-
Notifications
You must be signed in to change notification settings - Fork 0
/
qna.py
279 lines (219 loc) · 8.81 KB
/
qna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from langchain_community.document_loaders import TextLoader, PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_openai import ChatOpenAI
import chainlit as cl
from chainlit.types import AskFileResponse
from langchain.chains import RetrievalQAWithSourcesChain
import os
os.environ['OPENAI_API_KEY'] = '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'
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
embeddings = OpenAIEmbeddings()
welcome_message = """Welcome to the Chainlit PDF QA demo! To get started:
1. Upload a PDF or text file
2. Ask a question about the file
"""
def process_file(file: AskFileResponse):
import tempfile
if file.type == "text/plain":
Loader = TextLoader
elif file.type == "application/pdf":
Loader = PyPDFLoader
# with tempfile.NamedTemporaryFile() as tempfile:
# tempfile.write(file)
loader = Loader(file.path)
documents = loader.load()
docs = text_splitter.split_documents(documents)
for i, doc in enumerate(docs):
doc.metadata["source"] = f"source_{i}"
return docs
def get_docsearch(file: AskFileResponse):
docs = process_file(file)
# Save data in the user session
cl.user_session.set("docs", docs)
# Create a unique namespace for the file
docsearch = Chroma.from_documents(
docs, embeddings
)
return docsearch
@cl.on_chat_start
async def start():
# Sending an image with the local file path
await cl.Message(content="You can now chat with your pdfs.").send()
files = None
while files is None:
files = await cl.AskFileMessage(
content=welcome_message,
accept=["text/plain", "application/pdf"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
# print(str(file.path))
msg = cl.Message(content=f"Processing `{file.name}`...")
await msg.send()
# No async implementation in the Pinecone client, fallback to sync
docsearch = await cl.make_async(get_docsearch)(file)
msg = cl.Message(content=f"clear 1")
await msg.send()
chain = RetrievalQAWithSourcesChain.from_chain_type(
ChatOpenAI(temperature=0, streaming=True),
chain_type="stuff",
retriever=docsearch.as_retriever(max_tokens_limit=4097),
)
# Let the user know that the system is ready
msg.content = f"`{file.name}` processed. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain") # type: RetrievalQAWithSourcesChain
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached = True
res = await chain.acall(message.content, callbacks=[cb])
answer = res["answer"]
sources = res["sources"].strip()
source_elements = []
# Get the documents from the user session
docs = cl.user_session.get("docs")
metadatas = [doc.metadata for doc in docs]
all_sources = [m["source"] for m in metadatas]
if sources:
found_sources = []
# Add the sources to the message
for source in sources.split(","):
source_name = source.strip().replace(".", "")
# Get the index of the source
try:
index = all_sources.index(source_name)
except ValueError:
continue
text = docs[index].page_content
found_sources.append(source_name)
# Create the text element referenced in the message
source_elements.append(cl.Text(content=text, name=source_name))
if found_sources:
answer += f"\nSources: {', '.join(found_sources)}"
else:
answer += "\nNo sources found"
if cb.has_streamed_final_answer:
cb.final_stream.elements = source_elements
await cb.final_stream.update()
else:
await cl.Message(content=answer, elements=source_elements).send()
# import os
# from typing import List
# from langchain.document_loaders import PyPDFLoader, TextLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.embeddings.openai import OpenAIEmbeddings
# from langchain.vectorstores.pinecone import Pinecone
# from langchain.chains import ConversationalRetrievalChain
# from langchain.chat_models import ChatOpenAI
# from langchain.memory import ChatMessageHistory, ConversationBufferMemory
# from langchain.docstore.document import Document
# import pinecone
# import chainlit as cl
# from chainlit.types import AskFileResponse
# os.environ['PINECONE_API_KEY']='f13b0921-3e0d-4a52-93cd-3a375ed0469a'
# # os.environ["PINECONE_ENV"]=YOUR_PINECONE_ENV
# os.environ['OPENAI_API_KEY']= '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'
# pinecone.init(
# api_key=os.environ.get("PINECONE_API_KEY"),
# environment=os.environ.get("PINECONE_ENV"),
# )
# index_name = "langchain-demo"
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
# embeddings = OpenAIEmbeddings()
# namespaces = set()
# welcome_message = """Welcome to the Chainlit PDF QA demo! To get started:
# 1. Upload a PDF or text file
# 2. Ask a question about the file
# """
# def process_file(file: AskFileResponse):
# if file.type == "text/plain":
# Loader = TextLoader
# elif file.type == "application/pdf":
# Loader = PyPDFLoader
# loader = Loader(file.path)
# documents = loader.load()
# docs = text_splitter.split_documents(documents)
# for i, doc in enumerate(docs):
# doc.metadata["source"] = f"source_{i}"
# return docs
# def get_docsearch(file: AskFileResponse):
# docs = process_file(file)
# # Save data in the user session
# cl.user_session.set("docs", docs)
# # Create a unique namespace for the file
# namespace = file.id
# if namespace in namespaces:
# docsearch = Pinecone.from_existing_index(
# index_name=index_name, embedding=embeddings, namespace=namespace
# )
# else:
# docsearch = Pinecone.from_documents(
# docs, embeddings, index_name=index_name, namespace=namespace
# )
# namespaces.add(namespace)
# return docsearch
# @cl.on_chat_start
# async def start():
# await cl.Avatar(
# name="Chatbot",
# url="https://avatars.githubusercontent.com/u/128686189?s=400&u=a1d1553023f8ea0921fba0debbe92a8c5f840dd9&v=4",
# ).send()
# files = None
# while files is None:
# files = await cl.AskFileMessage(
# content=welcome_message,
# accept=["text/plain", "application/pdf"],
# max_size_mb=20,
# timeout=180,
# ).send()
# file = files[0]
# msg = cl.Message(content=f"Processing `{file.name}`...", disable_feedback=True)
# await msg.send()
# # No async implementation in the Pinecone client, fallback to sync
# docsearch = await cl.make_async(get_docsearch)(file)
# message_history = ChatMessageHistory()
# memory = ConversationBufferMemory(
# memory_key="chat_history",
# output_key="answer",
# chat_memory=message_history,
# return_messages=True,
# )
# chain = ConversationalRetrievalChain.from_llm(
# ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
# chain_type="stuff",
# retriever=docsearch.as_retriever(),
# memory=memory,
# return_source_documents=True,
# )
# # Let the user know that the system is ready
# msg.content = f"`{file.name}` processed. You can now ask questions!"
# await msg.update()
# cl.user_session.set("chain", chain)
# @cl.on_message
# async def main(message: cl.Message):
# chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
# cb = cl.AsyncLangchainCallbackHandler()
# res = await chain.acall(message.content, callbacks=[cb])
# answer = res["answer"]
# source_documents = res["source_documents"] # type: List[Document]
# text_elements = [] # type: List[cl.Text]
# if source_documents:
# for source_idx, source_doc in enumerate(source_documents):
# source_name = f"source_{source_idx}"
# # Create the text element referenced in the message
# text_elements.append(
# cl.Text(content=source_doc.page_content, name=source_name)
# )
# source_names = [text_el.name for text_el in text_elements]
# if source_names:
# answer += f"\nSources: {', '.join(source_names)}"
# else:
# answer += "\nNo sources found"
# await cl.Message(content=answer, elements=text_elements).send()