-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpure_demands_analysisScript.sml
546 lines (480 loc) · 19.3 KB
/
pure_demands_analysisScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
(*
Definition of the demands analysis pass
*)
open HolKernel Parse boolLib bossLib term_tactic;
open pure_cexpTheory mlmapTheory mlstringTheory pure_comp_confTheory;
val _ = new_theory "pure_demands_analysis";
Datatype:
da_ctxt =
| Nil
| IsFree (cvname list) da_ctxt
| Bind cvname (α cexp) da_ctxt
| RecBind ((cvname # (α cexp)) list) da_ctxt
| Unfold cvname cvname (cvname list) da_ctxt
End
Definition adds_demands_def:
(adds_demands a0 (m, e, fd) [] = e) ∧
(adds_demands a0 (m, e, fd) (name::tl) =
case lookup m name of
| SOME () => Prim a0 Seq [Var a0 name; adds_demands a0 (m, e, fd) tl]
| _ => adds_demands a0 (m, e, fd) tl)
End
Definition add_all_demands_def:
add_all_demands a (m, e, _) =
foldrWithKey (λ id () e. Prim a Seq [Var a id; e] ) e m
End
Definition compute_ALL_DISTINCT_def:
compute_ALL_DISTINCT [] m = T ∧
compute_ALL_DISTINCT (v::tl) m =
(mlmap$lookup m v = NONE
∧ compute_ALL_DISTINCT tl (insert m v ()))
End
Definition UNZIP3_DEF:
UNZIP3 [] = ([], [], []) ∧
UNZIP3 ((h1, h2, h3)::tl) =
let (l1, l2, l3) = UNZIP3 tl in
(h1::l1, h2::l2, h3::l3)
End
Definition boolList_of_fdemands_def:
boolList_of_fdemands m [] = ([], mlmap$empty mlstring$compare) ∧
boolList_of_fdemands m (h::tl) =
let (bL, m2) = boolList_of_fdemands m tl
in
((lookup m h = SOME () ∧ lookup m2 h = NONE)::bL, insert m2 h ())
End
Definition handle_Apps_demands_def:
handle_Apps_demands a [] args = ([], MAP (add_all_demands a) args, mlmap$empty mlstring$compare) ∧
handle_Apps_demands a bL [] = (bL, [], empty compare) ∧
(handle_Apps_demands a (T::bL) ((m, e, fd)::args) =
let (bL', eL', m') = handle_Apps_demands a bL args in
(bL', e::eL', union m m')) ∧
(handle_Apps_demands a (F::bL) (arg0::args) =
let (bL', eL', m') = handle_Apps_demands a bL args in
(bL', (add_all_demands a arg0)::eL', m'))
End
Definition handle_multi_bind_def:
handle_multi_bind m [] _ = m ∧
handle_multi_bind m _ [] = m ∧
handle_multi_bind m1 (m2::mL) (v::vL) =
(if mlmap$lookup m1 v = NONE
then handle_multi_bind m1 mL vL
else union m2 (handle_multi_bind m1 mL vL))
End
Definition handle_Letrec_fdemands_def:
handle_Letrec_fdemands m [] _ = m ∧
handle_Letrec_fdemands m _ [] = m ∧
handle_Letrec_fdemands m (h::vL) (NONE::fdL) =
handle_Letrec_fdemands (delete m h) vL fdL ∧
handle_Letrec_fdemands m (h::vL) (SOME fd::fdL) =
handle_Letrec_fdemands (insert m h (FST fd)) vL fdL
End
Definition extract_label_def:
extract_label (Var a _) = a ∧
extract_label (Let a _ _ _) = a ∧
extract_label (Lam a _ _) = a ∧
extract_label (App a _ _) = a ∧
extract_label (Prim a _ _) = a ∧
extract_label (Letrec a _ _) = a ∧
extract_label (Case a _ _ _ _) = a ∧
extract_label (NestedCase a _ _ _ _ _) = a
End
Definition split_body_def:
(split_body (pure_cexp$Lam a l e) = (l, e, a)) ∧
(split_body e = ([], e, extract_label e))
End
Definition compute_freevars_def:
(compute_freevars (Var a v) = (mlmap$insert (empty mlstring$compare) v ())) ∧
(compute_freevars (App a f eL) =
FOLDR (λe m. union m (compute_freevars e)) (compute_freevars f) eL : (mlstring, unit) map) ∧
(compute_freevars (Lam a l e) =
FOLDR (λv m. mlmap$delete m v) (compute_freevars e) l : (mlstring, unit) map) ∧
(compute_freevars (Prim a op eL) =
FOLDR (λe m. union m (compute_freevars e)) (empty compare) eL : (mlstring, unit) map) ∧
(compute_freevars (Let a w e1 e2) =
union (compute_freevars e1) (mlmap$delete (compute_freevars e2) w) : (mlstring, unit) map) ∧
(compute_freevars (Letrec a b e) =
let m = FOLDR (λ(v, e) m. mlmap$union m (compute_freevars e)) (compute_freevars e) b in
FOLDR (λ(v, e) m. mlmap$delete m v) m b : (mlstring, unit) map) ∧
(compute_freevars (Case a0 e n cases eopt) =
let m1 = case eopt of
| NONE => empty compare
| SOME (a,e) => compute_freevars e in
let m2 = FOLDR (λ(_, vL, e) m.
union (FOLDR (λv m. delete m v) (compute_freevars e) vL) m) m1 cases in
union (compute_freevars e) (delete m2 n)) ∧
(compute_freevars (NestedCase d g gv p e pes) = empty compare : (mlstring, unit) map)
Termination
WF_REL_TAC ‘measure $ (cexp_size (K 0))’ \\ rw []
End
Definition compute_is_subset_def:
(compute_is_subset (m1 : (mlstring, unit) map) m2 =
foldrWithKey (λid () b.
case mlmap$lookup m2 id of
| NONE => F
| SOME () => b) T m1)
End
Definition compute_is_disjoint_def:
(compute_is_disjoint (m1 : (mlstring, unit) map) m2 =
foldrWithKey (λid () b.
case mlmap$lookup m2 id of
| NONE => b
| SOME () => F) T m1)
End
Definition are_valid_def:
are_valid map1 args body =
(let map2 = FOLDR (λv m. insert m v ()) (empty compare) args in
let free = compute_freevars body in
compute_is_disjoint map1 map2 ∧ compute_is_subset free (union map1 map2))
End
Definition can_compute_fixpoint_def:
can_compute_fixpoint binds =
let binds2 = MAP (λ(v, body). v, split_body body) binds in
if EVERY (λ(v, args, body, label). compute_ALL_DISTINCT args (empty compare)) binds2
then (let map1 = FOLDR (λ(v, _) m. insert m v ()) (empty compare) binds2 in
(EVERY (λ(v, args, body, label). are_valid map1 args body) binds2, binds2))
else (F, binds2)
End
Definition fixpoint_demands_App_def:
(fixpoint_demands_App [] eL = ([], mlmap$empty mlstring$compare)) ∧
(fixpoint_demands_App tl [] = (tl, mlmap$empty mlstring$compare)) ∧
(fixpoint_demands_App (F::tl) (e::eL) = fixpoint_demands_App tl eL) ∧
(fixpoint_demands_App (T::tl) ((m1, fds)::eL) =
let (l, m2) = fixpoint_demands_App tl eL in
(l, union m1 m2))
End
Definition fixpoint1_def:
(fixpoint1 (c : α da_ctxt) ((Var a0 a1): 'a cexp) fds =
case mlmap$lookup fds a1 of
| SOME l => (mlmap$empty mlstring$compare, SOME (l, mlmap$empty mlstring$compare))
| NONE => (insert (empty compare) a1 (), NONE)) ∧
(fixpoint1 c (App a0 (f: 'a cexp) (argl: 'a cexp list)) fds =
let (m1, fd) = fixpoint1 c f fds ;
eL' = MAP (λe. fixpoint1 c e fds) argl
in
case fd of
| NONE => (m1, NONE)
| SOME (fdL, m2) =>
(case fixpoint_demands_App fdL eL' of
| ([], m3) => (union m1 (union m2 m3), NONE)
| (fdL', m3) => (m1, SOME (fdL', union m2 m3)))) ∧
(fixpoint1 c (Prim a0 Seq [e1; e2]) fds =
let (m1, fd1) = fixpoint1 c e1 fds in
let (m2, fd2) = fixpoint1 c e2 fds in
(union m1 m2, fd2)) ∧
(fixpoint1 c (Prim a0 (AtomOp op) eL) fds =
let outL = MAP (λe. fixpoint1 c e fds) eL in
let m = FOLDR (λ(ds, _) m. union ds m) (empty compare) outL in
(m, NONE)) ∧
(fixpoint1 c (Case (a0 : α) (e : α cexp) (n : cvname) (rows : (cvname # (cvname list) # α cexp) list) fall : α cexp) fds =
let (demands_e, _) = fixpoint1 c e fds in
let outL =
MAP (λ(cons, vL, e). FOLDR (λv m. delete m v) (FST (fixpoint1 (IsFree vL (IsFree [n] c)) e
(FOLDR (λv m. delete m v) (delete fds n) vL))) vL) rows in
let fallL = case fall of
| NONE => outL
| SOME (a, e) => FST (fixpoint1 (IsFree [n] c) e (delete fds n))::outL in
case fallL of
| [] => (empty compare, NONE)
| hd::tl =>
(let m = foldrWithKey (λid _ m. if FOLDR (λm2 b. b ∧ lookup m2 id = SOME ()) T tl
then mlmap$insert m id ()
else m) (empty compare) hd in
(union demands_e (delete m n), NONE))) ∧
(fixpoint1 c e fds = (mlmap$empty mlstring$compare, NONE))
Termination
WF_REL_TAC ‘measure $ (cexp_size (K 0)) o (FST o SND)’ \\ rw []
End
(* LIST_REL (λ(v1, b1) (v2, b2). b2 ⇒ b1) args1 args2 *)
Definition test_list_rel_def:
(test_list_rel [] [] = T) ∧
(test_list_rel [] _ = F) ∧
(test_list_rel _ [] = F) ∧
(test_list_rel ((hd1, b1)::tl1) ((hd2, b2)::tl2) =
((b1 ∨ ¬b2) ∧ test_list_rel tl1 tl2))
End
Definition is_lower_def:
(is_lower [] [] = T) ∧
(is_lower [] _ = F) ∧
(is_lower _ [] = F) ∧
(is_lower ((v1, args1, body1, lab1)::tl1) ((v2, args2, body2, lab2)::tl2) =
(test_list_rel args1 args2 ∧ is_lower tl1 tl2))
End
Definition handle_fixpoint1_def:
handle_fixpoint1 fds (v, args, body, label) =
let (ds, _) = fixpoint1 Nil body fds in
(v, MAP (λ(v, b). (v, lookup ds v = SOME ())) args, body, label)
End
Definition compute_fixpoint_rec_def:
(compute_fixpoint_rec 0 binds =
MAP (λ(v, args, e, label). (v, MAP (λ(v, b). (v, F)) args, e, label)) binds) ∧
(compute_fixpoint_rec (SUC fuel) binds =
let fds = FOLDR (λ(v, args, e, lab) m. insert m v (MAP SND args)) (empty compare) binds in
let binds2 = MAP (handle_fixpoint1 fds) binds in
if is_lower binds2 binds
then binds2
else compute_fixpoint_rec fuel binds2)
End
Definition rev_split_body_inner_def:
rev_split_body_inner a [] e = e ∧
rev_split_body_inner a ((_,F)::xs) e = rev_split_body_inner a xs e ∧
rev_split_body_inner a ((v,T)::xs) e = Prim a Seq [Var a v; rev_split_body_inner a xs e]
End
Definition rev_split_body_def:
rev_split_body a [] e = e ∧
rev_split_body a l e = Lam a (MAP FST l) (rev_split_body_inner a l e)
End
Definition fixpoint_analysis_def:
fixpoint_analysis binds =
let (b, binds) = can_compute_fixpoint binds in
(if b
then (b, compute_fixpoint_rec 10 (MAP (λ(v, args, body, label). (v, MAP (λv. (v, T)) args, body, label)) binds))
else (b, (MAP (λ(v, args, body, label). (v, MAP (λv. (v, F)) args, body, label)) binds)))
End
(*Definition fixpoint_analysis_wrapped_def:
fixpoint_analysis_wrapped binds =
let (_, binds2) = fixpoint_analysis binds in
MAP (λ(v, args, body, label). (v, rev_split_body label args body)) binds2
End*)
Definition demands_analysis_fun_def:
(demands_analysis_fun c ((Var a0 a1): 'a cexp) fds =
let fd = case mlmap$lookup fds a1 of
| SOME l => SOME (l, mlmap$empty mlstring$compare)
| NONE => NONE: (bool list # (mlstring, unit) map) option
in
(mlmap$insert (mlmap$empty mlstring$compare) a1 (),
Var a0 a1 : 'a cexp,
fd)) ∧
(demands_analysis_fun c (App a0 (f: 'a cexp) (argl: 'a cexp list)) fds =
let (m1, f', fd) = demands_analysis_fun c f fds ;
eL' = MAP (λe. demands_analysis_fun c e fds) argl
in
(let e' = MAP (λ(_,e,_). e) eL' in
(m1, (App (a0: 'a) (f': 'a cexp) (e': 'a cexp list) : 'a cexp),
NONE))) ∧
(demands_analysis_fun c (Lam a0 vl e) fds =
let (m, e', fd) =
demands_analysis_fun (IsFree vl c) e
(FOLDL (λf k. mlmap$delete f k) fds vl)
in
(empty compare,
Lam a0 vl (add_all_demands a0 (m, e', fd)),
SOME (FST (boolList_of_fdemands m vl), empty compare))) ∧
(demands_analysis_fun c (Let a0 name e1 e2) fds =
let (m1, e1', fd1) = demands_analysis_fun c e1 fds ;
fds2 = case fd1 of
| NONE => delete fds name
| SOME (bL, _) => insert fds name bL ;
(m2, e2', fd2) = demands_analysis_fun (Bind name e1 c) e2 fds2
in
(delete m2 name,
(case lookup m2 name of
| NONE => Let a0 name e1' e2'
| SOME () => Let a0 name e1' (Prim a0 Seq [Var a0 name; e2'])),
case fd2 of
| NONE => NONE
| SOME (fdL, fd_map) => SOME (fdL, delete fd_map name))) ∧
(demands_analysis_fun c (Prim a0 Seq [e1; e2]) fds =
let (m1, e1', fd1) = demands_analysis_fun c e1 fds in
let (m2, e2', fd2) = demands_analysis_fun c e2 fds in
(union m1 m2, Prim a0 Seq [e1'; e2'], fd2)) ∧
(demands_analysis_fun c (Prim a0 Seq bad) fds =
(empty compare, Prim a0 Seq bad, NONE)) ∧
(demands_analysis_fun c (Prim a0 (AtomOp op) el) fds =
let outL = MAP (λe. demands_analysis_fun c e fds) el in
let (mL, el', fdL) = UNZIP3 outL in
let m = FOLDL union (empty compare) mL in
(m, Prim a0 (AtomOp op) (el': 'a cexp list), NONE)) ∧
(demands_analysis_fun c (Prim a0 (Cons s) el) fds =
let el = MAP (λe. add_all_demands a0 (demands_analysis_fun c e fds)) el in
(empty compare, Prim a0 (Cons s) el, NONE)) ∧
(demands_analysis_fun c (Letrec a0 binds e) fds =
let (b, binds2) = fixpoint_analysis binds in
if b
then
let vL = MAP FST binds2 ;
fds2 = FOLDL (λf (v, args, body, label). insert f v (MAP SND args)) fds binds2 ;
binds3 = MAP (λ(v, args, body, label). (v, rev_split_body label args body)) binds2 ;
(m, e2, fd) = demands_analysis_fun (RecBind binds3 c) e (fds2 : (mlstring, bool list) map);
e3 = adds_demands a0 (m, e2, fd) vL
in
(FOLDL (λf k. delete f k) m vL,
Letrec a0 binds3 e3,
case fd of
| NONE => NONE
| SOME (bL, fd_map) => SOME (bL, FOLDL (λf k. delete f k) fd_map vL))
else
let vL : mlstring list = MAP FST binds in
let outL = MAP (λ(v, e). demands_analysis_fun (RecBind binds c) e
(FOLDL (λf k. delete f k) fds vL)) binds ;
(mL, eL', fdL) = UNZIP3 outL ;
reduced_fds = handle_Letrec_fdemands fds vL fdL ;
(m, e2, fd) = demands_analysis_fun (RecBind binds c) e reduced_fds ;
e3 = adds_demands a0 (m, e2, fd) vL
in
(FOLDL (λf k. delete f k) (handle_multi_bind m mL vL) vL,
Letrec a0 (ZIP (vL, eL')) e3,
case fd of
| NONE => NONE
| SOME (bL, fd_map) => SOME (bL, FOLDL (λf k. delete f k) fd_map vL))) ∧
(demands_analysis_fun c (Case a0 e n cases eopt) fds =
let (m, e', fd) = demands_analysis_fun c e fds ;
(demands, cases') = FOLDR (λ(name,args,ce) (lD, lRows).
let result = (demands_analysis_fun
(Unfold name n args (Bind n e c))
ce (FOLDL (λm v. delete m v) (delete fds n) args)) in
(FST result::lD, (name, args, add_all_demands a0 result)::lRows)) ([], []) cases ;
eopt' = (case eopt of
| NONE => NONE
| SOME (a,e0) =>
SOME (a,add_all_demands a0
(demands_analysis_fun (Bind n e c) e0 (empty compare))))
in
(m, Case a0 e' n cases' eopt', NONE)) ∧
(demands_analysis_fun c (NestedCase i _ _ _ _ _) fds =
(empty compare,
Var i (implode "Fail: demands analysis on NestedCase"),
NONE))
Termination
WF_REL_TAC ‘measure $ (cexp_size (K 0)) o (FST o SND)’ \\ rw []
\\ imp_res_tac cexp_size_lemma
\\ fs []
End
Definition demands_analysis_def:
demands_analysis c e =
if c.do_demands then FST (SND (demands_analysis_fun Nil e (empty compare)))
else e
End
Definition demands_analysis2_def:
demands_analysis2 a0 e = add_all_demands a0 (demands_analysis_fun Nil e (empty compare))
End
(*
Letrec g = Lam x (App g x) in _
-->
Letrec g = Lam x (Seq x (App g x)) in _
*)
Theorem fixpoint_analysis_test_0:
fixpoint_analysis [(«g», Lam (0 : num) [«x»] (App 0 (Var 0 «g») [Var 0 «x»]))]
=
(T, [(«g», [(«x», T)], App 0 (Var 0 «g») [Var 0 «x»], 0)])
Proof
EVAL_TAC
QED
(*
Letrec g = Lam x y (App g x y) in _
-->
Letrec g = Lam x y (Seq x (App g x y)) in _
*)
Theorem fixpoint_analysis_test_1:
fixpoint_analysis [(«g», Lam (0 : num) [«x»; «y»] (App 0 (Var 0 «g») [Var 0 «x»; Var 0 «x»]))]
=
(T, [(«g», [(«x», T); («y», F)], App 0 (Var 0 «g») [Var 0 «x»; Var 0 «x»], 0)])
Proof
EVAL_TAC
QED
(*
Letrec fact = Lam n c (If n == 0 then c else fac (n - 1) (n * c)) in _
-->
Letrec fact = Lam n c (Seq n (Seq c (If n == 0 then c else fac (n - 1) (n * c))) in _
*)
Theorem fixpoint_analysis_test_2:
fixpoint_analysis
[(«fact»,
Lam 0 [«n»; «c»]
(Case 0
(Prim 0 (AtomOp Eq)
[Var 0 «n»; Prim 0 (AtomOp (Lit (Int 0))) []]) «n2»
[(«True»,[],Var 0 «c»);
(«False»,[], App 0 (Var 0 «fact»)
[Prim 0 (AtomOp Sub) [Var 0 «n»; Prim 0 (AtomOp (Lit (Int 1))) []];
Prim 0 (AtomOp Mul) [Var 0 «n»; Var 0 «c»]])]
NONE))]
=
(T,
[(«fact», [(«n», T); («c», T)],
(pure_cexp$Case 0
(Prim 0 (AtomOp Eq)
[Var 0 «n»; Prim 0 (AtomOp (Lit (Int 0))) []]) «n2»
[(«True»,[],Var 0 «c»);
(«False»,[], App 0 (Var 0 «fact»)
[Prim 0 (AtomOp Sub) [Var 0 «n»; Prim 0 (AtomOp (Lit (Int 1))) []];
Prim 0 (AtomOp Mul) [Var 0 «n»; Var 0 «c»]])]
NONE), 0)])
Proof
EVAL_TAC
QED
(*
Let foo = Lam a (Prim op [a]) in Lam x (App foo x)
-->
Let foo = Lam a (a; Prim op [a]) in Lam x (foo; x; App foo x)
*)
Theorem demands_analysis_test_0:
demands_analysis2 0
(Let 0 «foo» (Lam 0 [«a»] (Prim 0 (AtomOp op) [Var 0 «a»]))
(Lam 0 [«x»] (App 0 (Var 0 «foo») [Var 0 «x»]))) =
Let 0 «foo»
(Lam 0 [«a»] (Prim 0 Seq [Var 0 «a»; Prim 0 (AtomOp op) [Var 0 «a»]]))
(Lam 0 [«x»]
(Prim 0 Seq
[Var 0 «foo»;
App 0 (Var 0 «foo») [Var 0 «x»]]))
Proof
EVAL_TAC
QED
(*
Letrec fact = Lam n c -> if n = 0 then c else n * c
in fact n0 c1
-->
n0;
Letrec fact = Lam n c -> n; if n = 0 then c else n * c
in fact; fact n0 c1
*)
Theorem demands_analysis_test_1:
demands_analysis default_conf
(Letrec 0
[(«fact», Lam 0 [«n»; «c»]
(Case 0
(Prim 0 (AtomOp Eq)
[Var 0 «n»; Prim 0 (AtomOp (Lit (Int 0))) []]) «n2»
[(«True»,[],Var 0 «c»);
(«False»,[], App 0 (Var 0 «fact»)
[Prim 0 (AtomOp Sub) [Var 0 «n»; Prim 0 (AtomOp (Lit (Int 1))) []];
Prim 0 (AtomOp Mul) [Var 0 «n»; Var 0 «c»]])]
NONE))]
(Let 0 «n0» (Prim 0 (AtomOp (Lit (Int 5))) [])
(Let 0 «c0» (Prim 0 (AtomOp (Lit (Int 1))) [])
(App 0 (Var 0 «fact») [Var 0 «n0»; Var 0 «c0»])))) =
Letrec 0
[(«fact», Lam 0 [«n»; «c»]
(Prim 0 Seq [Var 0 «n»;
Prim 0 Seq [Var 0 «c»;
(Case 0
(Prim 0 (AtomOp Eq)
[Var 0 «n»; Prim 0 (AtomOp (Lit (Int 0))) []]) «n2»
[(«True»,[],Var 0 «c»);
(«False»,[], App 0 (Var 0 «fact»)
[Prim 0 (AtomOp Sub) [Var 0 «n»; Prim 0 (AtomOp (Lit (Int 1))) []];
Prim 0 (AtomOp Mul) [Var 0 «n»; Var 0 «c»]])]
NONE)]]))]
(Prim 0 Seq [Var 0 «fact»;
(Let 0 «n0» (Prim 0 (AtomOp (Lit (Int 5))) [])
(Let 0 «c0» (Prim 0 (AtomOp (Lit (Int 1))) [])
(App 0 (Var 0 «fact»)
[Var 0 «n0»; Var 0 «c0»])))])
Proof
EVAL_TAC
QED
(*
EVAL ``demands_analysis 0 (Let 0 «foo» (Lam 0 [«a»] (Prim 0 (AtomOp op) [Var 0 «a»]))
(Lam 0 [«x»] (App 0 (Var 0 «foo») [Var 0 «x»]) ))``;
*)
(*
let foo = Lam a (a + 2) in
Lam x (foo x)
-->
let foo = Lam a (Seq a (a + 2)) in
Lam x (foo x)
-->
let foo = Lam a (Seq a (a + 2)) in
Lam x (Seq x (Seq foo (foo x)))
*)
val _ = export_theory();