-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
239 lines (192 loc) · 9.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# -*- coding: utf-8 -*-
from __future__ import unicode_literals, print_function, division
import random
import os
import time
import math
import argparse
import numpy as np
import tqdm
import torch
import torch.nn as nn
from torch import optim
import torch.utils.data as Data
from torch.utils.data.dataset import Dataset
import configparser
import importlib
import data_utils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seed = 1
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# np.random.seed(seed)
# random.seed(seed)
torch.backends.cudnn.deterministic = True
def val(batch_size, data, model, optimizer, criterion, teacher_forcing_ratio, train_param):
with torch.no_grad():
loss = model(batch_size, data, criterion, teacher_forcing_ratio, train_param)
return loss.item()
def train_batch(batch_size, data, model, optimizer, criterion, teacher_forcing_ratio, train_param):
optimizer.zero_grad()
loss = model(batch_size, data, criterion, teacher_forcing_ratio, train_param)
loss.backward()
optimizer.step()
return loss.item() # 平均一个句子的loss
# return loss.item() / int(sum(target_lengths))
# 问题:除多了,loss本身就对batch的每一个sequence取过平均了,而这个sum包含batch中的80个句子。(target_length是一个batch的)
# 所以一共除了batch size * seq len。 如果想取字的平均,应只除80个句子的平均seq len,不应除batch size。
def train(train_data, val_data, model, optimizer, batch_size, epochs, last_epoch, val_rate, teacher_forcing_ratio, save_dir, t, model_param, train_param):
model.train()
# plot loss init
plot_losses = []
plot_epoches = []
plot_val_losses = []
# criterion
criterion = nn.CrossEntropyLoss()
# criterion = nn.CrossEntropyLoss(reduction='none') # 取平均 # Jun21
# steps = len(train_set) // batch_size # how many steps(batch) in an epoch 取整数 抛弃不能整除的部分数据
for i in range(epochs):
epoch = i + last_epoch + 1 # epoch从1开始
print('epoch: %d' % epoch)
step = 0
loss_total = 0
start = time.time()
# 进度条 有bug
# for batch in tqdm(train_data, mininterval=2, desc=' - Training ', leave=False):
# src_seq, src_pos, tgt_seq, tgt_pos = batch
for step, data in enumerate(train_data):
# batch_x: B*T tensor
step += 1
if step % 100 == 0: # 临时
print('step:', step)
loss = train_batch(batch_size, data, model, optimizer, criterion, teacher_forcing_ratio, train_param)
loss_total += loss
loss_avg = round((loss_total / step), 5)
print(' - Training loss: {loss:}(per sentence), elapse: {elapse:3.1f} min'.format(
loss=loss_avg, elapse=(time.time() - start) / 60))
# validation
if val_rate:
val_loss_total = 0
for step, data in enumerate(val_data):
val_loss = val(batch_size, data, model, optimizer, criterion, teacher_forcing_ratio, train_param) # for the whole val set
val_loss_total += val_loss
val_loss_avg = round((val_loss_total / step), 5)
print(' - Validation loss: %.1f' % val_loss_avg)
plot_val_losses.append(val_loss_avg)
# write loss log, save loss for every epoch, in case of interruption
plot_losses.append(loss_avg)
plot_epoches.append(epoch)
with open(save_dir+'log', 'a') as f:
f.write('epoch: {0} | train loss: {1} | val loss: {2}\n'.format(str(epoch), str(loss_avg), str(val_loss_avg)))
dic = {'plot_epoches': plot_epoches, 'plot_losses': plot_losses, 'plot_val_losses': plot_val_losses, 'model_param': model_param, 'train_param': train_param}
np.save(save_dir+'loss.npy', dic) # 每次重写会覆盖
# np.save('loss/loss.npy', dic) # 每次重写会覆盖
# save model for every epoch
state = {'model': model.state_dict(), 'train_param':train_param, 'model_param': model_param, 'epoch': epoch}
torch.save(state, save_dir + save_dir.split('/')[1] + '_ep=' + str(epoch) + '_loss=%.2f' % loss_avg + '.pkl')
print('model saved')
def main():
t = time.localtime()
t_mark = time.strftime("%m-%d %H:%M", t)
print('\n', t_mark, '\n')
print('device:', device)
# ========= Get Parameter =========#
# train parameters
parser = argparse.ArgumentParser(description='Vivi')
parser.add_argument('--dataset', type=str, default='poem_1031k_theme_train')
parser.add_argument('--epochs', type=int, default=15)
parser.add_argument('--ckpt_path', type=str, default='')
parser.add_argument('--val_rate', type=float, default=0.1)
parser.add_argument('--batch_size', type=int, default=80)
parser.add_argument('--teacher_forcing_ratio', type=float, default=0.8)
parser.add_argument('--model_name', type=str, default='Seq2seq_12')
parser.add_argument('--train_mode', type=str, default='kw2poem') # nL21L or kw2poem
parser.add_argument('--note', type=str, default='')
parser.add_argument('--train_soft', type=bool, default=True) # Jul12
parser.add_argument('--template', type=bool, default=False) # Jul12
parser.add_argument('--w1', type=float, default=3.)
parser.add_argument('--w2', type=float, default=0.)
args = parser.parse_args()
dataset = args.dataset
dataset_path = 'resource/dataset/'+dataset+'.txt'
epochs = args.epochs
ckpt_path = args.ckpt_path
val_rate = args.val_rate
batch_size = args.batch_size
teacher_forcing_ratio = args.teacher_forcing_ratio
model_name = args.model_name
train_mode = args.train_mode
train_param = vars(args)
# load model parameters
checkpoint = None
if os.path.exists(ckpt_path):
checkpoint = torch.load(ckpt_path)
model_param = checkpoint['model_param']
train_param = checkpoint['train_param']
last_epoch = checkpoint['epoch']
else:
conf = configparser.ConfigParser()
conf.read('config/config_'+model_name+'.ini')
model_param_li = conf.items('model_param')
model_param = {'model_name': model_name}
for item in model_param_li:
model_param[item[0]] = item[1]
last_epoch = 0
print('train param: ', train_param)
print('model param: ', model_param)
# ========= Preparing Data =========#
# read data
if model_name == 'BERT':
pairs = data_utils.read_BERT_train_data(dataset)
elif train_mode == 'nL21L':
pairs = data_utils.read_nL21L_train_data(dataset_path)
else:
pairs = data_utils.read_train_data(dataset_path)
# split dataset
train_pairs, val_pairs = data_utils.split_dataset(pairs, val_rate) # pairs
data_path = 'models.' + model_name + '.PoetryData'
PoetryData = importlib.import_module(data_path)
train_Dataset = getattr(PoetryData, 'PoetryData')(train_pairs, src_max_len=int(model_param['input_max_len']),
tgt_max_len=int(model_param['target_max_len']))
val_Dataset = getattr(PoetryData, 'PoetryData')(val_pairs, src_max_len=int(model_param['input_max_len']),
tgt_max_len=int(model_param['target_max_len']))# 反射并实例化
# 变成小批
train_data = Data.DataLoader(
dataset=train_Dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True, # Jun16
collate_fn=PoetryData.paired_collate_fn
# num_workers=2 # 多线程来读数据,提取xy的时候几个数据一起提取
)
val_data = Data.DataLoader(
dataset=val_Dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True, # Jun16
collate_fn=PoetryData.paired_collate_fn
# num_workers=2
)
# ========= Preparing Model =========#
model_path = 'models.' + model_name + '.' + model_name
Model = importlib.import_module(model_path) # 导入模块
model = getattr(Model, model_name)(model_param) # 反射并实例化
print('model:', model)
optim_path = 'models.' + model_name + '.Optim'
Optim = importlib.import_module(optim_path) # 模块(文件)
optimizer = Optim.get_optimizer(model, model_param) # 调用模块的函数
print('optimizer:', optimizer)
# load model from ckpt
if os.path.exists(ckpt_path):
# checkpoint = torch.load(ckpt_path, map_location=lambda storage, loc: storage) # 重复load
model.load_state_dict(checkpoint['model'])
# write log head
save_dir = 'ckpt/' + str(time.strftime("%m%d%H%M%S", t)) + '_' + model_param['model_name'] + '/'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
with open(save_dir+'log', 'a') as f:
f.write('\n\n' + str(t_mark) + '\nsave dir:' + save_dir + '\n' + str(train_param) + '\n' + str(model_param) + '\n')
print('start training')
train(train_data, val_data, model, optimizer, batch_size, epochs, last_epoch, val_rate, teacher_forcing_ratio, save_dir, t, model_param, train_param)
if __name__ == '__main__':
main()