005 -0.951179 0.428769 0.123564 -1.660351 \n",
- "b0006 -0.124079 -0.144870 -0.090152 -0.219917 \n",
- "... ... ... ... ... \n",
- "b4688 -2.734490 0.181893 0.514395 -1.943947 \n",
- "b4693 1.020310 0.608108 0.988541 2.558416 \n",
- "b4696_1 1.043373 -0.531441 -0.581626 0.914055 \n",
- "b4696_2 0.881353 -0.477271 -0.916095 0.837603 \n",
- "b4705 -4.317498 -0.747489 -1.257045 -3.308337 \n",
- "\n",
- " fur__delfur_dpd__2 fur__delfur_fe2__1 fur__delfur_fe2__2 ... \\\n",
- "log-TPM ... \n",
- "b0002 -0.777289 0.161343 0.145641 ... \n",
- "b0003 -0.277893 0.428542 0.391761 ... \n",
- "b0004 -1.577736 -0.474815 -0.495312 ... \n",
- "b0005 -1.531147 0.240353 -0.151132 ... \n",
- "b0006 -0.046648 -0.044537 -0.089204 ... \n",
- "... ... ... ... ... \n",
- "b4688 -1.992701 0.066037 -0.695325 ... \n",
- "b4693 2.142724 3.120867 3.104887 ... \n",
- "b4696_1 0.731165 -0.127269 -0.164046 ... \n",
- "b4696_2 0.801393 -0.071710 -0.000540 ... \n",
- "b4705 -4.421970 -2.679693 -1.872713 ... \n",
- "\n",
- " efeU__menFentC_ale29__1 efeU__menFentC_ale29__2 \\\n",
- "log-TPM \n",
- "b0002 -0.797097 -0.791859 \n",
- "b0003 -0.309105 -0.352535 \n",
- "b0004 -0.184898 -0.225615 \n",
- "b0005 -0.308221 -0.581714 \n",
- "b0006 1.464603 1.415706 \n",
- "... ... ... \n",
- "b4688 -0.885297 -0.462485 \n",
- "b4693 -0.374963 0.856574 \n",
- "b4696_1 0.261604 0.278426 \n",
- "b4696_2 -0.499371 0.398783 \n",
- "b4705 -1.968530 -1.365300 \n",
- "\n",
- " efeU__menFentC_ale30__1 efeU__menFentC_ale30__2 \\\n",
- "log-TPM \n",
- "b0002 0.080114 0.102154 \n",
- "b0003 -0.155074 -0.077145 \n",
- "b0004 0.019575 0.063986 \n",
- "b0005 0.018820 0.004040 \n",
- "b0006 1.230831 1.165153 \n",
- "... ... ... \n",
- "b4688 -2.734490 -1.451148 \n",
- "b4693 -1.147824 -0.814089 \n",
- "b4696_1 0.201089 -0.017780 \n",
- "b4696_2 0.096609 -0.103446 \n",
- "b4705 -5.468290 -2.997169 \n",
- "\n",
- " efeU__menFentCubiC_ale36__1 efeU__menFentCubiC_ale36__2 \\\n",
- "log-TPM \n",
- "b0002 0.608180 0.657673 \n",
- "b0003 0.447030 0.439881 \n",
- "b0004 0.483343 0.452754 \n",
- "b0005 -1.228763 -1.451750 \n",
- "b0006 0.447447 0.458852 \n",
- "... ... ... \n",
- "b4688 -1.379069 -1.567420 \n",
- "b4693 2.054471 1.853620 \n",
- "b4696_1 0.138178 0.122287 \n",
- "b4696_2 -0.519098 0.615363 \n",
- "b4705 -3.673367 -3.161608 \n",
- "\n",
- " efeU__menFentCubiC_ale37__1 efeU__menFentCubiC_ale37__2 \\\n",
- "log-TPM \n",
- "b0002 0.813105 0.854813 \n",
- "b0003 0.554528 0.569030 \n",
- "b0004 0.524828 0.581878 \n",
- "b0005 -0.839203 -0.529349 \n",
- "b0006 0.421417 0.408077 \n",
- "... ... ... \n",
- "b4688 -0.999610 -1.726577 \n",
- "b4693 1.957717 1.943582 \n",
- "b4696_1 0.504402 0.425213 \n",
- "b4696_2 0.343959 0.580288 \n",
- "b4705 -3.959910 -4.088644 \n",
- "\n",
- " efeU__menFentCubiC_ale38__1 efeU__menFentCubiC_ale38__2 \n",
- "log-TPM \n",
- "b0002 0.427986 0.484338 \n",
- "b0003 0.154905 0.294799 \n",
- "b0004 0.293239 0.341040 \n",
- "b0005 -0.413336 -0.478682 \n",
- "b0006 1.151066 1.198529 \n",
- "... ... ... \n",
- "b4688 -2.734490 -1.189069 \n",
- "b4693 2.233115 2.023755 \n",
- "b4696_1 0.629383 0.805945 \n",
- "b4696_2 0.366905 0.702608 \n",
- "b4705 -5.468290 -5.468290 \n",
- "\n",
- "[3923 rows x 278 columns]"
- ]
- },
- "execution_count": 148,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# get data\n",
- "X = data.parse('Expression Data').set_index('log-TPM')\n",
- "\n",
- "# compute log2FCs with respect to controls\n",
- "X = X - X[controls].mean(1).values.reshape(-1,1)\n",
- "\n",
- "X"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 149,
- "metadata": {},
- "outputs": [],
- "source": [
- "def TSS(x):\n",
- " \"\"\"Total Sum Squared\"\"\"\n",
- " return np.sum(x**2)\n",
- "\n",
- "def calculate_explained_variance(X, S, A, k):\n",
- " \"\"\"Explained variance by a component k\"\"\"\n",
- " return 1 - (TSS(X - S[:,k].reshape(-1,1).dot(A[:,k].reshape(-1,1).T)) / TSS(X))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 151,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "186"
- ]
- },
- "execution_count": 151,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# how many components explain a % of variance\n",
- "pca = PCA()\n",
- "pca.fit(X)\n",
- "inferred_components = np.min(np.where(np.cumsum(pca.explained_variance_ratio_)>0.99))\n",
- "inferred_components"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 156,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "CPU times: user 19min 26s, sys: 59.3 s, total: 20min 25s\n",
- "Wall time: 2min 2s\n"
- ]
- }
- ],
- "source": [
- "%%time\n",
- "\n",
- "n_components = [10,25,50,100,inferred_components]#,200,250,(X.shape[1])]\n",
- "\n",
- "results = {}\n",
- "for n in n_components:\n",
- " # run ICA with all components\n",
- " ica = FastICA(n_components = n, tol=1e-8, max_iter=int(1e10))\n",
- " S = ica.fit_transform(X)\n",
- " A = ica.mixing_\n",
- "\n",
- " # sort by decreasing explained variance\n",
- " explained_variance = np.array([calculate_explained_variance(X.values, S, A, k) for k in range(S.shape[1])])\n",
- " explained_variance_ratio = explained_variance / np.sum(explained_variance)\n",
- " idx = np.argsort(explained_variance_ratio)[::-1]\n",
- "\n",
- " explained_variance = explained_variance[idx]\n",
- " explained_variance_ratio = explained_variance_ratio[idx]\n",
- " S = S[:,idx]\n",
- " A = A[:,idx]\n",
- " \n",
- " result = {'S':S,'A':A,'explained_variance':explained_variance,'explained_variance_ratio':explained_variance_ratio}\n",
- " results[n] = result"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 162,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "2590"
- ]
- },
- "execution_count": 162,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "ica.n_iter_"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## The more components the more equal is variance explained per component"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 157,
- "metadata": {},
- "outputs": [],
- "source": [
- "x = {n:results[n]['explained_variance_ratio'] for n in results.keys()}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 158,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAA9UklEQVR4nO3de7xcdXnv8c/XkIASCESSEHLboBRBDhDcooD1RDlqiBRsRYWiokUjp+CRqlWsvdhWz6H26MFWMKZAgYpcVJCIIFIQKUWQhELITYk0ISH3cAkIBZI854+1NlmZzN579lzWZc/3/XrNa2b91uX3zNrPrDxZ85u1FBGYmZmZmVniFUUHYGZmZmZWJi6QzczMzMwyXCCbmZmZmWW4QDYzMzMzy3CBbGZmZmaW4QLZzMzMzCzDBbKZmZmZWYYL5C4i6SOS7m7TtiZKmidpjaSQ1FMzf3dJl0naImmdpE+3o1/rbm3O4XdLulvSU2mO/pOkvTLzL5f0oqRnM48R7ejbulebc3iGpO01OXpmZr6Pw9ayMtUOko6StEDSc+nzUe2Iqx4XyNas7cBPgPf2M/9LwMHANOBtwOckzcwnNLOGjAG+DBwAHApMBv6+ZpmvRsTozGNb3kGaDWJNTY5ekZn3JXwctnJpunaQNAq4EfgOsC9wBXBj2t5+EVH5B7AC+CywEHgauBbYY4DlPw4sBZ4BlgBHp+2HAncCTwGLgZMz61wOXAzcAjwL/DuwP3Ah8CSwDJheE9MX0u0/CfxzNqY0huXAE8A84IDMvADOBh5J170IUGb+H6XxPwncCkwbbN30vf0XsC2N/6l0+VlpjM8AjwOfHeK+3y3ts6em/XHgnZnpvwWuKTpXyvpwDheXw5l+/wB4uGZ/fbno3KjKwzmcfw4DM4DVA8z3cdg5W6qczfQ35NoBeGc6P/ueHgNmdiQ/ik7QNib5L0nOBI1NE+DsfpZ9X7qD35j+8V9L8j+VkWnS/RkwCnh7+oc/JJPkm4A3AHsAdwD/CXwYGEFyJupnNTEtAqakMf076T+26bY3AUcDuwP/CNxVk6g3AfsAU4GNfQkAvCeN89A0wf4cuKfBdT8C3F2zP9YCv5u+3pf0A59OPwW8ZahJnm4ngAmZtlPJFB9+OIfLksOZZS8kUzyk++uJ9LEAeG/ReVLmh3M4/xwmKZBfBNan++H/AXtmtuPjsHO2VDmbWWbItQPwJ8AtNdu5CfhMR/Kj6ARtY5J/MDP9VWBOP8veCnyqTvvvAuuAV2Targa+lEnyf8rM+ySwNDP930j/Z5WJ6ezM9CzgN+nrS0m+uu2bNxp4qS9R0gR5S2b+dcD56etbgLMy814BPEf6P8FB1q2X5I8BnwD2bnLf10vyKWlb9n+97wBWFJ0rZX04h4vL4Ux+Pgn8TqbtaODVaY7PIvlH7/iic6WsD+dw/jlMcibysLT/A4G7gG+n83wcds6WLmcz6w+5dgD+gppvQICr+vZ1ux/DaQzyuszr50gSp54pwG/qtB8ArIqI7Zm2lcCkzPT6zOvn60zX9rmqZlsHZPpa2TcjIp4FNtf01d/7mQZ8I/1h0VMkZ7fU4Lr1vJfkA7hS0s8lHTvAso16Nn3eO9O2N0mBYf1zDg++bj0t5bCkNwPfBU6NiF9n3tMDEbE5IrZGxM0kB+I/GMq2u5BzePB162kqhyNiXUQsiYjtEfGfwOdIzriBj8ONcs4Ovm49RdQOz9bMq53fVsOpQG7UKuA1ddrXAFMkZffJVJKvVJo1pWZbazJ9TeubIWlPkjNVjfS1CvhEROyTebwyIu5pYN3YpSHi/og4BRgP/JDkf40tiYgnSb5+OTLTfCTJ2CxrnXM429BCDkuaTjKO748i4vYG+laj27YBOYezDe07Dr+coz4Ot51zNttQTO2wGDhCUvY4fAQdyuluLJAvAT4r6Q1KvFbSNOA+4Lckv5gcKWkG8HvANS30dY6kyZLGkoxPujZt/y7w0fRyJbsD/xu4LyJWNLDNOcAXJL0eQNIYSe9rMJ71wOS+X3xKGiXpDEljIuIlYAvJQPyGSNqDZBwUwO7pdJ8rgT+XtK+k15H8sODyRrdtA3IOtyGHJR1O8mvqT0bEj+rMP1XSaEmvkPRO4IMkxbS1zjncnhyeIWlqug+nABeQ/Mq/j4/D7eOcLb52uDPt538puRzcuWn7HY32PRRdVyBHxPeAr5Ak2jMk//MZGxEvAicDJ5IMgr8Y+HBELGuhu+8CPwUeTR9fTmO4nWQszQ9I/rf0GuC0BuO/Afg74BpJW0gG85/YYDx3kPxPa52kTWnbh4AV6bbOJikCAFByTc3fHWB7z7PjK5Fl6XSfvyL5Omol8HPg7yPiJw3GaQNwDrcthz8DjAMu1Y5ryGbPRHyK5MzMUySXf/t4RNzZYJw2AOdw23L4aOAXJAXaPWkc/ysz38fhNnHOFl87pPv6PSQ/cHyK5Koc70nb207pIGdrM0krgI9FxL8WHYtZM5zDVnXOYasa52x5dN0ZZDMzMzOzgbhANjMzMzPL8BAL60qSLgNOAjZExOFp29+T/LjiRZIxUB+NiKfqrLuCZAzaNmBrRPTmFLaZmZnlwGeQrVtdDsysabsNODwijgB+TXK7z/68LSKOcnFsZtY5kvaQ9EtJD0laLOmv0/axkm6T9Ej6vG/RsdrwslvRATRiv/32i56enqLDsBwsWLBgU0SM63Q/EXGXpJ6atp9mJu9lxwX3W+Yc7h555XDenMPdo2Q5/ALw9oh4VtJI4G5Jt5DctOf2iLhA0vnA+cDnB9qQc7g7tCt/K1Eg9/T0MH/+/KLDsBxIWjn4Urn4I3Zce7JWAD+VFCS3dZ1bbyFJs4HZAFOnTnUOd4kS5XBb+TjcPcqUw5GMA+27JNjI9BHAKcCMtP0KkmvkDlggO4e7Q7vy10MszGpI+iKwleTWwvUcHxFHk1xD8hxJb623UETMjYjeiOgdN64sJ2PMzKpF0ghJDwIbgNsi4j5gQkSsBUifx/ez7mxJ8yXN37hxY24xW/UVViCnCf8fkm4qKgazWpLOJPnx3hnRzy9YI2JN+rwBuAE4Jr8Izcy6S0Rsi4ijgMnAMeldMBtd1ycqrClFnkH+FLC0wP7NdiJpJslXdCdHxHP9LLOnpL36XgPvJLkjkZmZdVB6VaE7SX5gvV7SRID0eUNxkdlwVEiBLGky8G6Se5ub5U7S1SS3aD1E0mpJZwHfBPYCbpP0oKQ56bIHSLo5XXUCyY9EHgJ+CfzYt241M+sMSeMk7ZO+fiXwP0huTzwPODNd7EzgxkICtGGrqB/pXQh8jqQYMctdRJxep/nSfpZdA8xKXz8KHNnB0MzMbIeJwBWSRpCc1LsuIm6S9AvguvTkxmPA+4a64RdffJGFCxfu1HbEEUcwatSoNoRtVZd7gSyp7+YMCyTNGGC5na4AMBxMmjKVNatXtX27B0yewuOrHmv7dq2zms0H/72tLN7wpuNYu27dgMtM3H9/Ftx3T04R2XATEQuB6XXaNwMntLLthQsXcs5F8xgzsQeAp9eu4KJzoLfXl7e3Ys4gHw+cLGkWsAewt6TvRMQHswull86aC9Db2zssbve3ZvUqPvDt9v9Dce0njmv7Nq3zms0H/72tLNauW8dbv9jfxV4Sd33ljJyiMRu6MRN7GNtzaNFhWAnlPgY5Ir4QEZMjogc4Dbijtjg2MzMzMyuKr4NsZmZmZpZR6J30IuJOkku2mJmZmZmVgs8gm5mZmZlluEA2MzMzM8twgWxmZmZmluEC2czMzMwswwWymZmZmVmGC2QzMzMzswwXyGZmZmZmGS6QzczMzMwyCr1RiJmZDW+bN23mgGkHDbjMxP33Z8F99+QUkZnZ4Fwgm5lZx2yL4K1fvGrAZe76yhk5RWNm1hgPsTAzMzMzy3CBbGZmZmaW4QLZupKkyyRtkLQo0zZW0m2SHkmf9+1n3ZmSfiVpuaTz84vabGj6yfMvSXpc0oPpY1aRMZqZlZELZOtWlwMza9rOB26PiIOB29PpnUgaAVwEnAgcBpwu6bDOhmrWtMvZNc8B/l9EHJU+bs45JjOz0nOBbF0pIu4CnqhpPgW4In19BfCeOqseAyyPiEcj4kXgmnQ9s9LpJ8/NzGwQLpDNdpgQEWsB0ufxdZaZBKzKTK9O23Yhabak+ZLmb9y4se3BmrXgXEkL0yEYdYcSgXPYzLqXC2SzoVGdtqi3YETMjYjeiOgdN25ch8Mya9i3gNcARwFrga/1t6Bz2My6lQtksx3WS5oIkD5vqLPMamBKZnoysCaH2MzaIiLWR8S2iNgO/BPJsCEzM8twgWy2wzzgzPT1mcCNdZa5HzhY0oGSRgGnpeuZVULffwJTvw8s6m9ZM7Nu5TvpWVeSdDUwA9hP0mrgr4ALgOsknQU8BrwvXfYA4JKImBURWyWdC9wKjAAui4jFRbwHs8H0k+czJB1FMjRoBfCJouIzMysrF8jWlSLi9H5mnVBn2TXArMz0zYAvjWWl10+eX5p7IGZmFeMhFmZmZmZmGS6QzczMzMwyci+QJe0h6ZeSHpK0WNJf5x2DmZmZmVl/ihiD/ALw9oh4VtJI4G5Jt0TEvQXEYmZmZma2k9wL5IgI4Nl0cmT6qHujBTMzMzOzvBUyBlnSCEkPktyI4baIuK/OMoPe4nTSlKlIavtj0pSpnd0BZmZmZlZahVzmLSK2AUdJ2ge4QdLhEbGoZpm5wFyA3t7eumeY16xexQe+fU/b47v2E8e1fZtmZmZmVg2FXgc5Ip6SdCcwE9/NyczMzAqyfdtWlixZskv7EUccwahRowqIyIqUe4EsaRzwUlocvxL4H8Df5R2HmZmZWZ9nNqzma489z4RlW19ue3rtCi46B3p7ewuMzIpQxBnkicAVkkaQjIG+LiJuKiAOMzMzKzFJU4Argf2B7cDciPiGpLHAtUAPyS3T3x8RT7ba3+gJ0xjbc2irm7FhoIirWCwEpufdr5mZmVXOVuAzEfGApL2ABZJuAz4C3B4RF0g6Hzgf+HyBcdowU+gYZDMzM7P+RMRaYG36+hlJS4FJwCnAjHSxK4A76UCBXG9cssckdwcXyGZmZlZ6knpIvoG+D5iQFs9ExFpJ4/tZZzYwG2Dq1KFfwrV2XLLHJHcPF8hmZmZWapJGAz8AzouILZIaWq+RS8YOxuOSu1MhNwoxMzMza4SkkSTF8VURcX3avF7SxHT+RJIbj5m1jQtkMzMzKyUlp4ovBZZGxNczs+YBZ6avzwRuzDs2G948xMLMzMzK6njgQ8DDkh5M2/4MuAC4TtJZwGPA+4oJz4YrF8hmGZIOIbm2Zp+DgL+MiAszy8wgOVvxn2nT9RHxNzmFaGbWNSLibqC/Accn5BmLdRcXyGYZEfEr4CiA9GY2jwM31Fn03yLipBxDMzMzs5x4DLJZ/04AfhMRK4sOxMzMzPLTUoEs6fhG2sw6pcM5eBpwdT/zjpX0kKRbJL2+n9hmS5ovaf7GjRvbFJJ1Kx9vrcqcv1Y1rZ5B/scG28w6pSM5KGkUcDLwvTqzHwCmRcSRaV8/rLeNiJgbEb0R0Ttu3LhWQzLz8daqzPlrldLUGGRJxwLHAeMkfToza29gRDsCMxtIDjl4IvBARKyvnRERWzKvb5Z0saT9ImJTG/o124mPt1Zlzl+rqmZ/pDcKGJ2uv1emfQtwaqtBmTWg0zl4Ov0Mr5C0P7A+IkLSMSTfxGxuQ59m9fh4a1Xm/LVKaqpAjoifAz+XdLl/wGRF6GQOSnoV8A7gE5m2s9N+55Ac1P+npK3A88BpEdHULUzNBuPjrVWZ89eqqtXLvO0uaS7Qk91WRLy9xe2aNartORgRzwGvrmmbk3n9TeCbzW7frEk+3lqVOX+tUlotkL8HzAEuAba1Ho7ZkDkHrVsMOdclXQacBGyIiMPTtrEkN8PpAVYA74+IJzsQr1mWj9VWKa0WyFsj4ltticSsOc5B6xbN5PrlJN92XJlpOx+4PSIukHR+Ov359oRo1i8fq61SWr3M248k/bGkiZLG9j3aEplZY5yD1i2GnOsRcRfwRE3zKcAV6esrgPe0P1SzXfhYbZXS6hnkM9PnP820BXBQi9s1a5Rz0LpFu3J9QkSsBYiItZLG97egpNnAbICpU6cOsRuznfhYbZXSUoEcEQe2KxCzZjgHrVsUkesRMReYC9Db2+srtVjTfKy2qmmpQJb04XrtEXFlvXazdnMOWrdoY66vlzQxPXs8EdjQenRmA/Ox2qqm1SEWb8y83gM4geQ2vE54y4tz0LpFu3J9HsnX3Rekzze2JTqzgflYbZXS6hCLT2anJY0B/mWgdSRNIflA7A9sB+ZGxDdaicO6VzM5aFZFTR5vrwZmAPtJWg38FUlhfJ2ks4DHgPd1JGCzDB+rrWpaPYNc6zng4EGW2Qp8JiIekLQXsEDSbRGxpM2xWHdqJAfNhoNBcz0iTu9n1gntD8dsSHystlJrdQzyj0h+hQowAjgUuG6gddJfT/f9gvoZSUuBSYALZBuyZnLQrIqc61Zlzl+rmlbPIP/fzOutwMqIWN3oypJ6gOnAfXXm+fJC1oiWcrCSXrEbkoa82gGTp/D4qsc6EJDlpPty3YYT569VSqtjkH8uaQI7Bt8/0ui6kkYDPwDOi4gtdbbtywvZoFrJwcravpUPfPueIa927SeO60AwlpeuzHUbNpy/VjUt3UlP0vuBX5L8yOP9wH2STm1gvZEkxfFVEXF9KzFYd2s2B82qxrluVeb8tappdYjFF4E3RsQGAEnjgH8Fvt/fCkq+G74UWBoRX2+xf7Mh56BZRTnXrcqcv1YpLZ1BBl7Rl+ypzQ1s83jgQ8DbJT2YPma1GId1r2Zy0KyKnOtWZc5fq5RWzyD/RNKtwNXp9AeAmwdaISLuBob+CyOz+oacg2YV5Vy3KnP+WqU0VSBLei0wISL+VNIfAG8hKXp/AVzVxvjM6nIOWrdwrluVOX+tqpr9euNC4BmAiLg+Ij4dEX9C8r/BC9sTmtmALqRDOShphaSH0+E/8+vMl6R/kLRc0kJJR7fSn9kgLsTHW6uuC3H+WgU1O8SiJyIW1jZGxPz02sZmndbpHHxbRGzqZ96JJHeAOhh4E/Ct9NmsE3y8tSpz/lolNXsGeY8B5r2yyW2aDUWROXgKcGUk7gX2kTSxw31a9/Lx1qrM+WuV1GyBfL+kj9c2SjoLWNBaSGYN6WQOBvBTSQvSOzrWmgSsykyvTttqY5ktab6k+Rs3bmwxJOtiPt5alTl/rZKaHWJxHnCDpDPYkeC9wCjg99sQl9lgzqNzOXh8RKyRNB64TdKyiLgrM7/eVVh2uduj7wZpbXIePt5adZ2H89cqqKkCOSLWA8dJehtweNr844i4o22RmQ2gkzkYEWvS5w2SbgCOAbIF8mpgSmZ6MrCm1X7N6vHx1qrM+WtV1dJ1kCPiZ8DP2hSL2ZC1Owcl7UlyQftn0tfvBP6mZrF5wLmSriH5cd7TEbG2XTGY1ePjrVWZ89eqptUbhZgNNxNIvg6E5PPx3Yj4iaSzASJiDsnliWYBy4HngI8WFKuZmeVo+7atLFmyZKe2I444glGjRhUUkXWKC2SzjIh4FDiyTvuczOsAzskzLjMzK94zG1bztceeZ8KyrQA8vXYFF50Dvb29BUdm7eYC2czMzEpJ0mXAScCGiDg8bRsLXAv0ACuA90fEk3nFNHrCNMb2HJpXd1aQZi/zZmZmZtZplwMza9rOB26PiIOB29Nps7ZygWxmZmallF5i84ma5lOAK9LXVwDvyTMm6w4ukM3MzKxKJvRdOSh9Ht/fgr5hkzXLBbKZmZkNSxExNyJ6I6J33LhxRYdjFeIC2czMzKpkvaSJAOnzhoLjsWHIBbKZmZlVyTzgzPT1mcCNBcZiw5QLZDMzMyslSVcDvwAOkbRa0lnABcA7JD0CvCOdNmsrXwfZzKwLSVoBPANsA7ZGhO90YKUTEaf3M+uEXAOxruMC2cyse70tIjYVHYSZWdl4iIWZmZmZWYYLZDOz7hTATyUtkDS76GDMzMqkkAJZ0mWSNkhaVET/ZmbG8RFxNHAicI6kt9Yu4JssmFm3KuoM8uXsem91MzPLSUSsSZ83ADcAx9RZxjdZMLOuVEiB3M+91c3MLAeS9pS0V99r4J2Av9EzM0uV9ioW6Zi42QBTp07Nt/NX7IakfPtsRQfjHTFyd7a99ELbt3vA5Ck8vuqxtm/XzBoyAbghPW7sBnw3In5SbEhmZuVR2gI5IuYCcwF6e3sj1863b+UD376n7Zu99hPHtX2bQMfihSTmSu0LMxtURDwKHFl0HGZmZeWrWJhlSJoi6WeSlkpaLOlTdZaZIelpSQ+mj78sIlYzMzPrjNKeQTYryFbgMxHxQDpGc4Gk2yJiSc1y/xYRJxUQn5mZmXVYIQVyem/1GcB+klYDfxURlxYRi1lWRKwF1qavn5G0FJgE1BbIZtYmmzdt5oBpB/U7/+mntzBmzN4DbmPi/vuz4L7ODDUzs+5TSIE8wL3VzUpDUg8wHbivzuxjJT0ErAE+GxGL66xf3A9NzSpkWwRv/eJV/c7//nnvGnA+wF1fOaPdYZlZF/MYZLM6JI0GfgCcFxFbamY/AEyLiCOBfwR+WG8bvoasmZlZNblANqshaSRJcXxVRFxfOz8itkTEs+nrm4GRkvbLOUwzMzPrEBfIZhlKLgx7KbA0Ir7ezzL7p8sh6RiSz9Hm/KI0MzOzTvJVLMx2djzwIeBhSQ+mbX8GTAWIiDnAqcD/lLQVeB44LSLyvVa3mZmZdYwLZLOMiLgbGPC2hBHxTeCb+UTURk3ecTHvux5OmjKVNatXDXk9353RzMzaxQWyWbdo8o6Led/1cM3qVZWI08zMhi+PQTYzMzMzy3CBbGZmZmaW4QLZzMzMzCzDBbKZmZmZWYYLZDMzMzOzDF/FwszMKm/zps0cMO2gfudP3H9/Ftw39KujVNUb3nQca9etG3CZbtsneXjxxRdZuHDhy9MvvfQSACNHjny57YgjjmDUqFG5x2ZD4wLZzMwqb1sEb/3iVf3Ov+srZ+QYTfHWrls34P6A7tsneVi4cCHnXDSPMRN7AHj84XvYbfS+TDjwUACeXruCi86B3t7eAqO0RrhANjMzM2uTMRN7GNuzoyDebcz4l6etOjwG2czMzMwswwWymQ0svUX1UB+7jdqjqfXyNmnK1KbinDRlau6xmplZPjzEwswG1sItqqtwy2jf2trM8rJ921aWLFny8rR/xFdeLpDNzMzMcvDMhtV87bHnmbBsK+Af8ZWZC2QzMxv2BrsMHAx+2bNGLp329NNbGDNm75b6acRgsWze/ERL27fOGT1hmn/EVwEukM3MbNgb7DJwMPhlzxq5dNr3z3tXLpdXGyyW75/3rpb7MOtmLpDNzMzMmlA7pnjJkiVERNu212egccmD3ZxksHHOtes3s4081IuzkzG4QDYzMzNrQr0xxfu85ihe3abtweDjkge7Oclg45xr129mG3mojbPTMRRSIEuaCXwDGAFcEhEXFBGHWa3BclPJdci+AcwCngM+EhEP5B6oWYt8HLaqK0sO144pbuf2GjXQzUkaGeecXb/ZbeShNs5Oyv06yJJGABcBJwKHAadLOizvOMxqNZibJwIHp4/ZwLdyDdKsDXwctqpzDlunFXEG+RhgeUQ8CiDpGuAUYNdBN2b5aiQ3TwGujGSQ2b2S9pE0MSLW5h+uWdN8HLaqa0sOZ8/4PrtpDbv91/M88apX9duW93RfjEuW9F+uLVmyZMD3UTtdu73a9ZvZRh5q40xeH9Gx/tTKYPKmOpROBWZGxMfS6Q8Bb4qIc2uWm01yhg7gEOBXLXa9H7CpxW20U9nigXLENC0ixhXRcSO5Kekm4IKIuDudvh34fETMr7O9dudwp5Xh79+KssRfWA43qsDjcKvK8jeG4R1LN+RwGf5+jqEzMbQlf4s4g1zvXrK7VOkRMReY27ZOpfkRUZorb5ctHihnTDlrJDcbyl9ofw53WtX//lWPP2eFHIdbVaa/sWMpXEs5XIZ95hjKE0M9uY9BBlYDUzLTk4E1BcRhVquR3HT+2nDgPLaqcw5bRxVRIN8PHCzpQEmjgNOAeQXEYVarkdycB3xYiTcDT3v8sVWQj8NWdc5h66jch1hExFZJ5wK3klya5bKIWJxD16X5mjBVtnignDHlpr/clHR2On8OcDPJJd6Wk1zm7aNFxdsBVf/7Vz3+3BR4HG5Vmf7GjqVAbcjhMuwzx5AoQwy7yP1HemZmZmZmZVbEEAszMzMzs9JygWxmZmZmljEsCmRJMyX9StJySefXmS9J/5DOXyjp6My8FZIelvSgpF2uZduheF4n6ReSXpD02aGsW0A8bd8/lq+yfT6aUbbPlLWu2byUNEXSzyQtlbRY0qcy63xJ0uNpvj4oaVYnY0nn1f2MSBor6TZJj6TP+3Z4vxySed8PStoi6bxW9ksVtfi3bMuxohO5nVcMmfkjJP2Hkmv/5x6DkptwfV/SsnR/HNtsHE2LiEo/SAbn/wY4CBgFPAQcVrPMLOAWkusmvhm4LzNvBbBfzvGMB94IfAX47FDWzTOeTuwfP/J9lO3z0cH3kNtnyo/c/qZ18xKYCBydvt4L+HXfusCXao9hnYwlnVf3MwJ8FTg/fX0+8HedjqVmO+tIbpjQ1H6p4qPFvGrLsaJTuZ1nTqfzPw18F7gp779FOu8K4GPp61HAPnnn03A4g/zy7SYj4kWg73aTWS/fHjgi7gX2kTSxqHgiYkNE3A+8NNR1c47Hqq9sn49mlO0zZa1rOi8jYm1EPAAQEc8AS4FJRcQyyHZPIflHnvT5PTnGcgLwm4hY2UCfw0kr+69dx4oy5HZLeSRpMvBu4JIm+m45Bkl7A28FLgWIiBcj4qkWYmnKcCiQJwGrMtOr2TWhBlomgJ9KWqDklpR5xNOJdTu1zXbvH8tX2T4fzSjbZ8pa12peAiCpB5gO3JdpPjf9uvayBoc1dOozMiHSa6Snz+NziKXPacDVNW1D3S9V1Mr+a9exopO5nVcMFwKfA7Y30Xc7YjgI2Aj8czrM4xJJe7YQS1OGQ4Hc6u2Bj4+Io4ETgXMkvTWHeDqxbqe22e79Y/kq2+ejGWX7TFnrWr6tu6TRwA+A8yJiS9r8LeA1wFHAWuBrOcTSzs9IO/bLKOBk4HuZ+c3slypqZf+161jRqdzOJQZJJwEbImJBE/22JQaSe3QcDXwrIqYDvyUZppSr4VAgt3R74Ijoe94A3EDytUCn4+nEuh3ZZgf2j+WrbJ+PZpTtM2WtaykvJY0kKSCuiojr+xaIiPURsS0itgP/RGP52qnPyPrMV9YTgQ2djiV1IvBARKzva2hyv1RRK/uvXceKjuR2jjEcD5wsaQXJsIi3S/pOzjGsBlZHRN/Z8++TFMy5Gg4FctO3B5a0p6S9ANLT9+8EFuUQTyfWbfs2O7R/LF9l+3w0o2yfKWtdK3kpkrGJSyPi69kVasbi/j6N5WunPiPzgDPT12cCN3Yylsz806kZXtHkfqmiVvZfu44VHcntvGKIiC9ExOSI6EnXuyMiPphzDOuAVZIOSZc7AVjSRAytiRL88rTVB8kvIX9N8ovJL6ZtZwNnp68FXJTOfxjoTdsPIvll5UPA4r51c4hnf5L/IW0Bnkpf793fukXF06n940e+j7J9Pjr0HnL9TPlRaF6+heRr2IXAg+ljVjrvX9JlF5L84zuxw7H0+xkBXg3cDjySPo/tZCzpvFcBm4ExNdtsar9U8dHi/mvLsaITuZ3nfshsYwZNXsWiDX+Lo4D56b74IbBv3rnkW02bmZmZmWUMhyEWZmZmZmZt4wLZzMzMzCzDBbKZmZmZWYYLZDMzMzOzDBfIZmZmZmYZLpDNzMzMzDJcIJuZmZmZZbhANjMzMzPLcIFsZmZmZpbhAtnMzMzMLMMFspmZmZlZhgtkMzMzM7MMF8hmZmZmZhkukIcxSR+RdHebtjVR0jxJaySFpJ6a+WMlXStpU/q4StLemfkjJH05Xf8ZSf8haZ92xGZmZmbWTi6QrVHbgZ8A7+1n/peBfYGDgNcAE4AvZeb/NXAccCywN/Ah4L86FKuZmZlZ0ypZIEtaIemzkhZKejo9c7nHAMt/XNLS9MzlEklHp+2HSrpT0lOSFks6ObPO5ZIulnSLpGcl/buk/SVdKOlJScskTa+J6Qvp9p+U9M/ZmNIYlkt6Ij0Te0BmXkg6W9Ij6boXSVJm/h+l8T8p6VZJ0wZbV9KhwBzg2DT+p9LlZ6UxPiPpcUmfbWSfR8T6iLgYuL+fRQ4EfhgRWyLiaeAG4PVpn/sC5wEfj4iVkVgUES6QzczMrHQqWSCn3g/MJCnMjgA+Um8hSe8jOZP5YZIzlycDmyWNBH4E/BQYD3wSuErSITV9/DmwH/AC8AvggXT6+8DXa7o7A3gXyRnU30nXRdLbgf+Tbm8isBK4pmbdk4A3Akemy70rXfc9wJ8BfwCMA/4NuHqwdSNiKXA28IuIGB0R+6TLXgp8IiL2Ag4H7sjsq6ckvaXObmzERcBJkvZNC+L3Arek8/4bsBU4VdI6Sb+WdE6T/ZiZmZl1VJUL5H+IiDUR8QRJoXtUP8t9DPhqRNyfnrlcHhErgTcDo4ELIuLFiLgDuAk4PbPuDRGxID3TeQPwXxFxZURsA64Fptf09c2IWJXG9JXMts4ALouIByLiBeALJGd2ezLrXhART0XEY8DPMu/nE8D/iYilEbEV+N/AUdmzyAOsW89LwGGS9o6IJyPigb4ZEbFPRDQ7ZvkBYBSwOX1sAy5O500GxpD8p+FA4FTgS5Le0WRfZmZmZh1T5QJ5Xeb1cyTFbj1TgN/UaT8AWBUR2zNtK4FJmen1mdfP15mu7XNVzbb6hlEckE4DEBHPkhSR2b76ez/TgG+kZ3efAp4A1OC69bwXmAWslPRzSccOsOxQfA/4NbAXyZn63wDfSec9nz7/TUQ8HxELSc6gz2pT32ZmZmZtU+UCuVGrSIY81FoDTJGU3QdTgcdb6GtKzbbWZPrKjhveE3h1g32tIhkSsU/m8cqIuKeBdWOXhuRM+ikkw0p+CFzXwHYacSTw7Yj4bfofgDnsKIAX9hePmZmZWdl0Q4F8CfBZSW9If7z22nR4wn3Ab4HPSRopaQbwe+w6NngozpE0WdJYknHD16bt3wU+KukoSbuTDJO4LyJWNLDNOcAXJPX94G1MOq66EeuByZJGpeuOknSGpDER8RKwhWQoREPSHx3unk7uXvPDyPuBj0l6paRXArOBhwAi4jckY6e/KGn39AeEHyAZ0mJmZmZWKsO+QI6I75GMB/4u8AzJWdOxEfEiyQ/2TgQ2kYyX/XBELGuhu++S/Ojv0fTx5TSG24G/AH4ArCU5o31ag/HfAPwdcI2kLcCiNOZG3AEsBtZJ2pS2fQhYkW7rbOCDfQunV7v43QG29zzwbPp6GTuGTgD8EdADrCY5M34QO/9w8nSSs+ibgR8Df5HuFzMzM7NSUYS/9W4HSSuAj0XEvxYdi5mZmZk1b9ifQTYzMzMzGwoXyGYZki6TtEHSon7mS9I/pDd9Wdh30xmzsnAOW9U5h60MXCC3SUT0eHjFsHA5yQ1o+nMicHD6mA18K4eYzIbicpzDVm2X4xy2grlANsuIiLtIrjXdn1OAK9ObztwL7CNpYj7RmQ3OOWxV5xy2Mtit6AAasd9++0VPT0/RYVgOFixYsCkixhUdxwAmsfMNYVanbWtrF5Q0m+TsBnvuuecbXve61+USoBXLOWxV5xy2KmtX/laiQO7p6WH+/PlFh2E5kLRy8KUKpTptdS8FExFzgbkAvb294RzuDs5hqzrnsFVZu/LXQyzMhmY1O98xcTI77phoVgXOYas657B1nAtks6GZB3w4/RX1m4GnI2KXr/XMSsw5bFXnHLaOq8QQC7O8SLoamAHsJ2k18FfASICImAPcDMwClgPPAR8tJlKz+pzDVnXOYSuDyhbIL730EosW7bhE4uGHH87IkSMLjMiGg4g4fZD5AZyTUzhmQ+YctqpzDlsZVLZAXrRoEX980Tz23n8aW9at5OJzYPr06UWHZWZmZmYVV9kCGWDv/aex79RDig7DzMzMzIYR/0jPzMzMzCzDBbKZmZmZWYYLZDMzMzOzDBfIZmZmZmYZLpDNzMzMzDJcIJuZmZmZZbhANjMzMzPLcIFsZmZmZpbhAtnMzMzMLMMFspmZmZlZRkcLZEn7SPq+pGWSlko6VtJYSbdJeiR93reTMZiZmZmZDUWnzyB/A/hJRLwOOBJYCpwP3B4RBwO3p9NmZmZmZqXQsQJZ0t7AW4FLASLixYh4CjgFuCJd7ArgPZ2KwczMzMxsqDp5BvkgYCPwz5L+Q9IlkvYEJkTEWoD0eXy9lSXNljRf0vyNGzd2MEwzMzMzsx06WSDvBhwNfCsipgO/ZQjDKSJibkT0RkTvuHHjOhWjmZmZmdlOOlkgrwZWR8R96fT3SQrm9ZImAqTPGzoYg9mQSJop6VeSlkva5T90ksZI+pGkhyQtlvTRIuI0649z2KrOOWxl0LECOSLWAaskHZI2nQAsAeYBZ6ZtZwI3dioGs6GQNAK4CDgROAw4XdJhNYudAyyJiCOBGcDXJI3KNVCzfjiHreqcw1YWu3V4+58ErkoT91HgoyRF+XWSzgIeA97X4RjMGnUMsDwiHgWQdA3Jj0qXZJYJYC9JAkYDTwBb8w7UrB/OYas657CVQkcL5Ih4EOitM+uETvZr1qRJwKrM9GrgTTXLfJPkW5A1wF7AByJie72NSZoNzAaYOnVq24M1q8M5bFXnHLZS8J30zHZQnbaomX4X8CBwAHAU8M30koa7rugfmlr+nMNWdc5hKwUXyGY7rAamZKYnk5yhyPoocH0klgP/Cbwup/jMBuMctqpzDlspuEA22+F+4GBJB6bj5k8j+Rov6zHSIUKSJgCHkIyvNysD57BVnXPYSqHTP9Izq4yI2CrpXOBWYARwWUQslnR2On8O8LfA5ZIeJvkq8PMRsamwoM0ynMNWdc5hKwsXyGYZEXEzcHNN25zM6zXAO/OOy6xRzmGrOuewlYGHWJiZmZmZZbhANjMzMzPLcIFsZmZmZpbhAtnMzMzMLMMFspmZmZlZhgtkMzMzM7MMF8hmZmZmZhkukM3MzMzMMlwgm5mZmZlluEA2MzMzM8twgWxmZmZmluEC2czMzMwswwWymZmZmVmGC2QzMzMzswwXyGZmZmZmGS6QzczMzMwyXCCbmZmZmWW4QDbLkDRT0q8kLZd0fj/LzJD0oKTFkn6ed4xmA3EOW9U5h60Mdis6ALOykDQCuAh4B7AauF/SvIhYkllmH+BiYGZEPCZpfCHBmtXhHLaqcw5bWfgMstkOxwDLI+LRiHgRuAY4pWaZPwSuj4jHACJiQ84xmg3EOWxV5xy2UnCBbLbDJGBVZnp12pb1O8C+ku6UtEDSh/vbmKTZkuZLmr9x48YOhGu2C+ewVZ1z2EqhoSEWko6PiH8frK0o27dtZdmyZTu1HX744YwcObKgiKyiVKctaqZ3A94AnAC8EviFpHsj4te7rBgxF5gL0NvbW7sds05wDlvVOYetFBodg/yPwNENtO0iHU80H3g8Ik6SNBa4FugBVgDvj4gnGw24nmc3Ps5Xf/wC4xe/AMCWdSu5+ByYPn16K5u17rMamJKZngysqbPMpoj4LfBbSXcBRwK7HJjNCuActqpzDlspDDjEQtKxkj4DjJP06czjS8CIBvv4FLA0M30+cHtEHAzcnk63bPT4Kew79RD2nXoIe+8/rR2btO5zP3CwpAMljQJOA+bVLHMj8LuSdpP0KuBN7JzfZkVyDlvVOYetFAY7gzwKGJ0ut1emfQtw6mAblzQZeDfwFeDTafMpwIz09RXAncDnGw3YrFMiYqukc4FbSf4DeFlELJZ0djp/TkQslfQTYCGwHbgkIhYVF7XZDs5hqzrnsJXFgAVyRPwc+LmkyyNiZRPbvxD4HDsX1xMiYm26/bW+PIuVSUTcDNxc0zanZvrvgb/PMy6zRjmHreqcw1YGjY5B3l3SXJJxwy+vExFv728FSScBGyJigaQZQw1M0mxgNsDUqVOHurqZmZmZWVMaLZC/B8wBLgG2NbjO8cDJkmYBewB7S/oOsF7SxPTs8USg7vUL/ctTMzMzMytCo9dB3hoR34qIX0bEgr7HQCtExBciYnJE9JAMsr8jIj5IMtj+zHSxM0kG25uZmZmZlUKjBfKPJP2xpImSxvY9muzzAuAdkh4huZXkBU1ux8zMzMys7RodYtF3xvdPM20BHNTIyhFxJ8nVKoiIzSQX9zYzMzMzK52GCuSIOLDTgZiZmZmZlUGjt5que5/ziLiyveGYmZmZmRWr0SEWb8y83oNkiMQDgAtkMzMzMxtWGh1i8cnstKQxwL90JCIzMzMzswI1ehWLWs8BB7czEDMzMzOzMmh0DPKPSK5aAcm90Q8FrutUUGZmZmZmRWl0DPL/zbzeCqyMiNUdiMfMzMzMrFANDbGIiJ8Dy4C9gH2BFzsZlJmZmZlZURoqkCW9H/gl8D7g/cB9kk7tZGBmZmZmZkVodIjFF4E3RsQGAEnjgH8Fvt+pwMzMzMzMitDoVSxe0VccpzYPYV0zMzMzs8po9AzyTyTdClydTn8AuLkzIZmZmZmZFWfAs8CSXivp+Ij4U+DbwBHAkcAvgLk5xGeWK0kzJf1K0nJJ5w+w3BslbfNYfCsb57BVnXPYymCwYRIXAs8ARMT1EfHpiPgTkrPHF3Y2NLN8SRoBXAScCBwGnC7psH6W+zvg1nwjNBuYc9iqzjlsZTFYgdwTEQtrGyNiPtDTkYjMinMMsDwiHo2IF4FrgFPqLPdJ4AfAhjrzzIrkHLaqcw5bKQxWIO8xwLxXtjMQsxKYBKzKTK9O214maRLw+8CcwTYmabak+ZLmb9y4sa2BmvXDOWxV5xy2UhisQL5f0sdrGyWdBSzoTEhmhVGdtqiZvhD4fERsG2xjETE3InojonfcuHHtiM9sMM5hqzrnsJXCYFexOA+4QdIZ7CiIe4FRJP97MxtOVgNTMtOTgTU1y/QC10gC2A+YJWlrRPwwlwjNBuYctqpzDlspDFggR8R64DhJbwMOT5t/HBF3dDwys/zdDxws6UDgceA04A+zC0TEgX2vJV0O3OSDspWIc9iqzjlspdDQdZAj4mfAzzoci1mhImKrpHNJfhU9ArgsIhZLOjudP+h4N7MiOYet6pzDVhaN3ijErCtExM3U3ASnvwNyRHwkj5jMhsI5bFXnHLYy8O2izczMzMwyXCCbmZmZmWW4QDYzMzMzy3CBbGZmZmaWMSx/pLd921aWLVu2U9vhhx/OyJEjC4rIzMzMzKpiWBbIz258nK/++AXGL34BgC3rVnLxOTB9+vSCIzMzMzOzshuWBTLA6PFT2HfqIUWHYWZmZmYV07ExyJKmSPqZpKWSFkv6VNo+VtJtkh5Jn/ftVAxmZmZmZkPVyR/pbQU+ExGHAm8GzpF0GHA+cHtEHAzcnk6bmZmZmZVCxwrkiFgbEQ+kr58BlgKTgFOAK9LFrgDe06kYzMzMzMyGKpfLvEnqAaYD9wETImItJEU0ML6fdWZLmi9p/saNG/MI08zMzMys8wWypNHAD4DzImJLo+tFxNyI6I2I3nHjxnUuQDMzMzOzjI4WyJJGkhTHV0XE9WnzekkT0/kTgQ2djMHMzMzMbCg6eRULAZcCSyPi65lZ84Az09dnAjd2KgYzMzMzs6Hq5HWQjwc+BDws6cG07c+AC4DrJJ0FPAa8r4MxmJmZmZkNSccK5Ii4G1A/s0/oVL9mZmZmZq3I5SoWZmZmZmZV4QLZLEPSTEm/krRc0i43sZF0hqSF6eMeSUcWEadZf5zDVnXOYSsDF8hmKUkjgIuAE4HDgNPTuz9m/Sfw3yPiCOBvgbn5RmnWP+ewVZ1z2MrCBbLZDscAyyPi0Yh4EbiG5M6PL4uIeyLiyXTyXmByzjGaDcQ5bFXnHLZScIFstsMkYFVmenXa1p+zgFs6GpHZ0DiHreqcw1YKnbzMm1nV1LvqStRdUHobyYH5Lf1uTJoNzAaYOnVqO+IzG4xz2KrOOWyl0BUF8vZtW1m2bNlObYcffjgjR44sKCIrqdXAlMz0ZGBN7UKSjgAuAU6MiM39bSwi5pKOjevt7a17gDdrM+ewVZ1z2EqhKwrkZzc+zld//ALjF78AwJZ1K7n4HJg+fXrBkVnJ3A8cLOlA4HHgNOAPswtImgpcD3woIn6df4hmA3IOW9U5h60UuqJABhg9fgr7Tj2k6DCsxCJiq6RzgVuBEcBlEbFY0tnp/DnAXwKvBi5O7qbO1ojoLSpmsyznsFWdc9jKomsKZLNGRMTNwM01bXMyrz8GfCzvuMwa5Ry2qnMOWxn4KhZmZmZmZhldeQbZP9ozMzMzs/50ZYHsH+2ZmZmZWX+6skCGnX+05zPKZmZmZtanawvkLJ9RNjMzM7M+LpBTvgycmZmZmYGvYmFmZmZmthMXyGZmZmZmGS6QzczMzMwyXCCbmZmZmWW4QDYzMzMzy/BVLOqovS6yr4lsZmZm1j1cINeRvS6yr4lsZmZm1l1cIPfD10U2MzMz604ukA2Al156iUWLFu3U5qElZmZm1o1cIBsAixYt4o8vmsfe+08DfLttMzMz614ukNus9kzsSy+9BPDymdjaaSjPmdq995/WkWElPjttZmZmVeICuc1qz8SuXXQvI0aPZXzP79Sd7oYztT47bWZmZlVSSIEsaSbwDWAEcElEXFBEHI2oveQb7Hz2s/bs6LJly9hrwo4zsVvWrWS3vcf3O5012Nnn2r7LarB9UmaD5aYkpfNnAc8BH4mIB3IP1KwfzmGrOuewlUHuBbKkEcBFwDuA1cD9kuZFxJK8Y2lE9pJvsOvZz3pnjMccdGRTfQ129rkqZ17buU/y1GBunggcnD7eBHwrfTYrnHPYqs45bGVRxBnkY4DlEfEogKRrgFOAIRfIW9atBOC3m9Yy4r9e4MlXvbLt07/dtJYRo8fu1G/2jHLt2WWAZzesarivLetWsmzZ7v1uq1YjyzRj2bJlL+/P2ria2Vat7D5J+illwdxIbp4CXBkRAdwraR9JEyNibf7hmu3COWxV5xy2UiiiQJ4ErMpMr6bO//wkzQZmp5PPSvpVZvZ+wKaORTiIey9t6+b2u/fSxt9Lm/tud18N/12OvvRL/c2aNuRe26eR3Ky3zCRglwNzTQ6/IGlR7TI5KerzUuTntMi+ixxLNBxzuFvzyDmccA6776FqS/4WUSCrTlvs0hAxF5hbdwPS/IjobXdgRfB7KZVGcrOh/IWdc7jIfVNU3934nvv6LqLfvu7rtFU6h4v+W3Zr30X029d9nTbnsPseUr/t2M4r2rGRIVoNTMlMTwbWFBCHWa1GctP5a2XmHLaqcw5bKRRRIN8PHCzpQEmjgNOAeQXEYVarkdycB3xYiTcDT3vcm5WIc9iqzjlspZD7EIuI2CrpXOBWkku4XBYRi4e4mbpDLyrK76Uk+stNSWen8+cAN5NcWmg5yeWFPtrg5ovcN0X13Y3vudC+h2kOd+Xfslv7dg6777L0q+RHoGZmZmZmBsUMsTAzMzMzKy0XyGZmZmZmGaUqkCXNlPQrScslnV9nviT9Qzp/oaSjG103b82+F0lTJP1M0lJJiyV9Kv/od4m16b9LOn+EpP+QdFN+UeejyJxtoO8z0j4XSrpH0pGZeSskPSzpwWYuidNA3zMkPZ1u/0FJf9noui32+6eZPhdJ2iZpbJve82WSNqif66hW6fiU5RzujhwervkL3ZnDReVvg30PjxyOiFI8SAbj/wY4CBgFPAQcVrPMLOAWkmsgvhm4r9F1K/ReJgJHp6/3An5d1feSmf9p4LvATUXnWVn2Tas522DfxwH7pq9PzP5dgBXAfh183zPq/b1bed9DXRf4PeCOdrzndP23AkcDi/qZX4njk3O4O3N4OOZvt+ZwUfnbbTlcpjPIL99eMiJeBPpuL5n18u0lI+JeYB9JExtcN09Nv5eIWBsRDwBExDPAUpI7BBWllb8LkiYD7wYuyTPonBSZs4OuHxH3RMST6eS9JNcKbYdWYs9z3dOBqxvc9qAi4i7giQEWqcrxKcs53CU5PEzzF7ozh4vK32bWr2wOl6lA7u/WkY0s08i6eWrlvbxMUg8wHbiv/SE2rNX3ciHwOWB7h+IrUpE5O9T1zyL5n3WfAH4qaYGSW7EORaN9HyvpIUm3SHp9k3E30y+SXgXMBH6QaW7lPbcSX9mOT1nO4YH77qYcrmL+QnfmcFH5O6T1q57DRdxquj+t3F6y4dtO5qTlW2VKGk2SVOdFxJY2xjZUTb8XSScBGyJigaQZ7Q6sBIrM2YbXl/Q2kgPzWzLNx0fEGknjgdskLUv/d96uvh8ApkXEs5JmAT8EDh5K3E322+f3gH+PiOzZhlbecyvxle34lOUc7r/vbsvhKuYvdGcOF5W/jfbdp9I5XKYzyK3cXrJst51s6VaZkkaSFMdXRcT1HYyzEa28l+OBkyWtIPlK4+2SvtO5UHNXZM42tL6kI0iGt5wSEZv72iNiTfq8AbiB5CuotvUdEVsi4tn09c3ASEn7NRp3s/1mnEbN13otvudW4ivb8SnLOdxP312Yw1XMX+jOHC4qfxvqO6PaORwlGGQfySDq3YBHgQPZMYj69TXLvJudB2D/stF1K/ReBFwJXFj036TV91KzzAyG34/0CsvZBvueSnKnqeNq2vcE9sq8vgeY2ea+92fHjYiOAR5L90HT77vRdYExJOPU9mzXe85sp4f+fyBSieOTc7h7c3i45W+35nBR+dttOVx4cte8uVkkV234DfDFtO1s4Oz0tYCL0vkPA70DrVvF90Ly9UsAC4EH08esKr6Xmm3MYJgVyEXnbAN9XwI8mcmj+Wn7QekB4iFgcYf6Pjfd9kMkP0w5rh3ve7B+0+mPANfUrNeO93w1sBZ4ieSMxFl5/a2dw87hVt/zcM3fbs3hovK3m3LYt5o2MzMzM8so0xhkMzMzM7PCuUA2MzMzM8twgWxmZmZmluEC2czMzMwswwWymZmZmVmGC2QzMzMzswwXyGZmZmZmGf8f+fb6Bu39zNwAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig, ax = plt.subplots(2,4,figsize=(10,5))\n",
- "ax = ax.ravel()\n",
- "\n",
- "for n,i in zip(x.keys(),ax):\n",
- " g = sns.histplot(ax=i, x = x[n])\n",
- " g.set_title('n components: %s'%n)\n",
- " \n",
- "plt.tight_layout()\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 159,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAABXiklEQVR4nO3deZxcdZX//9fpTnc6+75Aks4CCWERAjaLERwGEEMcjAqy6OCgMDEqIj/1O6KjzgKj4igDjGCMiCguEMUFMLiBCk5AaTQsAQIhZA/ZyNZJOr3U+f1R9za3q6u7q7urq+6tej8fj36kq+6tez9163Tl1KfO5/Mxd0dERERERNIqit0AEREREZE4UYIsIiIiIhKhBFlEREREJEIJsoiIiIhIhBJkEREREZEIJcgiIiIiIhFlkSCb2Z1mdn2x2yHSW4phKQWKY0kaxWz5ikWCbGZrzeyc/tpfsjOzy83sT3k61mFmdp+ZbTYzN7NpGdsHmtkdZrbXzF41s0/k47xxoRgujjzH8NvN7E9mtjuI0W+Z2bDI9jvNrMnMGiI/lfk4d1wojosjz3F8ppmlMuL0nyLbS+q9WDFbHHHKH8xsjpk9aWYHgn/n5KNdsUiQpSSkgF8BF3Sy/d+BmcBU4O+BfzGzeYVpmkhORgDXA4cDRwOTgf/O2Ocr7j408tNa6EaK5GBzRpx+N7Lt39F7scRLr/MHM6sGfgF8HxgFfBf4RXB/37h7UX+Au4KLcxBoAP4luP8dwEpgN/AH4Ohu9v8x8CqwB3gEODZyjjuB67towz8DzwP7gOeAk4L7jw7OvTtoyzsyjnkb8GDQjv8DJgI3AbuAF4ATI/uvBT4THH8X8B2gJqMNq4HXgPuAwyPbHFgEvBQ89lbAIts/GLR/F/BrYGp3jw2eWyPQGrR/d7D//KCN+4BNwKd6+HoOCM45LeP+TcC5kdvXAXcXO/4Uw4rhLq7pu4Fncn0Nkv6jOC6NOAbOBDZ2sb1k3osVs6URs5Hz9Th/AM4Ntkef03pgXp/jq9gBHnnxz4ncngXsB94KVAH/Erz41dn2j7zIw4CBQZCtyCXAgfcEF/fk4IU/kvSnlKrgnJ8FqoGzghf9qMgxdwBvBGqAh4FXgPcDlaR7on6f8RyfBaYAo4M/iOuDbWcFxzopaP//Ao9kBOkDwEigFtgevvjAO4N2Hh0E1+eA5Tk+9nLgTxnXYwtwRvD7KII/9uD2buD0ngZ4cBwHJkTuu5BI8pH0H8Vw6cRwZN+biCQOwfV6Lfh5Erig2HGnOFYcZ7mOZwJNwNbgOvwPMCRynJJ6L1bMJj9mI/v0OH8A/j/gwYzjPAB8ss+xVezg7iTAPw8sjdyuCILwzM4CPON4I4MLOiKHAP818PEs959B+hNlReS+HwH/HjnmtyLbPgY8H7n9BoJPVZE2L4rcng+8HPz+bdJf3YbbhgLNYZAEz+X0yPalwLXB7w8CV2RcqwMEnwK7eWy2AF8PfAgY3svXMluATwnui37ifSuwttixpxhWDHdyTd9KusdkVuS+k4AxQYzPJ/0f3puLHXuKY8VxxuMmAscE559Oukf0m8G2knsvVswmP2Yjj+9x/hC83ndnHOcH4bXuy09ca5APB9aFN9w9BWwAJmXb2cwqzezLZvayme0lHUwAY3M41xTg5U7asCE4d2hdRhu2Rn4/mOX20Ixjbsg41uGRc0WfbwOwM+Ncr0Z+PxA59lTg5mBg0W7SvVuW42OzuYD0H986M/ujmb2pi31z1RD8Ozxy33DSCUapUgwnNIbN7DTgh8CF7v5i5Dn91d13unuLuy8j/Sb87p4cO4EUxwmLY3d/1d2fc/eUu79Cugf1wmBzObwXK2YTFrPd6C5mGzK2ZW7vtbgkyJ5xezPpFw4AMzPSgbipk/3fCywAziE90GZa+NAczr0BOCLL/ZuBKWYWvUa1kTb0xpSMY22OnCv6fIeQ7qnK5VwbgA+5+8jIzyB3X57DYzOvI+7+hLsvAMYDPyf9ibFP3H0X6a9eTojcfQLpuqxSoRgugRg2sxNJ1/B90N0fyuHcubw+SaI4LoE4znJsC45Ziu/FitnSi9noMbuL2ZXA8cHrHDqePMR0XBLkrcCMyO2lwNvN7GwzqwI+CRwClney/7Bg+05gMPDFHpz7duBTZvZGSzvSzKYCfyZdx/QvZlZlZmcC5wN39/TJRXzUzCab2WjStUn3BPf/EPhAMFXJwKD9f3b3tTkcczHwGTM7FsDMRpjZe3Jsz1Zgcjja08yqzex9ZjbC3ZuBvaSL8HNiZjWka6AABga3Q98DPmdmo8xsNulBBXfmeuwEUAwnPIbN7DjSI6k/5u73Z9l+oZkNNbMKMzsX+EfSyXQpURwnP47PNLPa4BpOAb5MepR/qNTeixWzCY/Z4PG9zR/+EJznaktPB3dVcP/DuZ67U32t0cjHD+lPb+tJF3F/KrjvXaRHQ+4B/kj7UaXt9ifd5f8L0l3q60gXujtwpHdTQxRsXwSsIt1V/yzB6FHg2ODce4K2vCvymHbHBK4E/hC5fSTQErm9ltdHoe4mPRXJ4Iw2vEz6K44HgMmRbW3PpZNzXwY8QzogNwB35PJY0oMHfhmcc0dw+1ekay/3Ak/Qvv6ogaAAv5Pr6Jk/kW0DgTuC424FPlHsuFMMK4YzruF3SI9wb4j8rIxsfzS4jnuBp4BLih13imPFcZZr+AnSvYcHgjb8LzAssr2k3osVs8mP2ci5epU/ACeSHjh9EPgrkRlA+vJjwcGln5nZWuBKd/9dsdsi0huKYSkFimNJGsVsccSlxEJEREREJBaUIIuIiIiIRKjEQkREREQkQj3IIiIiIiIRA4p14rFjx/q0adOKdXqJoSeffHKHu48rdjt6QnEsUYphSTrFsCRdvmK4aAnytGnTqK+vL9bpJYbMbF33e8WL4liiFMOSdIphSbp8xbBKLEREREREIrpNkM3sDjPbZmbPdrLdzOwWM1ttZk+b2Un5b6YkXSrlrNnewGMv72DN9gZSqcIODlUcSz4UM44Vw5IPimFJukLFcC4lFncCXye91F825wEzg59TgW8E/4oA6WD+1cpX+cTSFTQ2p6ipquDGi+Yw79iJVFTkstx9XtyJ4lj6IAZxfCeKYemlVMpZ/9p+/rp+N5/92TOKYUmMMHZ3NjSBOWt3HuRfCxDD3SbI7v6ImU3rYpcFwPc8PV/c42Y20swOc/ct+WqkJNvanfvbkgqAxuYUn1i6gtlXn8GMcUML0gbFsfRUKuWs3bmfrXsbmTC8BneKGseKYclVGLs79x+iurKCptYUm3c38vL2BpY8skYxLLEVTYZbPB2n2/Y2sWv/IQDGDatpS46hf2M4H4P0JpFevzu0MbivQ0Cb2UJgIUBtbW0eTi1JsHVvY1swhxqbU2zb11iwBDkHimNpk623+KsXnhD3OFYMl7FoUrx5dyM3/nYVF9fVcsvDL3HF6TP49p/WcOUZMxTDEiuZCXE0Gd7f1MrB5tZ2++/Y31SwGM5HgpytTztrQYi7LwGWANTV1WmFkjIxYXgNNVUV7YK6pqqC8cNqitiqDhTHZSyX3uKXtu2LexwrhstQZulEmAxfcfoMbnn4JRqbU5jRFreKYSmm6Ae5oQMrWbP9ADsbDmVNhpc8kv5Ql6lQMZyPWSw2AlMitycDm/NwXImpnhbITxszhBsvmkNNVTrcwpqhaWOGFKK5uVIcl6mwt3j+LY9y6bf+zPxbHuX5LXs79FIsrd/IF9/1hjjHsWK4TITvwU+s3cn9T2/mp3/b1FZXHCbD0aQY0vF675MbufqsmYphKbhUylm3s4Gfr9jEB+78C89t2svaHQdZtXUfO/Y3cfNDL5Fy2v2E8Vtpr//c/9SmDjF8wwXH90sM56MH+T7gKjO7m3Qx/R7VC5Wu3gxUqqgw5h07kdlXn8G2fY2MH1bDtDFDCjlALxeK4zLR297iXQeaOKl2JMviG8eK4RLXWW9xZulENHlobE61Jca3PPwSdz2+joVvmcGsCcM4euJwpo9VDEv/SaWcDbv28+ymvVSYtcXtzgNN7DzQRNi/Fk2GQ+GHukVvmYEF919yci13P7GeK06fQWUF1E0dzdwZY/olhrtNkM3sR8CZwFgz2wj8G1AF4O6LgWXAfGA1cAD4QN5bKbHR2wF3FRXGjHFDi1bnpjgWyL22OOwtzhztXzt6SFssF5piuDxl1hZHB9plK50Ik+F76te3JcVb9jRyT/16llxWR1WlMWF4cT7cKYZLX7aa4gEVxqqt+4DXv90IE+MwIc6WDH/87Jnc/NBLLH5kDR+YO5U3TB5BRYVx/OQRNLWkqB09pF8/4OUyi8Wl3Wx34KN5a5HEWkIG3HWgOBbI/gEvKb3FiuHy0pPe4mgPcZgMX7fgDQyqruCehadxoKm1aElxlGK4NIUf4vYcbGLL7kZ2ZKkpDhPi8NuNSoOfr9jEB+dOx6zzZPjb/1RXkGQ4m6ItNS3JlJABdyJAx3KKbB/w4thbLOUt/KbjhVf35tRbnIDSCSlBYfnEk+t2c/NDL/LpeUfzQtBTnDnALkyIw283Pjh3OpecXMsdy1/hkpNrOWLcUL51WR3NrSmmjil8MpyNEmTpkXDAXWYNcowGeYgA2cspvnVZXSJ6i6V8pVLOM5t284mlK3LuLS526YSUl87qil94dW/WmuKwpzisH/6H4ydxqKWVummjOKl2FAeaWorSQ9wdJcjSIwkZcCdlKJfBd5/7xTPccMHxfPrep9VbLLGRrc5YvcUSJ9Ha4s17GjutK85WUxztKf5/586mssKYOT49JinOcasEWXqs2APuRDLlOvhu3c6DTBpZo95iiYWu6ozVWyxx0dKS4ncvbOWVHfu7rCu+/6nOa4qvW3AcrSmPZU9xZ5Qgl7nMXje94UoS5Tr4rqaqgtFDBuoDnhRNLrNSqLdY4iAspViz4wDPbdnbbV3xxXXxrinuKSXIZaw3cxqLxEFfBt+pXl6KJfqe29WsFFv2NHLX4+va5no9e/Z43jBppN6Xpd9lK6V4Pqgt7q6ueEAFfPndxwOURIebEuQy1ts5jUWKSYPv8mvVqlWceeaZ7e676KKL+MhHPsKBAweYP39+h8dcfvnlXH755ezYsYMLL7yww/YPf/jDXHzxxWzYsIHLLrusw/ZPfvKTnH/++axatYoPfehDHbZ/7nOf45xzzmHFihVcc801HbZ/8YtfZO7cuSxfvpzPfvazHbbfdNNNzJkzh9/97ndcf/31HbZ/85vf5KijjuL+++/na1/7Woftd911F1OmTOGee+7hG9/4RoftP/nJTxg7dix33nknd955Z4fty5YtY/Dgwdx2220sXbq07f6GQy08t3kv4y/9Emaw9U8/4Rv3PcO23Y2k3PnPpRVMGTeSmnOvZcueRm740vUcvv9l7htS3XaMMWPGcO+99wLwmc98hscee6zduSdPnsz3v/99AK655hpWrFjRbvusWbNYsmQJAAsXLuTFF1/s0P6kUQznJ4bd0++bjc2tfPC6b1JdM4j/u++HrHjkQQzYtruR/1xqHD5iEB//n+9zx/JXGLPmN7z2xCPctRQGVVUyqLqSQYMG8eCDDwJw3XXX8dBDD7U7d1JiWAlyGUvqnMZxojfmwiUXoTt+/ACfWLqCrX/6CQdf/gsA5/+wksmjBrFjdzNjL/wPaqoqOHnX77n8whvaPTYpb8xSGtydxuZWmltTHGpJ0djcSsq9bXtVpbF93yEmjxrExl0HaWpJsWXPQX4e1Bkv5XH+9viGIj4DKXWpVDpGW1JOS6tzoKmFzbsb25Z7dmBnQxMTh9e0xenmPQepNLhuwXH88PY/smlgJYOqKov9VPKuaAmyEovCJxZ/+MMfAPjqV7/KAw88QGNzK9s27iHljg0YyISL0onFPUtu5trHH2332P5OLObMmdOhvSKhxuZWmlpSVA+o6OSDXSsDB1TwxqmjuWHhqYwfVsP3v/EESi26d9RRR7W9N2QaPHhwp9sAxo4d2+X2KVOmdLm9q3ND+n2hq+1z587tcvs555zDOeec0+n2888/n/PPP7/T7RdffDEXX3xxp9vD/5MypVLO2h0NHPamBex+dUZbOcWiM2Zw+6Nr2uqM//1fr+WWh19i1OBqFtVN7lBn/KYvX9fpuQG+9KUvdbn9pptu6nJ7+J4cZZa8b1gUwz2P4VTKWbezgZFz3srAd07lC/OObpum7esPr6a6ZhCVBjtr/44v3n4Z99Sv55KTa5kyajAVFcasYBaKt3zlP4D/6PT8n//85/n85z/f6fY4x7B6kMtYTVUlR44fyuptDTi01WjW/+yJYjctMfTGnP/kIvSRj3yERYs+3KGcoqXV06OmT303I059N5CO3R9nlAZ94Qtf4Atf+EKnx4/zG7MkV1eLfGhWComDcFYKdzrMYVxpHadoC2uMDza3MnxQFXNnjGHAgIpiP41+Zx75uqeQ6urqvL6+vijnlteFg53iUKNpZk+6e11RTt5LiuP+tWZ7A/NvebRdj/HUMYP4xFuP6jCXcRwGlyqGy1f4Xrp93yH+6Tt/4cozZvD1h1cDcNVZR7b1HB82ooZ3nzQ5toPvFMOlraUlxZ9e3sFf1+8C4JaHVnPVWUcCr0/TdqC5lZsfSn+z8YG5U5l92PBETdGWrxhWD3KJ6O10bZrTWOIkl9kpNJexxEnmXMbRWSmyLfKxZU8j3/7TGm68aE7skmMpTdGZKfY2tvC3DbuyzmEcnabtqxee0K6UohzjVAlyCdB0bVIKcp2dQnMZS7F1NZcxaEloiY9si3yEpRSZcxjfU1+epRSdKd9nXkI6m65t7c79RW6ZSO6yxXG4NHTYy6G5jKXYwg9y8295lD+s2sGn73263RyxYWK860BT2yIfX3/vidzxT6dw+pFjedMRY8u2R04KKyyneG7LXm5+6KW2mSnuf2oTowdXc8nJryfF4RzGpx85hnfOmcTpR44t6+QY1INcEjRdmySRyikkaVIp55lNu9s+yIWD7+D1copwkY+Fb5nBiVNGMnXMEMWsFFy01jj6AS6zlOL/nTu77EspOqMEuQRMGF6T9Wvo8cNqitgqkc6pnEKSJFpnvHbn/g4xGi2naGxOsetAE7MnDufvZo1XwiEF01mtcXRmistOm6pSihzpipSAaWOGcONFc/Q1tCSGyikkKcIPcz/92yY++7NnSPnrA5s6K6f45cfO0BgQKaiWlhS/ee5VHnz2Vf740va25Dgsp/j42a/H6YI5kzj6sGEsOEGlFF1RD3IJqKgw5h07kdn6GlpiSuUUfWdm84CbgUrgdnf/csb2EcD3gVrS7+1fdffvFLyhJSI6bdsnlq5om51Cg+/6RnGcf9Fa4yWPrOHKM2YAmpmir5QglwhN19Y1vSkXj8op+s7MKoFbgbcCG4EnzOw+d38usttHgefc/XwzGwesMrMfuHtTEZqcaNGYzZy2LawxvuL0GbGdyziuFMf5FZZUvLLzAH/rpNY4Wk4xtGYApx+hHuNc6SpJyYu8KZ8HHANcambHZOwWvimfAJwJfM3Mqgva0BKlcoq8OAVY7e5rgkThbmBBxj4ODLP0cn5DgdeAlsI2M/kyB+JB+zrjMEn+9p/WMHvicCXHPaM4zpOWlhT3P72Zn/5tU1tyHK01jibHlRVQN3W0kuMeyqkHWb1vknBtb8oAZha+KUd7LfSmnCcqp+gXk4ANkdsbgVMz9vk6cB+wGRgGXOzuKbIws4XAQoDa2tq8NzZpss1rnDlt2y0Pv9RWZzxrwjCOnjg8EauKxUze4ricYzgsqfj0vU+3K6f44NzpfPzsmdz8UDpW31M3WbHaB90myPpKREpAXpML6ZzKKfpNtv/ZPOP224AVwFnAEcBvzexRd9/b4YHuS4AlkF6mN79NTZZozF5x+gy+/ad0DaembesXeYvjco3h6PRtnU3dplrj/Milr11fiRRYKuWs2d7AYy/vYM32BlKpsvnb7y89eVM+HJgDfN3Mhmc9mNlCM6s3s/rt27fns52Jp3KKfrMRmBK5PZn0h7moDwA/9bTVwCvA7AK1L5E6m9c4Wk4BtJu2TQlHnyiOeyHMCf62/rV2cxtnK6cIp2479+gJHDlhmGK1D3IpsVDvWwFp2eh+keub8pfd3YHVZha+Kf8l82Dl2nORC5VT9JsngJlmNh3YBFwCvDdjn/XA2cCjZjYBOApYU9BWJkBX5RSggXj9THHcQy0tKX757BZu/O0qPj3vaF54dW/b9G3R0p/31E1m5vihHHPYCJVT5EkuPch5631Tz1v3tGx0v2h7Uw4G3l1C+gNdVPimjN6Uc5f5bcf4YTVtvW6haDnFaTO0zG5vuHsLcBXwa+B5YKm7rzSzRWa2KNjtOmCumT0DPAR82t13FKfF8dTZMtGZ8xprIF7/UBz3TLTW+B+On9QuOQ57ja84fQbvqZvMSbWjOO/YwzhivN5f8yWXHuS89b6p5617WjY6/9y9xczCN+VK4I7wTTnYvpj0m/KdwZuyUcZvyrnK9m3H1997IjdeNKfDNyAqp+g7d18GLMu4b3Hk983AuYVuV1J0V06heY0LQ3Gcm8xaYzM6JMfhDBUn1Y7SDBX9IJcEWV+JFJCWje4felPOv2zfdlz1w7/xq4+foXIKiZXww9wLr+5VOYXEWra5jcNvOJQcF1a3V1RfiRSWlo2WpOjs245X9zaqnEJiISwBemLta3xi6QqVU0isZZvbOKw1zpYca27j/pXTPMjqfSscLRstcZU5v3FYb6xvOyRuwl64v67fzWd/9oyWiZbY62xu42hSPKACvvSu4zFD8VoAWmo6hrRstMSN6o0lKaLlFEseWaNloiX2uprbONpjPGvicE6ZNlo9xgWiqywi3eqs3viYw4ax7OozuHvhqSy7+gxNRyhFk62cInM1PJVTSNxEk+PO5jZWOUVxqAdZRLrVVb1xWGssUizRbzjCcgpAq+FJbGUbjKe5jeNFCbKIdEuzq0hcZU7fBq/3woXJRmNzqt1qeEo0pJjCxT9e3t4AdJy+LSwB0gwVxaWrLiIdZC4AUjtqsGZXkdgJe44femFbh3KKXQea2nqNv/7eE/nlx1QCJMWXSjnL1+xsW6RGcxvHl3qQRaSdzpY7P/foCZrfWGIj2nN85RkzVE4hifDKjv3Ur3uty8F4So7jQVdfRNrpbLnz9bsOaH5jiYXMnuPoIDygXTmFYlXioqUlxcotezQYLyHUgywi7Wi5c4mrcC7u7fsOtes51vRtEnfhbBUvb2vQYLyE0EcUkTKXWW8cLgASpQF5Umxhr/H8Wx7l0dU7OvQca/o2iaNUylm7o4FHg6ncltZvbDcY7z11kzmxdhTnHXsYR4zXtx1xoh7kfpa5+phq4SROtACIJEFnM1Wo51jiLNtsFeHg0XefNBkLwnT6mMEqqYghvSL9KNrjcem3/sz8Wx7lVytfJZXyYjdNBNACIBJ/Xc1UoZ5jiavo0tHR2SrCGVZu/f1qbn90DUeMG0rtaHU+xJF6kPtRZ4OdZl99hmo5JRa0AIjEXfg+qpkqJCnCqdw6Wzo6c55jxW08qQe5H3U12EkkDsIFQKJUbyxxENbGv7h1n2aqkEQJp3LTbBXJplemHyn5kLibNmaIFgCR2ImWpz27eW+HeuOrzz6SexaeptKfBDKzeWa2ysxWm9m1nexzppmtMLOVZvbHQrext8IBeSs37+lQUnHX4+tYMGcSsycOZcEJkzj9SCXHcacSi34UJh8a7CRxkW3Q6LxjJzJbC4DEnpnNA24GKoHb3f3LWfY5E7gJqAJ2uPvfFbCJeZE5IC+6ZHRYb3zjRXNUb5xAZlYJ3Aq8FdgIPGFm97n7c5F9RgK3AfPcfb2ZjS9KY3soOiDP0NLRpUAJcj+qqDAlHxIbna2QN+/YicwYN1T1xjFWyolFVBijL7y6t608LdpzfPyk4cycMEzvo8l1CrDa3dcAmNndwALgucg+7wV+6u7rAdx9W8Fb2UPRAXlXnjGDe5/cyGWnTW1XUnGikuPE0SvVzyoqTKuPSSx0Nmh07c79RW6Z5KAtsXD3JiBMLKISl1hkCmM0rN0MhT3HMycM0/tosk0CNkRubwzui5oFjDKzP5jZk2b2/mwHMrOFZlZvZvXbt2/vp+Z2L9uAvLCk4h+On6Sp3BJMr5aUhVKue8uVBo0mWt4SC4hPchHqbkCeytNKRrZPNpnzng4A3gi8HXgb8Hkzm9XhQe5L3L3O3evGjRuX/5bmKNuAvMyp3GZPHK6p3BJIJRZS8srl6+nuhINGo0myBo0mRk8Si7OBQcBjZva4u7/Y4YHuS4AlAHV1dUWdmD1a+qOlo0veRmBK5PZkYHOWfXa4+35gv5k9ApwAdIjjYmtpSbFyS/sBeeHy0QvfMkPLRyecepClHJTF19OZMpeQrh01WDNWJFeuicWv3H2/u+8AwsQi1qKlP1oApOQ9Acw0s+lmVg1cAtyXsc8vgDPMbICZDQZOBZ4vcDu7FF0++uVtDR0G5L2nbjInafnoxFMPspSDbF9Pn5qxzyygysz+AAwDbnb372U7mJktBBYC1NbW5r2x+dDZgLxzj57AMg0aTaK2xALYRDqxeG/GPr8Avm5mA4Bq0jH+PwVtZQ+Fs6poQF55cPcWM7sK+DXp2VjucPeVZrYo2L7Y3Z83s18BTwMp0jO2PFu8VrcXHUgK8ON6DcgrVTm9eqrflITLW90bxKf2rSudDchbv+uABo0mkLu3AGFi8TywNEwsIsnF80CYWPyFmCUWmcJE46kNuzUgr4y4+zJ3n+XuR7j7fwX3LXb3xZF9/tvdj3H349z9pqI1NotXdrw+kDTlGpBXyrrtQVb9ppSAkqp7y0VXA/I0nVsyufsyYFnGfYszbv838N+FbFdvhR/iRg2ubqvd1HzxEmdhzXF0+egwdm/9/Wpqqiq44YLjNSCvRORSYlGS8xZKWSnJr6e7ogF5EldhWUU4Y0W0rMIMzjhyLCdPG62eY4mVcDq3l7c1tM1WEZZWhINJ66aOZu6MMYrdEpHLdwAlN29hb2QOeEqlijrwW3qgFL+ezqQBeZIE2ZaQhnRZRTgl1rhhA5VgSOyE07ktrd/YYfnooyZo+ehSlEsPct6mF4rT1EI90dUKZHojT4ZS+3o6SgPyJCmyzVih0gqJu1TKeX7L3nY1x+E3HgDHTx7BtLEqXSs1uXzUKdnphXKlFcgkzjQgT5KgqxkrvvmPJ7Hs6jPU6SCx9MqO/by0bV9bzXF0EZAjxg1VzXGJyiVBLol5C/tCK5BJnCk+Je40Y4UkUTjf8crNe1hav7HdXMdXn30k3/jHN/L24w5T3JaobkssSmHewr7SgCeJM8WnxJ1mrJCkic53bLxeWvHukyZrOrcykdMrm/R5C/tq2pghGvAksaX4lLgLv+WIllVcddaRfPcDp6isQmIpOt9xdGBeWFoxbcwQlVaUOK2kl4OKCmPesROZrQFPEgNhLefWvY1MGJ6ORcWnxFEYqxVmbd9yhDNW1FRV8O4TJylOJXbCQXnht3KZA/MqDE6q1fLnpU4Jco4qKowZ44ZqkQUpqq5mVFF8SpxEY3XU4Go+fvZMbn5IpRUSf2t3pgflhfMdZy4GcuNFc9R7XAaUIIskSGczVsy++gwlxxIr0VjdsqeR7z22joVvmcGJU0YydcwQfcshsbV1b2NbWcUtD7/EXY+nY/fIcUM59vARTB+r2C0Hqi4XSRDNWCFJkDmlG6RnrLjlodUMqq7UjBUSW6mU09Lq7coqLnjjZCA93/ER4xW75UIJskiChDNWRGnGComTzqZ0A8WqxN8rO/bzuV88o/mORSUWIkkSzliRWYOsWk6JC03pJkkVDs5bt/Ngu0F57jBpZI16jsuMEmSRBNGMKhJ32aZ0M4MzjhzLydNGK1YlllIp55lNu9sG54WzrUD6m48LTppU5BZKoSlBFomxbFO6aUYViatUyhlcPUBTukmiRBcF+XFkcF74zccX3/UGffNRhpQgi8RUV1O6KdGQuAnj9YZfPa/SCkmUsCzoyjNmaM5jaaNBeiIx1dmUbmt37i9yy0Q6CuM1Wr959dlHcs/C0/ShTtqY2TwzW2Vmq83s2i72O9nMWs3swv5uU1gWFM55HB2cN3vicA3OK1PqQRaJqa6mdFN5Rfkxs3nAzUAlcLu7f7mT/U4GHgcudvefFKp90XiN1m/OPWKMkmMBwMwqgVuBtwIbgSfM7D53fy7LfjcAv+7vNoXTuoV1x+GHu8oKOHv2eN4wSb3H5aose5BTKWfN9gYee3kHa7Y3kEp5sZsk0oGmdJNQJLE4DzgGuNTMjulkv4IkFpkUr5KDU4DV7r7G3ZuAu4EFWfb7GHAvsK2/GxSd1i1Mkr/9p/S0bkqOy1vZJchhndz8Wx7l0m/9mfm3PMqvVr6qJFliJ5zSLUw6VMtZ1mKXWITCDoed+w9xwwXHK16lK5OADZHbG4P72pjZJOBdwOKuDmRmC82s3szqt2/f3qvGZJvW7aqzjuSK02doWjcpvxILLdUrSaEp3SQiW2JxanSHSGJxFnByVwczs4XAQoDa2tpeNypzIOnUMYNYclkdVZXWbtYVkUC2YMjsnboJ+LS7t5p1HjvuvgRYAlBXV9erHq61O/drWjfpVNn1IGup3vIUx4EhuQindDttxlgtz1veepRYdHcwd1/i7nXuXjdu3LheNyqzw2HdzoMsvKueCcNrFK+SzUZgSuT2ZGBzxj51wN1mtha4ELjNzN7ZH43ZureRpcG0btFvPjStm0AZ9iCHdXLRJFl1cqUtjgNDRHqoJ4kFwFhgvpm1uPvP+6tRGkgqPfQEMNPMpgObgEuA90Z3cPfp4e9mdifwQH/EcDg4T9O6SWfKrgdZdZ1lKbb1myI5aksszKyadGJxX3QHd5/u7tPcfRrwE+Aj/ZkcgwbmSc+4ewtwFelOiOeBpe6+0swWmdmiQrZl7c7XB+dFp3U7YtxQTesmQBn2IKuusyzFsn4zU2er5om4e4uZhYlFJXBHmFgE27sc0NQfUimnwuCL73oDn/3ZM1oURHLi7suAZRn3ZY1fd7+8v9qxdW9ju8F5ZuCOBudJm7JLkAEt1Vt+8jYwBPIzOCSTVs2T7sQlsYD28TpqcDUL3zKDWROGcfTE4Uwfqw92Em+Zcx9rcJ5kU3YlFlKWYjUwJButmidJEo3XLXsaueWh1Xzqx0+laziVHEvMRcsrouWWN1xwvL79kDY59SDHfQUnkW7EZmBIZzTYSZJE8SpJFZayqbxCutNtgqwZACTp4li/mUmzq0iSKF4licLSoFWv7lV5hXQrlxILzQAgiefuy9x9lrsf4e7/Fdy3OFty7O6XF/obEM2uIkmieJUkCkuDss19rPiVTLmUWORtBoD+Gv0vknSaXUWSIDrTyjGHDeOXHzuD7Q2KV0mGsDRoy57GduUVZxw5lpOnjVb8Sju5JMixWhpSpFRpdhWJM820IkkXLQ0Kyytqqip494mTFMPSQS4lFrGfAUBERPqXZlqRpKsdNZgbLjhepRWSk1x6kGM/A4CIiPQvzVwhSZZKOb95fis3/nYVV5w+g8oKqJs6mrkzxqj3WLLqNkFOwgwAIkmjVfMkaTRzhSRZ9BuQ6MwVy64+Qx/wJKuc5kGO0wpOIkmnWk5JonDmisy41dfTkgT6BkR6KvFLTasnTpKms1rO2erJkBjTTCuSZOOH6RsQ6ZlEJ8jqiZMkUk+GJJVmWpEkSqWcV3Y28PGzZ3LzQy/pGxDJSaITZPXESRKpllOSRt/USZKt3bmfq374N0YNrm6b+7jC4JjDhimOpVOJTpDVEydJpFpOSRJ9UydJF10gJBygBzD3iDFMG6tcQbJLdIKsnjhJItVySpLomzpJOuUK0hu5LBQSW2FPnCb9lqQJazlPmzGWGeOGKjmW2OrqmzqRnjKzeWa2ysxWm9m1Wba/z8yeDn6Wm9kJfT2nFgiR3kh0D7J64kRE+pd63yRfzKwSuBV4K+lVep8ws/vc/bnIbq8Af+fuu8zsPGAJcGpvz6kFQqS3Et2DDOqJE5HyUIyeN9A3dZJXpwCr3X2NuzcBdwMLoju4+3J33xXcfByY3JcThiVC63Ye5Nbfr+aWh1az8K561u860JfDShlIdA+yiEg5KEbPW0jf1EkeTQI2RG5vpOsYvQJ4sC8n1GB+6S0lyCIi8dfW8wZgZmHPW1uC7O7LI/v3uectSvMfS55k+1TlWXc0+3vSCfLpnWxfCCwEqK2t7fSEKhGS3kp8iYVI3KVSzprtDTz28g7WbG8glcr6/4FIV7L1vE3qYv8ue97MbKGZ1ZtZ/fbt2/PURJFubQSmRG5PBjZn7mRmxwO3AwvcfWe2A7n7Enevc/e6cePGdXpCDdCT3lIPskg/0hyykid563mDdHJBugSDuro6fWKTQnkCmGlm04FNwCXAe6M7mFkt8FPgMnd/sS8n0wA96Qv1IEtZKNYAp87mkF27c38+Di/lI289b7nSNx+Sb+7eAlwF/Bp4Hljq7ivNbJGZLQp2+wIwBrjNzFaYWX1vz6cBetIX6kGWklfMAU4aICJ5UvCeN33zIf3B3ZcByzLuWxz5/UrgynycS++/0hfqQZZyUPCphULhAJEoDRCRnipWz5u++ZAk0/uv9IUSZCkHeR3g1BOaQ1byxd2Xufssdz/C3f8ruG9x2Pvm7le6+yh3nxP81PX2XFo9T0qB3n+lL1RiIeUgrwOccp1eCDSHrCSTpsaSpEulnLU79zNuWDX3LDyNA02tTBiu91/JnXqQpRzkdYBTrtMLhbTaoySNet4kycIa+vm3PMp7Fj/OxUseZ9eBZiXH0iPqQZZyUNABTiJJp28+JMk6q6GfffUZGpwnOVOCLCXP3VvMLBzgVAncEQ5wCrYvpv0AJ4CWvtRwiiSdVs+TpNLsFZIPOSXIZjYPuJl0cnG7u385Y/v7gE8HNxuAD7v7U/lsqEhfFHJqIRERKR7V0Es+dFuDHJlD9jzgGOBSMzsmY7dwDtnjgesIVmgSERERKSTV0Es+5NKD3DaHLICZhXPIti2y4O7LI/v3ag7ZcMTp1r2NGmkqiaU4lqRTDEspOOawYXz3A6dwoKmF2tFDmD5WcSw9k0uCnG0O2a5WGOvxHLJatUlKgeJYkk4xLEnXWQxPH6veY+mZXKZ5680csp/uZPtCM6s3s/rt27e33a9Vm6QUKI4l6RTDknSKYcmXXBLkvM0h29n8sVq1SUqB4liSTjEsSacYlnzJJUFum0PWzKpJzyF7X3SHvs4hq/XSpRQojiXpFMOSdIphyZduE2R3bwHCOWSfB5aGc8iG88jSfg7ZFWZW35NGaMSplALFsSSdYliSTjEs+ZLTPMj9PYesVm2SUqA4lqRTDEvSKYYlX2Kzkp5WbZJSoDiWpFMMS9IphiUfcqlBFhEREREpG+aedca2/j+x2XZgXZZNY4EdBW5ONnFoR7m1Yaq7j+t+t/hIQBz3lZ5HzyiG40XPoecUw8mm55ynGC5agtwZM6t39zq1Q21IslK5bnoe5asUrpmeQ3krx2un55w/KrEQEREREYlQgiwiIiIiEhHHBHlJsRsQiEM71IbkKpXrpudRvkrhmuk5lLdyvHZ6znkSuxpkEREREZFiimMPsoiIiIhI0ShBFhERERGJKFqCbGbzzGyVma02s2uzbDczuyXY/rSZnZTn808xs9+b2fNmttLMPp5lnzPNbI+ZrQh+vpDPNkTOs9bMngnOUZ9le39fi6Miz3GFme01s2sy9inItUi67uI6rszsDjPbZmbPRu4bbWa/NbOXgn9HFbONuejs7zqJz6VYkhjDpfS6m1mlmf3NzB4IbifuOcRBEuO4p7LlDqUWLz39v8nMPhO85qvM7G19Orm7F/wHqAReBmYA1cBTwDEZ+8wHHgQMOA34c57bcBhwUvD7MODFLG04E3igANdjLTC2i+39ei2yvDavkp5ou+DXIsk/ucR1XH+AtwAnAc9G7vsKcG3w+7XADcVuZw7PI+vfdRKfS5GuXyJjuJRed+ATwA/D99skPodi/yQ1jnvxPDvkDqUWLz35vyn4m38KGAhMD2KgsrfnLlYP8inAandf4+5NwN3Agox9FgDf87THgZFmdli+GuDuW9z9r8Hv+4DngUn5On6e9eu1yHA28LK7Z1uVSLqWS1zHkrs/AryWcfcC4LvB798F3lnINvVGF3/XiXsuRZLIGC6V193MJgNvB26P3J2o5xATiYzjPCmpeOnh/00LgLvd/ZC7vwKsJh0LvVKsBHkSsCFyeyMdk9Nc9skLM5sGnAj8OcvmN5nZU2b2oJkd2x/nBxz4jZk9aWYLs2wv2LUALgF+1Mm2QlyLJCvk61QIE9x9C6QTEGB8kdvTIxl/14l+LgWU+BhO+Ot+E/AvQCpyX9KeQxwkPo5zlC13KId46ew55vV1H9Dr5vWNZbkvc765XPbpe0PMhgL3Ate4+96MzX8lXWrQYGbzgZ8DM/PdBuDN7r7ZzMYDvzWzF4JPTW3NzPKY/rgW1cA7gM9k2Vyoa5FkBXmdpHuZf9dm2V4aySLRMZzk193M/gHY5u5PmtmZRW5O0iU6jnugQ+5Q7AYVWV5f92L1IG8EpkRuTwY292KfPjGzKtJvpj9w959mbnf3ve7eEPy+DKgys7H5bENw7M3Bv9uAn9HxK4F+vxaB84C/uvvWLG0syLVIuEK9ToWyNSzlCf7dVuT25KSTv+tEPpciSGwMl8Dr/mbgHWa2lnRJwFlm9n2S9RziIrFx3BOd5A7lEC+dPce8vu7FSpCfAGaa2fSg1/IS4L6Mfe4D3m9ppwF7wi71fLB018K3gefd/cZO9pkY7IeZnUL6eu3MVxuC4w4xs2Hh78C5wLMZu/XrtYi4lE7KKwpxLUpALnGdJPcB/xT8/k/AL4rYlpx08XeduOdSJImM4VJ43d39M+4+2d2nkb7uD7v7P5Kg5xAjiYzjnugidyiHeOnsOd4HXGJmA81sOulvuf/S67MUcWTifNIjjV8G/jW4bxGwKPjdgFuD7c8AdXk+/+mku96fBlYEP/Mz2nAVsJL0qMjHgbn9cB1mBMd/KjhXwa9FcI7BpBPeEZH7CnotSuEnW1wn4Yf0B6MtQDPpT+FXAGOAh4CXgn9HF7udOTyPzv6uE/dcingNExfDpfa6E5k1KKnPodg/SYzjHj6/znKHkoqXnv7fBPxr8JqvAs7ry7m11LSIiIiISIRW0hMRERERiVCCLCIiIiISoQRZRERERCRCCbKIiIiISIQSZBERERGRCCXIIiIiIiIRSpBFRERERCKUIIuIiIiIRChBFhERERGJUIIsIiIiIhKhBFlEREREJEIJsoiIiIhIREkmyGZ2p5ldX+x2iIiIiEjyFCVBNrO1ZnZOf+0v2ZnZ5Wb2pzwd6zAzu8/MNpuZm9m0jO2jzeweM9sR/PzAzIZHtlea2fXB4/eZ2d/MbGQ+2iYiIiLSFyXZgywFkQJ+BVzQyfbrgVHADOAIYALw75Ht/wHMBd4EDAcuAxr7qa0iIiIiOSt4gmxmdwG1wP1m1mBm/xLc/w4zW2lmu83sD2Z2dDf7/9jMXjWzPWb2iJkd24M2/LOZPR/0XD5nZicF9x8dnHt30JZ3RB5zp5ndZmYPBu34PzObaGY3mdkuM3vBzE6M7L/WzD4THH+XmX3HzGoy2rDazF4LemIPj2xzM1tkZi8Fj73VzCyy/YNB+3eZ2a/NbGp3jw2u52LgTUH7dwf7zw/auM/MNpnZp3K5hu6+1d1vA57oZJfpwM/dfa+77wF+BhwbnHMUcA3wz+6+ztOedXclyCIiIlJ0BU+Q3f0yYD1wvrsPdfevmNks4Eekk6ZxwDLSCXF1tv2DQz0IzATGA38FfpDL+c3sPaR7Mt9PuufyHcBOM6sC7gd+ExzzY8APzOyoyMMvAj4HjAUOAY8F5x4L/AS4MeN07wPeRroHdVbwWMzsLOBLwfEOA9YBd2c89h+Ak4ETgv3eFjz2ncBngXcH1+rR4Np1+Vh3fx5YBDwWXMeRwb7fBj7k7sOA44CHI9dqt5mdnuUy5uJW4B/MbFSQEF9A+jUDeAPQAlwYfMh50cw+2svziIiIiORVXEosLgZ+6e6/dfdm4KvAINJfwWfl7ne4+z53P0Q64T3BzEbkcK4rga+4+xNBz+Vqd18HnAYMBb7s7k3u/jDwAHBp5LE/c/cng57OnwGN7v49d28F7gFOzDjX1919g7u/BvxX5FjvA+5w978G7f8M6Z7daZHHftndd7v7euD3wJzg/g8BX3L35929BfgiMCfai9zFY7NpBo4xs+Huvsvd/xpucPeR7t7bmuW/AtXAzuCnFbgt2DYZGEH6Q8N04ELg383srb08l4iIiEjexCVBPpx0LyoA7p4CNgCTsu0cDPD6spm9bGZ7gbXBprE5nGsK8HInbdgQnDu0LqMNWyO/H8xye2jGMTdkHCsso8h8vg2kk8jouV6N/H4gcuypwM1B7+5u4DXAcnxsNhcA84F1ZvZHM3tTF/v2xI+BF4FhpHvqXwa+H2w7GPz7n+5+0N2fJt2DPj9P5xYRERHptWIlyJ5xezPpxA+AoN52CrCpk/3fCywAziHdEzktfGgO595AuuQh02ZgiplFr0ltpA29MSXjWJsj54o+3yHAmBzPtYF0ScTIyM8gd1+ew2MzryNBT/oC0mUlPweW5nCcXJwAfNPd9wcfABbzegL8dGftERERESm2YiXIW0nPbhBaCrzdzM4OaoE/SbrGd3kn+w8Ltu8EBpMuM8jV7cCnzOyNweC1I4PyhD8D+4F/MbMqMzsTOJ+OtcE98VEzm2xmo0nXDd8T3P9D4ANmNsfMBgbt/7O7r83hmIuBz4SDEs1sRFBXnYutwGQzqw4eW21m7zOzEUFpy17SpRA5CQYdDgxuDowOQiQ9eO9KMxtkZoOAhcBTAO7+Muna6X81s4HBAMKLSZe0iIiIiBRVsRLkLwGfC8oEPuXuq4B/BP4X2EE6MT3f3Zuy7Q98j3SJwibgOeDxXE/s7j8mXQ/8Q2Af6V7T0cG53gGcF7ThNuD97v5CH57nD0kP+lsT/FwftOEh4PPAvcAW0j3al+TY/p8BNwB3B+UlzwZtzsXDwErgVTPbEdx3GbA2ONYi0q8DAMFsF2d0cbyDQEPw+wu8XjoB8EHSPfsbSb9OM4DLI9svJd2LvhP4JfD54LqIiIiIFJW561vu/mBma4Er3f13xW6LiIiIiOQuLoP0RERERERiQQmylAUzu8PMtpnZs51sNzO7JVi85WkLFo8RiQvFsCSdYliSRAlyP3H3aSqviJU7gXldbD+P9MIzM0kPKPxGAdok0hN3ohiWZLsTxbAkhBJkKQvu/gjpOaM7swD4XrB4zOPASDM7rDCtE+meYliSTjEsSTKgWCceO3asT5s2rVinlxh68sknd7j7uCKdfhLtF3bZGNy3JXNHM1tIuneDIUOGvHH27NkFaaDEn2JYkk4xLEmXrxguWoI8bdo06uvri3V6iSEzW9f9Xv13+iz3ZZ3ixd2XAEsA6urqXHEsIcWwJJ1iWJIuXzGsEguRtI20X/lwMq+vfCiSBIphSTrFsMRGtwmyRp1Kb7W0pHh2027q1+7kb+tf47GXd/DLpzfz1IbdtLSkit28TPcB7w/i+TRgj7t3+FpPJMYUw5J0imGJjVxKLO4Evk569bpsoqNOTyU96vTUfDROkqGlJcULW/fS2NwafBfmDBxQydqdB2hsamFoTRV7DrbwH/evpLE5RU1VBdctOI53zZnEgAGF+RLDzH4EnAmMNbONwL8BVQDuvhhYBswHVgMHgA8UpGEiOVIMS9IphiVJuk2Q3f0RM5vWxS5to06Bx81spJkdpk99pamlJcVL2/fScKiVzES4akAlzS2tVA2oZOyQgaze1sCs8cNIpWhLjgEam1N8/hfPMmvCUE6YMqog7Xb3S7vZ7sBHC9IYkV5QDEvSKYYlSfIxSK9Xo05ra2vzcGrpT6mUs2HXfnbua6KVFAMHVLJlTyMHmlqzJsIvbtvX9m9TS4qUw/5DLQBtyXGosTnFq3saOWFKtjOLiIiIFE8+EuRejzrNw7klT1IpZ/1r+9lzoJnmVIrKCtjR0EzDoZZ2yXBzi/PKjv1ZE+Hov4OrB1BpMKQmHWI1VRXtkuSaqgomjqgp1tMVERER6VQ+CkA16jShWlpSPL9lN39b/xoPPruFv7yykzU797NmewOv7W/hUHOKV3bsZ3B1Fa/s2M/mPQe7TISj/353+RqmjRnCgUPNVBj82/nHUlOVDrewBvnYw0YU+QqIiIiIdJSPHuT7gKvM7G7Sg/M06jSmor3EFRWwOSiXGFo9gFVb97Urk3hq424mjRjUIRk2o0Mi/L5Tp3HgUDPTxg5p+7emqpIf/Hkt//yWIxlRU8lhI2r4zuUn89r+JiaNHMRxh48o2AA9ERERkZ7oNkHWqNNkC+uId+9vZuPug+w/1NyhXGLSyEFZyySy9Qp/8M0zukyEKysrAGfyqEEce/hwDjWnGDu0hhnjhlJRka0aR0RERCRecpnFQqNOEyacdq2lNcX2hiYaDrV06CVuakmB02mZxP1PbaJ25BEdkuE7/m8NHz1rJoOra6gwlAiLiIhIySnaUtOSX+H0a82t3jbt2pihNW11xJm9xNFyiS27DzBmSHW7MolFf3ckt/5xNVe8eTozJwxlQKW1S4bHjByoZFhERERKkhLkBAvLJ/YdbGHTnoMcaGptN+1atI44s5c4Wi6x72AzALsPNDNzYk1b7/CX3308uw40MbhqAMeqZlhERETKhBLkhAkH2jU0trBlbyMNh1ra1RNnTrsWJsSZvcTRconDR9aQSjmtKWhqSTF2SA3Txw5R77CIiIiUJSXICRH2Fq/ctJeGQ83tyic6qyeO1hFn9hIfPrJG5RIiIiIiWShBjrmwtnjN9gNUV1bwwtaO07BF64mj065l1hED6iUWERER6UbREuRVq1Zx5plntrvvoosu4iMf+QgHDhxg/vz5HR5z+eWXc/nll7Njxw4uvPDCDts//OEPc/HFF7NhwwYuu+yyDts/+clPcv7557Nq1So+9KEPddj+uc99jnPOOYcVK1ZwzTXXdNj+xS9+kblz57J8+XI++9nPdth+0003MWfOHH73u99x/fXXd9j+zW9+k6OOOor777+fr33tax2233XXXUyZMoV77rmH2277BgebWzjY1EqFGfubWvj0V5eQ8kH88t4f8Ztf3MPg6gEcbGphz8FmDhsxiM/e/F3OPnoi//mV/6H15ccYECS/X13qVA+o4PFHH2HAgAq++tWv8p8PPNDu3IMGDeLBBx8E4LrrruOhhx5qt33MmDHce++9AHzmM5/hsccea7d98uTJfP/73wfgmmuuYcWKFe22z5o1iyVLlgCwcOFCXnzxxXbb58yZ0+F6iIiIiBSDRl3FTCrl7Gho5LX9h2hudQ42t9KcchwYXJUunxhYVcHOhiZSqRQ1VZWMGlzNlj0HGTF4ACdNHcmZR43HgKrKCoYPqmL0kGqGDhygQXYiIiIiObD0NMaFV1dX5/X19UU5dxylUs7G3ftZ9WoDg6sr+fMrrzFp5CA27DrIUROGsXrbPoZUV1JTVUlNVQWtbiyOlE80tzqHmlNMHzsksfXEZvaku9cVux09oTiWKMWwJJ1iWJIuXzGsGuQiiybGFWYcak7x2v6mdgPuwhkoQumBdsP44rvewK4DzQyqGsDJUzUNm4iIiEg+KEEukmyJ8Yvb9jFpxCAGDxzQbsDdvsb0DBSNza1MHTuUqor0/lNGDuZNM8YmsrdYREREJK6UIBdBU1Mrj6zejmUkxuG8xXf+Xzoxrqmq5Ad/Xss/v+VIBldVgBnNLSmmjhmiGShERERE+om+ky+glpYUq17dzZ/W7KCxOcVTG3e3W9Dj/qc2caCxmQveWMsP/ryWGeOG8pEzZ+LuTBw+iDcfMZazjp7AEeOTWWNcTGY2z8xWmdlqM7s2y/YRZna/mT1lZivN7APFaKdIZxTDUgoUx5IUSpALIL36XQPLVm5h295mVmzInhin5y1+meaWVq4+exbNrSlGD6nmnNkTmDlxmJLiXjKzSuBW4DzgGOBSMzsmY7ePAs+5+wnAmcDXzKwakRhQDEspUBxLkihB7mdNTa38euWrrNtxkNXbGti852CXifF1C45j9NCBDK+pYt4xE5lTO0qD7/ruFGC1u69x9ybgbmBBxj4ODDMzA4YCrwEthW2mSKcUw1IKFMeSGMq8+knYa/zY2p08/+retsR4cLUS4yKYBGyI3N4Y3Bf1deBoYDPwDPBxd09lO5iZLTSzejOr3759e3+0VySTYlhKQd7iWDEs/U0ZWD9oaUnx2+fSvcav7mlsN2Xbd5evYdFblBgXWLbalMwJwN8GrAAOB+YAXzez4dkO5u5L3L3O3evGjRuXz3aKdEYxLKUgb3GsGJb+llMmpqL63IS9xsvX7GDllnSvcTQxnjZmCGcfPZF7/7qeT547m5qqSqoqKzh39gQlxv1rIzAlcnsy6d6JqA8AP/W01cArwOwCtU+kO4phKQWKY0mMbjMyFdXnpqmplYdf2MpLW/ezJdJrHC7ycfbRE9vNTFFdaZxYO4pTp4+hurqy2M0vdU8AM81sehCXlwD3ZeyzHjgbwMwmAEcBawraSpHOKYalFCiOJTFymQe5ragewMzCovrnIvuUbVF9uODH6m37aQzmNJ45fliHhT4qDf5p7gz2HGji8JGDeMvMceoxLhB3bzGzq4BfA5XAHe6+0swWBdsXA9cBd5rZM6S/Bvy0u+8oWqNFIhTDUgoUx5IkuSTI2YrqT83Y5+ukPwVuBoYBF3dWVA8sBKitre1Ne2OlpSXFQy9sZXD1AFZs2N222Edmr/E/v+VIqiqMptYUs2tHccQ4zWNcaO6+DFiWcd/iyO+bgXML3S6RXCmGpRQojiUpcunCVFF9Fk1Nre1qjaNTtw0ckC6ZiPYaV1dVpOcznqD5jEVERETiLJcEWUX1EeFAvD+t2dGu1jg6ddsdy19hf1Mrh48cTGUFnFg7irkzxqqkQkRERCQBcsnYVFQfiE7ftmLD7i6nbpsyejCTRw3i3KMnqtdYREREJEG6rUFWUX1aKuU8vnYnK7fsZdLIjrXG4dRtjU0tDKhIT92m2SlEREREkieXQXplX1SfSjnPbt7Npl3tV8P74NzpwOu1xgebWjh81CBOmTZa5RQiIiIiCaUsrhthWcX6nQc7lFSo1lhERESk9OTUg1yuWlpSPPZKuqxi1oRhbNmVvaRi9JBq6mpHqaRCREREpAQoQe5ES0uK/3t5B6/uTc9UsXHXAQZXtZ++7WBTC4eNVEmFiIiISClRVpdF2HP85PpdbWUVP/rLetyhsbmVw0YObkuO3zR9jJJjERERkRKizC5D2HO8effBdjNVXHJyLXcsf4U9ja28tG0fE4bXKDkWERERKUHK7iLC1fHCnuPMVfE+de5spo4exCnTR/PmIzQYT0RERKQUKcMLNDW1tlsdb8vuA229xuFMFWYw+7BhmqlCREREpIQpyyOdHNev39W2Ol7YczykupIFcyaxv6mVF7fto6aqguMOH6lV8URERERKWNnPYhH2HG/fd6hDz/ElJ9cya/wwMKgdPUjJsYiIiEgZKOse5JaWlHqORURERKSdsu1BzpznOFwdb/Ejq9t6jisqYOb4YRwxbqiSYxEREZEyUZYJcirlPL42Pc/xzPHDuP+pTVxcV6vV8URERESkPEss1mxvYNOug+16ju+pX8+pM8axets+xg4bqOS4xJjZPDNbZWarzezaTvY508xWmNlKM/tjodso0hXFsJQCxbEkRdn1ILe0pHhxW0NbzXFmz/GkUYM5WclxSTGzSuBW4K3ARuAJM7vP3Z+L7DMSuA2Y5+7rzWx8URorkoViWEqB4liSpKx6kMO645R722wV0Z7jYTVVTB5Vo+S49JwCrHb3Ne7eBNwNLMjY573AT919PYC7bytwG0W6ohiWUqA4lsQomwS5pSXFY6+k64437jpATdXrs1VYMP6uwmDKqCHFbaj0h0nAhsjtjcF9UbOAUWb2BzN70sze39nBzGyhmdWbWf327dv7obkiHSiGpRTkLY4Vw9LfckqQk14zlEo5y9fsZPPudN3xj/6yHndobG5l5vhh1I4axMnTRnP27AmaraI0ZXtRPeP2AOCNwNuBtwGfN7NZ2Q7m7kvcvc7d68aNG5fflopkpxiWUpC3OFYMS3/rNkGO1AydBxwDXGpmx2TsM5J0zdA73P1Y4D35b2rvrdneQP2619rVHd+x/BX2NLby0rZ9jBtew5umj9Hy0aVrIzAlcnsysDnLPr9y9/3uvgN4BDihQO0T6Y5iWEqB4lgSI5eMMNE1Q+GgvOgqeffUr+cfjp9EZQUcPXE4M8YOVnJc2p4AZprZdDOrBi4B7svY5xfAGWY2wMwGA6cCzxe4nSKdUQxLKVAcS2LkkhUmtmYoLK1IuXdYJS+sO64aYKo7LnHu3gJcBfya9BvtUndfaWaLzGxRsM/zwK+Ap4G/ALe7+7PFarNIlGJYSoHiWJIkl2neelIzdDYwCHjMzB539xfbPch9CbAEoK6uLvMYefd6aUUll5ycLqsIV8nDoHb0IC0hXSbcfRmwLOO+xRm3/xv470K2SyRXimEpBYpjSYpcepATWTMULa340V/WM7gq3XO8v6mVF7ftY0CFKTkWERERkQ5ySZATVzOUWVoRDsprTaWncjuxdhTnaMYKEREREcmi2xILd28xs7BmqBK4I6wZCrYvdvfnzSysGUpR5JqhzNKKu5/QoDwRERERyU1OS00nqWYos7Tig3Ons2DOJFJBxbNpMRARERER6UJJdaOqtEJERERE+iqnHuSkUGmFiIiIiPRVyWSLnc1aEc53rNIKEREREclFSSTIKq0QERERkXwpiRILlVaIiIiISL4kPmtMpZyXVFohIiIiInmS+AR5zfYGWlVaISIiIiJ5kugEORyYt3HXAS45uZZ76lVaISIiIiJ9k9jsMTowL1tpRcpdpRUiIiIi0mOJTZDX7txP/brX2nqPo6UVR08cznGThqu0QkRERER6LLEJ8qt7GjUwT0RERETyLpEJcktLCoysA/NO0sA8EREREemDxM2DHNYev7BlDxfXtR+YN3vicEYOGqCBeSIiIiLSa4nLJF/Zka493nuotS05NoPWFNzwq+cZPqi62E2UGDKzeWa2ysxWm9m1Xex3spm1mtmFhWyfSHcUw1IKFMeSFInrQV63cz8pf7284paHX6KxOUVNVQU3XHA808ao9ljaM7NK4FbgrcBG4Akzu8/dn8uy3w3ArwvfSpHOKYalFCiOJUly6kGOyye+lpYUlZXWlhzfU7+eK06fwdVnH8k3/vGNvP24w1R7LNmcAqx29zXu3gTcDSzIst/HgHuBbYVsnEgOFMNSChTHkhjdJsiRT3znAccAl5rZMZ3s12+f+MLa41Vb9mpREOmpScCGyO2NwX1tzGwS8C5gcXcHM7OFZlZvZvXbt2/Pa0NFOqEYllKQtzhWDEt/yyWjjMUnvnDe4+8sX6dFQaSnsn2t4Bm3bwI+7e6t3R3M3Ze4e527140bNy4f7RPpjmJYSkHe4lgxLP0tlxrkbJ/4To3uEPnEdxZwct5aF7F1b3re410Hmlj8yBrefdLktgT52MO1KIh0aSMwJXJ7MrA5Y5864G5LB9VYYL6Ztbj7zwvSQpGuKYalFCiOJTFy6UHO2ye+vnwlMrh6APc/tYmrz5rJrgNN3Pr71dz+6BqmjxlC7Wj1HkuXngBmmtl0M6sGLgHui+7g7tPdfZq7TwN+AnxEb8gSI4phKQWKY0mMXHqQ8/aJz92XAEsA6urqMpPsTqVSzta9je0G5oXzHh8+YqB6j6VL7t5iZleRro+vBO5w95VmtijY3m3NpkgxKYalFCiOJUlySZDbPvEBm0h/4ntvdAd3nx7+bmZ3Ag/k8xPfKzv2s3LzHn6+YlOHeY+/c/kp+TqNlDB3XwYsy7gv65uxu19eiDaJ9IRiWEqB4liSotsEudif+FIp5/kte1lav5HLTpvabt7jL77rDZr3WERERETyKqeFQor5iW/tzv28tG0fuw40cdfj67ji9BmYQYXBSbUjVV4hIiIiInkV+4mDt+5tZGn9xg6D86ZpcJ6IiIiI9IPYLzU9uHpA1t7jWROGqvdYRERERPIu9j3ITa2tHXqPawZU0tjc7Vz4IiIiIiI9Fuse5FTKaWxKtU3tZgbucE/9euYdN7HYzRMRERGREhTrBPmVHfv53C+e4eK62nazV9xwwfGavUJERERE+kVsE+Rwerd1Ow+2qz92h0kja1R/LCIiIiL9IrYJcji9W01VBVv2NHLr71cDUFNVwQUnTSpy60RERESkVMV2kF50ereaqnQztTiIiIiIiPS32PYgjx9Wk3V6txOnaHEQEREREek/se1BrjD4+Nntp3cbVFWJKTcWERERkX4Uyx7kVMpZuXkv33us/eC87z22jhNrRzJt7NBiN1FERERESlQsE+RwgF7Yexyqqapg/LCaIrZMREREREpdLEssNEBPRERERIoldj3IqZTT0upZB+idVKsBeiIiIiLSv2LXg7x2Z3r1vKvPaj9A74hxQ6kdrd5jEREREelfsUuQt+5tbLd63lVnHckVp8/Q6nnSJ2Y2z8xWmdlqM7s2y/b3mdnTwc9yMzuhGO0U6YxiWEqB4liSIqcSCzObB9wMVAK3u/uXM7a/D/h0cLMB+LC7P9WbBk0YXqPV8ySvzKwSuBV4K7AReMLM7nP35yK7vQL8nbvvMrPzgCXAqYVvrUhHimEpBYpjSZJue5AjAX0ecAxwqZkdk7FbGNDHA9eRDuheqR01mOvfeVy7wXnXv/M4akcN7u0hRU4BVrv7GndvAu4GFkR3cPfl7r4ruPk4MLnAbRTpimJYSoHiWBIjlx7ktoAGMLMwoNs+8bn78sj+fQro9bsO8L8Pv9Ru/uP/ffglTqodxYxxmv9YemUSsCFyeyNd90hcATzYry0S6RnFsJQCxbEkRi4JckEDOqxBjs5/DLBtX6MSZOmtbMXrnnVHs78nHcOnd3ows4XAQoDa2tp8tE+kO4phKQV5i2PFsPS3XAbp9SagP93J9oVmVm9m9du3b896srAGOUoLhEgfbQSmRG5PBjZn7mRmxwO3AwvcfWdnB3P3Je5e5+5148aNy3tjRbJQDEspyFscK4alv+WSIBc0oGtHDeaGC45vV4N840VztECI9MUTwEwzm25m1cAlwH3RHcysFvgpcJm7v1iENop0RTEspUBxLImRS4lFW0ADm0gH9HujO+QroFMp5zfPb+XG367iitNnUFkBdVNHM3fGGE3xJr3m7i1mdhXwa9Izsdzh7ivNbFGwfTHwBWAMcJuZAbS4e12x2iwSpRiWUqA4liTpNkEuZECv3bmfTyxdQWNzqt0Ub8uuPkP1x9In7r4MWJZx3+LI71cCVxa6XSK5UgxLKVAcS1LkNA9yoQJ6695GGptT7e5rbE5pgJ6IiIiIFEysVtLTAD0RERERKbZYJchaJEREREREii2nEotC0SIhIiIiIlJssUqQtUiIiIiIiBRbrEosVIMsIiIiIsUWqwRZi4SIiIiISLHFpsRCi4SIiIiISBzEJkHWIiEiIiIiEgexKbHoapEQEREREZFCiU2CrAF6IiIiIhIHsUmQp40Zwo0XzdEAPREREREpqtjUIAMcc9gwvvuBUzjQ1ELt6CFMHztEA/REREREpKBikSCnUs6vVr7aNkgv7D2ePla9xyIiIiJSWLEosYjOYAHpwXmfWLqCtTv3F7llIiIiIlJuYpEgawYLEREREYmLWCTImsFCREREROIipwTZzOaZ2SozW21m12bZbmZ2S7D9aTM7qSeN0AwWIiIiIhIX3SbIZlYJ3AqcBxwDXGpmx2Tsdh4wM/hZCHyjR42oMOYdO5FlV5/B3QtPZdnVZzDv2ImawULypr8/5In0N8WwlALFsSRFLj3IpwCr3X2NuzcBdwMLMvZZAHzP0x4HRprZYT1qSIUxY9xQTpsxlhnjhio5lrwpxIc8kf6kGJZSoDiWJMklQZ4EbIjc3hjc19N9MLOFZlZvZvXbt2/vaVtFeqsgH/JE+pFiWEqB4lgSI5d5kLN15Xov9sHdlwBLAMxsu5mty/K4scCOHNpVysr1Gkztp+Nm+wB3ag77TAK2ZB7MzBaS7tkAOGRmz+avqb0Sh3hRG9KO6qfjKobVhkLprxiGPMaxYlht6EJeYjiXBHkjMCVyezKwuRf7tOPu47Ldb2b17l6XQ7tKlq5B3uXtQx50+KBX9NdKbYhXG/rr0FnuUwyrDf3Shv48fJb78tHhFovrpjbEpw35OE4uJRZPADPNbLqZVQOXAPdl7HMf8P6guP40YI+7d+i1ECmSfvmQJ1JAimEpBYpjSYxuE2R3bwGuAn4NPA8sdfeVZrbIzBYFuy0D1gCrgW8BH+mn9or0hj7kSdIphqUUKI4lMXIpscDdl5FOgqP3LY787sBH89SmJXk6TpLpGuSRu7eYWfghrxK4I/yQF2xfTDq+55P+kHcA+ECOh4/Da6U2pJVsGxTDBaE2pPVbG/oxjkv6uvWA2pCWlzZYOrcVERERERGIyVLTIiIiIiJxoQRZRERERCQiVglyd0tQlgozu8PMtkXnbTSz0Wb2WzN7Kfh3VGTbZ4JrssrM3lacVpeXviyHmq84zqEN7wvO/bSZLTezEyLb1prZM2a2oi9T3uTQhjPNbE9wnhVm9oVcH5vHNvy/yPmfNbNWMxsdbMvXdejwN5uxvd/joRdtVgzn1gbFMPGM4VzOrThu217ycVzwGHb3WPyQLth/GZgBVANPAccUu1399FzfApwEPBu57yvAtcHv1wI3BL8fE1yLgcD04BpVFvs5lPJPLrFIehDJg6Tn7DwN+HOuj81jG+YCo4LfzwvbENxeC4wtwHU4E3igN4/NVxsy9j8feDif1yE4Toe/2ULGg2JYMVxuMaw4VhwXO4bj1IOcyxKUJcHdHwFey7h7AfDd4PfvAu+M3H+3ux9y91dIj+w9pRDtLGN9WQ41X3Hc7XHcfbm77wpuPk56vtB86stzKdh1yHAp8KNenKdLnfzNRvV3PPSUYjjHNvTTY/tyHMXw6xTHObahnx7bl+PkPY4LHcNxSpA7W16yXEzwYK7H4N/xwf3lfl2KIZdr3tk++Xq9enqcK0h/cg458Bsze9LSS7L2Rq5teJOZPWVmD5rZsT18bL7agJkNBuYB90buzsd1yEV/x0O+2pPLPorhnj02X21QDOfeplz2URz37LH5akMx4zivsZDTPMgFkvMyqWVG16Xw+rIcar5er5yPY2Z/T/pN+fTI3W92981mNh74rZm9EHz6zncb/gpMdfcGM5sP/ByY2ZP256ENofOB/3P3aA9DPq5DLvo7HnpKMZx7GxTDaXGLYXI8t+I4TXGc51iIUw9yuS8vuTX4KoDg323B/eV+XYqhL8uh5uv1yuk4ZnY8cDuwwN13hve7++bg323Az+hdWU63bXD3ve7eEPy+DKgys7G5tj8fbYi4hIyv9PJ0HXLR3/GQr/bkso9iWDEMxY/hrtqUyz6K4/KL4/zGgheg0D6XH9K92WtID0QLi6iPLXa7+vH5TqP9IL3/pv0gva8Evx9L+0F6a9Agvf5+bbqNReDttB8M8JdcH5vHNtSSrkmfm3H/EGBY5PflwLx+asNEXl9w6BRgfXBNCnYdgv1GkK5NG5Lv6xA5Xru/2ULGg2JYMVxuMaw4VhwXO4b7PcB7+MTnAy+SHm34r8VuTz8+zx8BW4Bm0p9srgDGAA8BLwX/jo7s/6/BNVkFnFfs9pfDT7ZYBBYBi4LfDbg12P4MUNfVY/upDbcDu4AVwU99cP+M4A3gKWBlP7fhquAcT5EenDK3q8f2RxuC25eTHswafVw+r0O2v9mCxoNiWDFcbjGsOFYcFzOGtdS0iIiIiEhEnGqQRURERESKTgmyiIiIiEiEEmQRERERkQglyCIiIiIiEUqQRUREREQilCCLiIiIiEQoQRYRERERifj/ASVmdxcGY8ktAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig, ax = plt.subplots(2,4,figsize=(10,5))\n",
- "ax = ax.ravel()\n",
- "\n",
- "for n,i in zip(x.keys(),ax):\n",
- " g = sns.scatterplot(ax=i, x = np.arange(len(x[n])), y = np.cumsum(x[n]))\n",
- " g.set_title('total components: %s'%n)\n",
- " g.axhline(0.9, linestyle='dashed', color='black')\n",
- " \n",
- "plt.tight_layout()\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "It seems like if there are very few components the cumulative explained variance ratio increases lineary and if there are too many every component has the same weight as we are creating a \"synonymous matrix\".\n",
- "\n",
- "The number of components necessary to explain 90% of the variance depends on the number of components that we choose at the beginning."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## are the top components similar to each other?"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 160,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAACw4ElEQVR4nOzde3xldXX//9fKZXKdmcz9DmEYYIABBjhcFFREVGq1KK0XtCrab6e28qtaW4v6tYy1/X2xVVv7lZ82VRS+UpSCfEUEEWlHRAt4kNsIw20IkLnfkkkml8ll/f7YO3AIyTk7k8x88jnzfj4eeSTZe5+zF0ySs85nr72WuTsiIiIiIpKoCB2AiIiIiMhUogRZRERERKSAEmQRERERkQJKkEVERERECihBFhEREREpoARZRERERKSAEmQRERERkQJKkEVERERECihBFhEREREpUDWeg39cfdyUGrv3u/1PWOgYRERERKS8jCtBtmrloyIiIiJS3saVIFfWVR6sOEREREREpoRxJsgqWRaJRS6XuxyoDR2HiByQ3nw+f2XoIEQOV0qQRcpXbT6fXxs6CBEZv1wutzZ0DCKHs/ElyDVKkEVEpDRdwZiwZiXJE6IVeJmQ8SXI1UqQRUQkE13BkGD05kImanwJ8jTdpCciIiIi5U0ryCIiIiIiBcaVIFdUawVZRERERMqbVpBFRERERAqMbwW5SivIIiIiIlLetIIsIiIiIlJAK8giIiIiIgXGmSBrBVlEREREyptWkEVERERECqgGWURERESkgFaQRUREREQKKEEWERERESmgBFlEREREpMC4ioqtsmJKfZSM1+xCM3vCzJ42s8tH2W9m9i/p/kfM7LQR+yvN7EEzu3U8/59EREREJF5lu4JsZpXAVcAbgTbg12Z2i7s/VnDY7wDHpB9nAV9PPw/7GPA4MOOQBC0iIiIiwZVtggycCTzt7hsBzOx7wEVAYYJ8EXCtuztwr5k1mdkid99iZkuB3wX+HviLQxy7iIiIiAQyrgTZpliCbGZrgDUFm1rcvSX9egnwQsG+Nl6+OjzWMUuALcA/A58Cpk9iyCIiIiIyxY1vBblyaiXIaTLcMsZuG+0hWY4xs7cC2939ATM778AjFBEREZHYRL2CXEIbsKzg+6XA5ozH/AHwe2b2FqAWmGFm33X3PzyI8YqIiIjIFBD1CnIJvwaOMbOjgE3Ae4D3jjjmFuCytD75LKDD3bcAn04/SFeQ/1LJsYiIiMjhoWxXkN19wMwuA+4AKoGr3f23ZvaRdP83gNuAtwBPA93Ah0LFKyIiIiJTw/gS5LhWkHH320iS4MJt3yj42oGPlniOdcC6gxCeiIiIiExBZbuCLCIiIiJyIMp6BVlEREREZLyUIIuIiIiIFFCCLCIiIiJSQDXIIiIiIiIFxpUgoxVkERERESlzKrEQERERESmgFWQRERERkQJaQRYRERERKTC+FeQKJcgiIiIiUt7GWWIxvsNFRERERGKjGmQRERERkQLjS5DNDlIYIiIiIiJTg1aQRUREREQKqAZZRERERKSAuliIiIiIiBRQiYWIiIiISIFxJciuFWQRERERKXMV4znYKyqn1EcpZnahmT1hZk+b2eWj7Dcz+5d0/yNmdlq6vdbM7jezh83st2b2+fH8fxIRERGReJVtDbKZVQJXAW8E2oBfm9kt7v5YwWG/AxyTfpwFfD393Aec7+5dZlYN3GNmt7v7vYf0P0JEREREDrnxlVjEVYN8JvC0u28EMLPvARcBhQnyRcC17u7AvWbWZGaL3H0L0JUeU51++KELXURERERCGWcN8tRq82Zma4A1BZta3L0l/XoJ8ELBvjaS1eFCox2zBNiSrkA/AKwArnL3+yYzdhERERGZmqK+SS9NhlvG2D3a2L+Rq8BjHuPug8BqM2sCbjazVe6+/kBjFREREZE4lG0NMslq8LKC75cCm8d7jLu3m9k64EJACbKIiIhImSvnLha/Bo4xs6PMbBrwHuCWEcfcAnwg7WZxNtDh7lvMbF66coyZ1QEXABvG8/9KREREROI0rhXkIYtnBdndB8zsMuAOoBK42t1/a2YfSfd/A7gNeAvwNNANfCh9+CLgmrQOuQK4wd1vPdT/DSIiIiJy6EVdg1yKu99GkgQXbvtGwdcOfHSUxz0CnHrQAxQRERGRKaesE2QRERERkfEq2xILEREREZEDoRVkEREREZECWkEWERERESmgBFlEREREpMD4EmSVWIiIiIhImdMKsoiIiIhIASXIIiIiIiIFlCCLiIiIiBQYZ4JccbDiEBERERGZEsaXILtWkEVERESkvI0vQUYryCIiIiJS3pQgi4iIiIgUGGeJhRJkERERESlvWkEWERERESkwrgR5UCvIIiIiIlLmVGIhIiIiIlJgXBnvkFdMqY9SzOxCM3vCzJ42s8tH2W9m9i/p/kfM7LR0+zIz+y8ze9zMfmtmHxvP/ycRERERiVfZriCbWSVwFfBGoA34tZnd4u6PFRz2O8Ax6cdZwNfTzwPAJ939N2Y2HXjAzO4c8VgRERERKUPjrEG2gxXHwXAm8LS7bwQws+8BFwGFSe5FwLXu7sC9ZtZkZovcfQuwBcDdO83scWDJiMeKiIiISBkq2xVkkoT2hYLv20hWh0sds4Q0OQYws2bgVOC+gxKliIiIiEwpUa8gm9kaYE3BphZ3bxnePcpDfORTFDvGzBqBm4CPu/veicQqIiIiInGIegU5TYZbxtjdBiwr+H4psDnrMWZWTZIcX+fuP5iUgEVERERkyot6BbmEXwPHmNlRwCbgPcB7RxxzC3BZWp98FtDh7lvMzIBvAY+7+1cOZdAiIiIiEtb4VpCH4kmQ3X3AzC4D7gAqgavd/bdm9pF0/zeA24C3AE8D3cCH0oefA7wfeNTMHkq3fcbdbzuE/wkiIiIiEkA5ryCTJrS3jdj2jYKvHfjoKI+7h9Hrk0VERESkzI0rQfbIEmQRERERkfEq6xVkEREREZHxKtsaZBERESkul8tdDtSGjuMgaM7lcmtDBzHJevP5/JWhgzhcjG8FeehghSEiIiIB1Obz+bWhg5DSyjDhn9JUYiEiIiIiUmCcJRYHKwwRERERkalhnCUWWkEWERERkfKmGmQRERERkQLqYiEiIiIiUkAryCIiIiIiBZQgi4iIiIgUGF+CPHiwwhARERERmRrU5k1EREREpMA4Syz8YMVxgHTToIiIiIhMLpVYiIiIiIgU0E16IiIiIiIFxleDPKgSCxEREREpb1pBFhEREREpMM4a5Km2glycmV0IfBWoBL7p7leO2G/p/rcA3cCl7v6bdN/VwFuB7e6+6pAGLodcLpe7HKgNHccka87lcmtDBzHJevP5/JWlDxMRETlwkXexGJuZVQJXAW8E2oBfm9kt7v5YwWG/AxyTfpwFfD39DPAd4GvAtYcqZgmqNp/Prw0dhBRXhgm/iIhMQZHXIBd1JvC0u28EMLPvARcBhQnyRcC17u7AvWbWZGaL3H2Lu99tZs2HPGoRERERCSrqEgszWwOsKdjU4u4t6ddLgBcK9rXx0uowRY5ZAmyZ5FBFREREJBJRJ8hpMtwyxu7RWlyM/A/IcoyIiIiIHEaiTpBLaAOWFXy/FNh8AMeIiIiIyGGknGuQfw0cY2ZHAZuA9wDvHXHMLcBlaX3yWUCHu6u8QkREROQwNs4uFvE0Qnb3ATO7DLiDpM3b1e7+WzP7SLr/G8BtJC3eniZp8/ah4ceb2fXAecBcM2sDrnD3bx3a/woREREROdTKucQCd7+NJAku3PaNgq8d+OgYj73k4EYnIiIiIlPROBPkeFaQRUREREQOxPhqkAeUIIuIiIhIeSvrEgsRERERkfFSiYWIiIiISIFxtnlTgiwiIiIi5U0ryCIiIiIiBbSCLCIiIiJSYHwryOpiISIiIiJlbpwryIMHKw4RERERkSlBNcgiIiIiIgU0KEREREREpMA4V5BVYiEiIiIi5U1dLERERERECowvQR5SgiwiIiIi5U1dLERERERECugmPRERERGRArpJT0RERESkwDhXkJUgi4iIiEh50wqyiIiIiEgBrSCLiIiIiBRQFwsRERERkQLjSpB/8cPX2MEKRERERERkKqgIHYCIiIiIyFRi7h46BhERERGRKUMryCIiIiIy5ZhZrZndb2YPm9lvzezz6fbVZnavmT1kZnkzOzPdXm1m15jZo2b2uJl9epTnvMXM1pc697hqkEVEREREDpE+4Hx37zKzauAeM7sd+Fvg8+5+u5m9BfgH4DzgnUCNu59kZvXAY2Z2vbu3ApjZxUBXlhNrBVlEREREphxPDCe01emHpx8z0u0zgc3DDwEazKwKqAP2A3sBzKwR+Avg77Kcu2xWkHO53OVAbeg4gMW89A+V1bkc2L/FdKCz4PsjgCZg1gE8Vyb5fN5+XH2cCtdFJsn2nz4ROgTJaN7MgdAhSAaVppeoWLzltGl/Aqwp2NTi7i2Fx5hZJfAAsAK4yt3vM7OPA3eY2ZdIFntfnR5+I3ARsAWoBz7h7rvTfV8Avgx0Z4mtbBJkoDafz68NHcQBJuobGTupLpZwj0ysp5G8U9pb4nwzSN5Z9RVsq2FqvMEQOaxs3qb+8rG46d+fDB2CZHDiGUeFDkEySpPhlhLHDAKrzawJuNnMVpEk1Z9w95vM7F3At4ALgDOBQZLcaRbwCzP7GUnes8LdP2FmzVliO+AEeQqt2A5rDh0AQD6fv3Iyn6/E/+d7Rnz/JK9Mpkcm2MNJ9REk77pmkPwQ9QIdJIlyNVA5ocBFJJONT+0ufZBMCTPnzgwdgmTwm58/FjoEyWrN6ZkPdfd2M1sHXAh8EPhYuus/gG+mX78X+Im79wPbzeyXQA6YA5xuZq0kOdB8M1vn7ueNdb6JrCBPiRXbYblc7vJcLrd2kp/2QMolQhot1uXAsQXfD5dlDAGFb7MrSOp4ROQQ2rVlT+gQJKOvfXx/6BAkg7/65rzQIcgkMbN5QH+aHNeRrBJ/kSTfeR2wDjgfeCp9yPPA+Wb2XZISi7OBf3b3R4Cvp8/ZDNxaLDmGMiixOMgr2SOTy9EsBY4+SOcH2Ac0HMTnHzbtEJxDREa4/M8XhA5BMvrQ558OHYJkcMKZB+02HDn0FgHXpHXIFcAN7n6rmbUDX01vxuvlpTrmq4BvA+sBA76dJsfjFn2CzBRbyZ4KSrxpGF4VPxt4M7ANGO0Vup+k1EJEDqKTt98ROgTJ6MgTzg8dgmTQ29MfOgSZJGlye+oo2+8BXlGfkXa8eGeJ52wFVpU6dzkkyFPKFKnNbs7n85fCqPEMl2Hcm34MOxt4PS+tJCs5FjkErtv/rtAhSEZP5kfe9iFT0ayFKrGIx+zQAYxJCfLkC76iPaIee3jFeLR66uEb9obLRHrS7b3pdv18iBxkxyzsKX2QTAmNs3SbRgz27moPHYKUASVAZWi0ThpjrGwPt5c7G2gkKbVoT/c1jvX851/9/kmJUw6ux876s9AhSAYnPvmd0CFIRvOWviN0CJLBhW9WXb9MnBLkyGUs6Tib5GbD59Pvh1u8FeoFniNZaS5aXmEN08cfqBxyx//310KHIBnsPvvtoUOQjK567iuhQ5AMKjaErnKUzM7529ARjEkJciSKJMIjSydGK6W4l6SEopmk7/FMJjBm/E8eeveBPlQOoc9+UC2pYvBC9/zQIUhGO079YugQJIObf/B86YNkSvh+6ACKUIIcj0y1zUUS6d28VGM87ERg7ngD+ZNLDkXXOZmoBT/4+9AhSAb3n/0voUOQjB57Um86Y9C+Q73F43Fk0b1mdjXwVmC7u69Kt30fOC49pAlod/fVkx2ZEuQyM9Ykv1wuR7EEO5fL3Q6cBAwA80gabI/quMFHJxilHAoVr//d0CFIBo89rKQrFk+tj2lu1OFretOM0CHI5PkO8DXg2uEN7v7iZWwz+zLJFOBJpwT5MDZitXkb8AIv3bS3mqQco4YR5Rj12585dEHKARus1x33MXjbq/tChyAZPbCoOXQIksGejsHQIcgkcfe708l3r2BmBryLZJLepFOCfJgZkRQX9ku+HTgGWEiJyX2dd955MEOUSdJ44VtChyAZXPXdrtAhSEZHH1cXOgTJ4NmndoYOQTIyW7yGl6bgAbS4e0vGh78G2ObuT5U88gAoQS5zBQlxc7rpxVrmtF9yC8mq8WygLf1YDiwb6zmHBoYOYsQyWfrv/2XoECSDmto3hA5BMno0/1zoECSDU1/VHDoEyShNhrMmxCNdAlw/ieG8jBLk8lebz+fXFgwOeVE+n7+yIIF+ON28mZdGMI46bnrG29ULNAZds4rf/CBTwzN/83ToECSj+UcuCh2CZPCL23SfTDQuecUU6UzMrAq4mFHGTU8WJciHucKb+gqS5R8ArwPmkwwMednPSUXHrkMZohygm/f9fugQJIN5y54NHYJk5EMeOgTJ4Jw3ryp9kMTuAmCDu7cdrBMoQT589KaryG/L5XKj7T+XpAzj6IJtPcAQSWeLF39Wdq141UELUibPSYOdoUOQDP79uS2hQ5CM3vLes0OHIBk89sj20CFIZguL7jWz64HzgLlm1gZc4e7fAt7DQSyvACXIh43hleJcLnfeaO3ecrnc2nw+f0HB95cDHyJpUviyLhZDVnlwg5VJ0VStBDkGr/qd00KHIBnd9u/3hg5BMjg2d1zpgyQK7n7JGNsvPdjnVoIsL1NQZnE6ybuztwCnkPysVABsGVwSLD7JrrZS7cNi8N7z9vLl/6MbX2Nw1MlHlz5IguvfP8COth2hw5BM5oQOYExKkA9jI1q+DZdeNOfz+UtH7BuiYBV5737NuY/BsYMPhA5BMvjsXafRqLkGUdixpT10CJLB/p79VE+bFjoMiZwS5MNPa8HXhS3fzhvudpEmx+eRDAuZBbzsL83mPTWHJFCZmBeWnBg6BMmgcYZ+n2LRs2/MAaMyhTz5pNrxxePY0AGMSQny4ae1xP5e4BySn40NwIkk10Bs+IAV81XbGoO2ztmhQ5AMFi/Sn+FY7OvSWPAYHLlqRegQpAzoL7MMa4WX9Ua+GJhLMuO8iYKflfqq3gDhyXi1/LA7dAiSwfyFM+ho7wkdhmSw6qRZzJsVOgop5faf9PD8Bq0ix2Hq3tOkBPnw01swNKS5YHvriLrjmcBRgFOwegzw2La5BzlEmQxvuqD0MRLed/71odAhSEZnnzWbHt37OuXNmtfIrHkqMSsHZlYL3A3UkOSsN7r7FWa2FvhjYPhuzM+4+21mVg18EzgtPf5ad/9fZjYd+EXBUy8FvuvuHx/r3EqQDzMjBoOsLdjVC6wkKauoBbqAzwPvAxpIhoZUAjTP6TpE0cpEPL+nMXQIksFRJ2riYSz2dmlQSAyee0K9xeNxTKkD+oDz3b0rTX7vMbPb033/5O5fGnH8O4Eadz/JzOqBx8zsendvJbmvCgAze4BkKNqYlCAL8LLSipVpF4vFwGLgv4ALKehi8fT26YGilPFY2KR6yRg8+ZunQocgGS1fcUboECSDWfNmhg5BJom7O8mCHUB1+lHsnaoDDeko6jpgP7C38AAzO4Zk0e8Xr3z4S5Qgy4uGk+SCleXlJGUY8ygos/iDqpsOfXAybj/sujh0CJLBx/5q1MmWMgV959tPhw5BMpizSIXisTCzNcCagk0t7t4y4phK4AFgBXCVu99nZr8DXGZmHwDywCfdfQ9wI3ARsAWoBz7h7rtHnPYS4Ptp8j0mJciHuYK643N56edhObBsrMdc0/n7hyAymagj5/eHDkEy2LhVf4Zj8YbfLXk5WKaAJ57YW/ogmRLSZLilxDGDwGozawJuNrNVwNeBL5CsGH8B+DLwYeBMYJDkCvgs4Bdm9jN331jwlO8B3l8qNv1lPrz1kiTDm4G2fD5/KbyYNJ9D8o7tbODVwIt1FRcco7uDY5DfekToECSDlUtVChOLXz1aGToEycCHVCtejty93czWARcW1h6b2b8Bt6bfvhf4ibv3A9vN7JdADtiYHnsKUOXuJSdpKUE+jI24YW+4tGIxcATwZuACXupq8aJNPfMPVYgyATXVepGIwYnTHg8dgmT0+RvUAz4G7/jwuaFDkEliZvOA/jQ5riPJS75oZovcffhuzHcA69OvnwfON7PvkpRYnA38c8FTXgJcn+XcSpAFeClZzuVyPyFJjrcAi4Aekkl6Ly6d5J/U5K8YzJlVUfogCe6xupWhQ5CM/p/LNb44Bm/r/ffQIUhm7yt1wCLgmrQOuQK4wd1vNbP/Y2arSUosWoE/SY+/Cvg2ScJswLfd/ZGC53sX8JYskSlBPkyN6HkMybusNwPb0u8XpZ/rRj62utpGbpIpaN1/bQ0dgmRw3InzQocgGd11cz50CJLB667Qm85YvCLBGCFNbk8dZfuoNcTu3kXS6m2s51ueNTYlyIeZgsR4MUntcaFnSS5PDI+Ynk1Be7dhlSrDi8KrzlkYOgTJ4LeP64aiWAzsHwgdgmTwYN/q0CFIRheGDqAIJciHn9p8Pr925MY0ca5KP5aTvLGrAAbSzy8myv/5k2cOSaAyMTNmq191DKqn6c9wLP71H3XjawyaN1wdOgTJavVHQkcwJv1lPgyMKKd4Wy43at/VZuBn6XHD5RUDjPIzojuE43Dk8tmhQ5AMdu/uCR2CZPSN23T/RQz+31P0t08mTgny4eHFVeNcLndekRXk4dqc60lqks8BXjGvuLqm+qAFKpNn3f/9degQRMrKJz9zVugQJIP9Veq0FIv60AEUoQT58NM62sYRXSz+mORmPSNZRa6kYJLex/5o7kEPUibu2ze/4r2NTEGde/aFDkEyOrppe+gQJIOati2lDxIpQQny4ae18Jt05fg8kg4Wwzfp/Rw4BmgY7QmWTtt0UAOUyfH7b8l8s64EdNX/p6QrFr1DquuPwWDtqC9dEiEzqwXuBmpIctYb3f0KM/sCyUjpIWA7cKm7bzazacC/kgwHGQI+5u7r0ueaBnyNJOcZAj7r7jeNdW4lyIef3nQgyLC3AT8C7iVpoJ1jjMR42C1PHHvQgpPJs2iuasVjsLBZl4NjMa1C49tj8IO+3wsdgmT0gdKH9AHnu3uXmVUD95jZ7cA/uvvnAMzsz4G/AT5CcgUcdz/JzOYDt5vZGe4+BHwW2O7ux5pZBUmnrjEpQT7MFE7PA8jlcs0FNclrR9Qivw44iqTE4sUuFm9cqRXkGHz91pmhQ5AMdrTtCh2CZDS/vyt0CJLBSYvVizQexUs23d2B4V+86vTD3b2wP2YDycAQgBOAu9LHbjezdpKFv/uBDwMr031DwM5i51aCLK0julycDjxAMt5meCX5Zb2Q731h6aGLTg7YMcdoBTkGVdX6fYrF5ip1HIlB/6BuJI+Fma0B1hRsanH3lhHHVJLkJSuAq9z9vnT735MsQncAr08Pfxi4yMy+BywjyWmWmdmT6f4vmNl5wDPAZe4+PBztFZQgSy+wMp/PXwovawn3X8ARwJnALJJ6nQqAzdsGgwQq4zOodnxRaD5yKt/HLYUe36Z/qxi8apF69cciTYZbShwzCKw2sybgZjNb5e7r3f2zwGfN7NPAZcAVwNXA8UAeeA74FS+1rF0K/NLd/8LM/gL4EjDqRD5QgnzYy+fzV+ZyucvTuuThcdPPkiTEC3lpZfnFVeSjlr5iuJ5MQVddeXfoECSDGfPUszUWC49cEDoEyeCajSqFicUd12Q/1t3bzWwdyQC+9QW7/h34MXCFuw8AnxjeYWa/Ap4CdgHdwM3prv8A/qjY+ZQgS6F7049zgdUkJRZDIw/a1XFog5IDc/ZbzggdgmRwzNFalYzFo+v1x0/kUDKzeUB/mhzXARcAXzSzY9z9qfSw3wM2pMfXA+bu+8zsjcCAuz+W7vsRSQeL/wTeADxW7NxKkAVGjJ9OyyzagAUkI6dXAE2kPb27e3TpPgaLF9eFDkEy2LpdnRFicfzxuvE1Bt2di0OHIJNnEXBNWodcAdzg7rea2U1mdhzJIt5zJB0sAOYDd5jZELCJl5dQ/DXwf8zsn4EdwIeKnVgJsoymluTd2H6SOuTZJD0IDWB6g0osYjBv1isW/2UKmrVcNf2x+H///sHQIUgG02prSx8kU0TxNpfu/ghw6ijbf3+M41uB48bY9xzw2qyRKUGWUaW1yS0kPyO7SVaTKwDa9+oFPQZPPKU77mPwurO00h+L+pkaFBKDmtqa0CFIGVCCLC+Tllc0p98uJym1OBYYJE2Qq6ts1MfK1DJnbi2VFfq3mura91WyX1UWUaisrKRnX3foMKSE/b19VJiudMrEKEGWkWqBpWlXizaSUouzSMorDKB/QDXIMXjswc2hQ5AMXv2BeaFDkIzWNdZS16jL9yKHAyXIMpqqfD6/NpfL/Qw4n6QGuZI0Qa7QqmQUaup1mTEGc2vVGSEWvd19oUMQkUNECbKMpjX93AZMB3pIbtarBNi1Uy8SMVh9WvGbH2Rq6B7YW/ogmRL29xadTCtTRE29Vvll4pQgy2ha088LgCUkK8jThnd2tOvmrxicsVoryDFo79NNerGoa1DP6hgMuTr4lAszqwXuJumkVQXc6O5XmNkXgItI2rxtBy51981m9j7grwqe4mTgNHd/qGA09Sx3byx1biXIMpretAZ5DsmNeS97BW97WrWtMfiO/p2i8Kd/tjJ0CJJR0/wZoUOQDJ577LnQIcjk6QPOd/cuM6sG7jGz24F/dPfPAZjZnwN/A3zE3a8Drku3nwT80N0fSp/rR8DXSCbrlaQEWV4hn89fCZDL5XpJps4AzAWqARpmlnzjJVPA0IBWUWKwsKEzdAiSUS43N3QIksGzj24MHYJMEnd3YHh2eHX64e5eWJvWAIzWPeAS4PqC57oXwCzbfVRKkGVUabu35STlFYsoGDk9vakhVFgyDk/cX3SKpkwRz+5pDh2CZPTdr/08dAiSwYrTdVUmFma2BlhTsKnF3VtGHFMJPEAy1fcqd78v3T5cMtEBvH6Up383SRnGAVGCLK+QJscrSVq8HUFyk54KJSMz70iNW41BTZXaJsZixrzZoUOQDLa1bgsdgmSUJsMtJY4ZBFabWRNws5mtcvf17v5Z4LNm9mngMuCK4ceY2VlAt7uvP9DYlCDLaGpJbtS7ANhIMs98OemgEK1MxqGyujp0CJJBU53eyMRimia0RaFzd3voEOQgcPd2M1sHXAgUJr7/DvyYggQZeA8F5RUHQgmyjKWXpO74Z8Bqkkl6BrBw+bJwUUlm1TX69Y7Brn1qSRWLmXN1k14M9O9UPsxsHtCfJsd1JAt3XzSzY9x9+Ga73yO54j38mArgncBrJ3JuvYIK8GJZRS3JmOnWfD5/ZS6XGy7kcpIyi0aAWk2SisKCJTNDhyAZDLoG78Ri15bdoUOQDGbO1d++MrIIuCatQ64AbnD3W83sJjM7juT+qOeAjxQ85rVAm7u/7G5NM/sH4L1AvZm1Ad9097VjnVgJsgyrTafnrS3Y1kqSNBvJnaMVAJueeuGQByfjN9g/EDoEycBPWxo6BMlo/lJ1sYjBjs27QocgmS0putfdHwFOHWX77xd5zDrg7FG2fwr4VNbIlCBLMb0klykeAI4lSZZpmDk9ZEySUf103VcZg459FaFDkIwqqvRvFYOuPZpOKROnBFnGlJZZXJh+uxeoB5izSHdyx2BarW7Si0Glcq5o9HbvDx2CZFBRobIlmTglyFJKK0kni1qgEmDn5p0h4xEpK28+T1dkYrGjbXvoECSDqpppoUOQMqAEWUY6F2gr+H4psBAYIJ1U07mr/dBHJeN22vmrQ4cgGWixKx4DfVpBjsHQkHqLy8QpQZaRqkhWjYdtBE4hKa+oAJg+p+mQByXj1/a0Vrti8PQRR4UOQTLq29cTOgTJ4IgTjw4dgpQBJchSVD6fX5PL5VpIeiEDsHj5onABSWYnn6Ja8Ri0PtcdOgTJaOaCOaFDkAz2dewLHYJMEjOrBe4Gakhy1hvd/Qozmw18n7Q1LfAud99jZu8D/qrgKU4GTgOeBP4DOJpkrsOP3P3yYudWgixFpf2RIek1CED/frUPi4ESrzgsWqhuI7F4XJfuozDQ3x86BJk8fcD57t5lZtXAPWZ2O3AxcJe7X2lmlwOXA3/t7tcB1wGY2UnAD939ITOrB77k7v9lZtOAu8zsd9z99rFOrARZxpQmxytJJtT0ANMAFizWlKIY9PbojUwMduzsCx2CZNTXrRKLGDSfqLKlcuHuDnSl31anHw5cBJyXbr8GWAf89YiHX0I6btrdu4H/Sr/eb2a/IbnHakxKkKWYWpLk+KPArOGN9fX6sYlB+269mMdg7nytIMdicGAwdAiSQetvnw0dgmRkNn8NsKZgU4u7t7z8GKskmcewArjK3e8zswXuvgXA3beY2fxRnv7dJIn0iHNaE/A24KvFYlOmI6NKV4+bSRLku4DzSUfetLdrxSsGu7d1hA5BMjjnVaoVj8XQoBLkGDTNV614LNJkuKXEMYPA6jSxvdnMVpV6XjM7C+h29/UjtleRrCr/y8hR1CMpQZaRWtPPtbx0+WEDSYIMwO7tXcjUN3vBzNAhSAbTqlXXGouGmSovi8HOF7aEDkEyOzbzke7ebmbrgAuBbWa2KF09XgSMbNv0HtLyihFagKfc/Z9LnU8JsozUSjJieiVJP+SFwGvTz0mbtyZdEo7B4KASrxjoqn08GmdpqEsMdJNe+TCzeUB/mhzXARcAXwRuAT4IXJl+/mHBYyqAd5LkLoXP9XfATOB/ZDm3EmR5hXTE9FqSRHkhcBRJW5QhgPW/eixccJLZuW89PXQIksGGZ/rp6dYLegy2tW4KHYJkdNwZx4cOQSbHIuCatA65ArjB3W81s/8GbjCzPwKeJ0mIh70WaCssoTCzpcBnSa6I/8bMAL7m7t8c68RKkGUsvcBy4F6SBPlo0hXkWQvnBgxLspoxXb/eMZg1s4K0QYxMcfffoasyMTjrQi0OlAt3fwQ4dZTtu4A3jPGYdcDZI7a1AeOaW6pXUBlVuorcQjJ6ugvoByoB6qfXhwxNMnp2497QIUgGHXNUshSLZcerfZjI4UIJshRTeIfn0SSTbKifXhsmGhmXyspxvVmWQObN1epxLJ57piJ0CJKBWpHKZNBPkbxC2uJtOAs+gqSeZxrp5Ymdm3cHikzGo337bqqq9Ss+1b3u1afyL//rl6HDkAxee9GZbNvSGToMKeE/b/xvPv4/XxM6DImcXj1lpOHa480kU2he0YOlt0sDKGKwsHlR6BAkg2u+tYGZ6tsaha7O/TQ01oQOQ0q49OOvo13dSGWClCDLy6S1x8MryF3A54HLgCbSGuTFRyvxisHW57aFDkEy2NeuFclYPPCzHaFDkAwaGs8ufZBMEVP3DacSZBlNbT6fX5vL5RaT3Am6h6R3IAC7t7WHikvGIWkFKVPdilOPCR2CZHTsSk09jMERi3T/Rbkws6uBtwLb3X1Vum0t8MfA8DvWz7j7bWb2PuCvCh5+MnCauz9U8Hy3AMuHn6sYJciHqRF1xs28NEGv0EaSUosTgBf7G+18YetBjk4mw1EnrwgdgmTQOEM3vcZCw3fisG2XEuQy8h3ga8C1I7b/k7t/qXCDu18HXAdgZicBPxyRHF9McmU8EyXIh6/afD6/FiAdCkL69eUkCfOLx6Qrye8FqgFWv/6UQxqoHJjH7t0QOgTJ4JzXnBk6BMnowQf3hA5BMjjyKI0Ej0dl0b3ufreZNR/AE19CwahpM2sE/gJYA9yQ5QmUIMtItUDrcKKcfn4dBYVCTzzwTKjYZBxmL5oXOgTJ4JmNuuk1FstXzCx9kATX1TUQOgTJyKxqDUnSOqzF3VsyPPQyM/sAkAc+6e4j372+G7io4PsvAF8GurPGpgRZxlJLMpLxncDPSUZOzwBomj8rYFiS1Y4XdJNeDE44dWnoECSjvZ1KvGJQV1t8VVKmjjQZzpIQF/o6ScLrvJT4fnh4p5mdBXS7+/r0+9XACnf/xHhWo5Ugy2h6gZX5fP7SXC63PN324l+c7c9tCROVjMtA3/7QIUgGe/f2hQ5BMnrhqe2hQ5AMTjhNbzrjMf43M+7+4uqPmf0bcOuIQ95DQXkF8CrgdDNrJcl755vZOnc/r9h5lCDLK6St3tamX69JyywgvVFvaHAwVGgyDq97h1odxWD7VjVsjUVto26ojMGc2dWhQ5CDyMwWufvwSt07gPUF+ypIrny/dnibu3+dZNWZdAX51lLJMShBlpecmybFzen3vblcroWXBoY0DB94zGnHHfLgZPye+q1W+mOwfOXC0CFIRg8/uSl0CJJBZaV69ZcLM7seOA+Ya2ZtwBXAeWnZhJN04PqTgoe8Fmhz940TPbcSZBlWlXasWAsvGxhyDklyvJ9k3DTV0/RjE4MtT78QOgTJ4PVvbA4dgmT0zKzpoUOQDOY2hY5AJou7XzLK5m8VOX4dyfyGsfa3AiV7IIMSZHmlcwvavp0NnAHUkybHANs37QoQlozXvCO1ihKDAfXWjcbWjW2hQ5AMFs1cEDoEyaw+dABjUoIsIw2vJF8OzAKMlwaKAHD86mVBApPx+dVPHgodgmSQv68xdAiS0YmvzrTwJIFNq1C3EZk4Jcgy0nAP5Hem37/ijrzaOrXQicGJZ68MHYJkYBWa+hWLjeufDx2CZPDUdr2RicWrjg8dwdiUIMtIrSQrxo+mbd5+ApwJzAQqALZt2RcuOslMY3HjUFOtN5yxOPdNU/jVXF7UmXkUhMjYlCDLSL3ASmBDWos8G2gnqUFuAGicXjPWY2UKeXr95tAhSAazFmg6Wyye79Wl+xiccXpT6BCkDChBlpcp7IGcug34UwpGTT/y308d6rDkAJz8qmNChyAZVFVXhA5BMhroHwodgmSweLaGJMVjWskjzOwTwP8gaev2KPAhkgl6byPpsPUM8CF3b0/7HD8OPJE+/F53/8iBRKYEWUbTCywn6YF8NjCdgp+VWQtmBwpLxmNIJRZR+OWdD4YOQTI684KTQ4cgGVz/g92hQ5CMLlxdvA+8mS0B/hw4wd17zOwGkkl5dwKfdvcBM/si8Gngr9OHPePuqycamxJkeYV8Pn9l4ffpwJBTSHsH7mjTuNUYNB8zN3QIkkF/T2/oEETKyjMPPlH6IJkiMg1KqgLqzKyfpC/cZnf/acH+e4E/mOzIlCDLmNJuFrXARcCM9Gt6u3STXgx6VS8ZhUUrjggdgmRUPU03VMagtrGh9EEyJZjZGmBNwaYWd28Z/sbdN5nZl4DngR7gpyOSY4APA98v+P4oM3sQ2Av8T3f/xYHEpgRZiqlNeyIvBt7F8CS9mtI1QxLeru1doUOQDBpm1tOxc2/oMCSDjnat9sfg+LOO5ckHJzxpWA6BNBluGWu/mc0iWaQ7iqRhwH+Y2R+6+3fT/Z8FBoDr0odsAY5w911mdjrwf83sRHcf9x9ZJciSxUaSgvfVAP19ugEiBo0zaksfJMH99t4NoUOQjOYu1v0XMXj6oadDhyCT5wLgWXffAWBmPwBeDXzXzD4IvBV4g7s7gLv3AX3p1w+Y2TPAsUB+vCdWgizFNKdlFsuBRUAlQN0MTf6Kwa6tHaFDkAyqqvVnOBYrjp0VOgTJoK9HZUtl5HngbDOrJymxeAOQN7MLSW7Ke527v9j52szmAbvdfdDMlgPHkCzyjZv+MksxzSSDQzaS/GAawNDAK4bryRRUUal6yRjMW7YgdAiSUUdHf+gQJIPOPSovKxfufp+Z3Qj8hqSU4kGSkozfkrSfvdPM4KV2bq8F/tbMBkgmAX/E3Q+orYkSZMliJUmSfFToQCS77s5uqmuqQ4chJWzd2BY6BMlozsIZ1NXqd2qqm7t4NhUa4V423P0K4IoRm1eMcexNwE2TcV4lyFLMAMkq8lJgMWmJhcShr7uXvm7dVDTVzVmiFeSY9PRqFXmqc3cG1QdeJkgJshRzD3Au0EaygrwCoKa+LmRMktHcJXNChyAZqINFPKZPryl9kATX2d4TOgQpA0qQpZQqkiS5HqgAMF26ikJDo17MY/DMg1tDhyAZ7V0+P3QIkkFVtS52ysQpQY5MwfCOrJpJbrQ7UK1AJ8nI6UqAzl3tE3g6OVSqVy0LHYJkMHO+VvpjocWBOOxXGYxMAiXI8anN5/Nrsx6cy+UyHzvicZfzUnK9AVgAzAQY7NeEthjs3d1d+iAJbl9HZ+gQJKOdm9tDhyAZ1NTr6lm5MLOrSXodb3f3VQXb/x/gMpJ7pX7s7p8ys2rgm8BpJPntte7+v9Lj15G0qx2uv3mTu28vdm4lyDKWWpLkuJekD/JC0hXkKk3Si0Jvjwa6xKBx1ozQIUhGPV266TUGM2arV38Z+Q7wNeDa4Q1m9nqS6Xonu3ufmQ3XPr0TqHH3k9K+yY+Z2fXu3pruf5+7Zx4YogRZisrn81fmcrnbC7ctPnppqHBkHIYG1a86Bvp3isdr3nRc6BAkg127+kKHIJPE3e82s+YRm/8UuDKdmkfBSrADDWZWBdQB+4EDvgtaCbIUc24ul2sBXiC5jLEQoGef7hCOQePMhtAhSAZN8zSdLRauzmEiU8GxwGvM7O9JrnL/pbv/GriRZGV5C0ljgU+MGBLybTMbJOmT/HfD46nHogRZiqkiae+2nOQmvWqA6U26fBWD3dv2hA5BMtAbmXh0d2u1PwaLFo7nPnYJyczWAGsKNrW4e0uJh1UBs0jykjOAG9Kx0meSTM9bnO7/hZn9zN03kpRXbDKz6SQJ8vspKNsY6yQiY0pLLC4neZc2ANDZrjGeMaiq1q93DHZu2hE6BMno+FMWhw5BMujbr6X+WKTJcKmEeKQ24AfpCvD9ZjYEzAXeC/zE3fuB7Wb2SyAHbHT3Ten5Os3s30mSaSXIMilqSep7qKxUj8kY1GioQRR2bdoWOgSRstLXNxQ6BMms4kAe9H+B84F1ZnYsMA3YCTwPnG9m3yUpsTgb+Oe0JrnJ3XemnS7eCvys1EmUIEsxrenq8TtJkuMKgLpGXb6Kwc5NO0OHIBlUVleHDkEymjlDiwMx2L5DHXziUTwNNbPrgfOAuWbWBlwBXA1cbWbrSW7E+6C7u5ldBXwbWA8Y8G13f8TMGoA70uS4kiQ5/reJRSaHu1aSleMHgDnpB8/99tmAIUlWGmoQh7lLFoQOQTL6za+12h+DJUfqxtdy4e6XjLHrD0c5totkQW/k9n3A6eM9txJkyWIjBddBptXp0n0MevaqVjwG21o3hQ5BMjrt/NWhQ5AM+vo0zCoeUzefUIIsr1AwRW8DybuxR4GtwHyA/T3qMRmDuhnqNhIDvZGJR129ymFiMHeOhlnJxClBltHUAq1pB4sLSRLlE0jbvA32a859DFSFFwe9kYlHibapMkX8/I4nQocgGf3lxceHDmFMSpAFkhZuTWPsa00/zyTtYjF32aKDH5FMWPv2XaFDkAya5s8OHYJkVD1NN+nF4OhVy0KHIGVACbJQsFI8mlZgJdABDAHs3rJ9jENlKqlQO74o7OtQiUUsZkzXS2YMdu3oDh2ClAH9tksWS0laowAwNKBpUiKTRTX98ejtVX/dGPiQSmHKiZm1Ap0kU/IG3D1XsO8vgX8E5qV9jt8H/FXBw08GTnP3h8Z7XiXIUkovydSajSQ/aFTV6AaIGMycp0v3MWjQqOlo1NQc0FADOcRmz60PHYJMvte7+8ua+5vZMuCNJANCAHD364Dr0v0nAT88kOQYlCBLCWn5xc9IxkxXAMxePC9sUJJJ157O0CFIBrMWNIUOQTJqfXZv6BAkg+maInq4+CfgU8APx9h/CXD9gT65EmTJYiNwIclkGrY/q76tMdCEtjhUT9Of4VjMnlMXOgTJYNo0rfSXGQd+amYO/Ku7t5jZ7wGb3P1hszGHYr0buOhAT6q/zDKWc3O53NqC7+eRJsiLjz0ySEAyPvXT9WIeg8pKvZjH4pTj9aYzBjfd9ELoECQje3/zGmBNwaYWd28Zcdg57r7ZzOYDd5rZBuCzwJvGfF6zs4Bud19/oLEpQZaxVOXz+bUAuVzu9nTbEMD+HnXYjUFVtX69YzDQr5teY7Ftd1PoECSDmjrdJxOLNBkemRCPPGZz+nm7md0MvA44ChhePV4K/MbMznT3renD3sMEyitACbKUkE7VGwAeA44DOPI49UGOwfNPbS19kEwJXXtU2xqDp+dPDx2CZDBrbiM7t+p3qhyYWQNQ4e6d6ddvAv7W3ecXHNMK5IZv4jOzCpIpwK+dyLmVIMtYWtPkeCXJz8lyoB5gz071bY1BXaNKLGLQ9kRr6BAko2XL1HEkBr/+lUosysgC4OZ0pbgK+Hd3/0mJx7wWaHP3jRM5sRJkGUsrycjpDSRTi08EZgBUqGYyCt271MVCZDI1NuhvXwzmL50VOgSZJGmSe0qJY5pHfL8OOHui51aCLEWlbd4uB15cjty1ZXfAiCSrDo2ajsKK1ceGDkEyUgv4OOzepsWBeMwIHcCYlCDLWHqBlWlyvBx4CjgdlHjFolqv5lGoa9C/UyzWP74vdAiSQVV1ZemDREpQgiyjKhgQAkmZxbmk46Y1ajoOM5dpkl4MKqp02T4WRyzThLYYbHl+T+gQpAwoQZZiqkiS4+VAI+kkvYoqvTuPQfU09WyNweP3PRk6BMno1WecHjoEyWDXlp2lD5IpYmnoAMakBFmKmU5yo96FwEKSaTYsaF4SMibJqLpGCXIMGprUOiwWXT1jTuySKWSgT736ZeKUIEsxnfl8fm0ul1sMvBdoANi5aXvYqCSTykqt9MdAV2TicdT8vtAhSAbzj1gYOgSZJGZWC9wN1JDkrDe6+xVm9o/A20i6bD0DfMjd281sGvCvQI5kuNnH0q4WmNlPgEXp8/wC+Ki7j1kzqgRZihnuhQywm7QPsg8NhYtIMpu/XCv9MahrqAkdgmRUafrbF4OuDt1MWUb6gPPdvcvMqoF7zOx24E7g0+4+YGZfBD4N/DXwxwDuflI6mvp2MzvD3YeAd7n7XkuaKt9IMkzke2OdWAmyFLOBZFDIq0iadQMwNKib9GKwd5cmScWgt1tdLGKxrXNu6BAkg+bjtThQLtzdgeHpZNXph7v7TwsOuxf4g/TrE4C70sduN7N2ktXk+919+EWxCphGWjY6FiXIMqaCHshzgA7gVAAfKvozJVPEvg71Ao1BZVVT6BAkowrT374YbFz/fOgQJLNVJY8ws0rgAWAFcJW73zfikA8D30+/fhi4yMy+BywjaU+7DLg/fa47gDOB20lWkcekBFmyOB44gvTnpbZRrY5iMHOupknFoFI9W6Nxw/daQ4cgGQwNqBQmFma2BlhTsKnF3VsKj0nrhFebWRPJ2OlV7r4+ffxngQHguvTwq0lyljzwHPCrdP/wc705rWu+DjifpFRjVEqQpZTafD6/IpfLPQEcCzCtTjWTMVDiFYcZsxtDhyAZDQ0q8YpBd6dqkGORJsMtJQ9Mjm03s3UknbXWm9kHgbcCb0hLMXD3AeATw48xs1+RDDorfJ5eM7sFuAglyDIRaZlFP+m7sL071IQ9Bg0zlXjFYLBfNf2x2L9/oPRBElxNfW3oEGSSmNk8oD9NjuuAC4AvmtmFJDflvc7duwuOrwfM3feZ2RuBAXd/zMwagenuvsXMqoC3kHSyGJMSZBlTmhg3A60kA9MrAOYsWTD2g2TKmDVv6s64l5dUVGqSXiwGtYIchR3PbQ4dgmR2TKkDFgHXpHXIFcAN7n6rmT1N0vrtzqQpBfe6+0eA+cAdZjYEbALenz5PA3CLmdWQTAX+T+AbxU6sBFmKqeXlY24coKpaPzYxGNLNlFGYM68udAiS0e5tHaFDkAyqatQZply4+yOkDQJGbF8xxvGtwHGjbN8GnDGecyvTkVLaSNq9nQUYQG93b9CAJJtp02aHDkEy6NjTEzoEyaivW4NCYlA/Q+VlMnFKkKWU1vTzQtISi47tu4IFI9nNPPvo0CFIBrW1upkyFs89oUv3MdjfozcyMnFKkKWUXuAdpGOmQV0sYrF9q/ogx2DhEtWKx2LpikWhQ5AMNvx6Q+gQpAwoQZai0mEhAIvTD2rqVTMZg01PabUrBgsWTQ8dgmS0Z4emU8agWjXIMgmUIEtW20nHTe9r18pkDBqalHjFoLZOJRaxUA1yHFSDLJNBCbJkUUvBJBolXnFQHV4c6mrU5i0We7buDB2CZDDY3x86BMnsFQ0nXiadenc3SUu3KuBGd7/CzFaTtGkbzk/+zN3vL3jcEcBjwFp3/9KI57wFWO7uRedcK0GWUQ33QE4/v42CBLlzV3uosGQc6rSKEoWKSgsdgmSkS/dx0ApyWekDznf3LjOrBu4xs9uBvwU+7+63m9lbgH8Azit43D8Bt498MjO7GOjKcmIlyDKWWpIOFrXAoyRdLAYAmhbODReVZDbYr6lfMVBb8Xg0zVfrxBjs2aaV/nKRjpAeTmir0w9PP4bvcJ4JvHjTjZm9HdgIvGzmeDpN7y+ANcANpc6tP81SSjNJH+RXkf68zF+qBDkG29v0IhGDn96ygfN+Z2XoMCSDwUGNBY/BjLmz6NqjGyrLRTpF7wFgBXCVu99nZh8nmZj3JZIWtK9Oj20gGUH9RuAvRzzVF4AvA91koARZSmkmSZA7SMYz0ter+q4YzJrfFDoEyWBp82x27dofOgzJoHOXJunFoK9bw3diYWZrSFZ0h7W4e0vhMe4+CKw2sybgZjNblT7mE+5+k5m9C/gWcAHweeCf0pKMwvOsBla4+yfMrDlLbEqQJYta4CHgBICKCtVMxqCnSxMPY2D6dYrG/l79TsVAo6bjkSbDLSUPTI5tN7N1wIXAB4GPpbv+A/hm+vVZwB+Y2T8ATcCQmfUCg8DpZtZKkvvON7N17n7eWOdTgiylDJDcpAfJDxhdHfvGPlqmjP4+rfTHYNo0dbGIxdCASixicMQJy0OHIJPEzOYB/WlyXEeySvxFkprj1wHrgPOBpwDc/TUFj10LdLn719JNX0+3NwO3FkuOQQmylHYPSZnFQuAkgMF+vUjEoLa+lvrpGuoy1c2ZXcXuPfqdikF1XS39PVpFnuqeW/9M6BAks8WlDlgEXJPWIVcAN7j7rWbWDnzVzKpIJv6uKfIcB0QJckBpC7XajIc3H8RQStlAUl5RCTCoVZQodHfuo7tTq/1T3fYd6owQi8rKSiobG0KHISX096mmv1y4+yPAqaNsvwc4vcRj146xvRUo2gMZlCCHVpvP59dmOTCXy2U6bpL1Aivz+fyluVzu4uGNtfVZc3oJae9u3VAUgwXzVS8ZCw1JisO8pXNChyBlQAmyjCmfz1+Zy+XWpivdu4e3V1ZrNG4MtIoSB91PFI+Zc2eUPkiC27lpd+mDZIqYum1jlSBLKecCPUA/6aCQGbM1pSgG21qHQocgUlZmzlF5RQxmzdVrlEycEmQppYpkcs056Wfad6gBu8hkeWGTuo3E4tnftoUOQTKYvXBW6BAks6lbtqQEWbJYBxwJHAtqHyYymbZt6Sp9kEwJC46YFzoEyaC7U4NCZOKUIEsprcBK4BrgzwCS0egy1VVWqVY8BnMX6LJ9LJ58dHPoECSDgf6B0CHIJDGzZcC1JK1mh0gm7X3VzP6RZEbDfuAZ4ENpr+QzeWnwiAFr3f3m9LnWkbSNG34H9SZ33z7WuZUgSymtwAdIfghrADp26AaIGAzqRSIK/fvVNjEW3Xu7Q4cgGaw4+YjQIcjkGQA+6e6/MbPpwANmdidwJ/Bpdx8wsy8Cnwb+GlgP5NLti4CHzexH7j78gvg+d89nObESZMliuOh4BkBNg4ZPxGBAXSyiUD1NK/2xsArNBY/Bzq26TyYexW+odPctwJb0604zexxY4u4/LTjsXuAP0mMK38XWAgd8yVsJspQyPMP8XNJBIfvUXzcKFSqxiMKM6fozHIvOXe2hQ5AM5i1WH+RYmNkaXj4Fr8XdW8Y4tplkaMh9I3Z9GPh+wXFnAVeT3Dv1/oLVY4Bvm9kgcBPwd16kZlR/maWotBfyBcA8kjGPVKlxaxRmL9YNRTHYvVsr/bFYvGJZ6BAkg2m11aFDkIzSZHjUhLiQmTWSJLUfd/e9Bds/S1KGcV3Bc94HnGhmx5OMqb7d3XtJyis2paUaNwHvJ6lvHpUSZMliuGdOJWiaVCyqqvXrHYPp0/ViHove7t7QIUgGPqQe8PEo3ZLPzKpJEtrr3P0HBds/CLwVeMNoK8Hu/riZ7SMZK513903p9k4z+3fgTJQgywQ9CiwAFgPUaNR0FPb3aGUyBvv26WbKWPR2qX2YyKFkZgZ8C3jc3b9SsP1CkpvyXldYd2xmRwEvpDfpHQkcB7SaWRXQ5O4704T7rcDPip1bCbJksQF4A0nLFPZs3RU2GslEK8hxePAXT4QOQTJafPSi0CFIBj6kVqRl5BySUohHzeyhdNtngH8h6ax1Z5JDc6+7f4TkfqnLzayfpC3cn6VJcQNwR5ocV5Ikx/9W7MR6BZWsHiIdeTM0oLZUMejXZcYoDA3q9ykW257fEToEyUCT9MqHu99Dujg3wm1jHP9/gP8zyvZ9wOnjObcS5HHI5XKXk7QNKab5EIRyqNWStFnZC1A/Q3PuReTwU9eoFpcxSFcURSZECfL41Obz+bXFDsjlckX3R2wjSR0yA/0aNR2Dnr0aYRyDeUcuDh2CZDS9SVMPY9DXq9comTglyFJUumreDBwP9AH0dmmaVAzqtNIfheoadbGIRf30mtAhSAaV1eoBLxOnBFlKqSUZN706/ZpK3fwVBQ0KiUP1NCXIsdixuT10CJJBXaM6LcnEKdORLIan6RnAtDr98YmBRk3HYfvzW0OHIBnNP2Jh6BAkg/4+tU6UiVOCLCUVTNPbDWofFot+JchRmLt0bugQJKPqGv3ti0HHzr2lD5IomNkykmEeC0natrW4+1fNbC3wx8Bwa5nPuPttZjYN+Fcglx7/MXdfZ2b1wH8AR5Ms+P3I3S8vdu6J/Lb3TpEb0ppDB3CY2Ai8BmDvjt2BQ5EsKqt16T4Gvfs0nS0WFRXqjhAD079TORkAPunuv0lHRD9gZnem+/7J3b804vg/BnD3k8xsPnC7mZ2R7vuSu/9XmkTfZWa/4+63j3XiA06Q8/n8lQf62Mk0RZL0ctBabGc+n1+Ty+U+CKptjcWguo1EoWtPR+gQJCPVi8ehY7sWccqFu28haTM7PCL6cWBJkYecANyVHr/dzNqBnLvfD/xXun2/mf0GWFrs3LpeJMNax9jeDC92s+gBaJg549BEJBPSrTZvURjYr3rJWKjEIg5DmqQXDTNbA6wp2NTi7i1jHNsMnArcRzJh7zIz+wCQJ1ll3gM8DFxkZt8DlpEMB1kG3F/wPE3A24CvFotNv+1SSnP6eSXpz4suX8XBXZP0YqGWfHEYHNTvVAzmLVvA1o1tocOQDNJkeNSEuJCZNQI3AR93971m9nXgC4Cnn78MfBi4mqQtbR54DvgVSZnG8PNUAdcD/+LuG4udUwmyZPVa0pv0+rp7AociWUyrVbeRGDTNnx06BMlooF+r/THo2L6b6pppocOQSWJm1STJ8XXu/gMAd99WsP/fgFvT7QPAJwr2/Qp4quDpWoCn3P2fS51XCbJktZd0Nblx1sywkUgm6mIRh8HBwdAhSEYa6iJyaFkyN/xbwOPu/pWC7YvS+mSAdwDr0+31gLn7PjN7IzDg7o+l+/4OmAn8jyznVoIsJaX1x4NAI8CuNvVtjUHDbL2RiUF/n26mjEVdY13oECQDLQ6UlXOA9wOPmtlD6bbPAJeY2WqSEotW4E/SffOBO8xsCNiUPhYzWwp8FtgA/CbJu/mau39zrBMrQZYsaoE9JD0FJRLd7Z2hQ5AMVNMfj6UrFoUOQTKoqFSnpXLh7veQDikb4bYxjm8Fjhtle9sYzzMmJciS1azhL+qb1MUiBvt71F83BjUNWpWMhbu6I8RAU0RlMihBllIGSGqPHyV9V6ZJenFomKkJbTHo3KU+yCKTadbi+aFDkDKgTEdelNYa15IkxK3p5nvSz28B6kD1XbHQpfs4qB1fPBYunh46BMng6YeeDh2ClAElyFKoNp/Prx2eTpgmzM0k02YeIplQo1ZHkZi9SCvIMejYtit0CJJRR0df6BAkA7OK0CFIGVCCLMXU8tJK8uuAeoBFy4tNeZSpon37ntAhiJSV3m51HIlBTYN6wMvEKUGWLDYAZ5FOo1Fbqjh07moPHYJkoHrJeHR36cbXGEyrrQkdgkwSM6sF7gZqSHLWG939CjP7Pi91q2gC2t19dTpU5JvAaenx17r7/xrxnLcAy919VbFzK0GWkvL5/JW5XO5ioBJgy9PPB45IsqhtbAgdgmRQW6/VrlgcfZzKlmJw5/efDB2CZHZMqQP6gPPdvStNfu8xs9vd/d3DB5jZl4Hhu53fCdS4+0np0JDHzOz6tP0bZnYx0JUlMiXIUlJai7yQpCE3VRrhGYXern2hQ5AM5i9ZEToEyai7W/dfxGD+USoDLBee9FYcTmir048X+y2mk/beBZw//BCgwcyqSBoL7CeZBIyZNQJ/AawBbih1biXIkkUtsBVYAuoxGQu9kYlD115dto/Fvi7dpBcDlQHGw8zWkCSsw1rcvWXEMZXAA8AK4Cp3v69g92uAbe7+VPr9jcBFwBaS+6Y+4e67031fAL4MdGeJTQmylHIu0EbSxeI0gBnzZoeMRzLq6cr0N0ACq67Rn2GRydS+dWfoECSjNBluKXHMILDazJqAm81slbuvT3dfAlxfcPiZwCCwmGTA2S/M7GfADGCFu3/CzJqzxKa/zFJKFUmbt1mklyn27thd9AEyNVRWV4cOQTLo0apkNJrmqK4/Bo2zZoYOQQ4Cd283s3XAhcD6tIziYuD0gsPeC/zE3fuB7Wb2SyAHzAFON7NWkrxmvpmtc/fzxjqfEmTJoo2kg8VJANV1uqkoBvOPWBg6BMlg3mK9mMdCbd7i0LlLLS7LhZnNA/rT5LgOuAD4Yrr7AmCDu7cVPOR54Hwz+y5JicXZwD+7+yPA19PnbAZuLZYcgxJkGd1wWUVr+rEBOJ60i8XcJWpLFYPB/sHQIUgGe3erFCYWxxw/J3QIksHOzctChyCTZxFwTVqHXAHc4O63pvvew8vLKwCuAr4NrAcM+HaaHI+bEuTy1wusHOdjqnhpQEhr2ubtA6R9kH3Ix3qcTCE19eoFGoPeHt30GovOTnWxiIGmvZaPNLk9dYx9l46yrYuk1Vux52wFivZABiXIZS9NbtdO5DnSNm9HkP68zJw7fRIiExGArg6tIMeir0+JVwym1amDj0ycEmTJopZ09Rigu7MnYCiSVfv29tAhSAYz5qoGORZJy1WZ6vZs3RU6BMmsOXQAY1KCLKX0klyueIykfYoS5EhMq1OJRQx696kPciw6O/RvFYOa+rrQIUgZUIIsRaUlGiuBBcPbGpsaA0YkWfXs0xuZGGjUdDwGdONrFFRiIZNBCbJksZSkybYDdOzsKH60TAmVVZWhQ5AMfGgodAiSUfU0vWTGoGev6vpl4vTbLlm0kcwzPwFgUHcIR6GvWyvIMdAVmXgMDurNTAzUB7l8mNky4FpgITBEMor6q2b2TmAtSQvaM909nx7/PuCvCp7iZOA0d3/IzC4BPkOy2LcZ+EN3H3PsohJkyWIDcBlJD0JmLdSo6Rio1VEc+vf36+avSHR3qgY5BkeuWsHzj20MHYZMjgHgk+7+GzObDjxgZneS9Dm+GPjXwoPd/TrgOgAzOwn4YZocVwFfBU5w951m9g8kec3asU6sBFlKSuuQlwPvB+jp0spkDKprNGo6BkqO47F3997QIUgG3R2dukm5TLj7FmBL+nWnmT0OLHH3O6Hk389LeGmQiKUfDWa2i6Rs9OliD1aCLOOxH6C/T+NWY1BZqRrkGDTOaggdgmS0s21b6BBEyoqZrQHWFGxqcfeWMY5tJhkacl/Gp383cBGAu/eb2Z8CjwL7gKeAjxZ7sBJkKSkdFHI66ahpq9CKVwz07xSHmlqt9MdC7cPiUF2jLhaxSJPhURPiQmbWCNwEfNzdS17KMbOzgG53X59+Xw38KUmCvRH438Cngb8b6zmUIEsWtcAOkmJ4rUxGomNnO9NqdZlxqpt25ByNb49If59Gg091FZWVWiAoI2lyexNwnbv/IOPD3sNL5RUAqwHc/Zn0OW8ALi/2BEqQJat1wAWgHpOx6OvuVceRCHR39oUOQTLau2N36BAkg8ZZM0KHIJPEkiLjbwGPu/tXMj6mgmTA2WsLNm8CTjCzee6+A3gj8Hix51GCLFk0A3NI+yDX1mtVMgabn1SroxjUnXxk6BAko1mL54cOQTLYu1N/+8rIOSQNAh41s4fSbZ8BakjKJOYBPzazh9z9zen+1wJt7v5iKxN332xmnwfuNrN+4Dng0mInVoIsWTSTDAsx0E16IpNpz46u0CGIlJXGWTNDhyCTxN3vIc09RnHzGI9ZB5w9yvZvAN/Iem4lyJLFAFBHuoIscdBqVxz69+sNZyw6tu8KHYJkkFxhF5kYJcgylnNJJugB3EPyszIXoLdbNZMx0It5HKprFoYOQTKaMVdDkmLQ26VR0zJxSpBlLFVAa8H300kn6anEIg5qdRSH2vra0CFIRnt3tIcOQTKoqFKnJZk4JchSVNoDuZmkufYRAFXV+rGJQd8+TTyMQUWlLgfHQm864zA4OBg6BCkDynSklFqSleSzgHqA3Vu2h4xHMqpvUqujGNTWK+mKhXrrxmGoTwmyTJwSZMnqBWAnQN2MxsChSBZaQRaZXOqDHAe9RpUPM6sF7iZp61YF3OjuV5jZO4G1JAPMznT3fHr8NOBfgRwwBHws7WqBmb0b+CzJVOAfu/unip1bCbJkdTowE2BAk6SioH8nkclV29gQOgTJQDXIZaUPON/du9KJeveY2e3AeuBikmS40B8DuPtJZjYfuN3MzgBmAf8InO7uO8zsGjN7g7vfNdaJlSBLFucCjSSt3rQyGYkZ83THfQxqavRnOBYNTdNDhyAZ1GiYVdlwdweGm8VXpx/u7o8DJIP2XuYE4K70sdvNrJ1kNdmBJ9MpegA/A35/+NjR6C+zZFEF/JxkWAjT58wKG41k0q8V5ChUK0GOhn6n4qAbX+NhZmuANQWbWty9ZcQxlcADwArgKne/r8hTPgxcZGbfA5aRXP1eBvwnsNLMmkla2L4dKHoDiP4ySxatwEaSGiB6u7WCHAMfGgodgmSwaeOO0gfJlKAa5DjMP2pJ6BAkozQZbilxzCCw2syagJvNbJW7rx/j8KtJ6pLzJOOkfwUMuPseM/tT4Psktcm/ApYXO68SZMmiFTiPZKKeWh1FYlqtLjPGoK5RfZBjoatnIuG4e7uZrQMuJKlBHu2YAeATw9+b2a+Ap9J9PwJ+lG5fAxRtd6IEWYoZnqa3ATiJ5M5Putv3hoxJMpq54ojQIUgGuhwcj56ufaFDkAw6d+0JHYJktqLoXjObB/SnyXEdcAHwxSLH1wPm7vvM7I0kq8ePpfvmp3XJs4A/A95V7NxKkKWYKqA1n89fmcvlPkA6alri4EMeOgTJoGuPki6RyaQe8GVlEXBNWodcAdzg7rea2TuA/w3MA35sZg+5+5uB+cAdZjYEbALeX/BcXzWzU9Kv/9bdnyx2YiXIklUnSd2O/vhEYsEydbGIwRMPPB06BMloSBPaojDY3x86BJkk7v4IcOoo228Gbh5leytw3BjPdcl4zq0EWUpKx00vJS2x6NVlxihs2qiJhyKTaWhACXIM6uZqUIhMnBJkyaKW5FLFPICa+rqw0UgmVdX69Y6BWofFo7K6OnQIkkH7VnWGkYnTK6hkks/nz8zlcj0Ai5YvDh2OZLDpqRdChyAZ1GssbjQqqnRDZQz69vWGDkHKgBJkyeLcXC73BOnPy95dnYHDkSwqKjVuNQZVNVqVjEVftxKvGDTO0n0yMnFKkCWL5SRjGZsBptWpD3IM6hrnhQ5BMmh74rnQIYiUFd2kJ5NBCbKU0gs0kUzSGwKonqYVrxjs3rIrdAiSQZ1KLKLRs7crdAiSwbRaDd8pF2ZWC9xNMsm3CrjR3a8ws38E3gbsB54BPpT2Sn4f8FcFT3EycJq7P1TwnLcAy919VbFzK0GWotIeyJcDK4E+AHf1143B/l5dDo6BXszjYRUWOgTJoGtPR+gQZPL0Aee7e5eZVQP3mNntwJ3Ap919wMy+CHwa+Gt3vw64DsDMTgJ+OCI5vhjI9E5XCbJk0UsySa8CYO8uTdKLwbTaWirVyWLKa9+6g9rGhtBhSAbzj1jMoHohT3nt23eHDkEmiScrcsMJbXX64e7+04LD7gX+YJSHXwJcP/yNmTUCfwGsAW4odW69ekoWvcAskkscah8WCa2ixKGiqlKr/ZEY6B8IHYJkUKkblKNhZmtIEtZhLe7eMuKYSuABkrnUV7n7fSOe5sPA90d5+ncDFxV8/wXgy0B3ltiU6UgWQ+nHfoCa+pqw0UgmTfPnhA5BMmjfrlrxWChBjkND0/TQIUhGaTLcUuKYQWC1mTUBN5vZKndfD2BmnwUGSMsqhpnZWUB3wXGrgRXu/gkza84SmxJkyeJukkl6RwJUqy1VFLY8oz7IMVB5RTw0gCIOTQvVwaccpTfhrQMuBNab2QeBtwJv8FfeHPUeCsorgFcBp5tZK0nuO9/M1rn7eWOdTwmyZNEKHA84QFW1Ll/FYM6SBaFDkAx2vrA1dAgiZUWtSMuHmc0D+tPkuA64APiimV0I/DXwOnfvHvGYCuCdwGuHt7n714Gvp/ubgVuLJcegBFmyM9Kb9Ha0aRUlBvvaNdAlBtPnNIUOQTJSF4s41E+vDx2CTJ5FwDVpHXIFcIO732pmT5PcF3WnmQHc6+4fSR/zWqDN3TdO5MRKkKWY1vTzucA2oB+gY5tqJmNQUaWV/hj4kNomxqJbfZCjoNeomCwuutfdHwFOHWX7iiKPWQecXWR/K1C0BzIoQZbiWtPPVcAvgdeDBhvEQkMN4qAOFiIiU48SZMmiNf1cCTCkPqBRqG+aEToEyUA3vcZjf09f6BAkg0F1G5FJoARZsmgFaoEdoBeJaOjfKQ66IhONxll60xmD6XNmhg5ByoASZMnqXGAeQOMs/fGJwb4OTTyMwZxF6lcdi849KluKQV1jXegQpAwoQZaxtBZ83Qs0k457VOIVB/XXjcOQbtKLhvtQ6BAkg30deiMjE6cEWcbSOvxFPp+/MpfLrQHqAZIWgzLV7e/RzV8x6O7MNPVUpoDeLv1bxaC2UW3eyoWZ1ZIMK6shyVlvdPcrzOz7wHHpYU1Au7uvTh/zaeCPgEHgz939jnT7u4HPktxP9WN3/1SxcytBlqzuBt4OUDVNPzYxGBzQzZQxUNIVD/1OxaFhpur6y0gfcL67d5lZNXCPmd3u7u8ePsDMvgx0pF+fQDJF70SSHnI/M7NjSZLofwROd/cdZnaNmb3B3e8a68TKdCSrpSTv4PQiEYlK9UGOgvpVx8N7VA4TA5VYlI90hPTwP2h1+vHiL6IlU0LeBZyfbroI+J679wHPpgNFzgQGgCfdfXjS2c+A3weUIMuEtZFcrqCqWm2pYlBdo3GrMajVDUXR2Le7I3QIkkHfPpWXxcLM1gBrCja1uHvLiGMqgQeAFcBV7n5fwe7XANvc/an0+yXAvQX729JtdwEr0zHTbSRXxIu+SCpBlqwWkE7Skzj09+0PHYJkoPHF8dCNr3HInV9ySJpMET+73luAlmLHuPsgsNrMmoCbzWyVu69Pd18CXF9w+Gh/UN3d95jZnwLfB4aAXwHLi51XCbKUlMvlLif5QZoJ0Nu1L2xAksm8I4uP8JSpobJSJRaxUA/4OOzY2hk6BMmsNvOR7t5uZuuAC4H1ZlYFXAycXnBYG7Cs4PulwOb08T8CfgQvrlwXrRdVgixFpcnxO4F2knddzFo8P2RIkpFWJuNQXaM/w7FQ2VIcptWqDLBcmNk8oD9NjuuAC4AvprsvADa4e1vBQ24B/t3MvkJyk94xwP3pc8139+1mNgv4M5La5THpL7OUUgs8ChxPmiBXVevHJgZDA+rZGoOmeZrOFoudm3aUPkiC6+5UDXIZWQRck9YhVwA3uPut6b738PLyCtz9t2Z2A/AYyY15H01LNAC+amanpF//rbs/WezEynQOI+lq8PD1jOZxPLQV2A+cDLDjuc2TGpccHOqOEIeGmaprjYX668ahrqEmdAgySdz9EeDUMfZdOsb2vwf+fpTtl4zn3EqQDy+1+Xx+LUAul1ub4fheYCWwAfhd0uL3OUsXHqTwZDLtatsaOgTJoLZel+1j8dz67aFDkAwWHDEvdAhSBpQgy5jSCXpr088Xk3SyoLJaK5MxWHb8UaFDkAw2P7MldAiSkVVoimgMFiyaHjoEKQNKkGU0rQVfn5vL5e4HVpGMZ5RINMzU5eAYbNm4KXQIklGl7r+IQlvrntAhSGZT94q0fttlNK0FX7eRlFgsJG2doilFcZi3eHboECSDxSuWlT5IpoQXHn82dAiSQeOM7K3DRMaiBFlK2UDSZ3AZyR2hnPMmNWGPwf3rit6gK1NIx/ZdoUOQDJYed2ToECSD3dv30terQUlxaAodwJiUIEsWlcBeYDrAgNqHRWHukjmhQ5AMnnlQb2Ri0dOl9mExqKhSrXi5MLNlwLUkV7GHSEZRf9XMZpNMxWsmuer9LnffU/C4I0hava119y+l294NfJYkp/mxu3+q2LmVIMuYCoaELAC6SFvE7djeHTIsyUitjkQm156tO0OHIBkcc/qxoUOQyTMAfNLdf2Nm04EHzOxO4FLgLne/0swuBy4H/rrgcf8E3D78jZnNAf4RON3dd5jZNWb2Bne/a6wTK0GWYmqBB4BzgSUkTbpZvLQxZEyS0eY21YrHYLYmU0ajfZtKYWLQ263yinLh7luALenXnWb2OEk+chFwXnrYNcA60gTZzN4ObAT2FTzVcuBJdx+e9vMz4PcBJchyYPL5/JpcLnc7cDRpgtzRrj8+MWj97fNMn6MpbVNdb3cP+3Z3hA5DMlj9+tUa4R6BB+96kJqGutBhSAZmS9YAawo2tbh7y+jHWjPJ0JD7gAVp8oy7bzGz+ekxDSSJ8huBvyx4+NPAyvQ52oC3A0Wb0CtBlmKa08/3pV8fC9Db0x8oHBmPxlnT8SEPHYaUUFlZyYx56jgSAx9y/U5FQMOs4pEmw6MmxIXMrBG4Cfi4u+81G/ON6ueBf3L3rsJj3H2Pmf0pSd3yEPArklXlMSlBlmKa0zrktwENJD9U9O8fLPogEcmua49Wj2NRUaUuFjHQ71R5MbNqkuT4Onf/Qbp5m5ktSlePFwHDYy7PAv7AzP6BpEXGkJn1uvvX3P1HwI/S51wDFE1mlCBLKbXAo8DxpB29B/qVIItMlopKzd+Jxe5tnaFDkAz6+1QGWC4sWQb+FvC4u3+lYNctwAeBK9PPPwRw99cUPHYt0OXuX0u/n+/u281sFvBnwLuKnVsJshQzQFJasQF4FekkvRmzVNsVg23P7yh9kARXP0M3vcZiaFCLAzGYu0wlFmXkHOD9wKNm9lC67TMkifENZvZHwPMkHbdK+aqZnZJ+/bfuXrTHphJkKeae9PN5JD2QKwCGBlWDF4P5S+eGDkEyaHtao6ZjMXdxU+gQJIP9vQOhQ5BJ4u73AGMVHL+hxGPXjvj+kvGcWwmylNILbAVmkfRDpnufLl/FYF9nT+gQJIP9PRo+EQuVWMRh0RGzQocgZUAJsgzrBVaO3JjP56/M5XI/AxYBDjA0qEl6MejcvTd0CJLBYL9Wu2KxX+OLo9DZoTed8agPHcCYlCAL8GIivHaM3T3AkyRJsm7Si0TjrOmhQ5AMdMd9PKprqkOHIBlsb9NAl3hM3RaXSpAli18CHyC5aU+N8iNRWVkROgTJQF0s4lFbV3SugEwR02r1RkYmTgmylJSuLi8HjgLUKD8S02r1Yh6D2YvnhQ5BMnp+w/OhQ5AMps+ZGToEyWxB6ADGpARZSkqHhawmHctY11ATNB7JZvd2XbqPQdce3fgVC3fdfxGDfR1doUOQSWJmtcDdQA1Jznqju19hZquBb5DMahgA/szd7zezOcCNwBnAd9z9slGe8xZgubuvKnZuJciSRS3JDXr7AXr29YWNRjIZGtCLeQxmzm0KHYJktOVprSDHoLZR5WVlpA84Px0dXQ3cY2a3A38LfN7dbzeztwD/QNKSthf4HLAq/XgZM7sYyPQOSgmyjGVkV4uHSVaR2dfRHSIeGac5i5pChyAZbH52W+gQJKP6phmhQ5AMptXqKme5cHfnpYS2Ov3w9GP4F3ImsDk9fh9JEr1i5HOZWSPwF8Aa4IZS51aCLKMa7mqRlle8DXgA6Afo7VYLnRgMqVY8ClXV+jMciwHdUBmF3i4t4sTCzNaQJKzDWty9ZcQxlSQ5yArgKne/z8w+DtxhZl8iGWL26gyn+wLwZSDTD4j+MksptUAncAQwCOpiEYu+HvVsjcGO5zaHDkEyWnzskaFDkAw6d6kHfCzSZLilxDGDwGozawJuNrNVJEn1J9z9JjN7F/At4IKxniOtWV7h7p8ws+YssSlBlixagQ3AuQA1unwVBfWrjsPcZYtChyAZ9ff1hw5BMujp2hc6BDkI3L3dzNYBFwIfBD6W7voP4JslHv4q4HQzayXJfeeb2Tp3P2+sByhBliw2AB8i7WLRMHPqTr6RlyhBjkOfSpZEJlVNQ13oEGSSmNk8oD9NjutIVom/SFJz/DpgHXA+8FSx53H3rwNfT5+zGbi1WHIMSpAlg7Qe+c9J63aSmnmZ6ro7VYcnMpkGB/WmMwbd7SqxKCOLgGvSOuQK4AZ3v9XM2oGvmlkVSVOBF+uY01XiGcA0M3s78CZ3f2y8J1aCLMWcC7SlX28BjgMYVPuwKCxZPj90CJLBI794NHQIktGcJVN3qIG8pG9fT+gQZJK4+yPAqaNsvwc4fYzHNJd4zlZGaQE3khJkKaaKpP4YYAdwEkBllXpMxqBrry7dx6BuRmPoECSj6bP0bxWDXZvUOlEmTgmylJS2eruXpN6H+sbasAFJJvMXNoQOQTJQrXg8dm3ZFToEyaCyujp0CFIGlCBLFu8kafE2DaC6Rr1AY7B3r9q8xaBrj8bixkL9deMw0Ke/fTJxSpAlKyftg1xZqRKLGHS2qw4vBrrpNR4z588OHYJksP3ZTaFDkDKgBFlK6QUeBY4H9gNseU6XGWPQNHd66BAkg8XLdeNXLB6/7/HQIUgGDbNnhg5ByoASZCmmNW3x9jNgO3AiwLzFTUGDkmwGB536BtXiTXVde/uYM0/14jGYOW82u9q2hg5DShjsH2DGvFmhw5BJYGZXA28Ftrv7qnTbKcA3gEaSRgLvc/e9ZvY+4K8KHn4ycJq7P3Qg51aCLMW0pp/bgAUkY6fp7uwLFY+MQ0VVBR37B0KHISWYGTu2qQ45Brs3b8cqVGIWg7079oQOQSbHd4CvAdcWbPsm8Jfu/nMz+zBJUvw5d78OuA7AzE4CfnigyTEoQZZsNpCUVwwBHH3cnLDRSCZPbdgZOgTJYNXJ80KHIBnV1J4cOgTJ4NF7fhs6BJkk7n53Ovmu0HHA3enXdwJ3AJ8bccwlwPUTObcSZMnqQpIpNjzf2hE4FMmiwix0CJJB+16t8sei9XHd/BWDaXU1oUOQjMxsDQVT8IAWd28p8bD1wO8BPyTpsrVslGPeDVw0kdiUIEtRaQ/kd5JM0lsIqF4yEo8/+HzoECSDWfp9ikZllVpcxsCH1BkmFmkyXCohHunDwL+Y2d8At5A2EBhmZmcB3e6+fiKxKUGWUmpJulhsAE4DGBzUqOkYNK9cFDoEyaC2Vn+GYzF/2dzQIUgGT+3YHToEOYjcfQPwJgAzOxb43RGHvIcJlleAEmTJZgPwIcAAdu9Us/wYbLjvsdAhSAZnXXh66BAkoyfzT4QOQeSwZ2bz3X27mVUA/5Oko8XwvgqSq96vneh5lCBLMb3ASpIEuY60BnnREvXXjcHzTfp3ikFlpWrFY1FdMy10CJJBhUphyoaZXQ+cB8w1szbgCqDRzD6aHvID4NsFD3kt0ObuGyd6biXIMqaCHsgnAHNIpulhuvlLZNLsVIu3aPR1azplDOYuWxg6BJkk7n7JGLu+Osbx64CzJ+PcSpCllKp8Pn9mLpfbTrKKzC6VWERhwRGa0BaDCo1uj8YJrzoxdAiSwa4t7aFDkDKgBFlKaU07WTgwANDZrlWUGHTs3Bs6BMmgepqmHcbCKnT1LAb7OnRVRiZOCbKU0kpSh9wHqLArIpXV+ueKQdP8GaFDkIz2dejqWQwqq5XayMTpp0iyWEpyg94AqM1bLGpqdUNRDPr7NCgkFj1dvaFDkAz69+8vfZBICUqQpZReoA3oAd4C0DC9NmhAks1vf/lo6BAkg1PfcGroECSjugZNaIvBC09p4qFMnBJkKaqgk8WLevb1hQpHxqG+SZfuY1BfrxrkWGx8blfoECSDgX5dlSkXZlYL3A3UkOSsN7r7FWb2feC49LAmoN3dV5tZNfBNksFmVcC17v6/0uf6CbAo3f4L4KPuPjjWuZUgSxYbgXOBQYCB/jF/nmQK0Q1FcdjXpcvBsWiYWR86BMlgy9PPhw5BJk8fcL67d6XJ7z1mdru7v3v4ADP7MtCRfvtOoMbdTzKzeuAxM7ve3VuBd7n7Xkt61d6YHvu9sU6sBFlKyufza3K53P2kN+nt2rIzcESSRXd7Z+gQJIPVp8wMHYJkNDiof6sYaBGnfLi7A8NtSarTDx/enya77wLOH34I0GBmVSStafcDe9PnGm7tVAVMK3ye0ShBjkdvLpdbCzQfypPmcrkW4AhgFekkvfrpDYcyBDlAg/t1mTEG23fqxTwWNTXqWR2DSvUWj4aZrQHWFGxqcfeWEcdUAg8AK4Cr3P2+gt2vAba5+1Pp9zcCFwFbgHrgE+6+u+C57gDOBG5Pjx2TEuRI5PP5KwHSJPlQWg5MJ7lZrxZ06T4WmvoVh927VdMfi0WL6kKHIBlUqcVlNNJkuKXEMYPAajNrAm42s1Xuvj7dfQlwfcHhZ5KUgy4GZgG/MLOfDY+edvc3p3XN15GsOt851nmVIMuY0gEhbSSjpgEMYGhAbd5isPyUY0KHIBnMbFI7vljs2KE3MzE4cvms0CHIQeDu7Wa2DrgQWJ+WUVwMnF5w2HuBn7h7P7DdzH4J5EjupRp+nl4zu4VkpVkJshyQWpL6nYUk9TpDADtf2BIyJslo95btoUOQDN74Ro0Ej8Ujv+0PHYJksGOHBrrEo3i3JTObB/SnyXEdcAHwxXT3BcAGd28reMjzwPlm9l2SEouzgX82s0ZgurtvSRPrt5B0shiTEmQpZSNJe5Vq0hrk+UctCRqQZLOrTQlyDHQvpcjkmjFD/arLyCLgmrQOuQK4wd1vTfe9h5eXVwBcBXwbWE9y1fvb7v6ImS0AbjGzGpKGA/8JfKPYiZUgy2jOLbghcAPQScHbvPlL5oSJSsZl9oKm0CFIBr29RW+klimkcbp6Vsfglz9dX/ogmRo+vLrobnd/BBh1mpK7XzrKti6S9m0jt28DzhhPaEqQZTRV+Xx+bTogZD+wi6TEYglAXYNeJGLw3JMaahCDoZWzQ4cgGW3b0lX6IAnOh/SmUyZOCbIUU5X2QG4hucwBwKO/3BAwJMmqv08DKGKwe/fS0CFIRouXTg8dgmSw5Xn9O8nEKUGWLE4hWUmuAJhWp/quGFRO0693DB68ZwPnvGlV6DAkg452vemMwYoTlvDr/3wkdBiSyYrQAYxJr6BSTGv6uQrYDRwFUF2jtlQx6NvTUfogCe4N7zi99EEyJUyfqfKyGNzzk/VayJEJU4IsxbSmvZAf5aUxjlRoSlEUZi+aFzoEyWBatQbvxOKZZ9RyJAa19RroIhOnBFlKqQWWkrR6A6Bzl1YmY9A4q3h/SREZn4F+jQWPQU+X+iCXCzO7GngrsN3dV6Xb1gJ/DOxID/uMu9+W7jsZ+FeSzltDwBnpYJDTge8AdcBtwMfcvejdnEqQpZheYCXJNL0B4PUAdTMaQsYkGfXs04tEDKY3VjCjQXfdx6BtUw0nHt8YOgwpYdfWPex8YWvoMGRyfAf4GnDtiO3/5O5fKtyQDgD5LvB+d3/YzOYAw9N9vg6sAe4lSZAvBG4vdmIlyDKaVoB8Pn9lWmLxSWAO6ajppSsWjf1ImTIe++/HQocgGeTzascXiyOOmsnWHQOhw5ASTsodCbkjQ4chk8Dd7zaz5oyHvwl4xN0fTh+7C8DMFgEz3P2/0++vBd6OEmQ5AK0AaXJcCzwLNKZfs3LlzGCBSXY9+44OHYJksPU5TTyMRU2tXjJj0NujkeCxMJu3hmRld1iLu7dkeOhlZvYBIA980t33AMcCbmZ3APOA77n7P5DMcCgcR92WbitKv+0yqjQ5Xp5+Wwm8WHy3bbtaHcVg727dUBSD+Uvnhg5BMpo9Rzd/xUH/TrFIk+EsCXGhrwNfADz9/GXgwyQ57bkkE/O6gbvM7AFg72inLnUSJcgyltp0SMjlwEWk5RUATU1qdRSDpjm6SS8GC5fo3ykWvT26SS8G/QP6d4rH+NvGpmOjATCzfwNuTb9tA37u7jvTfbcBp5HUJRdOZFoKbC51HiXIUlRah7wceBfJHaE89cSesEFJJouWqRQmBl2duiITi75e1R/HoGtvT+gQJLPx3/RqZovcfUv67TuA9enXdwCfMrN6kuFmryO5mW+LmXWa2dnAfcAHgP9d6jxKkKWodAV5M2lyDLBPf3yi8EKPEq8YVFVVhg5BMurZ1xs6BMlgxmx1GikXZnY9cB4w18zagCuA88xsNUmZRCvwJwDuvsfMvgL8Ot13m7v/OH2qP+WlNm+3U+IGPVCCLKWtJHkn9jSwGsCHhoodL1PEvEWzQocgGezcqlrxWDTNUzlMDOobVAZYLtz9klE2f6vI8d8lKakYuT0PrBrPuZUgSylLSZLkJpKb9Zg9Xy8SMejepzu5Y1DXoJG4sehsV2/xGHS2h45Aspu6cxWUIMtohgeEANxDUvh+PHAqwL6uvkBhyXg0zqgNHYJkUF2nP8Ox6Nil1f4Y9PWqvEwmTn+Z5RXSG/PWpvXHzSQlFtOH909vUgudGOzc3B46BMlAL+bxqKxUvXgM1MFHJoMSZCmmlqQAvpeCVm8+pLG4Maip16X7GOjfKR7t2ztChyAZ7Nmhf6d4zA8dwJiUIEsp55KUWQAMAFRP0ypKDHq6dMd9DGqVIEfj1W9YEToEyeChX5dscStSkhJkKaWNZAV5BmlH7+2b9O48Bt2duqEoBs3HTt0VFHm5xx7dEToEyWBQg0LKhpldDbwV2O7uq9Jt3weOSw9pAtrdfXW672TgX0lyliGSqXrVwC8KnnYp8F13/3ixcytBllI2kNyw9whwMsDQoP74xKC2XjfpxcDMSh8kU0JNrdqHxWBoUK1Iy8h3gK8B1w5vcPd3D39tZl8GOtKvq0havL3f3R82szlAv7v3krapTY97APhBqRMrQZax9AIr8/n8pblcroWCFWSrqAgamGTT3Tna+HmZarbqikw0FizWzV8x6O3Wja/lwt3vNrPm0fZZsrrwLuD8dNObgEfc/eH0sbtGecwxJIXPvxi5byQlyDKq4U4W6bcbgQuH96lvaxwGB6aXPkhEMnMtTIpMKjNbA6wp2NTi7i0ZH/4aYJu7P5V+fyzgZnYHMA/4nrv/w4jHXAJ8391LdhtQgiwlpcnyOcBs0CpKLLY8uzV0CJLBypMXhw5BMuroUA/4GMyer1HTsUiT4awJ8UiXANcXfF9F0ljgDKAbuMvMHnD3uwqOeQ/w/ixPrgRZijk3La84AngtyQxztrbpknAM6qdP3QlF8pKaGpUsxWJz687QIUgGszQSvOyl9cYXA6cXbG4Dfu7uO9NjbgNOA+5Kvz8FqHL3B7KcQwmyFFNFUl6xmnTMNEBvj+q7YtDduS90CJLB862qFY+FesDHQTe+HhYuADa4e1vBtjuAT5lZPcmAs9cB/1Swf+SKc1FKkKWY1vSzA+3AXICjjp0XKBwZj6fV6khkUu3r6AodgmRQP13TXsuFmV0PnAfMNbM24Ap3/xZJqcTLkl1332NmXwF+TZK33ObuPy445F3AW7KeWwny5OstuLmtlOaDGMdkGG7x9jBJz8EKgMFBraLEQAMo4mAVWu2KxfTZunQfg6XNs0KHIJPE3S8ZY/ulY2z/Lkmrt9H2LR/PuZUgT7J8Pn9l1mPHkUgHkd6c9wRwFEmjbQA6OzShLQYzZteHDkEyeOTu9aFDkIwamtQZJgaLFx0ZOgQpA0qQZVS5XO5ykssaFcDzJKvdlQD79+vSfQzqqzUSPAZKuuLxO7+/KnQIksH2Hf2hQ5DMpu7wHSXIMpbafD5/YZooX0AyJGQxwOKluswYg/p6JcgxaN0wLXQIktHeTjVCjsH2bbpBOR5NoQMYkxJkeZk0Ia4FmtOvl/PSFD1lXBFpa+uiqkotxKa6oaEhqmum7iqKvGTjU7vVySICRx83R/fKyIQpQZaRavP5/No0OV5J0iplJmkHC4BdO7tDxSbjsPqUmaFDkAx+fcf20CFIRvXTVdcfgzmztJYjE6cEWUaV3qB3OfABYDowQLqC/OSDG0OGJhmdd84poUOQDKbP0R33sdjfqx7wMbj/Xr3pjMVH3jy/5DFm9gngf5C0bnsU+BBJZ61vAI0kLWnf5+57zWwOcCPJNL3vuPtlBxqbEmQZVUGpRTXJCvKLPcOWr2oOFJWMx/Nb1T4sBrWN6tkai92bNUkvBrs2qVY8HsUTZDNbAvw5cIK795jZDSQ9kD8K/KW7/9zMPgz8FfA5oDf9vCr9OGBKkGWkc9P2c4vT73eTJMdV6QdPPPBkmMhkXOYuODV0CJKBJh6KTK4FzYtLHyQxqQLqzKwfqAc2k6wg353uv5Nkit7n3H0fcI+ZrZiMk4oUqsrn82vhxVVkSG4z3U/aj+VVb14dIi4Zp7pa1eHFYMERC0KHIBnVN9aGDkEyeO7xF0KHIBmZLVsDrCnY1OLuLcPfuPsmM/sSSbvZHuCn7v5TM1sP/B7wQ+CdwLLJjk0JsmRxPXAZyTs3mpp0x30Mdu7oCx2CZNDXo7rWWMya2xg6BMmgp0tXZWKRJsMtY+03s1nARSQDy9qB/zCzPwQ+DPyLmf0NcAvJIt6kUoIsxdQCRwC/T5IcG8DGpztCxiQZzV3QEDoEyWDGbCVdsaip0UtmDGoaVNdfRi4AnnX3HQBm9gPg1elI6Tel244FfneyT6zfdikqHRbSAryDpBcye3bsDRuUZDJ7rlpSxaB//0DoECSjZ5/YGjoEyWDe0tKdESQazwNnm1k9SYnFG4C8mc139+1mVgH8T5KOFpOqHBLk3vSmskOh+RCdZ8pI65AXkbRSUVuEiJj+taLQsVNvOGMxY7bGgsdg15bdoUOQzIrfUOnu95nZjcBvSNrNPkhSkvERM/toetgPgG8PP8bMWkkHnJnZ24E3uftj440s+gQ5n89feajOdQgT8VB6efncx+b08y+BFcDRADV1Go0bA9cgqSjs2rQtdAiSUeculZfFYH9vb+gQZBK5+xXAFSM2fzX9GO345sk4b/QJskyedDjIhQWbmknese0HKtIP3ckdiVp1sYjCtFr9PsXiiJVHhA5BMnj6IbUilYlTgiyl3EOysvxe0kl6rqXJKFhF6Agki/4+dbGIxb7OntAhSAazFs4LHYKUASXIUswAySryBmAnSVcL6hpUYhGDrs7+0CFIBu6a+hWL6bPUGSYGlVW6eiYTpwRZirkHOJekxKJpeGNVlZYmY1Bbq1/vGEyf0xQ6BMlowSLdpBeDTf2DoUOQMqBXUCllVvrZ0g8WL1aPyRjs69aLRAy6dquLRSy2bekMHYJksK1VN77GY+pOElWCLKU8CpwCvFh43NOjS8Ix2PS8Xsxj0LRgTugQJKPpM3VDZQwGB7U4UC7M7GrgrcB2d1+VbjuFpO9xI9AKvM/d95rZHOBG4AzgO+5+2SjPdwuwfPi5ilGCLK+Q9j6u5aX645OALSQ/jAwO6ia9GFRVqxQmBnt3tYcOQTLatW1G6BAkg1kLZocOQSbPd4CvAdcWbPsm8Jfu/nMz+zDwV8DnSBoKfA5YlX68jJldDHRlPbESZBlNbT6fX5vL5damrd8uAJaSlljs2NEdNjqRMrKweVHoECSjvh51HIlBp8qWyoa7321mzSM2HwfcnX59J3AH8Dl33wfcY2YrRj6PmTUCfwGsAW7Icm4lyIeH4WmDzQf4+I0kq8hDAPX11ZMTlRxU3d3qYhGD3ds09SsWDTMbQ4cgGVRWK7WJhZmtIUlah7W4e0uJh60Hfg/4IfBOYFmGU30B+DKQeYVPP0WHgeFpgwc6CTCfz6/J5XKnAHMAKit16T4GHbv2hQ5BMqiepraJsaitVw1yDPq6NUkvFmkyXCohHunDwL+Y2d8At5B02hqTma0GVrj7J0ZZjR6TEmQZqbXwm7Qe+TySep5KgFNP1ApyDPr6VC8pMpn27tKNrzGo0RuZsubuG4A3AZjZscDvlnjIq4DTzayVJO+db2br3P28Yg9SgiwjtRZ8fS5JeQUkybED/OcvVN8Vg6XL1LM1Bvfdng8dgmRUVaPV/hg0zVdnmHJmZvPdfbuZVQD/k6SjxZjc/evA19PHNgO3lkqOQQmyFFeVlldcDpwN1ADMmVcfNirJpKdXrY5iMO/IxaFDkIz6+1TXH4Oa+prQIcgkMbPrSa5izzWzNuAKoNHMPpoe8gPg2wXHtwIzgGlm9nbgTe7+2IGcWwmyZHEO8BiQA5im9mFR2N+vftUx2PHc5tAhSEbzj1oSOgTJYH+vuo2UC3e/ZIxdXx3j+OYSz9fKKC3gRqMEWYppTVePFwPzSH9eGho05z4G3qV+1TF447tfzf3rnggdhmSwryNzC1UJbKBPSbJMjBJkKaaVZGDIAMklCwMNConF3r16gYjBr+98MHQIktHS45pDhyAZPP/bZ0KHIGVACbKMpjn93AusBB4GTiS9Sa+jQ3V4Mdj6QnvoECSDmvq60CFIRjte2BY6BBE5RJQgy2iaIemfnMvlfkbSyWKAdFDIwIBqW2PQ1a7LwTFomKluI7HY16E2bzGobWwIHYKUASXIUkoVcASwg7SLxby5ukM4BlvnzWR6k1Ynp7qGxmkqW4pE/q6HqVPyNeVVVFVQVa1+/eXAzJYB1wILSRbpWtz9q2Y2G/g+yYJeK/Aud99jZnOAG4EzgO+4+2UHem4lyFJKK8kP5hKSemT69uvFPAZKjuOwbbP6iseipqGOIdcVtKluoKef/T19ocOQyTEAfNLdf2Nm04EHzOxO4FLgLne/0swuBy4H/pqkNPRzJJ0qMnWrGIsSZCllA3AS8ChwMujmr1jU1mkFJQZ7dqgUJhY+pMWBGPTs1e9UuXD3LcCW9OtOM3ucZMHuIpL+yADXAOuAv3b3fcA9ZrZioudWgixFpXXIK4HzgWqAxYs0xjMGO3bpZsoY9O/Xv1Ms9vf0hg5BMqhp0NWzcpROwTsVuA9YkCbPuPsWM5s/2edTgixZLCAprxgCmD3TwkYjmbR36N8pBluefiF0CJLRRR88J3QIksHtN2h8eyzMbA2wpmBTi7u3jHJcI3AT8HF332t28F/flCBLUemgkNlAPekKcocGUERhX9dA6BAkgzlLFoQOQTLatLk7dAiSQeOsmaFDkIzSZPgVCXEhM6smSY6vc/cfpJu3mdmidPV4EbB9smNTgiyjShPjWuB0oAmoIF1Brq3RymQM+vqUIMdg5twZoUOQjJqa1MEnBrUNKgMsF5YsFX8LeNzdv1Kw6xbgg8CV6ecfTva5lSDLaAaAlfl8/tI0UV4AHE2SJPPgg+0BQ5OsKqoqQocgGezetid0CJLRGWdrtT8GW55R2VI8jix1wDnA+4FHzeyhdNtnSBLjG8zsj4DngXcOP8DMWkmm/04zs7cDb3L3x8YbmRJkGc09I77fDbQDswAWL9VgA5HJ8uBdk35lUA6S7p7jQocgGcxdtjB0CDJJ3P0eYKzL1m8Y4zHNk3FuJcgy0vB46Q25XG4tSYkFQB3pD+nc2ZVhIpNxuf++HaFDkAxmLpgTOgTJaPnS0BFIFnfu6ggdgpQBJcjyMmlbt7X5fP5KgFwu9xPgTJKb9ACYM1ON8mPw1jfPDh2CZPDQhqbQIUhG//x3vwgdgmSw5Ljm0CFIGVCCLKNKa4/PA44FBgv3LZ3ZGSIkGaeHn9ed3DFoaNBNr7Gom9EYOgTJYM+23aFDkMxK1iAHowRZxlKbz+cvTBPli4G5wzvueUw1yDFobAgdgWTx/HN6wxmLxUcvCR2CZPDso0+HDkHKgBJkGVOaHL8DqAQ6gJkANWrzFoUt2zShLQZV1arpj8XgoMrLYqA+yDIZlCDLaM4F2oBW4HGSNm/HAQ7QtU8vEjFYvLA6dAiSwe7dPaFDkIy2PNMWOgTJYH9PX+gQZJKY2dXAW4Ht7r6qYPv/A1xG0pb2x+7+qXQU9ePAE+lh97r7R9Lj/x74ADDL3TPVSilBltFUkSTHABuAk9KvDaC6SivIMdjYqsQrBosWqRYmFpvm68bXGGx/dlPoEGTyfAf4GnDt8AYzez1wEXCyu/eZ2fyC459x99WjPM+P0ud5KuuJlSBLMc3psJCLgT6SVm8smKsBFHHQ1K8YbN+u1a5Y7N6s1okxOOLEo0OHIJPE3e9OV4YL/Slwpbv3pceUbCbv7vcCJIP5slGCLMU0p3XIu4HjSVeQu3uDxiQZVVdrpT8Gba27QocgGc2cpxVkkSngWOA1adlEL/CX7v7rdN9RZvYgsBf4n+5+wL0ZlSDLWHqB6cBykjGOJ5D2Ql4ydyBgWJLVrx4cLH2QBDdn4YzQIUhG+zr2hQ5BMvAh3ScTCzNbA6wp2NTi7i0lHlZFMtn3bOAMkpHTy4EtwBHuvsvMTgf+r5md6O57DyQ2JcgyqnRgyAXAZuDjQAPpCvKzW3TXfQy6tdQfhf4+vZGJxcy5ejMTg6OOmVv6IJkS0mS4VEI8UhvwA3d34H4zGwLmuvsOknJQ3P0BM3uGZLU5fyCxKUGW0bSmn9vy+fzaXC73FuAIYA7oJr1YLF5cX/ogCa5mmn6fYvGftz0ZOgTJoH2uBrrE44C6Lf1f4HxgnZkdC0wDdprZPGC3uw+mK8rHABsPNDIlyDKa1vTzhlwu9wSwjOSnuAqgUgvIUVg8X4lXLK771qOhQ5AMjjt9eegQJKPH7s/crECCOrXoXjO7nmSq71wzawOuAK4Grjaz9cB+4IPu7mb2WuBvzWyAZALwR9x9d/o8/wC8F6hPn+eb7r622LmVIEspPwcuJOmFDMCWbapBjsHJxypBjsH1329jxlwNNojBEw8c8GKUHEL7Og6o5FSmIHe/ZIxdfzjKsTcBN43xPJ8CPjWecytBlmJqeenyhNaNI7Npp/7JYrCzbVvoECSjOUvmlz5Ighvo1xRRmTglyDKqtL3b24BHgf8P+BBJRwuOWqYfmxjs2OOhQ5AMBvbrikwsero0fCcGDTOnhw5ByoAyHRlLLUlyvIEkMX4WOBpgn14jojC3yfRvFYE5S+czNKC2VDHY+cIWqmqmhQ5DSqhrbNAqskyYEmQZTS+wkqT4/QKSBLkJqABYvnB/sMBknJpCByCl3LynM3QIktH0ObNChyAZdO/tCh2ClAElyPIKaQ/ktSSJMiRdLBpJ+yCvbz2gtixyiDVN1016Mejv0xvOaGj1OAonvOqE0CFIGVCCLGPpJVk53gzUAS8WtO7eo0tXMaiv1Yt5DFasXhE6BMmoY5dW+2Ow5dntoUOQzJqK7jWzZcC1wEJgiGTS3lfN7PvAcQVP0u7uq9PHnAz8KzAjfcwZ7j7uyVlKkGVU6Sry5cA5JKUVA6Q/L12dWvGKwTGnq641Bjd+59nQIUhGNQ21oUOQDPr7tIhTRgaAT7r7b8xsOvCAmd3p7u8ePsDMvgx0pF9XAd8F3u/uD5vZHOCAfiCUIMvLpElxLbCYZPX4WGAJyQqyATz1cGuo8GQcPv+f7aFDkAwufM+rQocgGZ13cnfoECSDYwfXhw5BJom7bwG2pF93mtnjJDnJYwBmZsC7SCbrAbwJeMTdH04fs+tAz60EWUaqTcdL/wT4PZLa4yHSG/QA+vaN+0qFBHDe288MHYJk8KufPRE6BMnoVSccFToEyaC9fmHoECSjueM41syaSUbv3Vew+TXANncfHp14LOBmdgcwD/ieu//DgcSmBFmAl60cN6df3wvMAuYAR1CQIFfrRpUobHxyZ+gQJIOzzj82dAiSUUWFysti0DmkPsixMLM1wJqCTS3u3jLKcY0kU/I+7u6FoxIvAa4v+L4KOBc4A+gG7jKzB9z9rvHGpgRZhg2vHK8t+HoxSXJcT/JGrxqgc9eecFFKZtPqakKHIBn4kKazxeKU/vtDhyAZPF11SugQJKM0GX5FQlzIzKpJkuPr3P0HBdurgIuB0wsObwN+7u4702NuA04DlCDLhPUCK9NVZICjgEXA4PABJ55zUoi4ZJy6OjQlJAYdHX2hQ5CM2hpXhg5BMujdr6uc5SKtMf4W8Li7f2XE7guADe7eVrDtDuBTZlZPMsvhdcA/Hci5lSDLyxR0r1hJMkUPYAHw4jWrgf7B0R4qU8zCZU2hQ5AMnn9KLaliMfTGhtAhSAYn9f536BAkswtKHXAO8H7gUTN7KN32GXe/DXgPLy+vwN33mNlXgF+TNBe4zd1/fCCRKUE+zBXWHg9vS5PklnT7a0iS4xenTmx9btshjlIOxDMPq2drDAb7B0KHIBnNG1Rtawz2NahsKRYzS+x393soyD9G7Lt0jO3fJWn1NiFKkKWw9rjQRpIEGZIb9AaBSoAFy/THJwbTjlkSOgTJ4NiVTaFDkIxq+n8ZOgTJ4K59rw4dgmT0ztABFKEEWV4mXVFenn4cT9IPGdLkGOD5Dc8HiEzGq3Kafr1j8ObXzwgdgmT0eOXq0CFIBg3TVAYYj4rShwSiV1AZ1puuIr8N2EPS4m0r0AMcXXjgqlfrRpUYPP/U1tAhSAY791aWPkimhOZZ6gEfg/2D+p2KR3XoAMakBFmApO4YIJfLNefz+UvTleQLSEqE9gMv3hZ89um6USUGrY9r1HQMnnpa3UZiMb1+TugQJIOf3rkjdAiS0etPqgsdwpiUIMtIG9KV5N8hGRKyjILkGKCja9R6eZli5iyaFToEyeDRe58qfZBMCb/32qNLHyTBnXDSeOaziYxOCbK8TEGbNyMprdhLkiC/eJPerTc9Hi5AyWzJco1bjcHgoOolY9HdP3UvB8tL+vZ76BBkkpjZMuBaYCEwRDJp76tm9gXgonTbduBSd9+cPubTwB+R5C1/7u53pNv/HvgAMMvdG0udWwmyjKY2n8+fWVBmsZqCbizzl+rdeQyOOa4pdAiSwZ4ds0OHIBntH5y6NxTJS+rq9O9URgaAT7r7b8xsOvCAmd0J/KO7fw7AzP4c+BvgI2Z2Akl/5BNJmgz8zMyOdfdB4EfA14BMl+2UIEsxy0navS2jYFBIRaX++MTgyQ0aCR6DeYubQocgGW3ZrZfMGFRWaAW5XLj7FmBL+nWnmT0OLHH//9u78yg7qzLf498nSSWVqTJPlalISEIAIUAxKEECIoPYgLYotI3SejsO0IrdLaJeNa3XtWhxWLa2XGPrRVsBaRUBAZkUEJsgJzZggISEUJkqZCDzPD33j/2e5K2Tc6reqlRq11v1+6yVVVXv2afOb61zqurJPns/219KDetPOBQEwqzyne6+G3jNzJYAZwBPu/s8gHA4X8v00y5NJLPGdcmXjYSjp2cQllwcAOipAjkXdm7XEcZ58OrzK1seJJ3ClCmnxY4gGezYqQ3K+ZG944iZ1QGnAM8kXxeXTGwGzkuGjQXmpe62MrnWaiqQpVQ1MC7ZqFdH6GCxgVAc9wK9dZ8XD9/9fOwIkkHvvn1iR5CMeldpg3IeNCxTZ5i8MBs4G5idujTX3ecePs4GAL8EbnD3LQDu/nng88ma4+uBL1H+1L02vaWgAlnK6ZWcrvcoYQ3PBODgX/Ft23Q0bh4cc/zE2BEkgxf/e0HsCJLR9HEqvPJg/wG1Is2LpBg+rCBOM7MqQnH8M3f/VZkhtwP3EwrklYRloUXjCO+Gt5oKZCmnIfm4lLD2eDvQl+TIm507tes+D2oGVbc8SKIbNFK9dfOih+mt+zz4w+902mteXP+O5idyLCwY/iHwsrt/M3V9irsXN9tdBixMPr8XuN3MvkmY4JsC/Kkt2VQgSzkNAIVCYXZ9ff0iYCTJ+mOAPn10SlEe9NLbwbkwum5k7AiS0ZI1mpnMgyuv7LyHT0irnQ1cA/zFzJ5Lrn0O+LCZTSPUJsuAjwK4+4tmdhfwEqEDxnVJBwvM7GvA3wD9zGwl8B/uPqfSA6tAloNSG/QW1tfXP0M4ZnoUqR7IAMfWqRdoHix+bU/sCJJB7bgaFr+oY8HzYNUaLS/Lg1XApo3apJwH7zmz+f90uvtTlF9X/EAz9/kq8NUy128EbsyaTQWypFUDDclhIZMI63ZeAd4FDCEpkjdsVgudPKjqrW4jefDG+l2MGq9eyHlQN1Z/MvNgy3YYOljPlRwZvYKkrEKhMBugvr7+PsJM8iCKBfJGzaLkwYvzV8SOIBkMGKK37fNi2AB1HMmDn/7wxdgRJKPrLpkRO0JFKpCl1MykxRvAWYT1P/1INugB/PmPSyLEktY66cxJsSNIBk/e06b9IxJBYcqbY0eQDE5+87TYEaQLUIEspYot3m4ClhNeI6cQullUAQwcMrCZu0tnsX+/lsLkwVsurY8dQTKqGagNynmwebPWH8uRU4EspRqSj9WENm9jgCWE0/QAWPHyax0eSlqvRm/d58LmN7bGjiAZTZ86IXYEyWDR9r2xI0gXoAK5+9qVOi0vbWHxeqFQuDaZSb6OVBeLc991ZkdlFOnyjp0yKHYEyeiVVzUzmQfbt+hAl/wY3OytZlYNPEk4rKwX8At3/5KZ3QL8FeG031eBv3P3TWZ2BocOHjFgjrvfnXyv04DbCOc6PAB80t0rvtWqArmbKhQKNwOk1hsfdj0pjmcRXkwHW72tXrG5I6NKG1X11o93HvTvVxM7gmQ0bFjv2BEkg3Vr9Dx1IbuB8919W3Ki3lNm9iDwCPBZd99nZv8KfBb4DLAAqE+ujwGeN7P73H0fcCvhWOt5hAL5YuDBSg+sv6BSyS7gOOBx4DRCcXwAwHroAIo8OOHEwbEjSAZLlmyLHUEyevPpA2JHkAxeWai/UV1FMsNb/CVZlfxzd384NWwe8J5k/I7U9WrAAZJiucbdn06+/glwBSqQpbWSXsg3Af8IDE/f5ge0+SsP5j3VpuPnpYOtb1wXO4Jk9JWZa2JHkAx6nff22BEkIzObTZjVLZrr7nNLxvQE5gPHAv/u7s+UfJsPAT9PjT8T+BEwEbgmmU0eC6xM3WclMLa5bCqQpXiCXjWHr0eGsGmvmtDqrSfA1k3bOyqaHIFtG7X5Kw92b9d6ybxY0O8tsSNIBgc2xU4gWSXF8NwWxuwHZpjZYOBuMzvR3RcAmNnnCUdK/yw1/hngBDObDvw4WZJR7m2FZmf7VCALQHXS2u3RkjXJfwXcB9QS+iD3BajqraOm82DPTm0oyoNBI3SKXl5MOfBS7AiSwRMr1DoxN1rRWjzZhPc4Ye3wAjP7IPBO4G3lNtu5+8tmth04kTBjPC518zjCacEVqUCWtF6FQmFO8Yv6+vpa4L2EHsgHe4YtW6CDQvKgT/++sSNIBrt2aAY5LzZU18aOIBmoX3XXYWYjgL1JcdwXuAD4VzO7mLAp79z0umMzOwZYkSyrmAhMAxrcfb2ZbTWzs4BngA8A32nusVUgS0WFQmF2fX39XOBcQoHcE6B26sSouSSbndtUeOXB8afVxY4gGb26WX8y82Dhoi2xI0hWl7TYxWcMYZlET8I72Xe5+2/MbAmh9dsjZgYwz90/CswEbjKzvYTGAh939/XJ9/oYh9q8PUgzG/RABbI0I1mbPIHwotxIsllvz849MWNJRr2q9OOdBwv+9GrsCJLRe2dpBjkP+vSpjh1B2om7v0A4zbf0+rEVxv8n8J8VbisQlltkor+gcpjUpr3iGuTTgCHF2/vV9IuUTKTreWOVOiPkxQjTW/d5sH3bmNgRJLPOW0+oQJZyipv2aoGrKWnztuqV5XFSSavs36vjVkXa0+9WTY8dQTIYNHhX7AjSBahAluYsBXoDTxB2jY4DqOqjU4ryQAVyPmgzZX6sen1/7AiSQa+qHrEjSBegAlmaUw0sBK4kdLIwAPcDMTNJRiOPabYHunQSe3frPzJ5MXyolljkwWvL9DMlR04FsjSRrD+uK34sFArX1tfXTwImkzTVrh7QedcMySFb1m2KHUEyqD1W/5HJi759YieQLMaM1hMlR04FsqQ1EGaN0x8hLLVYk1xj0PDBHR5MWm/5GnVHyIP1q9a3PEg6hX7Vo2JHkAzmP6fTXvNjYLO3mtmPCIeBrHX3E5NrXwEuJ7RxWwtc6+6NZjYM+AVwOnCbu1+f+j6ncajF2wPAJ8sdLpKmAlnSGkov1NfX/xa4CHgDqAJY8fJrHZtK2mTQqGGxI0gGoyeq6MqLwX311n0e9Omj0qYLuQ34LvCT1LVb3P0LAGb2CeCLwEeBXcAXCK3cStu53QrMBuYRCuSLUR9kOQK7gL3AY4TDQnoA9NImvVzYsm5j7AiSgZ6n/Nh1aSvOxZVohgxVadNVuPuTZlZXci19Ekx/kuWf7r4deMrMmvRINrMxQI27P518/RPgClQgSxvsAo5L1h8/SOiBvDn5yKDhQ5q7r3QSu3eo1VEenHWBWoflxeoN+pOZByP05llumNlswsxu0Vx3n5vhfl8lHBe9GTivheFjgZWpr1cm15qln3Y5TKFQuLm+vn5OslFvH2HNzsG+OVV9qqJlk+x69FKrozzYuVOtw/JiWI26WOTBnn0WO4JklBTDLRbEZe73eeDzZvZZ4HrgS80ML/eCaHb9MahAluZVE9YdjwOK56CzpmFVzEyS0bCxWtuaB4ueX8Hp50yKHUMyeNOwFbEjSEaF1yfEjiAd43bgfpovkFeSnOOQGAc0tvSNVSDLLuC4CtevBNYRXicHXyv9B9V0TDI5Ij17arYrDwaPrGHpEq1DzoOdp+pQlzxYumkYfXurX38+tP7vlJlNcffFyZeXEc5rqMjdV5vZVjM7C3iGsDTjOy09jgrkbq64nKLC9YsLhcLF9fX1zwAnkHSxGDCk+bYs0jnoAIp82Lt7X+wIktHyrcNjR5AMljZqeVlXYWZ3ALOA4Wa2kjBT/A4zm0Zo87aM0MGiOL4BqAF6m9kVwIXu/hLwMQ61eXuQFjbogQpkaV5Dsg55LVBHeGGxdtnqmJkkIx0Jng+jJqjoyotXVuhdmTzYtk3r+vOj+TLU3a8uc/mHzYyvq3C9wOGt344gmXQ3pcstFiZfTwVGFi+OGD+6g2NJW+zds5cdW7bFjiEt6Nu/N9u2qONIHgwdZOxT7dXpbdp0gD17tMQiHzpvGdp5k0mHK11ukXw9F9hEWIs8HGD/fv2FyIMePXswYIjWi3d2NTW9qanRbH8eTBy2M3YEyWDV6l707avZfjkyKpClJUuBGcDg4oX1K16PlUVaYWjtyJYHSXS/+8XTsSNIRm+rPz12BMngovodsSNIZoNiB6hIBbJkZck/elbpZZMHm9dtiB1BMphwwuTYESSjZev7xY4gGUwdtTl2BOkCVOlIRckGvQ8QNukdXNA1ZLQ2FeXB9s1af5wHvat18E5eDB+ozjB5sGmX2vHJkVOBLGUlxfFxwFPATFKvFeuhU4ryoE+/6tgRJIMtG7bGjiAZHUBnGOeBtXhGmuRJ0rptK7Af2Ofu9WY2B/h7wv4ogM+5+wPJ+M8CH07Gf8LdH2rL46pAlkqqCafNLAV2Jv/6A9TWjYgYS7LasFaFVx4MHKy37fNi335NDuRBn97aSN4Fnefu60uufcvdv56+YGbHA1cRzm6oBR41s6nu3uoXhQpkac5KYDxhFf3BbfYrFmuTXh706dcndgTJYNN6/UcmL9ZvGRo7gmTQZ6havHVjlwN3uvtu4DUzWwKcAbR6N7QKZDlMsryijtAH+U3AEmAEyUl6w2v1RyIPFv95UewIksHYKRNiR5CMeqlzWC5s3qnSJi/MbDYwO3VprrvPLRnmwMNm5sD3U7dfb2YfAArAP7n7RmAsMC9135XJtVbTq0jKqQYakj7Ikwht3g7ueug3UDOTeeAHtBAvD1YtXh47gmR0zgQdC54HG/cOiR1BMkqK3dKCuNTZ7t5oZiOBR8xsIXAr8BVC8fwV4BvAh0i6bZU+TFuyqUCWUsXT9BYmh4RMAKaTeq307Klz7vOgVjOTubBlvVpS5YUKr3xYuqHz9taVpuozjHH3xuTjWjO7GzjD3Z8s3m5mPwB+k3xZXBpaNA5obEs2FcjSRMlpepOA04Emu4g2rlP7sDzo01ens+VB7756RyYvnlo0OHYEyeDC41fHjiCZ1TZ7q5n1B3q4+9bk8wuBL5vZGHcvPtHvAhYkn98L3G5m30y++RTgT21JpgJZytlFKI53AtsISy4OVluvL9MmvTw48/zjY0eQDJ548bXYESSjmdM2xY4gGbywdkzsCJLR8ce2OGQUcLeZQahZb3f335rZf5rZDMLyiQbgIwDu/qKZ3QW8BOwDrmtLB4vig4kUN+YVG+fWEt6SOA8YSLI5r2jSiXUdmk3aplcvLYXJg8Gj1Fs3L6p77o4dQTL43i1/jB1BMrrq7pnN3u7uS4GTy1y/ppn7fBX46pFmU4EscGjGuJFQHE8CzgcmExptN1n0vn3Lzo7OJ23w5gt1mlQePHyn3pHJixpX+7A8OPX8GbEjSBegAlkoFAo3Fz+vr69/kEOvi+3AYQskG5es6qBkciRu+boKrzy4Y/y/xY4gGb1+4IexI0gGWzbsiB1BMhsQO0BFKpC7oZLlFGm1wFBgGGH2eDtlXiMjxo88qvmkfVx+xfiWB0l01YM/EzuCZPT1H6jjSB5c93fDY0eQLkAFcvdUTVhWUbrmeBIwhlAkQzha2ilZYrFlw5aOSSlH5Navt/rgIIngsnc+FDuCZFTV5yOxI0gGX/4/L8eOIBk9ekeWRm9xqEDuvqoLhcIcODijfAHh9LzSacfDmm5vU4GcC671krlwYM+e2BEko+2bt8eOIBnMeKs6+MiRU4HcvexKehzXAQ0lSy1WAo8mXxdnlM8CLiK0Sjn4WqkZoWb5eTBk5ODYESSDPWdfGjuCZLTh4XWxI0gGGxr1POXGx97S7M1mNh74CTAaOEA4ivrbZvZzYFoybDCwyd1nmNn7gU+nvsVJwKnu/pyZfRX4ADDE3Vtc/KwCuRspbsZLHQSSnkWeU/w6KZwnEV4fLwMTSb1WNq99o+NCS5vt3rErdgTJYGX11NgRJKP9e/XWfR70rKpqeZDkxT7gn9z9z2Y2EJhvZo+4+/uKA8zsG8BmAHf/GfCz5PqbgHvc/blk6H3Ad4HFWR5YBbIUFY+YJvm4MPl8ILCX8D+3HgBDRo/o8HDSemfOarkDu8Q3ef19sSNIRsPGTY8dQTKYfurE2BGknSSn5a1OPt9qZi8DYwkHgWDhBJH3ElrTlroauCP1veYl98n02CqQu6diMdxQvFByxPQ4YDrhJL2xhGUXB0+dGD1RBXIerFi+NXYEyeDA5HINZaQz2rNTB4Xkwfq122JHkIzM+s4GZqcuzXX3ueXHWh1wCvBM6vI5wBp3Lzcr/D7g8rZmU4HcDZUUw2nFNcorgT0c6mzRk1Q3ixf/+JeOCSpHpN/gmtgRJIOq6TpqOi9Oesu5sSNIBvN//2LsCJJRUgyXLYjTzGwA8EvgBndPdwpoMkucGn8msMPdF7Q1mwpkOSi1RnkuoTgGeIXQ9q1fcdykGVozmQcb126KHUEy2DrptNgRJKNtCzWDnAfVA/q1PEhyw8yqCMXxz9z9V6nrvYB3A+V+iV5FmcK5NVQgSzlLCcsqLiG8RvZRpt2bdG7V/fTWfR58/AfVXPTOY2LHkAzOPVutE3Ph7BoGVu+PnULaQbLG+IfAy+7+zZKbLwAWuvvKkvv0AK4E3nokj60CuftKb8prIjWTfAkwKPl3UFVvvWzyYNDEYbEjSAZ1dQPZvNVjx5AM+lT1aHmQRNewSnM6eXHJKS0OORu4BviLmT2XXPucuz9A5VnitwIr3X1p+qKZfQ34G6Cfma0E/sPd51R6YFU63VSldcip3si1wFpgKzCcVJE8eJjevsqD6mr9eOfByZN0UEhe3P/k3tgRJIMRI/rGjiDtxN2fosL/dtz92grXHyec41B6/UbgxqyPrb+gclBSHB9XKBSuTT6/mHD0dJPXybJFa2LEk1Z6femK2BEkg4vO7LxHrUpTJ5/Y4tkC0gn8/nevx44gmY2OHaAiFciSVk3TE/ZeIhw9vZXQDxmAjWvWx0knrTJ2Wl3sCJLB0nX9Y0eQjN5UuyF2BMngng1qcZkfKpAlP3YRWrtNIBzRuAdo8hd89/adEWJJa/3V5RNiR5AMavpqM1FefOd2LbHIgxln1cWOIF2ACuRuLjVbDFCXWl7RCBxDWHvcO32fmZed2bEhpU0Kz22PHUEy+ODFOhI8L5bMX9jyIIluynEzY0eQLkAFslQXCoU5APX19Y8mG/dqk9vuIDThnkw4LASA3bv3dXBEaQs/oM4IeVDTc0vLg6RTOHHmSbEjSAb79qkdX370bHlIJCqQu7fSVm8rk2uNwEzCJr1RlLyCN7+xo6PyyRGYMl1t3vKgep9m+vPi4vMnxo4gGfzXr7RJLz/GNnurmf0IeCew1t1PLLntn4FbgBHuvt7MhgG/AE4HbnP368t8v3uBSaXfqxwVyN1YmVZvCwnrjxsJh4MMpmR5BUDtxMEdkE6OVGOjCq88WDOjtuVB0ins3KM+yHmwfbN+93UhtwHfBX6Svmhm44G3A8tTl3cBXwBOTP5Rcp93A9uyPrAKZCldh9xIWGIxj/D6OJlw1PTBvwybNmiTXh4sfHZx7AiSwXGnLm15kHQKE4eOix1BMqi9bkbsCNJO3P1JM6src9O3CD2N70mN3Q48ZWbHlg42swHAPwKzgbuyPLYKZCl2rWgkNNa+KLm+ndC9wilp0n3C8U0O1pNO6sqLjo8dQTL40bLTYkeQjP7X7h/HjiAZ7Bmpn6m8MLPZhKK1aK67z23hPpcBq9z9+XASdSZfAb4BZF4jqgK5iyqZFS51CVA6DfxuIL1otdja7bBX35692vyVB4//T1XsCJLBi/+zLHYEyejDM1bGjiAZLPU+sSNIRkkx3GxBnGZm/YDPAxe24j4zgGPd/VMVZqPLUoHcdR3sTlGqvr4+3c6tWES/QtNZ5G1AH+CwKmvhws1HJbC0r5VLVseOINKl2LCRsSNIBo8++FrsCJLRRy48prV3mUxoQVucPR4H/NnMznD3Srsz3wycZmYNhLp3pJk97u6zmnsgFcjd08Jkc14dYWNeNaE4hrD2eDnhoJBiodyXVCeLV+a/0oFRpa1G1WnzVx5MOX5U7AiS1Z5HYieQDGrrhseOIEeJu/8FOPg/1aTorXf3ikf8uvutwK3J+DrgNy0Vx6ACuVsqFAo3w8FlGMcVCoVri7cl184n/C8NwgxykzZvOkkvH3bt0AEUefD4r5+NHUEy+vTbtMQiDy5+a6XVhZI3ZnYHMAsYbmYrgS+5+w+bGd8A1AC9zewK4EJ3f6ktj60CuRtL2rzdVNLqrRb4KWGpxQxCq7cDpLpY1F+oDRB50L+/1iDnweIq/RrOiyduuKflQRLd5IWfiB1BMmu+M4y7X93C7XXNfV1mfANlWsCVo9/M3VCZDXwzOfRaGAhcQCiMayhzzM32rbuPckJpD4MGaaNKHpz1Vh0+kRfTP/5A7AiSwZinf9LyIOkcJn8udoKKVCB3T+njpW8CVqY27V2QjCkeEDKAko162zapCXsebB6oAjkP/uHUQuwIktGAxS/GjiAZLL//ydgRJKOpf6sCWTqvag5t2qslnKB3KqENXC/KdLGYdcGEjswnbfTssxX3LEgnMudh9avOi1tGPBY7gmQw4W+viB1BugAVyF1EmWUTdRnH1xE6WUDoZDEJeAI4gXCC3mEef3R5ucvSyfSuPuyUcOmE+vbX85QXe48/PXYEyWDLbRX3cEknM+7Sj8aOUJEK5K6jSd/jko13pQV0HdBQKBTmJOOqCSfqVQNLCcdLv0hYPT+RktfJqsUqkPPAD+hAlzy45G/eEjuCZFT1kjqO5IH1yHy6mkhFKpC7j/S64zmp67uA40gK5uT24qk2+4DRhI16B3/jHDtj6tFPK0ds9WuVeqZLZ7Jundom5oWNq4kdQTKomdR8ZwTJDzOrBp4kHFzWC/iFu3/JzH4OTEuGDQY2ufuM1P0mAC8Bc9z962Y2EPhD6luPA37q7jdUemwVyN1c0uptTsm12cmM82mEg0NOBoaQdLR4pfByR8eUNhg4bEjsCJLBhrXbYkeQjBoLD8eOIBkM+8QNsSNI+9kNnO/u28ysCnjKzB509/cVB5jZN4DSI36/BTxY/MLdtxJa1xbvMx/4VXMPrAJZ4NAsMtBkOUZfYBCh3dvBPshjp9V1cDxpi569DuvQJ51Qv4E61CAvhk6vix1BMnDr0fIgyQV3d8KJvhCaBlQBB9cPWjhv+r2EA86K164gLBct23LLzKYQTuP7Q7nbi1Qgd09NCuL0LHL6dL36+vozgXrC6+TgEosNq9UdIQ8O7N8fO4JksKZBp1PmRfVHM50vILE1vsKB9Wtjp5AM7NS3zQZmpy7Ndfe5TcaY9QTmA8cC/+7uz6RuPgdY4+6Lk7H9gc8Abwf+ucLDXg38PCm+K1KB3A2VW1aRUg3sSW5fQehqMZjUDPLICaOPckJpDysWvhY7gmRwyqyTY0eQjPYN3xI7gmSwY+AYOCZ2CsnC/YtzgbnNj/H9wAwzGwzcbWYnuvuC5OargTtSw/8F+FayJKPSt7wKuKalbCqQu65dJUVwXcbxdYS2b7MI63X6AlsJSy16ABwzbUR75pSjZKdmJXPhhT++FDuCZLRx0W2xI0gGGz91a+wIktHIVox1901m9jhwMbDAzHoB7ybslyo6E3iPmX2NMLl3wMx2uft3AczsZKCXu89v6fFUIHdRhULh5vTXzcwYNxlfX1//W+CthHXHw5KbndQSi/G16tuaB/v2aid3HqwfNTh2BMmo119/IXYEyWDczkWxI0hmzZfIZjYC2JsUx30Jp/3+a3LzBcBCd19ZHO/u56TuOwfYViyOE6UzzhWpQJYmCoXCxck65EnABOB0wutkAMkM8uJXd8QLKJkNHdqH66f8LnYMacFH75rO8hdfjR1DMhh4wRb29FN3mM5uR/UQBm1aFjuGtI8xwI+Tdcg9gLvc/TfJbVeRsdhNeS/wjiwDVSDnT+nSiaK6Nnyf3wIXpa4VF60W1xv3Jiyx6J26xkVvUXeEPNi+B363//yWB0pUaxrm06d/39gxJIMDf7xbfzRzoN/b38PevoNix5B24O4vAKdUuO3aFu47p8y1SVkfWz/rOVO6dKKopSUUyZjS46jnJf+KZhL6HW8FTuTQEosmvvcDnaSXB2+sWhM7gmRw2TU6SS8v/vC+Fvf1SGfwmQdbHiOdwqV7O+9yGBXI3UuT46jTkuL5KeAsYCpQfH/qsCJ5yola25oHw2uHxo4gGax+XZsp82J67AAi0mFUIHcfTXofQ5MZ5dqSsSNopknOmsbSA2ukM2pYsDR2BMng2n/QDLKISGejArmbqND7uLpQKMxJCuVZhPXIewhrjit689nqg5wHU49XO748+O+n34gdQTL6zv03xY4gGcz/zHdbHiTSAhXI3cthvZFTs8jLCQ22ZxI2/E0G9gOH7cjbt7/Zw2ekkzg+81YEienZJ1Ug58V/z/1W7AiSQd2sCbEjSBegArkbKdMb+SbCsouFhLZu5xMK4z3JkLLtKv709OtHMaW0lx1btLY1DyafODZ2BMlo1217Wh4k0a1+fnXsCJJRlnkcM2sgNA/YD+xz9/rkwI//S2hB2wC83923JONPAr5POM/hAHC6u+9qbTYVyN1YsuyiWCQ/yqH1yI2EZtpTge2EVm8H27xNnja848NKq61bq37VebD+9a2xI0hGky7VzGQeTLj07NgRpP2d5+7rU1//B/DP7v6EmX0I+DTwheR0vZ8C17j782Y2DNjblgdUgdzNlRTJC4HzgCrCOuSdQP/S+yx/bVNHRpQ2mjRFXSzyYMVivSOTF6/+WodP5IGep/y49NovtfWu04Ank88fAR4CvgBcCLzg7s8DuHub17CpQJZ0kTwJ+H1yuZGwHrme8DbFwaOmd+3Q24x58OoirW3Ngx49e7Q8SDqFs75wbuwIksG8rzwRO4JkZGazgdmpS3PdfW7JMAceNjMHvp/cvgC4DLgHuBIYn4ydCriZPUToyHWnu3+tLdlUIHdBZQ4EqaS4nAJCMVx8PUwgLKkYmnwfS99p2YIl7RNUjqpefZptRiKdxL1v+XnsCJLVuX8dO4FkMH7eK7EjSEb+wKK5QGlBXOpsd280s5HAI2a2EPgQ8G9m9kXgXg7tnepFqGdOB3YAj5nZfHd/rLXZVCB3HekOFenCt9RZhHZua4BRxfsC+wgL4PvQQnF9+kWnHWlW6QBTjx0QO4Jk0HPF/bEjSEY9X3kudgTJYMUj2qSXFydlGOPujcnHtWZ2N3CGu3+dsJwCM5sKXJoMXwk8UVyvbGYPAKcCKpC7glbMAFdSqTiGw4+XhkOzx+MIXSwgFMxlXx9vrNGmojx4bPHa2BEkgwnf+6/YESSjWy6/LXYEyeDYOR+OHUEyurSF282sP9DD3bcmn18IfNnMRiYFcw/gfxM6WkBYi3yjmfUjzCqfC7SpP6MK5M6p4pHQR0uZU/UmAGcTWqg00bu6qgOTSVs1LlkVO4JIl7Jvt/Zf5MHwkXr3rAsZBdxtZhBq1tvd/bdm9kkzuy4Z8yvg/wG4+0Yz+ybwLGHt8gPu3qa36VQg51QrZ5mLSy7S64xLDQQGcWgGuaKF817M+LAS0/DxY2JHEOlSxk6rix1BMvjjb56NHUGy+vtzmr3Z3ZcCJ5e5/m3g2xXu81NCq7cjogI5rtKT7YrqMtw38yxzqpheStPlF5XWKs8EhiT/hhNavR3caj/hhBZraOkEJkxWv2qR9nTy6eNiR5AM1i5X60Q5ciqQIyo92a6oQtF8NB6n2NotXSTPJBTOIwkF8mE9qIYM19tXebB9u94OFmlP1dVqyZcHJ59zQuwI0gWoQO6cKs0sp9Ud6YOk+h+nl2osJfQT7AnsJnS1aPJX4d0XHcn+QekofXu16fAg6WAbPx07gWR14QlrYkeQDNZPHhQ7gnQBKpA7oUozvmmVCuiSgrd0zXG6S0Wb3f5rdbHIg2Uv6TSpPPhU7ACS2Q/uP+xgUemEXl3wWuwIktGsHxwfO0JFKpDzq+L65UKhcC2EIjrLOuVUUV0sqIsb9sZSZiOgTv7Kh5699eMt0p4aG9bHjiAZjDlmVMuDRFqgv6A51V7rl0tmnJcmHycBxWniycABUsssqvupzVseDB01NHYEkS5l3Qpt/sqD0ROHxY4g7cTMpgHp40YnAV8EfpJcrwMagPe6+8bkPicB3wdqCPXL6e6+q7WPrQK560nPLNelb6jQGi4943wTcAFhc16x5dt+wnrkgxY+u7i9M8tRsFc9W3Nh4LR+sSNIRiefc2LsCJLBqqXrYkeQzGqavdXdFwEzAMysJ7AKuBu4CXjM3W82s5uSrz9jZr0ILd6ucffnzWwY0KYNOSqQu5j0zHKZ2eTDWsMVxyTF8XHAoxwqoq8jtHlrYsJxE9otrxw9I0YPjB1BMth6z47YESSjlwtLYkeQDPbsbPVkoUQzqTWD3wa86u7LzOxyYFZy/cfA48BnCCftveDuzwO4+xttTaYCuWsrXadc18yYOsKJNW8iLK8YB/SlzAzygBp1sciDkSP7xI4g0qWc8Ta1D8uDx3/5dOwIkpGZzQZmpy7Ndfe5FYZfBdyRfD7K3VcDuPtqMxuZXJ8KuJk9BIwA7nT3r7UlmwrkLqx0nXK59cmpVm/jCEsrthI26fUlHBAC4bhGK97nU5euPkqJpT090jCV/tUeO4a0YPr7p7ClcXPsGJLB4798mkkzpsaOIS2onTqRmqHq158HT93nc4FKBfFBZtYbuAz4bAtDexEaDpwO7AAeM7P57v5Ya7OpQO5e0jPKtYT3NopdK9K92yYCg1NfW+pzNhzQBog8uHL447EjSAZ7xg5nwFidepgH4/cew97d6i/e2W1ev4nN6zfFjiGZZP7ddwnwZ3cvNiNfY2ZjktnjMcDa5PpK4Al3Xw9gZg8ApwIqkGOosPmts5vEoRnjYnE8kbBivtk2Fff9qflF9dI5TKk7N3YEyeDuHRNjR5CMrv3u22NHEOlafrwo68irObS8AuBe4IPAzcnHe5LrDwE3mlk/YA9wLvCttkRTgdw6lXoP19L0uOZysoxprdKDQJpTOksMoUAuTgfXJF+3aOwYtXnLg98/2ea9CdKBrIe1PEhEpJtKit23Ax9JXb4ZuMvMPgwsB64EcPeNZvZN4FnC8tAH3P3+tjyuCuRWyHLCXSVHaZZ5JbAw4/ctd6reMW150JcXbW/L3aSDnXqqlsLkwZO/08+TSHsaeWamuR7JCXffwaHJvOK1NwhdLcqN/ymh1dsRUYHcQY6kuK4kKbonEWamm5uhfj9Nl00UZ4v3pq7vSz62+JoYNixvq0m6p3vvfCF2BMngzW/vvEetiuTR2mc2xo4gXYAK5Bwr6Xnc3Az19kKhMKPS90kdEJI+Zno0ob1bT0rWJK9bt/OIckvHmHDcuNgRJIMhg3u2PEhERDqUCuQuorkZ6vr6+rrU5+lCujjrXAs8BZxFOCyk2YPsd+3c19zN0knUTRoUO4JkcN+dz8WOIBl9MnYAEekwKpC7h4Xp46dLjpauBiYA76HpJr0mvY8lf+b/cVnsCJLBjk1bYkcQEZESKpC7gdKlGPX19XMJM8fpjXsvEJZXDAF6ACMJh4UcZsdWHeOZBzd+TJv08uDTn3s9dgQRESmhArmbSZ2cVw3sBOanbp6ZfBxEyfHSaefOGn30Akq7GV71auwIksFZF58SO4JkdV/sACLSUcxdR9GKmNnsZs5/l05Cz1N+6LnKBz1P+aHnqmP1iB1ApJOYHTuAZKLnKT/0XOWDnqf80HPVgVQgi4iIiIikqEAWEREREUlRgSwSaF1XPuh5yg89V/mg5yk/9Fx1IG3SExERERFJ0QyyiIiIiEiKCmQRERERkRQVyNLtmFmDmf3FzJ4zs0JybaiZPWJmi5OPQ1r6PtL+zOxHZrbWzBakrlV8bszss2a2xMwWmdlFcVJ3PxWepxlmNq/4c2VmZ6RuO8nMnjazF5Ofveo4ybu31v58SRxmNt7Mfm9mLyc/M59Mrs8xs1XJz9hzZvaO2Fm7MhXI0l2d5+4z3L0++fom4DF3nwI8lnwtHe824OKSa2WfGzM7HrgKOCG5z/fMrOIJkNKubuPw5+lrwL+4+wzgi8nXmFkv4KfAR939BGAWsLejgkoTt5Hx50ui2gf8k7tPB84Crkt+3wF8K/nbNcPdH4gXsetTgSwSXA78OPn8x8AV8aJ0X+7+JLCh5HKl5+Zy4E533+3urwFLgDOQo67C8+RATfL5IKAx+fxC4AV3fz657xvuvr9DgkoTrfz5kkjcfbW7/zn5fCvwMjA2bqruRwWydEcOPGxm882seDLRKHdfDeGXEzAyWjopVem5GQusSI1bif6IxHQDcIuZrQC+Dnw2uT4VcDN7yMz+bGY3xgooZel3XydmZnXAKcAzyaXrzeyFZLmMlsMcRSqQpTs6291PBS4hvHX11tiBpE2szDX1rYznY8Cn3H088Cngh8n1XsBM4P3Jx3eZ2dviRBTJDzMbAPwSuMHdtwC3ApOBGcBq4Bvx0nV9KpCl23H3xuTjWuBuwtvya8xsDEDycW28hFKi0nOzEhifGjeOQ2/rS8f7IPCr5PP/4tByl5XAE+6+3t13AA8Ap0bIJ+Xpd18nZGZVhOL4Z+7+KwB3X+Pu+939APADtKTsqFKBLN2KmfU3s4HFzwnrIxcA9xL+wJN8vCdOQimj0nNzL3CVmfUxs2OAKcCfIuSToBE4N/n8fGBx8vlDwElm1i/ZsHcu8FKEfFKefvd1MmZmhHdgXnb3b6auj0kNexfhb5ccJTpJT7oVM5tEmDWG8Nbv7e7+VTMbBtwFTACWA1e6e+lmFjnKzOwOQpeD4cAa4EvAr6nw3JjZ54EPEXZ93+DuD3Z86u6nwvO0CPg24edqF/Bxd5+fjP9bwppkBx5wd61DjqC1P18Sh5nNBP4A/AU4kFz+HHA1YXmFAw3AR4rrx6X9qUAWEREREUnREgsRERERkRQVyCIiIiIiKSqQRURERERSVCCLiIiIiKSoQBYRERERSVGBLCIiIiKSogJZRERERCTl/wOXdmNmj7ytHQAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "x = pd.DataFrame({n:results[n]['S'][:,0] for n in results.keys()})\n",
- "\n",
- "sns.clustermap(np.abs(x), cmap='coolwarm', robust=True)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 161,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAB0v0lEQVR4nO3deZxcZZX/8e/pJXvCmkAMaIGyaUTQBnEAQUDGURZxBEFFMqitjqj4AzGASByHMW4go85oK4sIooygOAOKyAwgo6LFJkhgUIwYiIQtZO39/P6oW/GmUlV9b3V1P/1Uf96vV17pvnXr1pkpqvP19LnPY+4uAAAAACVtoQsAAAAAJhICMgAAAJBCQAYAAABSCMgAAABACgEZAAAASCEgAwAAACkEZAAAACCFgAwAAACkEJABAACAlI48J9/QuceE2nbvTQMPW+gaAAAA0FpyBWTrJI8CAACgteUKyO3T28eqjjFjZltL+qakhZJc0qmSHpb0PUkFScslneDuz4WpEAAAABNJzoAc5cjyxZJ+4u5vNbMpkmZIOkfSLe6+1MwWS1os6eMhiwTGSldX12JJ00LXAWBUeovF4tLQRQCTRUsHZDObI+m1khZJkrv3S+o3s2MlHZqc9i1Jt4qAjNY1rVgsLgldBIDGdXV1LQldAzCZ5AvIUydWQDazbkndqUM97t6T+n5XSU9JuszMXiHpLkkfkbSDu6+UJHdfaWbzxqtmAAAATGz5AnLnxArISRjuqXNKh6RXSvqQu99pZherNE4BAAAAVJUvIE+J7ia9FZJWuPudyfffVykgP2lm85Pu8XxJq4JVCAAAgAkl6g7ySNz9L2b2ZzPbw90flnS4pAeTP6dIWpr8fX3AMgEAADCB5ArIbZ3RdZAl6UOSrkpWsHhU0j+otIPgNWb2bkmPSTo+YH0AAACYQFq6gyxJ7n6vpK4qDx0+zqUAAAAgAvk6yB1RdpABAACAzFq+gwwAAADkQQcZAAAASMkZkOkgAwAAoLXRQQYAAABSmEEGAAAAUuggAwAAACkEZAAAACCFgAwAAACk5ArI1s4MMgAAAFobHWQAAAAghYAMAAAApOQbsSAgAwAAoMXl6yC3E5ABAADQ2uggAwAAACl0kAEAAIAUOsgAAABASs51kAnIAAAAaG10kAEAAIAUOsgAAABACgEZAAAASCEgAwAAACnMIAMAAAApuQKy6CADAACgxTFiAQAAAKTQQQYAAABS6CADAAAAKfk6yG0EZAAAALS2nCMW+U4HAAAAYsMMMgAAAJCSLyCbjVEZAAAAwMRABxkAAABIYQYZAAAASGn5VSzMrF1SUdLj7n6UmW0r6XuSCpKWSzrB3Z8LVyEAtL6urq7FkqaFriNiha6uriWhi4hcb7FYXBq6CMRhMoxYfETSMklzku8XS7rF3Zea2eLk+4+HKg4AJolpxWJxSegiMHnxPzCQR66A7JF1kM1sJ0lvknSBpP+XHD5W0qHJ19+SdKsIyAAAAEhEHZDNrFtSd+pQj7v3pL7/kqSzJM1OHdvB3VdKkruvNLN5Y14oAAAAohH1DHIShnuqPWZmR0la5e53mdmh41kXAAAA4pWvgxzXDPKBko4xszeqdGPIHDO7UtKTZjY/6R7Pl7QqaJUAAACYUNrynOxtHRPqT91a3c92953cvSDpREn/7e7vlPQjSackp50i6fr8/28DAABAq4p6BrlBSyVdY2bvlvSYpOMD1wMAAIAJJOoZ5Kzc/VaVVquQuz8j6fCQ9QAAAGDimowdZAAAAKCmXAF52AjIAAAAaG10kAEAAIAUAjIAAACQwogFAAAAkEIHGQAAAEihgwwAAACkEJABAACAlHwBmRELAAAAtDg6yAAAAEAKARkAAABIISADAAAAKTkDcttY1QEAAABMCPkCstNBBgAAQGvLF5BFBxkAAACtjYAMAAAApOQcsSAgAwAAoLXRQQYAAABScgXkITrIAAAAaHGMWAAAAAApBGQAAAAghYAMAAAApOScQbaxqgMAAACYEOggAwAAACl0kAEAAIAUOsgAAABACh1kAAAAICVfB3mYgAwAAIDWRgcZAAAASMkVkJ2ADAAAgBZHBxkAAABIYQYZAAAASMnXQR4eqzLGhpntLOkKSTtKGpbU4+4Xm9m2kr4nqSBpuaQT3P25UHUCAABg4mj1EYtBSWe4+91mNlvSXWZ2s6RFkm5x96VmtljSYkkfD1gnAAAAJoicIxZjVcbYcPeVklYmX681s2WSFkg6VtKhyWnfknSrCMgAAABQ7hGL6DrIm5hZQdK+ku6UtEMSnuXuK81sXsjaAAAAMHFEPYNsZt2SulOHety9p8p5syRdK+l0d19jFm/QBwAAwNiKehWLJAxvEYjTzKxTpXB8lbtflxx+0szmJ93j+ZJWjXGpAAAAiETUHeSRWKlVfImkZe5+YeqhH0k6RdLS5O/rA5QHAACACailA7KkAyWdLOl+M7s3OXaOSsH4GjN7t6THJB0fpjwAAABMNPkC8tBYlTE23P0OSbXmQg4fz1oAAAAQh5Ze5g0AAADIK+eIhY9VHQ2aWDcNIn5dXV2LJU0LXUeTFbq6upaELmIM9BaLxaWhiwAAtJ6WHrEAGjCtWCwuCV0ERtaioR8AMAG0+k16AAAAQC75ZpCHGLEAAABAa6ODDAAAAKTknEGeaB1kAAAAoLkiX8UCAAAAaK7IZ5ABAACA5mLEAgAAAEghIAMAAAApBGQAAAAghRlkAAAAICXnKhYshAwAAIDWxogFAAAAkJIzINNBBgAAQGvLN4M8SEAGAABAa2PEAgAAAEhhxAIAAABIybnMGwEZAAAArY0OMgAAAJBCBxkAAABIyddBZhULAAAAtLicHeShsaoDAAAAmBCYQQYAAABS2CgEAAAASMnZQWbEAgAAAK2NVSwAAMAmXV1diyVNC13HGCh0dXUtCV3EGOgtFotLQxfRavIF5GECMgAALW5asVhcEroIZNOioT84VrEAAAAAUrhJDwAAAEjhJj0AAAAgJWcHmYAMAACA1kYHGQAAAEihgwwAAACksIoFAAAAkJIrIP/8+oNtrAoBAAAAJoK20AUAAAAAE4m5e+gaAAAAgAmDDjIAAACiYmaXmtkqM3ugymNnmpmb2fYVx19oZuvM7MyRrk9ABgAAQGwul/SGyoNmtrOk10t6rMpzLpL04ywXz3WTHlC2/hufYDYnEgP7HRG6BGT0L796degSkMOdP70ndAnIaGhgIHQJyOGO/zxkxEUh3P12MytUeegiSWdJuj590MzeLOlRSeuz1EBAniS6uroWS5rWrOvd9r4t/kcbAADAqJlZt6Tu1KEed+/J8LxjJD3u7veZWfr4TEkfV6mzPOJ4hURAnkymFYvFJc262PL3HHt+s66FsbXjvB1Dl4CMHnlgQegSkMOU6VNDl4CMBjvaQ5eAHJIwPGIgTjOzGZLOlXRklYc/Jekid1+XDs71EJAniGZ3eKsoNLOO7+/DP+QAAGDCeLGkXSSVu8c7SbrbzPaX9GpJbzWzz0naWtKwmfW6+1dqXYyAPHE0tcNbqaura3FXV1eW6xeKxeKikU56Zsl76CDHondD6AqQ0YzZM0KXgBye+tMToUtARnPmbhu6BIwxd79f0rzy92a2XFKXuz8t6eDU8SWS1tULxxIBedIoFotLs5yXNUjfdNQ+oy0JAACgIWZ2taRDJW1vZiskne/ulzTr+gRkbCZrkO69+XI6yJHo226n0CUgoyVdg6FLQA7f+vlrQpeAjJ5f3Ru6BDSZu580wuOFGseXZLk+ARmS8s9A3/GZ08awGgAAgHAIyC2iCTf5ZZo9Lltz1010kCPx/GxuqIzFMHs3RYWuZDx6N7AOMvIhIDdgjFacKIzy+aO6yS/HTXySpP/++gWNvhQAAMCERkBuTNNXnKgWTnMG8cJoXj/r7HFZ708vo4MciW2GmGuNRd92C0OXgBzuuYWd9GLRxjrIkTkodAEE5AkucxDP0/2teF5D3fA7/uWDjbwcAADAhEdAbh29DYbkXLPHm17spkvoIEei4//uC10CMmp/zZ6hS0AO1sbMeCzmbM86yMiHgNwi8o5IlOWdPS6744IPNPJyAAAAEx4BeZJrNFj/9o2H0kGOxC5/t1/oEpDR/z7+4tAlIIfX/N0LQpeAjJ5+cm3oEtBEZraHpO+lDu0q6ZOSFkg6WlK/pD9I+gd3X93IaxCQJ45qIxKFsXihZqzCcem8WU2qBgAAIDt3f1jSPpJkZu2SHpf0A0l7SDrb3QfN7LOSzpb08UZeg4A8QVTr5DZ6410Go16F47nP/CMd5EgMbdgYugRktHqthy4BOQwND4cuARnN2XZG6BIwdg6X9Ad3/5OkP6WO/0rSWxu9KAG5BTTQES6M4rmSpJv/fv+8TwEAABiRmXVL6k4d6nH3nhqnnyjp6irHT9XmYxi5EJBbQ66OcMWNeQ2tYvH0J99NBzkSxvqf0ehns6+o/PGhlaFLQEadUzpDl4AckjBcKxBvYmZTJB2j0ihF+vi5kgYlXdVoDQTkSSg9ztHoKhY/2P9FTa0JY2f71+wbugRk9I9rL9BTB/x96DKQ0cqV/ByMyV9WrA5dAprv7yTd7e5Plg+Y2SmSjpJ0uLs3PLdGQJ7Ysq5tXGj0BRpdxeLP//j3dJCBJiMcA2ODcNyyTlJqvMLM3qDSTXmHuPuG0VyYgDyBZQ2vzbyZL+tM8n+/87XNekmMMZs9J3QJyGiojV8Dx2RoiJv0YtHezqYurcbMZkh6vaT3pQ5/RdJUSTebmST9yt3f38j1CcgtaJTLuGWaSV7zpf9HBxkAAASRdIi3qzj2kmZdn4Dcmhpexi3rTPKn7mPR9Vi8/N0vC10CMnr2pe8MXQJy2Ha7US0nj3HU3zsYugREhoDcGipnlQuNXijrWMcNnXvQQQYAAC2p4YDcjN3YIlYIXUBaZait1QFu5nv2lVdu1YzLYBzM2mlu6BKQ0cb29aFLQA6PPNgXugRktGENGybFZevQBYyqgzzq3dhiNYY73DVLrdUvGlrzuJpfvXp/OsgAAKAlMWLRgmqNSTS65nE1zCDH45d33xq6BGS0/vB/D10Ccpj3gt7QJSCjp0orGgCZEZAnkUbXPK6GGWQAANCqCMgtbCznxD81FhcFJrnZ04ZCl4AcfnXjb0KXgIymzpweugTksuOIZ5jZpSrtmLfK3Rcmx5ZIeq+kp5LTznH3G82sIGmZpIeT4yOuj0xAboIJfMNi02aOK9FBBgAAAV2u0sYgV1Qcv8jdv1Dl/D+4+z5ZL05Abo4JecNiet642SGeDjLQfLcV6SDHZNqsmaFLACYtd7896QyPCQJya0uvZtHUbjIdZAAAMAGdZmbvklSUdIa7P5cc38XM7pG0RtIn3P3n9S5CQG5h6ZvymrmChSR98SXMc8VitzfsFboEZLTmpVNDl4AcTn7dgtAlIKMBJ+7ExMy6JXWnDvW4e0+Gp/67pE9L8uTvL0o6VdJKSS9092fM7FWSfmhmL3P3NbUuxH8xk0QzV7CQpNv22ocOMgAAaLokDGcJxJXPe7L8tZl9Q9J/Jcf7JPUlX99lZn+QtLtKXeaqCMjYJM+c8qd+z65EsXju0SdHPgkTwvaz+kOXgByG1Ra6BAApZjbf3Vcm3x4n6YHk+FxJz7r7kJntKmk3SY/WuxYBuUU06Sa8zHPKzCADAIBQzOxqSYdK2t7MVkg6X9KhZraPSiMWyyW9Lzn9tZL+ycwGJQ1Jer+7P1vv+gTk1jHqlTRGmlFOh3BWsYhHW0d76BKQEZt9xaVdrDoSiyG6/S3H3U+qcviSGudeK+naPNcnICOtd4SQvKnDTAcZAAC0KgIyNhnpRr70Shh0kOPRt7Y3dAnIaNhpIcfk0TXzQpeAjJ5dS9yJyT67ha6AgNyoyk5rYaxeKMds8ZjVUFYsFpdO4F0DAQAAmoKA3IDKTmsz1xeuItNsca0axiDQForF4iJGLOLRPoWPeSyGPXQFQGtqa+PDFZfwv03jX87W19RtsMtjFoxYAACAVkVARi7l7vmdr3k1HeRIzN5xTugSkNFdD7HiSEw6OsJ3uZBNOx3kyIT/bBGQW0etFSgKIz2xkTGMr3byDzkAAGhNBOQWUWsFiozz0bnHMH6208vpIEdi9o7rQpeAjFgHOS4LduANi0VvP+9VKzGznSVdIWlHScOSetz94uSxD0k6TdKgpBvc/Swze4ekj6UusbekV7r7vbVeg4Dc+kZa21iq0WWu11muux4cAADA2BmUdIa7321msyXdZWY3S9pB0rGS9nb3PjObJ0nufpWkqyTJzF4u6fp64VgiILe8kdY2ljZf37hCza2nWcUiHhue3RC6BGQ0xDIWwJhwPlotxd1XSlqZfL3WzJZJWiDpvZKWuntf8tiqKk8/SdLVI70GARn1xjNqBWc2CgEAAGPCzLoldacO9bh7T41zC5L2lXSnpM9LOtjMLpDUK+lMd/9NxVPeplKXuS4CMmqq130uHvIaOsiR2PmAl4QuARkVb/9D6BKQw7tP7wtdAjJa17F16BKQQxKGqwbiNDObJelaSae7+xoz65C0jaQDJO0n6Roz29W99DsEM3u1pA3u/sBI1yYgN0eWOd9GFZpxkWZvGPK1mZ3NuhQAAEAuZtapUji+yt2vSw6vkHRdEoh/bWbDkraX9FTy+InKMF4hEZCbIsucb6OaGLybumEIM8jxePIXvw5dAjJ65g1/CV0Cchho3zF0Cchow/D00CWgiczMJF0iaZm7X5h66IeSDpN0q5ntLmmKpKeT57RJOl7Sa7O8BgE5MqPoBBea+VrMIAMAgEAOlHSypPvN7N7k2DmSLpV0qZk9IKlf0inl8QqVgvEKd380ywsQkOPTUCe4wU50zdf678LedJAj0f/sQOgSkFF7J6NLMZnRtzp0CchocDqfrbjMrfuou9+h2tvtvbPGc25VaTY5EwLy5NHInHRBqt5J/lxzagIAAJhwCMiTRCNz0qll3rZYD5kZZKD5pkyfGroE5DDY3h66BGQ04FNCl4DIEJBRUzlUV1sPmRlkAADQqgjIGFG17vN9b3gtHeRIbLtr/VkuTBwb/7wudAnI4UePHRK6BGTETnpx2fPFoSsgICOn8jxyz1ZNW1IZ48DZwhgYE4NDoStAFu1t0tBw6CoQEwLyJDWa5eKKxeKiuw8/iA5yJAjHwNggHMeDcIy8CMgTX+XqE4UmXbfR5eIWd3V1Lbn2lTs1qQyMtTm7vCB0Ccio7Ulu+orJC+cNhi4BOazdyOcrHrVWcBs/BOQJrnL+t95SbTm7woXR1POn7jfTQQYARIFw3FrMbGdJV0jaUdKwpB53v9jMtpX0PZUyznJJJ7j7c8lz9pb0dUlzkufs5+69tV6DgNxaMneFK4N23pGLr89mOapYMGIRjznbbxu6BORg4ZtcyIgfgy1nUNIZ7n63mc2WdJeZ3SxpkaRb3H2pmS2WtFjSx82sQ9KVkk529/vMbDtJdXfRIiCjLNfIxV2vO5AOMgAAGHfuvlLSyuTrtWa2TNICScdKOjQ57VuSbpX0cUlHSvqtu9+XPOeZkV6DgDx5bTHbnKeLfMXOW41JUWi+rZhBjsaC9h1Dl4Ac2o22JDAWzKxbUnfqUI+799Q4tyBpX0l3StohCc9y95VmNi85bXdJbmY3qbSP9Xfdve6mwATkSarKbPNiSXtW7phXy4PHHU4HGQAANF0ShqsG4jQzmyXpWkmnu/saqz331CHpIEn7Sdog6RYzu8vdb6n3BEDFYnFpnrnkq1683XiUBUwqTz3xbOgSkEN726zQJSAjdwbGW42ZdaoUjq9y9+uSw0+a2fykezxf0qrk+ApJt7n708lzb5T0SkkEZGSyxdhFrY7yw2/7WzrIAABg3FmpVXyJpGXufmHqoR9JOkXS0uTv65PjN0k6y8xmSOqXdIiki+q9BgE5PpUhNq0wmgtXG7uo9Vqfum/taF4K4+j31y0PXQIy6jvlg6FLQA7Fh1g6LBZTOtkpJC5tI51woKSTJd1vZvcmx85RKRhfY2bvlvSYpOMlyd2fM7MLJf1Gkku60d1vqPcCBOTIVIbYtHprJDf7tW7o3IMOMgAAGHfufodq7yZyeI3nXKnSUm+ZEJAhKf86yJ8aw1rQXNbJ7F0s+tbXXLMeE1B7O5+tWAwMsuII8iEgTyIjhOCa88bV0EEGAACtioA8udTcDKTevHE1dJDj4QN0TmIxfc7M0CUgh70KfLZi8ew65sWRDwEZkurPG1dDBxkAALQqAjJGVG00gw4y0Hy96zaELgE59A4wgxyLgcHQFSA2BGRUVRGKt5hPpoMMAABaFQG5tdRbI1nKt07ypnnlavPJdJDjMWXbztAlICM6yHGZPW0odAnIaHCIbn9c6r9fZrazpCsk7ShpWFKPu19sZsdLWiJpL0n7u3sxOf/1Kq2RPEWljUI+5u7/Xe81CMgtZKQ54lrhucbqFoV616WDDAAAAhmUdIa7321msyXdZWY3S3pA0lskfb3i/KclHe3uT5jZQpV21ltQ7wUIyJCqrG7R1dW1pN6ycHSQ49H/7EDoEpBRx9QpoUtADlM66CDHYkonq1jEpX4H2d1XSlqZfL3WzJZJWuDuN0tSaSfqzc6/J/Xt7yRNM7Op7t5X6zVG3MsPk1avpD2TvwEAAMaFmXWbWTH1p7vOuQVJ+0q6M+Pl/17SPfXCsUQHGTUUi8WlSQd5z2obiDBiATTfwEb+92hM1vcx3x+LjX30A2Pi7j2SekY6z8xmSbpW0unuvibD+S+T9FlJR450LgF5cql1E1+h2snlkFztOYxYAACAUMysU6VwfJW7X5fh/J0k/UDSu9z9DyOdT0CeRGrdxFdv5Ytaz6GDHI+tXsrubLGYt0vde0YwwbAOcjx6+0NXgGay0pDxJZKWufuFGc7fWtINks529//N8hoEZFRV7wY9iQ4yAAAI5kBJJ0u638zuTY6dI2mqpC9LmivpBjO7193/VtJpkl4i6TwzOy85/0h3X1XrBQjIkKqPXmyxOUgaHeR4zFkwJ3QJyKjNmJOMydYz2J4tFoNDzIvHZcRVLO6oc9IPqpz/z5L+OU8FBGRUHaOoNXtcRgcZAAC0KgIyqhpp05FTP7WKDnIkpkyjcxKLyw7PukoRJoJ3fYN1kGNhbcyLx+TtB70kdAkE5FY10gzxaO199I1jdWkAAICgCMita4vd8Zrp+I/+kQ5yJOZsOyt0Ccjod7NeE7oE5PDUn+4NXQIysjbm++NCBxmBNdpp3uXg/xiDagAAAMIjIE9goxyTKGQ8r6FO8xEnFekgR2JwgDvtYzGngzWrY/KC3V8UugRk1N5OBxn5EJAntobHJMorUGQI2YXUczIH8q13+1ojZQEAAEx4BOTWVzdkVyznVnft47RjP/AwHeRI9Pf2hS4BGT3XPz90Cchh3XN/DF0CMvJhD10CcnnhiGeY2aWSjpK0yt0XJsc+L+loSf2S/iDpH9x9dfLY3pK+LmmOpGFJ+7l7b63rE5BbV3nzj0K9k9LLuY209nHagv2uGk1tAAAAo3G5pK9IuiJ17GaVtpMeNLPPSjpb0sfNrEPSlZJOdvf7zGw7SQP1Lk5AblHl4Js18Kafk8Upn/wLHeRI7LjTVqFLQEbtbf2hS0AO83fZMXQJyKijsz10CWgyd7/dzAoVx36a+vZXkt6afH2kpN+6+33Jec+MdH0C8iTTrPWRX/bG/2pCNQAAAJszs25J3alDPe7ek/Myp0r6XvL17pLczG6SNFfSd939c/WeTEBufb0VXeTMc8b1vO6EO+kgR2Lj+h1Cl4CM1r+GjmRMdnjBmO3FhCYbGhoOXQJySMJw3kC8iZmdK2lQUnketEPSQZL2k7RB0i1mdpe731LrGgTkFlc5NpFnzrie2bt+dbSXAAAAaCozO0Wlm/cOd/fy3ZkrJN3m7k8n59wo6ZWSCMgoyTNnXM8nLu+ngxyJRx9aFboEZPTrZZ2hS0AOy+55NHQJyIjVfCLTvbChp5nZGyR9XNIh7r4h9dBNks4ysxkqrXBxiKSL6l2LgIxcyjPMbzjtF6FLAVpOe7uFLgE5DPNr+2h0dHaqfyMhuZWY2dWSDpW0vZmtkHS+SqtWTJV0s5lJ0q/c/f3u/pyZXSjpN5Jc0o3ufkO96xOQUVWdm/kKxWJxER1kAEAsCMetx91PqnL4kjrnX6nSUm+ZEJBRS9UNRsozzCec/esAJaER659fH7oEZDR3W7bDjcngQN1lVDGBtHXw2UI+BOQW1YTl3ArVDpZnmD937TAdZAAA0JIIyK2r7hbTIymvdFEraJ94Dh1koNmefZ7tcGPSOWVK6BKQ0dDQUOgSEBkCMmrZtFV1tXWTv3AdHWQAANCaCMioKrVVddV1k2fs/KXxLgkNMmP2LhYd7IYble0XbBu6BGQ00DcYugREhoCMumqtm/za4+6ggwwAAFoSAXmcNHjTXGEMSqkra50v/JvvjkM1aIb1z68LXQIyckaQo7J61ZrQJSCjwQE6yHHZccQzzOwjkt4rySR9w92/ZGavkPQ1SbMkLZf0Dndv6INKQB4/uW+aa8aW0BleozIQV505rvSWD/+eDjIAABh3ZrZQpXC8v0o74/3EzG6Q9E1JZ7r7bWZ2qqSPSTqvkdcgIGOz4F4Zymt1lLfd6xtjXhiaY8bsmaFLQEaDg7SQY9LeydB4LKyNXSpbzF4q7ZK3QZLM7DZJx0naQ9LtyTk3q7TFNAEZTdFbEZKrdpSPPPkeOsgAACCEByRdYGbbSdoo6Y2SisnxYyRdL+l4STs3+gIEZGym8qa8WqtYzHzhv45bTRid4UHW/4zF8uVrQ5eAHNat5v2KBav5xMXMuiV1pw71uHtP+Rt3X2Zmn1WpS7xO0n2SBiWdKulfzeyTkn6k0vhFQwjIqKvWKhaHvOUXdJABAEDTJWG4Z4RzLpF0iSSZ2b9IWuHuD0k6Mjm2u6Q3NVoDARlbyLKSxXYv++Y4VYPRYreveHROYaY1Jmueei50CciovZO402rMbJ67rzKzF0p6i6TXpI61SfqESitaNIT/YiaJOqG3UOWcEVey+NtT7qWDDAAAQrk2mUEekPRBd3/OzD5iZh9MHr9O0mWNXpyAPHlUXWauYr54WrFYXNLV1bVkpC7y9AUXNb9CjAnu3o7HQP+C0CUgB7qS8Rjsa3gUFROUux9c5djFki5uxvX5dKOaXkl71usiH3zsz+kgAwCAlsRtndhCcmPe8tB1AAAAhEAHGbVUroe8GUYsAABAqyIgo6pay7uVscxbPDqnsopFLF6171ahS0AO99/BzoexaOtghRjkQ0BGulNcyLLEm8RGIQAAoHURkCe5dKc4CcpVV7uo9LYz/0QHORLrn18fugRk9NSzw6FLQA50JWPCe4V8CMioq1ZH+cWHXhugGgAAgLFHQJ7Y6t4oN4JCk2qo2lF+8z/+Hx3kSPRt2Bi6BGQ0fRprVsdk+qwZoUtARoMDg6FLQJOZ2aWSjpK0yt0Xpo5/SNJpkgYl3eDuZyXH95b0dUlzJA1L2s/de2tdn4A8gY10o1w9owjW5edv2lWv4ntJ0k77f2c0lwcAABiNyyV9RdIV5QNm9jpJx0ra2937zGxecrxD0pWSTnb3+1I78NVEQEZar6Q9k6/Lu+otTsL2ZttPv/HU++kgR2LK9KmhS0BG/XV/XGOiGWB3tmgwL9563P12MytUHP6ApKXu3pecsyo5fqSk37r7fcnxZ0a6PhuFYJNqG4QUi8WlyYjFQ8kW1EtG250GAACoxcy6zayY+tOd8am7SzrYzO40s9vMbL/UcTezm8zsbjM7a6QL0UFGJpXjHoe+9Zd0kCMxSJcLGBM+zDrIsehbz70YMXH3Hkk9DTy1Q9I2kg6QtJ+ka8xs1+T4QcmxDZJuMbO73P2WehcCMivPIs8qfDl0KQAAAGkrJF3n7i7p12Y2LGn75Pht7v60JJnZjZJeKYmAjMZV3KBXKBaLi9hJLx7M3sVjcJCOZEwGBxgaByaYH0o6TNKtZra7pCmSnpZ0k6SzzGyGpH5Jh0i6qN6FmEFGpfLScoXUsWnFYnFJehY5QF0AAACSJDO7WtIvJe1hZivM7N2SLpW0q5k9IOm7kk7xkuckXSjpN5LulXS3u99Q7/p0kLGZ8qxxcjPeZku9pR9//TvuooMciY1r1oUuARn19bGTXkxmbj07dAnIaKCPbn+rcfeTajz0zhrnX6nSUm+ZEJBRT3mptyWV6yBvs8fXA5YFAAAwdgjIyGqzHfUOOvo2OsiRsDYmqWJhvFUAMCHw4xhZ9Kp5W1cDAABMaHSQMaJisbg0taOeJGna/C8GrAgAAGDsEJBRS3rb6S02CmHEAgAAtCoCMqpKusZLaj2+1Q7bjWM1GI3nnxxxy3lMEKxiEZfedRtCl4CM2tpZDx75EJCRW1dX1+Id9rk8dBlAy7n12l/qsLe+JnQZyIjQFZfhoaHQJSAiBGTUVbm8W6IQoBSg5RGOgbFBOG4tZrazpCsk7ShpWFKPu19sZkskvVfSU8mp57j7jclzzpb0bklDkj7s7jfVew0CMkay2fJuUik0Dw/yq+BYTJs1M3QJyKi93UKXgBz6N/aFLgEZtXXQ7W8xg5LOcPe7zWy2pLvM7ObksYvc/Qvpk83spZJOlPQySS+Q9DMz293da/4vJ5Z5Qz1Vl3ervGEPAABgvLj7Sne/O/l6raRlkhbUecqxkr7r7n3u/kdJv5e0f73XoIOMmtI36lWOWsxdeGmospCTtdGVjEVnJz2LmAwNsH1xLHiv4mJm3ZK6U4d63L2nxrkFSftKulPSgZJOM7N3SSqq1GV+TqXw/KvU01aofqAmIGNEvUlILhSLxUXlg3+36Lcs8wYAAJouCcNVA3Gamc2SdK2k0919jZn9u6RPS/Lk7y9KOlVStU6R17s2Abl19VYs01Zo5CLlcQo2ColX5/TKeywxUd124/2hS0AOM7aeE7oEZNTOiiMtx8w6VQrHV7n7dZLk7k+mHv+GpP9Kvl0haefU03eS9ES96xOQW1TlnHC9NY0buR4bhQAAgBDMzCRdImmZu1+YOj7f3Vcm3x4n6YHk6x9J+o6ZXajSTXq7Sfp1vdcgIKOuGsu80UGOyMDG3tAlICPeq7hMnzMrdAnIqJ8Z5FZzoKSTJd1vZvcmx86RdJKZ7aPS+MRySe+TJHf/nZldI+lBlVbA+GC9FSwkAjIqVAnEm80el9FBBgAAIbj7Hao+V3xjnedcIOmCrK9BQEalzdY9Hu1oBgAAQGwIyBhJ5c1+khixAAAArYuAjLpqbQpyxElFRiwiMXPr2aFLQEZrnlkdugTkMGX61NAlICN2PUReBGRI2mz2uBC4FAAAgKAIyCibViwWl1Qbp6i2ksW2e31jvOoCJg3Wao3L9JkzQpeAjNr4bCEnAjKqqgjFW6xkceTJ9zBiAQAAWhIBGbVsWs2ichc9iZv0YtLP2rrR2GrutqFLAFrS9FnTQ5eAJjOzSyUdJWmVuy+seOxMSZ+XNNfdnzaz10taKmmKpH5JH3P3/653fQIyKpVXrSiUD1S7UY91kAEAQECXS/qKpCvSB81sZ0mvl/RY6vDTko529yfMbKGkmyQtqHdxAjI2Uw7DXV1dS2rtoidJ8/a+bFzrQuM2rtsQugRk1LthY+gSkMO0mVV/PGICGuhnJ71W4+63m1mhykMXSTpL0vWpc+9JPf47SdPMbKq711zehICMWnol7VltFz1JeuOp99NBBgAAE4aZHSPpcXe/z6zaRnuSpL+XdE+9cCwRkCelGp3hQvqbYrG4tNrscdk+x/1kbIpD0638419Cl4CMzNpCl4AcHn94eegSgJZktlu3pO7UoR5376n/HJsh6VxJR9Y552WSPlvvnDIC8uS02XbSUvUtpcshWTXGLAAAAJotCcN1A3EVL5a0i6Ry93gnSXeb2f7u/hcz20nSDyS9y93/MNLFCMgYyRZhWpLec8HTjFhEgq5kPPp72e0rJtNmzQxdAjJq62Ad5Fbn7vdLmlf+3syWS+pKVrHYWtINks529//Ncj0CMjZTpWNcqNZFZsQCAACEYmZXSzpU0vZmtkLS+e5+SY3TT5P0Eknnmdl5ybEj3X1VresTkFFps45xEo63uFnvo19ZRwc5En/u7w9dAjKytpo3lWACGujjsxWLtiE6yK3G3U8a4fFC6ut/lvTPea5PQEZdtW7WO3jRrWEKAgAAGGMEZIyo2kYhR5xUpIMcic6pU0KXgIxmbjUrdAnIYah/MHQJyGhwgHWQkQ8BGXXVWsVi692+FqAaAACAsUdARtkWW0wnqq5icdR7H6SDHIm1z6wOXQIymrvz3NAlIIf1z/PbmVi0TyHuIB/+i4GkzbeYTv4ud44Lled2dXUt3nHfKyoPAwAAtAQCMmqZViwWl9TYTa/A3fbx4L2Kx9DgcOgSkMPQ0FDoEgCMEQIy6qp2g17SXQYAAGhJBGRUqjWLvEmxWFx6whnLPzNuFWFUhulyRWP98+tDl4AchlgZIRrTZ7NCTCsxs50lXSFpR0nDknrc/WIzWyLpvZKeSk49x91vNLN3SPpY6hJ7S3qlu99b6zUIyNhMeha51goWkrTrId8f17oAAAASg5LOcPe7zWy2pLvM7ObksYvc/Qvpk939KklXSZKZvVzS9fXCsURARn1VV7CQpJPOeoxVLCKx7tk1oUtARlOmTw1dAnJoa2d3tlise+750CWgidx9paSVyddrzWyZpAUZn36SpKtHOomAjEwqu8m7HXZdwGoAAECrMrNuSd2pQz3u3lPj3IKkfSXdKelASaeZ2bskFVXqMj9X8ZS3STp2pBoIyJNHb2o1ikKW8yXtmfp+s27yWz/yKB3kSDAnGY/OrWeHLgE59G/sC10CMrK2ttAlIIckDFcNxGlmNkvStZJOd/c1Zvbvkj4tyZO/vyjp1NT5r5a0wd0fGOnaBORJIr0aRZVl26qeXzGHXEh3kQsHXjNWpQIAANRlZp0qheOr3P06SXL3J1OPf0PSf1U87URlGK+QCMgY2ab1kCXtWSwWF0nSCWcsp4McibYO5iRj0TmVndlisnHdhtAlAJOSmZmkSyQtc/cLU8fnJ/PJknScpAdSj7VJOl7Sa7O8BgEZ9Wwas0g6yps2DaGDHJfhQZZ6i8VAX3/oEpDDjDkzQ5eADDasWa9pM6aHLgPNc6CkkyXdb2b3JsfOkXSSme2j0ojFcknvSz3ntZJWuPujWV6AgIyaymMW6e/LXzODHA/CcTwIx3EhHMeDcNxa3P0OSdW2ib2xznNulXRA1tcgICOTylUsdj/ih+GKQS4d/No+Gtz0FZeZ3FQZj05pkBuWkQMBGSPZtLNeef5Ykt6+eAUdZABAFAjHyIuAjLpSO+stTo9bHN7982A1IZ/SvQyIwcb1G0OXgBx61/F+xWLDmnWhS0BkCMjIJD1/LEkf79lIBxkAALQkAjKqqpw5rnTMR381jtVgNJ578tnQJSCjeS+cF7oE5PDMilWhSwAwRgjIqGWznfMq/dNVg3SQAQBASyIgT3J1OsWFeo+/8UO/GNvC0DTtnXzMY9HRyaYuMZm93dahS0BG7sOhS0Bk+JcTVTvFqRvyqj7+yW/100EGAADjzsx2lnSFpB0lDUvqcfeLU4+fKenzkua6+9NmVpC0TNLDySm/cvf313sNAjJq2bS8m7RlJ/no038Zpiqgha19bn3oEpBDfy/rVsfC2ljNp8UMSjrD3e82s9mS7jKzm939wSQ8v17SYxXP+YO775P1BQjIqKrK8m6brYP8qSsH6CADAIBx5+4rJa1Mvl5rZsskLZD0oKSLJJ0l6frRvAYBGXWlgvKSdBeZGeR4tLW1hS4BGU2dzq6HMaErGY/2dub7Y2Jm3ZK6U4d63L2nxrkFSftKutPMjpH0uLvfV2UPgF3M7B5JayR9wt3rbuhAQJ6celMzxoWsz5G0Z7mLzAwyAAAYC0kYrhqI08xslqRrJZ2u0tjFuZKOrHLqSkkvdPdnzOxVkn5oZi9z9zW1rk1AnoTSm36kd8cb6Tnp3fQWHnXD2BSHplu/em3oEpDRNjtsHboE5LD9C+aGLgEZDQ4Mhi4BTWZmnSqF46vc/Toze7mkXSSVu8c7SbrbzPZ3979I6pMkd7/LzP4gaXdJxVrXJyAjs3SwXrTkSTrIAABg3FkpAV8iaZm7XyhJ7n6/pHmpc5ZL6kpWsZgr6Vl3HzKzXSXtJunReq9BQMYmI+2el7bbYdeNcTVoFtb/jEfnFH4kx+TR+x4JXQIyamMGOTIvGumEAyWdLOl+M7s3OXaOu99Y4/zXSvonMxuUNCTp/e5ed5tZfhojre7ueWknnfUYHWQAADDu3P0OSXXvknX3Qurra1Uax8iMgIya6nWUX3xorv/OENBgP7N3sWhvZ8WRmEyfMyt0CciocworxCAfAjKqrmiRhOM902sfp73tzD/RQQYAAC2JgDzJ1VnRYpqk5cnxLTrJ+xz3k3GoDs3w+MBA6BKQ0dAQ8+IxYW3deHAvBvLi93mop9xd3jV0IQAAAOOFDjLSNhu3qDVeIUmnfmoVIxaRmLH1nNAlIKM5W2daRAYTxHOzZ4YuARn1bugNXQIiQ0DGJhXjFj+rt4nI3kfXWkkFAAAgbgRk1NJRb8m391zwNB3kSDAnCYyN9c+vC10CMurdsDF0CWgyM7tU0lGSVrn7worHzpT0eUlzk41CtpP0fUn7Sbrc3U8b6foEZNSyvPwFN+kBAIAJ5nJJX5F0Rfqgme0s6fWSHksd7pV0nqSFyZ8REZBRy0P15pHf/emn6CBHYsMaulyx6Oyk2x+T9c+vCV0CMmrv7AxdAprM3W83s0KVhy6SdJak61Pnrpd0h5m9JOv1CcioqmIeeXHlPPIrjv3xuNcEAABan5l1S+pOHepx954MzztG0uPufp9Z3Y32RkRAxojSYbnsU1cO0EGOxCu7/iZ0Ccjorl+vCl0Ccvj25+eGLgEZrdVWoUtADguv8R5JIwbiNDObIelcSUc2owYCcguptzV0sx19+i/H42UAAACyeLGkXSSVu8c7SbrbzPZ397/kvRgBubVMq7fyRDO9/h130UGOxNbztg1dAjLqnMqcZEw22KzQJSCjvqEpoUvAGHP3+yXNK39vZssldbn7041cj4CMTCq709vs8fWA1QAAgMnMzK6WdKik7c1shaTz3f2SOucvlzRH0hQze7OkI939wVrnE5CRdTRjs5Usjjz5HjrIQJP58HDoEpBD7/CM0CUgo74hfjvTatz9pBEeL9T7fiQEZEgZRjMqV7LYdq9vjHVNAAAAQRCQkUnlShZHvfdBOsiR2LiOHaRise6550OXgBzmD43LPdFogg1T5oQuAbnMDl0AAbmV5VjVopDzfO247xUjnwQAABAhAvIImrh0WqEJ18gr06oWqdGJzKtgLFryJB3kSDyz8tnQJSCjwb7+0CUgh+c7dwpdAjJaP8S8OPIhII+sKUunVe5EF6P0/1hYeNQNgasBAAAYGwTkCOQdlWhAbxLgNz2/xmtuWsniPRc8TQc5EqytGw9rawtdAnJoE6uOxMLMQ5eAyBCQ45B3VCKX8g14Fc/f4jXTK1nsc9xPGnkpAACACY+AjLTeVEguVD6YXsniTe95gA4y0GRt7e2hS0AORgcZCMbMLpV0lKRV7r4wOXa8pCWS9pK0v7sXk+PbSfq+pP0kXe7up410fQIyNkkH4HJQrjXe8cK/+e74FYZRaSd0RWPds2tCl4Ac+n1q6BKQ0VTr17rBmaHLQHNdLukrktLLaj0g6S2SKrf77ZV0nqSFyZ8REZBRy6a55PQOemVv+fDv6SADAKJAOG497n67mRUqji2TJDOrPHe9pDvM7CVZr09ARlWpueTF1WabZ+/61XGvCWh1h755v9AlIIe5fXeHLgEZTZ0+N3QJyMFs625J3alDPe7eM541EJBRV+UOemWvO+FOOsgAAKDpkjA8roG4EgEZI6o2hzx34aWBqkFevRvYajoWU6eyzFtM+jr5tX0seoenhy4BkSEgt5beinGIQqMXqgjFW8wh/92i39JBBgAALYmA3EIqxyFGuXvfpnWQq61oQQc5Hm1tNvJJmBCMtyoqUwZ7Q5eAjDqnDoQuAU1mZldLOlTS9ma2QtL5kp6V9GVJcyXdYGb3uvvfJucvlzRH0hQze7OkI939wVrXJyAjiy1WtKCDDAAAQnH3k2o89IMa5xfyXJ+APEnk2K66rFD+otqKFjsfcHUzywMg6Ykn1ocuATlMfcnq0CUgozltrAcflxeGLoCAPIlk2q66rNp4RnqE47jTHqGDDAAAWhIBGTXV6zrPf9W3x7kaNGqgrz90Ccho7twZoUtADr3TtwldAjLq6+CzhXwIyKilV9Ke1XbRk6Sj37eMDjIAAGhJBGRUVSwWl6bHLCq7ybsc/B8hykIDhoeGQpeAjPoHhkOXgBw6B1ljPBZDbZ2hS0BkCMioJ72u8mZrIR//0T/SQQYAAC2JgIya0jfldXV1LUl3kVnFIh6DA4OhS0BG7axZHZVhY2WEWAwbu1S2GjP7iKT3SjJJ33D3L5nZ9yTtkZyytaTV7r5PI9cnICOrzWaSWcUCAACEYGYLVQrH+0vql/QTM7vB3d+WOueLkp5v9DUIyK1tsxGJ0VwomUnetA7yCWf/enSVYdz86rZHQ5eAjO79Je9VTNb9zXahS0BGQ23EnRazl6RfufsGSTKz2yQdJ+lzyfcm6QRJhzX6AvwX08IqRySaeb3PXTtMBxkAAITwgKQLzGw7SRslvVFSMfX4wZKedPdHGn0BAjJyKc8hn3gOHeRYtLczJxmL/o2sWR2TNmdmPBZDxJ2omFm3pO7UoR537yl/4+7LzOyzkm6WtE7SfZLSN9ycJGlUN0vxX8wk08CW05VeIOmJJpUDAACwmSQM94xwziWSLpEkM/sXSSuSrzskvUXSq0ZTAwF58sm15XQtH/zCakYsIjFj9vTQJSCj6bNG879dMd42tLHGeCw2DvHZajVmNs/dV5nZC1UKxK9JHjpC0kPuvmI01ycgY0TVus6vPvFngaoBAADQtckM8oCkD7r7c8nxEzXK8QqJgIyUOuMXhcotp+kgA81XuvEasegdnhq6BGTUOzgldAloMnc/uMbxRc24PgEZaVXHL9LLu5XRQQYAAK2KgDx5lNdELqQPVnSNC6oivbxb2WeuGaKDHInfPzwQugRktM32M0OXgBym2OrQJSCj9c69GMiHgDxJlENulfWQN3WNq62VXGvs4u/PurPpNQIAAEwEBOQJpkYgLYzTy/dWCclbzB9L0qeuHKCDHIm1q9eHLgEZTZveGboE5DDo/BMaiyHWrEZOfLonni3mgJuxC14W1UYpqs0fS9LRp/9yPEoCAAAYdwRk1FUtNEvSl37kdJAj4cMeugRktMP8WaFLQA5b2R9Cl4CMOqYOjnwSJpDw92MQkCefyjGKQp4nl0dA3vnJ3zSzJgAAgAmDgDzJVHaEu7q6luTcfrpQLBYXffGHdJBj0d/bH7oEZOROtz8mLuZagRDMbJqk2yVNVSnLft+9lEvM7EOSTpM0KOkGdz+rkdcgIEPKsf10eSb5pE/QQQYAAEH0STrM3deZWaekO8zsx5KmSzpW0t7u3mdm8xp9AQIycil3oE+78Hk6yJGYNjPrLwcQWl/fcOgSkINbW+gSkNGQt4cuAU3kpV+3rUu+7Uz+uKQPSFrq7n3JeasafQ0+3ehVjjnkWqtaAAAANIOZdZtZMfWnu8o57WZ2r6RVkm529zsl7S7pYDO708xuM7P9Gq2BDvIkVywWl9YLvFXmkwvFYnERHeR4MNcaD2OkFRgTbeK3MzFx9x5JPSOcMyRpHzPbWtIPzGyhSrl2G0kHSNpP0jVmtqs38A8hARkj2Ww+udxBPuDttwQsCQAAQHL31WZ2q6Q3SFoh6bokEP/azIYlbS/pqbzXJSBDqr6DXlkh/U15BvnUT62igxwJoy0ZjWnTmZOMiTldyViw4khrMbO5kgaScDxd0hGSPqvSXPJhkm41s90lTZH0dCOvQUBGzc1ApM138UuPW+x99I1jXxgAAMCW5kv6lpm1q3Q/3TXu/l9mNkXSpWb2gKR+Sac0Ml4hEZCRz6Zxi0VLnqSDHAlmkOPR3kaXKyZTBzeELgEZ9XVOD10Cmsjdfytp3yrH+yW9sxmvQUDGSNLjF0d3dXVJkvY57ifBCkI+HZ18zGPxwD0rtXDf+aHLQEZDbXy2YjFz6Hmtbd8mdBmICJ9u1JUev+jq6iqUO8jvueBpOshAkxGOgbFBOEZeBGTk8VC5m3z5d/8rcCnI6oIebiSKxc7zuUkvJo8NvSh0Ccho3capoUtADnuFLkAEZOSQ7iY/8Pu/0EEGAAAtiYCMTCo3DPn2964PWA3ymDJtSugSkJEZN1TGpH+If0Jj0TvAb2eQD5/uSaDKbniNKBSLxUXlb5b94XE6yAAAoCURkCeHzXbDa0R5B73y91+5kp30YvHofb8NXQIy2urY7UOXgBzmT29o/wEEMKNjTugSkMtWoQsgICObys1EfvXQ83SQAQDAuDOznSVdIWlHScOSetz9YjNbIum9+uvW0ue4e0M7mxGQkUnlmAYdZKD52BU8LlN9Y+gSkFFnOxuFtJhBSWe4+91mNlvSXWZ2c/LYRe7+hdG+AAEZNVWE4s1mkOkgAwCAENx9paSVyddrzWyZpAXNfA0CcmQavOGu0ODLbZpdrpxB/uK3bm/wkhhvxvbF0djY3xa6BOTQ7oOhS0BGM9ro9sfEzLoldacO9bh7T41zCyptO32npAMlnWZm75JUVKnL/FwjNRCQ45P7hrt0sK3yWL3AXSh/UTmDfNvvNtBBBgAATZeE4aqBOM3MZkm6VtLp7r7GzP5d0qclefL3FyWd2kgNBGTUDNxdXV1LagXoz152x1jXhSbpnMo6yLEYHKLbH5PetpmhS0BGG4dHu9IpJhoz61QpHF/l7tdJkrs/mXr8G5Ia3vaXgIx6eiXtmZ49Lrvl/l46yAAAYNyZmUm6RNIyd78wdXx+Mp8sScdJeqDR1yAgo6Zisbi0cva47P996TcBKkIj2trZQSoWG/voIMekzYZCl4CM2m04dAlorgMlnSzpfjO7Nzl2jqSTzGwflUYslkt6X6MvQECeHHrrzCEX6j2xcva47Dt3OB1kAAAw7tz9DknVOgoNrXlcDQF5EqgVcqX6N/BVOXfTPPKZ/0oHORY+7KFLAFrSoHeGLgEZDTq/SUM+BOQ4pDvAhbF8oZFWtSjPI3/3F3SQAQBAayIgRyDdAc7T8W1QvVUtNs0jf/Jrd45xGcDks2Il6+rGZOoLWVs3Fv3Gaj7Ih4CMyvnkQq0T00H9R8UhOsgAAKAlEZAnucr55KRL3CPpiXrP+8S/00GORfsUPuaxaG9nFYuYrPZtQpeAjNYNzAhdAiLDvqbYTBKYHw1dBwAAQCi0lrCFeqtelP3wN4xYxOLERfuELgEZ7bxdX+gSkANr68ZjRkdv6BKQy8i7VJrZpZKOkrTK3Rcmx14h6WuSZqm0DvI7ki2oXy9pqaQpkvolfczd/7ve9QnILWiElSiaghELAAAQ0OWSviLpitSxb0o6091vM7NTJX1M0nmSnpZ0tLs/YWYLJd0kaUG9ixOQW1PNlSia5XPXDtNBjsScWaErQFYPPz41dAnIoX+HbUOXgIyGnPn+mLwywznufruZFSoO7yHp9uTrm1UKwue5+z2pc34naZqZTXX3mr+2IyDHp96ueGWFZrxQvU70CWf/uhkvAQAAsBkz65bUnTrU4+49GZ76gKRjJF0v6XhJO1c55+8l3VMvHEsE5OhkmQ9Or1c8Sps2Bql0wXeZQY7FuvXMScair59dD2MyNI+uZCwGh3ivYpKE4SyBuNKpkv7VzD4p6UcqzRtvYmYvk/RZSUeOdCECcgvKEqKzqBe0jzuTGWQAADBxuPtDSsKvme0u6U3lx8xsJ0k/kPQud//DSNciIKOmekH7+I/+kQ5yJKbOYK41Fs88/nToEpDDn/9U7be3mIgGB4dCl4Acjtt/+4aeZ2bz3H2VmbVJ+oRKK1rIzLaWdIOks939f7Nci4CMhla92OXg/xijagAAAOozs6slHSppezNbIel8SbPM7IPJKddJuiz5+jRJL5F0npmdlxw70t1X1bo+ARlSA6tenPFv6+kgR6Kzsz10Ccho1WNPhi4BOWy97fTQJSCjgQE6yK3G3U+q8dDFVc79Z0n/nOf6BORJpE6nuJDzfB1y6m3NKwwAAGACISBPLlU7xXVWvKjZWX7f0mfpIEeio4Md5WPRv5HdvmIyZQqfrVi4s0IM8iEgQ6q9tnKh8kC5q/yqt/50rGsCAAAIgoCMmqtV1FjmrVAsFhe991+eoYMciWEaJ9Ho6OwMXQJyGBriwxULZzl45ERARk3VgnM5NO/7lptClAQAADDmCMgtruJGu8Jor1cOzRf/p9NBjsRDDz0fugRk5LS5olJ4IWuMx+L5NXy2kA8BufVtutEuy/bTWddEPvn834y6MAAAgImIgDyJ1QjDhWKxuGik59JBjkdHJ3fax2LarBmhS0AO28ymKxmL6VMtdAloMjP7qKT3SHJJ90v6B0kzJH1Ppd+YL5d0grs/18j1CciT2xbLuNW4MW8Lr3nnf49VTRgDa57dELoEZDTQNxC6BOSw/PHQFSCLHedKjz7GZiHxqB9PzWyBpA9Leqm7bzSzaySdKOmlkm5x96VmtljSYkkfb34FmHRqrWhR6UNfWkMHORKE43gQjuNCOI4H4bgldUiabmYDKnWOn5B0tkrbT0vStyTdKgIymq3ePPKrT/zZOFeDRq15dm3oEpDR8CD/iMdk+nTGl2IxfXqb1m9gJCYWZtYtqTt1qMfde8rfuPvjZvYFSY9J2ijpp+7+UzPbwd1XJuesNLN5jdZAQJ5cKjcEKaQfrBKIa84jf/ALq+kgAwCiQDiOSxKGe2o9bmbbSDpW0i6SVkv6DzN7ZzNrICBPIpXjE1VmjTebSU4/Xhme9z76xjGpEc3Hr+3jwTJvcRkYYKOQWPBetZwjJP3R3Z+SJDO7TtLfSHrSzOYn3eP5klY1+gIEZNST7jhv1k0+9VOr6CADAIAQHpN0gJnNUGnE4nBJRUnrJZ0iaWny9/WNvgABeXKrO3KR7jhXrm5x0Cm3jnFpaJbnnmL74lg8v6ovdAnIYavZLB0Wi87O9tAloInc/U4z+76kuyUNSrpHpZGMWZKuMbN3qxSij2/0NQjIk1iGkYua557+5XV0kAEAQBDufr6kyizSp1I3edQIyKhqpB313nDaL8axGozGzK1mhi4BGa19ZnroEpDD1E7mWmPR10+3H/kQkJFWc+a40icu76eDDAAAWhIBGZtUzBwvST9W2VE++vRfjl9hwCQxdWbNX9pgAhoapisZiyncioGcCMioZYsb+NId5U9dOUAHGQAAtCQCMqqqcgPfZqtYbPWSfxv3mtCYIXZni8auL39x6BKQw45bsepILNb1EXfiEn7VEf6LQSaVgfnwE39NBxkAALQkAjI2M9LqFWXb7PH1cagGzdDeyfBdLFb8/vHQJSCHKR2zQpeAjKYOtYUuAbmM3EE2s49Keo8kl3S/pH+QdK5KW1APq7SL3iJ3f6KRCgjIkLRZMK67ekXZ699xFx1kAAAw7sxsgaQPS3qpu280s2sknSjp8+5+XnLOhyV9UtL7G3kNAjLKphWLxSWVs8a17Pm3PxqHktAMqx57MnQJyGjD6jWhS0AO/YPh5ySRzeAwHeQW1CFpupkNSJoh6Ql3T/8QnalSd7nhiwObVM4a1/LOc5+ggwwAAMaduz9uZl9QaTvpjZJ+6u4/lSQzu0DSuyQ9L+l1jb4GARlbyDKHvPsRPxyfYjBqQwMDoUtARtZGlysmK1dPDV0CMuofDF0B8jCzbkndqUM97t6TenwblWaNd5G0WtJ/mNk73f1Kdz9X0rlmdrak07TldtSZEJBRdlDWXfQk6e2LV9BBBgAATZeE4Z46pxwh6Y/u/pQkmdl1kv5G0pWpc74j6QYRkDFKHcVicYm0+S56tbrJC4+6YdwKw+hMnTE9dAlAS5ozgzXGY7Gxn9/OxGXEXSofk3SAmc1QacTicElFM9vN3R9JzjlG0kONVkBARjXpXfQKKv0Hxh64AAAgOHe/08y+L+luSYOS7lGp4/wdM9tDpWXe/qQGV7CQCMioIn2jXtJB3rNy5OI9FzzNiEUk2tq50z4Ww8MN33CNADb00ZWMRW//iB1JRMbdz9eW4xN/36zrE5BRV7FYXFpt6bd9jvtJoIoAAADGFgF5/PRmWV9YpZGGMTHC6hRb13petaXfjn7fMjrIkVj9l6dCl4CMOqczyRSTbWayNEIsnhpiR1HkQ0AeJ1nXF84Yohs1rXwjXpXXPbTi+7pLvc1/1bebWhgAAMBEQUBGLTXDtCQdfuKv6SBHYs7cbUOXgIzWr14bugTk0DfIDHIspk8dDl0Ccgn/2SIgI7N0V3mrl/xb4GoAAADGBgF5Asuyo10GhSaUUrapq3zESUU6yJFgFYt4DA+xrm5MegfCd7mQzSAfLeREQJ7Y6o45ZNHsmeZyaN96t68187IAAAATBgEZNVXpYBckqVgsLjr0rb+kgxwJd2bvAExu7TT7W4qZ7SzpCkk7qrQpSI+7X2xmx0taImkvSfu7ezE5fztJ35e0n6TL3f20kV6DgIx6NutgJ93og7q6upbMKnw5WFEAAGBSG5R0hrvfbWazJd1lZjdLekDSWyR9veL8XknnSVqY/BkRARl59EpaUSwWl7z+HXfRQY4EM8jA2GhvY+fDWDhvVWTq73zo7islrUy+XmtmyyQtcPebJcnMKs9fL+kOM3tJ1gr4pQPKlo90QrKW805jvFYzAACYxMys28yKqT/ddc4tSNpX0p3NrIEOMsqWV8wcF2qct6JYLC5hHWSg+do7+ZEcE7qS8Rgart+RxMTi7j2SekY6z8xmSbpW0unuvqaZNdBBRtq0YrG4JJk7Xq7qIfkhOsgAACAkM+tUKRxf5e7XNfv6tCuQS3nL7IOP/Tkd5EhMmzUjdAnIaNY2W4UuATlM6aCFHIth3qrI1O/4W2nI+BJJy9z9wrGogICMEVXbsGT6gosCVQMAACa5AyWdLOl+M7s3OXaOpKmSvixprqQbzOxed/9bSTKz5ZLmSJpiZm+WdKS7P1jrBQjIyGKLDUvoIMejb31v6BKQEd3+uAwy1xqNdRuZKG0l7n6HareZf1DjOYU8r0FARj2DybxxobKLTAcZAAC0KgIy6rmjWCwuSULyZl3kI04q0kGOhLXR5YoF71VcpnWyS2Us+gf4bMUl/PtFQEYWvZL2lP46j7ztXt8IWxEya2ejkGg4dxJFZWAw/D/iyGb6lGGt3cjPQmTHUA5q6VWyzFuyckV5ebc9K+eRAQCYyAjHyIsOMqoqFotL0+sdl5d36+rq+llXV9eS7V72zWC1IZ+hoaHQJSAjRizi0k6LKRptbAsemfA/C/l4I68VdJABAEAro4OMvB7q6upaMm3+F0PXgYxmbD0ndAnIiA5yXJ5dx6/tY7F+Y+gKEBs6yMilWCwupYMMAABCM7N2M7vHzP4r+f4VZvZLM7vfzP7TzBruENFBRtmmlSpSDkrPIafNXXjpmBeE5lj33POhS0BGA1OnhC4BObDVdDzaZvDbmRb1EUnLVNohT5K+KelMd7/NzE6V9DFJ5zVyYQIyJG15U16io1a3+O8W/ZZ1kAEAQBBmtpOkN0m6QNL/Sw7vIen25OubJd0kAjLGwPL0N+nd9FgHGWi+4UFWHInJ4BBdyVj0DYSuAHmYWbek7tShHnfvqTjtS5LOkjQ7dewBScdIul7S8ZJ2brQGAjLqWS5tFowLxWJxkSQdefI9dJABAEDTJWG4MhBvYmZHSVrl7neZ2aGph06V9K9m9klJP5LU32gNBGRkMS3ZcnpxeQxj9q5fDVwSsmpjJ71odEzhR3JMZk1nq+l4sCZBizlQ0jFm9kaVGnhzzOxKd3+npCMlycx2V2kEoyH8NEY9vUkgLkh/3SxEkl53wp10kAEAwLhz97MlnS1JSQf5THd/p5nNc/dVZtYm6ROSvtboaxCQUVNq97wl6fljSZqx85dClYWc2js7Q5eAjIaHWRUhJn0DzCDHghnkSeMkM/tg8vV1ki5r9EIEZGTRK2nP8vyxJL32uDvoIAMAgKDc/VZJtyZfXyzp4mZcl4CMESVLwC1OLwO36yHfD1gR8pg1Z0boEpDRit8/HroE5NDRTsc/FjOnjXwOJpLwv50hICOT9PyxJJ1wxnI6yAAAoCURkDGiyvljSSoceE2gapDX0BB32gNjYd1GVkaIBUuMIy8CMrZQJRAX0vPHkvTWjzxKBxkAALQkAnLr603NDhcyPmdaeovpyvljSZr/qm83ozaMg6EhWiex2H7B3NAlIIeZ0/jtTCzW99LtRz4E5BaXnh2uDLlVbLbuMQAAwGREQMYm6XWPKx7arKMsSW/+x/9jxCISnVNZBxkYC7Om8tuZWAx7+FURkEf998vMdpZ0haQdJQ1L6nH3i81sW0nfU6nRt1zSCe7+nJl1SvqmpFeqlH2vcPfP1HsNAjKq6a0IyYXKueSd9v/OuBcFAAAgaVDSGe5+t5nNlnSXmd0saZGkW9x9qZktlrRY0sclHS9pqru/3MxmSHrQzK529+W1XoCAjC1ULumWhOXNush0kOMxODAYugRkNDzITGtMBoeZa43FlA7WrI5L/Q6yu6+UtDL5eq2ZLZO0QNKxkg5NTvuWShuIfFySS5ppZh2Spkvql7Sm3msQkJFFr6Q9011kOsgAAGAsmFm3pO7UoR5376lxbkHSvpLulLRDEp7l7ivNbF5y2vdVCs8rJc2Q9FF3f7ZeDQRkjKi8k55S200fd9ojdJCBJmPFkbgMDjPXGgvWQY5LEoarBuI0M5sl6VpJp7v7GrOan8n9JQ1JeoGkbST93Mx+5u6P1noCvx9CJsnYxUNdXV1LMqyGAQAAMGaSG++ulXSVu1+XHH7SzOYnj8+XtCo5/nZJP3H3AXdfJel/JXXVu/5oOsiVN3K1qkLoAiaK9Gzywcf+nA5yJNra20OXgIw6p04JXQJy+MVdvaFLQEbsKBqXE14zq+7jVmoVXyJpmbtfmHroR5JOkbQ0+fv65Phjkg4zsytVGrE4QNKX6r1GwwG58kauVjVJ/kfAFqptL502fcFF41gNAADAJgdKOlnS/WZ2b3LsHJWC8TVm9m6VQvHxyWNflXSZpAdUugPwMnf/bb0XYAYZtWyx9nHaIW/5BR3kSLR10EGOBe9VXGbOZI3xWAyyQkxLcfc7VHupi8OrnL9Ofw3LmRCQsZlU57hQ5dgmM1/4r+NbGAAAwDghIKPStGKxWHkj3hbd5NedcCcd5Ei0M4Mcjb71G0OXgBxmzOCzFQ/eK+RDQEYt6ZswC+WD5W7y7F2/GqImAACAMUdARlXpmzC7uroWp8NysVhcxAxyPNraWKs1FsZ7FZXBQXZni8Ww817FJfwqxARkjKhaWGYGGQAAtCoCMnIph2V20otH3wbWao3F4MBg6BKQw6yZ4btcyKavnw4y8iEgo65a6yHvfMDVAaoBAAAYewRkjKTqeshves8DdJAj0beBlRFiMdhPBzkmUzqZGY8Fi/m0HjP7qKT3SHJJ90v6B0mflnS0pH5Jf5D0D+6+upHrE5AnsRrd4UKW5+ywz+VjVBUAAEBtZrZA0oclvdTdN5rZNZJOlHSzpLPdfdDMPivpbEkfb+Q1CMiT2xbd4a6uriUVwbmQHN+0gUixWFx09PuW0UGOxPAws3exGB4aCl0CchjisxUNPlotqUPSdDMbkDRD0hPu/tPU47+S9NbRXByotCk4p5Z3K28gsrirq2sJHeR4dHTyMY9FR2eHNq5ZF7oMZDTIRExUhthtOhpm1i2pO3Wox917yt+4++Nm9gVJj0naKOmnFeFYkk6V9L1Ga+AWXIykvGFIQSqtYlFtJhnA6BGOgbFBOI6Lu/e4e1fqT0/6cTPbRtKxknaR9AJJM83snanHz5U0KOmqRmugtYS6ysu6VY5ebLvXN4LWhez4tT0wNrjxKx5Mw7ScIyT90d2fkiQzu07S30i60sxOkXSUpMPdG98hhg4ysuqVtGexWFxCBxkAAAT0mKQDzGyGmZmkwyUtM7M3qHRT3jHuvmE0L0AHGZkUi8Wl6S2ndz/ih2ELQmZ/XvbH0CUgo+lzZoUuATk8t5rfzgBjo348dfc7zez7ku5WaZTiHkk9kn4naaqkm0u5Wb9y9/c3vwJMRr2S9qz2QHrL6bcvXsEqFgAAIAh3P19SZRZ5SbOuT0DGZpJO8ZJaj5fnkF986LXjVxRGxdrYzCAWzIvHxRhSjMbwEEPIyIeAjBFVrotcLBYXve3MP9FBBgAALYmAjCzS6yIv7urqWrJgv4ZXTsE4M9pc0eC9iks7v52JxkA/67whHwIyqqq2m5701znkYz/wMB1kAADQkgjIqGWz3fQqArPmv+rboepCTp1Tp4QuARkxLx6XqVPp+MeCbcGRFwEZWZTXQF5UPnD0+5bRQQYAAC2JgIxqNlvqrXINZEna4/XXh6gLDWhnu69obFw/qnXtMc7WrBkMXQIyGsWGapiAzGxnSVdI2lHSsKQed7/YzD6t0hbUw5JWSVrk7k+Y2RRJX5fUlTz2EXe/td5rEJAnl96KJdwK1U6qttRbeg1kSXrH2Y/TQQYAACEMSjrD3e82s9mS7jKzmyV93t3PkyQz+7CkT0p6v6T3SpK7v9zM5kn6sZnt5+41794kIE8ilSG33nrHFedtNn8sSbse8v3mFYYx1behN3QJyKhv/cbQJSCH3l46yLGoHYMQI3dfKWll8vVaM1smaYG7P5g6baak8q8OXirpluT8VWa2WqVu8q9rvQYBGbWku82F9PyxJJ1wxnI6yAAAICgzK0jaV9KdyfcXSHqXpOclvS457T5Jx5rZdyXtLOlVyd8EZOST7jZXzh9L0rT5Xxz3mtCYmdtuFboEZHTIMV2hS0AO227DP6GxGKKDHBUz65bUnTrU4+49Vc6bJelaSae7+xpJcvdzJZ1rZmdLOk2l7agvlbSXpKKkP0n6hUpjGjXx6caIKkczJOmgo2+jgwwAAJouCcNbBOI0M+tUKRxf5e7XVTnlO5JukHS+uw9K+mjqub+Q9Ei96xOQsZlq88bVzNj5S2NfDJrCWf8zGs88zSoWMdl5Ab+dicXAQOgK0ExmZpIukbTM3S9MHd/N3cvB9xhJDyXHZ0gyd19vZq+XNFgxr7wFAvLEs9ns73i8YOWueZXzxtW89rg76CADAIAQDpR0sqT7zeze5Ng5kt5tZnuotJTbn1RawUKS5km6ycyGJT2ePLcuAvIEUzH7u2ScXnazXfOSv+t2kplBjgcrI8Rj7Wreq5g8v3ZO6BKQkbFJZWTqv2HufkeNk26scf5ySXvkqYCAjErlDvZmneSsoxcAAACxIyBjM+UOdpWVKzYLzAcf+3NGLCIxPDQUugRkNDjAexWTDjapjEZHBy1k5ENARlVVNhXZLDBPX3DRuNcEAAAwHgjIyKQyMJ901mN0kCNBVzIe02dNDV0Ccnh+DZ+tWAwOshByXKaELoCAjJFVmz/e7bBqSw4CAADEj4CMLDatclF21HsfpIMciYH+/tAlIKPps7gPNibTprWFLgEZbdzIevDIh4CMLA6qXHJux32vCFQKAADA2CIgo6bUaMX2lR3kN//j/9FBBpps6vTwc3fIbmCArmQshhlBbjlmdqmkoyStcveFybHv6a/rHW8tabW779PI9fn90OS2ac3jGo+XRytWpw8mwRkAACCUyyW9IX3A3d/m7vskofhaSQ3fMEUHeRJLrXm8ZIRTl1duRz2GZaHJrI31P2PRxnsVFXZnA8Jx99vNrFDtMTMzSSdIOqzR6xOQkcVybb4dNR1kAAAwJsysW1J36lCPu/fkuMTBkp5090carYGAjCx6Je1Z/qZYLC494YzlnwlYD3IY6BsIXQIyGhpiUDIm7M4WD3cmSmOShOE8gbjSSZKuHk0NBGSMqFgsLu3q6lqSHrPY9ZDvB64KAABgc2bWIektkl41musQkLFJlQ1BChWnbBqzOPYDD7OKRSSGuX07Gh0d7aFLQA7t7XSQYzE0xIojk8gRkh5y9xWjuQgBGWmbbQhScfNer6Q9yyF6wX5XjXNpAAAAJWZ2taRDJW1vZiskne/ul0g6UaMcr5AIyMgoGbNYLGnPYrG4iA5yPNramL2LhTtdrpj4MO9XLPhFWutx95NqHF/UjOvzLycyS5aFeyjDsnAAAADRooOMXMprJ7OTXjz6e/tCl4CM+npZcSQm06fTY4oHLWTkQ0CGVGdHvSo37kmSdjus4c1pMM76e/u09pnVoctABvNeOE9Tp3WGLgNoSayiiDwIyKi3o16vkpnjyuecdNZjdJAjQTiOB+EYGBuEY+RFQEZN5Rvzqs0c737ED8e/IDTEuTslGmwUEpc/Lt8QugTk0LuREaZ4bBW6AAIy6it3lyu9ffEKOsgAgCgQjpEXARlV1Zo9Lpv/qm+PYzUYjTlztw1dAtCS2oyNQmLROYVNeJAPARlpvalxikK12eOyo9+3jA4yAAAIwswulXSUpFXuvjA59mlJx6q0bMkqSYvc/YlGrk9AxibpcYpqc8fprvLOB4x6kxqMEzYKicfgwFDoEoCW1NZGt78FXS7pK5KuSB37vLufJ0lm9mFJn5T0/kYuTkBGLb1VQvKmrvJxpz1CBxkAAATh7rebWaHi2JrUtzMlNbzdJQEZVVW7OS+9osWO+16xxXMwMW2/YLvQJSCjVx+wQ+gSkMPsmWw1HYvBITrIMTGzbkndqUM97t6T8bkXSHqXpOclva7RGgjIyCwdmo9674N0kAEAQNMlYThTIK7y3HMlnWtmZ0s6TVJDeYWAjKpGWsVixs5fGr9iMCrG7F002troIMeErmQ8WA5+UvqOpBtEQEYj6gThuqtYvPa4O+ggAwCACcPMdnP3R5Jvj5H0UKPXIiBjWrFYXFJ5sDxrXCtAz971q2NeGJpjq+3D70iEbNpZqjUqvX2hKwAmLzO7WtKhkrY3sxUqdYrfaGZ7qLTM25/U4AoWEgEZtZVXsajaSX7dCXfSQQYAAEG4+0lVDl/SrOsTkFFV+Ya8Wp3kafO/GKYw5Na7rjd0CchoiGWQo+IsYgG0LAIyRlK1k3zQ0bfRQQYAAC2JgIy6Up3kxemNQxYedUOwmpDPiof/HLoEZLTqmReGLgE57PYihsZjsXYDK44gHwJyCxtpqbZEIcu1KjcOWbTkSTrIAACgJRGQW1vVFSrSqmwnXe2cLYL2boddN6rCAGxp6pS20CUghykdDCHHYmonHWTkQ0DGJnnWRD7prMfoIAMAgJZEQEZa5jWRX3zoteNaGBrHTnrx6Otnu6+YdPDZikZbG93+uIz82TKzSyUdJWmVuy9Mjn1P0h7JKVtLWu3u+5hZp6RvSnqlStn3Cnf/TL3r8/s8ZFFeyWLX0IUAAABIulzSG9IH3P1t7r6Pu+8j6VpJ5XnQ4yVNdfeXS3qVpPeZWaHexekgY0SVN+hJ0uvfcRcjFpEYZnHdaHS005GMyYZ+ekxAKO5+e62Qa2Ym6QRJh5VPlzTTzDokTZfUL2lNvesTkNGbulGvUO/E9IjFNnt8fWyrAgAAk5KZdUvqTh3qcfeeHJc4WNKT7v5I8v33JR0raaWkGZI+6u7P1rsAAXmSS3eH0yta1Lhhb9PNenSQ42FGlysW7XSQozIwyPsViyHG+6OShOE8gbjSSZKuTn2/v6QhSS+QtI2kn5vZz9z90VoXICCjli1u2EtvFkIHGQAATDTJGMVbVJo1Lnu7pJ+4+4CkVWb2v5K6JBGQMXrpbvOhb/0lHeRITJ81M3QJyOjZZ/tDl4AcXr4rO+nFYm0v71VcRvWbzyMkPeTuK1LHHpN0mJldqdKIxQGSvlTvIgRkpNWcR64cuZhV+PL4VQUAAJBiZldLOlTS9ma2QtL57n6JpBO1+XiFJH1V0mWSHlBpDbnL3P239a5PQMYmlfPIFaF4s81CXnfCnXSQIzHsDN/FYnCQ9yomGwemhC4BGfUNcC9Gq3H3k2ocX1Tl2DqVlnrLjICMejbNIafnjyVp9q5fDVUTAADAmCIgo5ZeSXuWv6lcC/mgo2+jgxyJgY29oUtARgP9rFkdk2E2Z4tGOzvpRSb8CjEE5IjVWIotrdDotYvF4tIqYxabTJv/xUYvDQAAMKERkOO2xVJsaemRiAb1StozPXtc9ren3EsHORK9azeELgEZdU7hTvuY9PaH73Ihm/4B3ivkQ0BGTUkXeXG1oL3dy74ZoCIAAICxR0BGXZWzx2WHn/hrOsiR6JjCxzwWC/eaEboE5LDXDnV3qsUEMuysYhGXrUMXQEDGljLMNmurl/zbOFUDAAAwvgjIqKbubLPEDHJM2tuZa41FG2OSUXmul10qYzEwRAe51ZjZpZKOkrTK3Rcmx/aR9DWVmnyDkv7R3X+des4LJT0oaYm7f6He9QnIqNYxLozURWYGGQAABHS5pK9IuiJ17HOSPuXuPzazNybfH5p6/CJJP85ycQIypIqOcRKOq65eUXboW39JBzkS1kbnJBbPPs9arTF50fasWx2LdmOXyrh0jniGu99uZoXKw5LmJF9vJemJ8gNm9mZJj0pan6UCAjK2UG/1irJZhS+PY0UAAGCyMLNuSd2pQz3u3pPhqadLusnMviCpTdLfJNebKenjkl4v6cwsNRCQJ5kaoxOFyvNqrV5Rxk568SjsvVvoEpDRvG1DV4A81vZNCV0CMhoeZsA/JkkYzhKIK31A0kfd/VozO0HSJZKOkPQpSRe5+zqzbP8tEJAnny1uwEt3irOsYCFJ8/a+rOmFYWw89yRLUcVim5lzQ5cAtKT2dtcgIXkyOEXSR5Kv/0NS+YapV0t6q5l9TqU15IbNrNfdv1LrQgRkSFJvKiQX6s0el73x1PvpIAMAokA4njSekHSIpFslHSbpEUly94PLJ5jZEknr6oVjiYAMbT5OUW/uON1dnv+qb499YcAk49yjF5V+lg6LxrATkFuNmV2t0goV25vZCknnS3qvpIvNrENSrzafY86FgIxKvXVC8qbu8tHvW0YHGQAABOHuJ9V46FUjPG9JlusTkFtbtbBbqPeEejfnpVe22HHfK2qdhgmmb8PG0CUgo6mdLBsWk122WhW6BGS0bpBNXeKydegCCMitrFrYrTdCked6R733QTrIAACgJRGQkUt5DnnuwktDl4KM2CgEGBuDzj+hsTAx4I98+HQj89JuiUKxWFz0d4t+SwcZAAC0JAIypCprI9dSnkNesN9VY1wSmmXuTtuFLgEZLZjxdOgSkMPKDXy2YjEsVrFAPgTkySf3jXtp5TnkYz/wMB1kAADQkgjIE1u9JdekHMG2LMuNe1lGLnY77Lq8L41A1j63PnQJyGjNwNahS0AOMzv7Q5eAjIZDF4CcRp76NLNLJR0laZW7L0yObSvpeyrlo+WSTnD358xsf/1162qTtMTdf1Dv+gTkCazekmvS6FakqFAZxEfcTe+ksx6jgwwAAEK5XNJXJKXXnV0s6RZ3X2pmi5PvPy7pAUld7j5oZvMl3Wdm/+nug7UuTkDGFkG8VvBOd5Z3P+KHY14XmqOdRSyi0dk+ELoE5NA31Bm6BGQ0NNweugQ0mbvfbmaFisPHqrS7niR9S6Utpz/u7htS50yTRl7WhICMamqNdmzqLL998Qo6yAAAYCLZwd1XSpK7rzSzeeUHzOzVki6V9CJJJ9frHksEZFRRa7QjvZPegSf/z7jWhMYtK/4+dAnI6Mn1LwtdAnJY+dyU0CUgozXrWAc5Jge9zLoldacO9bh7T63zs3D3OyW9zMz2kvQtM/uxu/fWOp+AjMzSwfkjF6+lgwwAAJouCcONBOInzWx+0j2eL2mL/eDdfZmZrZe0UFKx1oUIyBhRtVUtXnHsjwNVg7yGBphrjUXvAHOSADAKP5J0iqSlyd/XS5KZ7SLpz8lNei+StIdKq1zUREDGFqoE4i1WtXj3p5+igwwAAIIws6tVuiFvezNbIel8lYLxNWb2bkmPSTo+Of0gSYvNbEClVf/+0d3r7sxEQEY1m+2sl549LjvolFvHuSSg9U3rHApdAnKYuxVzrbFobyPutBp3P6nGQ4dXOffbkr6d5/r8FzMJZdgIpJDjXAAAgJZCQJ6cNusQV6roGFfdNOQTl/czYhEJMxZCjkVnO/t9xWRdH/+ExmJjX+gKEBs+3S0oT4e4mvRqFdXGKyTpDaf9otHyAAAAJjQCcmsaqUNc87FKtdZEvvB6p4MciVnbzAldAjJ6bgPr6sZkzXp+OxOL/gHmxeNioQsgIKMk76zx28/7zRhWAwAAEA4BeXKqtpV01VnjWr58Ax3kWHRO7QxdAjJat5GOZEwef7LuTrWYQHo3skJMXKaGLoCAPBlVG5uoNWtcyymfooMMAABaEwEZkmrPGtey+Bu9dJAj8ZpDC6FLQEZ7v+CZ0CUgh+fXbhu6BGQ0Yzq7VLYSM9tZ0hWSdlRp448ed7/YzL6n0i55krS1pNXuvo+ZbSfp+5L2k3S5u5820msQkCehZqxtfMT77mhSNQAAALkMSjrD3e82s9mS7jKzm939beUTzOyLkp5Pvu2VdJ6khcmfERGQJ6e6q1xkcca/raeDHIkB7t6OxuAwP5JjsmAen61YbOxjvr+VuPtKSSuTr9ea2TJJCyQ9KElmZpJOkHRYcs56SXeY2UuyvgY/jVFTvU7zIafeNs7VAACAycDMuiV1pw71uHtPjXMLkvaVdGfq8MGSnnT3RxqtgYAct2qrUUgjbASSQ81O80e/so4OciT6B9idLRZzOteGLgE5DA6xxngsBlhwJCpJGK4aiNPMbJakayWd7u5rUg+dJOnq0dRAQI5YrRvr8qxGUeP55c5xoeL7TQ5edOtoXgIAAKBhZtapUji+yt2vSx3vkPQWSa8azfUJyC1qhBvxCiM8fVqxWFySWvptizWSP/SlNXSQI7FxA+t/xmLIudM+JjOm8NuZWPT289lqJcmM8SWSlrn7hRUPHyHpIXdfMZrXICC3rprjEekOc40gXZD+2qGutkbya975382rFAAAILsDJZ0s6X4zuzc5do673yjpRFUZrzCz5ZLmSJpiZm+WdKS7P1jrBQjI2CJIV4bhaqMc77ngaTrIkZg9O/yORMjGZaFLQA6Dw7xfsdhqBr9Ji0v9jr+73yFV/4Hp7otqHC/kqYCAjJrqjWnsc9xPxrkaAACA8UFARjW9tWaPyz74hdV0kCMxyCoW0Zi9aU17xGDWVHbSi8XqDcQd5MN/MZNTenm4QuWD9WaPy1594s/GqjYAAICgCMiTUHqmuN6ScLWWkZOkf/neEB3kSNzzq8dCl4CMOl/XF7oE5PD8Rv4JjcX6XnbSQz58ultTr6Q9G3niCMvDbXLA229p5PIIYOu5bGYQi/OvnaN/esufQ5eBjAhd8TCT+vpDV4GYEJBbULFYXJpjs5DK3fhqzh2nnXbh83SQgSYjHANjg3CMvAjIk1zlGEW1YF2tq7zf25hBjoW7hy4BGbnRkYzJzGncABuLjnaW5ItL+PeLgIxKlR1lqUpX+QOfZxULAAAQhpltLembkhZKckmnSnqjpGMlDUtaJWmRuz/RyPUJyNhMtRvzqq1m8aYP/3LcasLo/O4ufm0fC7fwXRNk98if+O1MLNatGwhdAvI4ONMGVxdL+om7v9XMpkiaIel37n6eJJnZhyV9UtL7GymBgIwRVQvN518xQAcZAACMOzObI+m1khZJkrv3S6qcNJ+pUme5IQTkSSTrChVZzF14aTMug3HQMbUzdAnIqHOQZd5iwnh/PGbOJO7ExMy6JXWnDvW4e0/q+10lPSXpMjN7haS7JH3E3deb2QWS3iXpeUmva7QG/otpXZlmiRv1d4t+SwcZAAA0XRKGe+qc0iHplZI+5O53mtnFkhZLOs/dz5V0rpmdLek0SQ3lFeMO9/q6urqWFIvFJaHraIZmdpCvu/rbBORIrNZ2oUtARtcX2bo4Jj/9LvdixMKHWXEkJnf85yF1b8gwsx0l/crdC8n3B0ta7O5vSp3zIkk3uPvCRmqggzyJ1NsZL6/HHllGQAYAAOPO3f9iZn82sz3c/WFJh0t60Mx2c/dHktOOkfRQo69BQJ7gmtn1baaTz/9N6BKQ0dQprIwQi4MWbgxdAnJY9bpXhC4BGfX3DoYuAc33IUlXJStYPCrpHyR908z2UGmZtz+pwRUsJAJybgECa9Pmhpvp4v90OsgAACAId79XUlfF4b9v1vUJyPlNG8+Z5CxbRofoMn/2sjvG8+UwCn0D7aFLQEZ72z2hS0AO593C2rrA2DgkdAEE5AhUW42i0rh3mW+5v5cOMgAAaEkE5Akuy411WbrMFeePuuP8ya/dOZqnYxwNcfN2NB6e/vLQJSCHto77QpeAjKbPmRW6BESGgNwasnSZ00bdcf5RcYgOMgAAaEkE5BaQd/m2rq6uxXm7zpV+/v+aNgePsbbjTqErQEbHf+NVoUtADtf+M7tUxmLdNDrIyIeAPAk1Yz3kjd/5DB1kAADQkgjII6scXyiM54tP1HWQ7/jYCaFLQEbDHVNDl4CMOjr5kRyTa1e8OnQJyGhgkF2DY/KhF498jpktl7RW0pCkQXfvSj12pqTPS5rr7k83UgM/jUdQ2W0d7WhC6jpZg++EXAe593ufo4MMAABCel1lADaznSW9XtJjo7kwATmcTOspN2NeeJReIOmJyoO3n3Z0gFLQiLa+DaFLQEYD/f2hS0AOM6eHrgBZ9Q2wo+gkcpGksyRdP5qLEJAnuGbMC4/GRB3xAAAArcnMuiV1pw71uHtPxWku6adm5pK+7u49ZnaMpMfd/T6z0f2PIgIy6qoV0J968NeMWERi9dQdQpeAjE774AtCl4AcdpmzInQJyGjQiTsxScJwZSCudKC7P2Fm8yTdbGYPSTpX0pHNqIH/YrCZrB3jH1/xb+NQDQAAwJbc/Ynk71Vm9gOV9qfeRVK5e7yTpLvNbH93/0ve6xOQJ4AJNsaQ6abAR/7wJzrIkVg7xPqfsZgztS90CQAw4ZnZTElt7r42+fpISf/k7vNS5yyX1MUqFuMn7651tRRSX2e6YW88ZL0p8OrvXTsO1QAAAGxhB0k/SDrFHZK+4+4/aeYLEJBzatZNc4FXpqgp6/99l/2P6CBHYrvZQ6FLQEaXXvqH0CUgh3M+zHx/LNb0T5Rf0iKLhSM87u6PSnrFCOcURlMDAXmSadY4xwc/X2xCNQAAABMPAXnyaco4xy+WraWDHIlnN7JYayy2X7Bt6BKQw4o1s0OXgIxYBxl5EZDRUFf5X7/9P2NUDQAAQFgE5HDSN/sVRnuxPFtXV3lO7u2sb76vjw5yJLaexsoIsVj5x9wrESGg59dvH7oEZNQ/ELoCxIaAHEj6Zrgm3bCXdevq9DnTisXikka2s/7MJf+brzoAAIBIEJAnny06142szPH1n7KKRSxmz5gSugRkNNBHmysmG3pDV4Cshoc9dAnIJfzMOAF5kqnsXDe6qsV7/4VVLAAAQGsiIKOhVS2u+eUwHeRIPL++LXQJyGiXl70odAnIYcH2rDEei94Bfg62GjO7VNJRkla5+8Lk2CskfU3SLEnLJb3D3deYWaekb0p6pUrZ9wp3/0y96xOQJ7deSXumD2TtKJ/15V+PVU0AAAAjuVzSVyRdkTr2TUlnuvttZnaqpI9JOk/S8ZKmuvvLzWyGpAfN7Gp3X17r4gTkSaxYLC6tcoNephUtvvsLp4Mcia1mDocuARk98ccnQ5eAHAaHtw5dAjIa5sdgy3H3282sUHF4D0m3J1/fLOkmlQKyS5ppZh2Spkvql7Sm3vUJyBNDbxNWsig08qTKG/Syrmhx5r/+ppGXAwAAqMvMuiV1pw71uHtPhqc+IOkYSder1DXeOTn+fUnHSlopaYakj7r7s/UuRECeABpZRaJSk5aKy1zLs7/9OR3kSPRNYbevWFy/7dzQJSCHGZ3MIMdiY19n6BKQQxKGswTiSqdK+lcz+6SkH6nUKZak/SUNSXqBpG0k/dzMfubuj9a6EAEZW8gyh3z9dy4bp2owWm3DQ3LjBpVYuLMcVUyefJ7gFYOOdun5dXy24tHYMm/u/pCkIyXJzHaX9KbkobdL+om7D0haZWb/K6lLEgF5MmtgKbcR55Af/7/76SBHgnAcD8JxXAjH8SAcTw5mNs/dV5lZm6RPqLSihSQ9JukwM7tSpRGLAyR9qd61CMiTQ66l3KqNa1SG7B9ddWlTCgOAWE3tJHTFYmqntL43/OYTaB4zu1rSoZK2N7MVks6XNMvMPpiccp2k8q+7v5p8/YBK7enL3P239a5PQEY11W4a3Kyr/MTDv6WDDACIAuG49bj7STUeurjKuetUumkvMwJy66i3EkYhz4Wq3ahXubrFt777n3kuCSCDJ5f/OXQJyGHubG6qjEVnB+MwcQk/GkhAbhH1Vp9oxgoXldf/3e9X0kEGAAAtiYAMSflv5Pv8ZT8fw2rQTNtPr7sWOiaQjqlTQpeAHLafsTZ0CcjIjOUu4zI1dAEE5Ekiy0YkmXbQK/uf+zfSQQYAAC2JgDwJZNn8I+sOemV0kAEAQKsy1t0E/srMujNuZ4nAeK/iwvsVD96ruPB+jY3wtwkCE0v3yKdgguC9igvvVzx4r+LC+zUGCMgAAABACgEZAAAASCEgA5tjjisevFdx4f2KB+9VXHi/xgA36QEAAAApdJABAACAFAIyAAAAkEJAxqRkZpea2SozeyB1bFszu9nMHkn+3iZkjSgxs53N7H/MbJmZ/c7MPpIcX2Jmj5vZvcmfN4audbKq8Xnax8x+lbw3RTPbP/XY3mb2y+T9vN/MMm9zj+Yzs+XJ+3CvmRWTY/w8nADy/ltlZmeb2e/N7GEz+9swVbcGAjImq8slvaHi2GJJt7j7bpJuSb5HeIOSznD3vSQdIOmDZvbS5LGL3H2f5M+N4Uqc9C7Xlp+nz0n6lLvvI+mTyfcysw5JV0p6v7u/TNKhkgbGq1DU9Lrkc9SVfM/Pw4nhcmX8tyr5uXiipJclz/k3M2sfv1JbCwEZk5K73y7p2YrDx0r6VvL1tyS9eTxrQnXuvtLd706+XitpmaQFYatCWo3Pk0uak3y9laQnkq+PlPRbd78vee4z7j40LoUiD34eTgA5/606VtJ33b3P3f8o6feS9hcaQkAG/moHd18plUKZpHmB60EFMytI2lfSncmh08zst8mvIfkV8MRyuqTPm9mfJX1B0tnJ8d0luZndZGZ3m9lZoQrEJi7pp2Z2l5mVd2Xj5+HEVeu9WSDpz6nzVohmQsMIyACiYGazJF0r6XR3XyPp3yW9WNI+klZK+mK46lDFByR91N13lvRRSZckxzskHSTpHcnfx5nZ4WFKROJAd3+lpL9TaYTptaELQkOsyjHW8m0QARn4qyfNbL4kJX+vClwPEmbWqVI4vsrdr5Mkd3/S3YfcfVjSN8SvEieaUyRdl3z9H/rr+7NC0m3u/rS7b5B0o6RXBqgPCXd/Ivl7laQfqPRe8fNw4qr13qyQtHPqvJ3019Em5ERABv7qRyr9o67k7+sD1oKEmZlK3cdl7n5h6vj81GnHSXqg8rkI6glJhyRfHybpkeTrmyTtbWYzkhv2DpH0YID6IMnMZprZ7PLXKs2IPyB+Hk5ktd6bH0k60cymmtkuknaT9OsA9bUEdtLDpGRmV6t09/z2kp6UdL6kH0q6RtILJT0m6Xh3r7w5AuPMzA6S9HNJ90saTg6fI+kklcYrXNJySe8rz+VhfNX4PD0s6WKVRip6Jf2ju9+VnP9OlWaSXdKN7s4cciBmtqtKXWOp9F59x90vMLPtxM/D4PL+W2Vm50o6VaXVf0539x+Pf9WtgYAMAAAApDBiAQAAAKQQkAEAAIAUAjIAAACQQkAGAAAAUgjIAAAAQAoBGQAAAEghIAMAAAAp/x843wKbaNNBqwAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "x = pd.DataFrame({n:results[n]['A'][:,0] for n in results.keys()})\n",
- "\n",
- "sns.clustermap(np.abs(x), cmap='coolwarm', robust=True)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## When does the change in explained variance ratio happen?"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 124,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n",
- "/home/miquel/miniconda3/lib/python3.8/site-packages/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n",
- " warnings.warn('FastICA did not converge. Consider increasing '\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "CPU times: user 15min 41s, sys: 45.4 s, total: 16min 26s\n",
- "Wall time: 1min 38s\n"
- ]
- }
- ],
- "source": [
- "%%time\n",
- "\n",
- "n_components = [270,271,272,273,274,275,276,277,(X.shape[1])]\n",
- "\n",
- "results = {}\n",
- "for n in n_components:\n",
- " # run ICA with all components\n",
- " ica = FastICA(n_components = n)\n",
- " S = ica.fit_transform(X)\n",
- " A = ica.mixing_\n",
- "\n",
- " # sort by decreasing explained variance\n",
- " explained_variance = np.array([calculate_explained_variance(X.values, S, A, k) for k in range(S.shape[1])])\n",
- " explained_variance_ratio = explained_variance / np.sum(explained_variance)\n",
- " idx = np.argsort(explained_variance_ratio)[::-1]\n",
- "\n",
- " explained_variance = explained_variance[idx]\n",
- " explained_variance_ratio = explained_variance_ratio[idx]\n",
- " S = S[:,idx]\n",
- " A = A[:,idx]\n",
- " \n",
- " result = {'S':S,'A':A,'explained_variance':explained_variance,'explained_variance_ratio':explained_variance_ratio}\n",
- " results[n] = result"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 125,
- "metadata": {},
- "outputs": [],
- "source": [
- "x = {n:results[n]['explained_variance_ratio'] for n in results.keys()}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 126,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAFgCAYAAABJzuRWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAABDU0lEQVR4nO3de7gcZZnv/e8vISGEEJKQBBc5kCjIIGwVJroR1M3AMCI6Bh1RfAcERCOviKAyCrq99N0jsxl13LhnQA0gxpGjiht0Rg4i6MZDNCDDKTKgOa1kkYQQIBgOknW/f1R1qHS61+rVp6qu9ftcV1/d/dTpqe571br7qaeeUkRgZmZmZmYvGpN3BczMzMzMisZJspmZmZlZFSfJZmZmZmZVnCSbmZmZmVVxkmxmZmZmVsVJspmZmZlZFSfJZmZmZmZVnCSPIpJOlXRnm9b1Fkl3SnpC0qOSLpW0R2b6A5KezjxekPSDzPRXS7pL0tb0+dXtqJeNHgWL58WSHpI0KOnUdtTJRo+ixLKkl0u6QdJGSY9LulnSAe2ol40eBYrn6ZJ+LmlTuvwvJR0xku07SbZm7Ql8HtgHOBCYDXyxMjEiDoqISRExCdgDWA18B0DSeOAG4NvAVGAJcENabpaHpuM59R/Ah4C7u1Zjs9paieUpwI3AAcDewK9JjtVmeWklnp8G3gfMIMk1/hH4gaRdGt56RPT8A1gJnAvcCzwJXAtMGGL+DwDLgS3Ag8ChafmBwB3AE8ADwNsyy3wTuAT4UfrB/xx4CXARsBn4HXBIVZ3OT9e/GbgiW6e0Do8Aj5MclPbJTAvgDODhdNmLAWWmvy+t/2bgZmDf4ZZN9+1ZYFta/yfS+Y9L67gFWAuc2+R38A7gvjrT/lu6zd3T93+Vbiu7T6uBY/OOpSI8HM+9Fc9V0+4ETs07horycCz3biyn06el9d4r71gqwsPx3LvxTNIo/NdpvWc2vL28g66Ngftrkl8a09Iv9Yw6856QfkGvSb/Q/YB9gXFpIH0KGA8clX6ZB2QC9zHgz4EJwE+AFcB7gbEkv3Rur6rT/cCctE4/Bz6fTjsqXdehwK7APwM/qwq+H5L8qp8LbCRNIIHj03oeCOwC/HfgFw0ueypwZ9XnMQC8IX09lfSPOH3/BPD6Br+Di4Br6kz7BvDNzPuPAj+qmueHwMfzjqUiPBzPvRXPVdOcJDuWSxHLmX0ayDuOivJwPPdmPJP8qHk+rfOlI/rO8w66NgbuSZn3XwC+Vmfem4Gza5S/AXgUGJMpuxr4XCZwL81MOwtYnnn/X0h/MWXqdEbm/XHA79PXlwNfyEybBPwJmJcJvtdnpl8HnJe+/hFwembaGGAr6S+8YZatFbirgQ8Ck1v4/I8h+SX58hrTJgJPAUdmyj5THeTAlZXPerQ/HM+9Fc9V050kO5bLEsuzSZK89+QdR0V5OJ57Op4nAO8BThnJNsvUJ/nRzOutJMFQyxzg9zXK9wHWRMRgpmwVMCvzfn3m9TM13ldvc03VuvbJbGtVZUJEPA1sqtpWvf3ZF/hK2gn9CZJTKGpw2Vr+huSPapWkn0p63RDz7kTSYcBVwDsj4j9rzPKOtI4/zZQ9DUyumm8yya9pSzieh1+2ljzi2YbmWB5+2Vpyi2VJM4BbgEsi4uqRbHcUcDwPv2wtuR6bI+LZNJbPk/SqRrdbpiS5UWuAl9UoXwfMkZT9TOaS/JJu1pyqda3LbGvfygRJuwN7NbitNcAHI2JK5rFbRPyigWVjp4KI30TEQmAm8H9Ifg02RNIhJH2c3hcRt9WZ7RTgW5H+lEs9ALxSkjJlr0zLbWQcz9mCfOLZ2sOxnC3IKZYlTSVJkG+MiAsa3abtxPGcLSjOsXkc8NJGtz0ak+TLgHMl/bkS+0naF1gK/BH4hKRxko4k6eR9TQvbOlPSbEnTSPofXZuWXwWcpmQYtF2BfwCWRsTKBtb5NeB8SQcBSNpT0gkN1mc9MLsyioSk8ZL+VtKeEfEnklMV2xpZkaSDgZuAsyLiB3XmmQ38BcnoFVl3pNv5iKRdJX04Lf9Jg/thL3I85x/PlW1PIGlpGSdpQtU/QRueYznnWJY0maSbwM8j4rwG6261OZ7zj+fDJL0+3f5ukj5JMmrL0gb3Y/QlyRHxHeACkuDZQvKLZlpEPA+8DXgzSUf3S4D3RsTvWtjcVSS/yP+QPj6f1uE2kn653yPpzP4y4MQG6/99kmFMrpH0FEmH/Tc3WJ+fkLTWPirpsbTsZGBluq4zgJMqMysZc/ANddb1cZJhVS7Xi+MTVrcEnwz8MiJ2OOWUftbHk1yI8ATJFbTHp+U2Ao7n/OM5dQvJadDDgcXp6zc2uB+GY5lixPLbSS40O007jj07t8H9sJTjuRDxvCvJqBubSFrPjwPeEhHraJB81rAzJK0E3h8RP867LmatcjxbWTiWrUwcz5016lqSzczMzMyG4yTZzMzMzKyKu1uYmZmZmVVxS7KZmZmZWZVd8q5AK6ZPnx7z5s3LuxrWZnfddddjETEj73p0m+O5nBzPViajMZ4dy+XUSCz3dJI8b948li1blnc1rM0krRp+rvJxPJeT49nKZDTGs2O5nBqJZXe3MDMzMzOr4iTZzMzMzKyKk2QzMzMzsypOks3MzKwnSfqGpA2S7s+UTZN0q6SH0+epmWnnS3pE0kOS3pRPra1XlC5JHhwcZO3ataxdu5bBwcG8q2PWNMeylYnj2Trkm8CxVWXnAbdFxP7Abel7JL0COBE4KF3mEkljm9mo43l0KF2SPDAwwGkX38xpF9/MwMBA3tUxa5pj2crE8WydEBE/Ax6vKl4ILElfLwGOz5RfExHPRcQK4BHgtc1s1/E8OuQyBJykjwLvBwK4DzgNmAhcC8wDVgLviojNzax/wp7T21JPs7w5lq1MHM/WJXtHxABARAxImpmWzwJ+lZmvPy3biaRFwCKAuXPn1tyI47n8ut6SLGkW8BFgQUQcDIwlOf1R8/SImZmZWRuoRlnUmjEiFkfEgohYMGPGqLp3imXk1d1iF2A3SbuQtCCvo/7pETMzM7NGrZfUB5A+b0jL+4E5mflmk+QfZjV1PUmOiLXAl4DVwADwZETcQtXpEWBmreUlLZK0TNKyjRs3dqvaZmZm1htuBE5JX58C3JApP1HSrpLmA/sDv86hftYj8uhuMZWk1Xg+sA+wu6STGl3ep0DMzMwMQNLVwC+BAyT1SzoduBA4RtLDwDHpeyLiAeA64EHgJuDMiNiWT82tF+Rx4d5fAisiYiOApOuBw0lPj6Sd7LOnR8zMrAs6fVG1WbtFxHvqTDq6zvwXABd0rkZWJnn0SV4NHCZpoiSRBPJy6p8eMTOzDvNF1WZmO8qjT/JS4LvA3SQtFWOAxdQ5PWJmZl3ji6rNzFK5jJMcEZ8FPltV/Bx1To+YmVlnRcRaSZWLqp8BbomIWyTVG3PWzKzUSnfHPTMzG7lWL6pO1+HRh8ysNJwkm5kZZC6qjog/ATtcVA07jTm7E48+ZGZl4iTZzMzAF1Wbme0glz7JZmZWLBGxVFLlouoXgN+SXFQ9CbguHX92NXBCfrU0M+ue0ibJMTjIwMAAAH19fYwZ40ZzM7Oh+KJqM7MXlTZJfnbLZs69dj3jx43jijPfxKxZs/KukpmZmZn1iFI3r06YvBcT9pyedzWs5CR9VNIDku6XdLWkCZKmSbpV0sPp89S862lmZmaNK3WSbNZpvkuZmZlZOTlJNmud71JmZmZWMk6SzVoQEWuByl3KBoAnI+IWYIe7lAE171Lmmy+YmZkVk5Nksxa0epcy33zBzMysmJwkm7Wm5buUmZmZWfE4STZrje9SZmZWQB55yFrlJNmsBRGxFKjcpew+kr+pxcCFwDGSHgaOSd+bmVkXeOQha4fS3kzErFt8lzIzs0KqjDz0J14ceeh84Mh0+hLgDuCTeVTOis8tyWZmZlYqrY48ZAZOks3MzKxkWh15yMNzGjhJNjMzs/JpaeQhD89p4CTZzMzMyscjD1nLfOGemZl1TQwOMjAwAEBfXx9jxritxtovIpZKqow89ALwW5KRhyYB10k6nSSRPiG/WlrROUk2M7OueXbLZs69dj3jx43jijPfxKxZs/KukpWURx6yVuXyE17SFEnflfQ7Scslvc4DfJuZjQ4TJu/FhD2n510NM7Mh5XWe6yvATRHxZ8CrSPoJeYBvMzMzMyuErifJkiYDbwQuB4iI5yPiCZKhWpaksy0Bju923cyKqNKHc+3atQwODuZdHTMzs1Ehj5bklwIbgSsk/VbSZZJ2p8EBvj12oY02SR/Ouzjt4pu3X/BkZmZmnZVHkrwLcCjw1Yg4BPgjI+ha4bELbTRyH07rFl8zYmaWyCNJ7gf6I2Jp+v67JElzQwN8m5lZR/maETMzckiSI+JRYI2kA9Kio4EH8QDfZma58jUjZmYvymuc5LOAKyWNB/4AnEaSsHuAbzOz/GSvGXkVcBdwNlXXjEiqe80IsAhg7ty53amxmVmH5JIkR8Q9wIIakzzAt5lZfirXjJyV3rHsK4zwmhGSu5qxYMGC6EwVzcy6w/cDNTOzCl8zYmaWcpJsZmaArxkxM8vKq0+yWWlImgJcBhwMBPA+4CHgWmAesBJ4V0RszqeGZiPia0bMzHCSbNYOlSGz3pkmFhOBT5EMmXWhpPNI+nV+Ms9KmjXC14yYmSXc3cKsBR4yy8zMrJycJJu1pqXbrJuZmVkxtZQkSzqikTKzXtBkPLd0m3VJiyQtk7Rs48aNI6qvWT0+Nlsvctxa0bTakvzPDZaZ9YJm4rmlIbMiYnFELIiIBTNmzGiy2mY78bHZelFb41bSFEnflfQ7ScslvU7SNEm3Sno4fZ7aQn2JwUEGBgZYu3Ytg4ODrazKCqipC/ckvQ44HJgh6WOZSZOBse2omFm3tBLPEfGopDWSDoiIh3hxyKwHSYbKuhAPmWVd4mOz9aIOxm3HL6p+dstmzr12PePHjeOKM9/ErFmzWqiuFU2zo1uMByaly++RKX8KeGerlTLrslbj2UNmWVH42Gy9qO1xm7mo+lRILqoGnpe0EDgynW0JcActjjw0YfJejB8/vpVVWEE1lSRHxE+Bn0r6ZkSsanOdzLqq1Xj2kFlWFD42Wy/qUNxmL6p+FXAXcDZVF1VLqnlRtaRFwCKAuXPntqlK1mtaHSd5V0mLSW6YsH1dEXFUi+s1y4Pj2crCsWy9qJ1xW7mo+qyIWCrpK4zgouqIWAwsBliwYEE0sX0rgVaT5O8AXyO529i21qtjlivHs5WFY9l6UTvjttZF1eeRXlSdtiLXvajaDFpPkl+IiK+2pSZm+XM8W1k4lq0XtS1ufVG1tUOrSfIPJH0I+D7wXKUwIh5vcb1meXA8W1k4lq0XtTtufVG1taTVJPmU9PnvMmVB0mHerNc4nq0sHMvWi9oat76o2lrVUpIcEfPbVRGzvDmerSwcy9aLHLdWNC0lyZLeW6s8Ir7VynrN8uB4trJwLFsvctxa0bTa3eI1mdcTSE5h3A04oK0XOZ6tLBzL1osct1YorXa3OCv7XtKewL+2VCOznDierSwcy9aLHLdWNGPavL6twP5tXqdZXhzPVhaOZetFjlvLVat9kn9AcuUpwFjgQOC6BpcdCywD1kbEWyVNA64ludPOSuBdEbG5lfqZjUQr8WxWJI5l60WOWyuaVvskfynz+gVgVUT0N7js2cByYHL6/jzgtoi4UNJ56ftPtlg/s5FoJZ7NisSxbL3IcWuF0lJ3i4j4KfA7YA9gKvB8I8tJmg28heTWkxULgSXp6yXA8a3UzWykmo1ns6JxLFsvctxa0bSUJEt6F/BrkjvWvAtYKumdDSx6EfAJYDBTtndEDACkzzPrbHORpGWSlm3cuLGV6pvtoIV4NiuUVmJZ0lhJv5X0w/T9NEm3Sno4fZ7auZrbaOZjsBVNq90tPg28JiI2AEiaAfwY+G69BSS9FdgQEXdJOnKkG4yIxcBigAULFsQws5uNxIjj2aygWolld4WzvPgYbIXS6ugWYyrBnNrUwDqPAN4maSVwDXCUpG8D6yX1AaTPG+qvwqwjmolnsyJqKpbdFc5y5mOwFUqrLck3SboZuDp9/27g34daICLOB84HSFuSz42IkyR9keS+7Remzze0WDezkRpxPJsVVLOxfBFJV7g9MmU7dIWTVLMrHCTd4YBFAHPnzm2i2jbK+RhshdJUkixpP5ID599JegfwekDAL4Erm6zLhcB1kk4HVpP0STLruA7Fs1nXtRLLrXaFA3eHs+b4GGxF1WxL8kXApwAi4nrgegBJC9Jpf93ISiLiDuCO9PUmkltQmnXbRbQYzx732wriIpqP5UpXuONIbgk8OdsVLm1Fdlc464SLaENOYdZuzfb1mRcR91YXRsQykqTArJe0I54rFztVVC522h+4LX1v1mlNx3JEnB8RsyNiHnAi8JOIOAm4kaQLHLgrnHWGcworpGaT5AlDTNutyXWa5aWlePbFTlYgnTg2XwgcI+lh4Jj0vVk7OaewQmo2Sf6NpA9UF6b9ie9qrUpmXddqPF+Ex/22YmjLsTki7oiIt6avN0XE0RGxf/r8eBvrawYdzCk87re1otk+yecA35f0t7wYwAuA8cDb21Avs246hybj2eN+W8Gcg4/N1nvOoXNx63G/rWlNJckRsR44XNJfAAenxf8WET9pW83MuqTFePbFTlYYPjZbL+pU3Ga6wl0AfCwtXggcmb5eQjJ4gJNkq6mlcZIj4nbg9jbVxSxXzcSzx/22IvKx2XpRB+L2Ipoc99tjfhv4TjZmneKLnczMcpLtCtfM8hGxOCIWRMSCGTNmtLl21itaveOemaU87reZWWG4K5y1rPQtyTE4yMDAAGvXrmVwcHD4BczMzKynedxva4fStyQ/u2Uz5167nvHjxnHFmW9i1qxZeVfJzGzUqzRgAPT19TFmTOnbbKwYLgSuS4eXWw2ckHN9rMBKnyQDTJi8F+PHj8+7GmZmlnIDhnWLu8JZs0ZFkmxmZsXjBgwzKzKf3zIzMzMzq+Ik2czMzMysipNkMzMzM7MqTpLNzMzMzKo4STYzMzMzq+Ik2czMzMysipNkMzMzM7MqTpLNzMzMzKo4STYzMzMzq9L1JFnSHEm3S1ou6QFJZ6fl0yTdKunh9Hlqt+tmZmZmZgb5tCS/AHw8Ig4EDgPOlPQK4DzgtojYH7gtfW9mqRgcZGBggLVr17J27VoGBwfzrpKVjBsxzMxe1PUkOSIGIuLu9PUWYDkwC1gILElnWwIc3+26mRXZs1s2c+61d/H/fvsuTrv4ZgYGBvKukpWPGzHMzFK59kmWNA84BFgK7B0RA5Ak0sDMOssskrRM0rKNGzd2ra5mRTBh8l5MnDqDCXtOz7sqVkJuxDAze1FuSbKkScD3gHMi4qlGl4uIxRGxICIWzJgxo3MVNGuAT09bWTXTiGE2WmW7w7krXHnkkiRLGkeSIF8ZEdenxesl9aXT+4ANedTNbIR8etpKp9lGDJ/ps6LodgNGpTucu8KVSx6jWwi4HFgeEV/OTLoROCV9fQpwQ7frZjZSPj1tZdNKI4bP9FmBdL0BY8LkvdwVrmTyaEk+AjgZOErSPenjOOBC4BhJDwPHpO/Neob72FuvcyOGlYUbMKwddun2BiPiTkB1Jh/d6e0Ppv2GAPr6+hgzxvdTsdZVn55Oco3hRcRiYDHAggULonM1NGtIpRHjPkn3pGWfImm0uE7S6cBq4IR8qmc2ckM1YEhy/3qrq+tJct4GBgY47eKbAbjizDcxa9asnGtkvW6o09PpQdh97K0n5NGIEW64sA5qtgFD0iJgEcDcuXNHvF03yJXDqPzWJuw53f2GrC18etqsNb7gyTolz/71lQY5x3VvGzUtydnWCgIi/CvP2sKnp81aNGHyXozbZRcfk61tGmjAuJAONGBkc40Jk6fXPy9jPWHUJMlJa8V6Bp99mokz92XbM1s499r1jB83zt0urGl597E3K4vKMdrHZGuTXBowqnON8ePHt3P11mWjJkmGpLVi27jxO7x3AFsvqrRWVAatHzNmjFvfrOf5mGztkmcDRnWuYb1rVCXJZmWRba0YM2GSW9/MzMzazEmyWY+qtFaM3W0P9+e00vBoF2ZWFE6SzUrA/TmtLBzLZlYUTpLNSsL9Oa0sHMtmVgQ+j2VmZmZmVsVJspmZmZlZFSfJZmZmZmZV3CfZzMzMrAM8Wktvc5Jcx6AD28wsN04urAw8Wktvc5Jcx8DAAKddfDOAA9t6ln/sWa9ycmFl4dFaepeT5CFM2HN63lUwa4l/7FkvmzB5r+03ysnegh38o8/MOm/UJ8k+pWdl5x971suqb8E+eXofzz75mH/0WU9xrtGbRn2SXDkAj9tlLP/zb15NX18ffX19eVfLrCnVB2KzMsjegn3i1BlOOKznNNp9yF3kimXUJ8mQHoCf2cK51961PYDNelH1gbjCSYWVifsrWy9qpG+yu8gVi5PkjFoB7OTCek2tOHZSYWWTjXO3vlmvqOQUlT721davX8+EydOJ2PmsoGO8+5wkV8kmxcTOyUVfX99OF5E4gK0X+AprK6tK61vE4E7d5molJJXjto/T1m3VfexrPU+cuW96dnvHs4JuYe6+wiXJko4FvgKMBS6LiAu7uf1sAE+cuS+wY3JRORg/u2UzYyZMcgBbXXnGcvWPveryekkD0JM/At2S2Hl5H5uHM2HP6Tzz5Kadus1lj9eVRMRnVCzPeM72sa/1nJ0v27DRjYuwu3ks7YXjdqGSZEljgYuBY4B+4DeSboyIB7tZj0oAZ2WTjgmTpxOIsbvtsX14ou3ldU6RtCvpqA6qZtYzXGAOt41m697o9ssg71iu9WOvujybNFQuXAX41PX31v0RmG2pgx2/v5HG5kjjIDt/9TLt7sc3kro5nvNT68dgrcSicryuJCLZ43YrMVxLvXhoNk4Gq37YjhkzZqf/J63GXK1tlDWWobjxXEt1jFdyjHrfVavxV++sTKvH76G2Bexwpr6Vdba7joVKkoHXAo9ExB8AJF0DLARGFLjPPvkYz23ZzJg/PZ8kAW143vrs05x16XIGn9vKbjNmD1l+1qXLGTduHF8+9UgAPvbNO3ju6ScZs+vEncoBvnzqkQ2PRDAwMLDDcs2sp3od1csMt41m615r/Vef/56ytuZ0LJa3jh/Pc1seHz5uJ0xK1vHUpprlWc89/SRnXXrr9jjOyiamlfkmTZvJc1s27/D9jzQ2h4vDapX5d91jas1t16pvs0ZSN8dz49pxbM7Gf73j8uC4cdvjoObfUNVxutkYrqVe7Iw03qvXV/kfMmnaTJ4aWLnD/5NWR7Kp3sa4cePKHMtQoHhuJveovK8VA63GX+XvpnKsrxdjzcZzrW1VXrdjnfXq2Gw8KyKGn6tLJL0TODYi3p++Pxn4rxHx4cw8i4BF6dsDgIcyq5gOPNal6nZD2fYHGtunfSNiRjcq0ymNxHJaXi+ey/bdj+b9cTyX7/uvNpr2b1TEs3ONnteWXKNoLcmqUbZDFh8Ri4HFNReWlkXEgk5ULA9l2x8o5z7VMWwsQ/14Ltvn5P3peY7nIXj/eo5zjYyy7Q+0b5+K1uGoH5iTeT8bWJdTXcxa4Vi2MnE8W5k4nq0hRUuSfwPsL2m+pPHAicCNOdfJrBmOZSsTx7OViePZGlKo7hYR8YKkDwM3kwzL8o2IeGAEq6h5aqSHlW1/oJz7tBPH8k68Pz3M8Tws718PcTzvpGz7A23ap0JduGdmZmZmVgRF625hZmZmZpY7J8lmZmZmZlV6IkmWdKykhyQ9Ium8GtMl6X+n0++VdGijy+al2X2SNEfS7ZKWS3pA0tndr/3OWvmO0uljJf1W0g+7V+t8lC2eyxTLjuORKVssVytTbNfieN9RGeO5bDHc9ZiNiEI/SDrV/x54KTAe+A/gFVXzHAf8iGTsw8OApY0u24P71Accmr7eA/jPvPeplf3JTP8YcBXww7y/n6J+VkWM5zLFsuN4dMdym/evULHd7v3LTC9NvJcxnssWw3nEbC+0JG+/fWREPA9Ubh+ZtRD4ViR+BUyR1Nfgsnloep8iYiAi7gaIiC3AciDve4e28h0haTbwFuCyblY6J2WL5zLFsuN4ZMoWy9XKFNu1ON53VMZ4LlsMdz1meyFJngWsybzvZ+cvqt48jSybh1b2aTtJ84BDgKXtr+KItLo/FwGfAAY7VL8iKVs8lymWHccjU7ZYrlam2K7F8b6jMsZz2WK46zHbC0lyI7dDrTdPQ7dSzUEr+5RMlCYB3wPOiYin2li3ZjS9P5LeCmyIiLvaX61CKls8lymWHccjU7ZYrlam2K7F8b6jMsZz2WK46zHbC0lyI7ePrDdPUW892co+IWkcSdBeGRHXd7CejWplf44A3iZpJcmpk6MkfbtzVc1d2eK5TLHsOB6ZssVytTLFdi2O9x2VMZ7LFsPdj9lGOi7n+SC5K+AfgPm82FH7oKp53sKOHbV/3eiyPbhPAr4FXJT3frRjf6rmOZISXADSwe++cPFcplh2HI/uWG7z/hUqttu9f1XzlCLeyxjPZYvhPGI2951u8IM5juTKyt8Dn07LzgDOyHyZF6fT7wMWDLVsER7N7hPwepLTC/cC96SP43p1f6rWUYqDbSc/qyLGc5li2XE8umO5XftXxNhu9/eXWUdp4r2M8Vy2GO52zPq21GZmZmZmVXqhT7KZmZmZWVc5STYzMzMzq+Ik2czMzMysipNkMzMzM7MqTpLNzMzMzKo4STYzMzMzq+Ik2czMzMysipNkMzMzM7MqTpLNzMzMzKo4STYzMzMzq+Ik2czMzMysipNkMzMzM7MqTpLNzMzMzKo4SR5FJJ0q6c42restku6U9ISkRyVdKmmPzPQHJD2debwg6Qc11nOKpJD0/nbUy0aPIsVzGsN/zEy/rB31stGhYLE8VtLnJa2TtEXSbyVNaUfdbHQoSjxLekPVtKfTY/XfNLp9J8nWrD2BzwP7AAcCs4EvViZGxEERMSkiJgF7AKuB72RXIGkqcD7wQLcqbVZHy/EMvKoyT0T4R5/lpdVY/v+Aw4HXAZOBk4Fnu1N1s500Hc8R8X8zx+RJwFuBp4GbGt56RPT8A1gJnAvcCzwJXAtMGGL+DwDLgS3Ag8ChafmBwB3AEySJ29syy3wTuAT4Ufoh/xx4CXARsBn4HXBIVZ3OT9e/GbgiW6e0Do8AjwM3AvtkpgVwBvBwuuzFgDLT35fWfzNwM7DvcMum+/YssC2t/xPp/MelddwCrAXObfI7eAdwX51p/y3d5u5V5V8DPpR+5u/PO46K8nA89148p/XcL+/YKdrDsdxbsQxMTd+/LO/YKeLD8dxb8Vxj+hXAFSPaXt5B18bA/TXJL41p6Zd6Rp15T0i/oNekX+h+wL7AuDSQPgWMB45Kv8wDMoH7GPDnwATgJ8AK4L3AWJJfOrdX1el+YE5ap58Dn0+nHZWu61BgV+CfgZ9VBd8PgSnAXGAjcGw67fi0ngcCuwD/HfhFg8ueCtxZ9XkMAG9IX08l/SNO3z8BvL7B7+Ai4Jo6074BfLOq7LXAMpKzGXfgJNnx3NvxHMA64FHgemBe3nFUhIdjubdiGXhjuu5PprH8n8CZecdRUR6O596K56ppE9PP+cgRfed5B10bA/ekzPsvAF+rM+/NwNk1yt+QHhTGZMquBj6XCdxLM9POApZn3v8X0l9MmTqdkXl/HPD79PXlwBcy0yYBfyL9x5oG3+sz068Dzktf/wg4PTNtDLCV9BfeMMvWCtzVwAeByS18/seQ/JJ8eZ3AfCobmCR/6MuA16Xv78BJsuO5R+M5LX8jyT+8KcC/kPzT2iXvWMr74VjurVgG/p+0npcDuwGvJEl+jsk7lorwcDz3VjxXTT+Z5MeGRrLNMvVJfjTzeitJMNQyB/h9jfJ9gDURMZgpWwXMyrxfn3n9TI331dtcU7WufTLbWlWZEBFPA5uqtlVvf/YFvpJ2Yn+C5BSKGly2lr8h+aNaJemnkl43xLw7kXQYcBXwzoj4zxqzvCOt408zZR8C7o2IX45kW6OM43n4ZWvJI56JiJ9FxPMR8QRwNjCfpAXGHMu9FMvPpM//IyKeiYh7gWvSeljC8Tz8srXkcmzOOAX4VqQZc6PKlCQ3ag3wshrl64A5krKfyVyS0yXNmlO1rnWZbe1bmSBpd2CvBre1BvhgREzJPHaLiF80sOxOwRERv4mIhcBM4P+Q/BpsiKRDSPo4vS8ibqszW63APBp4e3ql6qMkF4n8k6R/aXTbtp3jOVuQTzzXq5sa3bYBjuUdC/KJ5Xvr1cdGzPGcLcjx2CxpDnAk8K1Gt1kxGpPky4BzJf25EvtJ2hdYCvwR+ISkcZKOBP6a5Fd0s86UNFvSNJL+R9em5VcBp0l6taRdgX8AlkbEygbW+TXgfEkHAUjaU9IJDdZnPTBb0vh02fGS/lbSnhHxJ5JTFdsaWZGkg0muED0rInYa2i2dZzbwF8CSqkmnkrSyvTp9LCO5ovrTDe6HvcjxnHM8Szoo3fexkiYB/0TyT2h5g/thCcdyzrEcEb8H/i/waUm7SjoQeDdJ31MbGcdz/rlGxckk/alrtewPadQlyRHxHeACkuDZQvKLZlpEPA+8DXgzSUf3S4D3RsTvWtjcVcAtwB/Sx+fTOtwGfAb4Hkln9pcBJzZY/+8D/whcI+kpkr6Pb26wPj8huZL2UUmPpWUnAyvTdZ0BnFSZWcmYgm+os66PAzOAy/Xi+IPVQ7mdDPyyOjAj4omIeLTyAJ4HnoqIJxvcD0s5nvOPZ2Bvkn9KT5F8LvOAt6b/DKxBjuVCxDLAe0haHzcB/wZ8ZojWO6vD8VyYeIbkosd6CfSQNMLuGdYgSStJLkb7cd51MWuV49nKwrFsZeJ47qxR15JsZmZmZjYcJ8lmZmZmZlXc3cLMzMzMrIpbks3MzMzMquySdwVaMX369Jg3b17e1bA2u+uuux6LiBl516PbHM/l5Hi2MhmN8exYLqdGYrmnk+R58+axbNmyvKthbSZp1fBzlY/juZwcz1YmozGeHcvl1Egsu7uFmZmZmVkVJ8lmZmZmZlWcJJuZmZmZVenpPsm1bNu2jRUrVgAwf/58xo4dm3ONzJozODjI6tWrt7+fO3cuY8b4d611lqQpwGXAwUAA7wMeIrn19jxgJfCuiNicTw3NzLqjdP9xV6xYwQcu/hEfuPhH25Nls160evVqTr/kJs666m5Ov+SmHRJmsw76CnBTRPwZ8CpgOXAecFtE7A/clr4flWbNmYukYR+z5szNu6pmpdbo32Irf4+la0kGmLjXS/KugllbTJwyk92n9+VdDRslJE0G3gicChARzwPPS1oIHJnOtgS4A/hk92uYv3X9a3j3138x7HzXfvDwLtTGbPRq9G8Rmv97LF1LspmZNe2lwEbgCkm/lXSZpN2BvSNiACB9nllrYUmLJC2TtGzjxo3dq7WZWQc4STYzs4pdgEOBr0bEIcAfGUHXiohYHBELImLBjBmj6n4TZlZCTpLNzKyiH+iPiKXp+++SJM3rJfUBpM8bcqqfmVnXOEk2MzMAIuJRYI2kA9Kio4EHgRuBU9KyU4AbcqiemVlXdSxJlvQNSRsk3Z8pmybpVkkPp89TM9POl/SIpIckvalT9TIzsyGdBVwp6V7g1cA/ABcCx0h6GDgmfW9mVmqdbEn+JnBsVVnNYYQkvQI4ETgoXeYSSR7g2MysyyLinrRf8Ssj4viI2BwRmyLi6IjYP31+PO96mpl1WseS5Ij4GVB9IF1IMnwQ6fPxmfJrIuK5iFgBPAK8tlN1MzMzy2p0zFUrFklzJN0uabmkBySdnZZ/TtJaSfekj+Myy/jMtTWk2+Mk7zCMkKTKMEKzgF9l5utPy3YiaRGwCJI7kJmZmbXK4x/3rBeAj0fE3ZL2AO6SdGs67X9FxJeyM1edud4H+LGkl0fEtq7W2npCUS7cq/XzPGrN6CGGzMzMDJIGt4i4O329heQOkTUb2VI+c20N63aSXG8YoX5gTma+2cC6LtfNzMzMepSkecAhQGUIww9LujcdSKAyUMAsYE1msZpnrn1jHIPuJ8n1hhG6EThR0q6S5gP7A7/uct3MmiLpo2lfuPslXS1pwlAjuZiZWXtJmgR8DzgnIp4Cvgq8jGSElgHgnyqz1lh8pzPXPmtt0Nkh4K4GfgkcIKlf0unUGUYoIh4AriMZj/Mm4Ez3D7JeIGkW8BFgQUQcDIwl6e9WcyQXMzNrL0njSBLkKyPieoCIWB8R2yJiELiUF7tU+My1NaxjF+5FxHvqTDq6zvwXABd0qj5mHbQLsJukPwETSQ645wNHptOXAHcAn8yjcmZmZaVkyJHLgeUR8eVMeV9loADg7UDlng03AldJ+jLJhXs+c211dXt0C7NSiYi1kr4ErAaeAW6JiFsk1RvJZQcercXMrCVHACcD90m6Jy37FPAeSa8m6UqxEvggJGeuJVXOXL+Az1zbEJwkm7Ug7Wu8EJgPPAF8R9JJjS4fEYuBxQALFiyoOaKLmZnVFhF3Uruf8b8PsYzPXFtDijIEnFmv+ktgRURsjIg/AdcDh1N/JBczMzPrAU6SzVqzGjhM0sS0b9zRJON01hvJxczMzHqAu1uYtSAilkr6LnA3Sf+235J0n5gEXJeO6rIaOCG/WpqZmdlIOUk2a1FEfBb4bFXxc9QZycXMzMyKz90tzMzMzMyqOEk2MzMzM6viJNnMzMzMrIqTZDMzMzOzKk6SzczMzMyqOEk2MzMzM6viJNnMzMzMrIrHSTbrATE4SH9/PwBz585lzBj/vjUzM+ukXP7TSvqopAck3S/pakkTJE2TdKukh9PnqXnUzayInnnyMc7/zt2cfslNrF69Ou/qmJmZlV7Xk2RJs4CPAAsi4mBgLHAicB5wW0TsD9yWvjez1G5TZjBxysy8q2FmVhiS5ki6XdLytPHt7LS8bsObpPMlPSLpIUlvyq/2VnR5nbPdBdhN0i7ARGAdsBBYkk5fAhyfT9XMzMysR7wAfDwiDgQOA86U9ArqNLyl004EDgKOBS6RNDaXmlvhdT1Jjoi1wJeA1cAA8GRE3ALsHRED6TwDgJvMzMzMrK6IGIiIu9PXW4DlwCzqN7wtBK6JiOciYgXwCPDarlbaekYe3S2mkgTpfGAfYHdJJ41g+UWSlklatnHjxk5V08zMzHqIpHnAIcBS6je8zQLWZBbrT8vMdpJHd4u/BFZExMaI+BNwPXA4sF5SH0D6vKHWwhGxOCIWRMSCGTNmdK3SZmZmVkySJgHfA86JiKeGmrVGWdRYnxvkLJckeTVwmKSJkgQcTXJ65EbglHSeU4AbcqibmZmZ9RBJ40gS5Csj4vq0uF7DWz8wJ7P4bJLronbgBjmDfPokLwW+C9wN3JfWYTFwIXCMpIeBY9L3ZmZmZjWljW2XA8sj4suZSfUa3m4ETpS0q6T5wP7Ar7tVX+studxMJCI+C3y2qvg5klZlMzMzs0YcAZwM3CfpnrTsUyQNbddJOp3kDPYJABHxgKTrgAdJRsY4MyK2db3W1hN8xz0zMzPrSRFxJ7X7GUOdhreIuAC4oGOVstLwvW3NWiRpiqTvSvpdOqD963wHSTMzs97mJNmsdV8BboqIPwNeRXIhqu8gaT1J0lhJv5X0w/S9f/CZ2ajkJNmsBZImA28kuXCEiHg+Ip7Ad5C03nU2yQ+9iq7/4Js1Zy6ShnzMmjO309Uws1HOfZLNWvNSYCNwhaRXAXeRJBk7DGQvyXeQtMKTNBt4C0l/zY+lxQuBI9PXS4A7gE92sh7r+tfw7q//Ysh5rv3g4Z2sgpmZW5LNWrQLcCjw1Yg4BPgjI2hp84D1VjAXAZ8ABjNl9e5cthPHs5mViZNks9b0A/3p+N+QjAF+KL6DpPUYSW8FNkTEXc2uw/FsZmXiJNmsBRHxKLBG0gFp0dEk42/6DpLWa44A3iZpJXANcJSkb9PgDz4zs7JxkmzWurOAKyXdC7wa+Ad8B0nrMRFxfkTMjoh5wInATyLiJPyDz8xGqYaSZElHNFJm1suajfOIuCc9xfzKiDg+IjZHxKaIODoi9k+fH+9Mrc121uZjtn/wWVc417CiabQl+Z8bLDPrZY5zK4uWYjki7oiIt6av/YPPusXHYCuUIYeAk/Q64HBghqSPZSZNBsZ2smKtisFBVq1atf39/PnzGTu20FW2nPRynJtlOZatFzluraiGGyd5PDApnW+PTPlTwDs7Val22Lp5A5+5fg1T+x5n66ZHufTMN7PffvvlXS0rpp6Nc7MqjmXrRY5bK6Qhk+SI+CnwU0nfjIhVQ81bRLtN3Zs9Zs7OuxpWcL0e52YVjmXrRY5bK6pG77i3q6TFwLzsMhFxVDMblTQFuAw4GAjgfcBDwLXpNlYC74qIzc2s36xJbY1zsxw5lq0XOW6tUBpNkr8DfI0ksd3Whu1+BbgpIt4paTwwEfgUcFtEXCjpPJK7lnX01qdmVdod52Z5cSxbLxpx3Er6BlC5Ec7BadnngA8Alds+fioi/j2ddj5werr+j0TEze3cASuXRpPkFyLiq+3YoKTJwBuBUwEi4nngeUkLgSPT2ZYAd+Ak2bqrbXFuljPHsvWiZuL2m8C/AN+qKv9fEfGlbIGkV5CMAX4QsA/wY0kvjwj/kLSaGh0C7geSPiSpT9K0yqPJbb6U5NfdFZJ+K+kySbsDe0fEAED6PLPJ9Zs1q51xbpYnx3LexuyCpCEfs+bMzbuWRTPiuI2InwGNDku4ELgmIp6LiBXAI8BrW6yzlVijLcmVuy39XaYsSBLeZrZ5KHBWRCyV9BWSrhUNkbQIWAQwd64PMNZW7Yxzszw5lvM2+ALv/vovhpzl2g8e3qXK9Ix2xu2HJb0XWAZ8PL3GaRbwq8w8/WnZTpxrGDSYJEfE/DZusx/oj4il6fvvkiTJ6yX1RcSApD5gQ526LAYWAyxYsCDaWC8b5doc52a5cSxbL2pj3H4V+HuSBPvvgX8iGSBAtTZbpy7ONayxJDn9NbaTiKjuAzSsiHhU0hpJB0TEQ8DRwIPp4xSSW56eAtww0nWbtaKdcW6WJ8ey9aJ2xW1ErM+s81Lgh+nbfmBOZtbZwLoRVtNGkUa7W7wm83oCSWJ7Nzt3lG/UWcCV6cgWfwBOI+kffZ2k04HVwAlNrtusWe2Oc7O8OJatF7UlbitnpdO3bwfuT1/fCFwl6cskF+7tD/y6pRpbqTXa3eKs7HtJewL/2uxGI+IeYEGNSUc3u06zVrU7zs3y4li2XtRM3Eq6mmRkrOmS+oHPAkdKejVJV4qVwAfT9T8g6TqSM9cvAGd6ZAsbSqMtydW2kvwCMyszx7mVhWPZetGwcRsR76lRfPkQ818AXNBivWyUaLRP8g94sXP7WOBA4LpOVcosD45zKwvHsvUix60VTaMtydkBuV8AVkVEfwfqY5Ynx7mVhWPZepHj1gqloZuJRMRPgd8BewBTgec7WSmzPDjOrSwcy9aLHLdWNA0lyZLeRXIF6AnAu4Clkt7ZyYqZdZvj3MrCsWy9yHFrRdNod4tPA6+JiA0AkmYAPya5EYhZWTjOrSwcy9aLHLdWKA21JANjKkGb2jSCZc16RdNxLmmspN9K+mH6fpqkWyU9nD5P7USFzerwMdt6kePWCqXRluSbJN0MXJ2+fzfw752pklluWonzs4HlwOT0/XnAbRFxoaTz0vefbGdlzYbgY3Zq1py5rOtfk3c1rDGOWyuUIZNkSfsBe0fE30l6B/B6knuf/xK4sgv1M+u4VuNc0mzgLSRjb34sLV5IMsA9wBLgDpwkW4f5mL2zdf1rePfXfzHsfNd+8PAu1MZqcdxaUQ13GuMiYAtARFwfER+LiI+S/LK7qLNVM+uai2gtzi8CPgEMZsr2rtwWNX2eWWtBSYskLZO0bOPGjU3vgFnqInzMtt5zEY5bK6DhkuR5EXFvdWFELAPmdaRGZt3XdJxLeiuwISLuambDEbE4IhZExIIZM2Y0swqzLB+zrRc5bq2QhuuTPGGIabu1syJmOWolzo8A3ibpuHQ9kyV9G1gvqS8iBiT1ARuGXItZe4yeY/aYXZCUdy2sPUZP3FpPGS5J/o2kD0TEpdlCSacDTbWcmRVQ03EeEecD56fzHwmcGxEnSfoicApwYfp8QwfqbVZt9ByzB19wX+PyGD1xaz1luCT5HOD7kv6WFwN1ATAeeHsH62XWTefQ/ji/ELguPcivJhkc36zTzsHHbOs95+C4tQIaMkmOiPXA4ZL+Ajg4Lf63iPhJqxuWNBZYBqyNiLdKmgZcS9L/aCXwrojY3Op2zIbTrjiPiDtIRrEgIjYBR7exmmbD6uQx26xTHLdWVA2NkxwRtwO3t3nbHlfWCqVDcW7WdUWNZY9ZbENpJm4lfQOoXEB9cFpWt9FN0vnA6cA24CMRcXO76m/l0+jNRNrK48qamY0+HrPYOuCbwL8A38qU1Wx0k/QK4ETgIGAf4MeSXh4R27pcZ+sRed3u8SKaHFfWzMzMDCAifgY8XlW8kKSxjfT5+Ez5NRHxXESsAB4BXtuNelpv6nqS3Oq4sr75gpmZmQ2hXqPbLCDb36c/LduJcw2DfFqSK+PKrgSuAY7KjisLMNS4sr75gpmZmTWh1sDaUWtG5xoGOSTJEXF+RMyOiHkkfYN+EhEnATeSjCcLHlfWzKzrJM2RdLuk5ZIekHR2Wj5N0q2SHk6fp+ZdV7Mh1Gt06wfmZOabDazrct2sh+TVJ7mWC4FjJD0MHJO+NzOz7nkB+HhEHAgcBpyZXuxUuRBqf+C29L1ZUdVrdLsROFHSrpLmA/sDv86hftYjchndosLjypqZFUfaf7PSl3OLpOUkfTY9+pAVkqSrSWJzuqR+4LPUuZlTRDwg6TrgQZIfhGd6ZAsbSq5JspmZFZOkecAhwFKqLoSSVHP0IUmLgEUAc+fO7VJNbTSLiPfUmVSz0S0iLiAZftZsWEXqbmFmZgUgaRLwPeCciHiq0eV8sZOZlYmTZDMz207SOJIE+cqIuD4tbmj0ITOzMnGSbGZmAEgScDmwPCK+nJnk0YfMbNRxn2QzM6s4AjgZuE/SPWnZp6hzIZSZWZk5STYzMwAi4k5q33ABPPqQmY0y7m5hZmZmZlbFSbKZmZmZWRV3tzDrITE4SH9///b3c+fOZcwY/9Y1MzNrNyfJZj3kmScf4/zvrGPK3hvY+sQGLv/QscybNy/vapmZmZWOm6DMWiBpjqTbJS2X9ICks9PyaZJulfRw+jy1XdvcbcoMdp/ex8QpNW96ZmZmZm3gJNmsNS8AH4+IA4HDgDMlvQI4D7gtIvYHbkvfm5mZWY9wkmzWgogYiIi709dbgOXALGAhsCSdbQlwfC4VNDMzs6Y4STZrE0nzgEOApcDeETEASSIN1OwbIWmRpGWSlm3cuLFrdTUzM7OhOUk2awNJk4DvAedExFONLhcRiyNiQUQsmDFjxoi2WRnpYuXKlQwODo6wxmZmZjaUrifJeVzoZNZJksaRJMhXRsT1afF6SX3p9D5gQ7u3m4x0cTenX3ITq1evbvfqzcx6mqSVku6TdI+kZWmZcw1rWB4tyV2/0CkGB1m1ahWPPPIIjzzyCNu2bWvXqm2UkyTgcmB5RHw5M+lG4JT09SnADZ3Y/m5TZniUCzOz+v4iIl4dEQvS976o2hrW9XGS0/6Zlb6aWyRlL3Q6Mp1tCXAH8Ml2bHPr5g185vo1TO17nK2bHuXSM9/Mfvvt145Vmx0BnAzcJ+metOxTwIXAdZJOB1YDJ+RTPTMzy+hYrmHlk+vNRIa60ElS3QudgEWQ3G2sUbtN3Zs9Zs5utcpmO4iIOwHVmXx0N+tiZmY7COAWSQF8PSIW0+Fcw8oltwv38rjQyczMzEaNIyLiUODNJF0739jogs41DHJKkvO60MnMzMxGh4hYlz5vAL4PvBbnGjYCeYxukeuFTmZlkx0KzsPBmZmBpN0l7VF5DfwVcD/ONWwE8uiTXLgLnbZt28aKFSu2v58/fz5jx47t1ubNWpIMBbeOKXtv4I+bH+V/LHwls2fPZu7cuYwZ46HQzWxU2hv4ftIuxy7AVRFxk6Tf4IuqrUF5jG5RuAudVqxYwQcu/hET93qJR7+wnrTblBnsPr2PrZs3cP537mb8rvdz+YeOZd68eXlXzcys6yLiD8CrapRvwhdVW4NyHd2iSCbu9RKPfmGlsNuUGey66655V8PMzKynjbokuXJjEWD7TUX6+/uJyLNWZmZmZlYkoy5Jzt5Y5LHf38fYiZPZtvUpJs3aP++qmZmZmVlBjLokGV68scgfNz3K2N2nsG28T01buVRGvAB8AZ+ZmVkT/J/TrISSES/u5vRLbmL16tV5V8fMzKznjMqWZLPRwBfwmZmZNc8tyWZmZmZmVZwkm5mZmZlVcZJsZmZmZlbFSbKZmZmZWRVfuFcle7MRgPnz5zN27Njt77dt28aKFSvqTjcrqsHBQVavXs3g4CAAY8aM2eF1Zai4ynzg4ePMzGz0cpJcJXuzka2bHuXSM9/Mfvvttz05XrVqFX//wwfZfa+X7DB9OE6uLW+rV6/m9Etu4pknNzF2wh5M2Xs2m1YtZ+yEPRi/63gu/9CxzJs3b/t8wPYyM+uAMbsgadjZ9pk9h7VrPJSjWbc5Sa6hcrORbKtyJTl+5omNTJq1/07TK7e4riS+1UnwihUr+MDFP2LiCJNrs3aaOGUmBIyduCe7T+9j6+YNjJ24J+PHjdt+85H+/n4m7jkThvjfnW1tBrc4mzVl8AXe/fVfDDvbtR88vAuVMbNqTpKHUH0L60mz9me3IaaPnTiZqX371k2CJ+71kp2Sa3CrsnVO9s57/f39ELXnS24+so4pe29g06rlTHrJS4ccY7nS2jxxyky2PrGhoRbndnbjcJJuZmadVrgkWdKxwFeAscBlEXFhnvXJ3sJ6uOljd5/CHjNnD7vOel06rFyKEMu1kt96dpsyY3vrciMmTpnJ7tP7hpwnm8z29/fz2RvuByXdOObOnbtTogtsL6vVX7qimSS9Vp0a6Yfd6LRa08ukCPFs1i6OZ2tEoZJkSWOBi4FjgH7gN5JujIgH863ZyGRbiuu1Etfq0lGZd7j+y/WmN9vvObtcM+saSX2AUdE3u0ixPNLkt52yyWx1C3WtRBfYYf7q/tJZjSTpQ9UJaKgfdiPTmknWe0mR4nlUanPf5Vlz5rKuf01b1tWL2hXPjXyOUO7PsuwKlSQDrwUeiYg/AEi6BlgIjChwt256lGee2MjY559jy4QJw77etvWpts67acUDnLv8GcaNH8//fO9R7LvvvqxatYqtaWt0I/Oe/62fsNue03nmyce2l1fUmz7ccvVUlgOaWtdI6gPsUHbVZ04rayt6e2L5iSSxfeapTYx9/nm2PbuFsc8/zx933bWhspHOv0PZruO3d9Wo1t/fv71uW5/YMOR8Wc88sbHueuuto9a0Rrc/3Lp26IoyxLYamVZybYlna1Kb+y6v618z7PpK3g+6LfHcyOcIpf8sS00RdTop5kDSO4FjI+L96fuTgf8aER/OzLMIWJS+PQB4KH09HXisi9UtqjJ8DvtGxIy8K9GKRmI5LXc8D60Mn4PjuRzf41DKvH/V+zYq4nmIWM4q8/eeVdb9HDaWi9aSXOt80g5ZfEQsBhbvtKC0LCIWdKpivcKfQ2EMG8vgeB6OP4fCcDwPocz7V9J9azrX2GEl5fxsdjJa9rOWol1h0g/MybyfDazLqS5mrXAsW5k4nq1MHM/WkKIlyb8B9pc0X9J44ETgxpzrZNYMx7KViePZysTxbA0pVHeLiHhB0oeBm0mGZflGRDzQ4OJDnhYZRfw5FECLsQz+Hiv8ORSA43lYZd6/0u1bG+K5onSfTR2jZT93UqgL98zMzMzMiqBo3S3MzMzMzHLnJNnMzMzMrEpPJMmSjpX0kKRHJJ1XY7ok/e90+r2SDm102V7R7GcgaY6k2yUtl/SApLO7X3urcCy/yDHdmzoRw5KmSbpV0sPp89Ru7U+1Du3f5yStlXRP+jiuW/tTVfdW9u0bkjZIur9qmcJ8d60oe1xn6tSJ/fyipN+l839f0pQu7U7nRUShHySd6n8PvBQYD/wH8IqqeY4DfkQy9uFhwNJGl+2FR4ufQR9waPp6D+A/e/EzKMPDsdy2z8Ix3ZvfW91lgS8A56WvzwP+sWT79zng3F797tJpbwQOBe6vWqYQ311Bv/dCfTYd3M+/AnZJX/9j3vvZzkcvtCRvv31kRDwPVG4fmbUQ+FYkfgVMkdTX4LK9oOnPICIGIuJugIjYAiwHZnWz8radY/lFjune1KkYXggsSV8vAY7v8H7UU+a/0Vb2jYj4GfB4jfUW5btrRdnjuqIj+xkRt0TEC+nyvyIZd7oUeiFJngWsybzvZ+d/iPXmaWTZXtDKZ7CdpHnAIcDS9lfRGuBYfpFjujd1Kob3jogBgPR5ZhvrPBKd/Bv9cHo6+hs5nXZvy99cDUX57lpR9riu6Mb/oPeRtESXQi8kyY3cDrXePA3dSrUHtPIZJBOlScD3gHMi4qk21s0a51h+kWO6N5U9hju1f18FXga8GhgA/qnJ+rWi5b+5Eit7XFd0dD8lfRp4AbiyqdoVUKFuJlJHI7ePrDfP+AaW7QWtfAZIGkeSTFwZEdd3sJ42NMfyixzTvalTMby+0pUmPbW7oa21blxH9i8i1lcKJV0K/LB9VW5YS39zQyjKd9eKssd1Rcf+B0k6BXgrcHREFPVHwsh1uxP0SB8kifwfgPm82Fn8oKp53sKOHc1/3eiyvfBo8TMQ8C3gorz3Y7Q/HMtt+ywc0735vdVdFvgiO17g9IWS7V9fZvmPAtf00r5lps9j5wv3CvHdFfR7L9Rn08H9PBZ4EJiR93fZ9s8s7wo0+MUeR3IF+++BT6dlZwBnpK8FXJxOvw9YMNSyvfho9jMAXk9ySuRe4J70cVze+zNaH47l1j8Lx3Rvfm/1lk3L9wJuAx5On6eVbP/+NZ33XuBGMklzD+3b1SRdRf5E0tp4etG+uwJ+74X7bDq0n4+Q9FeuHI+/lvd+tuvh21KbmZmZmVXphQv3zMzMzMy6ykmymZmZmVkVJ8lmZmZmZlWcJJuZmZmZVXGSbGZmZmZWxUmymZmZmVkVJ8lmZmZmZlX+f++M4fpNOYfyAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig, ax = plt.subplots(2,4,figsize=(10,5))\n",
- "ax = ax.ravel()\n",
- "\n",
- "for n,i in zip(x.keys(),ax):\n",
- " g = sns.histplot(ax=i, x = x[n])\n",
- " g.set_title('n components: %s'%n)\n",
- " \n",
- "plt.tight_layout()\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 127,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAB1NUlEQVR4nO29e3xkVZnv/X2qUknlfulO39JJp680l4EWAo09iAjCAKODirfRUfEyyCgqo3NGnHGO74yMM86MvuiIMqjYKio64lHwoL5HVEC5SDcHlRYb+ppOX9Pp3JNKXfZ6/9i1q3dVqpJKUpXau+r5fj75dFftndprV/1q5bee9az1iDEGRVEURVEURVFsAqVugKIoiqIoiqJ4CTXIiqIoiqIoiuJCDbKiKIqiKIqiuFCDrCiKoiiKoigu1CAriqIoiqIoigs1yIqiKIqiKIrioqIMsohsF5HbSt0ORZkvqmHF76iGlXJAdVz+eMogi8gBEXl5sc5XsiMiN4jILwv0Wn8qIr8UkSEROSYiXxSRRtfxXSIy5vqJi8gDruNbRGSniEwk/91SiHYtFqrh0uAxDd8lIrtFxBKRGwrRpsVENVwavKJhEdkkIj8QkX4ROSUiPxGRMwrRrsVEdVwaPKTjpSLyKxEZSP7+4yLyx3O5vqcMslIWNAO3AauAM4HVwL87B40xZxtjGowxDUAj0Av8N4CIVAM/AO4BWoGvAj9IPq8oi8W8NZzkN8B7gKcXrcWKks5CNNwC3A+cASwHfo3dLyvKYrMQHY8B7wDasf3EJ4EHRKQq76sbYzzxA3wdsIDJ5I39bfL5PwN2AUPAL4AzZzn/v4FjwDDwCHC26xrbgdtmaMNfAs8Bo8DvgfOTz5+ZvPZQsi1/lvGanwd+lGzHr4AVwO3AIPAH4EWu8w8AH0m+/iDwFSCc0YY9wCnsTmqV65gBbgJeSP7uHYC4jr8j2f5B4CfAmtl+N3lvESCRbP9Q8vxrk20cBQ4DfzPPz/U1wO9yHHtp8pr1ycdXJa/lvqde4OpS61M1rBrOR8MZx34J3FBqXaqGVcPz1XDyeFuy3UtKrU/Vsep4PjrGDga/MtnuZXlfr9RCzriJA8DLXY83AePAlUAI+Nvkh12d7XzXh9oI1CRF9Uw+ggZel/zgLkx+0BuANcnr7gH+DqgGLk9+yGe4XvMkcAEQBn4G7AfeCgSxRz8/z7jHZ4FO7I7nV06bkq99Ejg/2f7/BB7JEOUPsUf4XUA/SfMIvCrZzjOBKuCjwGN5/u4NwC8z3o+jwEuS/28l+eVOPh4CLsnzM70duDfHsbuB7a7Hfw38KOOcHwIfKrU2VcOq4Xw0nHHMdwZZNawaznL8VcDRUutSdaw6no+Ogd8C0WSbvzgnDZVaxLMI+h+A77geB5KiuyyXoDNeryX5pjTnIeifAB/I8vxLsEeQAddz3wL+H9drftF17H3Ac67Hf0RyFOVq802ux9cCe5P//zLwb65jDUAM6HaJ8hLX8e8Atyb//yPgnRnv1QTJUd8sv5tN0L3Au4GmBXyeV2KPLjdlOVYHjDifpevzvjfjvG8477UfflTDla3hjOPlYpBVw5Wr4dXJz/rPS61L1bHqeAE6DgN/DrxtLtf0eg7yKuCg88AYYwGHgI5sJ4tIUET+VUT2isgItngAluZxrU5gb442HEpe2+FgRhuOu/4/meVxQ8ZrHsp4rVWua7nvdwwYyLjWMdf/J1yvvQb4TDIZfQh7SkXy/N1sXI/9ZTsoIg+LyItnOHcaInIx8E3gtcaY57Oc8ppkGx92PTcGNGWc14Q9wvYrquHK0nA5ohquQA2LSDvw/wGfN8Z8ay7X9Siq4wrUMYAxJpLU8K0icl6+1/WaQTYZj49gf1AAiIhgC+9wjvPfBFwHvBw7ubvb+dU8rn0IWJ/l+SNAp4i436suVxvmQ2fGax1xXct9v/XAkjyvdQh4tzGmxfVTa4x5LI/fzXwfMcY8ZYy5DlgGfB97hJgXIvIi7HyndxhjHspx2tuAr5nk8C7JLuDc5OfscG7yeb+gGq5sDZcDquEK17CItGKb4/uNMf+c7zU9huq4wnWchRCwLt9re80gHye98d8B/lRErhCREPAhYAp4LMf5jcnjA9gh90/M4dpfAv5GRC4Qmw0isgZ4Ejtv6W9FJCQil2Ene98715tz8V4RWS0ibdi5SN9OPv9N4O1ib3VWk2z/k8aYA3m85p3AR0TkbAARaRaR1+XZnuPAame3CBGpFpE3i0izMSaGPXWRyOeFROQc4MfA+4wxD+Q4ZzXwMuxdKtz8Inmd94tIjYjcnHz+Z3nehxdQDVe2hp1rh7H/kIZEJJzxB9HrqIYrWMMi0oSdIvArY8ytebbdi6iOK1vHF4vIJcnr14rIh7F3ZXkyz/vwXA7yddi5KkMkVzkCr8Ze/TiMHT4/O9f52CH+H2BPyR/ETmw3wAYzS85Q8vhNwG7sqf5nSa4WBc5OXns42ZZXu34n7TWBdwG/cD3eAMRdjw9wetXpUPJDrctow17s6YIfAqtdx1L3kuPabwF+hy3AQ8Dd+fwu9mKB/5285snk4x9j5/uMAE+Rnm80RjLhPst7+BXs1cBjrp9dGed8BHg0x++/CNiJPZX0NK4Vu374UQ2rhrEHeibj57JSa1M1rBrOR8PY0TiDbeTcv99Vam2qjlXHc9DxS7G33BzldPrFpXPRkCRfSFkkROQA8C5jzE9L3RZFmQ+qYcXvqIaVckB1XFz8NO2nKIqiKIqiKEVHDbKiKIqiKIqiuNAUC0VRFEVRFEVxoRFkRVEURVEURXFRVaoLL1261HR3d5fq8orP2blz50ljTHsp26AaVhaCFzQMqmNl/qiGlXIgl45LZpC7u7vZsWNHqS6v+BwROTj7WcVFNawsBC9oGFTHyvxRDSvlQC4da4qFoiiKoiiKoriY1SCLyN0ickJEns1xXETksyKyR0R+KyLnF76ZSiURj1v85tAgP372KL85NEQ8bs3+S7OgOlYWE9Ww4ncsy3Dg5BhP7hvgZ384zt4TY1jWwhb1q4aVxWYhfXE+KRbbgc8BX8tx/BpgY/JnK/CF5L+KMivxuMUL/SNEYrZoq6sC7Doyyv/8wbNEYhbhUIDbXnUOrzqvg6qqBU14bEd1rBQByzIcGhxnaDyGhVENK74jU8PBgHDo1CS9pyb4zEMvpHT86ddv4eqzVxAIyHwvtR3VsFIkCu0nZjXIxphHRKR7hlOuA75m7P3inhCRFhFZaYw5mt8tKZWEW8DVVQH6BidJuKISzbWhlJgBIjGLj37/WTYua+C8ztZ5X1d1rBQKt4aDAeH4yBSxxOmoREttdXYNtzdwXpdqWPEGjo5jCcOJkSmiLg3XVVex+/godz2yL03HH/zOM2x+/0tY194wr2uqhpVCkS0wUWg/UYhFeh3Ydbod+pLPTRO0iNwI3AjQ1dVVgEsrXsct4ppq4eDAaQE314aIxdOn7PoGJ1NidojELI4NRzivs6hNzUvHquHKw63hqipJ64TrqquYytDridGprBo+PDzJeczfIOeB9sVKTnIFJxpqqqbp9fhIBMuQVccnRiPzNsh5oBpWcjLToK4YfqIQBjnbXEvWRCVjzF3AXQA9PT1aoaRMcYvYia5VVwWojQbTBNw3ODlNKXU1VYRDgTRRh0MBVjSHi93svHSsGq4M4nGLvSdHiMXh6EgkFSHO7ISPj0SmqWRlSzirhpfW1xS72doXKylmGti5dTw8GWdiKp72u3U1VQSFrDpe1ljUvlg1rKSYy6CuGH6iEAa5D3B78dXAkQK8ruITconYHV2rDgamCbiupgrJ6A63/2ofH3vF2fzjD3elcoY+ft05nL2yudi3oTquYDLNxInRCFMxi3AoPUKcj4Z7B8b52CvP5h8fOK3hj73ybJY3F90gq4YrHMsy9A2NMzIRn3Fg59Zxe2PNNA0fGZxgSX01H7hiY1oO8r9dfy7dS+qLeQuq4QpmoYO6QvuJQhjk+4GbReRe7GT6Yc0XKm/yFbE7uhZPGma3gLf/ah/v+ON1aTGD6y/o4r6dvfzba88jEo3T0VrLBatbF7q4KR9UxxVGtpkOsDUclADxhMXxyciMhvjI4AQtdSEawqHUc/XhELF4gv947XmMR+PUV1fRGA7S2VpUYwGq4YrErePB8SiTscScBnZxY5iYiqVpuL0pzOhkjKDAv7/2PCajcVa11HLx2iULWaCXD6rhCsPxExNTcQ4PRVJpE3Md1BXDT8xqkEXkW8BlwFIR6QM+BoQAjDF3Ag8C1wJ7gAng7XldWfEd0WiCPSdHOTyUX2TC3Qk3hav47EPPpwn4+gu6uPtX+3jv5RtpClcREGFlM3zoqs2cGo+yaXkj56xqLog5Vh0ruQZ2mXnEfYOT1FQFmYolphnizE7YMRLR+BSbVjZSJQFE7AHhZDRBTVWAtUvrWdfesGBjoRpWYGYdB0SIJ5h1YOfWcTxhEaoKcmosu4anYhZnrmhVDSsFIzM4IQJVgfRUiLkO6orhJ8ReLLr49PT0GK18422mLbA7OUlNKMhY5PTUxng0nlPE7uhadVWAgbEo/72jN03AkZjFqfEoHS21cxKviOw0xvQU8n7nimrY+8w05Tw4HgOya7i5toqRSHxahHh4Ms59O9M17DYSczHDXtAwqI79gNMXj07OrON8B3bZdDyfvlg1rOTDTIO6sUicptoqjg7nP6gDmIpbjEdiaYO6QvuJkpWaVrxJro64rb6aWMIwNIfIRGZ0rb2hhv/xJ2fSPzpFY02Is1c2U10dXOQ7VModt4YHxqdmnXLOpuGbXrqBqsB0Da9oCqciEq211QWb4VCUbGTO2mWb7XDr2B7YybSBXWZ0bWWz6lgpPrPNOjtpmPmkYGaLEEdiFv0jczfE+aIGWclqijM74mPDU3lFJtwiXt5Ug2VqmYwmGB6Ps3ZpDX/UsfBpOkXJJJeG85lyzmYm7nx4D7dcuYkVTVVELUMkpeHCpEsoSi6c6WcRUrN2Tl+cuWtKpo6NqaG6KqgDO6VkzKRfyB6caApX8YejI54b1KlBrlBmM8WZHfHKlvC8IhPndWhHrBSHfDScz5TzTGaioTrE+atbVMNKUXFMhWVITT9nm7WbTcdDEzHqqi3WLWskrgM7ZZHIV7+QPTgRDgVY3hxmeMJbgzo1yBWGs79r76mZTXFmR3zPE/t5zfmdGplQSspcBnb5TjlPn+lQM6EUn2ymwj39nG3WLl8dD4xGbR13qY6V4jAf/UL24MSxoUnO6miio6WO8WicoWQ/vKXE/bAa5ArAMRWRWJwDA84K/ZlNcWZH/LLNK/ne04d416XroaWWSEzNhLJ4WJbh8PA4u4+OEc1zYDeXKWed6VAWA/eWVr1ZTIV7+jnbrJ3qWCkls5ni2fQLMw3qYqxdWs/5Xa2e8RNqkMsYd7RYBGpDdiW7oYnZTXG2jrh7yfpUQvz5nYuyN7FS4TgaPjY8hUFS2wDlM7DTKWfFK8TjFvsHRjg4YO/zmstUuLWca9ZOAxTKYjKXQV0++vXToK5kBnn37t1cdtllac+9/vWv5z3veQ8TExNce+21037nhhtu4IYbbuDkyZO89rWvnXb8r/7qr3jDG97AoUOHeMtb3jLt+Ic+9CFe+cpXsnv3bt797ndPO/7Rj36Ul7/85TzzzDPccsst045/4hOfYNu2bTz22GP83d/93bTjt99+O1u2bOGnP/0pt91227Tj//Vf/8UZZ5zBAw88wKc+9alpx7/+9a/T2dnJt7/9bb7whS9MO/7d736XpUuXsn37drZv3z7t+IMPPkg4XMsnPnU79/+v+4jELAIiJCxDVVC49XPfAgM/ufdLPPXoTwGIxhJUBYXa2jr+/j+/xuhkjO988T/Y/9snAbCM/QVZsbydH93/fQIB4SMf+Qi3PP542rVXr17NPffcA8Att9zCM888k3Z806ZN3HXXXQDceOONPP/882nHt2zZwu233w7AX/zFX9DX15d2/MUvfjH/8i//AsD1118/7d5LgWq4OBqurg7zT//+aX70wPeZSmpYxN7W52Nf+DZQGA0/rhoGVMeL0RdH4xYgqYJKH/3CvWDggXv+i9889vPUIudjw5OsWdbKP33hHl62eSUf/dg/Yg4/C3hTx15BNVx4Dd9//w85OhHnc3fcycM/vp+qgBBL2PpNGJO1Lz42PMnK5lqqa8J86NPb+d7Th5Bnvs+Oxx5J6TccCtKxYhnf+959ACXX8Ex9sUaQy4RILMGuw0MMxUY4MjRJLGEwBqKWHXEzidPbqIxMRrEsi2AgQKgqQMIyxBIWHa1haKnl4dpq4glbyLXJbdgaaqo0SqEUlUgswR+ODtEfEU6ORYm7NBwQCIpQH7a7LNWw4lWMgeePDdEfOd0XiwhT8dMr+Z2+uDoU5NiIbSoA2hvD9A1OUFsdZHlTDed3tfF4r6GmKkBTMjqnOlaKhTEwGYtjgJ8/f5zmxkbiCcvuhxMWyfFdWl+848BAqnhde2OYo8OTrFsRZtPyerqXrOeOJ+OISEq/wLQqeF5FC4X4mGwL7pwiHk7xA/c2Kk4lu6mExehkjIBgT9kZIRKbe6GDUuKFDepVwwsnU8PZCng4i+3c2wBNxVXDhUJ1vHAyp6FrqoJpfXFNVZBgQFLGwL1QKbNoRzRu5lXsoBSohv1PrhSKwfFYWhElO6fY1nS56NdBC4WUEU4+276Tsy+4c2+j8rqe08nxq1rCTMUszWNTFp1sZsLRcLZ8NmexXeY2QJqLqZSabAO8bOs8Mgd4mQuV3DmZF67xh6lQ/E3mwudsecXunOLegXHaGmqA6QvtylW/apB9QqapaKipmnHBnTPCy9xG5W9clewu7m7VSnbKohKJxPnlvpNpHXI+GrYX2wXYvKqJyWiCwbE465bWs36NmmJl8YlGE+w/NTptV6BsxsKpzJg5wPvglZs5NVF+pkLxNrkWPucKTjiDuvpwiLFIjGVNYZY31fDBqzYzWIam2I0aZI9jWYa+oXGeP5Y+yuubmN4Ru8XsHuE50WJnG5WLutvUVCiLhnubwWPD0WkdcjZTjJBVw8PjMY0WKyUjHrc4eGqEPScmaQjnDlJk9sVOZcaOllrGo4nUPq8Xr1uiOlaKTrZZu4AIx4bzC7ClZu2SqWynxux++OK15a1fNcgexW2Mq6sCOU3FTFuzuSMUF3S2leUIT/EumdPPbfXVHJshDWi2qWfVsFIKMs1Fc22IWMLMOMDL1Revbgnxx+t0i0xlcZgpBaimKphaLAr5BCcqL5VNDbLHcAs6FLSN8WTMYmLKTo53OuOcI7yMvEyNUCiLTa4c+WPDU1k75JkGduU6dad4n1yzd5kVwmabudO+WFlM8lnjMde8+EoNTqhB9gjZTMWp8SgYaG+smWYqdISneIl8cuRXtoRzdshqJhSv4DbGVcHps3dOhbB8BniVaiyU0pDvGo9cC581OJGOGuQS4zbGmabCEXPcGCamYtNMxV9feQaDEzHtiJWSMZcc+Xue2M+fntuRs0NWDSulJJsxHk8GKeC0lp0KYTrAU7zAfNZ4zLTwWbV7mrz+GonI1SKyW0T2iMitWY43i8gDIvIbEdklIm8vfFPLi3jc4oXjQzy0+zgnRmO2qRicZHwqTl11FfXhKo4OTTAxFSOesAhVBTk1NsX6ZXV88MrNjE8lqK+u4uqzVrClS3PaZkM1XFgsy9B7aoyf/eE4+/oniMQsLIucGg4IvGzzSv73bw+zYXkDq9vqGRyLsbShmmvPWakazgPVcHHIpuXjI5E0HdeHq/jqY/sIYOv4e08fSvXFE1MJaoJBtq1bypVnr2DD8kY1GDOgOi4Mbt3uOjLC4EScY0nd5uqDnUFdS12IM1Y2sqypluHxGB3NtVx51nI2rlDtupk1giwiQeAO4EqgD3hKRO43xvzeddp7gd8bY14pIu3AbhH5hjEmWpRW+5hsEePMaJuT05Y5dRePhzkxEmV1Sy0Xda9QQ5EnquHCEo0meHRvP8FA7ihbrunnNW3rOTVua/ic9UtVw3miGi4OubQ8W37x27at0754HqiOF06uFKD5rPHQWbuZySfF4iJgjzFmH4CI3AtcB7gFbYBGERGgATgFxAvcVl/jbMr9+yOjOY3xdEFbbFjeYFemGYuxvr1Bpz/mh2q4ADiDu2MjMSajFuPRaM4pPJ1+Ljiq4QIym5ZzBSlS5qKlmq3dS9RczB3V8QKYKTihazwKTz4GuQM45HrcB2zNOOdzwP3AEaAReIMxxso4BxG5EbgRoKuraz7t9SWOqMOh4IzGOJugxyMJXXi3cFTDCyBz1mNoIsbEVHzWKJvmyBeUgmkYKlPHkL+WNUhRNLQvngeObo8MR3MGJ3SNR+HJ593K1hOYjMd/AjwDrAK2AJ8TkaZpv2TMXcaYHmNMT3t7+xyb6j+cPOMnD55iMmpNy890ctocU7GiuYa/vvIMxjWnrdCohueBvfhjbFqefH11MC23rb0pTCRmaY58cSmYhqGydAxz1/J4JJbKlR+ZjNPRUstVZ61go/bFC0X74jkyORlL6fbYcETXeCwi+USQ+4BO1+PV2CM7N28H/tUYY4A9IrIf2Az8uiCt9BmZ6RSZUYpsEeNUtE2n7oqBangOuHPcaqunz3o4u6polG1RUQ3Pg4VoeWQyzvr2Btbr7F0hUR3niVO18dhILKVbJ8c4VwqQrvEoLPm8e08BG0VkrYhUA2/Env5w0wtcASAiy4EzgH2FbKhfiEYT/Hz3cXoHJqdFKWaKGGu0raiohvPE0a+zmj/brEc8bu+qMi3K1qxRtiKiGp4jqmVPojqeBfdsR/9YPE23M810nBqL0d5YoxHjAjJrBNkYExeRm4GfAEHgbmPMLhG5KXn8TuDjwHYR+R32FMqHjTEni9huz5GZI3RyLDotSqER49KgGp4dZ9ZjX/9E1hy3bLMeyxprODUe02jFIqAazh/VsndRHc9M5nol984U23+1jzdv7WY0ojMdi4XYsxiLT09Pj9mxY0dJrl1IMtMpMjfndjrjqYQ92utcUs/QhD3SO7+jhXBYa7XMBxHZaYzpKWUbykXD7k45l36HI3Hu29nLey/fSHUwwOBE0kys0mpL88ULGoby0TGcriRWW61aXgxUw4XBPagbnYwzHo2nqjZ+9qHn03T7l5duIBQQogmL9UsbWL9MjfFCyaVj7Q0WQLZ0ilwL8FrqQqxtb2A0EmdNWx0XrWlTc6yUnMnJGI8fGEgtIs1c/KHpQIofsHONx3jy4KlUOoVqWfEDbh+RuQjvnif287qedN3GEhZt9dW8fLMW9ig26tDmSSQS58neU9PSKY4O2cnzmk6heBnLMhwZGefgSbtTztSvs/gjIPC+KzYxNBFjWWMNV21eTnV1sNTNV5QUzgxIfU0Vx0ZUy4o/yEwFOjkWTUuneMcfr+Nlm1fy0HNHU7pd3lTDFRvbqa0Nlbr5FYE6tTniJNDv7BucNtr76mP7aG+0k+cTiQTvu2ITI5NxAiJctXm5RikUTxCPWzz8/HH6TkWmzXo4+nUv/piMJjhrZRNb1y5RQ6F4BqcvdmZAnHxN1bLidZw+ODNqnG22423b1qVmnnu62tQcLyLq1uaAeyokVzrFN548wPLmWla11Nmd8QrtjBXvEI0meHzfAONTpw2Fu1N261dX8yteJZvBaKsPqZYVz+Pug3MFKDTA5g303c6TSCQ+LVczV26b5ggpXsMdbTsyPJkyFNk65UgsQW11kMs3LVP9Kp4jl8G454n9LG9WLSvexfERTh88U4BCA2ylRw1yHkQi8WkpFTraU/xCZrQtcwFIZqd85opG7ZQVz5FtkOc2GJmVxCKqZcVDRCJxnj48lNYHa4DC26iDmwVH1JlTIdefr6M9xfvE4xaP70+PtrkNhbMAJBJLUFcT5KXrl7JpRZN2yoqnyDXIyzQYb754Lf2jUWqqArxs0zLVsuIJnCDbiZGZ09rUR3gL3cUiB84K096BSfpHoylROztU3Lezl7duW8fwRJSO1lq2rV2i27YpniIaTfDkgVMcGZ5MW9kfDgWJxCwCAm++eG1qVf/5q1u1U1Y8h3uQdyJLX/yNJw+k9oZ1DIbuDat4Bccc9w1OsrI5zB+OjqT1wc4OFU2NNVzSuVT7YA+hEeQsuKMVfYOTOXM1jTF0ttVxYZfuaax4C3euW2a0DSASS9BcV8Px4QhL6qu5cE2bdsyK53DyjY8MpadUOAZDp6UVr+Le8cqZvesdGKe9aXof3KZ9sCdRg5xBtinp3oHxrFMh69rrdCpE8RzunPlc03kbljUSCgov6mxlm5bWVTxINJrQQZ7iSzKDbM66pfqaELF4ghXJPhhgdWstL16r9RG8iH4iLhxz7I5WOKIOiuGGbesYmogyEU1QGwpw9soWjVQonsI9nafRNsWvxOMWOw/pIE/xH9mCbO51S811NVQlS0VvXt7IxetUu15F8wKSuM2xu5qNI2onx60qKFr/XPEkucwx2NG2lS11HB+OsLKllgvXtGmnrHgSpy8eGItOG+RpzqbiZdw+wln34Zjj+57WdUt+Q/9CMt0cu6MVblHXhAJctqFdo26K58g0x5lT0Stb6piMxlnVotN5indx98VO4Q/3IE9zNhWvkukj3DteOT4iEo3T0VrLBatb1Rz7gIr/K5nNHGdOSetiPMXLZDPH7m0IdSpa8QOZfXHmgiZnkLdSB3mKx8gnyKbm2H9U9KeUyxyDTkkr/iAaTWQ1xzqdp/iJXH2xs6CpKiCMRxN0tNaytVvNseIdZgqyuVOCOtvquKBTt9L0ExXby+RjjjVaoXgZZyFTLnOsEQvFD8zUFw9NxJiKW5wcm6KlLqTmWPEUlmV4YgYfoSlB/iavnkZErhaR3SKyR0RuzXHOZSLyjIjsEpGHC9vMwqLmuPIoVw0fT1ZmUnNc/pSbhkH74kqknHS8t3+Mw6rdsmXWv5wiEgTuAK4E+oCnROR+Y8zvXee0AJ8HrjbG9IrIsiK1d8FYluGJA9ohVxLlrOGVzWE++9Dzao7LnHLTMKg5rkTKScfxuMXe/jHVbhmTz6d2EbDHGLPPGBMF7gWuyzjnTcD3jDG9AMaYE4VtZuHY2z/G4Rm2wVJRlyVlq2GniE2mOe5aUqvmuLwoKw1roKJiKQsdO4O76mBAtVvG5PPJdQCHXI/7ks+52QS0isgvRGSniLw12wuJyI0iskNEdvT398+vxQsgEonzwolR7ZArj7LVsGVIFbGZjNrFbaLxBB3N9YveNqWoFEzDUHoda6CiYvF9X+ye+YhZJrt2m1W75UA+n162DX9NxuMq4ALgT4E/Af5BRDZN+yVj7jLG9Bhjetrb2+fc2IXgbIVlGbRDrjzKQsPOjhWZGh6aiGGwb7K5LsRLNizTfbrLj4JpGErfF2ugomLxdV+cOfPxxUf20BgOpWl3eXOYrd2661U5kM8n2Ad0uh6vBo5kOefHxphxY8xJ4BHgvMI0ceHE41ZqK6y+Qe2QK5Cy0PCOXtVwBeN7DUPuQZ7quGLwtY4zZz6uOHMF33jyACtckeO1S+t0t4oyIZ8e6Clgo4isFZFq4I3A/Rnn/AB4iYhUiUgdsBV4rrBNnT/PHhlObYX1rV/3Ykx6h7yiOawdcnnjaw07UYtDgxOq4crF1xoGHeQpgI91HI0mps181FcH2bahneePj9I3NMlENM7qFk1vKxdm7YWMMXHgZuAn2CL9jjFml4jcJCI3Jc95Dvgx8Fvg18CXjDHPFq/Z+ROJxNP2ib3p0g3c/dh+hiO22Jc21nCx7q1Z1vhdw+6ohWq4MvG7hnWQp4B/dewM7rLNfGxc1khXay0Xdrdxxeblmt5WRogxmek/i0NPT4/ZsWNHUa8RjSZ4qvcUCcvoVlhlhojsNMb0lLINi6Xhn+4+TsJC9zouM7ygYVgcHe85PsrO3sG0PbvvfGQPrzi3g2AAtnS2cMm6pTo17TMqQcOWZXhs30kOD04yOBGlTmc+yo5cOi7bT9M9nXdAt8JSfEhm1OKKM1ekaXhlcy2dbaphxdtYluGF5H6x7kHeh67azJq2WraubWNb9xI1x4oncc/g6cxHZVGWn2jmdN6Xf7mfIOlbYU1GdSssxbu4Nezka2q+m+JH9vaPUZPcL1YHeYqfcOcda3pb5VGWn2q2nM07Ht7Lc8dG7bKQNUEu3dCuuUKKZ8kVtXDy3XrWtGq+m+J5HIPh7BebOcgbjcR0kKd4klwzeM7Mx4Vr2tiwrF5nPsqYshu2Z4743NN57pxNFbXiVbJFLZx8zbETo2zpbNGoheJ53Aaj7+QY4VAwNcibjMZpratm04oGHeQpnsOZwcvMO3YGdwGB5tqQDu7KnLIyyJZl2HlIczYV/zJT1MLR8JqltTrAUzxNLoMxFk2w22UwOlvVYCjeY59rBu/zv9jDO7atZSp+enC3ojnMtnVLdXBX5pRVCGpv/xi9pzRnU/EnmneslAv7NEVI8SmWZXjhxJjmHSvlY5Dd09LaISt+RE2FUg7E4xbPq8FQfMq+/jESxmjesVIeBtmdWqEdsuJHNGqhlAPOLIilBkPxIU4/rDN4CpRJDvK+ZGrF4ERUczYVX7L/5HjWqIVqWPETziyILmxS/IjTD3/r172ad6z4P4Lsjrx969e91IV0GyHFfxwcGNeoheJrMvtiTRFS/IbTD7/xwq60GbzGcIg1S+p0Bq/C8P2n7eQLuaelExYExC5f+nLtkBWPY1mGUDCgpkLxNXtduZtqMBS/EY0mCAUlFWi7bksHkux2E8bojisViK97K3e+kOa6KX5lX/8Yk/FEVlPRHA6pqVA8j7NI2j0L4jYYAUENhuJZnHVMk3Er1Q87gbYzVzTR2VKrQYoKxNd/eZ3ocbbUihFNrVB8gDPI29c/Ns1U9I9GaK4LlbaBijIL7kXSOgui+JEDA+P0nprQflhJw7cG2dlKyJ0v5B7xndPRpB2y4nncgzxj0o8taaihq00HeYq32efaf15TKxQ/cmw4kpY772ap9sMViy97LfdWQtnyhSzNF1J8gDtFSAd5ih/Jtkja3Rcb7YsVj2NZBhF0HZMyDV8aZGcrITUWip/JTBHSQZ4yEyJytYjsFpE9InLrDOddKCIJEXltsduki6QVv7Ovf4zf9Q1x+eb0dUw9a9pob6jWdUwVTF4G2Usd82wRCzUWSja8pGHQ6LEyN0QkCNwBXAOcBfy5iJyV47xPAj8pdpt0kbQyH7zUFzsaHplK8O0dvWxdZ69jOnhqkn/4we+or9Hc40pmVoPstY7ZXVBBjYWSD17TMGj0WJkzFwF7jDH7jDFR4F7guiznvQ+4DzhR7AbpImllrnitL3Y0/MBvDvOGni6+/Mt9fO5ne/jyL/fxgSs20b1ENVzJ5BNB9lTHnFlQQbcSUvLAUxrW6LEyDzqAQ67HfcnnUohIB/Bq4M5iN0Y1rMwTz/TFmRr+9o5e3nnJOt5/xQb+39dv4YI1LarhCicfg1ywjllEbhSRHSKyo7+/f65txbIMVcmNvHUrIWUOeEbDoNFjZV5k69gy1ttzO/BhY0xi1hdboI5Vw8o88Uxf7C4rrRpWspGPQS5Yx2yMucsY02OM6Wlvb8+ziafZ1z/GH46O6FZCylzxjIY18qbMkz6g0/V4NXAk45we4F4ROQC8Fvi8iLwq24stRMeqYWUBeKYvziwrrRpWMsnHURa0Y54vTqf8lccOThvtxS0d7Skz4gkNg0belHnzFLBRRNaKSDXwRuB+9wnGmLXGmG5jTDfwXeA9xpjvF7ohGnlTFoAn+mL3bLRqWMlFPgbZEx2zYywGJ6Lc+cg+EtbpY6uawzraU2bCExrWyJsyX4wxceBm7EVLzwHfMcbsEpGbROSmxWyLRt6UBeCJvjhzNlo1rGRjVoPshY7ZbSw+cMVGBiei3PHzPXzp0X3UhoIsaahejGYoPsULGga7nKlG3pT5Yox50BizyRiz3hjzz8nn7jTGTMvVNMbcYIz5bjHaEQ4Fsmo4oRpWZsELfbHORiv5UpXPScaYB4EHM57LmkBvjLlh4c1Kx20s3rFtLTdeug7L2CO+rrY6LQOpzEqpNQx2OVN35O0V53YQDNhRi7NWNWrUQvE8TtWxbBrWmTwlH0rdFzspQs5s9GvOX50yyKphxY0vVrUdH4nolJ7iaxxjoeV4FT9jVx0bnrbFZv9ohOY6LaqgeB8nRUhno5XZ8IVBzlU1T42F4hf2nxznd31DvKEnfZC3eUUTq1o0aqF4H/fUtMnYd6C1vkZn8hTPk7k478ZL13Hz5Ru48dJ1OhutTMPzBtmyDCfHIlmNxZKGkBoLxRccHBhPlTN9xbn2IC9hwSd//BxNtRq1ULyPk+qmC6UVv7L/5LguzlPyxvMG+cDAOJMxK6ux8EHzFSUVtdBypoqfcXLodWpa8SsHB8Z1cZ6SN3kt0isl7oVNn3noBSIxi3AowAeu2MjypppSN09RZsUdtbj3KbucqS7OU/yEO4c+c6H0Gp2aVnyAE6jQxXlKvng6BJu5sMmdL6SdsuIXNGqh+J0DA5pDr/gbJ1ChMyBKvnjaIGunrPidzKiF5m0qfuTYcERz6BVf4w5UuINtq1s12KZkx9MGWTtlxe8cGNCoheJvnJm8bDn0t2gOveIDNFChzAfP5iBndsqf/dnp/ON/efUfaaes+IJjwxG+8thBbrp0nRa4UXyJeybv2ztO59BvXtHEquYaNReK53EHKj7z0Avc8fM9qbVMGqhQcuFZg6ydsuJ3nEFetkUha5bUqYYVX3B8xJ7Je+A3h6fN5H3lhotK3TxFmRUNVCjzwbMpFk6nrOkVil9xBnnvvzw9vSJcFSQSS5S6eYqSF3XVVZpeofiWzECFO71CAxXKTHg2guzulDW9QvEj7sjbOy9ZhwgYA9/e0cvV56wodfMUZVYsy3B8JKIzeYpvcQcqPvuz0+kV7798owYqlBnxpEHWTlkpB3SQp/idAwPj7DoyzPef0fQKxZ9ooEKZL540yNopK35HB3lKOXB8JMJ3dvTxlovXpA3yPqGDPMUnLGsMZw1UfPL6c1XDyox40iBrp6z4HR3kKeVAXXUVgxNRvv7EwVT0LSCwaXmDDvIUXxAMoFVMlXmR1yI9EblaRHaLyB4RuTXL8TeLyG+TP4+JyHkLaVRmp+xs6K2dsjJfFlvDziAvc2HTB3RhkzJPFlvDziyILjJVCsli6/jocISvPX4wLVDxTz/8PUeGIgt5WaUCmDWCLCJB4A7gSqAPeEpE7jfG/N512n7gpcaYQRG5BrgL2DrfRkUTCU2oVwpGKTS8rDGcNfL2os4WHeQpc6YUGnbPgmjuplIISqFjJ+B2x8/3pJ4LhwLUVQfn+5JKhZBPisVFwB5jzD4AEbkXuA5ICdoY85jr/CeA1fNtkGUZIlErlbepnbJSABZVw2Cb4Wyb0ot6Y2V+LLqGNdVNKQKLrmN3wM3R8Psv30jMvd+bomQhH4PcARxyPe5j5tHcO4EfzbdBBwbG+egPfqcJ9UohWVQNW5Zh15ERvvb4wbRB3tceP8iLulroXtow35dWKpeCalhEbgRuBOjq6sp6juYfK0Vg0ftiDbgp8yUfg5ytJzRZTxR5GbagL8lxfNZO+fhIhIMDk2mdsjHQ0aL10pV5s6gaPjAwzgsnRrNO6y1rDM+t5YpiUzANAxhj7sKeuqanpyfr62iqm1IEFr0v1oCbMl/yMch9QKfr8WrgSOZJInIu8CXgGmPMQLYXyqdTXtYYJhwKcHQ4kjIX4VCA17yoI4+mKkpWFlXDztR05rSeTk0rC6BgGs4HjbwpRWLR+2INuCnzJR+D/BSwUUTWAoeBNwJvcp8gIl3A94C3GGOeX0iDgoHTuZuOsfjAFRsJerYotuIDFlXDukBPKQKLqmGNvClFYtH7Yg24KfNlVoNsjImLyM3AT4AgcLcxZpeI3JQ8fifwP4ElwOfFXoUUN8b0zKdBzpYsmrupFIrF1rB7kKcL9JRCsNga1sibUgxK2RdrwE2ZK3kVCjHGPAg8mPHcna7/vwt4VyEa5ETfNHdTKSSLqWEd5CnFYDE1vLwpe+Tt+vM18qYsDO2LFb/gqUp6lmXYPzA2bcT36ddv0Wk9xRdYliGeMDrIU3xNV2sdt73qHD76/WdT/fBtrzqHrta6UjdNUfJC+2JloXjKIB8YGOfmb/5fWuuq03I3z1qpJSEVf+DkbmYu0NPcTcVP9A5O8J8/eyEt8vafP3uB87taWdeukTfF+2hfrCwUTxnk4yMRIjErbVoPYNv6JTodovgCzd1UygFHx+5+GODEaEQNsuILtC9WFoqnDLKT9xaJna5wo9Mhip/Q3E2lHHBW/2tfrPgV7YuVheKptZxO3ls4ZDdL894Uv6EaVvyOey2IW8e6FkTxE9oXKwvFUxFkzXtT/I5qWPE7uhZEKQe0L1YWiqcMsua9KX5HNaz4HV0LopQD2hcrC8VTKRZO3psbzXtT/IST9+ZGNaz4CdWwUg6on1AWimcMsua9KeWA5r0pfkc1rPgd9RNKIfBMioXmvSnlgOa9KX5HNaz4HfUTSiHwjEHWvDelHNC8N8XvqIYVv6N+QikEnkmx0Lw3pRzQvDfF76iGFb+jfkIpBJ4xyJr3pvgdzXtT/I5qWCkH1E8ohcAzKRaa96b4Hc17U/yOalgpB9RPKIXAMwZZ894Uv6N5b4rfUQ0r5YD6CaUQeCbFQnOGFL+jGlb8jmpYKQdUx0ohyMsgi8jVIrJbRPaIyK1ZjouIfDZ5/Lcicv5cG9K9pJ5Pv36L5r0pRUE1rPgd1bBSDqiOFb8wa4qFiASBO4ArgT7gKRG53xjze9dp1wAbkz9bgS8k/82bQEC4+uwVbH7/SzgxGmFZY5juJfWa96YsGNWw4ndUw0o5oDpW/EQ+OcgXAXuMMfsARORe4DrALejrgK8ZYwzwhIi0iMhKY8zRuTQmEBDWtTdojpBSaFTDit9RDSvlgOpY8Q35pFh0AIdcj/uSz831HETkRhHZISI7+vv759pWRZkvBdOwopSIgmpY+2KlRKifUHxDPhHkbHMSZh7nYIy5C7gLQET6ReRgjmsuBU7m0Tav4vf2g/fvYc0czi2YhkXkRuDG5MMxEdmd45pef/9mw+/tB+/fQ0k0DHn3xV5//2bD7+0H79/DXDQM6ifmg7a/+GTVcT4GuQ/odD1eDRyZxzlpGGPacx0TkR3GmJ482uZJ/N5+KI97cFEwDbs75Znw+/vn9/ZDedyDi6L0w5C7L/b7++f39kN53EMG6ifmiLa/dOSTYvEUsFFE1opINfBG4P6Mc+4H3ppcfXoxMDzXfCFFKSKqYcXvqIaVckB1rPiGWSPIxpi4iNwM/AQIAncbY3aJyE3J43cCDwLXAnuACeDtxWuyoswN1bDid1TDSjmgOlb8hNgLRb2FiNyYnMr2JX5vP5THPZQSv79/fm8/lMc9lBK/v39+bz+Uxz2UGr+/h9r+0uFJg6woiqIoiqIopcIzpaYVRVEURVEUxQuoQVYURVEURVEUF54yyLPVaPcKInK3iJwQkWddz7WJyP8RkReS/7a6jn0keU+7ReRPStPq04hIp4j8XESeE5FdIvKB5PO+uQevohpeHFTDxcUPOlYNl/4evIxquPiUvYaNMZ74wV7RuhdYB1QDvwHOKnW7crT1UuB84FnXc/8G3Jr8/63AJ5P/Pyt5LzXA2uQ9Bkvc/pXA+cn/NwLPJ9vpm3vw4o9qeFHbrxou3nvrCx2rhkt/D179UQ0vWvvLWsNeiiCnarQbY6KAU6PdcxhjHgFOZTx9HfDV5P+/CrzK9fy9xpgpY8x+7K1rLlqMdubCGHPUGPN08v+jwHPYpTx9cw8eRTW8SKiGi4ovdKwaLv09eBjV8CJQ7hr2kkHOq/66h1lukpuZJ/9dlnze0/clIt3Ai4An8ek9eAi/v0++/PxVwwXHz++VLz9/1XDB8fN75cvPvxw17CWDnFf9dR/i2fsSkQbgPuAWY8zITKdmec4T9+AxyvV98ux9qYaLQjm+V569J9VwUSjH98qz91SuGvaSQZ5z/XWPcVxEVgIk/z2RfN6T9yUiIWxBf8MY873k0766Bw/i9/fJV5+/arho+Pm98tXnrxouGn5+r3z1+Zezhr1kkPOp0e5l7gfelvz/24AfuJ5/o4jUiMhaYCPw6xK0L4WICPBl4DljzKddh3xzDx5FNbxIqIaLip917JvPXzVcVFTDi0DZa7jUqwTdP9j115/HXtn496Vuzwzt/BZwFIhhj4jeCSwBHgJeSP7b5jr/75P3tBu4xgPtvwR7WuO3wDPJn2v9dA9e/VENL1r7VcPFfX89r2PVcOnvwcs/quFFaX9Za1hLTSuKoiiKoiiKCy+lWCiKoiiKoihKyVGDrCiKoiiKoigu1CAriqIoiqIoigs1yIqiKIqiKIriQg2yoiiKoiiKorhQg6woiqIoiqIoLtQgK4qiKIqiKIoLNciKoiiKoiiK4kINsqIoiqIoiqK4UIOsKIqiKIqiKC7UICuKoiiKoiiKCzXIiqIoiqIoiuKiogyyiGwXkdtK3Q5FmS+qYcXvqIaVckB1XP54yiCLyAEReXmxzleyIyI3iMgvC/RafyoivxSRIRE5JiJfFJFG1/FdIjLm+omLyANZXudtImJE5F2FaNdioRouDV7ScFK3467jXypEuxYL1XBp8JiGgyJym4gcEZFREfm/ItJSiLYtFqrj0uAVHYvISzKOjSX75uvzvb6nDLJSFjQDtwGrgDOB1cC/OweNMWcbYxqMMQ1AI9AL/Lf7BUSkFfgIsGuxGq0oLhasYeA85xxjjK8GeUpZsFAN/yOwDXgx0AS8BYgsTtMVJcW8dWyMedTVBzcArwDGgB/nfXVjjCd+gK8DFjCZvIm/TT7/Z9hGaQj4BXDmLOf/N3AMGAYeAc52XWM7cNsMbfhL4DlgFPg9cH7y+TOT1x5KtuXPMl7z88CPku34FbACuB0YBP4AvMh1/gFs8/f75PGvAOGMNuwBTgH3A6tcxwxwE/BC8nfvAMR1/B3J9g8CPwHWzPa7yXuLAIlk+4eS51+bbOMocBj4m3l+rq8Bfpfj2EuT16zPeP5O4D3J9/xdpdamalg1PBcNJ9u5odR6VA2rhuejYaA1+Xh9qfWoOlYdz1fHWY5/BfjKnK5XaiFn3MAB4OWux5uAceBKIAT8bfLDrs52vutDbQRqkqJ6Jh9BA69LfnAXJj/oDcCa5HX3AH8HVAOXJz/kM1yveRK4AAgDPwP2A28Fgtijn59n3OOzQCfQlvwC3JY8dnnytc5Ptv8/gUcyRPlDoAXoAvqBq5PHXpVs55lAFfBR4LE8f/cG4JcZ78dR4CXJ/7eS/HInHw8Bl+T5md4O3Jvj2N3A9oznLgJ2YM9u/AIfGWTVsGrY1c4j2H9Yvwd0l1qXqmHVcL4aBi5NvvaHkxp+HnhvqXWpOlYdz0XHGcfqku/zZXPSUKlFPIug/wH4jutxICm6y3IJOuP1WpIfZHMegv4J8IEsz78Eu5MIuJ77FvD/uF7zi65j7wOecz3+I5KjKFebb3I9vhbYm/z/l4F/cx1rAGIk/8Am7+US1/HvALcm//8j4J0Z79UEyVHfLL+bTdC9wLuBpgV8nldijy435RDsiFuw2B3ADuDFyce/wP8GWTVcQRpOPn8p9h+/FuBz2H/AqkqtTdWwajgfDQNvSrbzy0AtcC62Abqy1NpUHauO89VxxvG3YA80ZC7X9HoO8irgoPPAGGMBh4CObCcnFxb8q4jsFZERbPEALM3jWp3A3hxtOJS8tsPBjDYcd/1/MsvjhozXPJTxWqtc13Lf7xgwkHGtY67/T7heew3wmWQy+xD2lIrk+bvZuB77y3ZQRB4WkRfPcO40RORi4JvAa40xz2c55TXJNj7seu49wG+NMY/P5VoeRzVcWRrGGPOIMSZqjBkCPgCsxY7E+BXVcGVpeDL57z8ZYyaNMb8F7k22w8+ojitLx27eBnzNJN1yvnjNIGc2/gj2BwWAiAi28A7nOP9NwHXAy7GTu7udX83j2oeA9VmePwJ0ioj7vepytWE+dGa81hHXtdz3Ww8syfNah4B3G2NaXD+1xpjH8vjdaaIxxjxljLkOWAZ8H3uEmBci8iLsfKd3GGMeynFaNsFeAbw6uVr1GPYikU+JyOfyvbYHUA1XtoZztS2fz88rqIYrW8O/zdUen6E6rmwdO7/fCVwGfC3fazp4zSAfB9a5Hn8H+FMRuUJEQsCHgCngsRznNyaPD2CH3D8xh2t/CfgbEblAbDaIyBrgSey8pb8VkZCIXAa8EntEPV/eKyKrRaQNOxfp28nnvwm8XUS2iEhNsv1PGmMO5PGadwIfEZGzAUSkWURel2d7jgOrRaQ6+bvVIvJmEWk2xsSwpy4S+byQiJyDvUr0fcaYadu3Jc9ZDbwM+GrGoRuwI21bkj87sFdT/32e9+EFVMMVrGEROTt570ERaQA+hf0H6bk878MLqIYrWMPGmL3Ao8Dfi0iNiJwJvAE759RPqI4rWMcu3oKdP50toj8z880HKcYP9mitFztp+2+Sz70ae/XjMHb4/Oxc52OH+H+AnYx9EDux3ZBcUc7sq05vAnZjr4R8luRqUeDs5LWHk215tet30l4TeBfwC9fjDUDc9fgAp1edDiU/1LqMNuzFni74IbDadSx1Lzmu/Rbgd9gCPATcnc/vYudL/u/kNU8mH/8YO99nBHiK9HyjMZIJ91new69grwYec/3syjjnI8CjeejhF/gvB1k1XMEaxl4Ysxv7j+AJ7GjJxlLrUjWsGs5Xw8ljHclrjwH7sKOJJdem6lh1PBcdJ4//AVc+9Vx+JPkCyiIhIgewTd9PS90WRZkPqmHF76iGlXJAdVxcvJZioSiKoiiKoiglRQ2yoiiKoiiKorjQFAtFURRFURRFcaERZEVRFEVRFEVxUVWqCy9dutR0d3eX6vKKz9m5c+dJY0x7KdugGlYWghc0DKpjZf6ohpVyIJeOS2aQu7u72bFjR6kur/gcETk4+1nFRTWsLAQvaBhUx8r8UQ0r5UAuHWuKhaIoiqIoiqK4mDWCLCJ3A68AThhjzslyXIDPYNfZngBuMMY8XeiGKuVPPG7xQv8IkZhFJGZxajzK6tY6zl7ZRFXVwsZyqmNlMbAsw6HBcUYn44xHE5wYnWJVc5g/WtVMdXVwQa+tGlaKTTSaYPeJUeKWBUDcMkxGE0zFLdYtqWdtewOBwPyrpquGlcWiEH4inxSL7cDnyF3H+hpgY/JnK/CF5L+KkhPHSAyNx7AwVFcF6BucJGEZhifj/OMDu4jELMKhAB+/7hxevaVjoSZ5O6pjpcC4O+FgQDg+MoUIDIxF+dj9pzX8T392Dq86b9VCTfJ2VMNKAcjsfwFqqwMcPDlJIrmz1VTc4thwhM889EJKx5963RauOWfFQkzydlTDSpGJROI8vLd/wX5iVoNsjHlERLpnOOU64GvG3i/uCRFpEZGVxpijed+NUva4O2QJwImRKaIJK3W8uTZELG53zI6YASIxi3/4wbNsWt7AeZ2t876+6lgpBG5D7B7UAdRVVzEVs2iqrUqZY7A1/D/vf5Z17fX0dLfN+9qqYWW+ZPa/x0emiLn6X4C2+mpiidPbvu4/Oc5dj+xL0/GH/vsZzlz5Eta1N8yrHaphpdhEInF29g0WxE8UYpFeB3adboe+5HPTBC0iNwI3AnR1dRXg0opXmalDbqipSgnWoW9wkmQgY9qxSMyOZJzXWdQm56Vj1XBl4dZxVZWkGWL3oA7g+EgEjD0tnU3Dx0cixW6u9sVKCne6z7GRSCog4QzkMjk2PMVULHH69032vvjEaGTeBjkPVMPKvLAsw+HhcXoHJgvmJwphkLPNtWStPmKMuQu4C6Cnp0crlJQZTnQtljBphjizQx6ejDMxFU/73bqaKiSppHAokCbqcCjAiuZwsZufl45Vw+VPLh231FanGWJ3JwynNdwUrsqq4eVN3tAwqI7LFbcpPjoSIZawpgUknIFcJitbwoxETksoKNn74mWNRdWxaliZM/G4xaN7TlBdFaRvcJK66sL4iULsYtEHuL34auBIAV5X8QHxuMVzR4fYdWSIh3YfZ//JCU6Nx5iKWVgWWJbdIY9PxVM/9dVB6sNVaT9ffWwfASAg8LFXnk04ZEvTyRk6e2VzsW9FdVzBRKMJftc3s45PjE6l6biuOl3DR4cmmJiKEU1Y/OOfpWv4n/7sHM5dpRpWCo9lGQ4OjPFs3xAP/eE4u46McHI8mtLu8GR8Rt06P/c8sZ+qgN0HBwS6l9bzgSs2pun4U6/bQveS+mLejmpYmROWZXhi/wDjU1bKHBfKTxQignw/cLOI3IudTD+s+ULlS64pZ3d0LTNC4Y4OA8SNYWIqRkM4lHru+gu6uPtX+3jv5RtZ3lTDV264kFPjUTpaajlnVfOCd7HIA9VxBeHWcU21pBYnudMmMnWcGWHb/qt9vOOP16ViXu1NYUYnYxwbmuSsjia2v/0i+kenWNkc5twC7GKRB6rhCiIet9h7coRDp+z0CfdMnVu77Y01af3vkcEJWupCaf0vwMs2r+R7Tx/iXZeup0oCiMDq1lruessFTMUs1i6tZ90Cd7HIA9WwMif2nhjj8JA9m1dXY5vj688vjJ/IZ5u3bwGXAUtFpA/4GBACMMbcCTyIvSXLHuxtWd4+r7tUPEuuKWe3mTgxejp/LdMQZ3bI8YRFqCrIqbEpNq1spEoCrGyGD121mVPjUVprq7lwTWFNsepYyTb9DOmLk9xpE5k67h0Yp62hJvXYPahrClcREEltizUwGmPt0nou6m4rmKFQDStg98f7B0bYd3KS2lAwNX3sNsVu7WYGJJyBXDR+uv8VgZXN0L1kPf0jxQtMqIaVQuHkHO85OZZKqdj+K9sc3/d0L2/dto7+kSmqgwEuWN1KODz3eHA+u1j8+SzHDfDeOV9Z8TSOKbYMqShxZi6x20y4o2uZhjhXhxyJWUXtjN2ojiuTbIO7TB27Fye5jUWmjuvDIcYiMZY1hWkMV7GiOZw2qFMNK8XCGdxNTMXpHZykoaaKWNwQjZ9ez5FLu9kCEgljD+SGx+OLFRkGVMNKYXDnHNcEAxwaGKWlLsT1F3Rx307bHEeicTpaa+dtjqGEpaYV75HNFOebOuGOrmUzxKXqkJXKI9NMZA7uZkqdcKdNzKTjU2N2hHjdatWxUjwsy9A3NM7zx8aIJqzUrF3fhB2ccKdPuE1xNu1OxU8HJM7taFmMtDVFKTjxuMXjyZzjE6NRWuqqCSdnUgIC77tiE0MTMTrb6rigs3VBqW1qkCucbKY439QJt5lwR9eWN9WQMLVE1BAri0S29Ilcg7tMHd/zxH5ec34nlpmeC2+ZWh3YKSUhGk3w6N5+goHTq/CdWTtHw+70iUxTTEstkZhqVykfotEETx44xZHh09+DLz6yhzdv7aZ/NMLKljqOD0dY3hxesDkGNcgViROVGI+cjrC5TXG+qRPTzQTp0bUu7ZCV4pHNFLsjxbkGd5k6di9OWtGUnjZxXseiLBBVlBROjvGxkRiTUYvxaHTa4M4JTmSmT6gpVsqVSCTOk72nODYcmZZz/I0nD/DWbeuYdKVVFGJRtBrkCsJZ9XxseIrJWILGcHZTnG/qhJoJpRQ4BuLgwMyr93MN7rLp2L046cI1bapjZdFxL75rqKliaCLGxFQ8rT92jHFmcCIaD6f0e35nq+pXKSuc6niOOT46NFGUnONM1CCXOZkpFDVVQXu1fSK3KdbUCcVruPOKj41GEAKzrt6faXCnkTbFKzir8X9/ZDS1+K5vYpL2Bju/2D24cxvjv77yDAYnYkXZ9UdRvMLkZIynDw+l9jg+OjRRtJzjTEpmkHfv3s1ll12W9tzrX/963vOe9zAxMcG111477XduuOEGbrjhBk6ePMlrX/vaacf/6q/+ije84Q0cOnSIt7zlLdOOf+hDH+KVr3wlu3fv5t3vfve04x/96Ed5+ctfzjPPPMMtt9wy7fgnPvEJtm3bxmOPPcbf/d3fTTt+++23s2XLFn76059y2223TTv+X//1X5xxxhk88MADfOpTn5p2/Otf/zqdnZ18+9vf5gtf+MK049/97ndZunQp27dvZ/v27dOOP/jgg9TV1XHHHXfw9W/ei2VOl7wNBoSP3/XfDE1E+NE3v8ivH/kpQZHUHq79ExZ3f+t7ICDP/C/e9v/+jI6WWoJJ09DQ3MpHP/0l1i6t50t3/jNPPPFE2rVXr17NPffcA8Att9zCM888k3Z806ZN3HXXXQDceOONPP/882nHt2zZwu233w7AX/zFX9DX15d2/MUvfjH/8i//AsD1118/7d5LgWq4eBr+/Oc/z3e+8x0isQQJyxBNWBgDX/jWDwhKgLvu+AxP//JnACkdV9eEefc/30VLXYgHvvo5/u8Tv8QYQygYIBgQmlrb+MfPfJnh8Tj3/de/84ff7ky7diVqGFTHi6HjTH7xi18A8K//+m9863vfTwYtDAljqK6p4eNf+CZxY/j65z/Frh2Ppcqb11UHaWxuZfyP76K1pZr7v/gpnnyydH2xV1ANl07D//Ef/8EPf/jDtGO1tbX86Ec/AuDjH/84Dz30UNrxJUuWcN999wHwkY98hMcffzztuKPhyckYb/urm3n2d78lKEI0niAQEJZ3ruVNH/w4K1vq+PiHb2HgyEGawqFUcKRQfbEOOcuIeNxi97Eh/nBslIlogljCYAwYA1NxK1VFqa46SDAgHBuZRLA98ormMHf/ah+11UGWNlTT2VpHwoCI0FATYmlDDVeevYINyxsR0UibUjzicYvjIxMMTkRTOrYsW8d9g5OcGo9RHbQ1HAzYnaZlWQh2pDgSs5iMJqipChAOBZGk+agOBrhkQztXnr2C1vrqUt+mUsHY60DGODg4gWXZ/XPCGIIiBAMBvvrYPuJxi0BASFiG2lCQmqogsYShpirIteesZEtXq856KGVLJBLnN0eHGZuKExTbr4SSsyQJy7CypY7JqO1p3Oa4kIi97eDi09PTY3bs2FGSa5cb7ty1mqogYxF7X8zxaHza1PORwQlWNNdQXRVkcCLOfTt7U4UOonGz2NXr5o2I7DTG9JSyDarhwhKPWxw8NcKe/pl13FxbxR+OjqSmnafiFqOTMQKCnT5hhEgssZjVv+aFFzQMquPFJhpN8MSBkwQDgWm7UjjpbcOR031zdTDA4ESM1R7sl1XDSjFwco77R6MEA5Kqjnff07385aUbCAWEaMJi/dIG1i9beP+eS8eag+xTMvd6bayxF9wNTWTPx3Q63vamMEMTMeqqLc5Y0cgHr9rMYJGq1ynKbGTmFlcHg7Pq+KaXbmB5c5jhCc0pVvyDk2u8r38CQVI5lW5jnDXHuKWard1LtG9Wyh7nO9I7MEnf4CQrm8N89qHn06rjDU9E6WitZdvaJQVbjJcLNcg+w9mJoveUva2Vsz3biai9pVWuxXbujndVS5ipmMXAaJS1S+u5eO0SNRPKopJNx0GZHlGD6YuU7nx4D7dcuYmOllrGowmGkqZ4vZpixaM4exqHQ0GODUeoqQpOW42vxlipZNzV8ZzB4z1P7Od1PV389470nSrO72gpujkGNci+IDNaXFMVTG1r5RgKZ0urXCuelzfVpG3JdkGnbmWlLD6Z6UBuHTumIXPlfuYOFB+8cjOnJqKsbgnxx+t0SyvF2zj7t05GLU6ORamrttOEPvvQ87x5azejkVjaavxljTVctXl5QVfjK4qXyayOV1ddlUqreOi5o6nvRteSOs5b2UxtbWhR2qUG2eNEInF+ue9kWpnRbNPPzpZWucyEplAopSQaTbD/1CgHBiZTW1ll6tgxDU4q0Ezbsl28Tmc9FG/jni4+NhxJzYwcHZrAmBpe12MXOHByKiejCc5c0ciGZY2qbaViyFYdz51z/NZt6zg+HKGjtZYtqxYncuygBtmDOBHjSCzOseFozjKjcDqNwr1f8aoWeyX/4FiMde0NaiaUkpFaeHdikobw6T1es+n4ppdu4HU901OBNK9Y8RvZpoudXOM3b+1OrgMJ8MGrNjMwNkVLY5htq5oX9Y+/opSamarjOea4GAVA8kW/jR7CKQH9/LExogmLtvpqjmUpgpArjaKu2jYUIxNqKJTS4k6laK4NEUuYaQO8XLnFf/Mnm+kfjdJYE+Li7sJu/K4oxcaJiLmni925xu6o8chkjM3LmwqyEl9R/EQ0mihJdby5oAbZA7iNcVXwdIWwY8NTqVEVpO9EkSuNQnOLlVKRmSvvpFIcG05fQDqbjle31HLN2StUx4rviEYTPH5gIC2l4quP7cuaa9zUWMMlnUt1AKhUHPG4xc5DgyWpjjcX8voLJCJXi8huEdkjIrdmOd4sIg+IyG9EZJeIvL3wTS0/LMvQe2qMn/3hOPv6J4jELI6PRBifijM+FaetPsTRoQkmpuyO1YkWt9SFOGNlI11L6hkej7OssSa1cbyaiuyohouHW8e7joxwaiJmp1IMTqZ0XB+2jUIA1fF8UQ17m2g0wc5DpyNijuavP9+OGi9vrmVVSx2T0QRnrWhi69olFWmOVceVTTSa4PF9AxwfmUozxwCRWILmuhqOD0doq6/mwjVtJf2OzPpXSESCwB3ANcBZwJ+LyFkZp70X+L0x5jzgMuBTIqKlqnIwkzF2Otb6sL3FyfJmO5/41NgU65fV8cErNzM+laAmGGTbuqWp6nY6PZcb1XDxiETiaTq2LFLG2NHyPU/spypw2hivaK7hr688Q3U8B1TD3iYSifP4gfQ/+hNTMXu62LV/a00owGUb2tm4ojK1rjqubJzvyZHhSdrqQ3z1sX20N4btY7FEqjreqpZaXry29Fsc5nP1i4A9xph9xpgocC9wXcY5BmgUuwZxA3AKiBe0pWVCNJrg57tzG2N3xPhlm1fyv397mA3LG1jdVs/gWIylDdUaZZs7quECE49b7D0xxJMHT02b+XBHzwLYOv7e04dSA7yJqQT11VVcfdYK1XH+qIY9iJ1WNJbKpXRm/Zzp4kQiwfuu2IQxhs62Oi7saqv0hXiq4wrFqY7nzLD0DoyncvKXN9eyYVkjoaBw5qpGtq1f6om/C/l8UzuAQ67HfcDWjHM+B9wPHAEagTcYY6yCtLBMcBYtHRuJMRm1GI9Gsy5YyszLXNO2nlPjdl7mOR4RjQ9RDReIzMV3ziLSbDuruBeQvm3bOk6M2Dq+qFvzi+dBQTUsIjcCNwJ0dXUVvLGVQLadKnoHxlN9uBMROz4cYWVLLReu0fUhFFDHqmF/kFkdz51WUS2GG7atY2giSn11FfU1Ac5e2eKZ2ZV8vq3ZWmoyHv8J8AywCtgCfE5Emqa9kMiNIrJDRHb09/fPsan+xIkwPLT7OCdGYwxNxLJGjNub7FSK8UgsFTE+NRajXfMyC4FqeIFk6thZfJdt5iNbKoVGjBdMwTQMYIy5yxjTY4zpaW9vL2Q7KwJ3YQP3H33LQCyeYEUyIgbQ0eqN6WKPUDAdq4a9Tzxu8fDzx7OaY4ChiRgGWxTNdSFesmGZZ8wx5GeQ+4BO1+PV2CM7N28Hvmds9gD7gc2ZL1RJgnbnGfcOTKYWLdVXB2c1xiOTcTpaarnqrBVs1LzMQqAanie5dJy5iNTRcWauvBrjglEwDSsLwzHHR4ZO59q7cymHJmJMxS1Ojk3RWhfSctHpqI4rBMsyPJExiPR6znEm+aRYPAVsFJG1wGHgjcCbMs7pBa4AHhWR5cAZwL5CNtRPRKMJHt3bTzBgb9k2MH46nSJuTMpQ2KkUFhuWNxCNG0Ym46xvb2C97l9caFTD82AmHYvAPU/s50/P7WB4Il3Hp8ZirNcCNYVGNewB3OY4s7CBe3/jaMJic2er7m88HdVxhbD3xBiHh6ZXx/PT92RWg2yMiYvIzcBPgCBwtzFml4jclDx+J/BxYLuI/A47Wv5hY8zJIrbbkzj5mUeGo1nzjJ3czFBVMBUxThnjpQ2eFYnfUQ3PDcsyHBkZZ++JiRl17CwiveGP1xGNG0Yn7QI1Wiq38KiGS0+mOc5W2GB4IkpHay3b1i6p9MV4WVEdlz9OzvGek2M5q+P55XsixmSm/ywOPT09ZseOHSW5djGIROI8vLefhpqqaRXDHEMxHIlz385e3nv5RqqDAQYnYvbiu1XNnpta8DoistMY01PKNpSbhsGOGj9x4CTBQEB1XGS8oGEoTx0Xmnjc4skDA1nzKAMCnUvqGZqIsayxpqSFDRYb1bDixr1wdSpmsefEKC11IRJGPFMdLxu5dKx/zRaIs3jp6cNDqfzMzIVLumhJ8TqOjh8/MACI6lhRkjiR41PjMc8XNlCUUpG5cDVmGd9vd6h/0RaAs6dx78AkJ0amUgs2MhcuOeIYmYwTEOGqzcvVUCiewa3jY8ORNCOgOlYqGXdaRX11cJo5dhYZrfToIiNFWQyc6njuhatffGQPjeFQ2iCypS7kqxkW/TbPA3e0bTJqj5bc5XTbG6fvTDEZTXDWysotL6p4j2w6rquuSqtwpDpWKpXMnOO4MdnNcbOaY6VycVfHy1ZifUXye9LRWsvWLn/NsHg/xu0xnJX94VCQY8OniyT0DozT1lCTqgzjrNLUBXiKF8ml46NDExhTw+t6put4nS7AUyqEXAvyGmtD9I9EUuZ4eXOYrd1aAESpTDKr42VbuOrFnON80W91nuSKtjmjpfqaEGORGCuT+ZnRuEVdTZDLNy1j4wo1FYp3cEb82XTc3hhmaCJOUAwfvGoz0XiC+poqLtvQzqYVTapjpezJZo6dXMrxSIwzVjZhJXMpX9ytMylKZeKY48yFq37OOc5EDXIeuKvBHBuOTMs1dqLGzXU1WBaMRuJsXt7IRdp5Kh5jcjKWGvHn0vHy5lra6sOMTMbYvLyJC7v92bkpylzJZY5BF+QpikMucwzl9T1RgzwLTvK5uxpMZq6xM1qKxBLUVmvUWPEelmXoG7J3W1EdK8p0ZjPHuiBPUWxz7P474rfqeHPBvy1fBKLRRCr5fKZo26qWOnvx0gpdvKR4D2cGpO9UJG3ErzpWFBs1x4oyO07k+MTIVMocO4vxljfXsmFZI6Gg8KLOVratX+r774m/W19E4nGLnYdOJ59rtE3xI+4ZkGPDU2kjftWxopwuAqLmWFGy46zBctIqnJ2OMqvj1YQCXLahvWz+hug3PQtONOF4cpSk0TbFj7i33xmfiqd1aqpjRZm9CIiaY6XSca/BcmYgewfG7Z0qnk7fqaJrSW1ZrVfRb3sG7qm2tvpQ1pWZGm1TvE7m9jv14SrueWI/r+uZPuJ/6fqlqmOl4rAswxMHtAiIouQiszqeMwNZXxMiKIYbtq1jMmqnn8YTFh3N9aVuckHRb7yLzDy03oFx2ptOJ5+Xy8pMpbzJtsJ4YirGyzav5KHnjqa23+laUsf5HS3U1oZK3WRFWXT29o9xeFCLgChKNtx+yFmD5Z6BbK6roa46SHNtiDOWN/KSjcvKLshSPrHwBZJrkUYsnmBFcy1VAWE8mrCrwXRrh6l4k5n2pgwIvPnitQxNxFjWWMP5q/1T8lNRCkkkEueFE6NaBERRspDph0Rg+6+m5xx3tNaybe2SskqrcKPffGZewTw0EWMqbnFybIqWupCaY8WzZJrjzO13nBmQJToDolQwzvfEMmgREEXJINuiVWcNVmbOsR+r482Find6ur2PUg5kM8flvP2OoswH9/ekb7A8ixt4HRG5WkR2i8geEbk1xzmXicgzIrJLRB5e7DZWKrkWrZZTdby5UNF/JdUcK+VANJrIao7LefudSkSNxcLIHER+69e9GJPe169oDmtfX0REJAjcAVwDnAX8uYiclXFOC/B54M+MMWcDr1vsdlYizpaguRatVuIAMq9eoBw7ZjXHlUU5ahhO79edyxxXylRYuaPGYmFkm2G56dIN3P3YfoYjCV44McrSxhou1hS6YnMRsMcYs88YEwXuBa7LOOdNwPeMMb0AxpgTi9zGisO9JaguWj3NrH8xXR3zlUAf8JSI3G+M+b3rnBbsjvlqY0yviCwrUnsLgnt7HzXH5U85ahhOD/IGxqJqjsuflLEAEBHHWPzedY4aiyzMNMPyoas2p31PKiEqVmI6gEOux33A1oxzNgEhEfkF0Ah8xhjztcVpXuWRuSWoLlo9TT53WnYjPvf2PmqOK4Ky03Dmft1qjsuebMaiI+OcTUCriPxCRHaKyFtzvZiI3CgiO0RkR39/fxGa6w10hsVzZMvvMhmPq4ALgD8F/gT4BxHZNO2FKkTDxWSmXY900Wp+BrlgHbMXBB2NJtK291FzXBGUlYaz7dddCVWNKpyCGQsAY8xdxpgeY0xPe3t7YVvqETIroqo59gR9QKfr8WrgSJZzfmyMGTfGnAQeAc7LfKFK0HCxyCwdnc0PVWLOcSb5OMCCdcylFrRlmWnb+4Ca4wqgbDScLXfeMkyrahSNJ8quqlGFUzBjUQnoDItneQrYKCJrRaQaeCNwf8Y5PwBeIiJVIlKHnYLx3CK3s2yxLMOjL5xIKx2duSWo44dWVbgfyueuy6Zj3ts/xvHhqWnb+6g5LnvKQsMz5c4PTcQw2COB5roQL9lQflWNKhw1FnmS+T3RGRbvYIyJAzcDP8HW5neMMbtE5CYRuSl5znPAj4HfAr8GvmSMebZUbS439p4YYzSS0C1B8yCfOy+LjtmpnNRWH9LtfSqPstCw5s5XLmos8ifze6IzLN7CGPOgMWaTMWa9Meafk8/daYy503XOvxtjzjLGnGOMub1kjS0jnLSKPSfHppWO1i1BszPr8NkYExcRp2MOAnc7HXPy+J3GmOdExOmYLTzWMTurmC0DvQPj3PTSDdz58B5ecW4HYydGOW91C91L69RUlCnloOHM0rhqjisPY8yDwIMZz92Z8fjfgX9fzHZ5iVzfk6GJGLXVodQMy4vXLqn4P/5K5RCPWzy65wTVVUFqggHqw1XTSkdr2tF08noX/Nwxx+MWO3rtRPTBiSh1oSDVYvgfV21mPBqnvrqKgBhWt2g0oZzxs4bdAzw1x4qSnWwlpEG/J0pl4+Tjj09ZnBiN0lJXfbp09E41xzNR1r2Ek4t2aHAirXKSO1+zqbZK8zUVz+Ie4GnuvKJkZ6YS0vo9USoV92JVJ63ii4/sIRQMppWOXt1Wp+Y4C2XdU7hz0bRykuI3cg3wNHdeUU6TWQhEvyeKkl46uq66ivpw+oK8puQ2bksbqjm/o0XNcRbKtrdw73ecWTlpTVstW9e2sa0CN75W/MM+HeApyoy4Z1j0e6IoNpmlo48OTZxOq9Cc47wpy3fFsgw7D53ORbvizBVpoljZXEtnm27xo3gXyzK80D+mpXEVJQeWZXhi/wCHh7SEtKI4ZCsd7VTHCwi874pNDE3E6Gyr44JO/W7MRFk6xL39Y/SemkgtygPYtqGd54+PEhBorg3pojzF0+ztH6MmGODQwKgO8BQlC3tPjGU1xxodUyqVXKWj4XTK0fHhCCtbarlwTZvOqsxC2b077tQKdy7axmWNdLXW0rOmlSs2L9dFeYpncTQcswzhUJD66mBqgNc3NMloJKYDPKWiiUYT7Dk5fYZFzbFSqUQicZ4+PDSjOdbFqnOjrN4hd2qF5qIpfsTJqbQMHDw5BqQP8P5oVTNndzTpAE+pWJzvSE0woCl0isLpyPGJkSktHV1AyqoHcadWOJ2mk4u2srmWNUtrNd9G8SzOrhWHXXt2A4xFE+x2pQd1tmr0WKlM3NtWtdRVpyJk7hS6xrCm0CmVgzutYmVzmM8+9Hxqp4q/vHQDoYAQTVhs7mxl/bIGDa7MgbIZRmSmVtSFdFpa8RfuXSs0PUhR0nGbY2c/18ZwKO07csGaVq44Q/e1V8ofp3S0O+e4d2A8bacKp3T02R2NWjp6HpSFQc6VWpGwICCwpbOFl6uxUDyMZRleODGmW1UpShac2ZUjGYvyvvHkAVYkp487WmvZ2tWms4RK2ROPWzz8/HF6BybTtjisrwkRFMMN29YxGbULg8QTFh3NGhycD2WRYrH/5LimVii+Zl//GAlj0nIqVcOKYuMu+qR5x0olk1k6OnPA6KRVVAWF9UsbNK1iAZRFb3JwYJy66io+/4s9vGPb2rR8tIaaKla3LC11ExUlJ070uG9wQrclVJQMIpF4Kn3OvTJfvyNKpeFOM8JAXc30XVyGJ6J0tNaybe0SHTAuEN/P11qWIRQMaGqF4luc6LHmHStKOs4CJKfok3vbKuc7cmF3m35HlLInHrd48kD20tG6xWFx8L1B3tc/xmQ8kTYtvabN3gR7WUONTksrnsYdPX7jhV1peceN4RBrltRp3rFSkUSjidQCpL5B3dO1XBCRq0Vkt4jsEZFbZzjvQhFJiMhrF7N9XsSJHJ8aj2np6EXE172KYy729Y9NK6aw/+QYDSoSxeO4o8d1oSDXbelAkoEwyxjd0k1JUUnGwll43ZdlVxfHHK9oDqs59hkiEgTuAK4BzgL+XETOynHeJ4GfLG4LvYc7raK+OphWOjqRSPC+KzZhjKGzrY4Lu9rUHBcQX/csmVPTbpY01NDVpuZC8S7ZosdOetCZK5o4RwuCKEkqzVjsPWHvaa+7upQdFwF7jDH7jDFR4F7guiznvQ+4DzixmI3zGtFogsf3nU6riBuTNpPSXFfD8eEIbXXVXLhGd3ApNHn1Ll6MXKi5UOaCFzWs0WNlDlSMschVRtpJn9u6to1t3UvUDPiTDuCQ63Ff8rkUItIBvBq4cxHb5TkikTiPHxjgyPDp3VuGxqdorA2lzaQsbw6ztbtNB4tFYNZ31KuRCzUXSr54UcM6wFPmSEGNhYjcKCI7RGRHf39/QRu6ENxlpHUBUlmSrVPLmP/lduDDxpjEjC/kUQ0XAmdx6rHhSNruLZGYxXgkxhkrm2yf01bHi3WwWDTyGXJ4LnKh5kKZI57TsA7wlDlSMGMBYIy5yxjTY4zpaW9vL0T7FoyTa3locIKYZbLudby0IaTm2N/0AZ2ux6uBIxnn9AD3isgB4LXA50XkVZkv5EUNL5Rs1fEyd29JpVXUa1pFscnHIBcsclGoEZ+aC2WOeErDOsBT5kHBjIUXyayU98VH9rCiKZy28HpwMsr6pU2lbqqyMJ4CNorIWhGpBt4I3O8+wRiz1hjTbYzpBr4LvMcY8/1Fb+kiY1mGR184kVYdL9Mc6+4ti0s+727BIheFGPGpuVDmgac0vP/kuA7wlLlS1sbCXSnPXRVsQ3Kv461r27jqjOVqCHyOMSYO3IydxvYc8B1jzC4RuUlEbipt60rL3hNjjEYSaaWj2xvDQLo5XqXmeNHIZ65qLpELgKXAtSISL0bn7I4ev2PbWq7b0oGVtDpqLpQceErDBwfG0wZ4rzi3g2DAHuCdtapRB3jKNIwxcRFxjEUQuNsxFsnjvl3QlFkpT8tIlzfGmAeBBzOey6pfY8wNi9GmUhOJxNlzcozxqXhadTx36ehowmJzZ6uWjl5E8ulxUpEL4DB25OJN7hOMMWud/4vIduCHxTAW2aLHai6UPPCUhkPBQNYBXkIHeMoMlKOxcIqBZFbK0zLSSiVgWYbDw+P0DkxSEwxQH65i+6+0dLRXmDVG76UpEZ2aVuaDlzTsVH7Mlh7U2VKrAzylYnB2rMhWKU/LSCvlTjxu8fDzx1M5xzHLaHU8j5HXO+6VyIVOTSvzxQsadmZADp4ap746mBY97h+NcObKxmJcVlE8h7Moz8k7/vwv9vCObWuZimulPKX8cXZsGZ+yODEaTS1MffPWbqJTMd53xSaGJmKsbqvj/I4WNcclwjc9j2UZqoKi0WPFtxwYGNfKj4rC9EV5WilPqRTc1fHGp+LTFqY2JbdxW9pQrea4xPim99nXP8Yfjo7ozhWKbzk2HNHdV5SKJxpNpBblaaU8pZLIrI5XH67SgjgexhcG2Zma/spjB6dFj+OWRo8V72NZBhGyzoAYnQFRKgTLMmmL8nTHCqVSyFYdT3OOvY0vDLKzOG9wIsqdj+wjYZ0+tqo5rJE3xfPsPznO7/qGeENPevR484omVrWohpXKYG//GMeHp1KL8uqrg2nFQCaicd2xQik7nN1aMguARGIWiUSC912xyQ6UtNVxYVebmmOP4AuD7CzO+8AVGxmciHLHz/fwpUf3URsKsqShutTNU5RZOTgwzshUgm/v6OUV59rR44QFn/zxczTVqoaV8sfZ77itPpTKw3fvWNGzplV3rFDKjmg0wc5DWjraj3h+mOJenPeObWu58dJ1WMaOvnW11enCJsXzOBp+4DeHeUNPF5/92QtEYhbhUIBPvPqP6F6iGlbKG/d+x70D49z00g3c+fAeXnFuB2MnRjlvdQvdS+t0UZ5SVkQicZ7sPcXgeCyVc//mrd2MRmLTquNdrDu2eA7PG+T9J8fTFufp1m6K33Br+N6nennnJetUw0rF4N7veHAiSl0oSLUY/sdVmxmPxqmvriIgRlMrlLLCnXO8sjnMZx96Xqvj+QzPD1cODozr4jzF16iGlUrF2e/40OAEddVVqdSKoYkYBhCgqbaKl2xYpgZBKQssy3BocCwt57h3YDxtMd7wRJSaUICzOxrZuEKDJF7F0wbZmZrWxXmKX1ENK5WM7nesVBKZ1fGcnGPLQFAMN2xbx2TU3vs4Gk/Q0awBEi/j6V7pwIA9Na2L8xS/ohpWKhXd71ipJNzV8fpcg8L2xjCQPmvSUhfSWRMf4Okc5OMjEb7y2EFuunSdLs5TfIlqWKlEnLxj3e9YqQQcc3xkaBIM1NWkV8fTnGN/4ukIcl11Vdap6TVtdSouxRfk1PAS1bBSnrjzjnW/Y6Xcicctnjxgm+Nc1fGcnOPLNrRrzrGP8LRBHpmM8v7L06emw1VBhiajpW6aosyKZRmOj0SyajgSS5S6eYpSFNx5x7rfsZKJiFwtIrtFZI+I3Jrl+JtF5LfJn8dE5LxStDMfnMjxqeQ2blodr7zw7KdlWQYDfHuHvS2WCBhjP75gjWe/L4qS4sDAOLuODPP9Zw5P0/DV56wodfMUnyEiVwOfAYLAl4wx/5px/M3Ah5MPx4C/Msb8ZjHbGI9baXnHN126gTsfOb3f8ZbOFl2UV8GISBC4A7gS6AOeEpH7jTG/d522H3ipMWZQRK4B7gK2Ln5rZ8adVtHeUMOeE6Op6ngBgfddsYmhiRidbXVc0NmqufY+xLMG2Vnc9MYLu/jMQ6cLK3zgio0sb6opdfMUZVaOj0T4zo4+3nLxGi0OoiwIvxiLZ48MT8s7/tBVm1N5x2uW1qpRqGwuAvYYY/YBiMi9wHVASsfGmMdc5z8BrF7UFuZBNJrgyQOnODJsz5TEjUmrjreypY7jwxFWNtdy4Zo2HRD6lLwMcikiF8eGdXGTUjhKoWEn//jrTxxMRZADApuW6wINZc543lhEown6BifpG5qgLmkWnLzjgEBzbUjzjpUO4JDrcR8zD+LeCfwo2wERuRG4EaCrq6tQ7ZsVpzreseFIKq2ipS5EY22I/pFIqjre8uYwW7vVHPuZWT85V+TiGuAs4M9F5KyM05zIxbnAx7EjF/PGsgwi6OImpSCUSsOaf6wUkGzGomOG83MaC7DNhYjsEJEd/f39C26cs2tFU63mHSszkk0AJuuJIi/D1vGHsx03xtxljOkxxvS0t7cXsIm5cVfHc8yxk1YxHolxxsomLGPobKvjxbqFoe/JZ2iTilwYY6KAE7lIYYx5zBgzmHy44MjFgYFxftc3pOZCKRQl0fCuI8OpHPqbL9/AOy9Zx7d39NJWrylCypwpmLGAwpoL964VBwbGueml6cVAljTU0L20TiNpCtgDu07X49XAkcyTRORc4EvAdcaYgUVqW06yVcdzzDHYg8HmuhqOD0doq6/mwjVtao7LgHxSLBZ9SuT4SISRqQQP/EYXNykFoSQa1vxjpYDM1Vhcs1jGwr1rxed/sYf3vnQ9/+OqzYxH49RXV2GM0dQKxeEpYKOIrAUOA28E3uQ+QUS6gO8BbzHGPL/4TUzHsgyPvnCCqmAgpzl20ipWttTy4rW6CLVcyMcgzydycUm248aYu0hOXff09GR9DbBzNx/4zWHe0NOVZi7+Rc2FMj9KomHNP1YKiCeNRWa1vJsu3cAdD9u7VgQDsKWzhUvWLVXNKwAYY+IicjPwE+z1IHcbY3aJyE3J43cC/xNYAnxeRADixpieUrV574kxRiMJxqNTKZ2/eWs3o5FYmjle1VLLxWqOy4p8DPKiRy6iiQRv6OlKTU8HA7B5RROrmmu0o1XmQ0k0/P7LN/LZn73AHT/fQzgU4P2Xb9QUIWVeeNFY5KqWp7tWKDNhjHkQeDDjuTtd/38X8K7Fblc2IpE4e06OMT4V1+p4FUg+BnlRIxeWZYhELb69o5dXnNuBCCQs+OSPn+MrN1y0kJdWKpeSaVhThJRC4SVj4eQdHx6cZHAiqrtWKGWFZRkOD4/TOzBJTTBAfbiK7b+aXh2vo7WWbWuXaAGQMmXWT3WxIxcHBsb56A9+Ny294pPXn6vpFcq8UA0rSmHJzDt+x7a1TMXtXSsmo3FWNIfZpqkVig+Jxy0e3XOC6qogfYOTtNRVn66Ot1Or41USeX2yixm5OD4S4eDAZFrupjGwqiWsna0yb7yg4Q7VsFIGZMs71mp5SjngVMcbn7I4MRqlrrqKLz6yhzdv7SY6FUtVx1vdVsf5HS1qjsscz326ddVVhEMBjg5HuOPnewAIhwJcddayErdMUfJjWWM4q4Zf86KZtq1VFO9jWYadhzTvWCk/3NXxMEzLOX7rtnUcH47Q0Vqr5rhC8NwQ31ncFA7ZTXMWN8Xc1UIUxcMEBD5wRbqGP3DFRoKe+7YpytzY2z9G76kJ+gbtba7qq4OpvOO+oUkmonHNO1Z8RyQS5/EDA6nS0fXh0+bYyTnWtIrKw1Ofsi5uUvyOZRl2HRnha4+np1d87fGDvKirhe6lDaVuoqLMC3dqheYdK+VCtup4LXUhzTlWvGWQdXGT4ncODIzzwonRVAVIh3AowLLGcAlbpijzx51aoXnHSrkQjSayVseLxCwCQirnuLOtjgs6WzV1qMLwlEHWxU2K33Eq6Dl7IGsFPaUccFIrBieimneslAXRaIKdh3KXjl7ZUsfx4QgrW2q5cE2bDv4qEE8ZZF3cpPid5U3hrBX0zu9q0UGe4kssy7C3fywttcK933FDTRWrW5aWupmKkjeRSJwne08xOB7T6nhKTjz1qQcDurhJ8TddrXXc9qpzUikWX3p0H11tdaxuqSt10xRlXuztH6M6GEilVtz92H4Slj3w29LZwss3L9fBn+Ib3DnHbfWhtJ0qljfXsmFZI6Gg8KLOVratX6rmuILxVAT56HBEFzcpvqZ3cIL//NkLaRr+z5+9wPldraxrVw0r/sJZmBcMBLKmVixrCmlqheIL3NXxnLSK3oHxtMV4TnW8jSvq6WzV/rrS8ZRBXtYY1sVNiq9x8ujdGgY4MRpRg6z4CvfCvLuTxRLcqRXh6iAvXrek1M1UlFnJrI7nzjmuFsMN29YxHo1TX11FNJ6go1nXiygeSrGwLMP+gbFpKRaffv0WXdyk+ALLMsQTJqVfBx3kKX7EvefxFWeu4BtPHmDDska6Wu1FS1s6m3X6WfE87up4jjn+6mP7aE/2yUMTMQwgQEtdiJdsWKYpQwrgoQjygYFxbv7m/6W1rjptcdNZKxtVrIovcLYpzNzBQrcpVPxGtj2PdWGe4jcsy/DE/gGODGWvjveXl24gFBCiCYvNna2sX9agfkNJ4RmDfHwkQiRmpe1gAbBt/RLNP1Z8gW5TqJQDM+15HAzYC/Mu0YIgisexLMOuo0McHrKjxiKw/Vfp1fGcnONta5doARBlGp5RxPIme4u3SOx0SWmdmlb8hKPhzG0Krz9ftylU/MM+3fNYKSIicjXwGSAIfMkY868ZxyV5/FpgArjBGPP0XK5hWYZH95xgImppdTxl3ngmgczZHsudf3zbq86hq1W3x1L8gWpYKSYicrWI7BaRPSJya5bjIiKfTR7/rYicP9drWJbhhRP2nsff+nUvdaFgKrWib2iS0UiM1S2aLqTMDxEJAncA1wBnAX8uImdlnHYNsDH5cyPwhbleZ//JcUYnE9QEA2nV8RKJBO+7YhPGGDrb6riwq03NsZITzyhDt8dS/I5qWCkWLmNxJdAHPCUi9xtjfu86zW0stmIbi61zuc6BgXESxmhqhVIsLgL2GGP2AYjIvcB1gFvH1wFfM8YY4AkRaRGRlcaYo/le5OCpccan4oSqAtmr4zVrdTxldjxjkHV7LMXvqIaVIrIoxuL4SCS1a4WmVihFoAM45Hrcx/RBXLZzOoA0HYvIjdgRZrq6utJeoL66iolwgi8mtyfsH42kquMtbw6ztVvNsTI7eSlkMab2nPxNN5qDrBQK1bDic3KZhrmeA9jmQkR2iMiO/v7+1PPLm8JZUyvGo3FNrVAKQbbpBzOPczDG3GWM6THG9LS3t6cdW95Uw8RUjOsvsHerWJE0xx2ttWztatOBnpIXsxrkxcoZ6l5Sz6dfv0X3QFYKjmpYKQMKZiwgt7noXlLPh68+M62cdM+aNi0nrRSKPqDT9Xg1cGQe58xIV1s9bQ016TnHSzTnWJkb+ShlUab2AgHh6rNXsPn9L+HEaIRljWG6l9Rrp6wUAtWw4ncWxVikNLyiUTWsFIOngI0ishY4DLwReFPGOfcDNyf76a3A8Fz6YbB1fPkZyzkwMM6J0Qh/1NGsOlbmTD4GeVFyhsAW9br2Bs3XVAqNaljxO4tiLEA1rBQPY0xcRG4GfoK9zdvdxphdInJT8vidwIPYW7ztwd7m7e3zuZbqWFko+RjkguYMAXcB9PT0ZJ36U5QioBpWfM1iGgtFKSbGmAextep+7k7X/w3w3sVul6Jkko9BLsrU3s6dO0+KyMEch5cCJ/Nom1fxc/v90vY1czhXNTx3/Nx+v7R9LhoumrGYQcd+eR9z4ef2+6Xtc9JwsSjjvljbvjhk1XE+BrkoU3vGmPZcx0RkhzGmJ4+2eRI/t9/PbZ8B1fAc8XP7/dz2UpBLx35/H/3cfj+3vRSUa1+sbS8tsxpkndpT/I5qWFEURVGUuZDXfieaM6T4HdWwoiiKoij54tVSMneVugELxM/t93PbvYTf30c/t9/PbfcSfn8f/dx+P7fda/j5vdS2lxCxA2eKoiiKoiiKooB3I8iKoiiKoiiKUhLUICuKoiiKoiiKC08ZZBG5WkR2i8geEbm11O3JhojcLSInRORZ13NtIvJ/ROSF5L+trmMfSd7PbhH5k9K0OtWWThH5uYg8JyK7ROQDyed90X4/oBouLqrhxcHrOlYNK7OhGi4eFaNhY4wnfrC339oLrAOqgd8AZ5W6XVnaeSlwPvCs67l/A25N/v9W4JPJ/5+VvI8aYG3y/oIlbPtK4Pzk/xuB55Nt9EX7vf6jGl6UtquGi/8ee17HqmHV8CzvsWq4uG2vCA17KYJ8EbDHGLPPGBMF7gWuK3GbpmGMeQQ4lfH0dcBXk///KvAq1/P3GmOmjDH7sffYvWgx2pkNY8xRY8zTyf+PAs8BHfik/T5ANVxkVMOLgud1rBpWDc+CariIVIqGvWSQO4BDrsd9yef8wHKTrLqW/HdZ8nnP3pOIdAMvAp7Eh+33KH5+v3ynAdVw0fDre+Y7DaiGi4Zf3zPfaaCcNewlgyxZnvP7HnSevCcRaQDuA24xxozMdGqW50refg9Tju+XJ+9JNVxUyu098+T9qIaLSrm9Z568n3LXsJcMch/Q6Xq8GjhSorbMleMishIg+e+J5POeuycRCWEL+hvGmO8ln/ZN+z2On98v32hANVx0/Pqe+UYDquGi49f3zDcaqAQNe8kgPwVsFJG1IlINvBG4v8Rtypf7gbcl//824Aeu598oIjUishbYCPy6BO0DQEQE+DLwnDHm065Dvmi/D1ANFxnV8KLgVx37QgOq4UVBNVxEKkbDpV4l6P4BrsVeDbkX+PtStydHG78FHAVi2KOidwJLgIeAF5L/trnO//vk/ewGrilx2y/Bntb4LfBM8udav7TfDz+q4aK3XTW8OO+zp3WsGi79Z+D1H9VwUdteERrWUtOKoiiKoiiK4sJLKRaKoiiKoiiKUnLUICuKoiiKoiiKCzXIiqIoiqIoiuJCDbKiKIqiKIqiuFCDrCiKoiiKoigu1CAriqIoiqIoigs1yIqiKIqiKIri4v8HTFE0b0MXutkAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig, ax = plt.subplots(2,4,figsize=(10,5))\n",
- "ax = ax.ravel()\n",
- "\n",
- "for n,i in zip(x.keys(),ax):\n",
- " g = sns.scatterplot(ax=i, x = np.arange(len(x[n])), y = np.cumsum(x[n]))\n",
- " g.set_title('total components: %s'%n)\n",
- " g.axhline(0.9, linestyle='dashed', color='black')\n",
- " \n",
- "plt.tight_layout()\n",
- "plt.show()"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/.ipynb_checkpoints/setup-checkpoint.py b/.ipynb_checkpoints/setup-checkpoint.py
deleted file mode 100644
index 83db99e..0000000
--- a/.ipynb_checkpoints/setup-checkpoint.py
+++ /dev/null
@@ -1,32 +0,0 @@
-from setuptools import setup
-from pathlib import Path
-
-this_directory = Path(__file__).parent
-long_description = (this_directory / "README.md").read_text()
-
-setup(
- name="robustica",
- version="0.1.2",
- packages=["robustica"],
- python_requires=">=3.8",
- package_data={"": ["LICENSE", "*.md","*.ipynb","*.yml"]},
- install_requires=[
- "numpy",
- "pandas",
- "scipy",
- "scikit-learn",
- "scikit-learn-extra",
- "joblib",
- "tqdm",
- ],
- author="Miquel Anglada Girotto",
- author_email="miquel.anglada@crg.eu",
- description="Fully cumstomizable robust Independent Components Analysis (ICA)",
- long_description=long_description,
- long_description_content_type='text/markdown',
- url="https://github.com/CRG-CNAG/robustica",
- project_urls={
- "Issues": "https://github.com/CRG-CNAG/robustica/issues",
- "Documentation": "https://crg-cnag.github.io/robustica/"
- },
-)
diff --git a/InferComponents.html b/InferComponents.html
index e1265c5..012f2f4 100644
--- a/InferComponents.html
+++ b/InferComponents.html
@@ -4,8 +4,8 @@
-
- InferComponents - robustica 0.1.3 documentation
+
+ InferComponents - robustica 0.1.4 documentation
@@ -122,7 +122,7 @@
-
+
@@ -398,7 +374,6 @@ InferComponents
-