-
Notifications
You must be signed in to change notification settings - Fork 16
/
main_scalable.py
179 lines (144 loc) · 6.84 KB
/
main_scalable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import argparse
import sys
import os
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.utils import to_undirected, sort_edge_index
from torch_geometric.data import NeighborSampler, ClusterData, ClusterLoader, Data, GraphSAINTNodeSampler, GraphSAINTEdgeSampler, GraphSAINTRandomWalkSampler, RandomNodeSampler
from torch_scatter import scatter
from logger import Logger, SimpleLogger
from dataset import load_nc_dataset, NCDataset
from data_utils import normalize, gen_normalized_adjs, evaluate, eval_acc, eval_rocauc, to_sparse_tensor
from parse import parse_method, parser_add_main_args
from batch_utils import nc_dataset_to_torch_geo, torch_geo_to_nc_dataset, AdjRowLoader, make_loader
# NOTE: for consistent data splits, see data_utils.rand_train_test_idx
np.random.seed(0)
### Parse args ###
parser = argparse.ArgumentParser(description='General Training Pipeline')
parser_add_main_args(parser)
parser.add_argument('--train_batch', type=str, default='cluster', help='type of mini batch loading scheme for training GNN')
parser.add_argument('--no_mini_batch_test', action='store_true', help='whether to test on mini batches as well')
parser.add_argument('--batch_size', type=int, default=10000)
parser.add_argument('--num_parts', type=int, default=100, help='number of partitions for partition batching')
parser.add_argument('--cluster_batch_size', type=int, default=1, help='number of clusters to use per cluster-gcn step')
parser.add_argument('--saint_num_steps', type=int, default=5, help='number of steps for graphsaint')
parser.add_argument('--test_num_parts', type=int, default=10, help='number of partitions for testing')
args = parser.parse_args()
print(args)
device = f'cuda:0' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
if args.cpu:
device = torch.device('cpu')
### Load and preprocess data ###
dataset = load_nc_dataset(args.dataset, args.sub_dataset)
if len(dataset.label.shape) == 1:
dataset.label = dataset.label.unsqueeze(1)
dataset.label = dataset.label.to(device)
split_idx = dataset.get_idx_split(train_prop=args.train_prop, valid_prop=args.valid_prop)
train_idx = split_idx['train']
train_idx = train_idx.to(device)
n = dataset.graph['num_nodes']
# infer the number of classes for non one-hot and one-hot labels
c = max(dataset.label.max().item() + 1, dataset.label.shape[1])
d = dataset.graph['node_feat'].shape[1]
# whether or not to symmetrize matters a lot!! pay attention to this
# e.g. directed edges are temporally useful in arxiv-year,
# so we usually do not symmetrize, but for label prop symmetrizing helps
if not args.directed and args.dataset != 'ogbn-proteins':
dataset.graph['edge_index'] = to_undirected(dataset.graph['edge_index'])
train_loader, subgraph_loader = None, None
print(f"num nodes {n} | num classes {c} | num node feats {d}")
### Load method ###
model = parse_method(args, dataset, n, c, d, device)
# using rocauc as the eval function
if args.rocauc or args.dataset in ('yelp-chi', 'twitch-e', 'ogbn-proteins'):
criterion = nn.BCEWithLogitsLoss()
eval_func = eval_rocauc
else:
criterion = nn.NLLLoss()
eval_func = eval_acc
logger = Logger(args.runs, args)
model.train()
print('MODEL:', model)
def train():
model.train()
total_loss = 0
for tg_batch in train_loader:
batch_train_idx = tg_batch.mask.to(torch.bool)
batch_dataset = torch_geo_to_nc_dataset(tg_batch, device=device)
optimizer.zero_grad()
out = model(batch_dataset)
if args.rocauc or args.dataset in ('yelp-chi', 'twitch-e', 'ogbn-proteins'):
if dataset.label.shape[1] == 1:
# change -1 instances to 0 for one-hot transform
# dataset.label[dataset.label==-1] = 0
true_label = F.one_hot(batch_dataset.label, batch_dataset.label.max() + 1).squeeze(1)
else:
true_label = batch_dataset.label
loss = criterion(out[batch_train_idx], true_label[batch_train_idx].to(out.dtype))
else:
out = F.log_softmax(out, dim=1)
loss = criterion(
out[batch_train_idx], batch_dataset.label.squeeze(1)[batch_train_idx])
total_loss += loss
loss.backward()
optimizer.step()
return total_loss
def test():
# needs a loader that includes every node in the graph
model.eval()
full_out = torch.zeros(n, c, device=device)
with torch.no_grad():
for tg_batch in test_loader:
node_ids = tg_batch.node_ids
batch_dataset = torch_geo_to_nc_dataset(tg_batch, device=device)
out = model(batch_dataset)
full_out[node_ids] = out
result = evaluate(model, dataset, split_idx, eval_func, result=full_out, sampling=args.sampling, subgraph_loader=subgraph_loader)
logger.add_result(run, result[:-1])
return result
### Training loop ###
for run in range(args.runs):
train_idx = split_idx['train']
train_idx = train_idx.to(device)
print('making train loader')
train_loader = make_loader(args, dataset, train_idx, device=device)
if not args.no_mini_batch_test:
test_loader = make_loader(args, dataset, train_idx, device=device, test=True)
else:
test_loader = make_loader(args, dataset, split_idx['test'], mini_batch = False, device=device)
model.reset_parameters()
if args.adam:
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
else:
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
best_val = float('-inf')
for epoch in range(args.epochs):
total_loss = train()
result = test()
if result[1] > best_val:
best_out = F.log_softmax(result[-1], dim=1)
best_val = result[1]
if epoch % args.display_step == 0:
print(f'Epoch: {epoch:02d}, '
f'Loss: {total_loss:.4f}, '
f'Train: {100 * result[0]:.2f}%, '
f'Valid: {100 * result[1]:.2f}%, '
f'Test: {100 * result[2]:.2f}%')
if args.print_prop:
pred = out.argmax(dim=-1, keepdim=True)
print("Predicted proportions:", pred.unique(return_counts=True)[1].float()/pred.shape[0])
logger.print_statistics(run)
split_idx = dataset.get_idx_split(train_prop=args.train_prop, valid_prop=args.valid_prop)
### Save results ###
best_val, best_test = logger.print_statistics()
filename = f'results/{args.dataset}.csv'
print(f"Saving results to {filename}")
with open(f"{filename}", 'a+') as write_obj:
sub_dataset = f'{args.sub_dataset},' if args.sub_dataset else ''
write_obj.write(f"{args.method}," + f"{sub_dataset}" +
f"{best_val.mean():.3f} ± {best_val.std():.3f}," +
f"{best_test.mean():.3f} ± {best_test.std():.3f}\n")