-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
304 lines (246 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#-*- encoding:utf8 -*-
import os
import time
import pickle
import numpy as np
import torch
from torch.optim import lr_scheduler
from torch.nn.init import xavier_normal,xavier_normal_
from torch import nn
import torch.utils.data.sampler as sampler
from utils.config import DefaultConfig
from models.deep_ppi import DeepPPI
from generator import data_generator
from evaluation import compute_roc, compute_aupr, compute_mcc, micro_score,acc_score, compute_performance
configs = DefaultConfig()
THREADHOLD = 0.2
class AverageMeter(object):
"""
Computes and stores the average and current value
Copied from: https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def weight_init(m):
if isinstance(m,nn.Conv2d):
xavier_normal_(m.weight.data)
elif isinstance(m,nn.Linear):
xavier_normal_(m.weight.data)
def train_epoch(model, loader, optimizer, epoch, all_epochs, print_freq=100):
batch_time = AverageMeter()
losses = AverageMeter()
global THREADHOLD
# Model on train mode
model.train()
end = time.time()
for batch_idx, (seq_data, pssm_data, dssp_data, local_data, label) in enumerate(loader):
# Create vaiables
with torch.no_grad():
if torch.cuda.is_available():
seq_var = torch.autograd.Variable(seq_data.cuda(async=True).float())
pssm_var = torch.autograd.Variable(pssm_data.cuda(async=True).float())
dssp_var = torch.autograd.Variable(dssp_data.cuda(async=True).float())
local_var = torch.autograd.Variable(local_data.cuda(async=True).float())
target_var = torch.autograd.Variable(label.cuda(async=True).float())
else:
seq_var = torch.autograd.Variable(seq_data.float())
pssm_var = torch.autograd.Variable(pssm_data.float())
dssp_var = torch.autograd.Variable(dssp_data.float())
local_var = torch.autograd.Variable(local_data.float())
target_var = torch.autograd.Variable(label.float())
# compute output
output = model(seq_var, dssp_var, pssm_var, local_var)
shapes = output.data.shape
output = output.view(shapes[0]*shapes[1])
loss = torch.nn.functional.binary_cross_entropy(output, target_var).cuda()
# measure accuracy and record loss
batch_size = label.size(0)
pred_out = output.ge(THREADHOLD)
MiP, MiR, MiF, PNum, RNum = micro_score(pred_out.data.cpu().numpy(),
target_var.data.cpu().numpy())
losses.update(loss.item(), batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print stats
if batch_idx % print_freq == 0:
res = '\t'.join([
'Epoch: [%d/%d]' % (epoch + 1, all_epochs),
'Iter: [%d/%d]' % (batch_idx + 1, len(loader)),
'Time %.3f (%.3f)' % (batch_time.val, batch_time.avg),
'Loss %.4f (%.4f)' % (losses.val, losses.avg),
'f_max:%.6f' % (MiP),
'p_max:%.6f' % (MiR),
'r_max:%.6f' % (MiF),
't_max:%.2f' % (PNum)])
print(res)
return batch_time.avg, losses.avg
def eval_epoch(model, loader, print_freq=10, is_test=True):
batch_time = AverageMeter()
losses = AverageMeter()
error = AverageMeter()
global THREADHOLD
# Model on eval mode
model.eval()
all_trues = []
all_preds = []
all_gos = []
end = time.time()
for batch_idx, (seq_data, pssm_data, dssp_data, local_data, label) in enumerate(loader):
# Create vaiables
with torch.no_grad():
if torch.cuda.is_available():
seq_var = torch.autograd.Variable(seq_data.cuda(async=True).float())
pssm_var = torch.autograd.Variable(pssm_data.cuda(async=True).float())
dssp_var = torch.autograd.Variable(dssp_data.cuda(async=True).float())
local_var = torch.autograd.Variable(local_data.cuda(async=True).float())
target_var = torch.autograd.Variable(label.cuda(async=True).float())
else:
seq_var = torch.autograd.Variable(seq_data.float())
pssm_var = torch.autograd.Variable(pssm_data.float())
dssp_var = torch.autograd.Variable(dssp_data.float())
local_var = torch.autograd.Variable(local_data.float())
target_var = torch.autograd.Variable(label.float())
# compute output
output = model(seq_var, dssp_var, pssm_var, local_var)
shapes = output.data.shape
output = output.view(shapes[0]*shapes[1])
loss = torch.nn.functional.binary_cross_entropy(output, target_var).cuda()
# measure accuracy and record loss
batch_size = label.size(0)
losses.update(loss.item(), batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print stats
if batch_idx % print_freq == 0:
res = '\t'.join([
'Test' if is_test else 'Valid',
'Iter: [%d/%d]' % (batch_idx + 1, len(loader)),
'Time %.3f (%.3f)' % (batch_time.val, batch_time.avg),
'Loss %.4f (%.4f)' % (losses.val, losses.avg),
])
print(res)
all_trues.append(label.numpy())
all_preds.append(output.data.cpu().numpy())
all_trues = np.concatenate(all_trues, axis=0)
all_preds = np.concatenate(all_preds, axis=0)
auc = compute_roc(all_preds, all_trues)
aupr = compute_aupr(all_preds, all_trues)
f_max, p_max, r_max, t_max, predictions_max = compute_performance(all_preds,all_trues)
acc_val = acc_score(predictions_max,all_trues)
mcc = compute_mcc(predictions_max, all_trues)
return batch_time.avg, losses.avg, acc_val, f_max, p_max, r_max, auc, aupr,t_max, mcc
def train(class_tag,model, train_data_set, save, n_epochs=3,
batch_size=64, lr=0.001, wd=0.0001, momentum=0.9, seed=None, num=1,
train_file=None):
class_tag = "all_dset"
if seed is not None:
torch.manual_seed(seed)
global THREADHOLD
# # split data
with open(train_file,"rb") as fp:
train_list = pickle.load(fp)
samples_num =len(train_list)
split_num = int(configs.splite_rate * samples_num)
data_index = train_list
np.random.shuffle(data_index)
train_index = data_index[:split_num]
eval_index = data_index[split_num:]
train_samples = sampler.SubsetRandomSampler(train_index)
eval_samples = sampler.SubsetRandomSampler(eval_index)
# Data loaders
train_loader = torch.utils.data.DataLoader(train_data_set, batch_size=batch_size,
sampler=train_samples, pin_memory=(torch.cuda.is_available()),
num_workers=5, drop_last=False)
valid_loader = torch.utils.data.DataLoader(train_data_set, batch_size=batch_size,
sampler=eval_samples, pin_memory=(torch.cuda.is_available()),
num_workers=5, drop_last=False)
# Model on cuda
if torch.cuda.is_available():
model = model.cuda()
# Wrap model for multi-GPUs, if necessary
model_wrapper = model
# Optimizer
optimizer = torch.optim.Adam(model_wrapper.parameters(), lr=0.001)
# Start log
with open(os.path.join(save, 'DeepPPI_results.csv'), 'w') as f:
f.write('epoch,loss,acc,F_value, precision,recall,auc,aupr,mcc,threadhold\n')
# Train model
best_F = 0
threadhold = 0
count = 0
for epoch in range(n_epochs):
_, train_loss = train_epoch(
model=model_wrapper,
loader=train_loader,
optimizer=optimizer,
epoch=epoch,
all_epochs=n_epochs,
)
_, valid_loss, acc, f_max, p_max, r_max, auc, aupr,t_max,mcc= eval_epoch(
model=model_wrapper,
loader=valid_loader,
is_test=(not valid_loader)
)
print(
'epoch:%03d,valid_loss:%0.5f\nacc:%0.6f,F_value:%0.6f, precision:%0.6f,recall:%0.6f,auc:%0.6f,aupr:%0.6f,mcc:%0.6f,threadhold:%0.6f\n' % (
(epoch + 1), valid_loss, acc, f_max, p_max, r_max,auc, aupr,mcc,t_max))
if f_max > best_F:
count = 0
best_F = f_max
THREADHOLD = t_max
print("new best F_value:{0}(threadhold:{1})".format(f_max, THREADHOLD))
torch.save(model.state_dict(), os.path.join(save, 'DeepPPI_model.dat'))
else:
count += 1
if count>=5:
return None
# Log results
f.write('%03d,%0.6f,%0.6f,%0.6f,%0.6f,%0.6f,%0.6f,%0.6f,%0.6f,%0.6f\n' % (
(epoch + 1), valid_loss, acc, f_max, p_max, r_max, auc, aupr,mcc,t_max))
def demo(train_data,save=None, train_num = 1,
ratio=None,window_size=3,splite_rate = 0.1, efficient=True,
epochs=10, seed=None,pretrained_result=None):
train_sequences_file = ['data_cache/{0}_sequence_data.pkl'.format(key) for key in train_data]
train_dssp_file = ['data_cache/{0}_dssp_data.pkl'.format(key) for key in train_data]
train_pssm_file = ['data_cache/{0}_pssm_data.pkl'.format(key) for key in train_data]
train_label_file = ['data_cache/{0}_label.pkl'.format(key) for key in train_data]
all_list_file = 'data_cache/all_dset_list.pkl'
train_list_file = 'data_cache/training_list.pkl'
#parameters
batch_size = configs.batch_size
# Datasets
train_dataSet = data_generator.dataSet(window_size, train_sequences_file, train_pssm_file, train_dssp_file, train_label_file,
all_list_file)
# Models
class_nums = 1
model = DeepPPI(class_nums,window_size,ratio)
model.apply(weight_init)
# Train the model
train(train_data,model=model, train_data_set=train_dataSet, save=save,
n_epochs=epochs, batch_size=batch_size, seed=seed,num=train_num,
train_file=train_list_file)
print('Done!')
if __name__ == '__main__':
ratio_list = (2,1) #glboal:local
path_dir = "./checkpoints/deep_ppi_saved_models"
train_data = ["dset186","dset164","dset72"]
if not os.path.exists(path_dir):
os.makedirs(path_dir)
for ii in range(1,5):
demo(train_data,path_dir,ii,ratio_list)