-
Notifications
You must be signed in to change notification settings - Fork 4
/
paper-fitting-and-validation-one-cell.py
175 lines (149 loc) · 5.2 KB
/
paper-fitting-and-validation-one-cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python2
from __future__ import print_function
import sys
sys.path.append('../lib')
import os
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import string
import protocols
import model_ikr as m
from releakcorrect import I_releak, score_leak, protocol_leak_check
from scipy.optimize import fmin
# Set seed
np.random.seed(101)
savedir = './figs/paper'
if not os.path.isdir(savedir):
os.makedirs(savedir)
#
# Protocol info
#
protocol_funcs = {
'staircaseramp': protocols.leak_staircase,
'pharma': protocols.pharma, # during drug application
'apab': 'protocol-apab.csv',
'apabv3': 'protocol-apabv3.csv',
'ap05hz': 'protocol-ap05hz.csv',
'ap1hz': 'protocol-ap1hz.csv',
'ap2hz': 'protocol-ap2hz.csv',
'sactiv': None,
'sinactiv': None,
}
protocol_dir = '../protocol-time-series'
protocol_list = [
'staircaseramp',
'pharma',
'apab',
'apabv3',
'ap1hz',
'ap2hz',
]
data_dir_staircase = '../data'
data_dir = '../data-autoLC'
file_dir = './out'
file_list = [
'herg25oc1',
]
temperatures = np.array([25.0])
temperatures += 273.15 # in K
fit_seed = '542811797'
#
# Do a very very tailored version........ :(
#
fig = plt.figure(figsize=(16, 7))
grid = plt.GridSpec(28, 3, hspace=0.0, wspace=0.2)
axes = np.empty([4, int(len(protocol_list)/2)], dtype=object)
# long list here:
for i in range(3):
# First 'row'
axes[0, i] = fig.add_subplot(grid[0:6, i]) # , sharex=axes[2, i])
axes[0, i].set_xticklabels([])
axes[1, i] = fig.add_subplot(grid[6:12, i]) # , sharex=axes[2, i])
# Second 'row'
axes[2, i] = fig.add_subplot(grid[16:22, i]) # , sharex=axes[5, i])
axes[2, i].set_xticklabels([])
axes[3, i] = fig.add_subplot(grid[22:28, i]) # , sharex=axes[5, i])
axes[0, 0].set_ylabel('Voltage [mV]', fontsize=14)
axes[1, 0].set_ylabel('Current [pA]', fontsize=14)
axes[2, 0].set_ylabel('Voltage [mV]', fontsize=14)
axes[3, 0].set_ylabel('Current [pA]', fontsize=14)
axes[-1, int(len(protocol_list)/2/2)].set_xlabel('Time [s]', fontsize=18)
#
# Protocol and a cell
#
file_name = file_list[0]
temperature = temperatures[0]
cell = 'D19'
# Model
prt2model = {}
for prt in protocol_list:
protocol_def = protocol_funcs[prt]
if type(protocol_def) is str:
protocol_def = '%s/%s' % (protocol_dir, protocol_def)
prt2model[prt] = m.Model('../mmt-model-files/kylie-2017-IKr.mmt',
protocol_def=protocol_def,
temperature=temperature, # K
transform=None,
useFilterCap=False) # ignore capacitive spike
# Fitted parameters
param_file = '%s/%s/%s-staircaseramp-%s-solution-%s.txt' % \
(file_dir, file_name, file_name, cell, fit_seed)
obtained_parameters = np.loadtxt(param_file)
for i_prt, prt in enumerate(protocol_list):
# Calculate axis index
ai, aj = 2 * int(i_prt / 3), i_prt % 3
# Title
if prt == 'staircaseramp':
axes[ai, aj].set_title('Calibration', fontsize=16)
else:
axes[ai, aj].set_title('Validation %s' % i_prt, fontsize=16)
# Time point
times = np.loadtxt('%s/%s-%s-times.csv' % (data_dir, file_name,
prt), delimiter=',', skiprows=1)
# Protocol
model = prt2model[prt]
voltage = model.voltage(times) * 1000
# Data
if prt == 'staircaseramp':
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir_staircase,
file_name, prt, cell), delimiter=',', skiprows=1)
else:
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir, file_name,
prt, cell), delimiter=',', skiprows=1)
# Re-leak correct the leak corrected data...
g_releak = fmin(score_leak, [0.0], args=(data, voltage, times,
protocol_leak_check[prt]), disp=False)
data = I_releak(g_releak[0], data, voltage)
assert(data.shape == times.shape)
# Simulation
simulation = model.simulate(obtained_parameters, times)
# Plot raw data
# Add label!
axes[ai, aj].text(-0.1, 1.1, string.ascii_uppercase[i_prt],
transform=axes[ai, aj].transAxes, size=20,
weight='bold')
# protocol
axes[ai, aj].plot(times, voltage, c='#696969')
# recording
axes[ai + 1, aj].plot(times, data, lw=1, alpha=0.8, c='#1f77b4')
# simulation
if prt == 'staircaseramp':
axes[ai + 1, aj].plot(times, simulation, label='model fit to data',
lw=2, c='#d62728')
else:
axes[ai + 1, aj].plot(times, simulation, label='model prediction',
lw=2, c='#d62728')
#
# Final adjustment and save
#
axes[1, 0].legend()
axes[1, 1].legend()
grid.tight_layout(fig, pad=0.6)
grid.update(wspace=0.12, hspace=0.0)
plt.savefig('%s/fitting-and-validation-%s_%s.png' % (savedir, file_name, \
cell), bbox_inch='tight', pad_inches=0)
# plt.savefig('%s/fitting-and-validation-%s_%s.pdf' % (savedir, file_name, \
# cell), format='pdf', bbox_inch='tight', pad_inches=0)
print('Done')