-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
383 lines (326 loc) · 17.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import tensorflow as tf
import numpy as np
from scipy.misc import imsave
from scipy import io as sio
from skimage.measure import compare_ssim as ssim
from skimage.measure import compare_psnr as psnr
from sklearn import metrics
import os, re
import shutil
from PIL import Image
import random
import time
import sys
import csv
from layers import *
from model import *
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='Tensorflow conversion prediction of SCD')
parser.add_argument('--lr', default=2*1e-4, type=float, help='learning rate')
parser.add_argument('--gpu_ids', type=str, default='7', help='gpu ids for GPU')
parser.add_argument('--max_epoch', type=int, default=101, help='the number of epoch')
parser.add_argument('--max_image', type=int, default=10000, help='the mamunumber of images')
parser.add_argument('--to_restore', type=str, default=True, help='restore the checkpoint')
parser.add_argument('--use_mask', type=str, default=False, help='..')
parser.add_argument('--cycload', type=str, default=True, help='..')
parser.add_argument('--save_training_images', type=str, default=True, help='save training images')
parser.add_argument('--model_stats', type=str, default='testMRI', help='model state')
parser.add_argument('--input_path', type=str, default='.input/Real/', help='mri input path')
parser.add_argument('--ckpt_dir', type=str, default='./ckpt_joint', help='checkpoint dir')
parser.add_argument('--outpath', type=str, default='./outpath_joint/', help='output path')
parser.add_argument('--grps', type=str, default=['pCN','sCN','MCI','pMCI','sMCI'], help='output path')
args = parser.parse_args()
return args
class CCGAN(object):
def __init__(self, sess, args):
self.sess = sess
self.img_width = 144
self.img_height = 176
self.img_depth = 144
self.img_layer = 1
self.ngf = 16
self.ndf = 32
self.argument_side = 3
self.selected_feat = 0, 1, 2, 3, 4,
self.max_epoch = args.max_epoch
self.max_image = args.max_image
self.to_restore = args.to_restore
self.use_mask = args.use_mask
self.cycload = args.cycload
self.ckpt_dir = args.ckpt_dir
self.input_path = args.input_path
self.outpath = args.outpath
self.model_stats = args.model_stats
self.grps = args.grps
self.tasks = 'cls', 'dis',
self.groups = {'DM': 1, 'AD': 1, 'CN': 0, 'pMCI': 1, 'sMCI': 1, 'sSCD': 0, 'pSCD': 1,
'MCI': 1, 'sSMC': 0, 'pSMC': 1, 'SMC': 0,
'sCN': 0, 'pCN': 1, 'ppCN': 1, 'Autism': 1, 'Control': 0}
self.lr = args.lr
def inputAB(self, imdb, cycload=True, augment=True):
flnm, grp = imdb
if flnm in self.datapool:
mdata, pdata, label = self.datapool[flnm]
else:
label = np.zeros(2, np.float32)
cls = self.groups[grp]
if cls in [0, 1]: label[cls] = 1
mfile = 'MRI/' + flnm + '.mat'
pfile = 'PET/' + flnm + '.mat'
if os.path.exists(self.input_path + mfile):
mdata = np.array(sio.loadmat(self.input_path + mfile)['IMG'])
else:
mdata = None
print(mfile)
if os.path.exists(self.input_path + pfile):
pdata = np.array(sio.loadmat(self.input_path + pfile)['IMG'])
else:
pdata = None
print(pfile)
if cycload:
self.datapool[flnm] = mdata, pdata, label
if augment:
idx = random.randint(-self.argument_side, self.argument_side)
idy = random.randint(-self.argument_side, self.argument_side)
idz = random.randint(-self.argument_side, self.argument_side)
else:
idx = 0
idy = 0
idz = 0
if mdata is None:
im_m = None
else:
im_m = mdata[np.newaxis, 18 + idx:162 + idx, 22 + idy:198 + idy, 10 + idz:154 + idz, np.newaxis]
im_m = np.minimum(1, im_m.astype(np.float32) / 96 - 1.0)
if pdata is None:
im_p = None
else:
im_p = pdata[np.newaxis, 18 + idx:162 + idx, 22 + idy:198 + idy, 10 + idz:154 + idz, np.newaxis]
im_p = im_p.astype(np.float32) / 128 - 1.0
labels = label[np.newaxis, :]
return im_m, im_p, labels
def get_database(self, imdbname, vldgrp=("AD", "CN")):
imdb = []
with open(imdbname, newline='') as csvfile:
imdbreader = csv.reader(csvfile, delimiter=',', quotechar='|')
for row in imdbreader:
if row[2] in vldgrp and row[2] != "CN" and row[2] != "SMC":
imdb.append(row[1:3])
return imdb
def input_setup_adni(self):
self.datapool = {}
self.imdb_train = self.get_database('./ADNI1_imdb_36m_psCN.csv', self.grps) + self.get_database('./ADNI2_imdb_36m_psCN.csv', self.grps)
self.imdb_test = self.get_database('./ADNI2_imdb_36m_psCN.csv', ['AD'])
self.imdb_val = self.get_database('./sSCDpSCDwHC.csv', ['pSCD','sSCD'])
print(len(self.imdb_train))
print(len(self.imdb_test))
print(len(self.imdb_val))
def model_setup(self):
self.input_A = tf.placeholder(tf.float32, [None, self.img_width, self.img_height, self.img_depth, self.img_layer], name="input_A")
self.input_B = tf.placeholder(tf.float32, [None, self.img_width, self.img_height, self.img_depth, self.img_layer], name="input_B")
self.label_holder = tf.placeholder(tf.float32, [None, 2], name="label")
self.global_step = tf.Variable(0, name="global_step", trainable=False)
with tf.variable_scope("GAN") as scope:
self.fake_B,self.logit, self.prob = build_generator_classifier(self.input_A, self.ngf, numofres=3) # 生成的PET
self.rec_B = build_gen_discriminator(self.input_B, self.ndf, "d") #判别realPET
scope.reuse_variables()
self.fake_rec_B = build_gen_discriminator(self.fake_B, self.ndf, "d") #判别syntheticPET
def loss_calc(self):
self.model_vars = tf.trainable_variables()
for var in self.model_vars: print(var.name) #print所有模型参数
self.cls_loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.logit, labels=self.label_holder))
optimizer1 = tf.train.GradientDescentOptimizer(0.01)
if self.use_mask:
msk_A = tf.cast(self.input_A > - 1, tf.float32)
msk_B = tf.cast(self.input_B > - 1, tf.float32)
else:
msk_A = 1
msk_B = 1
p2p_loss = tf.reduce_mean(tf.abs(self.input_B - self.fake_B)*msk_B)
disc_loss = tf.reduce_mean(tf.abs(self.fake_rec_B - 1))
self.g_loss1 = p2p_loss + disc_loss
self.g_loss2 = p2p_loss + disc_loss + self.cls_loss
self.d_loss = (tf.reduce_mean(tf.abs(self.fake_rec_B)) + tf.reduce_mean(tf.abs(self.rec_B-1))) / 2.0 #cycA&realA
optimizer2 = tf.train.AdamOptimizer(self.lr, beta1=0.5)
d_vars = [var for var in self.model_vars if 'd' in var.name]
g_vars = [var for var in self.model_vars if 'generator' in var.name]
c_vars = [var for var in self.model_vars if 'classifier' in var.name]
gc_vars = g_vars + c_vars
self.d_trainer = optimizer2.minimize(self.d_loss, var_list=d_vars)
self.g_trainer1 = optimizer2.minimize(self.g_loss1, var_list=g_vars)
self.c_trainer = optimizer1.minimize(self.cls_loss, var_list=c_vars)
self.g_trainer2 = optimizer1.minimize(self.g_loss2, var_list=gc_vars)
def save_training_images(self, sess, epoch):
if not os.path.exists(self.outpath):
os.makedirs(self.outpath)
for ptr in range(0, self.max_images):
inputA, inputB, label = self.inputAB(self.imdb_train[ptr], cycload=True, augment=False)
if (inputA is not None) & (inputB is not None):
fake_A_temp, fake_B_temp, cyc_A_temp, cyc_B_temp = sess.run(
[self.fake_A, self.fake_B, self.cyc_A, self.cyc_B],
feed_dict={self.input_A: inputA[0:1,:,:,:], self.input_B: inputB[0:1,:,:,:]})
sio.savemat(self.outpath+"/fake_" + str(epoch) + "_" + str(ptr) + ".mat",
{'fake_A': fake_A_temp[0], 'fake_B': fake_B_temp[0],
'cyc_A': cyc_A_temp[0], 'cyc_B': cyc_B_temp[0],
'input_A': inputA[0], 'input_B': inputB[0]})
break
def matrics_calc(self, testvals, labels, pos=0, neg=1):
mean = np.mean(testvals, axis=0)
print(np.sum(testvals, axis=0))
AUC = metrics.roc_auc_score(y_score=np.transpose(testvals), y_true=np.transpose(labels), average='samples')
TP = 0; TN=0; FP=0; FN=0
f = 1.00
for idx in range(len(testvals)):
if (labels[idx][pos]*f > labels[idx][neg]) & (testvals[idx][pos]*f > testvals[idx][neg]):
TP = TP + 1
if (labels[idx][pos]*f < labels[idx][neg]) & (testvals[idx][pos]*f <= testvals[idx][neg]):
TN = TN + 1
if (labels[idx][pos]*f < labels[idx][neg]) & (testvals[idx][pos]*f > testvals[idx][neg]):
FP = FP + 1
if (labels[idx][pos]*f > labels[idx][neg]) & (testvals[idx][pos]*f <= testvals[idx][neg]):
FN = FN + 1
print(TP, FN, TN, FP)
ACC = (TP + TN) / (TP + TN + FP + FN + 1e-6)
SEN = (TP) / (TP + FN + 1e-6)
SPE = (TN) / (TN + FP + 1e-6)
PPV = (TP) / (TP + FP + 1e-6)
F_score = (2 * SEN * PPV) / (SEN + PPV + 1e-6)
MCC = (TP * TN - FP * FN) / np.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)+ 1e-6)
return [AUC, ACC, SEN, SPE, F_score, MCC]
def train(self):
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
saver = tf.train.Saver(max_to_keep=0)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
#load model
with tf.Session(config=config) as sess:
sess.run(init)
if not os.path.exists(self.ckpt_dir):
os.makedirs(self.ckpt_dir)
ckpt = tf.train.get_checkpoint_state(self.ckpt_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
saver.restore(sess, os.path.join(self.ckpt_dir,ckpt_name))
start_epoch = int(next(re.finditer("(\d+)", ckpt_name)).group()) + 1
print(" [*] Load SUCCESS")
print(ckpt_name)
else:
start_epoch = 0
print(" [!] Load failed...")
for epoch in range(start_epoch, self.max_epoch):
print("In the epoch ", epoch)
trainlabels = []; trainprobs = []; losses = 0
for ptr in range(0, min(self.max_image, len(self.imdb_train))):
#print("In the iteration ", ptr, self.imdb_train[ptr])
inputA, inputB, label = self.inputAB(self.imdb_train[ptr], cycload=True, augment=True)
if (inputA is not None) and (inputB is not None) and (epoch < 50):
_, g1_loss = sess.run([self.g_trainer1, self.g_loss1],
feed_dict={self.input_A: inputA, self.input_B: inputB, self.label_holder:label})
_, d_loss = sess.run([self.d_trainer, self.d_loss],
feed_dict={self.input_A: inputA, self.input_B: inputB})
if (inputA is not None) and (inputB is not None) and epoch>=50:
_, logit, prob, loss = sess.run([self.g_trainer2, self.logit, self.prob, self.cls_loss],
feed_dict={self.input_A: inputA, self.input_B: inputB, self.label_holder:label})
losses = losses + loss; trainlabels.append(label); trainprobs.append(prob)
#_, d_loss = sess.run([self.d_trainer,self.d_loss], feed_dict={self.input_A: inputA, self.input_B: inputB})
if epoch>=50:
print('loss:', losses / len(trainprobs), self.matrics_calc(np.concatenate(trainprobs), np.concatenate(trainlabels), pos=1, neg=0))
saver.save(sess, "%s/%d-model.ckpt" % (self.ckpt_dir, epoch))
def test(self):
''' Testing Function'''
print("Testing the results")
saver = tf.train.Saver()
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session() as sess:
sess.run(init)
epoch = 49
ckpt_fname = self.ckpt_dir + '/%d-model.ckpt' % epoch
saver.restore(sess, ckpt_fname)
if not os.path.exists(self.outpath):
os.makedirs(self.outpath)
MAE = []; SSIM = []; PSNR = []
for ptr in range(min(len(self.imdb_test), self.max_image)):
inputA, inputB, label = self.inputAB(self.imdb_test[ptr], cycload=False, augment=False)
if inputA is not None and inputB is not None:
filename = self.imdb_test[ptr][0]
fakeB = sess.run(self.fake_B, feed_dict={self.input_A: inputA})
MAE.append(np.mean(np.abs(fakeB-inputB)))
SSIM.append(ssim(inputB[0], fakeB[0], multichannel=True))
PSNR.append(psnr(inputB[0]/2, fakeB[0]/2))
print(filename)
print(np.mean(MAE, axis=0), np.mean(SSIM, axis=0), np.mean(PSNR, axis=0))
print(np.std(MAE, axis=0), np.std(SSIM, axis=0), np.std(PSNR, axis=0))
def eval(self):
print("eval the classification results")
saver = tf.train.Saver()
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(init)
for epoch in range(50, 101, 1):
# chkpt_fname = tf.train.latest_checkpoint(check_dir)
ckpt_fname = self.ckpt_dir+'/%d-model.ckpt'%epoch
print("epoch-{0}".format(epoch), ckpt_fname)
saver.restore(sess, ckpt_fname)
testlabels = []; testprobs = []; losses = 0
for ptr in range(min(len(self.imdb_val), self.max_image)):
inputA, inputB, label = self.inputAB(self.imdb_val[ptr], cycload=True, augment=False)
print(self.imdb_val[ptr])
if inputA is not None:
prob, loss = sess.run([self.prob, self.cls_loss], feed_dict={self.input_A: inputA, self.label_holder: label})
losses = losses + loss; testlabels.append(label[0:1]); testprobs.append(prob)
print('loss:', losses / len(testprobs),
self.matrics_calc(np.concatenate(testprobs), np.concatenate(testlabels), pos=1, neg=0))
def eval2(self):
print("eval the classification results")
saver = tf.train.Saver()
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(init)
best_epoch = 65
ckpt_fname = self.ckpt_dir + '/%d-model.ckpt' % best_epoch
print("epoch-{0}".format(best_epoch), ckpt_fname)
saver.restore(sess, ckpt_fname)
testlabels = [];
testprobs = [];
losses = 0
for ptr in range(min(len(self.imdb_val), self.max_image)):
inputA, inputB, label = self.inputAB(self.imdb_val[ptr], cycload=True, augment=False)
print(self.imdb_val[ptr])
if inputA is not None:
prob, loss = sess.run([self.prob, self.cls_loss],
feed_dict={self.input_A: inputA, self.label_holder: label})
losses = losses + loss;
testlabels.append(label[0:1]);
testprobs.append(prob)
sio.savemat('./testprobs-joint',{'prob':testprobs,'label':testlabels})
def main():
args = parse_args()
if args is None:
exit()
model_params = vars(args)
for k, v in model_params.items():
print("\t%s:%s"%(k,v))
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_ids
with tf.Session() as sess:
model = CCGAN(sess,args)
model.input_setup_adni()
model.model_setup()
model.loss_calc()
if model.model_stats == 'train':
model.train()
elif model.model_stats == 'test':
model.test()
elif model.model_stats == 'eval':
model.eval()
else:
model.eval2()
if __name__ == '__main__':
main()