-
Notifications
You must be signed in to change notification settings - Fork 0
/
tkinter_app.py
496 lines (397 loc) · 18.6 KB
/
tkinter_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import tkinter
import cv2
import PIL.Image, PIL.ImageTk
import time
import torch
from torch import nn
import torch.nn.functional as F
from fastai.vision.learner import create_cnn
from torchvision.models import resnet34
import numpy as np
import json
import os
from pathlib import Path
import fastai
import numpy as np
import pandas as pd
from pathlib import Path
from fastai.vision.transform import get_transforms
from fastai.vision.data import ObjectItemList, imagenet_stats#, bb_pad_collate
from fastai import *
from fastai.vision import *
import ssdoil
def conv_params(in_size, out_size):
filters = [3, 2, 5, 4]
strides = [1, 2, 3] # max_stride = 3
pads = [0, 1, 2, 3] # max pad
if out_size == 1:
return 1, 0, in_size
for filter_size in filters:
for pad in pads:
for stride in strides:
if ((out_size - 1) * stride == (in_size - filter_size) + 2 * pad):
return stride, pad, filter_size
return None, None, None
class StdConv(nn.Module):
def __init__(self, nin, nout, filter_size=3, stride=2, padding=1, drop=0.1):
super().__init__()
self.conv = nn.Conv2d(nin, nout, filter_size, stride=stride, padding=padding)
self.bn = nn.BatchNorm2d(nout)
self.drop = nn.Dropout(drop)
def forward(self, x):
return self.drop(self.bn(F.relu(self.conv(x))))
def flatten_conv(x, k):
bs, nf, gx, gy = x.size()
x = x.permute(0, 2, 3, 1).contiguous()
return x.view(bs, -1, nf // k)
class OutConv(nn.Module):
def __init__(self, k, nin, num_classes, bias):
super().__init__()
self.k = k
self.oconv1 = nn.Conv2d(nin, (num_classes) * k, 3, padding=1)
self.oconv2 = nn.Conv2d(nin, 3 * k, 3, padding=1)
self.oconv1.bias.data.zero_().add_(bias)
def forward(self, x):
return [flatten_conv(self.oconv1(x), self.k),
flatten_conv(self.oconv2(x), self.k)]
class SSDHead(nn.Module):
def __init__(self, grids, anchors_per_cell, num_classes, drop=0.3, bias=-4.):
super().__init__()
self.drop = nn.Dropout(drop)
self.sconvs = nn.ModuleList([])
self.oconvs = nn.ModuleList([])
self.anc_grids = grids
self._k = anchors_per_cell
self.sconvs.append(StdConv(512, 256, stride=1, drop=drop))
for i in range(len(grids)):
if i == 0:
stride, pad, filter_size = conv_params(7, grids[i]) # get '7' by base model
else:
stride, pad, filter_size = conv_params(grids[i - 1], grids[i])
if stride is None:
print(grids[i - 1], ' --> ', grids[i])
raise Exception('cannot create model for specified grids')
self.sconvs.append(StdConv(256, 256, filter_size, stride=stride, padding=pad, drop=drop))
self.oconvs.append(OutConv(self._k, 256, num_classes=num_classes, bias=bias))
def forward(self, x):
x = self.drop(F.relu(x))
x = self.sconvs[0](x)
out_classes = []
out_bboxes = []
for sconv, oconv in zip(self.sconvs[1:], self.oconvs):
x = sconv(x)
out_class, out_bbox = oconv(x)
out_classes.append(out_class)
out_bboxes.append(out_bbox)
return [torch.cat(out_classes, dim=1),
torch.cat(out_bboxes, dim=1)]
def one_hot_embedding(labels, num_classes):
return torch.eye(num_classes)[labels.data.cpu()]
class BCE_Loss(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.num_classes = num_classes
def forward(self, pred, targ):
t = one_hot_embedding(targ, self.num_classes)
t = torch.Tensor(t[:, 1:].contiguous()).cuda()
x = pred[:, 1:]
w = self.get_weight(x, t)
return F.binary_cross_entropy_with_logits(x, t, w, size_average=False) / (self.num_classes - 1)
def get_weight(self, x, t): return None
class FocalLoss(BCE_Loss):
def get_weight(self, x, t):
alpha, gamma = 0.25, 1
p = x.sigmoid()
pt = p * t + (1 - p) * (1 - t)
w = alpha * t + (1 - alpha) * (1 - t)
w = w * (1 - pt).pow(gamma)
return w.detach()
class _EmptyData():
def __init__(self, path, c, loss_func: None):
self.path = path
self.device = torch.device('cuda') if torch.cuda.is_available else torch.device('cpu')
self.c = c
self.loss_func = loss_func
class SingleShotDetector(object):
def __init__(self, data, grids=[4, 2, 1], zooms=[0.7, 1., 1.3], ratios=[[1., 1.], [1., 0.5], [0.5, 1.]],
backbone=None, drop=0.3, bias=-4., focal_loss=False, pretrained_path=None):
super().__init__()
self._device = torch.device('cuda') if torch.cuda.is_available else torch.device('cpu')
if backbone is None:
backbone = resnet34
self._create_anchors(grids, zooms, ratios)
ssd_head = SSDHead(grids, self._anchors_per_cell, data.c, drop=drop, bias=bias)
self._data = data
self.learn = cnn_learner(data=data, base_arch=backbone, custom_head=ssd_head)
self.learn.model = self.learn.model.to(self._device)
if pretrained_path is not None:
self.load(pretrained_path)
if focal_loss:
self._loss_f = FocalLoss(data.c)
else:
self._loss_f = BCE_Loss(data.c)
self.learn.loss_func = self._ssd_loss
@classmethod
def from_emd(cls, data, emd_path):
emd = json.load(open(emd_path))
class_mapping = {i['Value']: i['Name'] for i in emd['Classes']}
if data is None:
empty_data = _EmptyData(path='str', loss_func=None, c=len(class_mapping) + 1)
return cls(empty_data, emd['Grids'], emd['Zooms'], emd['Ratios'], pretrained_path=emd['ModelFile'])
else:
return cls(data, emd['Grids'], emd['Zooms'], emd['Ratios'], pretrained_path=emd['ModelFile'])
def lr_find(self):
from IPython.display import clear_output
self.learn.lr_find()
clear_output()
self.learn.recorder.plot()
def fit(self, epochs=10, lr=slice(1e-4, 3e-3)):
self.learn.fit(epochs, lr)
def fit_one_cycle(self, epochs=10, lr=slice(1e-4, 3e-3)):
self.learn.fit_one_cycle(epochs, lr)
def unfreeze(self):
self.learn.unfreeze()
def _create_anchors(self, anc_grids, anc_zooms, anc_ratios):
self.grids = anc_grids
self.zooms = anc_zooms
self.ratios = anc_ratios
anchor_scales = [(anz * i, anz * j) for anz in anc_zooms for (i, j) in anc_ratios]
self._anchors_per_cell = len(anchor_scales)
anc_offsets = [1 / (o * 2) for o in anc_grids]
anc_x = np.concatenate([np.repeat(np.linspace(ao, 1 - ao, ag), ag)
for ao, ag in zip(anc_offsets, anc_grids)])
anc_y = np.concatenate([np.tile(np.linspace(ao, 1 - ao, ag), ag)
for ao, ag in zip(anc_offsets, anc_grids)])
anc_ctrs = np.repeat(np.stack([anc_x, anc_y], axis=1), self._anchors_per_cell, axis=0)
anc_sizes = np.concatenate([np.array([[o / ag, p / ag] for i in range(ag * ag) for o, p in anchor_scales])
for ag in anc_grids])
self._grid_sizes = torch.Tensor(
np.concatenate([np.array([1 / ag for i in range(ag * ag) for o, p in anchor_scales])
for ag in anc_grids])).unsqueeze(1).to(self._device)
self._anchors = torch.Tensor(np.concatenate([anc_ctrs, anc_sizes], axis=1)).float().to(self._device)
self._anchor_cnr = self._hw2corners(self._anchors[:, :2], self._anchors[:, 2:])
def _hw2corners(self, ctr, hw):
return torch.cat([ctr - hw / 2, ctr + hw / 2], dim=1)
def _get_y(self, bbox, clas):
bbox = bbox.view(-1, 4) # /sz
bb_keep = ((bbox[:, 2] - bbox[:, 0]) > 0).nonzero()[:, 0]
return bbox[bb_keep], clas[bb_keep]
def _actn_to_bb(self, actn, anchors, grid_sizes):
actn_bbs = torch.tanh(actn)
actn_centers = (actn_bbs[..., :2] / 2 * grid_sizes) + anchors[:, :2]
actn_hw = (actn_bbs[..., 2:] / 2 + 1) * anchors[:, 2:]
return self._hw2corners(actn_centers, actn_hw)
def _map_to_ground_truth(self, overlaps, print_it=False):
prior_overlap, prior_idx = overlaps.max(1)
if print_it: print(prior_overlap)
gt_overlap, gt_idx = overlaps.max(0)
gt_overlap[prior_idx] = 1.99
for i, o in enumerate(prior_idx): gt_idx[o] = i
return gt_overlap, gt_idx
def _ssd_1_loss(self, b_c, b_bb, bbox, clas, print_it=False):
bbox, clas = self._get_y(bbox, clas)
bbox = self._normalize_bbox(bbox)
a_ic = self._actn_to_bb(b_bb, self._anchors, self._grid_sizes)
overlaps = self._jaccard(bbox.data, self._anchor_cnr.data)
try:
gt_overlap, gt_idx = self._map_to_ground_truth(overlaps, print_it)
except Exception as e:
return 0., 0.
gt_clas = clas[gt_idx]
pos = gt_overlap > 0.4
pos_idx = torch.nonzero(pos)[:, 0]
gt_clas[1 - pos] = 0 # data.c - 1 # CHANGE
gt_bbox = bbox[gt_idx]
loc_loss = ((a_ic[pos_idx] - gt_bbox[pos_idx]).abs()).mean()
clas_loss = self._loss_f(b_c, gt_clas)
return loc_loss, clas_loss
def _ssd_loss(self, pred, targ1, targ2, print_it=False):
lcs, lls = 0., 0.
for b_c, b_bb, bbox, clas in zip(*pred, targ1, targ2):
loc_loss, clas_loss = self._ssd_1_loss(b_c, b_bb, bbox.cuda(), clas.cuda(), print_it)
lls += loc_loss
lcs += clas_loss
if print_it: print(f'loc: {lls}, clas: {lcs}') # CHANGE
return lls + lcs
def _intersect(self, box_a, box_b):
max_xy = torch.min(box_a[:, None, 2:], box_b[None, :, 2:])
min_xy = torch.max(box_a[:, None, :2], box_b[None, :, :2])
inter = torch.clamp((max_xy - min_xy), min=0)
return inter[:, :, 0] * inter[:, :, 1]
def _box_sz(self, b):
return ((b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1]))
def _jaccard(self, box_a, box_b):
inter = self._intersect(box_a, box_b)
union = self._box_sz(box_a).unsqueeze(1) + self._box_sz(box_b).unsqueeze(0) - inter
return inter / union
def _normalize_bbox(self, bbox):
return (bbox + 1.) / 2.
def save(self, name_or_path):
if '\\' in name_or_path or '/' in name_or_path:
path = Path(name_or_path)
name = path.stem
# to make fastai save to both path and with name
temp = self.learn.path
self.learn.path = path.parent
self.learn.model_dir = ''
if not os.path.exists(self.learn.path):
os.makedirs(self.learn.path)
saved_path = self.learn.save(name, return_path=True)
# undoing changes to self.learn.path and self.learn.model
self.learn.path = temp
self.learn.model_dir = 'models'
else:
temp = self.learn.path
# fixing fastai bug
self.learn.path = self.learn.path.parent
if not os.path.exists(self.learn.path / self.learn.model_dir):
os.makedirs(self.learn.path / self.learn.model_dir)
saved_path = self.learn.save(name_or_path, return_path=True)
# undoing changes to self.learn.path
self.learn.path = temp
def load(self, name_or_path):
if '\\' in name_or_path or '/' in name_or_path:
path = Path(name_or_path)
name = path.stem
# to make fastai from both path and with name
temp = self.learn.path
self.learn.path = path.parent
self.learn.model_dir = ''
self.learn.load(name)
# undoing changes to self.learn.path and self.learn.model_dir
self.learn.path = temp
self.learn.model_dir = 'models'
else:
temp = self.learn.path
# fixing fastai bug
self.learn.path = self.learn.path.parent
self.learn.load(name_or_path)
# undoing changes to self.learn.path
self.learn.path = temp
def show_results(self, rows=5, thresh=0.5, nms_overlap=0.1):
self.learn.show_results(rows=rows, thresh=thresh, nms_overlap=nms_overlap, ssd=self)
data = _EmptyData("data/cardBB/img", c=2, loss_func = None)
def card_cutout(img, bboxes):
n = len(bboxes)
avgSize = int((bboxes[:,2] - bboxes[:,0]).mean())
bbox_boundary = img.size(1) - avgSize
bboxes = bboxes.type(torch.int)
#out = torch.cuda.IntTensor(n,mean,mean)
out = (img[:, min(bbox_boundary, max(0,bboxes[0][0])):min(bbox_boundary, max(0,bboxes[0][0]))+avgSize, bboxes[0][1]:bboxes[0][1]+avgSize]).unsqueeze(0)
for i in range(1,n):
#out[i] = img[:, bboxes[i][0]:bboxes[i][0]+mean, bboxes[i][1]:bboxes[i][1]+mean]
card = img[:, min(bbox_boundary, max(0,bboxes[i][0])):min(bbox_boundary, max(0,bboxes[i][0]))+avgSize, bboxes[i][1]:bboxes[i][1]+avgSize]
if card.size(1) != avgSize:
card = img[:, bboxes[i][0]:bboxes[i][0] + avgSize, bboxes[i][1]:bboxes[i][1] + avgSize]
out = torch.cat((out, card.unsqueeze(0)))
return out
class App:
def __init__(self, window, window_title, video_source=0):
print(torch.get_default_dtype())
self.window = window
self.window.title(window_title)
self.video_source = video_source
# open video source (by default this will try to open the computer webcam)
self.vid = MyVideoCapture(self.video_source)
print(self.vid.width, self.vid.height)
# Create a canvas that can fit the above video source size
self.canvas = tkinter.Canvas(window, width = self.vid.width, height = self.vid.height)
self.canvas.pack()
# After it is called once, the update method will be automatically called every delay milliseconds
self.delay = 15
self.offset = int((self.vid.width - self.vid.height) / 2)
self.numCards = 0
self.i = 0
self.update()
self.window.mainloop()
def update(self):
# Get a frame from the video source
ret, frame = self.vid.get_frame()
boxframe = frame[:, self.offset:self.vid.width - self.offset, :]
boxframe = cv2.resize(boxframe, (224, 224), interpolation=cv2.INTER_AREA)
boxframe = np.transpose(boxframe, (2, 0, 1))
boxframe = tensor(boxframe)
boxframe = boxframe.float()
boxframe = boxframe.unsqueeze(0)
boxframe = boxframe.cuda()
boxframe = boxframe / 255
classifyframe = np.transpose(frame, (2, 0, 1))
classifyframe = tensor(classifyframe)
classifyframe = classifyframe.float()
classifyframe = classifyframe.cuda()
classifyframe = classifyframe / 255
y = ssd.learn.pred_batch(DatasetType.Valid, batch=[boxframe, one_y])
bboxes = ssdoil.SSDObjectCategoryList.analyze_pred(pred=grab_idx(y, 0), thresh=0.2, ssd=ssd)
matches = []
if bboxes is not None:
bboxes = bboxes[0]
bboxes = ((bboxes + 1) * self.vid.height)/2
bboxes[:, 1] = bboxes[:, 1] + self.offset
bboxes[:, 3] = bboxes[:, 3] + self.offset
cards = card_cutout(classifyframe, bboxes)
cardsFlipped = cards.flip(2)
cardsFlipped2 = cards.flip(3)
joined = torch.cat((cards, cardsFlipped, cardsFlipped2))
#print(classGuesser.model(joined))
#print(classGuesser.model(joined).view(3,bboxes.size(0),-1))
#print(classGuesser.model(joined).view(3, bboxes.size(0), -1).sum(0))
if bboxes.size(0) != self.numCards:
self.numCards = bboxes.size(0)
self.historicPreds = torch.zeros(10, self.numCards, 54, requires_grad = False)
self.historicPreds[self.i] = classGuesser.model(joined).view(3, bboxes.size(0), -1).sum(0).detach()
self.i = (self.i+1) % 10
#print(self.historicPreds)
avgPred = self.historicPreds.sum(0)
#print(avgPred.size())
idx = np.array(torch.topk(avgPred, 8)[1])
icons = []
for x in idx:
icons.append([classGuesser.data.classes[i] for i in x])
for i in range(len(cards)):
for j in range(i + 1, len(cards)):
matches.append(np.intersect1d(idx[i], idx[j]))
for i in range(len(matches)):
matches[i] = [classGuesser.data.classes[j] for j in matches[i]]
print(matches)
for i in range(len(bboxes)):
frame = cv2.rectangle(frame, (bboxes[i][1], bboxes[i][0]), (bboxes[i][3], bboxes[i][2]), (0, 255, 0), 2)
frame = cv2.putText(frame, " ".join(icons[i][:4]), (bboxes[i][1], bboxes[i][0]), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1, cv2.LINE_AA)
frame = cv2.putText(frame, " ".join(icons[i][4:]), (bboxes[i][1], bboxes[i][0]+20), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1, cv2.LINE_AA)
frame = cv2.rectangle(frame, (self.offset, 0), (self.vid.width - self.offset, self.vid.height), (255, 0, 0), 2)
spacer = 20
for x in matches:
frame = cv2.putText(frame, " ".join(x), (20, spacer), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA)
spacer += 20
if ret:
self.photo = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(frame))
self.canvas.create_image(0, 0, image = self.photo, anchor = tkinter.NW)
self.window.after(self.delay, self.update)
class MyVideoCapture:
def __init__(self, video_source=0):
# Open the video source
self.vid = cv2.VideoCapture(video_source)
if not self.vid.isOpened():
raise ValueError("Unable to open video source", video_source)
# Get video source width and height
self.width = int(self.vid.get(cv2.CAP_PROP_FRAME_WIDTH))
self.height = int(self.vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
def get_frame(self):
if self.vid.isOpened():
ret, frame = self.vid.read()
if ret:
# Return a boolean success flag and the current frame converted to BGR
return (ret, cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
else:
return (ret, None)
else:
return (ret, None)
# Release the video source when the object is destroyed
def __del__(self):
if self.vid.isOpened():
self.vid.release()
ssd = SingleShotDetector(data, ratios=[[1.0, 1.0]])
ssd.load('ssd-tuesday2-20')
classGuesser = load_learner("models")
one_y = [torch.FloatTensor(1,1,4),torch.FloatTensor(1,5)]
# Create a window and pass it to the Application object
App(tkinter.Tk(), "Tkinter and OpenCV")